
GOLDILOCKS LITE 3.1 Manual (ko)

GOLDILOCKS LITE 3.1 Manual (ko)

SUNJESOFT Inc

차례

v

차례

1. Getting Started

1.1 개요

1.2 Quick Start

1.3 구문

1.4 DICTIONARY

1.5 dbmMetaManager

1.6 복구 가이드

1.7 Utility

1.8 Sizing

1.9 Monitoring

2. API Reference

2.1 API 공통사항

2.2 C/C++ APIs

2.3 JAVA

2.4 Python 연동

2.5 GO Lang

2.6 Error Message

. v

. 1

. 2

. 12

. 21

. 89

. 103

. 112

. 116

. 131

. 134

. 139

. 140

. 140

. 252

. 278

. 281

. 285

Getting Started

1.

1

2 | Getting Started

1.1 개요

GOLDILOCKS LITE는 트랜잭션 기능을 지원하는 shared memory 기반의 데이터 관리 library이다.

주요 특징은 다음과 같다.

● Shared memory direct attached 방식으로 동작하는 C/C++ library

● Shared memory 자동 확장 및 최대 크기 제한 기능 제공

● 장애 복구와 안정성을 위한 disk logging 기능 제공

● C 언어 기반의 직관적인 API (Application Interface) 제공

● 운영 관리용 SQL syntax 제공

● Array, B tree, splay 등 다양한 탐색 방식 지원

● 트랜잭션 기능 제공 (Atomic, concurrency, durability 등 지원)

다음은 사용자 프로그램에서 데이터를 관리하는 방식을 보여주는 구조체 예제이다.

struct user_data

{

int mEmpNo;

char mEmpName[20];

int mDeptNo;

struct timeval mBirth

}

● 다음 예제와 같이 구조체와 동일한 형태의 테이블을 생성한다.

dbmMetaManager(DEMO)> create table user_data

(

empNo int,

empName char(20),

deptNo int,

birth date

)

success

dbmMetaManager(DEMO)>

● 다음 예제와 같이 인덱스를 생성한다.

dbmMetaManager(DEMO)> create unique index idx_user_data on user_data(empNo);

success

개요 | 3

● 다음의 예제와 같이 데이터를 삽입/조회할 수 있다.

dbmMetaManager(DEMO)> desc user_data;

Instance=(DEMO) Table=(USER_DATA) Type=(TABLE) RowSize=(40) LockMode(1)

EMPNO int 4 0

EMPNAME char 20 4

DEPTNO int 4 24

BIRTH date 8 32

IDX_USER_DATA unique (EMPNO asc)

success

dbmMetaManager(DEMO)> insert into user_data values (1, 'alice', 100, sysdate);

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> select * from user_data;

EMPNO : 1

EMPNAME : alice

DEPTNO : 100

BIRTH : 2025/07/30 08:08:15.484030

1 row selected

● 제공되는 API를 활용해 다음과 같이 개발할 수 있다.

dbmHandle * Handle = NULL;

struct user_data xData;

// 세션 할당

dbmInitHandle(&Handle, NULL);

// 데이터 저장 API 예

dbmInsertRow(Handle, "node", &xData, sizeof(struct user_data));

// 데이터 조회 API 예

dbmSelectRow(Handle, "node", &xData);

...

4 | Getting Started

노트

● dbmMetaManager는 사용자가 GOLDILOCKS LITE를 관리할 수 있도록 제공되는 interactive tool 이

다. (자세한 내용은 dbmMetaManager 를 참조한다.)

● API에 대한 자세한 내용은 C/C++ APIs를 참조한다.

Object

GOLDILOCKS LITE에서 object는 shared memory 상에 생성되는 모든 유형의 segment를 의미한다.

DICTIONARY

Dictionary는 object 정보를 관리하기 위해 instance 생성 시점에 자동으로 생성되며, object 관련 테이블과 상태 정

보를 확인할 수 있도록 제공되는 내부 view들을 의미한다. (자세한 내용은 DICTIONARY 를 참조한다.)

INSTANCE

Instance는 GOLDILOCKS LITE를 사용하는 세션 정보와 트랜잭션을 처리하기 위한 공간으로 사용된다. 일반 RDB

MS의 undo segment나 SGA/PGA와 유사한 의미를 갖는다.

노트

GOLDILOCKS LITE에서 세션이란 dbmInitHandle/ dbmConnect API를 통해 instance에 공간을 할당받아

실행되는 프로그램을 의미한다.

Instance는 다음과 같은 용도로 사용된다.

항목 설명

Session area Instance에 접근하는 세션의 정보를 저장하는 공간이다. (SessionID, PID, status 등)

Transaction area Session에서 발생한 트랜잭션의 정보를 저장하는 공간이다. (트랜잭션 로깅 등)

Rollback image area 트랜잭션에 의해 변경되기 전의 record image를 저장하는 공간이다.

개요 | 5

노트

● INSTANCE에는 두 가지 유형이 있다.

○ Dictionary instance: initdb에 의해 생성되는 최상위 instance 이다.

○ User instance: 사용자가 직접 생성하는 instance 이다.

● 하나의 instance에는 최대 1,023 개의 세션이 동시에 접속할 수 있다.

TABLE

● TABLE은 사용자 데이터를 저장하는 공간이다.

● Instance 내에서 테이블 이름은 고유해야 하며, 테이블 생성 개수에는 제한이 없다.

다음과 같은 유형의 테이블들을 지원한다. 각 테이블 유형은 생성 구문 (create table)을 통해 정의한다.

테이블 유형 설명

Normal table B tree indexing segment 지원하는 테이블

Direct table 하나의 column value를 key로 사용하는 array 형태 테이블

Splay table Splay indexing 을 사용하는 테이블

Queue table FIFO (First-In, First-Out) 방식 테이블

Store table Char data type만으로 구성된 key/ value 형식의 테이블

Sequence 채번을 위한 object

Column 타입으로 정의할 수 있는 데이터 유형은 다음과 같다.

Column type 설명

int sizeof(int)

short sizeof(short)

float sizeof(float), 별도의 정밀도를 제공하지 않는다.

long sizeof(long long)

char (size) 입력된 size 크기의 fixed 공간이다.

double sizeof(double), 별도의 정밀도를 제공하지 않는다.

date sizeof(unsigned long long)

노트

GOLDILOCKS LITE에는 실제 column 개념이 존재하지 않는다. Column 정의는 사용자 입력 데이터의 특정

위치에서 index key 값을 추출하거나, 관리 편의를 위해 column 형태로 출력하기 위한 용도로만 사용된다.

6 | Getting Started

주의

Column의 offset과 size는 C struct의 default padding/packing 방식을 기반으로 설정된다. 따라서 #pra

gma pack 구문을 사용하여 default 설정과 다르게 지정할 경우, application이 정상적으로 동작하지 않는

다.

INDEX

Index는 테이블 내의 데이터를 효율적으로 검색하기 위한 object 이다.

(자세한 내용은 create index 를 참조한다.)

● Unique constraint 지원

● (float, double) 데이터 타입을 index key column으로 지정하는 것은 권장하지 않는다.

● 하나 이상의 composite key를 구성할 수 있다.

● Index key column의 정렬 방식을 지정할 수 있다. (ASC, DESC)

● Secondary index는 normal table에만 생성할 수 있다.

노트

● DIRECT, SPLAY, QUEUE, STORE 테이블에는 한 개의 INDEX만 생성할 수 있다.

● DIRECT table에는 한 개의 정수형 데이터 타입 column만 index로 지정할 수 있다.

● STORE, QUEUE table은 생성 시 자동으로 B-tree 기반 index가 생성되며, 사용자가 임의로 index를 변

경할 수 없다.

DIRECT TABLE

Direct table은 테이블 내 숫자형 데이터 타입 column 중 하나를 index key로 지정하여, 해당 column의 데이터 값

을 테이블 내 저장 위치로 사용한다. 예를 들어, 이 값이 1 인 경우 table에 데이터를 저장할 수 있는 공간 중 1 번 위

치에 해당 데이터를 저장한다. (이는 array indexing 방식과 유사하며, 자세한 내용은 create table 을 참조한다.)

노트

Direct table은 create unique index 구문을 통해 반드시 하나의 column만 key column으로 지정해야 한

다. Key column으로 지정할 수 있는 data type 타입은 long, short, int 이다.

개요 | 7

SPLAY TABLE

Splay table은 splay indexing으로 정렬되는 테이블이다. 이전에 조회하거나 조작한 데이터와 인접한 데이터를 빠르

게 탐색해야 하는 경우에 적합하다. (자세한 내용은 create table 을 참조한다.)

주의

Splay table의 성능은 데이터 조작 방식 및 접근 패턴에 따라 달라질 수 있다.

STORE TABLE

Store table은 key에 대응하는 value를 저장하는 테이블이다.

테이블의 column은 별도로 정의하지 않고 key와 value의 저장 크기만 지정한다.

SET 기능을 이용하여 데이터를 저장하고, GET 기능을 이용하여 조회한다.

Key의 최대 길이는 64 byte이며, value의 최대 크기는 512 K 이다. (해당 크기는 fixed size로 동작한다. 자세한 내

용은 create store 를 참조한다.)

주의

Store table은 자동으로 B-tree index를 생성하며, 사용자가 임의로 index를 변경할 수 없다.

QUEUE

Queue는 First-In/First-Out (FIFO) 방식으로 사용할 수 있는 테이블이다.

사용자가 입력한 데이터를 순서대로 저장하고 조회하는 구조의 테이블이다.

(자세한 내용은 create queue를 참조한다.)

Queue는 처리 순서를 제어하기 위한 priority 기능을 제공하며, priority 값이 낮을수록 우선 순위가 높다.

Dequeue 동작 결과는 수행 시점에 따라 차이가 있을 수 있다.

예를 들어, 데이터가 (1, 2, 3)과 같은 순서로 저장되어 있을 경우, dequeue 수행 시점에 따라 다음 표와 같은 결과가

나올 수 있다.

Time Deq Process #1 #2 #3

Time-1 "1" "2"

Time-2 rollback

Time-3 "2"

8 | Getting Started

각 데이터는 enqueue 시점에 고유한 MsgID가 부여되어 저장된다.

만약 dequeue를 수행한 세션이 rollback 되더라도 해당 MsgID는 변경되지 않는다. 이로 인해 rollback이 선행된 경

우, 이후 dequeue를 수행하는 세션이 동일한 데이터를 다시 가져올 수 있다.

노트

데이터의 처리 순서가 반드시 보장되어야 하는 경우에는, enqueue와 dequeue 세션을 1:1 구조로 구성해야

한다.

SEQUENCE

Sequence는 고유 번호를 획득하기 위해 사용하는 object이다. (자세한 내용은 create sequence 를 참조한다.)

Sequence 객체를 생성한 후에는 반드시 nextval/ dbmGetNextVal을 호출해야 한다.

동시성 및 복구

본 절에서는 별도의 관리 프로세스가 없는 GOLDILOCKS LITE에서 세션 간 동시성을 제어하거나 복구하는 방법에 대

해 설명한다.

Row Level Lock

테이블에 저장되는 데이터가 동시에 변경되는 것을 방지하기 위해 row level의 lock을 제공한다.

사용자가 호출한 변경 연산은 내부 처리 과정에서 자동으로 필요한 lock을 획득하며 commit/rollback을 통해 해제한

다.

Read Committed

세션은 갱신 작업을 수행하기 전에 갱신할 image를 별도의 공간 (instance undo space)에 저장한다. 이 때 접근하

는 조회 세션은 갱신 트랜잭션을 기다리지 않고 이전에 commit 된 image를 읽을 수 있도록 동시성을 제공한다.

노트

해당 동작은 DBM_MVCC_ENABLE property (환경 변수 및 프로퍼티) 에 의해 제어된다.

사용자가 데이터를 갱신하는 동안 조회 시도가 대기하도록 하려면, 해당 속성을 FALSE로 설정한다.

(기본값은 TRUE 이다.)

개요 | 9

Auto Dead Lock Detection

갱신 연산 간에 상호 대기가 발생할 수 있다.

예를 들어, T1 테이블에 (A, B) 레코드가 존재할 때 세션 #1이 A를 갱신한 후 B를 갱신하려고 하고, 동시에 세션 #2

가 B를 먼저 갱신한 후 A를 갱신하려고 하면, 세션 #1과 세션 #2는 교착 상태에 빠진다.

GOLDILOCKS LITE 라이브러리는 이러한 상황을 자동으로 감지하며, 세션 ID가 높은 세션에 오류를 발생시켜 교착

상태를 해소한다.

주의

Application이 교착 상태 오류에 빠진 경우, 이전 트랜잭션이 자동으로 rollback되지 않는다.

따라서 사용자가 명시적으로 트랜잭션을 commit 또는 rollback 해야 교착 상태가 해소된다.

Delayed Recovery Concept

Delayed recovery는 GOLDILOCKS LITE에서 비정상적으로 종료된 트랜잭션을 application이 감지하고 복구할 수

있도록 지원하는 기능이다.

GOLDILOCKS LITE에는 세션이나 트랜잭션을 관리하는 별도의 프로세스가 없으므로, lock을 점유하려는 세션이 직

전에 접근했던 세션의 비정상 종료 여부를 직접 감지하고 필요한 복구 작업을 수행한다. 이러한 방식의 복구를 Delay

ed Recovery 라고 한다.

GOLDILOCKS LITE에서 트랜잭션은 다음과 같은 방식으로 처리된다.

• 사용자 application은 instance segment에 자신의 정보와 트랜잭션 정보를 기록한다.

• Lock을 점유할 경우, 점유한 자원 (레코드)에 해당 세션의 트랜잭션 정보를 기록한다.

Delayed recovery는 다음과 같은 방식으로 감지된다.

• Lock 대상에 기록된 정보를 기준으로 해당 트랜잭션이 정상적으로 종료되었는지 확인한다.

• 현재 lock을 점유하고 있는 세션의 유효성을 판단한다.

Delayed recovery가 필요하다고 판단한 세션은 다음 작업을 수행한다.

• 비정상 종료된 세션에 대한 lock을 획득한다. (동시 복구 방지)

• 비정상 종료된 세션이 기록한 transaction log를 기반으로 데이터 복구 및 자원 해제를 진행한다.

• 유효하지 않은 세션이 사용한 instance 영역을 해제한다.

• 복구 완료 후 자신의 트랜잭션 수행한다.

노트

복구가 불가능한 경우, 사용자에게 에러 메세지를 반환하고 대상 테이블을 직접 복구할 수 있는 방법을 제공

한다. 자세한 내용은 alter system refine [TableList]를 참조한다.

10 | Getting Started

Disk Logging

GOLDILOCKS LITE는 기본적으로 instance 영역에서 in-memory logging만 수행한다.

보다 높은 안정성이 필요한 경우에는 디스크 로깅 기능을 사용할 수 있으며, 동작 가능한 방식은 다음 두 가지로 구분

된다.

• Non cache mode: 각 세션이 자신의 전용 로그 파일에 직접 기록하는 방식이다.

• Log cache mode: 여러 세션이 공유 메모리 영역 (log cache)에 로그를 순차적으로 적재하면, 별도 프로세스 (db

mLogFlusher)가 이를 디스크 로그 파일로 플러시하는 방식이다.

노트

● 디스크 로깅을 사용하면 OS fatal 이나 memory H/W 장애와 같은 상황에 대비할 수 있다.

(자세한 내용은 복구 가이드를 참조한다.)

● 단, 디스크 로깅은 in-memory logging에 비해 성능 저하가 발생할 수 있으므로 이를 고려하여 사용해

야 한다.

Replication

GOLDILOCKS LITE는 network replication 방식으로 데이터를 동기화 할 수 있다.

제공되는 network replication 방식의 특징은 다음과 같다.

● Master-slave 기반의 단방향 1:1 구조를 사용한다.

● Commit 시점에 application이 트랜잭션 로그를 전달하는 방식으로 동작한다.

● 설정에 따라 SYNC/ASYNC 모드 중 하나를 선택할 수 있다.

○ SYNC 모드에서는 application이 commit을 수행할 때 slave에 로그 반영이 완료된 후 commit 이 완료된

다.

○ ASYNC 모드에서는 application이 replication 전송 버퍼에 로그를 적재하는 즉시 commit 이 완료된다.

● Slave 측에서는 해당 로그를 수신하고 반영하기 위해 dbmReplica process를 구동해야 한다.

● 테이블 단위의 이중화를 지원한다. (자세한 내용은 create replication 을 참조한다.)

● 이중화 대상 테이블에는 unique index가 반드시 존재해야 한다.

● 네트워크 장애 발생 시, master는 미전송 로그를 파일로 저장한다. (자세한 내용은 alter system replication syn

c 를 참조한다.)

● Replication conflict가 발생하면 System Commit Number (SCN)를 기준으로, 더 높은 SCN 값을 가진 데이터

를 우선하여 정합성을 유지한다.

개요 | 11

Replication 환경에서는 동기화 과정에서 데이터 간 불일치를 해소할 수 없는 상황이 발생할 수 있으며, 이를 replicat

ion conflict 상태로 정의한다. GOLDILOCKS LITE는 이러한 conflict를 다음과 같은 방식으로 처리한다.

Replication conflict 유형 Slave 처리 방식

Insert conflict

● Duplicated record
Slave의 데이터가 정상인 경우, conflict 오류만 기록한다.

Update conflict

● Not found

● 해당 데이터가 존재하면 SCN이 더 높은 데이터를 기준으로 정합성을 맞춘다.

● 존재하지 않으면 현재 로그를 기반으로 데이터를 삽입한다.

Delete conflict

● Not found
Slave에서 데이터를 찾을 수 없는 경우 conflict 오류만 기록한다.

주의

Replication 환경에서는 slave의 데이터를 직접 수정하거나 조회하는 것은 가급적 피하는 것이 좋다.

이중화 운영 중 network 장애가 발생하면, master 측 application은 전송되지 않은 이중화 로그를 DBM_REPL_UN

SENT_DIR의 지정된 경로에 파일 형태로 저장한다.

장애가 복구되면 사용자는 "ALTER REPLICATION SYNC" 명령을 통해 저장된 미전송 로그를 slave로 전송하여 데이

터 동기화를 완료할 수 있다.

12 | Getting Started

1.2 Quick Start

GOLDILOCKS LITE의 설치 및 기본 사용법에 대해 설명한다.

설치 전 작업

/dev/shm 공간 설정

Posix 방식의 shared memory를 사용하므로 /dev/shm에 충분한 공간을 확보해야 한다.

커널 파라미터 설정

일부 Linux 커널 버전에서는 IPC 자원이 자동으로 삭제될 수 있으므로, 이를 방지하기 위해 "RemoveIPC" 설정을 적

용해야 한다.

cp -i /etc/systemd/logind.conf /etc/systemd/logind.conf_prev

cat /etc/systemd/logind.conf

[Login]

...

RemoveIPC=no

...

환경 변수 및 프로퍼티

GOLDILOCKS LITE를 사용하려면 사용자가 $DBM_HOME/conf/dbm.cfg 또는 사용자 환경 변수를 설정해야 한다.

(각 속성의 의미는 아래 표에 설명되어 있으며, 환경 변수가 설정 파일보다 우선 적용된다.)

환경 변수 설명

DBM_HOME GOLDILOCKS LITE가 설치된 경로이다.

DBM_INSTANCE 사용할 Default Instance Name을 지정한다.

PATH 실행 파일을 사용할 수 있도록 사용자 환경 변수 PATH에 $DBM_HOME/bin 을 추가한다.

LD_LIBRARY_PATH
실행 파일이 참조하는 shared library를 탐색할 수 있도록 사용자 환경 변수 LD_LIBRARY_PATH에 $

DBM_HOME/lib 를 추가한다.

DBM_SHM_PREFIX /dev/shm에 shared memory segment를 생성할 때 파일명의 접두어로 사용된다.

DBM_SHM_DIR
kernel 버전에 따라 /dev/shm 하위 디렉토리 생성이 허용될 경우에 사용한다.

(default(0): 사용하지 않음, (1): DBM_SHM_PREFIX 이름으로 디렉토리 생성)

Quick Start | 13

프로퍼티 이름 설명 옵션
Default

값

create ins

tance 후

변경 가능

여부

DBM_DISK_LOG

_ENABLE
DISK mode 사용 여부를 설정한다.

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

0 /FALSE X

DBM_DISK_LOG

_DIR

DISK mode를 사용할 경우, 트랜잭션 로그 파일이 저장되는 경로이

다.
-

${DBM_H

OME}/wa

l

X

DBM_DISK_LOG

_FILE_SIZE

트랜잭션 로그 파일의 크기를 지정한다. 지정된 크기를 초과하면 자

동으로 다음 로그 파일이 생성되어, 로그가 계속 기록된다.

예:

1024M(1

024mega

byte)

1G (1gig

abyte)

100M X

DBM_DISK_DAT

A_FILE_DIR

DISK mode에서 CheckPoint 수행 시, 데이터 파일이 저장되는 경

로이다.
-

${DBM_H

OME}/db

f

X

DBM_DIRECT_IO

_ENABLE
DIRECT I/O 사용 여부를 설정한다.

[0 | FALS

E] = disa

ble

[1 | TRUE

]= enable

[0 | FALS

E]
X

DBM_DIRECT_IO

_SIZE
DIRECT I/O를 사용하기 위한 disk sector size를 설정한다.

예:

512(byte)
512 X

DBM_LISTEN_PO

RT
dbmListener를 통한 원격 접속 시 사용할 port를 지정한다.

예:

27584
27584 O

DBM_LISTEN_CO

NN_TIMEOUT
dbmListener와 연결을 시도할 때 적용되는 timeout 시간이다.

예:

10000(m

s)

10000 O

DBM_LISTEN_RE

CV_TIMEOUT
dbmListener에 요청 전송 후, 응답을 기다리는 시간을 설정한다.

예:

10000(m

s)

10000 O

DBM_LOG_CAC

HE_MODE
Log cache 모드를 설정한다.

● 0: 사

용 안

함

● 1: N

V D I

MM

사용

0 X

14 | Getting Started

● 2: Sh

ared

mem

ory

사용

DBM_LOG_CAC

HE_SIZE
Log cache 크기를 지정한다.

예:

1G
1G X

DBM_LOG_CAC

HE_FLUSH_INTE

RVAL

dbmLogFlusher의 동작 주기이다.
예:

3000(ms)
3000 O

DBM_DISK_COM

MIT_WAIT

Commit 시, redo 파일이 완전히 기록될 때까지 대기할지 여부를

설정한다. (데이터 안전성은 높아지지만 성능이 저하될 수 있다.)

[0 | FALS

E] = disa

ble

[1 | TRUE

]= enable

[0 | FALS

E]
O

DBM_ARCHIVE_

ENABLE

CheckPoint 이후의 트랜잭션 로그 파일을 archive로 저장할지 여

부를 설정한다.

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

[0 | FALS

E]
X

DBM_ARCHIVE_

PATH
Archive 로그 파일이 저장되는 디렉토리 경로이다. -

${DBM_H

OME}/arc

h

X

DBM_REPL_ENA

BLE
이중화 기능 사용 여부를 설정한다.

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

[0 | FALS

E]
X

DBM_REPL_ASY

NC_DML

Async 이중화 사용 여부를 설정한다.

이중화 버퍼 크기만큼 트랜잭션을 모아서 일괄 전송한다. 전송 도중

에 장애가 발생하면, 일부 트랜잭션 데이터가 동기화되지 않고 남아

있을 수 있다.

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

[0 | FALS

E]
O

DBM_REPL_TAR

GET_PRIMARY_I

P

dbmReplica가 동작하는 node의 IP를 설정한다. -
127.0.0.

1
O

DBM_REPL_TAR dbmReplica의 listen port를 설정한다.
- 27584 O

프로퍼티 이름 설명 옵션
Default

값

create ins

tance 후

변경 가능

여부

Quick Start | 15

GET_PORT (어플리케이션이 참조하는 값)

DBM_REPL_LIST

EN_PORT

dbmReplica의 listen port를 설정한다.

(dbmReplica가 참조하는 값)
- 27584 O

DBM_REPL_CON

N_TIMEOUT
이중화 연결을 시도할 때의 timeout 값을 지정한다.

예:

10000 (

ms)

10000 O

DBM_REPL_REC

V_TIMEOUT
이중화 수행 중 응답 수신을 기다리는 시간이다.

예:

10000 (

ms)

10000 O

DBM_REPL_UNS

ENT_LOG_DIR

이중화 연결이 단절된 경우, 전송되지 못한 트랜잭션 로그가 임시로

저장되는 디렉토리 이다.
-

${DBM_H

OME}/rep

l

X

DBM_REPL_UNS

ENT_LOGFILE_SI

ZE

미전송 트랜잭션 로그 파일의 크기를 지정한다.

예:

1024M

(1024me

gabyte)

100M X

DBM_NO_INDEX

_ERROR_AT_PRE

PARE

dbmPrepareTable 또는 dbmPrepareTableHandle를 호출할 때,

대상 테이블에 index가 없을 경우 오류를 반환할지 여부를 설정한

다.

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

[1 | TRUE

]
O

DBM_LOADING_

THREAD_COUNT

Startup 또는 recovery 시 데이터를 로딩하는 thread 개수를 지정

한다.

1 이상의

수
8 O

DBM_PERF_ENA

BLE

Session의 acitivity를 count 할지 여부를 설정한다.

● DML/DCL 횟수

● Index operation 횟수

● Lock retry 횟수

● Delayed recovery 횟수

관련 내용은 V$SESS_STAT에서 조회 가능

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

[0 | FALS

E]
O

DBM_TRACE_LO

G_FOR_PBT

상세한 trace log가 필요한 경우에 설정한다.

(활성화 시 성능이 저하될 수 있다.)

[0 | FALS

E] = disa

ble

[1 | TRUE

]

= enable

[0 | FALS

E]
O

DBM_MVCC_EN

ABLE

조회 연산 시 lock 대기 여부를 설정한다.

변경 중인 레코드에 대한 조회 작업이 수행되는 경우, 이 설정에 따

[0 | FALS

E] = disa

ble

[1 | TRUE

[1 | TRUE

]
O

프로퍼티 이름 설명 옵션
Default

값

create ins

tance 후

변경 가능

여부

16 | Getting Started

라 직전에 commit 된 데이터를 조회할 수 있다.] = enabl

e

DBM_INDEX_NO

_LOCK_READER

B-tree index 탐색 시 해당 값을 True로 설정하면 Tree Lock Mod

e로 동작하고, False로 설정하면 No Lock Mode로 동작한다.

[0 | FALS

E] = disa

ble

[1 | TRUE

] = enabl

e

[0 | FALS

E]
O

프로퍼티 이름 설명 옵션
Default

값

create ins

tance 후

변경 가능

여부

다음은 bash 환경에서 환경 변수를 설정하는 예이다.

● GOLDILOCKS LITE 기본 설정

export DBM_HOME=/home/lim272/dbm_home ## 설치 경로

export PATH=${DBM_HOME}/bin:$PATH:.

export LD_LIBRARY_PATH=${DBM_HOME}/lib:$LD_LIBRARY_PATH:.

● 프로퍼티를 환경 변수로 설정

export DBM_DISK_LOG_ENABLE=1

export DBM_DISK_LOG_DIR=${DBM_HOME}/wal

export DBM_DISK_DATA_FILE_DIR=${DBM_HOME}/dbf

설치 및 라이센스

본 절에서는 GOLDILOCKS LITE의 설치 방법과 라이센스 발급 절차를 설명한다.

설치

GOLDILOCKS LITE는 다음과 같은 형식의 압축 파일로 제공된다.

패키지 파일명에서 각 항목이 의미하는 바는 아래와 같다.

goldilocks_lite-3.2.rev6762-linux4.18.0-305.3.1.el8.x86_64.nopmem.noflt128-debug.tar.gz

* goldilocks_lite-3.2 : Product Major Version

* rev???? : Patch Version

* linux4.18.0.-305.3.1.el8 : Linux version (el8 호환)

Quick Start | 17

* X86_64 : CPU / 64 bit

* nopmem : NVDIMM 지원 여부

* noflt128 : float128 지원 여부

* debug : debug / release 여부

다음 명령어를 통해 설치 파일의 압축을 해제한다.

shell> tar -xzf goldilocks_3.1.1.tar.gz

압축을 해제하면 아래와 같은 경로가 생성되며, 각 경로는 다음과 같은 용도로 사용된다.

경로 이름 설명

arch Archive log가 저장되는 기본 경로이다.

bin 각종 유틸리티 바이너리가 위치한 경로이다.

lib API shared library가 위치한 경로이다.

include API header 파일이 위치한 경로이다.

trc Trace log가 저장되는 경로이다.

sample API 활용 예제를 포함한 sample code 이다.

conf dbm.cfg와 dbm.license 파일이 위치한 경로이다.

dbf Disk mode로 설정 시, datafile이 저장되는 기본 경로이다.

repl Replication mode 설정 시, 미전송 로그 파일이 저장되는 기본 경로이다.

wal Disk mode 설정 시, redo logfile이 저장되는 기본 경로이다.

bin 디렉토리의 각 binary는 다음과 같은 기능을 수행한다.

Binary 이름 설명

dbmMetaManager SQL/Internal command를 실행할 수 있는 interactive 유틸리티 이다.

dbmListener 원격 서버에서 접속/처리를 위해 구동해야 하는 유틸리티 이다.

dbmLogFlusher Log cache에 저장된 트랜잭션 로그를 디스크로 저장하는 유틸리티 이다.

dbmMonitor 현재 DB 상태를 간략하게 모니터링 하 유틸리티 이다.

dbmExp Object 생성 script 및 데이터를 추출하는 유틸리티 이다.

dbmImp 구분자 (delimiter) 를 가진 파일의 데이터를 데이터베이스에 적재하는 유틸리티 이다.

dbmErrorMsg 전체 error code를 출력하는 유틸리티 이다.

dbmCkpt Redo logfile을 이용하여 데이터 파일을 생성하는 유틸리티 이다.

dbmReplica Replication 환경의 slave에서 구동되어 데이터를 수신하고 반영하는 유틸리티이다.

dbmDump
메모리 세그먼트와 파일을 추적하는 유틸리티 이다.

트랜잭션, 테이블, 인덱스, 데이터 파일, 로그 파일, anchor 파일 등의 정보를 확인할 수 있다.

18 | Getting Started

라이센스

설치할 장비의 CPU core 개수와 hostname을 첨부하여, technet@sunjesoft.com 으로 라이센스를 요청한다.

시작하기

GOLDILOCKS LITE를 처음 시작하려면, dbmMetaManager를 실행한 후 initdb 명령을 수행하여 Dictionary Insta

nce를 생성해야 한다.

(자세한 내용은 DICTIONARY 항목을 참조한다.)

[lim272@localhost 4th_iter]$ dbmMetaManager

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(unknown)> initdb;

success

노트

● Dictionary instance의 이름은 "dict"로 고정되어 있으며 변경할 수 없다.

● Dictionary instance에서는 사용자 객체 (user object)를 생성할 수 없다.

사용자 instance는 dictionary instance에 접속한 상태에서만 생성할 수 있다.

dbmMetaManager(unknown)> set instance dict;

success

dbmMetaManager(DICT)> create instance demo;

success

dbmMetaManager(DICT)> set instance demo;

success

dbmMetaManager(DEMO)>

다음과 같이 사용자 instance에서 table과 index를 생성하여 사용할 수 있다.

dbmMetaManager(DEMO)> create table t1 (c1 int, c2 int);

success

dbmMetaManager(DEMO)> create unique index idx_t1 on t1 (c1);

Quick Start | 19

success

dbmMetaManager(DEMO)> insert into t1 values (1, 1);

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> update t1 set c2 = 100 where c1 = 1;

1 row updated.

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 100

1 row selected

dbmMetaManager(DEMO)> delete from t1;

1 row deleted.

dbmMetaManager(DEMO)> select * from t1;

0 row selected

dbmMetaManager(DEMO)> rollback;

success

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 1

1 row selected

dbmMetaManager 실행 오류 시 참고 사항

환경 변수 "PATH" 에 설치 경로 "${DBM_HOME}/bin" 이 추가되지 않은 경우, 다음과 같은 오류가 발생한다.

$ dbmMetaManager

bash: dbmMetaManager: command not found...

환경 변수 "LD_LIBRARY_PATH"에 설치 경로 ${DBM_HOME}/lib 가 추가되지 않은 경우, 다음과 같이 shared libr

ary 로딩 오류가 발생한다.

$ dbmMetaManager

dbmMetaManager: error while loading shared libraries: libdbmCore.so: cannot open shared object

file: No such file or directory

20 | Getting Started

${DBM_HOME}/conf 내에 dbm.license 파일이 없거나 손상된 경우, 다음과 같이 라이센스 확인 오류가 발생한다.

$ dbmMetaManager

ERR] failed to check a license

ERR-21040] No such object (/mnt/md1/new_lite/pkg/conf/dbm.license): dbfOpen() returned errno

(2)

$ dbmMetaManager

ERR] failed to check a license

ERR-22098] invalid license

${DBM_HOME}/conf 내에 dbm.cfg 파일이 존재하지 않는 경우, initdb 실행 시 오류가 발생한다.

dbmMetaManager(unknown)> initdb;

Command] <initdb>

ERR-21040] No such object (/mnt/md1/ssd_home/lim272/new_lite/pkg/conf/dbm.cfg): dbfOpen()

returned errno(2)

구문 | 21

1.3 구문

GOLDILOCKS LITE에서 사용 가능한 SQL syntax에 대해 설명한다.

Data Definition Language (DDL)

DDL은 instance, table, index 등과 같은 다양한 object 를 생성하거나 제거하는 데 사용되는 구문이다.

DDL에서 사용되는 각 object의 이름은 최대 64 byte까지 지정할 수 있으며, 반드시 문자로 시작해야 한다.

Table을 생성할 때 record 하나의 최대 크기는 1,048,247 byte이다.

Queue를 생성할 때 message 하나의 최대 크기는 1,048,208 byte이다.

Index를 생성할 때 key column 들의 전체 길이 합은 1,024 byte 를 초과할 수 없다.

주의

● DDL 간에는 instance lock으로 동시성을 보장한다.

● Commit 또는 rollback 되지 않은 트랜잭션이 존재할 경우, DDL은 수행되지 않는다.

● DDL과 DML 간에는 동시성이 보장되지 않는다.

○ DDL은 데이터가 변경되지 않는 상황에서 사용하는 것을 권장한다.

initdb

기능

GOLDILOCKS LITE를 처음 사용할 때 dictionary instance를 생성하는 명령이다.

생성된 dictionary instance의 이름은 "DICT" 이며, set instance 구문으로 접근할 수 있다.

구문

<initdb> ::= initdb

;

사용 예

22 | Getting Started

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(unknown)> initdb;

success

dbmMetaManager(unknown)> set instance dict;

success

dbmMetaManager(DICT)>

노트

● 이 명령으로 생성되는 object에 대한 자세한 설명은 DICTIONARY를 참조한다.

● Dictionary instance에서는 DICT_INST 테이블만 유효한 정보를 포함하며, 그 외 object 들은 향후 dep

recated 될 예정이다.

● 이 명령은 dbmMetaManager에서만 사용할 수 있다.

initdb를 수행하면 /dev/shm 경로에 아래 예시와 같은 segment file이 생성된다.

예: /dev/shm/lim272_DICT_DICT_000, /dev/shm/lim272_DICT_DIC_TABLE_000

● /dev/shm 에 생성되는 segment 파일명은 다음 규칙을 따른다.

○ <Prefix>_<Instance Name>_<Segment Name>_<생성번호>

● 위 예시의 각 구성 요소는 다음과 같은 의미를 갖는다.

○ lim272: 다중 사용자 환경에서 동일한 이름의 instance를 구분하기 위해 사용자 환경 변수 DBM_SHM_PR

EFIX 에 설정된 값이다.

○ DICT: Segment가 속한 instance 의 이름이다.

○ DICT, DIC_TABLE: Instance 내에서 생성된 object의 이름이다.

○ 000: Segment의 생성 순서를 나타내는 번호이다.

노트

/dev/shm에 기존 파일이 존재할 경우 "initdb" 명령 실행 시 아래와 같은 오류가 발생할 수 있으며, 이 경우

사용자는 위의 파일명 규칙을 참고하여 관련 파일을 모두 삭제한 후에 다시 실행해야 한다.

dbmMetaManager(unknown)> initdb;

Command] <initdb>

ERR-22005] a shared memory already exists(DICT_DICT_000): dbmCreatePosixShm() returned errno

구문 | 23

(17)

create instance

기능

사용자 instance를 생성하는 명령으로, 생성 후에는 테이블 등 다양한 object를 생성할 수 있다.

사용자 instance는 Dictionary instance (DICT)에 접속한 상태에서만 생성하거나 제거할 수 있다.

노트

● 사용자 instance 공간은 세션 정보 기록 및 트랜잭션 정보 저장에 사용된다.

● 하나의 사용자 instance에서 동시에 접속 가능한 세션 최대 개수는 1,023 개이다.

구문

<create instance> ::= CREATE INSTANCE instance_name

[init <size>]

[extend <size>]

[max <size>]

;

● instance_name: 사용자가 지정하는 instance 이름이다.

● init <size>: Instance 생성 시 최초로 할당할 undo space의 크기를 지정한다. (각 size 단위는 1M 이다.)

● extend <size>: init 된 공간이 모두 사용될 경우 확장되는 크기이다.

● max <size>: Undo space가 확장될 수 있는 최대 크기이다.

노트

Instance 공간은 사용자가 수행하는 트랜잭션 이력을 저장하며, 변경 연산을 수행할 때 롤백을 위한 undo i

mage가 함께 기록된다. 공간이 부족할 경우 자동으로 세션 내에서 확장되며, 사용자가 지정한 MAX 값까지

확장할 수 있다.

24 | Getting Started

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(unknown)> set instance dict;

success

dbmMetaManager(DICT)> create instance demo init 1024 extend 1024 max 10240;

success

dbmMetaManager(DICT)> select * from DIC_INST;

INST_NAME : DICT

INIT_SIZE : 128

EXTEND_SIZE : 128

MAX_SIZE : 1048576

INST_NAME : DEMO

INIT_SIZE : 1024

EXTEND_SIZE : 1024

MAX_SIZE : 10240

2 row selected

Instance가 생성되면, DBM_DISK_DATA_FILE_DIR 에 지정된 경로에 dictionary table 용 데이터 파일이 생성된다.

생성되는 파일과 용도는 다음 표와 같다.

데이터 파일 유형 설명

DIC_TABLE.dbf 테이블 형상 정보를 저장한다.

DIC_COLUMN.dbf 테이블의 column 구성 정보를 저장한다.

DIC_INDEX.dbf 테이블에 생성된 인덱스 형상 정보를 저장한다.

DIC_INDEX_COLUMN.dbf 인덱스의 key column 구성 정보를 저장한다.

Instance 내에서 테이블 생성/ 삭제/ 변경이 발생하면 메모리뿐 아니라 dictionary 데이터 파일에도 내용이 반영된다.

Dictionary 데이터 파일은 디스크 모드에서 "startup" 복구를 수행할 때 복구 대상 테이블 목록을 구성하는 데 반드시

필요하므로, 유실되지 않도록 주의해야 한다.

노트

Disk mode로 설정한 경우, CREATE INSTANCE 시점에 DBM_DISK_LOG_DIR 에 설정된 경로에 <instanc

e_name.anchor> 파일과 redo logfile이 생성되기 시작한다. Anchor file은 redo logfile의 메타 정보를 관

리하므로 손상되지 않도록 주의해야 한다. (디스크 로깅을 이용한 복원을 참조한다.)

구문 | 25

create table

기능

사용자 테이블을 생성한다. 테이블은 instance의 하위 개념이다.

구문

<create table> ::= CREATE [TABLE_TYPE] table_name

(

column_definition [, ...]

)

[init <size>]

[extend <size>]

[max <size>]

;

<TABLE_TYPE> ::= TABLE

| DIRECT

| SPLAY

<table_name> :: 사용자가 지정하는 테이블 이름이다.

<column_definition> ::= column_name data_type_definition

<column_name> :: 사용자가 지정하는 column 이름이다.

<data_type_definition> ::= short

| int

| long

| float

| double

| char (size)

| date

init <size> :: 첫 번째 segment에 저장할 수 있는 row의 개수를 지정한다. (Default: 1,024개)

extend <size> :: init segment 공간이 모두 사용되어 확장되는 segment에 저장할 수 있는 row의

개수를 지정한다. (Default: 102,400 개)

max <size> :: 최대로 저장할 수 있는 row 개수를 지정한다. (Default: 4,096,000 개)

GOLDILOCKS LITE에서 지원하는 data type과 각 type의 크기는 아래와 같으며, 사용자 프로그램에서 변수를 선언

할 때 참고한다.

Data type C type과 크기 (64 bit OS 기준)

short short 타입이며 2 byte 이다.

int int 타입이며 4 byte 이다.

long long 타입이며 8 byte 이다.

float float 타입이며 4 byte 이다.

26 | Getting Started

double double 타입이며 8 byte 이다.

char char 타입이며 fixed size이다.

date 8 byte이며, 사용자 구조체의 멤버 변수는 8 byte 크기로 선언해야 한다.

Data type C type과 크기 (64 bit OS 기준)

노트

각 column의 offset은 c 언어 struct의 default padding/packing 규칙을 따른다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DICT)> set instance demo;

success

dbmMetaManager(DEMO)> create table t1

2 (

3 c1 short,

4 c2 int,

5 c3 long,

6 c4 float,

7 c5 double,

8 c6 char(20),

9 c7 date

10);

success

dbmMetaManager(DEMO)> desc t1;

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(64)

C1 short 2 0

C2 int 4 4

C3 long 8 8

C4 float 4 16

C5 double 8 24

C6 char 20 32

C7 date 8 56

구문 | 27

Any index not created

success

dbmMetaManager(DEMO)> select * from dic_table where table_name = 'T1';

INST_NAME : DEMO

TABLE_NAME : T1

ID : 25

TABLE_TYPE : 1

COLUMN_COUNT : 7

ROW_SIZE : 64

LOCK_MODE : 1

MSG_SIZE : 0

INDEX_COUNT : 0

INIT_SIZE : 1024

EXTEND_SIZE : 102400

MAX_SIZE : 4096000

INDEX_ID : 0

ONLY_UPDATE_SELECT_MODE : 0

CREATE_SCN : 22

1 row selected

노트

● 테이블 형상 정보에서 (column 이름, 데이터 타입) 이후에 표시되는 항목은 각각 해당 column의 크기 (

byte 단위)와 레코드 내 시작 위치를 의미한다.

● 하나의 테이블에서 생성할 수 있는 확장 세그먼트의 최대 개수는 999개이다. 따라서 사용자는 테이블 생

성 시 init, extend, max 값을 적절히 지정해야 한다.

create index

기능

테이블에 속한 index를 생성한다.

• Index 생성 개수에는 제한이 없으나, 인덱스 수가 증가할수록 삽입 성능에 영향을 줄 수 있다.

• Index key column 크기의 합은 1,024 byte를 초과할 수 없다.

28 | Getting Started

• Index key column으로는 int, short, long, char 네 가지 데이터 타입만 허용된다.

• Direct 테이블과 splay 테이블에서 index key column을 지정할 때 이 구문을 사용한다.

구문

<create index> ::= CREATE [UNIQUE] INDEX index_name ON table_name

(column_name <ordering> [, ...])

;

<UNIQUE> :: 지정하면 동일한 key 값의 저장을 허용하지 않는다. (단, NULL 값의 저장은 허용된다.)

<index_name> :: 사용자가 지정하는 index 이름이다.

<table_name> :: Index를 생성할 대상 table 이름이다.

<column_name> :: Key column으로 사용할 column 이름이다.

<ordering : [ASC | DESC]> :: (정렬 순서를 지정한다. 지정하지 않는 경우 기본값은 ASC 이다.)

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> create unique index idx1_t1 on t1 (c1);

success

dbmMetaManager(DEMO)> create index idx2_t1 on t1 (c1, c2);

success

dbmMetaManager(DEMO)> desc t1;

--

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(64)

--

C1 short 2 0

C2 int 4 4

C3 long 8 8

C4 float 4 16

C5 double 8 24

C6 char 20 32

C7 date 8 56

--

IDX1_T1 unique (C1 asc)

IDX2_T1 (C1 asc, C2 asc)

--

success

dbmMetaManager(DEMO)> select * from dic_index where table_name = 'T1';

구문 | 29

INST_NAME : DEMO

TABLE_NAME : T1

INDEX_NAME : IDX1_T1

ID : 15

IS_UNIQUE : 1

KEY_SIZE : 2

KEY_COLUMN_COUNT : 1

INDEX_ORDER : 1

INST_NAME : DEMO

TABLE_NAME : T1

INDEX_NAME : IDX2_T1

ID : 16

IS_UNIQUE : 0

KEY_SIZE : 6

KEY_COLUMN_COUNT : 2

INDEX_ORDER : 2

2 row selected

노트

● 테이블에는 하나 이상의 index가 반드시 존재해야 한다.

● Application에서는 dbmSetIndex API를 사용하여 index를 지정할 수 있다.

create queue

기능

First-In/ First-Out (FIFO) 방식으로 동작하는 queue 형태의 테이블을 생성한다.

구문

<create queue> ::= CREATE QUEUE queue_name SIZE msg_size

[init <size>]

[extend <size>]

[max <size>]

;

30 | Getting Started

<queue_name> :: 생성할 queue table의 이름이다.

<msg_size> :: 테이블에 저장될 메시지의 최대 크기이다.

init <size>: 첫 번째 segment에 저장할 수 있는 row 개수를 지정한다. (Default: 1,024개)

extend <size>: init 된 공간이 모두 사용된 후 확장되는 segment에 저장할 수 있는 row 개수를

지정한다. (Default: 102,400개)

max <size>: 최대로 확장할 수 있는 row 개수이다. (Default: 4,096,000개)

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> create queue que1 size 1024;

success

dbmMetaManager(DEMO)> desc que1;

Instance=(DEMO) Table=(QUE1) Type=(QUEUE) RowSize=(1056)

PRIORITY int 4 4

ID long 8 8

MSG_SIZE int 4 16

IN_TIME date 8 24

MESSAGE char 1024 32

IDX_QUE1 unique (PRIORITY asc, ID asc)

success

● Message의 ID는 enqueue 시점에 채번되는 internal sequence이다.

● Dequeue는 enqueue를 수행한 세션의 commit 순서에 따라 메시지를 가져오며, 동시에 commit된 경우에는

message의 ID가 더 작은 데이터를 먼저 읽는다.

○ 예를 들어, A 세션이 ID(1)을 부여받고 B 세션이 ID(2)를 부여받은 후 B 세션이 먼저 commit한 경우, dequ

eue는 ID(2)인 데이터를 먼저 읽는다.

○ 이후 A, B 세션이 모두 commit 된 상태에서 dequeue가 수행되면 ID(1)인 데이터를 먼저 읽는다.

● Enqueue로 삽입된 데이터는 commit이 완료된 이후에만 조회하거나 dequeue 할 수 있다.

○ Enqueue를 수행한 세션 역시 commit을 완료해야 자신이 enqueue한 데이터를 dequeue 할 수 있다.

● Dequeue로 한 건을 가져온 후 commit 하지 않은 세션이 존재하더라도, 다른 dequeue를 수행하는 세션은 이

를 기다리지 않고 다음 데이터를 dequeue 한다.

구문 | 31

노트

● Queue 생성 시, 메시지 크기는 사용자 입력값을 기준으로 8 바이트 단위로 정렬 (align)되어 설정된다.

따라서 API 사용 시에는 테이블의 MESSAGE column 크기를 참고하여 사용자 저장 변수를 할당해야

한다.

● Queue 테이블에는 생성 시 인덱스가 자동으로 생성되며, 해당 인덱스는 사용자가 임의로 조작하거나 변

경할 수 없다.

create store

기능

String 또는 binary 형태의 데이터를 저장/ 변경/ 조회하기 위한 테이블을 생성한다.

구문

<create store> ::= CREATE STORE store_name KEY key_size VALUE value_size

[init <size>]

[extend <size>]

[max <size>]

;

<store_name> :: 생성할 store table의 이름이다

<key_size> :: Key의 size 이다.

<value_size> :: Value의 size 이다.

INIT <size> :: 최초로 저장 가능한 record 개수이다. (Default: 1,024개)

EXTEND <size> :: init 된 공간이 모두 사용되어 확장될 때 저장 가능한 record 개수이다. (Default:

102,400개)

MAX <size> :: 최대로 확장할 수 있는 record 개수이다. (Default: 4,096,000개)

사용 예

* Copyright 2010. SUNJESOFT Inc. All rights reserved.

* Version (Debug 3.2-3.2.6 revision(6743))

* warning : open file limit 1024 is too low. : recommended 65536 or higher

dbmMetaManager(DEMO)> create store st1 key 32 value 1024;

success

dbmMetaManager(DEMO)> desc st1;

32 | Getting Started

Instance=(DEMO) Table=(ST1) Type=(STORE) RowSize=(1056) LockMode(1)

ST_KEY char 32 0

ST_VALUE char 1024 32

IDX_ST1 unique (ST_KEY asc)

success

주의

● STORE 테이블의 column 이름을 임의로 변경하면 동작하지 않는다.

● STORE 테이블의 key-value 크기는 fixed size로 동작하며, 가변 크기는 지원하지 않는다.

create sequence

기능

Sequence 객체를 생성한다.

구문

<create sequence> ::= CREATE SEQUENCE sequence_name [options]

;

<sequence_name> :: 생성할 sequence의 이름이다.

<options> ::= START WITH <value>

| INCREMENT BY <value>

| MAXVALUE <value>

| MINVALUE <value>

| CYCLE | NOCYCLE

<START WITH>에 설정된 값은 <MAXVALUE>를 초과하여 생성할 수 없다.

<INCREMENT BY>를 생략할 경우 default는 1로 설정된다.

<MINVALUE>를 생략할 경우 default는 0으로 설정된다.

<MAXVALUE>를 생략할 경우 default는 LONG_MAX 값으로 설정된다.

<CYCLE> 옵션을 지정했을 때 sequence의 current value가 MaxValue를 초과하면 MinValue로 설정된다.

구문 | 33

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> create sequence seq1 start with 10 increment by 2 maxvalue 15 cycle;

success

dbmMetaManager(DEMO)> select seq1.nextval from dual;

NEXTVAL : 10

주의

Sequence는 트랜잭션 로깅 및 이중화가 지원되지 않는다.

따라서 failover 등으로 인해 서비스가 재시작되기 전에 사용자가 적절한 값으로 변경하여 사용해야 한다.

(자세한 내용은 alter sequence [currval]을 참조한다.)

create user_type

기능

사용자 데이터 형식을 정의한다.

char column에 별도의 구조화된 데이터를 저장하는 경우, 해당 데이터를 C 언어의 type-casting 과 유사한 방식으

로 변환하여 출력하고 표현하기 위한 목적으로 사용한다.

구문

<create type> ::= CREATE USER_TYPE type_name

(

column_definition [, ...]

)

;

<type_name> :: 사용자 지정 형식의 이름이다.

<column_definition> ::= column_name data_type_definition

<column_name> :: 사용자 지정 column의 이름이다.

<data_type_definition> ::= short

| int

| long

| float

34 | Getting Started

| double

| char (size)

| date

사용 예

dbmMetaManager(DEMO)> create table t1 (c1 int, c2 char(100));

success

dbmMetaManager(DEMO)> insert into t1 values (1, 'ABCEFGHIJKLMN');

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> create user_type u1 (c1 char(3), c2 char(4));

success

dbmMetaManager(DEMO)> select user_type(c2, u1) from t1;

USER_TYPE : C1=ABC C2=EFGH

1 row selected

T1 테이블의 C2 column을 U1 구조로 출력하는 예제이다.

노트

세부 정의는 USER_TYPE(Column_Name, Type_Name)에 설명되어 있다.

drop index

기능

지정된 index를 제거한다.

구문

<drop index> ::= DROP INDEX index_name

;

<index_name> :: 제거할 index의 이름이다.

구문 | 35

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> desc t1;

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(64)

C1 short 2 0

C2 int 4 4

C3 long 8 8

C4 float 4 16

C5 double 8 24

C6 char 20 32

C7 date 8 56

IDX1_T1 unique (C1)

IDX2_T1 (C1, C2)

success

dbmMetaManager(DEMO)> drop index idx2_t1;

success

dbmMetaManager(DEMO)> desc t1;

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(64)

C1 short 2 0

C2 int 4 4

C3 long 8 8

C4 float 4 16

C5 double 8 24

C6 char 20 32

C7 date 8 56

IDX1_T1 unique (C1)

success

36 | Getting Started

주의

STORE와 queue table에 생성된 index를 임의로 조작하는 것은 권장하지 않는다.

drop table (queue, store)

기능

사용자가 지정한 table (queue, store)과 해당 object에 생성된 모든 하위 index object를 제거한다.

구문

<drop table> ::= DROP TABLE table_name <force>

|

DROP QUEUE table_name

|

DROP STORE store_name

;

<table_name> :: 제거 대상 table (queue, store)의 이름이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> desc t1;

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(64)

C1 short 2 0

C2 int 4 4

C3 long 8 8

C4 float 4 16

C5 double 8 24

C6 char 20 32

C7 date 8 56

IDX1_T1 unique (C1)

IDX2_T1 (C1, C2)

구문 | 37

success

dbmMetaManager(DEMO)> drop table t1;

success

dbmMetaManager(DEMO)>

노트

FORCE 옵션은 동작 이상이나 사용자 실수로 인해 테이블 정보가 dictionary table에서 정상적으로 정리되지

않은 상태에서 강제로 제거하고자 할 때 지정한다.

FORCE 옵션으로도 제거되지 않은 세그먼트 파일이 /dev/shm에 남아있는 경우, 사용자가 직접 삭제해야 한

다.

drop sequence

기능

사용자가 지정한 sequence object를 제거한다.

구문

<drop sequence> ::= DROP SEQUENCE <sequence_name>

;

<sequence_name> :: 제거할 sequence의 이름이다.

사용 예

dbmMetaManager(DEMO)> drop sequence seq10;

success

drop user_type

기능

사용자가 지정한 user_type object를 제거한다.

구문

<drop type> ::= DROP USER_TYPE <type_name>

;

<type_name> :: 제거할 type name이다.

38 | Getting Started

사용 예

dbmMetaManager(DEMO)> drop user_type u1;

success

drop instance

기능

사용자가 지정한 instance 와 해당 instance에 포함된 모든 하위 object를 제거한다.

이 명령은 dictionary instance (dict)에 접속한 상태에서만 수행할 수 있다.

구문

<drop instance> ::= DROP INSTANCE instance_name [FORCE] [INCLUDE FILES]

;

<instance_name> :: 제거할 instance의 이름이다.

<FORCE> :: 복구 과정 등 특정 상황에서 메타 정보가 정상적으로 처리되지 않은 경우, instance를

강제로 제거하기 위해 지정한다.

<INCLUDE FILES> :: Instance에서 사용된 모든 파일 (logfile, anchor, datafile)을 함께 제거할

경우에 지정한다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> set instance dict;

success

dbmMetaManager(DICT)> drop instance demo;

success

dbmMetaManager(DICT)> set instance demo;

ERR-22008] fail to attach a shared memory segment

Command] <set instance demo>

노트

● FORCE 옵션은 동작 이상이나 사용자 실수로 인해 메타 정보가 정상적으로 정리되지 않은 상태에서 inst

ance를 강제로 삭제할 때 사용한다. FORCE 옵션으로도 정리되지 않은 경우에는 사용자가 직접 삭제해

구문 | 39

야 한다.

● INCLUDE FILES 옵션으로도 삭제되지 않은 파일이 있는 경우, 해당 파일은 사용자가 직접 삭제해야 한다.

alter instance active/inactive

기능

사용자가 지정한 instance에 대한 접근 가능 여부를 설정한다.

Instance를 inactive로 설정하면, 해당 instance에 포함된 object에 대한 조회를 제외한 DDL/ DML 작업이 불가능

해진다.

이 명령은 dictionary instance (dict)에 접속한 상태에서만 수행할 수 있다.

구문

<alter instance> ::= ALTER INSTANCE instance_name [ACTIVE | INACTIVE]

;

<instance_name> :: 제거할 instance의 이름이다.

<ACTIVE> :: 해당 instance에 대한 DDL/DML을 허용한다.

<INACTIVE> :: 해당 instance에 대한 DDL/DML을 허용하지 않는다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> set instance dict;

success

dbmMetaManager(DICT)> alter instance demo inactive;

success

dbmMetaManager(DICT)> set instance demo;

success

dbmMetaManager(DEMO)> insert into t1 values (1, 1);

Command] <insert into t1 values (1, 1)>

ERR-22105] a instance not active-mode

dbmMetaManager(DEMO)> set instance dict;

success

dbmMetaManager(DICT)> alter instance demo active;

success

dbmMetaManager(DICT)> set instance demo;

success

40 | Getting Started

dbmMetaManager(DEMO)> insert into t1 values (1, 1);

success

truncate table (queue, store)

기능

사용자가 지정한 테이블 (queue, store)을 초기화한다.

테이블에 저장된 모든 데이터와 extend 된 segment를 제거한 후, 테이블 생성 시점에 지정된 init size로 segment

를 다시 생성한다.

구문

<truncate table> ::= TRUNCATE TABLE table_name

|

TRUNCATE QUEUE table_name

|

TRUNCATE STORE store_name

;

<table_name> :: Truncate 할 table(queue, store)의 이름이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(unknown)> set instance demo;

success

dbmMetaManager(DEMO)> truncate table t1;

success

주의

TRUNCATE 동작은 기존의 shared memory segment를 삭제한 후 새로운 세그먼트를 생성하는 과정으로

내부적으로는 DROP → CREATE 와 유사하게 동작한다.

이 과정에서 현재 진행 중인 트랜잭션과의 동시성은 보장되지 않으며, commit 시 오류로 처리될 수 있다.

따라서 TRUNCATE 수행 후 애플리케이션에 오류가 반환될 경우, 애플리케이션을 종료한 뒤 다시 시작하는

것을 권장한다.

구문 | 41

compact table

기능

사용자가 지정한 테이블에 대해 compaction 작업을 수행한다.

확장된 segment에 속한 데이터를 삭제하더라도 해당 메모리는 즉시 OS로 반환되지 않는다.

따라서 이 구문은 segment 내에서 사용하지 않는 메모리 공간을 OS에 반납해야 할 경우 사용할 수 있다.

주의

이 명령은 내부적으로 (데이터 export → truncate → 데이터 import) 과정을 수행하는 DDL이다. 따라서 작

업 수행 전에는 모든 application을 모두 종료해야 한다.

구문

<compact table> ::= ALTER TABLE table_name COMPACT

;

<table_name> :: Compact 할 table의 이름이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(unknown)> set instance demo;

success

dbmMetaManager(DEMO)> ALTER TABLE t1 COMPACT;

success

노트

● Compact 기능은 B-tree 테이블에서만 지원된다.

● compac 명령이 수행되면 $DBM_HOME/trc 경로에 <instance name>_<table name>.dat.<scn> 형

식의 백업 데이터 파일이 생성된다.

Compact 작업이 실패하여 복구가 필요한 경우, 새로운 테이블을 생성한 후 dbmImp를 사용하여 데이

터를 복구할 수 있다.

42 | Getting Started

dbmImp -i demo -t t1 -d DEMO_T1.dat.123 -b

add column

기능

사용자가 테이블에 column을 추가할 때 사용한다.

추가 위치는 지정할 수 없으며, 항상 테이블의 마지막 column으로 추가된다.

add column 기능은 디스크 모드에서는 사용할 수 없으며, normal 테이블 타입에서만 지원된다.

주의

이 명령은 내부적으로 (데이터 export → 테이블 재생성 → 데이터 import) 과정을 수행하는 DDL이다.

따라서 작업 수행 전에는 모든 application을 종료해야 한다.

구문

<add column> ::= ALTER TABLE table_name ADD COLUMN (column_name datatype [default_value])

;

<table_name> :: Column을 추가할 table의 이름이다

<column_name> :: 추가할 column의 이름이다

<datatype> :: Column의 데이터 타입 이름이다. (int, short, long, date, char, float, double>

<default_value> :: date type을 제외한 데이터 타입에 대해 기본값을 지정할 경우에 정의한다.

(기본값은 상수만 허용된다.)

사용 예

dbmMetaManager(DEMO)> select * from t1 where c1 > 0

C1 : 1

C2 : a

C3 : 1

C4 : a

C1 : 2

C2 : b

C3 : 2

C4 : b

구문 | 43

C1 : 3

C2 : c

C3 : 3

C4 : c

3 row selected

dbmMetaManager(DEMO)> alter table t1 add column (c5 char(10) default 'zz')

success

dbmMetaManager(DEMO)> select * from t1 where c1 > 0

C1 : 1

C2 : a

C3 : 1

C4 : a

C5 : zz

C1 : 2

C2 : b

C3 : 2

C4 : b

C5 : zz

C1 : 3

C2 : c

C3 : 3

C4 : c

C5 : zz

3 row selected

노트

add column 명령이 수행되면 $DBM_HOME/trc 경로에 <instance name>_<table name>.dat.<scn> 형

식의 백업 데이터 파일이 생성된다.

add column 작업이 실패하여 복구가 필요한 경우, 새로운 테이블을 생성한 후 dbmImp를 사용하여 데이터

를 복구할 수 있다.

44 | Getting Started

dbmImp -i demo -t t1 -d DEMO_T1.dat.123 -b

주의

add/ drop column 기능은 디스크 로깅 모드에서 지원되지 않는다.

drop column

기능

사용자가 테이블에서 column을 제거할 때 사용한다.

drop column 기능은 normal 테이블 타입에서만 사용할 수 있고, 해당 column이 index key로 사용 중인 경우에는

수행할 수 없다.

주의

이 명령은 내부적으로 (데이터 export → 테이블 재생성 → 데이터 import) 과정을 수행하는 DDL이다.

따라서 작업 수행 전에는 모든 application을 종료해야 한다.

구문

<drop column> ::= ALTER TABLE table_name DROP COLUMN column_name

;

<table_name> :: Column을 삭제할 table의 이름이다.

<column_name> :: 삭제할 column의 이름이다.

사용 예

dbmMetaManager(DEMO)> select * from t1 where c1 > 0;

C1 : 1

C2 : a

C3 : 1

C4 : a

C1 : 2

C2 : b

구문 | 45

C3 : 2

C4 : b

C1 : 3

C2 : c

C3 : 3

C4 : c

3 row selected

dbmMetaManager(DEMO)> alter table t1 drop column c2;

success

dbmMetaManager(DEMO)> select * from t1 where c1 > 0;

C1 : 1

C3 : 1

C4 : a

C1 : 2

C3 : 2

C4 : b

C1 : 3

C3 : 3

C4 : c

3 row selected

노트

drop column 명령이 수행되면 $DBM_HOME/trc 경로에 <instance name>_<table name>.dat.<scn>

형식의 백업 데이터 파일이 생성된다.

drop column 작업이 실패하여 복구가 필요한 경우, 새로운 테이블을 생성한 후 dbmImp를 사용하여 데이

터를 복구할 수 있다.

dbmImp -i demo -t t1 -d DEMO_T1_3.dat -b

46 | Getting Started

주의

add/ drop column 기능은 디스크 로깅 모드에서 지원되지 않는다.

rename column

기능

사용자가 테이블에서 column의 이름만 변경할 때 사용한다.

구문

<rename column> ::= ALTER TABLE table_name RENAME COLUMN org_column_name TO new_column_name

;

<table_name> :: Column 이름을 변경할 대상 table의 이름이다.

<org_column_name> :: 변경 전 column의 이름이다.

<new_column_name> :: 변경 후 새로 사용할 column의 이름이다.

사용 예

dbmMetaManager(DEMO)> desc t1

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(12)

C1 int 4 0

C2 int 4 4

C3 int 4 8

success

dbmMetaManager(DEMO)> alter table t1 rename column c2 to x359

success

dbmMetaManager(DEMO)> desc t1

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(12)

C1 int 4 0

X359 int 4 4

C3 int 4 8

success

구문 | 47

노트

Store 테이블과 queue 테이블에서는 rename 명령을 사용할 수 없다.

create replication

기능

Replication 대상 테이블을 DIC_REPL_TABLE 목록에 등록한다.

구문

<create replication> ::= CREATE REPLICATION TABLE [TableList]

;

<TableList> ::= TableName [, tableName]

사용 예

dbmMetaManager(DEMO)> create replication table t1, t2;

success

등록된 이중화 대상 테이블은 다음과 같이 조회할 수 있다.

dbmMetaManager(DEMO)> select * from DIC_REPL_TABLE;

INST_NAME : DEMO

TABLE_NAME : T1

INST_NAME : DEMO

TABLE_NAME : T2

2 row selected

노트

동일 트랜잭션 내에서도 DIC_REPL_TABLE에 등록되어 있지 않은 테이블은 이중화 대상에 포함되지 않는다.

48 | Getting Started

alter replication

기능

Replication 대상 테이블을 추가/ 삭제한다.

구문

<alter replication> ::= ALTER REPLICATION [ADD|DROP] TABLE [TableList]

;

<ADD> :: 테이블을 이중화 대상으로 추가한다.

<DROP> :: 테이블을 이중화 대상에서 제거한다.

<TableList> ::= TableName [, tableName]

사용 예

dbmMetaManager(DEMO)> alter replication add table t1, t2;

success

dbmMetaManager(DEMO)> alter replication drop table t1, t2;

success

노트

alter replication add/drop 구문은 현재 실행 중인 애플리케이션에 영향을 주지 않는다.

변경 사항을 적용하려면 애플리케이션을 재기동해야 한다.

alter system replication sync

기능

Master 측에서 다음 목적을 위해 사용한다.

• 미전송 로그를 slave로 전송한다.

• 특정 대상 테이블을 동기화하기 위해 해당 테이블의 전체 레코드를 slave로 전송한다.

Slave 측에서 다음 목적을 위해 사용한다.

• Slave에서 미전송 로그를 읽어 동기화를 수행한다. (이 때, slave가 미전송 로그 파일에 접근할 수 있어야 한다.)

구문 | 49

노트

● 미전송 로그는 네트워크 장애 등으로 인해 master에서 slave로 전달되지 못한 트랜잭션 로그를 의미한

다. Master 측 application은 장애를 감지하면 트랜잭션 로그를 DBM_REPL_UNSENT_LOG_DIR 경로

에 저장한다.

● 이중화 환경에서는 application이 dbmInitHandle를 수행하는 시점에 이중화 작업을 위한 초기화를 수

행하며, 연결 장애를 감지하고 복구를 담당하는 thread가 구동된다.

구문

<alter system replication> ::= ALTER SYSTEM REPLICATION SYNC

[LOCAL | ALL | TableList]

;

<LOCAL> :: Slave 측에서 미전송 로그를 읽어 반영할 수 있는 경우

<ALL> :: Master 측에서 모든 이중화 대상 테이블의 데이터를 slave로 전송하려는 경우

<TableList> :: 전체 데이터를 전송할 대상 테이블 목록 TableName [, tableName]

옵션을 지정하지 않으면 미전송 로그를 전송하는 방식으로 동작한다.

노트

미전송 로그의 생성 위치에 대한 자세한 내용은 환경 변수 및 프로퍼티의 이중화 관련 설정을 참조한다.

사용 예

dbmMetaManager(DEMO)> alter system replication sync;

success

drop replication

기능

Replication 대상 테이블을 DIC_REPL_TABLE 목록에서 제거한다.

50 | Getting Started

구문

<drop replication> ::= DROP RPELICATION

;

사용 예

dbmMetaManager(DEMO)> drop replication;

success

set instance

기능

사용자가 지정한 instance로 전환한다.

구문

<set instance> ::= SET INSTANCE instance_name

;

<instance_name> :: 전환할 instance의 이름이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(unknown)> set instance dict;

success

dbmMetaManager(DICT)> set instance demo;

success

dbmMetaManager(DEMO)>

노트

set instance 구문은 dbmMetaManager에서만 동작한다.

구문 | 51

alter sequence [currval]

기능

사용자가 생성한 sequence의 현재 값을 지정된 값으로 변경한다.

구문

<alter sequence> ::= ALTER SEQUENCE sequence_name SET CURRVAL = value

;

<sequence_name> :: 변경할 sequence의 이름이다.

<value> :: 사용자가 변경할 current value 이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> select seq1.currval from dual;

CURRVAL : 3

1 row selected

dbmMetaManager(DEMO)> alter sequence seq1 set currval = 1000;

success

dbmMetaManager(DEMO)> select seq1.currval from dual;

CURRVAL : 1000

1 row selected

alter system reset checkpoint

기능

체크포인트를 특정 로그 파일 번호부터 수행할 수 있도록 해당 로그 파일 번호를 설정한다.

구문

<reset perf> ::= ALTER SYSTEM RESET checkpoint <instanceName> <logfile_number>

;

<instanceName> :: 1 대상 instance 이름 입력

52 | Getting Started

<logfile_number> :: 2 특정 로그 파일 번호

사용 예

dbmMetaManager(DEMO)> alter system reset checkpoint demo -1;

success

노트

시스템 장애로 인해 데이터 파일이 삭제되었고, archive logfile을 통해 복구가 가능한 환경인 경우 체크포인

트를 수행하여 데이터 파일을 다시 생성할 수 있다. 이때 이 구문을 사용하여 체크포인트 시작 파일 번호를 지

정한다.

alter system reset perf

기능

DBM_PERF_ENABLE 속성이 활성화 된 경우, vsys_stat, vsess_stat 등에 성능 통계 정보가 누적된다. 이 명령은

이러한 누적 통계 정보를 모두 초기화한다.

구문

<reset perf> ::= ALTER SYSTEM RESET PERF

;

사용 예

dbmMetaManager(DEMO)> alter system reset perf;

success

alter system refine [TableList]

기능

특정 테이블이나 인덱스에 대한 잠금을 유지한 상태에서 프로세스 등이 비정상적으로 종료된 경우, 해당 상태를 복구

하기 위한 기능이다.

Index 변경 작업은 tree lock 상태에서 수행되며, 이 시점에 프로세스가 종료되면 lock이 점유된 상태로 tree 구조가

불완전하게 유지된다. 이로 인해 다른 세션의 접근도 차단된다.

이 명령은 위와 같은 상태에 놓인 index segment를 찾아 정상화 작업을 수행한다. 정상화 과정은 대상 index를 재구

축하는 방식 (index segment 재생성) 으로 수행된다.

구문 | 53

구문

<reset perf> ::= ALTER SYSTEM REFINE [TableName, ...]

;

<TableName> :: 특정 테이블에 대해서만 작업을 수행하고자 할 경우에 지정하는 옵션이다.

사용 예

dbmMetaManager(DEMO)> alter system refine;

success

주의

이 명령은 내부적으로 index를 rebuild 하는 DDL이므로, 모든 application을 종료한 후 실행해야 한다.

Data Manipulation Language(DML)

데이터를 저장/ 삭제/ 조회/ 변경하기 위한 구문과 enqueue/ dequeue 관련 구문을 설명한다.

insert

기능

사용자가 지정한 테이블에 데이터를 삽입한다.

구문

<insert> ::= INSERT INTO table_name

[column_name [, ...]]

VALUES

(value_expression [, ...])

;

<table_name> :: 데이터를 삽입할 대상 테이블이다.

<column_name> :: 삽입할 데이터와 매핑되는 column을 지정한다. (생략할 수 있다.)

<value_expression> :: 지정한 column에 삽입할 값을 표현한다.

54 | Getting Started

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> desc t1;

Instance=(DEMO) Table=(T1) Type=(TABLE) RowSize=(48)

C1 int 4 0

C2 double 8 8

C3 char 20 16

C4 date 8 40

IDX_T1 unique (C1)

success

dbmMetaManager(DEMO)> insert into t1 (c1, c2, c3, c4) values (1, 1, 1, sysdate);

success

dbmMetaManager(DEMO)> insert into t1 (c1, c2) values (2, 2);

success

dbmMetaManager(DEMO)> insert into t1 values (3, 3, 3, sysdate);

success

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 1.000000

C3 : 1

C4 : 2019/01/02 16:44:17.227558

C1 : 2

C2 : 2.000000

C3 :

C4 : 1970/01/01 09:00:00.000000

C1 : 3

C2 : 3.000000

C3 : 3

C4 : 2019/01/02 16:44:37.283193

3 row selected

구문 | 55

노트

Unique index가 설정된 테이블에 동일한 key 값으로 insert가 수행될 경우, 선행 트랜잭션이 종료될 때까지

후행 트랜잭션은 대기한다.

update

기능

사용자가 지정한 테이블에서 하나 이상의 데이터를 갱신한다.

구문

<update> ::= UPDATE table_name

SET column_name = value_expression [, ...]

[WHERE cond_expression]

;

<table_name> :: 데이터를 갱신할 대상 테이블이다.

<column_name> :: 값을 변경할 테이블의 column 이름이다.

<value_expression> :: 해당 column에 갱신할 value를 표현한다.

<cond_expression> :: 갱신 대상 데이터를 탐색하기 위한 조건절이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 1.000000

C3 : 1

C4 : 2019/01/02 16:44:17.227558

C1 : 2

C2 : 2.000000

C3 :

C4 : 1970/01/01 09:00:00.000000

C1 : 3

56 | Getting Started

C2 : 3.000000

C3 : 3

C4 : 2019/01/02 16:44:37.283193

3 row selected

dbmMetaManager(DEMO)> update t1 set c2 = 100 where c1 >= 1;

3 row updated.

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 100.000000

C3 : 1

C4 : 2019/01/02 16:44:17.227558

C1 : 2

C2 : 100.000000

C3 :

C4 : 1970/01/01 09:00:00.000000

C1 : 3

C2 : 100.000000

C3 : 3

C4 : 2019/01/02 16:44:37.283193

3 row selected

노트

Update로 갱신할 데이터는 잠금 (lock) 되며, 해당 데이터에 대한 다른 세션의 접근은 차단된다.

다른 세션에서 갱신 중인 레코드를 select 할 경우, update 이전에 커밋된 데이터가 조회된다.

(단, DBM_MVCC_ENABLE = FALSE 로 설정된 경우에는 update가 완료될 때까지 대기한다.)

주의

Index key column은 변경할 수 없다.

구문 | 57

delete

기능

사용자가 지정한 테이블에서 하나 이상의 데이터를 삭제한다.

구문

<delete> ::= DELETE FROM table_name

[WHERE cond_expression]

;

<table_name> :: 데이터를 삭제할 대상 테이블이다.

<cond_expression> :: 삭제할 데이터를 탐색하기 위한 조건절이다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 1.000000

C3 : 1

C4 : 2019/01/02 16:44:17.227558

C1 : 2

C2 : 2.000000

C3 :

C4 : 1970/01/01 09:00:00.000000

C1 : 3

C2 : 3.000000

C3 : 3

C4 : 2019/01/02 16:44:37.283193

3 row selected

dbmMetaManager(DEMO)> delete from t1 where c1 >= 1;

3 row deleted.

dbmMetaManager(DEMO)> select * from t1;

0 row selected

58 | Getting Started

노트

Delete로 삭제할 레코드는 잠금 (lock) 되며, 해당 데이터에 대한 다른 세션의 접근은 차단된다.

다른 세션에서 삭제 중인 레코드를 select 할 경우, delete 이전에 커밋된 데이터가 조회된다.

(단, DBM_MVCC_ENABLE = FALSE 로 설정된 경우에는 delete가 완료될 때까지 대기한다.)

주의

B-tree table의 경우 delete 연산이 수행되더라도 index key는 commit 시점에 삭제된다. 반면, splay table

type에서는 delete가 수행될 때 index key가 즉시 삭제된다.

커밋이 완료되지 않았더라도, splay table에서 delete로 삭제된 데이터는 다른 세션에서 조회할 수 없다.

또한 delete를 포함한 트랜잭션을 롤백하는 시점에 이미 다른 세션에 의해 동일한 key가 삽입된 경우, delete

에 대한 롤백 처리는 수행되지 않고 skip된다.

select 및 select for update

기능

사용자가 지정한 테이블에서 하나 이상의 데이터를 조회한다.

구문

<select> ::= SELECT target_list FROM table_name

[WHERE cond_expression]

[FOR UPDATE]

;

<target_list> ::= *

| column_name [, ...]

<table_name> :: 데이터를 조회할 대상 테이블 이다.

<cond_expression> :: 조회할 데이터를 탐색하기 위한 조건절 이다.

<FOR UPDATE> :: Select 할 때 해당 데이터에 lock을 설정하여 다른 트랜잭션에서 데이터가 변경되는

것을 방지하기 위해 사용한다.

사용 예

dbmMetaManager(DEMO)> select * from user_data;

EMPNO : 1

구문 | 59

EMPNAME : alice

DEPTNO : 100

BIRTH : 2025/07/30 08:08:15.484030

1 row selected

dbmMetaManager(DEMO)> select * from user_data for update;

EMPNO : 1

EMPNAME : alice

DEPTNO : 100

BIRTH : 2025/07/30 08:08:15.484030

1 row selected

주의

Auto commit mode에서는 FOR UPDATE 기능을 사용할 수 없다.

enqueue

기능

사용자가 지정한 테이블에 데이터 한 건을 enqueue 한다.

구문

<enqueue> ::= ENQUEUE INTO table_name

[target_list]

VALUES

(value_expression [, ...])

;

<target_list> ::= (column_name [, ...])

<table_name> :: 데이터를 삽입할 대상 테이블이다.

<value_expression> :: 삽입할 value 이다.

노트

Enqueue 구문에서 사용자가 지정할 수 있는 column은 priority, msg_size, message 이다.

60 | Getting Started

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

dbmMetaManager(DEMO)> create queue que1 size 100;

success

dbmMetaManager(DEMO)> enqueue into que1 (priority, msg_size, message) values (90, 10, 'msg

1234567');

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> select * from que1;

PRIORITY : 90

ID : 2

MSG_SIZE : 10

IN_TIME : 2025/07/04 16:11:57.357598

MESSAGE : msg1234567

1 row selected

노트

● msg_size 와 message는 필수 입력 항목이다.

● Priority를 지정하지 않는 경우 , 기본값으로 0 이 저장된다.

Enqueue 대상 테이블에 대해 insert 구문을 사용하여 강제로 데이터를 삽입할 경우, 다음과 같은 오류가 발생한다.

dbmMetaManager(DEMO)> insert into que1 (priority, msg_size, message) values (90, 10, 'msg

1234567');

Command] <insert into que1 (priority, msg_size, message) values (90, 10, 'msg1234567')>

ERR-22073] a operation can not be executed on target-table (check table type or mode)

구문 | 61

노트

내부적으로 관리되는 message의 ID는 enqueue 시점에 채번되며, 커밋된 데이터는 message ID 순서대로

dequeue된다.

dequeue

기능

사용자가 지정한 테이블에서 데이터 한 건을 dequeue 한다.

구문

<dequeue> ::= DEQUEUE FROM table_name

[WHERE cond_expression]

[TIMEOUT seconds]

;

<table_name> :: Dequeue를 수행할 대상 테이블이다.

<cond_expression> :: Dequeue 할 데이터를 선택하는 조건이다.

<seconds> :: 데이터가 없는 경우 대기할 시간을 지정한다. (단위: 초)

0: 데이터가 없으면 즉시 에러를 반환한다.

| 음수: 데이터가 없으면 무한히 대기한다.

| 양수: 지정한 timeout 값만큼 대기한다.

사용 예

* Copyright © 2010 SUNJESOFT Inc. All rights reserved.

ddbmMetaManager(DEMO)> select * from que1;

PRIORITY : 0

ID : 10

MSG_SIZE : 10

IN_TIME : 2025/07/11 18:13:19.466761

MESSAGE : msg1234

PRIORITY : 0

ID : 11

MSG_SIZE : 10

62 | Getting Started

IN_TIME : 2025/07/11 18:13:19.466762

MESSAGE : msg5678

2 row selected

dbmMetaManager(DEMO)> dequeue from que1 where ID = 11;

PRIORITY : 0

ID : 11

MSG_SIZE : 10

IN_TIME : 2025/07/11 18:13:19.466762

MESSAGE : msg5678

2 row selected

노트

● Priority가 낮은 값의 레코드부터 dequeue 된다.

● Priority 값이 같을 경우에는, commit 된 데이터의 message ID 순서대로 dequeue 된다.

● 한 건을 dequeue 한 세션이 commit 하지 않더라도, 다른 세션은 이를 기다리지 않고 다음 데이터를 바

로 dequeue 한다.

set

기능

Store 타입 테이블에서 지정한 key에 대응하는 value를 저장하거나 갱신한다.

• 사용자가 지정한 테이블에 key가 존재하지 않으면 value가 새로 삽입된다.

• 사용자가 지정한 테이블에 key가 이미 존재하면 value가 갱신된다.

구문

<set> ::= SET key value AT table_name

[nx]

;

* key, value: Store에 저장할 사용자 key와 value 이다.

* nx: Key가 이이 존재할 경우 기본 동작은 갱신이지만, nx 옵션이 지정되면 중복 오류를 반환한다.

* table_name: 데이터를 삽입하거나 갱신할 대상 store 타입 테이블의 이름이다.

구문 | 63

사용 예

다음은 store 테이블에 데이터를 저장하는 예이다.

dbmMetaManager(DEMO)> create store st1 key 32 value 100;

success

dbmMetaManager(DEMO)> set 'k1' 'v1' at st1;

success

dbmMetaManager(DEMO)> select * from st1;

ST_KEY : k1

ST_VALUE : v1

1 row selected

노트

서로 다른 세션에서 같은 key를 set 할 경우, insert와 동일하게 선행 트랜잭션이 완료될 때까지 후행 트랜잭

션은 대기한다. 동일한 세션에서 같은 key 값으로 삽입을 시도하면, 값이 변경되지 않고 duplicated 오류가

발생한다.

NX 옵션 사용 시 key가 이미 존재하면 오류가 반환된다.

dbmMetaManager(DEMO)> set 'k1' 'v99' at st1 nx;

Command] <set 'k1' 'v99' at st1 nx>

ERR-22055] key value duplicated (IDX_ST1)

다음은 기존 key value를 갱신하는 예이다.

dbmMetaManager(DEMO)> set 'k1' 'v99' at st1;

success

dbmMetaManager(DEMO)> select * from st1;

ST_KEY : k1

ST_VALUE : v99

1 row selected

64 | Getting Started

get

기능

Store 타입 테이블에서 지정한 key에 대응하는 value를 조회한다.

구문

<get> ::= GET key AT table_name

;

* key: 조회할 key 값이다.

* table_name: 데이터를 조회할 대상 테이블의 이름이다.

사용 예

dbmMetaManager(DEMO)> get 'k1' at st1;

ST_KEY : k1

ST_VALUE : v1

1 row selected

노트

Store 타입 테이블은 SELECT 문을 이용하여 조회할 수도 있다.

Data Control Language (DCL)

DCL은 사용자가 수행한 각 트랜잭션을 commit/ rollback 하는 데 사용되는 구문이다.

commit

기능

사용자가 수행한 트랜잭션의 변경 사항을 데이터베이스에 영구적으로 반영한다.

구문 | 65

구문

<commit> ::= COMMIT

;

사용 예

dbmMetaManager(DEMO)> commit;

success

rollback

기능

사용자가 수행한 트랜잭션의 변경 사항을 취소하고, 트랜잭션 시작 이전 상태로 복원한다.

구문

<rollback> ::= ROLLBACK

;

사용 예

dbmMetaManager(DEMO)> rollback;

success

Built-in Function

● 사용자의 편의를 위해 다음과 같은 built-in function을 제공한다.

● 반환되는 문자열의 최대 크기는 32 Kbytes 이다.

● GOLDILOCKS LITE에서 제공하는 모든 숫자형 함수는 overflow/ underflow 관련 오류를 체크하지 않는다.

Category Function name Return type Desc

날짜/ 시간

sysdate long (8 bytes)

내부 저장용 8 byte long lon

g 형태의 값으로 저장하고 출

력한다.

extract int (4 bytes)
날짜 타입 값에서 지정된 항목

의 값을 숫자형으로 반환한다.

datetime_str char (64 bytes 이내)
Date column을 문자열로 출

력한다.

66 | Getting Started

to_date date (8 bytes)
사용자 입력 문자열을 date ty

pe 값으로 변환한다.

datediff long (8 bytes)
두 날짜 타입 인자 간의 차이

를 초 단위로 출력한다.

Dump

dump char (최대 1Mbyte)
ascii 값을 출력한다.

Byte당 2~4 byte로 출력된다.

hex char (최대 1Mbyte)
Hex 값을 출력한다.

byte당 2 byte로 출력된다.

문자형

concat char (최대 1Mbyte)

두 번째 인자의 문자열을 첫

번째 인자의 문자열 뒤에 결합

하여 출력한다.

instr int (4 bytes)

소스 문자열 내에 지정 문자열

이 존재할 경우, 시작 위치를

1로 하는 offset을 출력한다.

replace char (최대 1Mbyte)
검색 문자열을 찾아 지정된 문

자열로 치환한다.

substr char (최대 1Mbyte)
문자열의 지정 위치부터 입력

된 크기만큼 잘라낸다.

length int (4 bytes)

NULL 지점까지의 길이를 반

환하며, NULL이 없을 경우 오

류가 발생할 수 있다.

ltrim char (최대 1 Mbyte)
문자열의 왼쪽 공백 또는 지정

된 문자를 제거한다.

rtrim char (최대 1 Mbyte)
문자열의 오른쪽 공백 또는 지

정된 문자를 제거한다.

lpad char (최대 1 Mbyte)
문자열의 왼쪽에 지정한 문자

열을 추가한다.

rpad char (최대 1 Mbyte)
문자열의 오른쪽에 지정한 문

자열을 추가한다.

upper char (최대 1 Mbyte) 값을 대문자로 변환한다.

lower char (최대 1 Mbyte) 값을 소문자로 변환한다.

숫자형

abs double (8 bytes) 절대값으로 변환한다.

power double (8 bytes) 입력값의 제곱을 출력한다.

sqrt double (8 bytes) 입력값의 제곱근을 출력한다.

log double (8 bytes)
지정된 base 기준의 자연 로그

값을 출력한다.

exp double (8 bytes) e의 제곱 값을 출력한다.

mod double (8 bytes) 나머지 연산을 한다.

ceil double (8 bytes) 소수점을 올림한다.

floor double (8 bytes) 소수점을 내림한다.

round double (8 bytes) 반올림 한다.

Category Function name Return type Desc

구문 | 67

trunc double (8 bytes) 절사 연산을 한다.

random Int (4 bytes)
주어진 입력값 내의 random

정수를 출력한다.

Sequence
currval long long (8 bytes) -

nextval long long (8 bytes) -

단방향 hash 암호화 digest char (64 bytes)
알고리즘에 따라 서로 다른 길

이값을 반환한다.

Aggregation

min double (8 bytes)

group by를 지원하지 않는다.
max double (8 bytes)

avg double (8 bytes)

sum double (8 bytes)

JSON OBJECT JSON_STRING char
일반 테이블 조회 결과를 JSO

N 형태로 반환한다.

기타

decode char (최대 1 Mbyte)
결과와 일치할 경우 사용자가

지정한 값을 반환한다.

nvl char (최대 1 Mbyte)
지정된 값이 NULL일 경우 사

용자가 지정한 값을 반환한다.

user_type char (최대 1 Mbyte)
Column을 user_type으로 캐

스팅하여 출력한다.

Category Function name Return type Desc

sysdate

현재 시스템 시간을 조회하여 date type으로 반환한다.

(단, dbmMetaManager에서 조회할 경우에는 long long type이 아닌 string 형태로 반환된다.)

사용 예

dbmMetaManager(DEMO)> create table t1 (c1 int, c2 date);

success

dbmMetaManager(DEMO)> insert into t1 values (1, sysdate);

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 2019/04/04 13:08:47.416266

1 row selected

dbmMetaManager(DEMO)> select sysdate from dual;

68 | Getting Started

SYSDATE : 2021/02/01 15:32:50.110855

1 row selected

노트

Sysdate은 unix time 값을 반환한다.

extract

지정한 날짜/시간 타입 값에서 입력된 항목에 해당하는 필드를 숫자형으로 추출하여 반환한다.

추출 가능한 항목은 다음과 같다.

● YEAR

● MONTH

● DAY

● HOUR

● MINUTE

● SECOND

사용 예

dbmMetaManager(DEMO)> select extract('year' from to_date('20211231115859', 'yyyymmddhhmiss')

) from dual;

EXTRACT : 2021

1 row selected

dbmMetaManager(DEMO)> select extract('month' from to_date('20211231115859', 'yyyymmddhhmiss')

) from dual;

EXTRACT : 12

1 row selected

dbmMetaManager(DEMO)> select extract('day' from to_date('20211231115859', 'yyyymmddhhmiss'))

from dual;

EXTRACT : 31

구문 | 69

1 row selected

dbmMetaManager(DEMO)> select extract('hour' from to_date('20211231115859', 'yyyymmddhhmiss')

) from dual;

EXTRACT : 11

1 row selected

dbmMetaManager(DEMO)> select extract('minute' from to_date('20211231115859', 'yyyymmddhhmiss

')) from dual;

EXTRACT : 58

1 row selected

dbmMetaManager(DEMO)> select extract('second' from to_date('20211231115859', 'yyyymmddhhmiss

')) from dual;

EXTRACT : 59

1 row selected

datetime_str

Date type의 column을 string 형태로 변환하여 출력한다.

• 출력 포맷은 YYYY/MM/DD H24:MI:SS.SSSSSS로 고정되어 있다.

• 인자로는 date type 값을 사용할 수 있다.

사용 예

dbmMetaManager(DEMO)> select datetime_str(sysdate) from dual;

DATETIME_STR : 2025/07/04 17:34:32.436717

1 row selected

dbmMetaManager(DEMO)>

to_date('문자열', 'Format')

사용자 입력 문자열을 지정한 형식에 따라 date 타입 값으로 변환한다.

Format을 지정하지 않은 경우, default 형식은 YYYY/MM/DD H24:MI:SS.S6 로 고정되어 있다.

변환에 사용 가능한 형식 요소는 다음 표를 참조한다.

70 | Getting Started

Format 설명

YYYY 4 자리 연도이다.

MM 월의 단위로서 (01~12) 범위이다.

DD 일의 단위로서 (01~31) 범위이다.

HH 시간의 단위로서 (00~23) 범위이다.

MI 분의 단위로서 (00~59) 범위이다.

SS 초의 단위로서 (00~59) 범위이다.

S3 Millisecond까지 사용하는 경우로서 3 자리이다.

S6 Microsecond까지 사용하는 경우로서 6 자리이다.

사용 예

dbmMetaManager(DEMO)> select to_date('2020/12/31 15:38:41.123456', 'yyyy/mm/dd hh:mi:ss.s6')

from dual;

TO_DATE : 2020/12/31 15:38:41.123456

1 row selected

dbmMetaManager(DEMO)> select to_date('2020/12/31 15:38:41.123', 'yyyy/mm/dd hh:mi:ss.s3')

from dual;

TO_DATE : 2020/12/31 15:38:41.123000

1 row selected

dbmMetaManager(DEMO)> select to_date('2020/12/31 15:38:41', 'yyyy/mm/dd hh:mi:ss') from dual;

TO_DATE : 2020/12/31 15:38:41.000000

1 row selected

dbmMetaManager(DEMO)> select to_date('2020/12/31 15:38', 'yyyy/mm/dd hh:mi') from dual;

TO_DATE : 2020/12/31 15:38:00.000000

1 row selected

dbmMetaManager(DEMO)> select to_date('2020/12/31 15', 'yyyy/mm/dd hh') from dual;

TO_DATE : 2020/12/31 15:00:00.000000

1 row selected

dbmMetaManager(DEMO)> select to_date('2020/12/31', 'yyyy/mm/dd') from dual;

구문 | 71

TO_DATE : 2020/12/31 00:00:00.000000

1 row selected

dbmMetaManager(DEMO)> select to_date('2020/12', 'yyyy/mm') from dual;

TO_DATE : 2020/12/01 00:00:00.000000

1 row selected

dbmMetaManager(DEMO)> select to_date('2020', 'yyyy') from dual;

TO_DATE : 2020/12/01 00:00:00.000000

1 row selected

dbmMetaManager(DEMO)> select to_date('11:31', 'hh:mi') from dual;

TO_DATE : 2020/12/01 11:31:00.000000

1 row selected

Format이 지정되지 않은 경우, 사용자 입력 문자열은 기본 포맷 형태와 일치해야 한다.

이 때 문자열에는 연/월/일 정보가 반드시 포함되어야 하며, 포함되지 않은 경우 오류가 발생한다.

dbmMetaManager(DEMO)> select to_date('12:40') from dual;

Command] <select to_date('12:40') from dual>

ERR-22047] invalid expression type

ERR-22001] invalid parameters or usage at internal processing

다음은 DML 문에 함수를 포함하여 사용하는 예이다.

dbmMetaManager(DEMO)> insert into t1 values (1, sysdate);

success

dbmMetaManager(DEMO)> insert into t1 values (1, to_date('2002/05/26 11:31:45.123456'));

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> select * from t1;

C1 : 1

C2 : 2020/12/28 16:26:18.548964

C1 : 1

C2 : 2002/05/26 11:31:45.123456

72 | Getting Started

datediff(From, to)

입력된 두 date 타입 값 (From ~ To) 사이의 간격을 초 단위로 계산하여 반환한다.

사용 예

dbmMetaManager(DEMO)> select datediff(to_date('20201231', 'yyyymmdd'), to_date('20200101', '

yyyymmdd')) from dual;

DATEDIFF : 31536000

1 row selected

dbmMetaManager(DEMO)> select datediff(to_date('20201231', 'yyyymmdd'), to_date('20200101', '

yyyymmdd')) / (60 * 60 * 24) from dual;

DIVIDE : 365

1 row selected

dump(value, [base])

지정된 문자열 value를 byte 단위로 변환하여 ascii 값으로 표현한 text를 반환한다.

• Base를 별도로 지정하지 않을 경우, default로 10 진수 ascii를 사용한다.

• 16 진수 변환도 지원한다.

사용 예

dbmMetaManager(DEMO)> select c1 from t1;

C1 : a

1 row selected

dbmMetaManager(DEMO)> select dump(c1, 16) from t1;

DUMP : len=1: 61

1 row selected

dbmMetaManager(DEMO)> select dump(c1, 10) from t1;

구문 | 73

DUMP : len=1: 97

1 row selected

dbmMetaManager(DEMO)> select dump(c1) from t1;

DUMP : len=1: 97

1 row selected

Hex (Value)

인자로 주어진 문자열 value를 hex code로 변환하여 출력한다.

사용 예

dbmMetaManager(DEMO)> select hex('abc') from dual;

HEX : 616263

1 row selected

concat(target, append)

target 문자열 뒤에 append 문자열을 이어 붙여 반환한다.

사용 예

dbmMetaManager(DEMO)> select concat('abc', 'def') from dual;

CONCAT : abcdef

1 row selected

instr(source, keyword, [start, #appearance])

Source 문자열 내에서 keyword를 찾아 위치를 반환한다.

start가 생략되면 문자열의 처음부터 탐색하며, 음수이면 역순으로 검색한다.

start가 0 인 경우, keyword와 상관없이 항상 0을 반환한다.

#appearance는 keyword가 source 내에 출현한 횟수에 해당하는 위치를 탐색한다.

74 | Getting Started

사용 예

dbmMetaManager(DEMO)> select instr('abcdef abcdef', 'def') from dual;

INSTR : 4

1 row selected

dbmMetaManager(DEMO)> select instr('abcdef abcdef', 'def', 1, 2) from dual;

INSTR : 11

1 row selected

dbmMetaManager(DEMO)> select instr('abcd abcd abcd', 'bc', -5, 2) from dual;

INSTR : 2

1 row selected

replace(source, keyword, replace)

Source 문자열에서 지정한 keyword를 찾아 replace 문자열로 대체한다.

사용 예

dbmMetaManager(DEMO)> select replace('abc, abc ing', 'abc', 'xxxxx') from dual;

REPLACE : xxxxx, xxxxx ing

1 row selected

substr(source, start_position, count)

Source 문자열의 start_position 위치에서 시작하여, count 길이만큼 잘라 반환한다.

● Count가 생략되면, start_position 위치부터 문자열 끝까지 반환한다.

● Start_position이 source 문자열 길이를 초과하면 NULL을 반환한다.

사용 예

dbmMetaManager(DEMO)> select substr('abcdefghi', 4) from t1;

구문 | 75

SUBSTR : defghi

1 row selected

dbmMetaManager(DEMO)> select substr('abcdefghi', 9, 5) from t1;

SUBSTR : i

1 row selected

dbmMetaManager(DEMO)> select dump(substr('abc', 5, 2)) from dual;

DUMP : len=0:

1 row selected

length(source)

Source 문자열의 길이를 반환한다.

문자열 중간에 NULL 값이 존재하면, NULL이 나타난 위치까지의 길이만 반환한다.

사용 예

dbmMetaManager(DEMO)> select length('abcdefg') from dual;

LENGTH : 7

1 row selected

ltrim / rtrim(source)

Source 문자열의 왼쪽 (ltrim) 또는 오른쪽 (rtrim)에 있는 공백 문자를 제거하고 반환한다.

사용 예

dbmMetaManager(DEMO)> select ltrim(' xyz') from dual;

LTRIM : xyz

1 row selected

dbmMetaManager(DEMO)> select rtrim('xyz ') from dual;

RTRIM : xyz

76 | Getting Started

1 row selected

lpad / rpad(source, size, padding_string)

Source 문자열의 왼쪽 (lpad) 또는 오른쪽 (rpad)에 지정한 padding_string을 추가하여, 최종 문자열 길이가 size가

되도록 반환한다.

사용 예

dbmMetaManager(DEMO)> select lpad('aa', 10, 'x') from dual;

LPAD : xxxxxxxxaa

dbmMetaManager(DEMO)> select rpad('aa', 10, 'x') from dual;

RPAD : aaxxxxxxxx

1 row selected

abs(value)

입력한 숫자 value의 절대값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select abs(-123) from dual;

ABS : 123

1 row selected

mod(value1, value2)

value1을 value2로 나눈 나머지 값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select mod(14, 3) from dual;

MOD : 2

구문 | 77

1 row selected

ceil(value)

Value 보다 큰 가장 가까운 정수를 반환한다.

사용 예

dbmMetaManager(DEMO)> select ceil(12.345) from dual;

CEIL : 13

1 row selected

floor(value)

Value 보다 작은 가장 가까운 정수를 반환한다.

사용 예

dbmMetaManager(DEMO)> select floor(13.678) from dual;

FLOOR : 13

1 row selected

round(value)

Value를 반올림한 결과를 정수로 반환한다.

사용 예

dbmMetaManager(DEMO)> select round(12.345) from dual;

ROUND : 12

1 row selected

dbmMetaManager(DEMO)> select round(12.678) from dual;

ROUND : 13

78 | Getting Started

trunc(value, [pos])

Value가 소수점일 경우, 지정된 pos 위치에서 소수점 이하를 잘라내고 반환한다.

pos가 지정되지 않으면, 소수점 이하를 모두 제거하고 반환한다.

사용 예

dbmMetaManager(DEMO)> select trunc(13.34567) from dual;

TRUNC : 13

1 row selected

dbmMetaManager(DEMO)> select trunc(13.34567, 2) from dual;

TRUNC : 13.34

random(from, to)

from과 to로 지정된 범위 내에서 random 정수를 반환한다.

사용 예

dbmMetaManager(DEMO)> select random(1, 10) from dual;

RANDOM : 2

1 row selected

dbmMetaManager(DEMO)> select random(100, 200) from dual;

RANDOM : 144

1 row selected

nextval

지정한 sequence의 다음 값을 반환한다.

구문 | 79

사용 예

dbmMetaManager(DEMO)> select seq1.nextval from dual;

NEXTVAL : 2

1 row selected

currval

지정한 sequence의 현재 값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select seq1.currval from dual;

CURRVAL : 2

1 row selected

노트

NEXTVAL이 호출되지 않은 상태에서 sequence 객체에 대해 currval을 호출하면 오류가 발생한다.

Digest (Value, SHA-type)

입력된 문자열 value를 지정한 SHA-type으로 단방향 해시 암호화하며, 결과는 바이너리(binary) 형태로 반환된다.

• Digest 처리된 결과는 binary 형태이므로 화면에 정상적으로 출력되지 않을 수 있다.

• 이 경우 다음과 같이 hex 함수 등을 사용하여 결과를 확인할 수 있다.

사용 예

dbmMetaManager(DEMO)> select hex(digest('my password', 'SHA256')) from dual;

HEX : BB14292D91C6D0920A5536BB41F3A50F66351B7B9D94C804DFCE8A96CA1051F2

1 row selected

80 | Getting Started

Min(Column)

Select 결과 집합에서 min 함수에 정의된 column 값 중 가장 작은 값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select * from t1 where c1 = 1;

C1 : 1

C2 : -1

C1 : 1

C2 : 1

C1 : 1

C2 : 2

C1 : 1

C2 : 3

C1 : 1

C2 : 4

C1 : 1

C2 : 5

C1 : 1

C2 : 6

C1 : 1

C2 : 7

C1 : 1

C2 : 8

C1 : 1

C2 : 9

C1 : 1

C2 : 10

11 row selected

구문 | 81

dbmMetaManager(DEMO)> select min(c2) from t1 where c1 = 1;

MIN_VALUE : -1.000000000

1 row selected

Max(Column)

Select 결과 집합에서 max 함수에 정의된 column 값 중 가장 큰 값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select * from t1 where c1 = 1;

C1 : 1

C2 : -1

C1 : 1

C2 : 1

C1 : 1

C2 : 2

C1 : 1

C2 : 3

C1 : 1

C2 : 4

C1 : 1

C2 : 5

C1 : 1

C2 : 6

C1 : 1

C2 : 7

C1 : 1

C2 : 8

82 | Getting Started

C1 : 1

C2 : 9

C1 : 1

C2 : 10

11 row selected

dbmMetaManager(DEMO)> select max(c2) from t1 where c1 = 1;

MAX_VALUE : 10.000000000

1 row selected

Avg(Column)

AVG 함수에 지정된 column 값의 평균값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select * from t1 where c1 = 1;

C1 : 1

C2 : -1

C1 : 1

C2 : 1

C1 : 1

C2 : 2

C1 : 1

C2 : 3

C1 : 1

C2 : 4

C1 : 1

C2 : 5

C1 : 1

C2 : 6

구문 | 83

C1 : 1

C2 : 7

C1 : 1

C2 : 8

C1 : 1

C2 : 9

C1 : 1

C2 : 10

11 row selected

dbmMetaManager(DEMO)> select avg(c2) from t1 where c1 = 1;

AVG : 4.909090909

1 row selected

Sum(Column)

Sum 함수에 지정된 column 값의 합계를 반환한다.

사용 예

dbmMetaManager(DEMO)> select * from t1 where c1 = 1;

C1 : 1

C2 : -1

C1 : 1

C2 : 1

C1 : 1

C2 : 2

C1 : 1

C2 : 3

C1 : 1

84 | Getting Started

C2 : 4

C1 : 1

C2 : 5

C1 : 1

C2 : 6

C1 : 1

C2 : 7

C1 : 1

C2 : 8

C1 : 1

C2 : 9

C1 : 1

C2 : 10

11 row selected

dbmMetaManager(DEMO)> select sum(c2) from t1 where c1 = 1;

SUM : 54.000000000

1 row selected

Decode(cond_expr, case_cond, value_expr, ..., [else_expr])

cond_expr 값과 일치하는 case_cond 뒤에 지정된 value를 반환한다.

• 일치하는 case_cond가 없을 경우, else_expr이 존재하면 해당 값을 반환하고, 그렇지 않으면 길이가 0인 문자열

을 반환한다.

• cond_expr과 case_cond의 데이터 타입은 동일해야 하며, double 또는 문자열을 사용할 수 있다.

• 반환되는 value_expr과 else_expr은 문자열 데이터 타입이다.

사용 예

dbmMetaManager(DEMO)> create table t1 (c1 int, c2 int);

success

dbmMetaManager(DEMO)> insert into t1 values (1, 10);

success

구문 | 85

dbmMetaManager(DEMO)> insert into t1 values (2, 20);

success

dbmMetaManager(DEMO)> insert into t1 values (3, 30);

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> select c1, c2, decode(c1, 1, 'a', 2, 'b', 3, 'c', 'k') from t1;

C1 : 1

C2 : 10

DECODE : a

C1 : 2

C2 : 20

DECODE : b

C1 : 3

C2 : 30

DECODE : c

3 row selected

Upper(expr)

주어진 문자열 expr이 text 인 경우, 이를 대문자로 변환하여 반환한다.

사용 예

dbmMetaManager(DEMO)> select upper('aaaaabzc') from dual;

UPPER : AAAAABZC

1 row selected

dbmMetaManager(DEMO)> select upper(123) from dual;

UPPER : 123

1 row selected

dbmMetaManager(DEMO)> select upper('a1b1C34') from dual;

UPPER : A1B1C34

86 | Getting Started

1 row selected

Lower(expr)

주어진 문자열 expr이 text인 경우, 이를 소문자로 변환하여 반환한다.

사용 예

dbmMetaManager(DEMO)> select lower('AAAAABZC') from dual;

LOWER : aaaaabzc

1 row selected

dbmMetaManager(DEMO)> select lower(123) from dual;

LOWER : 123

1 row selected

dbmMetaManager(DEMO)> select lower('A1B1c34') from dual;

LOWER : a1b1c34

1 row selected

NVL(orgnExpr, valueExpr)

주어진 문자열 orgnExpr의 첫 번째 byte가 NULL인 경우, ValueExpr로 변환된 값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select nvl('x', 'not_null') from dual;

NVL : x

1 row selected

dbmMetaManager(DEMO)> select nvl('', 'isnull') from dual;

NVL : isnull

1 row selected

구문 | 87

JSON_STRING(Column_Name_List)

일반 테이블을 대상으로, 전체 column 또는 지정한 column 목록에 해당하는 데이터만 JSON 형식 string으로 변환

하여 반환한다.

사용 예

dbmMetaManager(DEMO)> create table t1 (c1 int, c2 int, c3 char(20));

success

dbmMetaManager(DEMO)> insert into t1 values (1, 2, 'xyz1');

success

dbmMetaManager(DEMO)> insert into t1 values (100, 200, 'zyx2');

success

dbmMetaManager(DEMO)> insert into t1 values (10, 20, 'pppppppppp1');

success

dbmMetaManager(DEMO)> commit;

success

dbmMetaManager(DEMO)> select json_string(*) from t1;

JSON_STRING : { "C1": "1", "C2": "2", "C3": "xyz1" }

JSON_STRING : { "C1": "100", "C2": "200", "C3": "zyx2" }

JSON_STRING : { "C1": "10", "C2": "20", "C3": "pppppppppp1" }

3 row selected

dbmMetaManager(DEMO)> select json_string(c1, c2, c3) from t1;

JSON_STRING : { "C1": "1", "C2": "2", "C3": "xyz1" }

JSON_STRING : { "C1": "100", "C2": "200", "C3": "zyx2" }

JSON_STRING : { "C1": "10", "C2": "20", "C3": "pppppppppp1" }

3 row selected

노트

json_string 에는 GOLDILOCKS LITE에서 지원하는 데이터 타입만 사용할 수 있으며, json_string 타입 자체

를 새로 추가할 수는 없다.

88 | Getting Started

USER_TYPE(Column_Name, Type_Name)

Column_Name을 지정한 user type (Type_Name) 으로 캐스팅하여 값을 반환한다.

사용 예

dbmMetaManager(DEMO)> select * from t2;

C1 : 100

C2 : 200

C3 :

C1 : 200

C2 : 300

C3 :

2 row selected

dbmMetaManager(DEMO)> select c1, c2, user_type(c3, u2) from t2;

C1 : 100

C2 : 200

USER_TYPE : C1=-100 C2=-200

C1 : 200

C2 : 300

USER_TYPE : C1=-200 C2=-300

dbmMetaManager(DEMO)> select user_type(c3, u2) from t2 where user_type(c3, u2.c1) = -100;

USER_TYPE : C1=-100 C2=-200

1 row selected

DICTIONARY | 89

1.4 DICTIONARY

Dictionary는 instance가 생성될 때 모든 segment의 메타 정보를 관리하기 위해 생성되는 built-in table과 view의

집합이다.

● DICT (initdb 실행 시 생성)

○ DICT_INST: Instance meta 정보 관리

● 사용자 instance (create instance 실행 시 생성)

○ 사용자 table 등과 같은 meta 정보 관리

■ DIC_TABLE

■ DIC_INDEX

■ DIC_COLUMN

■ DIC_INDEX_COLUMN

■ DIC_SEQUENCE

■ DIC_REPL_INST

■ DIC_REPL_TABLE

○ Information View

■ V$INSTANCE

■ V$SESSION

■ V$TRANSACTION

■ V$SYS_STAT

■ V$SESS_STAT

■ V$TABLE_USAGE

■ V$REPL_STAT

■ V$LOG_STAT

노트

● Dictionary table은 DDL/ DML 작업을 허용하지 않는다.

● 또한, 테이블 목록에는 표시되지만 별도의 설명이 없는 dictionary table은 향후 deprecated 될 예정이

다.

90 | Getting Started

DICTIONARY TABLES

DIC_INST

DIC_INST는 DICT 인스턴스 안에 생성되며, 사용자 인스턴스 관련 정보를 저장한다.

Column name 설명

INST_NAME Instance name

INIT_SIZE 생성 시 할당되는 초기 크기 (단위: undo page 개수)

EXTEND_SIZE 공간이 부족할 때 확장되는 크기

MAX_SIZE 확장 가능한 최대 크기

DIC_TABLE

DIC_TABLE은 table 관련 정보를 저장한다.

Column name 설명

INST_NAME Instance name

TABLE_NAME Table name

TABLE_TYPE

TABLE 유형

● 1: TABLE

● 2: QUEUE

● 3: STORE

● 4: SEQUENCE

● 5: DIRECT

● 7: SPLAY

● 10: USER_TYPE

COLUMN_COUNT TABLE을 구성하는 column의 개수

ROW_SIZE TABLE에 저장되는 레코드 크기

LOCK_MODE 1: 동시성 제어모드 (0: deprecate 예정)

MSG_SIZE QUEUE TABLE인 경우 message의 최대 크기

INDEX_COUNT 현재 테이블에 생성된 INDEX 개수

INIT_SIZE 생성 시 초기 segment의 크기 (단위: 레코드 개수)

EXTEND_SIZE 공간 확장 시 segment의 크기 (단위: 레코드 개수)

MAX_SIZE 최대 확장 가능한 segment의 크기 (단위: 레코드 개수)

INDEX_ID Index 생성 시점마다 부여되는 index 고유 번호 채번 용도

ONLY_UPDATE_SELECT_MODE 테이블을 생성할 때 단일 프로세스만 접근할 수 있게 설정한 경우 (deprecate 예정)

CREATE_SCN 테이블 생성 시점의 SCN (system commit number)

DICTIONARY | 91

DIC_COLUMN

DIC_COLUMN은 table을 구성하는 column 정보를 저장한다.

Column name 설명

INST_NAME Instance name

TABLE_NAME Table name

COLUMN_NAME Column name

USER_TYPE_NAME User type으로 지정된 경우 해당 type name

DATA_TYPE

Column의 데이터 타입

● 1: short

● 2: int

● 3: double

● 4: float

● 5: long

● 6: char

● 7: date

● 15: USER_TYPE

COLUMN_OFFSET 레코드 전체 영역 중에 column이 저장되는 위치

COLUMN_SIZE Column의 데이터 크기

COLUMN_ORDER Column 순서

DIC_INDEX

DIC_INDEX는 table에 생성한 index 정보를 저장한다.

Column name 설명

INST_NAME Instance name

TABLE_NAME Table name

INDEX_NAME Index name

IS_UNIQUE

Unique 여부

● 1: unique

● 0: non-unique

KEY_SIZE Key column 크기의 합

KEY_COLUMN_COUNT Key column의 총 개수

INDEX_ORDER Index가 생성된 순서

DIC_INDEX_COLUMN

DIC_INDEX_COLUMN은 index를 구성하는 key column 정보를 저장한다.

92 | Getting Started

Column name 설명

INST_NAME Instance name

TABLE_NAME Table name

INDEX_NAME Index name

COLUMN_NAME Column name

ID Index key column 의 고유 번호

COLUMN_JSON json path

JSON_KEY_SIZE json path 내의 key 크기

KEY_COLUMN_ORDER Key column의 나열 순서 (Ordering 순서를 의미한다.)

COLUMN_ORDER 테이블 내의 column 순서

IS_ASC 오름차순 여부 (1: ASC, 0: DESC)

DIC_SEQUENCE

DIC_SEQUENCE는 sequence object를 구성하는 정보를 저장한다.

Column name 설명

INST_NAME Instance name

SEQUENCE_NAME Sequence name

START_VALUE 초기값

INCREMENT_VALUE 증가값

CURRENT_VALUE 미사용 column

MIN_VALUE MinValue

MAX_VALUE MaxValue

IS_CYCLE
● 1: CYCLE

● 0: NOCYCLE

DIC_REPL_INST

DIC_REPL_INST는 create replication 명령 실행 시 해당 instance 이름을 저장한다.

Column name 설명

INST_NAME Instance name

DIC_REPL_TABLE

DIC_REPL_TABLE는 replication 대상 테이블 정보를 저장한다.

Column name 설명

INST_NAME Instance name

DICTIONARY | 93

TABLE_NAME Table name

Column name 설명

Information View

GOLDILOCKS LITE의 각종 정보를 table 형태로 제공하는 view이다.

노트

● Information view는 DDL/ DML을 허용하지 않는다.

● 또한, 일부 reserved column은 향후 기능 확장을 위한 항목으로, 현재는 출력 값에 의미가 없다.

V$INSTANCE

현재 instance의 정보를 출력한다.

Column 이름 설명

CURR_SCN 현재 instance의 SCN 값

MIN_SCN reserved

CURR_MIN_SCN reserved

CURR_MIN_SCN_TRANS reserved

ACTIVE_MODE reserved

DISK_ENABLE Disk LogFile 설정 여부

LOGFILE_SIZE Disk LogFile 한 개의 크기

LOGCACHE_MODE LogCache 설정 정보

LOGCACHE_CHUNK_SIZE LogCache chunk 한 개의 크기

LOGCACHE_CHUNK_COUNT LogCache chunk 최대 개수

LOGCACHE_RANGE LogCache chunk의 사용 범위

CREATE_TIME Instance를 생성한 시각

dbmMetaManager(DEMO)> select * from v$instance;

SCN : 11

MIN_SCN : 11

MIN_SCN_TRANS_ID : 1

ACTIVE_MODE : 1

94 | Getting Started

DISK_ENABLE : 0

LOGFILE_SIZE : 0

LOGCACHE_MODE : no cache mode

LOGCACHE_CHUNK_SIZE : 0

LOGCACHE_CHUNK_COUNT : 1

LOGCACHE_RANGE : 0

CREATE_TIME : 2020-03-25 12:57:02

V$SESSION

현재 instance를 사용 중인 세션의 정보를 출력한다.

Column 이름 설명

ID Session의 고유 ID 이다.

TRANS_ID Session이 보유한 트랜잭션 식별 번호 이다.

PID 현재 Trans Id를 점유하고 있는 OS process ID 이다.

TID 현재 Trans Id를 점유하고 있는 OS thread ID 이다.

OLD_TID 비정상 종료 시점에 할당된 OS thread ID 이다.

CURR_UNDO_PAGE 트랜잭션 진행 중 현재 사용되는 undo page의 ID 이다.

FIRST_UNDO_PAGE 트랜잭션 진행 중에 사용된 첫 번째 undo page의 ID 이다.

LAST_UNDO_PAGE 트랜잭션 진행 중에 사용된 마지막 undo page의 ID 이다.

SAVEPOINT_UNDO_PAGE 트랜잭션 진행 중 implicit savepoint가 필요한 경우 해당 위치를 가리킨다.

SAVEPOINT_UNDO_OFFSET 트랜잭션 진행 중 implicit savepoint가 필요한 경우 해당 위치를 가리킨다.

WAIT_TRANS_ID Lock 대기 중일 경우 LOCK을 점유한 상대 Trans ID 이다.

WAIT_OBJECT Lock 대기 중일 경우 대상 테이블 이름이다.

WAIT_SLOT_ID Lock 대기 중일 경우 데이터 공간의 고유 ID 이다.

SESSION_STATUS

트랜잭션의 현재 상태이다.

● transaction: Transaction을 시작할 수 있거나 진행 중이다.

● commit start: Commit이 시작되었다.

● commit completed: Memory 까지 commit이 완료되었다.

● rollback completed: Rollback이 완료되었다.

● recovery completed: 비정상 종료로 인한 recovery가 완료되었다.

IS_LOGGING
트랜잭션의 메모리 logging mode 이다. (0: No Logging, 1: Logging)

No logging으로 설정할 경우 트랜잭션을 복구하지 않는다. (Rollback이 불가능하다.)

LOGFILE_NO 현재 세션이 디스크 병렬 로깅 모드로 동작 중일 때, 세션이 사용 중인 logfile sequence 이다. ​

CKPT_NO dbmCkpt에 의해 데이터 파일에 반영된 logfile sequence 이다.

IS_REPL Reserved

REPL_SEND_SCN 세션이 마지막으로 전송한 이중화 트랜잭션의 SCN 이다.

REPL_RECV_ACK_SCN 세션이 상대편으로부터 반영 완료 통지를 받은 마지막 트랜잭션의 SCN 이다.

AUTOCOMMIT_MODE AutoCommit Mode (0: Non-AutoCommit, 1:Auto-Commit)

DICTIONARY | 95

BEGIN_TIME 세션 접속 시각이다.

PROGRAM 프로그램 이름이다.

REMOTE_PID 원격 접속 시 원격 서버의 프로세스 ID 이다.

REMOTE_ADDR 원격 접속 시 원격 서버 주소이다.

REMOTE_PROGRAM 원격 접속 시 원격 서버에서 구동 된 프로그램 이름이다.

Column 이름 설명

dbmMetaManager(DEMO)> select * from v$session;

TRANS_ID : 1

PID : 35612

TID : 35612

OLD_TID : 35612

CURR_UNDO_PAGE : 6

FIRST_UNDO_PAGE : 6

LAST_UNDO_PAGE : 11

SAVEPOINT_UNDO_PAGE : -1

SAVEPOINT_UNDO_OFFSE : -1

WAIT_TRANS_ID : -1

WAIT_OBJECT :

WAIT_SLOT_ID : -1

STATUS : transaction ready or running

IS_REPL : 0

BEGIN_TIME : 2024/10/18 08:46:47

PROGRAM : dbmListener

REMOTE_PID : 0001513772

REMOTE_ADDR : 192.168.0.26

REMOTE_PROGRAM : dbmMetaManager

V$TRANSACTION

각 세션의 트랜잭션 정보를 확인할 수 있다.

Column 이름 설명

TRANS_ID Transaction의 고유 번호

TRANS_SEQ 트랜잭션 내에서 발생한 순서

TRANS_TYPE 트랜잭션 유형

OBJECT_NAME 대상 테이블 이름

SLOT_ID 데이터 공간의 고유 ID

96 | Getting Started

EXTRA_KEY 데이터 공간 내부 관리를 위한 고유 ID

COMMIT_FLAG 트랜잭션의 memory commit 여부 (1: Commit)

SKIP_FLAG 트랜잭션이 commit 되지 않도록 설정된 flag (1: Skip)

VALID_FLAG 트랜잭션 로그의 유효성 (1: 정상)

Column 이름 설명

V$LOG_STAT

Disk log와 관련된 각종 설정 정보를 조회할 수 있는 view이다.

Column 이름 설명

DISKLOG_ENABLE Disk logging 설정 여부이다.

CACHE_MODE LOG CACHE MODE 설정값이다. (0: 병렬 로깅, 1: Cache, 2: NVDIMM)

DIRECT_IO_ENABLE DIRECT IO 활성화 여부이다.

ARCHIVE_ENABLE Archive 설정 여부이다.

CURR_FILE_NO
Reserved

(Log cache 모드가 활성화 된 경우에만 의미가 있다.)

CURR_FILE_OFFSET Reserved

LAST_CKPT_FILE_NO
CheckPoint가 시작될 logfile의 번호 이다.

(Log cache 모드가 활성화 된 경우에만 의미가 있다.)

LAST_ARCHIVE_FILE_NO
Archive가 시작될 대상 logfile의 번호이다.

(Log cache 모드가 활성화 된 경우에만 의미가 있다.)

LAST_CAPTURE_FILE_NO Reserved

LOGCACHE_WRITE_IND LogCache 영역 내에서 트랜잭션이 기록을 수행할 수 있는 현재 위치이다.

LOGCACHE_READ_IND LogCache 영역 내에서 flusher가 데이터를 읽을 현재 위치이다.

FLUSHER_FILE_NO
Flushser가 마지막으로 기록한 logfile의 번호이다.

(Log cache 모드가 활성화 된 경우에만 의미가 있다.)

FLUSHER_FILE_OFFSET Flushser가 마지막으로 기록한 logfile의 offset 이다.

LOG_DIR Disk LogFile이 저장되는 디렉토리 경로이다.

DATAFILE_DIR dataFile이 저장되는 디렉토리 경로이다.

ARCHIVE_DIR Checkpoint 시점에 archiving 되는 logfile이 저장되는 디렉토리 경로이다.

dbmMetaManager(DEMO)> select * from v$log_stat;

DISKLOG_ENABLE : 0

CACHE_MODE : 0

DIRECT_IO_ENABLE : 0

ARCHIVE_ENABLE : 0

CURR_FILE_NO : -1

CURR_FILE_OFFSET : -1

LAST_CKPT_FILE_NO : -1

DICTIONARY | 97

LAST_ARCHIVE_FILE_NO : -1

LAST_CAPTURE_FILE_NO : -1

LOGCACHE_WRITE_IND : -1

LOGCACHE_READ_IND : -1

FLUSHER_FILE_NO : -1

FLUSHER_FILE_OFFSET : -1

LOG_DIR : /home/majaehwa/work/new_lite/pkg/wal

DATAFILE_DIR : /home/majaehwa/work/new_lite/pkg/dbf

ARCHIVE_DIR : /home/majaehwa/work/new_lite/pkg/arch

1 row selected

V$REPL_STAT

Replication 환경에서 이중화 상태 정보를 보여주는 view 이다.

Column 이름 설명

TARGET_IP Slave IP 주소이다.

TARGET_PORT Slave port 번호 이다.

LISTEN_PORT Slave 측의 dbmReplica listen port number 이다.

SEND_SCN Master 측에서 전송한 SCN (System Commit Number) 이다.

RECV_SCN Master 측에서 전송한 SCN 중에 마지막으로 수신한 Ack SCN 이다.

UNSENT_START_FILENO 미전송 로그가 존재하는 경우, 해당 로그가 기록된 첫 번째 파일의 번호이다.

UNSENT_END_FILENO 미전송 로그가 존재하는 경우, 해당 로그가 기록된 마지막 파일의 번호이다.

dbmMetaManager(DEMO)> select * from v$repl_stat;

TARGET_IP : 127.0.0.1

TARGET_PORT : 29002

LISTEN_PORT : 29002

SEND_SCN : -1

RECV_SCN : -1

UNSENT_START_FILENO : 0

UNSENT_END_FILENO : 0

1 row selected

98 | Getting Started

V$TABLE_USAGE

Instance 내에 생성된 모든 테이블의 사용량 정보를 보여주는 view 이다.

• SIZE는 테이블에 저장된 row의 개수를 가리킨다.

Column 이름 설명

OBJECT_NAME 테이블의 이름이다.

MAX_SIZE 해당 테이블이 확장될 수 있는 최대 크기를 나타낸다.

TOTAL_SIZE 테이블에 현재 할당된 전체 크기를 나타낸다.

USED_SIZE 확장된 크기 중 실제로 사용 중인 공간의 크기를 나타낸다.

FREE_SIZE 최대 확장 크기 기준으로 남아 있는 여유 공간의 크기를 나타낸다.

USED_MEM 내부 헤더를 포함한 테이블의 사용량을 byte 단위로 환산한 크기를 나타낸다.

dbmMetaManager(DEMO)> select * from v$table_usage;

OBJECT_NAME : T1

MAX_SIZE : 4096000

TOTAL_SIZE : 1024

USED_SIZE : 0

FREE_SIZE : 1024

USED_MEM : 90488

1 row selected

V$SYS_STAT

Instance에서 발생한 각 유형별 수행 횟수에 대한 정보를 제공한다.

Column 이름 설명

NAME 누적된 수행 유형의 이름

ACCUM_COUNT 해당 유형의 누적 수행 횟수

dbmMetaManager(DEMO)> select * from v$sys_stat

NAME : init_handle_op

ACCUM_COUNT : 2

NAME : free_handle_op

ACCUM_COUNT : 1

NAME : prepare_op

DICTIONARY | 99

ACCUM_COUNT : 20

NAME : execute_op

ACCUM_COUNT : 20

NAME : insert_op

ACCUM_COUNT : 2

NAME : update_op

ACCUM_COUNT : 1

NAME : delete_op

ACCUM_COUNT : 1

NAME : scan_op

ACCUM_COUNT : 3

NAME : enqueue_op

ACCUM_COUNT : 0

NAME : dequeue_op

ACCUM_COUNT : 0

NAME : aging_op

ACCUM_COUNT : 0

NAME : commit_op

ACCUM_COUNT : 11

NAME : rollback_op

ACCUM_COUNT : 1

NAME : recovery_rollback_op

ACCUM_COUNT : 0

NAME : recovery_commit_op

ACCUM_COUNT : 0

누적 항목은 아래 표와 같으며 v$sess_stat의 항목도 이와 동일하다. 각 항목에 누적된 수치는 성공/실패 여부와 관계

없이 내부 처리 과정에 진입한 횟수를 의미한다.

100 | Getting Started

누적 항목 설명

init_handle_op D/A mode로 instance에 접속한 횟수

free_handle_op Instance에서 해제된 횟수

prepare_op Prepare statement가 호출된 횟수

execute_op Execute statement가 호출된 횟수

insert_op Insert가 수행된 횟수

update_op Update가 수행된 횟수

scan_op Select를 포함하여 대상을 scan 하는 모든 횟수

delete_op Delete가 수행된 횟수

enqueue_op Enqueue가 수행된 횟수

dequeue_op Dequeue가 수행된 횟수

aging_op 참조되지 않는 공간이 회수된 횟수

commit_op Commit이 호출된 횟수

rollback_op Rollback이 호출된 횟수

recovery_rollback_op 비정상 복구 (rollback과 동일한 과정)를 수행한 횟수

recovery_commit_op 비정상 복구 (기존에 commit 된 row에 대한 lock을 해제하는 과정)를 수행한 횟수

노트

DBM_PERF_ENALBE 속성이 활성화된 경우에만 정보가 누적된다.

V$SESS_STAT

Instance 생성 이후, 세션별로 발생한 각 유형의 수행 횟수를 누적하여 출력한다.

Column 이름 설명

TRANS_ID 세션의 고유번호

STAT_NAME 누적된 수행 유형의 이름

ACCUM_COUNT 해당 유형의 누적 수행 횟수

dbmMetaManager(DEMO)> select * from v$sess_stat

TRANS_ID : 1

NAME : init_handle_op

ACCUM_COUNT : 2

TRANS_ID : 1

NAME : free_handle_op

ACCUM_COUNT : 1

DICTIONARY | 101

TRANS_ID : 1

NAME : prepare_op

ACCUM_COUNT : 21

TRANS_ID : 1

NAME : execute_op

ACCUM_COUNT : 21

TRANS_ID : 1

NAME : insert_op

ACCUM_COUNT : 2

TRANS_ID : 1633972341

NAME : te_op

ACCUM_COUNT : 0

TRANS_ID : 1

NAME : delete_op

ACCUM_COUNT : 1

TRANS_ID : 1

NAME : scan_op

ACCUM_COUNT : 3

TRANS_ID : 1

NAME : enqueue_op

ACCUM_COUNT : 0

TRANS_ID : 1

NAME : dequeue_op

ACCUM_COUNT : 0

TRANS_ID : 1

NAME : aging_op

ACCUM_COUNT : 0

TRANS_ID : 1

NAME : commit_op

ACCUM_COUNT : 11

102 | Getting Started

TRANS_ID : 1

NAME : rollback_op

ACCUM_COUNT : 1

TRANS_ID : 1

NAME : recovery_rollback_op

ACCUM_COUNT : 0

TRANS_ID : 1

NAME : recovery_commit_op

ACCUM_COUNT : 0

노트

해당 정보는 DBM_PERF_ENALBE 속성이 활성화 된 경우에만 누적된다.

또한, 이 값은 세션 접속 이후의 데이터가 아니라 instance 전체에 대해 누적된 값을 의미한다.

따라서 접속 시점 이후의 변동량을 분석하려면, before/after 방식으로 스냅샷을 조회한 뒤 이를 비교해야 한

다.

dbmMetaManager | 103

1.5 dbmMetaManager

개요

dbmMetaManager는 DDL과 DML 작업을 수행하기 위한 utility이다.

사용 가능한 옵션은 아래 표와 같다.

입력 옵션 설명

-i <Instance name> 접근할 instance name을 지정한다.

-f <script file> 입력한 script file 에 포함된 SQL을 순차적으로 실행한 뒤 종료한다.

-p <process alias name> dbmMetaManager 프로세스를 식별하기 위한 별칭을 지정한다.

-e Instance password가 설정된 경우, 암호를 입력한다.

-v 제품 버전 정보를 출력한다.

-s 제품 사용 권한, 버전 정보 등의 출력 내용을 생략한다.

-a 세션 접근이 불가능한 상황에서도 하나의 접속을 허용한다.

[majaehwa@tech9 new_lite]$ dbmMetaManager -h

Usage] dbmMetaManager

-f : input a file-name to execute: -f <file name>

-p : specify a alias-name

-i : specify a instance name to attach: -i <instance name>

-e : specify a password

-v : print version info

-s : to silent option

-a : attach as admin-mode

-h : Display this information

Internal command는 SQL과 달리 dbmMetaManager 환경 내에서만 동작하는 명령이다.

Internal command 설명

initdb 최초로 DICTIONARY INSTANCE를 생성할 때 사용하는 명령이다.

list 현재 instance에 생성된 object 목록을 출력한다.

desc [table name] 입력된 테이블의 상세 정보를 출력한다.

h / hist / history 현재까지 실행한 명령의 목록을 출력한다. (최대 20개)

ed [number]
직전에 수행한 명령 또는 history에 저장된 목록 중에 입력된 번호의 명령을 편집한다.

환경 변수 DBM_EDITOR에 설정된 편집기가 구동된다. (기본은 vi 로 설정된다.)

/ [number]
직전에 수행한 명령 또는 history에 저장된 목록 중에 입력된 번호의 명령을 재수행한

다.

q / quit / exit dbmMetaManager를 종료한다. (수행한 트랜잭션은 모두 rollback 처리된다.)

104 | Getting Started

set vertical [on | off] 결과가 column/ line 단위로 출력되도록 설정한다.

struct out [table name] 테이블의 형상을 C 구조체에 맞게 출력한다.

set instance [instance name] Multi instance 환경에서 작업 대상 instance를 전환할 때 사용한다.

set password [old pwd] [new_pwd]

Instance의 old password를 new password로 변경한다.

● 최초 설정 시, old password는 null 로 입력한다.

● new password를 null 로 입력하면 암호가 해제된다.

● Password 변경 시 old password는 기존 password와 일치해야 한다.

set index [table name] [index name] 입력된 테이블의 index를 사용하도록 설정한다.

startup [instance_name] dbmCkpt에 의해 생성된 데이터 파일을 사용하여 instance를 복구한다.

Internal command 설명

노트

● dbmMetaManager의 internal command는 소문자로 입력해야 한다.

● SQL 방식의 처리 구조는 반환 대상인 모든 레코드를 임시 메모리에 할당하여 저장하므로, 처리 대상이

많은 경우 메모리 부족 등의 오류가 발생할 수 있다.

이러한 경우에는 조회 (처리) 대상 레코드의 범위를 분할하여 나누어 처리해야 한다.

Internal Commands

Internal command는 dbmMetaManager에서만 실행할 수 있는 명령을 의미한다.

list

현재 접속된 instance 하위에 생성된 object 목록을 출력한다.

dbmMetaManager(DEMO)> list;

OBJECT MAX TOTAL USED FREE

===

DUAL 102400 1024 1 1023

REPL_LOG 10000000 1024 0 1024

REPL_UNSENT 10000000 1024 0 1024

SEQ1 1 1 0 1

success

dbmMetaManager | 105

노트

list 명령으로 출력된 결과 중에 DIRECT TABLE 유형은 구조적인 특성상 사용량을 계산할 수 없다.

해당 테이블의 실제 레코드 수가 필요한 경우에는 select count(*) 구문을 사용하여 직접 조회해야 한다.

desc

테이블 생성 정보를 화면에 출력한다.

dbmMetaManager(DICT)> desc dic_index_column;

Instance=(DICT) Table=(DIC_INDEX_COLUMN) Type=(TABLE) RowSize=(136) LockMode(1)

INST_NAME char 32 0

TABLE_NAME char 32 32

INDEX_NAME char 32 64

COLUMN_NAME char 32 96

KEY_COLUMN_ORDER int 4 128

COLUMN_ORDER int 4 132

IDX_DIC_INDEX_COLUMN unique (INST_NAME asc, TABLE_NAME asc, INDEX_NAME asc,

COLUMN_NAME asc, COLUMN_JSON asc, JSON_KEY_SIZE asc, KEY_COLUMN_ORDER asc)

success

set index

테이블을 조회할 때 사용할 특정 index를 지정한다.

dbmMetaManager(DEMO)> create table t1 (c1 int, c2 int);

success

dbmMetaManager(DEMO)> create unique index idx1_t1 on t1 (c1);

success

dbmMetaManager(DEMO)> create unique index idx2_t1 on t1 (c2);

success

dbmMetaManager(DEMO)> insert into t1 values (1, 10);

success

dbmMetaManager(DEMO)> insert into t1 values (2, 20);

success

dbmMetaManager(DEMO)> select * from t1 where c2 = 20;

106 | Getting Started

C1 : 2

C2 : 20

1 row selected

dbmMetaManager(DEMO)> set index t1 idx2_t1;

success

dbmMetaManager(DEMO)> select * from t1 where c2 = 20;

C1 : 2

C2 : 20

1 row selected

노트

GOLDILOCKS LITE는 별도의 SQL 최적화 기능을 제공하지 않는다.

INDEX는 SQL의 WHERE 절에 index key column이 모두 포함된 EQUAL 조건인 경우에만 사용되며, 그 외

의 경우에는 모두 full scan 방식으로 처리된다.

set vertical [on/off]

dbmMetaManager의 조회 결과는 기본적으로 column 별로 한 줄씩 출력된다.

set vertical option을 사용하면 조회 결과를 레코드 단위로 하나씩 출력되도록 설정할 수 있다.

dbmMetaManager(DEMO)> set vertical off

success

dbmMetaManager(DEMO)> select * from t1

C1 C2 C3 C4

1 1 sunjesoft 1

1024 1024 hey hey hey 1024

2 row selected

dbmMetaManager | 107

OS Command 수행

dbmMetaManager에서 OS command를 실행해야 할 경우에는 명령 앞에 +를 붙여 입력한다.

자세한 사용 방법은 아래 예제를 참고한다.

dbmMetaManager(unknown)> + ls -lrt ${DBM_HOME};

합계 12

drwxrwxr-x. 2 lim272 lim272 4096 12월 5 12:59 sample

drwxrwxr-x. 2 lim272 lim272 136 12월 11 15:58 conf

drwxrwxr-x. 2 lim272 lim272 177 12월 19 10:47 include

drwxrwxr-x. 2 lim272 lim272 27 12월 19 10:47 lib

drwxrwxr-x. 2 lim272 lim272 4096 12월 19 10:47 bin

drwxrwxr-x. 2 lim272 lim272 4096 12월 19 11:19 trc

drwxrwxr-x. 2 lim272 lim272 6 12월 19 11:37 arch

drwxrwxr-x. 2 lim272 lim272 6 12월 19 11:43 wal

drwxrwxr-x. 2 lim272 lim272 169 12월 19 11:48 dbf

drwxrwxr-x. 2 lim272 lim272 66 12월 19 11:49 repl

success

원격 연결

dbmMetaManager에서 원격으로 연결해야 할 경우, 다음과 같이 수행한다.

원격지에는 반드시 dbmListener가 구동된 상태이어야 한다.

Connect := CONNECT <remote ip> <remote listen port number> <remote instance name>

다음은 Listener에 접속하여 원격 노드에 명령을 실행하는 예이다.

dbmMetaManager(unknown)> connect 127.0.0.1 27584 dict

success

dbmMetaManager(127.0.0.1:DICT)> create instance demo

success

struct out (구조체 출력)

현재 생성된 테이블을 C type 구조체 형태로 출력한다.

dbmMetaManager(DEMO)> create table t1

(c1 int, c2 short, c3 long, c4 float, c5 double, c6 date, c7 char(33));

success

dbmMetaManager(DEMO)> struct out t1;

108 | Getting Started

typedef struct T1

{

int C1;

short C2;

long long C3;

float C4;

double C5;

struct timeval C6;

char C7[33];

} T1

success

history

현재까지 수행된 명령 중에 최근 20개를 출력한다.

dbmMetaManager(DEMO)> history;

0: select 1 from dual

1: select sysdate from dual

success

"/" (재수행 명령)

직전에 수행한 명령 (history의 마지막 명령) 또는 history에 저장된 번호를 지정하여 해당 명령을 재수행한다.

dbmMetaManager(DEMO)> history;

0: select 1 from dual

1: select sysdate from dual

success

dbmMetaManager(DEMO)> /

SYSDATE : 2025/01/08 08:19:35.806824

1 row selected

dbmMetaManager(DEMO)> /0

1 : 1

1 row selected

dbmMetaManager | 109

ed

직전에 수행한 명령 (history의 마지막 명령) 또는 history에 저장된 번호를 지정하여 해당 명령을 편집한다.

dbmMetaManager(DEMO)> history;

0: select 1 from dual

1: select sysdate from dual

success

dbmMetaManager(DEMO)> ed

success

######################################

vi 모드에서 아래와 같이 편집한 경우

select sysdate from dual ==> select sysdate, sysdate from dual

######################################

dbmMetaManager(DEMO)> /

SYSDATE : 2025/01/08 08:20:52.439592

SYSDATE : 2025/01/08 08:20:52.439592

1 row selected

dbmMetaManager(DEMO)> history

0: select 1 from dual

1: select sysdate from dual

2: select sysdate, sysdate from dual

success

노트

명령 편집기는 환경 변수 DBM_EDITOR 를 통해 지정할 수 있으며, 기본값은 vi 이다.

set instance

지정한 instance로 접속을 전환한다.

dbmMetaManager(DICT)> set instance demo;

success

dbmMetaManager(DEMO)>

110 | Getting Started

노트

전환되기 전의 instance에서 수행된 트랜잭션은 자동으로 rollback 처리된다.

set password

현재 instance에 대한 접근 암호를 설정하거나 해제한다.

dbmMetaManager(DEMO)> set password null lite_pwd; # 암호 설정

success

dbmMetaManager(DEMO)> set password lite_pwd null; # 설정된 암호 해제

success

● set password의 첫 번째 인자는 현재 암호를, 두 번째 인자는 변경할 암호를 의미한다.

● null은 암호가 설정되지 않았거나, 암호를 해제할 때 사용한다.

암호가 설정된 이후에는 패스워드가 일치하지 않으면 아래와 같이 접속 또는 수행이 불가능하다.

$ dbmMetaManager

* Copyright 2010. SUNJESOFT Inc. All rights reserved.

* Version (Debug 3.2-3.2.6 revision(6754))

dbmMetaManager(DEMO)> set password null lite_pwd;

success

dbmMetaManager(DEMO)> quit

$ dbmMetaManager

* Copyright 2010. SUNJESOFT Inc. All rights reserved.

* Version (Debug 3.2-3.2.6 revision(6754))

ERR] invalid passwd, use '-e' option as instance need passwd

$ dbmMetaManager -e abcd

* Copyright 2010. SUNJESOFT Inc. All rights reserved.

* Version (Debug 3.2-3.2.6 revision(6754))

ERR] invalid passwd, use '-e' option as instance need passwd

dbmMetaManager | 111

노트

● 이 규칙은 모든 API 와 제공되는 utility에도 동일하게 적용되므로, password 설정 시 주의해야 한다.

● 인증 관련 API는 dbmAuthorize를 참조한다.

startup

모든 instance 또는 지정한 특정 instance를 복구한다. 복구를 수행하려면 디스크 모드로 운영 중이어야 하며, dbm

Ckpt에 의해 생성된 데이터 파일이 필요하다.

dbmMetaManager(DICT)> startup DEMO

success

Startup 명령의 내부 처리 과정은 다음과 같다.

● Instance 를 지정하지 않으면 dictionary instance의 DIC_INST.dbf에 저장된 모든 instance를 복구한다.

● 대상 instance segment와 dictionary built-in table을 생성한다.

● 기존에 생성되어 있는 DIC_TABLE.dbf 를 참조하여 복구할 테이블 목록을 구성한다.

● DIC_TABLE.dbf, DIC_COLUMN.dbf, DIC_INDEX.dbf, DIC_INDEX_COLUMN.dbf를 참조하여 table 과 ind

ex를 생성한다.

● 각 테이블 별 데이터 파일을 참조하여 데이터를 로딩한다.

노트

Startup 과정에서는 instance가 복구 명령 이전에 생성한 dictionary 데이터 파일에 저장된 내용을 기준으로

복구 대상 테이블 목록을 구성한다. 따라서 create instance 시점에 생성된 dictionary 데이터 파일이 반드시

존재해야 한다.

112 | Getting Started

1.6 복구 가이드

본 장에서는 GOLDILOCKS LITE 환경에서 장애 또는 데이터 손상으로 인해 데이터 복구가 필요한 상황에 대비하여,

사용자가 활용할 수 있는 복구 방안을 설명한다.

스냅샷 (SnapShot) 저장 및 복원

dbmExp를 사용하면 instance에 포함된 전체 object와 data를 text 형태로 내보낼 수 있으며, dbmImp를 통해 해

당 데이터를 다시 복원할 수 있다. 복원 시점은 dbmExp를 수행한 시점으로 고정된다.

다음은 전체 instance에 포함된 모든 object와 data를 내려받는 예이다.

[lim272@tech10 tmp]$ dbmExp -a -d

[DEMO] Instance start...

+ (T1) (10 rows) download

+ (T2) (10 rows) download

+ (T3) (10 rows) download

+ (T4) (10 rows) download

+ (T5) (12 rows) download

명령을 실행한 경로에는 다음 예시와 같이 여러 개의 파일이 생성된다.

-rw-rw-r--. 1 lim272 lim272 20 Jun 24 14:38 DEMO_T1.fmt

-rw-rw-r--. 1 lim272 lim272 10221 Jun 24 14:38 DEMO_T1.dat

-rw-rw-r--. 1 lim272 lim272 20 Jun 24 14:38 DEMO_T2.fmt

-rw-rw-r--. 1 lim272 lim272 10221 Jun 24 14:38 DEMO_T2.dat

-rw-rw-r--. 1 lim272 lim272 20 Jun 24 14:38 DEMO_T3.fmt

-rw-rw-r--. 1 lim272 lim272 10221 Jun 24 14:38 DEMO_T3.dat

-rw-rw-r--. 1 lim272 lim272 20 Jun 24 14:38 DEMO_T4.fmt

-rw-rw-r--. 1 lim272 lim272 10221 Jun 24 14:38 DEMO_T4.dat

-rw-rw-r--. 1 lim272 lim272 20 Jun 24 14:38 DEMO_T5.fmt

-rw-rw-r--. 1 lim272 lim272 1485 Jun 24 14:38 DEMO_create.sql

-rw-rw-r--. 1 lim272 lim272 12265 Jun 24 14:38 DEMO_T5.dat

-rw-rw-r--. 1 lim272 lim272 180 Jun 24 14:38 DEMO_in.sh

-rw-rw-r--. 1 lim272 lim272 20 Jun 24 14:38 DEMO_create_proc.sql

각 파일은 데이터 복원 과정에서 서로 다른 역할을 수행하며, 파일 형식별 용도는 다음과 같다.

복구 가이드 | 113

형식 설명

<INSTANCE_NAME>_<OBJECT_NAME>.dat 테이블 별 데이터가 저장된다.

<INSTANCE_NAME>_<OBJECT_NAME>.fmt 데이터 로딩을 위한 테이블 별 column 구성 정보가 저장된다.

<INSTANCE_NAME>_create.sql Object 생성 구문이 저장된다.

<INSTANCE_NAME>_create_proc.sql Procedure 생성 구문이 저장된다.

<INSTANCE_NAME>_in.sh
Instance 내 모든 테이블을 대상으로 dbmImp를 일괄 실행하기 위한 스크립

트 파일이 저장된다.

노트

한편, LITE 환경 간 (LITE ↔ LITE) dbmExp/dbmImp 작업에서 binary 옵션을 활성화하면 데이터 변환 과정

을 생략하고 즉시 적재할 수 있다. 이를 통해 대량 데이터 업로드 시 성능을 향상시킬 수 있다.

(단, binary 옵션은 GOLDILOCKS LITE 전용 기능으로, 다른 DBMS와는 호환되지 않는다.)

디스크 로깅을 이용한 복원

GOLDILOCKS LITE의 disk logging은 트랜잭션이 commit 되는 시점을 기준으로 redo log를 로그 파일에 기록하는

매커니즘을 의미한다.

GOLDILOCKS LITE에서는 다음 절차를 통해 디스크 로깅 기반 데이터 복구를 수행한다.

• dbmCkpt 프로세스를 실행하여 로그 파일에 기록된 트랜잭션 이력을 반영한 데이터 파일을 생성한다.

• dbmMetaManager에서 startup 명령을 수행한다.

GOLDILOCKS LITE는 다음과 같은 디스크 로깅 방식을 제공한다.

DBM_LOG_CACHE_

MODE
설명

NONE (0) 각 세션이 자신의 로그 파일에 트랜잭션 로그를 직접 기록한다.

NVDIMM (1)
NVDIMM을 log cache로 사용한다.

디스크에 영구 저장하려면 dbmLogFluhser 프로세스를 반드시 구동해야 한다.

SHM (2)
Shared memory를 log cache로 사용한다.

디스크에 영구 저장하려면 dbmLogFluhser를 반드시 구동해야 한다.

● Non-log cache 방식에서는 각 세션이 자신의 로그 파일에 직접 트랜잭션 로그를 기록한다. 이 방식은 구조가 단

순하지만, 디스크 I/O 부하로 인해 성능 저하가 발생할 수 있다.

● 반면, log cache 방식에서는 메모리에 일정 공간을 할당하고 여러 세션이 해당 공간에 트랜잭션 로그를 기록한

다. 따라서 log cache 방식을 사용하는 경우, 메모리에 기록된 트랜잭션 로그를 로그 파일에 반영하기 위해서는

dbmLogFlusher 프로세스가 반드시 구동되어야 한다.

114 | Getting Started

주의

만약 log cache 모드에서 dbmLogFlusher가 동작하지 않으면, log cache에 할당된 메모리가 비워지지 않아

새로운 트랜잭션이 모두 대기 상태에 진입하게 된다.

디스크 로깅에 의해 생성되는 파일은 DBM_DISK_LOG_DIR 경로에 저장되며, 다음과 같은 유형의 파일이 생성된다.

File 설명

<Instance_name>.anchor

create instance 시점에 생성되며, 세션 및 dbmLogFlusher, dbmCkpt에 의해

참조/갱신되는 로그 파일의 상태 정보를 기록한다.

예: DEMO.anchor

<Instance_name>.<session_id>.<logfile s

equence>

세션 또는 dbmLogFlusher에 의해 생성되는 로그 파일이다.

예: DEMO.1.0

로그 파일은 buffered i/o 또는 direct i/o 방식으로 저장되며, DBM_DIRECT_IO_ENABLE 속성을 통해 제어할 수

있다. 또한 commit 시점에 디스크에 저장되는 것을 보장하려면 DBM_COMMIT_WAIT_MODE 속성을 설정해야

한다. (자세한 내용은 환경 변수 및 프로퍼티를 참조한다.)

노트

성능과 데이터 안정성은 trade-off 관계에 있으므로, DBM_COMMIT_WAIT_MODE 속성은 데이터 무결성

이 특히 중요한 환경에서만 설정하는 것이 권장된다.

체크포인트

체크포인트란 디스크 로그 파일에 기록된 트랜잭션 이력을 반영하여 데이터 파일을 생성하거나 갱신하는 과정을 의

미한다.

체크포인트가 수행되면 반영이 완료된 로그 파일은 DBM_ARCHIVE_LOG_ENABLE 설정값에 따라 삭제되거나, 지

정된 archive 경로로 이동된다.

체크포인트 과정에서 생성되는 데이터 파일의 저장 경로는 DBM_DISK_DATA_FILE_DIR 속성을 통해 지정하며,

생성되는 데이터 파일의 이름은 다음 규칙을 따른다.

<Instance Name>_<Object Name>.dbf

노트

체크포인트 수행 중에는 I/O가 발생하므로 system 성능에 영향을 줄 수 있다. 또한 체크포인트 수행 간격 동

안 로그 파일이 누적되기 때문에 디스크 사용량이 증가할 수 있다. 따라서 안정적인 운영을 위해서는 데이터

복구 가이드 | 115

파일과 로그 파일을 저장하기 위한 충분한 디스크 공간을 사전에 확보하고, 시스템 부하를 고려하여 체크포인

트 주기를 적절히 설정해야 한다.

복구

디스크 로깅과 체크포인트를 이용한 복구는 다음 순서로 수행한다.

(1) shell> dbmCkpt -i demo -f

(2) dbmMetaManager(unknown)> startup;

success

dbmCkpt는 기본적으로 기록이 완료된 로그 파일만 데이터 파일에 반영한다.

따라서 위의 예시 (1)과 같이 -f option을 지정하여, 현재 기록 중인 로그 파일까지 포함해 데이터 파일에 반영하도록

한다.

이후 예시 (2)와 같이 dbmMetaManager에서 startup 명령을 수행하면 복구가 완료된다.

Startup 과정에서는 dictionary table 정보를 기반으로 object를 생성하고, 체크포인트를 통해 생성된 데이터 파일을

참조하여 데이터를 복원한다.

Startup 명령은 dictionary instance의 DIC_INST에 기록된 instance를 대상으로 수행된다.

특정 instance만 복구하려면 startup 명령 실행 시 대상 instance를 지정하여 수행해야 한다.

노트

한편, 운영 중 복구 과정에서 현재 로그 파일을 반영하지 않은 상태로 startup을 실행한 경우, 기존 shared m

emory를 제거한 후 체크포인트를 다시 수행하고 startup 명령을 재실행해야 한다.

Archive 로그를 기반으로 체크포인트를 수행해야 하는 경우에는, 다음과 같이 반영할 로그 파일의 시작 번호를 지정

하여 체크포인트를 수행할 수 있다.

dbmMetaManager> alter system reset checkpoint demo -1;

116 | Getting Started

1.7 Utility

본 절에서는 GOLDILOCKS LITE에서 제공하는 사용자 utility에 대해 설명한다.

dbmExp

dbmExp는 GOLDILOCKS LITE 내에 존재하는 object 생성과 관련된 SQL script와 데이터를 추출하는 프로세스이다.

Input Option

입력 옵션 설명

-h 도움말을 출력한다.

-a 모든 instance를 export 할 경우에 지정하며 -i 옵션과 함께 지정할 수 없다.

-i <instance Name> 특정 instance를 지정하여 export 할 경우에 입력한다.

-t <table Name>
특정 table을 지정하여 export 할 경우에 입력한다. 입력하지 않으면 instance 내 전체 table을

대상으로 추출한다.

-r <delimeter> 데이터 추출 옵션이 활성화 된 경우, 레코드 단위 구분자를 지정한다.

-c <delimeter> 데이터 추출 옵션이 활성화 된 경우, column 단위 구분자를 지정한다.

-d 테이블 데이터를 함께 추출하고자 할 경우에 입력한다.

-b
데이터를 binary 형태로 추출할 경우에 입력한다. 추후 dbmImp로 로딩할 때 parsing 비용을

줄일 수 있다. (단, 타 DBMS와는 호환되지 않는다.)

-n
Column 타입이 char 형식일 경우, 데이터 내에서 null 이전까지의 값만 출력하고자 할 때 사용

된다.

-p Instance에 password 가 설정된 경우에 입력한다.

노트

● dbmExp에 의해 추출된 데이터는 기본적으로 text로 저장되며, 다른 DBMS로 데이터를 이관하여 사용

할 수도 있다.

● 별도의 옵션을 지정하지 않은 경우 column delimeter와 row delimeter가 자동으로 설정되어 csv 형식

으로 출력된다.

● 사용자가 column delimeter와 row delimeter를 직접 지정할 경우, 두 delimiter는 서로 다른 값이어야

하며 데이터 자체에 포함되지 않는 문자를 사용해야 한다.

● Date column은 기본적으로 microseconds까지 출력된다. 다른 DBMS로 이관하여 적재할 경우에는,

대상 DBMS에서 지원하는 적절한 데이터 타입과 포맷에 맞게 변환하여 사용해야 한다.

Utility | 117

사용 예 (특정 instance의 하위 object 및 데이터 추출)

다음은 특정 instance(demo)에 포함된 object와 데이터를 추출하는 예이다.

$ dbmExp -i demo -d

[DEMO] Instance start...

+ (QUE1) (1 rows) download

+ (T1) (1 rows) download

● 추출된 각 파일의 이름은 <InstanceName>_<ObjectName> 형식으로 출력된다.

● Sequence object의 경우, current 값을 start with 값으로 설정하여 생성 스크립트가 출력된다.

dbmExp 추출 결과물

dbmExp 명령을 실행하면 instance 와 테이블 정보에 따라 여러 개의 결과 파일이 생성된다.

각 결과 파일은 고유한 이름 형식과 역할을 가지며, 용도는 아래와 같다.

File name 설명

<Instance name>_create.sql
해당 instance에 포함된 모든 object의 생성 구문을 하나의 스크립트로 저장한

파일이다.

DEMO_create_proc.sql deprecated

<Instance name>_in.sh
Instance에 포함된 모든 테이블 데이터를 로딩하기 위한 명령어를 저장한 파일

이다.

<Instance name>_<Table name>.dat 지정된 테이블의 실제 데이터가 저장되는 파일이다.

<Instance name>_<Table name>.fmt 테이블의 column 순서와 사용 여부를 나열한 파일이다.

dbmImp

dbmImp는 csv 형식 또는 사용자 정의 구분자를 사용하는 데이터 파일을 분석하여 지정된 테이블에 데이터를 적재하

는 프로세스이다.

Input Option

입력 옵션 설명

-h 도움말을 출력한다.

-i <instance Name> 데이터를 적재할 대상 instance name을 지정한다.

-t <table Name> 데이터를 적재할 대상 table name을 지정한다.

-r <delimeter> 레코드 단위의 구분자를 지정한다.

-c <delimeter> Column 단위의 구분자를 지정한다.

118 | Getting Started

-d <data file name> 적재할 데이터 파일의 이름을 지정한다.

-f <form file name> 데이터 포맷 정보를 정의한 form file의 이름을 지정한다.

-p Instance에 password가 설정되어 있는 경우에 입력한다.

-b
데이터 파일이 dbmExp에 의해 생성된 binary format일 경우에 지정한다.

(이 옵선을 사용하면 parsing 비용을 줄일 수 있다.)

입력 옵션 설명

노트

Form file의 내용을 수정하면 특정 column을 제외하거나, column의 순서를 변경하여 데이터를 적재할 수

있다.

레코드 또는 column 구분자로 특수 문자를 사용할 경우, 아래와 같은 입력 방식을 사용해야 한다.

구분자 Ascii 값 입력 방식 (on dbmImp)

\t (tab) 9 \\t

\r (carriage return) 13 \\r

\n (line feed) 10 \\n

사용 예

다음은 dbmImp를 이용하여 데이터 파일을 테이블에 적재하는 예이다.

$ dbmImp -i demo -t t1 -d DEMO_T1.dat

(DEMO.T1) Import Success. (ReadCount=1, Inserted=1)

$ dbmImp -i demo -t que1 -d DEMO_QUE1.dat

(DEMO.QUE1) Import Success. (ReadCount=1, Inserted=1)

추출된 form 파일을 수정하여, 데이터 적재 시 특정 column을 제외하려면 해당 column의 Y 값을 N으로 변경한다.

$ cat DEMO_T1.fmt

C1 Y

C2 Y

C3 Y

C4 Y

C5 Y

C6 Y 1 N 으로 변경

C7 Y

C8 Y

Utility | 119

C9 Y

C10 Y

● 데이터 파일에 C2, C3 column이 없다면, 위 예제에서는 해당 column에 해당하는 행(C2, C3)을 제거한 후 db

mImp를 실행한다.

● 데이터 파일에서 C2, C3 column의 순서가 서로 바뀌어 있다면, form 파일에서도 C2, C3 line의 순서를 동일하

게 변경하여 처리한다.

노트

DATE 타입은 기본적으로 YYYY/MM/DD HH:MI:SS.SSSSSS 형식의 문자열을 기준으로 데이터를 해석한다.

따라서 다른 DBMS에서 추출한 데이터를 적재하는 경우, 해당 DBMS에서도 DATE 값을 동일한 형식의 문자

열로 변환하여 추출해야 한다.

dbmCkpt

dbmCkpt는 디스크 모드 운영 중에 생성된 로그 파일을 읽어 데이터 파일로 반영하는 프로세스이다.

로그 파일은 세션 또는 dbmLogFlusher에 의해 다음과 같은 형식의 파일명으로 기록된다.

<Instance Name>.<Session ID>.<LogFile Sequence>

* dbmLogFlusher는 Session ID를 0으로 설정하여 로그 파일을 생성한다.

각 세션 및 dbmLogFlusher는 로그를 기록하여 DBM_DISK_LOG_FILE_SIZE 크기에 도달하면 다음 sequence 번호

로 새로운 로그 파일을 생성한다.

이러한 과정을 log switching 이라 하며, sequence 변경 정보는 모두 log anchor에 기록된다.

dbmCkpt 는 log anchor에 저장된 현재 읽고 있는 로그 파일의 sequence와 각 세션의 log switching 이력을 기반

으로, 기록이 완료된 로그 파일만 읽어 데이터 파일에 반영한다.

따라서 복구를 위해 startup 명령을 실행하기 전에, 현재 기록 중인 로그 파일까지 반영하려면 반드시 -f 옵션을 사용

하여 체크포인트를 수행해야 한다.

노트

각 로그 파일의 크기가 정확히 DBM_DISK_LOG_FILE_SIZE 와 일치하는 것은 아니다. 마지막에 기록되는 트

랜잭션 로그의 크기가 큰 경우, log switching 이후 새 로그 파일에 기록될 수 있다. dbmLogFlusher가 생성

하는 로그 파일은 경우에 따라 최대 크기를 초과하여 기록될 수 있다.

120 | Getting Started

Input Option

입력 옵션 설명

-h 도움말을 출력한다.

-i <instance name> 대상 instance name을 지정한다.

-v 체크포인트를 한 번만 수행한 후 종료한다.

-f
로그 파일이 아직 모두 기록되지 않은 상태라도 강제로 체크포인트를 수행하도록 지정한다.

(Startup 직전에는 반드시 해당 옵션을 포함하여 체크포인트를 수행해야 한다.)

-s 체크포인트를 수행하는 간격을 지정한다. (단위: 초)

dbmDump

dbmDump는 shared memory의 내용과 디스크에 저장된 파일의 내용을 출력하는 tool 이다.

입력 옵션과 지정한 파일 유형에 따라 해당되는 정보를 출력한다.

노트

dbmDump의 출력 형식은 버전에 따라 변경될 수 있다.

Dump Memory

dbmDump를 사용하면 현재 메모리에 존재하는 instance, table, index 등의 주요 정보를 확인할 수 있다.

연관 object 입력 가능 옵션 설명

ALL -h 도움말을 출력한다.

instance, table, index -i <instance name> 대상 instance name을 지정한다.

instance -x <session ID> Instance dump 수행 시, 입력한 session ID와 연관된 정보만 출력한다.

table -t <table name> 대상 table name을 지정한다.

table -s Slot-area 정보를 출력한다.

index -d <index name> 대상 index name을 지정한다.

dbmDump (Instance)

dbmDump (Instance)는 instance의 헤더 정보와 세션별 주요 트랜잭션 정보를 dump 한다.

사용 예

Utility | 121

[majaehwa@tech9 new_lite]$ dbmDump -i demo;

InstName=DEMO, TransId=-1

Segment Init=128, extend=128, max=1048576

SegmentNo=0, Alloc=12, Free=139, Gap=128

Lock=-1, SCN=29, ObjectId=12, Name=DEMO, Active=1,DiskLogMode=1, LogFileSize=104857600,

CreateTime=2025-07-24 15:17:12

==

==============

TxInfo(T=1, P:3560962, T=3560962), Stat=transaction, First/Last(11:11), SavePoint(-1:-1)

WaitTrans=-1(,-1), SCN=9223372036854775807, Repl=0, BeginTime=2025/07/28 15:50:27.098864

Page=11, PrevOffset=-1, Offset=32, NextLogPage=11, NextLogOffset=32, Size=0, LogType=INSERT_

TABLE, RelSlot=0, RelExtra=1, ObjectId=(12)

Page=11, PrevOffset=32, Offset=256, NextLogPage=11, NextLogOffset=256, Size=80, LogType=UPDATE

_TABLE, RelSlot=0, RelExtra=1, ObjectId=(12)

==

==============

Instance header에서 제공되는 주요 정보는 다음과 같다.

항목 설명

Lock Instance lock 설정 여부

SCN System commit number 용도

ObjectId Reserved

Name Instance 이름

Active Reserved

DiskLogMode 디스크 모드 활성화 여부

LogFileSize 디스크 모드 사용 시 로그 파일 크기

CreateTime Instance 생성 시각

각 session에 대해 출력되는 기본 정보는 다음과 같다.

항목 설명

TxInfo(T: P: T)

Session 정보

● T: 내부에서 할당된 session ID

● P: Process ID

● T: Thread ID

Stat

트랜잭션 상태

● transaction: 트랜잭션 진행 가능 또는 진행 중

● commit start: 메모리 커밋 시작

● commit completed: 메모리 커밋 완료

● rollback completed: 메모리 롤백 완료

● recovery completed: 메모리 비정상 복구 완료

122 | Getting Started

※ 실제 운영에서는 Stat=transaction 외의 상태는 거의 출력되지 않는다.

First/ Last Session이 사용 중인 undo 공간의 첫 번째와 마지막 PageId

SavePoint Reserved

WaitTrans
트랜잭션이 LockWait 상태일 경우 대기 중인 상대 transactionId (대상 테이블, 대상 slot Id 포

함)

SCN Commit 시점에 할당된 SCN

Repl 이중화 모드 설정 여부

BeginTime 세션이 할당된 시간

항목 설명

현재 session에 진행 중인 트랜잭션이 있을 경우. 출력되는 항목은 다음 표와 같다.

항목 설명

Page 현재 트랜잭션 로그가 기록된 page ID 이다.

PrevOffset 이전 트랜잭션 로그가 기록된 page 내 offset 정보이다.

Offset 현재 트랜잭션 로그가 기록된 page 내 offset 정보이다.

NextLogPage 다음 트랜잭션 로그가 기록된 page ID 이다.

NextLogOffset 다음 트랜잭션 로그가 기록될 page 내 offset 정보이다.

Size Rollback image의 크기이다.

LogType 트랜잭션 로그 유형이다.

RelSlot Table 내 slot ID 이다.

RelExtra Table 내 고유 record ID 이다.

ObjectId Object에 부여되는 고유 ID 이다.

dbmDump (Table)

dbmDump (Table)은 테이블의 header 상태 정보와 레코드가 저장된 slot 영역의 row header 및 데이터를 dump

한다.

사용 예

[majaehwa@tech9 wal]$ dbmDump -i demo -t t1;

InstName=DEMO, ObjectId=11, TableName=T1, Lock=-1, RowSize=4, CreateTime=2025-07-24 15:17:24,

CreateSCN=22, ExtraKey=2, Root=-1

1] C1 int(Type=2) 4 0

SlotID=0, sExtraKey=1, Lock=13313, Size=4, SCN=24

C1 = [4]

SlotID=1, sExtraKey=2, Lock=14337, Size=4, SCN=25

C1 = [2]

출력 상단에는 table header 정보가 표시되며, 각 항목의 의미는 다음과 같다.

Utility | 123

항목 설명

InstName 테이블이 속한 instance 이다.

ObjectId 테이블의 object ID 이다.

Lock 테이블 lock 정보이다.

RowSize 테이블에 저장되는 레코드 크기이다.

CreateTime 테이블 생성 시각이다.

CreateSCN 테이블 생성 시점의 SCN 이다.

ExtraKey 레코드 저장 시마다 채번되는 고유 번호이다.

Root Splay table인 경우, 트리의 root 노드를 나타내는 root slot ID 이다.

레코드 별로 출력되는 항목은 다음과 같다.

항목 설명

SlotID
테이블 내 레코드의 위치 정보이다. 레코드는 고정 크기의 배열 형태로 저장되며, segment 내

N번째 저장 위치를 의미한다.

sExtraKey 레코드의 고유 ID 이다.

Lock 현재 또는 직전에 lock을 점유한 TransID 이다.

Size 레코드 크기이다.

SCN 레코드의 커밋 번호이다.

노트

Splay table의 경우, row header에 tree 구조 정보가 저장된다.

또한 table header에 출력된 "Root" 항목은 splay tree 구조에서 최상위 노드 (시작점)를 의미한다.

[majaehwa@tech9 src]$ dbmDump -i demo -t t4;

InstName=DEMO, ObjectId=14, TableName=T4, Lock=-1, RowSize=4, CreateTime=2025-07-29 14:40:34,

CreateSCN=41, ExtraKey=1, Root=0

1] C1 int(Type=2) 4 0

SlotID=0, ExtraKey=1, Lock=31745, Size=4, SCN=45, parent=-1, left=-1, right=-1

C1 = [5]

dbmDump (Index)

dbmDump (Index)는 B-tree index의 헤더 정보와 index가 저장된 구조를 dump한다.

124 | Getting Started

사용 예

[majaehwa@tech9 dbf]$ dbmDump -i demo -t t1 -d idx_t1;

InstName=DEMO, TableName=T1, IndexName=IDX_T1

try to attach a index segment

Lock=-1, RootNodeId=0, Unique=0, CompareCount=1, Depth=0, SplitCount=0, RefCount=0, CreateTime

=2025-07-24 15:21:12

==== NODE (0) : Valid=1 Cnt:2 (Prev:-1, Next:-1)

SlotNo=0] DataSlotId=1 ExtraKey=2 (Left=-1, Right=-1)

Key(C1) Val=[2]

SlotNo=1] DataSlotId=0 ExtraKey=1 (Left=-1, Right=-1)

Key(C1) Val=[4]

Index header의 주요 항목은 다음과 같다.

항목 설명

Lock
현재 index header에 lock을 점유하고 있는 TransId 이다. 이 값이 계속해서 -1이 아닌 동일한

값으로 유지된다면 index를 재구축해야 한다.

RootNodeId Root node의 ID 이다.

Unique
0: non-unique

1: unique

CompareCount Index가 사용될 때마다 증가하는 값이다.

Depth Btree의 깊이를 표현한다.

SplitCount Leaf node가 split 될 때마다 증가하는 값이다.

RefCount 현재 index를 탐색 중인 트랜잭션의 개수이다.

CreateTime Index가 생성된 시간이다.

노트

DataSlotId에 해당하는 데이터를 확인하려면 dbmDump (Table)을 참조한다.

Dump File

Dump file 기능은 anchor, data, log 파일을 dump 하여 파일에 기록된 주요 정보를 확인하는 데 사용한다.

입력 옵션 설명

-h 도움말을 출력한다.

-f <anchor filename, data filename, log filename> Dump 할 대상 filename을 지정한다

Utility | 125

dbmDump (Anchor)

dbmDump (Anchor)는 log anchor 파일의 내용을 dump 한다.

사용 예

[majaehwa@tech9 wal]$ dbmDump -f DEMO.anchor

File Info : Anchor, version 1

MemAnchor(Trans=1): mLogFileNo=0, LogFileOffset=9728, CkptFileNo=-1, ArchiveFileNo=-1,

CaptureFileNo=-1

MemCacheInd: CacheWriteInd=0, CacheReadInd=0, LogFileNo=0, LogFileOffset=0

LogAnchor(Trans=1): mLogFileNo=0, LogFileOffset=9728, CkptFileNo=-1, ArchiveFileNo=-1,

CaptureFileNo=-1

LogCacheInd: CacheWriteInd=0, CacheReadInd=0, LogFileNo=0, LogFileOffset=0

Log anchor 파일에는 세션별 로깅 동작 방식과 log cache 방식에 관한 정보가 기록되어 있으며, 출력 결과의 해석은

시스템에서 설정한 디스크 로깅 모드에 따라 달라진다.

DBM_LOG_CACHE_MODE가 0 인 경우, MemAnchor의 주요 항목은 다음과 같다.

항목 설명

MemAnchor(Trans=N) 세션 ID가 N임을 나타낸다.

mLogFileNo 해당 세션이 현재 사용 중인 로그 파일 번호 이다.

LogFileOffset 세션이 기록 중인 로그 파일 내 offset 이다.

CkptFileNo 체크포인트 수행 대상이 되는 파일의 시작 번호 이다.

ArchiveFileNo 아카이브 작업의 수행 대상이 되는 파일의 시작 번호 이다.

CaptureFileNo Reserved

DBM_LOG_CACHE_MODE가 (1, 2) 인 경우, MemCacheInd의 주요 항목은 다음과 같다.

항목 설명

CacheWriteInd Log cache 내에서 새로운 로그를 기록할 수 있는 위치이다.

CacheReadInd dbmLogFlusher 가 flush 작업 수행 시 읽어야 하는 위치이다.

LogFileNo dbmLogFlusher가 기록 중인 로그 파일 번호 이다.

LogFileOffset dbmLogFlusher가 현재 기록 중인 로그 파일 내 위치이다.

노트

Log anchor는 mmap 방식으로 메모리에 공유되며, 동시에 동일한 내용이 파일에도 기록된다. 출력 시 "Me

m" prefix가 붙은 라인은 메모리에 저장된 내용을 dump 한 결과이며, prefix가 없는 라인은 실제 파일에 기

록된 정보를 의미한다.

126 | Getting Started

dbmDump (Datafile)

dbmDump (Datafile)은 datafile을 dump한다.

사용 예

[majaehwa@tech9 dbf]$ dbmDump -f DEMO_T1.dbf

File Info : Data, version 1

InstName=DEMO, TableName=T1, SlotSize=76, CreateSCN=22

ColumnName (C1), Order=1, Type=int, Offset=0, Size=4

0) Size=4, SCN=24 ## 0) 0의 의미는 SlotID이다.

(C1=4)

1) Size=4, SCN=25

(C1=2)

Dump (DEMO_T1.dbf) completed

dbmDump (Logfile)

dbmDump (Logfile)은 redo logfile의 주요 정보를 dump한다.

사용 예

[majaehwa@tech9 wal]$ dbmDump -f DEMO.1.0 | tail

+ logType(CREATE_TABLE), object(V$TYPE_INFO), SlotId(-1), sPos(48)

sFileOffset=8192, BlockSCN=22, BlockCount=1, logCount=1, Time=2025/07/24 15:17:24.641676

+ logType(CREATE_TABLE), object(T1), SlotId(-1), sPos(48)

sFileOffset=8704, BlockSCN=24, BlockCount=1, logCount=1, Time=2025/07/24 15:17:32.444694

+ logType(INSERT_TABLE), object(T1), SlotId(0), sPos(48) RowHdr(scn=24, size=4) :

sFileOffset=9216, BlockSCN=25, BlockCount=1, logCount=1, Time=2025/07/24 15:17:38.542943

+ logType(INSERT_TABLE), object(T1), SlotId(1), sPos(48) RowHdr(scn=25, size=4) :

sFileOffset=9728, BlockSCN=26, BlockCount=1, logCount=1, Time=2025/07/24 15:21:12.871522

+ logType(CREATE_INDEX), object(IDX_T1), SlotId(-1), sPos(48)

sReadSz=0, LastOffset=10240, errno=0 at reading blockHdr

Redo log는 커밋 시점마다 트랜잭션 내의 모든 로그를 하나의 block이라 불리는 공간에 모아 저장한다. Block의 크

기는 DBM_DISK_BLOCK_SIZE 속성으로 지정된다.

각 block에는 header가 존재하며, 주요 항목은 다음과 같다.

항목 설명

sFileOffset Log가 기록된 파일 내 위치이다.

BlockSCN Commit SCN 이다.

BlockCount Block의 개수이다.

logCount Block 내에 포함된 세부 트랜잭션 로그의 개수이다.

Utility | 127

Time 트랜잭션 로그를 디스크에 기록하기 직전의 시각이다.

항목 설명

Block 헤더 정보 다음에 위치한 로그들은 트랜잭션 내의 상세 로그를 의미한다.

각 상세 로그는 다음과 같은 항목으로 구성된다.

항목 설명

logType 트랜잭션 로그의 상세 유형이다.

object 트랜잭션이 발생한 대상 object 이다.

SlotId 대상 object 내의 slot ID 이다.

sPos 현재 읽은 block의 header 크기이다.

RowHdr(SCN, Size) 커밋된 레코드의 SCN 및 크기 정보이다.

dbmListener

dbmListener는 원격 노드에 접속할 때 대상 서버에서 구동해야 하는 프로세스이다. 주요 기능은 다음과 같다.

• 원격 노드에서 접속하는 세션 관리

• 원격 노드로 요청되는 트랜잭션 처리

노트

GOLDILOCKS LITE의 원격 접속 방식은 네트워크 통신 비용이 발생하기 때문에 local processing 대비 성능

이 낮다.

Input Option

입력 옵션 설명

-h 도움말을 출력한다.

-i <instance name> dbmListener가 사용할 property section을 지정한다.

-v Verbose mode로 동작한다.

dbmListener를 구동한 후 사용자가 접속하려면 다음 명령을 사용한다.

dbmMetaManager> connect <ip> <port> <instanceName> <password> ;

* password는 instance에 암호가 설정된 경우에만 필요하다.

사용자 프로그램에서는 dbmConnect API를 통해 연결할 수 있다.

128 | Getting Started

dbmLogFlusher

dbmLogFlusher는 디스크 모드에서 log cache 방식을 사용할 때, cache에 기록된 트랜잭션 로그를 디스크로 저장

하는 프로세스이다.

Log cache 공간은 DBM__LOG_CACHE_SIZE로 제한된 범위 내에서 운영된다.

Log cache를 사용하는 설정에서는 트랜잭션의 commit이 다음 절차로 완료된다.

1. 모든 세션은 log cache에서 기록할 공간을 할당받는다.

(이 과정에서 세션 간 경합이 발생할 수 있다.)

2. 세션은 할당된 공간에 로그 기록을 완료한 후, 해당 로그 블록을 valid 상태로 마크한다.

3. Commit 결과를 사용자에게 반환한다.

dbmLogFlusher는 위 과정에서 트랜잭션들이 기록한 공간 정보의 변화를 감지하여, valid 상태의 트랜잭션 로그를

디스크로 기록한다.

• 특정 세션의 로그 기록이 지연되면, dbmLogFlusher 또한 해당 세션의 기록이 완료될 때까지 기다린다.

• DBM_DISK_COMMIT_WAIT 옵션이 설정된 경우, 세션이 commit을 호출하면 dbmLogFlusher가 로그를 디스

크에 완전히 기록한 이후에야 응답을 받게 된다.

Input Option

입력 옵션 설명

-h 도움말을 출력한다.

-i <instance name> 대상 instance name을 지정한다

dbmMonitor

dbmMonitor는 GOLDILOCKS LITE의 상태를 모니터링 하는 프로세스이다.

Input Option

입력 옵션 설명

-h 도움말을 출력한다.

-i <instance name> 대상 instance name을 지정한다

-s <interval time> 모니터링 결과의 출력 간격을 설정한다. (Second 단위)

-u Usage info에서 사용자가 입력한 임계값(%)을 초과하는 테이블만 표시한다.

-v Verbose mode로 구동된다.

Utility | 129

사용 예

[nh39@tech9 new_lite]$ dbmMonitor -i demo

2025/07/28 20:11:29

[Table Usage]

TableName MAX TOTAL USED

FREE Usage Info

--

DIC_CAPTURE_HOST 4096000 1024 0

1024 0.00

DIC_CAPTURE_TABLE 4096000 1024 0

1024 0.00

DIC_COLUMN 4096000 1024 176

848 0.00

DIC_INDEX 4096000 1024 15

1009 0.00

DIC_INDEX_COLUMN 4096000 1024 41

983 0.00

DIC_INST 4096000 1024 1

1023 0.00

DIC_PROCEDURE 4096000 1024 0

1024 0.00

DIC_PROCEDURE_TEXT 4096000 1024 0

1024 0.00

DIC_REPL_INST 4096000 1024 0

1024 0.00

DIC_REPL_TABLE 4096000 1024 0

1024 0.00

DIC_SEQUENCE 4096000 1024 0

1024 0.00

DIC_TABLE 4096000 1024 25

999 0.00

DIC_USER_LIBRARY 4096000 1024 0

1024 0.00

DIC_USER_LIBRARY_FUNCTION 4096000 1024 0

1024 0.00

DIC_USER_LIBRARY_PARAMETER 4096000 1024 0

1024 0.00

--

130 | Getting Started

[Lock Status]

WaitSessionId WaitTransPID LockTransId LockTransPID LockObject LockSlot

2 599736 31745 599672 USER_DATA 0

Lock status의 각 항목은 다음과 같다.

항목 설명

WaitSessionId Lock wait 중인 세션 ID 이다.

WaitTransPID Lock wait 중인 프로세스 ID 이다.

LockTransID Lock을 점유한 트랜잭션 ID 이다.

LockTransPID Lock을 점유한 프로세스 ID 이다.

LockObject Lock이 발생한 대상 테이블이다.

LockSlot 대상 테이블 내의 SlotID 이다.

dbmReplica

dbmReplica는 slave node에서 데이터를 수신하고 반영하기 위해 구동하는 프로세스이다.

Input Option

입력 옵션 설명

-i dbmReplica를 여러 개 실행할 경우, 프로세스를 구분하기 위한 alias를 지정한다.

-h 도움말을 출력한다.

-v Verbose mode로 구동한다.

사용 예

$ dbmRepica -i demo

노트

dbmReplica는 실행 시점에 dbm.cfg의 "COMMON" section 또는 환경 변수에 설정된 속성을 사용한다.

Sizing | 131

1.8 Sizing

GOLDILOCKS LITE 사용 전, 필요한 memory segment에 대한 sizing 방안을 설명한다.

주의

● 각 설명에서는 segment 생성 옵션의 init size만을 기준으로 하며, extend/max 옵션을 고려한 추가 산

정이 필요할 수 있다. (extend 단위 계산 방식은 동일하게 적용된다.)

● Sizing 방식은 패치 또는 신규 버전 릴리즈 시점에 기능 개선 및 추가에 따라 변경될 수 있다.

Instance Sizing

Instance segment는 세션 정보와 undo logging 공간으로 사용된다.

• 세션은 헤더 공간에 고정 크기로 포함된다.

• 각 undo logging 공간의 크기는 1M 이다.

• 세션 생성 시 (dbmInitHandle 시점), 세션당 한 개의 undo logging 공간이 할당된다.

Instance Sizing = sizeof(segment Header area) + // 240 byte

sizeof(session area) + // 1392640 byte

sizeof(long long) * (init_size + 1) +

(1M * init_size)

;

Table Sizing

Table 크기를 계산할 때는 table header, row header 등을 반드시 고려해야 한다.

Table Sizing = sizeof(segment header) + // 240 byte

sizeof(table header) + // 136 byte

sizeof(long long) * (init_size + 1) +

((Record Header=72byte) + RecordSize) * init_size

;

132 | Getting Started

노트

디스크 모드 사용 시, 생성되는 데이터 파일의 크기는 table segment의 크기와 동일하다.

Index Sizing

테이블 유형별 index sizing은 다음과 같다.

Table 유형 설명

Btree 아래 산정식을 참조한다.

Splay 별도로 공간을 산정하지 않는다.

Store Btree index와 동일하다.

Queue Btree index와 동일하다.

Direct 별도로 공간을 산정하지 않는다.

Btree index의 크기는 다음과 같이 산정한다.

init size = Table Segment Init Size * 4 + 4

Index Sizing = sizeof(segment header) + // 240 byte

sizeof(index header) + // 1192 byte

(sizeof(indexNodeHeader) + // 32 byte

sizeof(index slot Header) + // 32 byte

index key column size의 합) * 128 * init size

노트

Splay, direct table 유형은 dummy index segment 만 생성되며, 크기는 6K이다.

디스크 공간 산정

디스크 모드로 운영할 경우, 다음의 파일들이 생성된다.

• 트랜잭션 로그 파일

• 데이터 파일

이중화 운영 모드에서는, master 노드에서 다음 파일이 추가로 생성될 수 있다.

• 이중화 미전송 로그 파일

Sizing | 133

트랜잭션 로그 파일

트랜잭션 로그 파일은 체크포인트 과정에서 사용이 완료되면 삭제되거나, 필요 시 archive 경로로 이동된다.

따라서, 체크포인트 수행 간격 동안 디스크 공간이 부족하지 않도록 충분히 산정해야 한다.

만약 디스크 공간이 부족하여 트랜잭션 로그가 commit 시점에 기록되지 못할 경우, 해당 트랜잭션은 실패로 처리되

며 모든 작업이 롤백된다.

각 트랜잭션 로그 파일의 최대 크기는 DBM_DISK_LOG_FILE_SIZE 속성으로 정의된다.

트랜잭션 처리량, 체크포인트 수행 간격, 디스크 장비의 I/O 처리 성능을 고려하여, 운영 환경에 맞는 적절한 로그 파

일 크기를 산정해야 한다.

데이터 파일

데이터 파일은 table segment가 모두 extend 된 경우를 가정하여, 저장 가능한 최대 공간으로 산정한다.

이중화 미전송 로그 파일

이중화 모드로 운영 중 네트워크 장애가 발생하면, master 노드에 다음 파일이 생성될 수 있다.

• 미전송 트랜잭션 로그 파일

미전송 트랜잭션 로그 파일은 사용자가 전송 처리를 완료하면 제거된다.

(자세한 내용은 alter system replication sync를 참조한다.)

로그 파일의 최대 크기는 DBM_REPL_UNSENT_LOGFILE_SIZE 속성으로 정의된다.

사용자는 네트워크가 복구될 것으로 예상되는 시간을 고려하여, 충분한 디스크 공간을 확보하도록 산정해야 한다.

134 | Getting Started

1.9 Monitoring

본 장에서는 GOLDILOCKS LITE을 모니터링하는 방법에 대해 설명한다.

LOCK 정보 확인

모든 변경 연산은 record 단위로 lock을 점유하여, 다른 세션이 해당 데이터를 변경하지 못하도록 보호한다.

세션이 장시간 대기하는 경우, 원인을 파악하기 위해 다음과 같은 방법을 사용할 수 있다.

dbmMetaManager(DEMO)> select * from v$session;

ID : 1

TRANS_ID : 26625

PID : 3388915

TID : 3388915

OLD_TID : 3388915

VIEWSCN : 9223372036854775807

CURR_UNDO_PAGE : 4

FIRST_UNDO_PAGE : 4

LAST_UNDO_PAGE : 4

SAVEPOINT_UNDO_PAGE : -1

SAVEPOINT_UNDO_OFFSET : -1

WAIT_TRANS_ID : 2 <<= Lock을 점유한 트랜잭션 ID

WAIT_OBJECT : T1 <<= Lock OBJECT

WAIT_SLOT_ID : 0 <<= Object 내의 레코드 위치

SESSION_STATUS : transaction

IS_LOGGING : 0

LOGFILE_NO : -1

CKPT_NO : -1

IS_REPL : 0

REPL_SEND_SCN : -1

REPL_RECV_ACK_SCN : -1

AUTOCOMMIT_MODE : 0

BEGIN_TIME : 2025/07/18 06:14:09

PROGRAM : dbmMetaManager

REMOTE_PID :

REMOTE_ADDR :

REMOTE_PROGRAM :

Monitoring | 135

ID : 2

TRANS_ID : 2

PID : 3389780

TID : 3389780

OLD_TID : 3389780

VIEWSCN : 9223372036854775807

CURR_UNDO_PAGE : 5

FIRST_UNDO_PAGE : 5

LAST_UNDO_PAGE : 5

SAVEPOINT_UNDO_PAGE : -1

SAVEPOINT_UNDO_OFFSET : -1

WAIT_TRANS_ID : -1

WAIT_OBJECT :

WAIT_SLOT_ID : -1

SESSION_STATUS : transaction

IS_LOGGING : 0

LOGFILE_NO : -1

CKPT_NO : -1

IS_REPL : 0

REPL_SEND_SCN : -1

REPL_RECV_ACK_SCN : -1

AUTOCOMMIT_MODE : 0

BEGIN_TIME : 2025/07/18 06:26:58

PROGRAM : dbmMetaManager

REMOTE_PID :

REMOTE_ADDR :

REMOTE_PROGRAM :

2 row selected

위 결과에서 WAIT_TRANS_ID 항목이 -1이 아닌 경우, 해당 세션이 대상 TransID를 가진 다른 세션을 기다리고 있는

상태를 의미한다.

예를 들어, 위의 예제에서는 ID=1 세션이 ID=2 세션을 기다리고 있음을 나타낸다.

대기 중인 대상 테이블은 T1 이며, 0번 slot을 가진 record에서 기다리고 있다는 의미이다.

위 예제와 같이 TransID=2인 세션이 수행 중인 작업은 다음과 같은 방법으로 조회할 수 있다.

dbmMetaManager(DEMO)> select * from v$transaction where trans_id = 2;

TRANS_ID : 2

TRANS_SEQ : 1

136 | Getting Started

TRANS_TYPE : UPDATE_TABLE

OBJECT_NAME : T1

SLOT_ID : 0

EXTRA_KEY : 1

COMMIT_FLAG : 0

SKIP_FLAG : 0

VALID_FLAG : 1

1 row selected

SlotID=0에 해당하는 record를 변경 중이며, 아직 commit/rollback이 수행되지 않은 상태가 유지되고 있다.

TransID=2를 가진 세션이 어떤 프로세스인지 확인하려면, v$session view의 PID 및 PROGRAM column을 참조하

면 된다.

(원격 노드에서 접속한 경우에는 REMOTE_PID, REMOTE_PROGRAM 항목을 통해 확인할 수 있다.)

노트

각 항목의 의미에 대해서는 V$SESSION 및 V$TRANSACTION view를 참조한다.

처리량 확인

GODILOCKS LITE는 각 주요 operation에 대한 누적 정보를 기록할 수 있다.

다음과 같은 방법으로 전체 누적 처리량을 확인할 수 있다.

dbmMetaManager(DEMO)> select * from v$sys_stat;

STAT_NAME : init_handle_op

ACCUM_COUNT : 0

STAT_NAME : free_handle_op

ACCUM_COUNT : 0

STAT_NAME : prepare_op

ACCUM_COUNT : 0

STAT_NAME : execute_op

ACCUM_COUNT : 0

Monitoring | 137

STAT_NAME : insert_op

ACCUM_COUNT : 0

STAT_NAME : update_op

ACCUM_COUNT : 0

STAT_NAME : delete_op

ACCUM_COUNT : 0

STAT_NAME : scan_op

ACCUM_COUNT : 0

STAT_NAME : enqueue_op

ACCUM_COUNT : 0

STAT_NAME : dequeue_op

ACCUM_COUNT : 0

STAT_NAME : aging_op

ACCUM_COUNT : 0

STAT_NAME : commit_op

ACCUM_COUNT : 0

STAT_NAME : rollback_op

ACCUM_COUNT : 0

STAT_NAME : recovery_rollback_op

ACCUM_COUNT : 0

STAT_NAME : recovery_commit_op

ACCUM_COUNT : 0

STAT_NAME : split_index_node

ACCUM_COUNT : 0

STAT_NAME : retry_lock_count

ACCUM_COUNT : 0

17 row selected

138 | Getting Started

노트

각 항목의 의미에 대해서는 V$SYS_STAT view를 참조한다.

Log Cache 및 Checkpoint 상태

디스크 로깅과 관련된 설정값과 동작 상태를 확인할 수 있다.

dbmMetaManager(DEMO)> select * from v$log_stat;

DISKLOG_ENABLE : 0

CACHE_MODE : 0

DIRECT_IO_ENABLE : 0

ARCHIVE_ENABLE : 0

CURR_FILE_NO : -1

CURR_FILE_OFFSET : -1

LAST_CKPT_FILE_NO : -1

LAST_ARCHIVE_FILE_NO : -1

LAST_CAPTURE_FILE_NO : -1

LOGCACHE_WRITE_IND : -1

LOGCACHE_READ_IND : -1

FLUSHER_FILE_NO : -1

FLUSHER_FILE_OFFSET : -1

LOG_DIR : /mnt/md1/ssd_home/lim272/new_lite/pkg/wal

DATAFILE_DIR : /mnt/md1/ssd_home/lim272/new_lite/pkg/dbf

ARCHIVE_DIR : /mnt/md1/ssd_home/lim272/new_lite/pkg/arch

1 row selected

노트

각 column의 의미에 대해서는 V$LOG_STAT view를 참조한다.

API Reference

2.

139

140 | API Reference

2.1 API 공통사항

● 모든 API 호출은 정상적으로 처리되면 0을 반환하며, 그 외의 경우에는 에러 코드를 반환한다. (2.6 Error M

essage참조)

● 헤더파일은 $DBM_HOME/include/dbmUserAPI.h 를 사용한다.

● 라이브러리는 $DBM_HOME/lib/libdbmCore.so 를 사용하며, 이를 환경 변수 LD_LIBRARY_PATH에 추가해

야 한다.

● 변경 연산 API는 non auto commit 모드로 동작한다.

2.2 C/C++ APIs

API는 사용자의 선택에 따라 다음 유형의 구조체 변수를 사용한다.

Handle Type 설명

dbmHandle 트랜잭션을 수행하기 위해 instance에 접근할 때 사용하는 변수 타입

dbmTableHandle 테이블에 접근하기 위해 사용하는 변수 타입

dbmStmt SQL 방식을 사용하기 위한 변수 타입

노트

dbmTableHandle과 dbmStmt를 사용하지 않고도 데이터를 처리할 수 있다.

dbmInitHandle

기능

API 사용을 위한 초기화 작업을 수행한다.

Local server 에서 다른 API를 사용하기 전에 반드시 선행되어 호출되어야 한다.

dbmInitHandle은 아래의 과정을 수행한 후 성공 또는 실패를 반환한다.

● 트랜잭션 수행을 위한 session 등록

○ Instance segment attach 및 관련 자원 할당

● 디스크 모드인 경우 관련 자원 할당

C/C++ APIs | 141

○ Logging mode에 따른 자원 준비

● 이중화 모드인 경우 관련 자원 할당

○ 이중화 작업을 위한 thread 생성 및 원격 연결

인자

int dbmInitHandle(dbmHandle ** aHandle,

const char * aInstanceName)

인자 항목 타입 In/ out 비고

aHandle dbmHandle ** In/ out 변수는 NULL로 초기화한 후에 사용해야 한다.

aInstanceName const char * In -

노트

aInstanceName이 NULL인 경우, 환경 변수 DBM_INSTANCE 값을 default로 사용한다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

}

노트

dbmHandle 변수는 (void *) 형태이며, dbmInitHandle을 통해 내부적으로 필요한 공간을 할당한 후 사용

자에게 반환된다.

dbmConnect

142 | API Reference

원격 노드에 접속하기 위해 dbmInitHandle 을 대신하여 사용한다.

이 기능을 사용하려면 원격 노드에서 dbmListener가 실행 중이어야 한다.

인자

int dbmConnect(dbmHandle ** aHandle,

const char * aTargetIP,

int aTargetPort,

const char * aInstName)

인자 항목 타입 In/ out 비고

aHandle dbmHandle ** In/ out 변수는 NULL로 초기화한 후에 사용해야 한다.

aTargetIP const char * In 접속할 원격 노드의 IP 이다.

aTargetPort int In 접속할 원격 노드에 구동된 dbmListener의 PortNo 이다.

aInstanceName const char * In 접속할 원격 노드의 대상 instance name 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int rc;

rc = dbmConnect(&sHandle, "127.0.0.1", 27584, "demo")

}

노트

● 원격 노드에서 dbmListener 가 실행 중이어야 한다.

● Handle을 해제하려면 dbmFreeHandle 함수를 사용한다.

C/C++ APIs | 143

dbmFreeHandle

기능

dbmInitHandle 또는 dbmConnect API를 통해 할당된 자원을 해제한다.

인자

int dbmFreeHandle(dbmHandle ** aHandle)

인자 항목 타입 In/ out 비고

aHandle dbmHandle ** In/ out 해제 후 변수는 NULL로 초기화 된다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

// 사용자코드

rc = dbmFreeHandle(&sHandle);

}

노트

dbmFreeHandle 호출 시점에 완료되지 않은 트랜잭션은 자동으로 롤백 처리 된다.

144 | API Reference

dbmPrepareTable

기능

입력된 테이블을 사용 가능한 상태로 준비한다.

• Table 및 index shared memory segment를 attach 한다.

• Table 과 column 정보를 검증한다.

• Internal 처리에 필요한 관련 자원을 할당한다.

인자

int dbmPrepareTable(dbmHandle * aHandle,

const char * aTableName);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수를 사용해야 한다.

aTableName const char * In Prepare 대상 TableName을 입력한다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTable(sHandle,

"table1");

}

C/C++ APIs | 145

dbmPrepareTableHandle

기능

dbmPrepareTable 과 동일한 기능을 수행하며, 테이블 핸들을 생성하여 반환한다.

dbmPrepareTable 함수는 사용자가 테이블 이름을 지정하는 API를 사용하는 방식인 반면, dbmPrepareTableHan

dle 함수는 사용자가 직접 테이블 핸들을 관리할 수 있는 방식이다.

인자

int dbmPrepareTableHandle(dbmHandle * aHandle,

const char * aTableName,

dbmTableHandle ** aTableHandle);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수를 사용해야 한다.

aTableName const char * In Prepare 대상 TableName을 입력한다.

aTableHandle dbmTableHandle ** out Prepare 된 table의 handle 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"table1",

&sTableHandle);

}

노트

API 처리 중 대상 table에 DDL이 발생하여 shared memory segment에 변화가 있을 경우, 자동으로 prepa

re를 재수행한다.

단, 이 과정을 수행할 수 없는 경우에는 에러가 반환될 수 있다.

146 | API Reference

prepare 과정에서는 새로운 shared memory segment attach가 수행되어 수행 속도에 영향을 줄 수 있으

므로, 운영 중 DDL 수행은 권장되지 않는다.

주의

dbmPrepareTableHandle 에 의해 생성된 테이블 핸들도 dbmHandle 내에서 관리되므로, 동일한 테이블명

을 연속 호출할 경우 동일한 테이블 핸들 주소가 반환된다.

C/C++ APIs | 147

dbmAuthorize

기능

Instance에 암호가 설정되어 있는 경우, 접근을 허용하기 위해 해당 암호를 검증하는 API이다.

(자세한 내용은 set password를 참조한다.)

인자

int dbmAuthorize(dbmHandle * aHandle,

const char * aPassword)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In/ out dbmInitHandle을 통해 반환된 handle 변수이다.

aPasswd const char * In Instance에 설정된 암호이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmAuthorize(sHandle, "lite_pwd");

}

노트

dbmAuthorize API는 dbmInitHandle 또는 dbmConnect 이후에 호출해야 하며, 인증이 성공한 경우에만

다른 API를 사용할 수 있다.

148 | API Reference

dbmPrepareStmt

기능

사용자가 수행할 SQL에 대해 parsing 과 validation을 수행한다.

(SQL syntax에 대한 자세한 내용은 구문을 참조한다.)

인자

int dbmPrepareStmt(dbmHandle * aHandle,

const char * aSQLString,

dbmStmt ** aStmt)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수가 사용되어야 한다.

aSQLString const char * In Prepare 할 SQL string 이다.

aStmt dbmStmt ** In/ out Prepared 된 stmt가 반환된다. (NULL로 초기화 된 변수여야 한다.)

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select * from t1 where c1 = :v1",

& sStmt);

}

노트

● SQL 내에서 parameter를 지정하는 방법은 다음 두 가지이다.

두 방식은 혼용할 수 없으며, 하나의 SQL 문에서는 동일한 방식으로만 나열해야 한다.

○ Marker (?) 를 사용하여 순서대로 지정하는 방법

C/C++ APIs | 149

○ :v1 과 같이 이름을 명시하여 지정하는 방법

● dbmStmt는 (void *) 형태의 변수이며, dbmPrepareStmt는 prepared 된 결과를 dbmStmt 변수에 반

환한다.

● GOLDILOCKS LITE는 별도의 optimization 기법을 제공하지 않는다.

따라서 SQL 방식의 index scan은 지정된 index의 모든 key column이 binding 된 경우에만 동작하며,

그 외의 경우에는 모두 full scan 방식으로 처리된다.

주의

● dbmPrepareStmt를 통해 생성된 dbmStmt 객체는 서로 다른 handle 간에 공유할 수 없다.

● 동일한 dbmStmt 변수를 사용하여 서로 다른 SQL에 대해 dbmPrepareStmt를 수행하려면, 먼저 dbm

FreeStmt를 호출하여 기존 객체를 해제한 후 dbmPrepareStmt 를 다시 호출해야 한다.

150 | API Reference

dbmFreeStmt

기능

dbmStmt에 할당된 자원을 해제한다.

인자

int dbmFreeStmt(dbmHandle * aHandle,

dbmStmt ** aStmt)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수가 사용되어야 한다.

aStmt dbmStmt ** In/ out Prepared 된 stmt pointer를 입력한다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select * from t1 where c1 = :v1",

& sStmt);

//

rc = dbmFreeStmt(sHandle, &sStmt);

}

C/C++ APIs | 151

dbmBindParamById

기능

dbmPrepareStmt에서 사용된 사용자 parameter marker에 대응되는 변수를 binding 한다.

● 사용자 변수는 input mode로만 사용할 수 있다.

● Binding 할 변수의 pointer를 지정해야 하며, dbmPrepareStmt와 dbmExecuteStmt 사이에서 호출해야 한다.

● Binding 되는 data type이 CHAR인 경우 길이 정보가 지정되지 않으면, dbmExecuteStmt 호출 시점에 미리

바인딩 된 변수 값의 길이를 사용한다.

이로 인해 null-terminated 되지 않은 변수가 사용될 경우, overflow로 인한 오류가 발생할 수 있다.

인자

int dbmBindParamById(dbmHandle * aHandle,

dbmStmt * aStmt,

int aBindId,

dbmBindDataType aBindDataType,

void * aData,

long * aSizePtr);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Prepared 된 stmt 변수이다.

aBindId int In Prepare 시점에 나열된 parameter의 순서 (base=1) 이다.

aBindDataTy

pe

dbmBindDataTy

pe
In

Binding 변수의 데이터 타입이다.

● DBM_BIND_DATA_TYPE_SHORT

● DBM_BIND_DATA_TYPE_INT

● DBM_BIND_DATA_TYPE_DOUBLE

● DBM_BIND_DATA_TYPE_FLOAT

● DBM_BIND_DATA_TYPE_LONG

● DBM_BIND_DATA_TYPE_CHAR

● DBM_BIND_DATA_TYPE_DATE

● DBM_BIND_DATA_TYPE_TIMESTAMP

aData void * In Binding 할 사용자 변수의 포인터이다.

aSizePtr long * In
Binding 할 사용자 변수에 저장된 데이터 크기를 보관하는 8 byte의 변수

포인터이다.

152 | API Reference

노트

null 값을 포함하는 binary data를 binding 하는 경우, binding data type을 DBM_BIND_DATA_TYPE_C

HAR로 설정하고 aSizePtr 변수를 통해 데이터 길이를 지정해야 한다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int sVar;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select * from t1 where c1 = ?",

& sStmt);

rc = dbmBindParamById(sHandle,

sStmt,

1,

DBM_BIND_DATA_TYPE_INT,

& sVar,

NULL);

}

C/C++ APIs | 153

dbmBindParamByName

기능

dbmPrepareStmt에서 사용자가 지정한 parameter 이름을 기준으로 사용자 변수를 binding 한다.

● 사용자 변수는 input mode 로만 사용할 수 있다.

● Binding 할 변수의 pointer를 지정해야 하며, dbmPrepareStmt와 dbmExecuteStmt 사이에서 호출해야 한다.

● Binding 되는 data type이 CHAR인 경우 길이 정보가 지정되지 않으면, dbmExecuteStmt 호출 시점에 미리

바인딩 된 변수 값의 길이를 사용한다.

이로 인해 null-terminated 되지 않은 변수가 사용될 경우, overflow로 인한 오류가 발생할 수 있다.

인자

int dbmBindParamByName(dbmHandle * aHandle,

dbmStmt * aStmt,

char * aVarName,

dbmBindDataType aBindDataType,

void * aData,

long * aSizePtr);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Prepared 된 stmt 변수이다.

aVarName char * In Prepare 시점에 나열된 parameter 이름이다.

aBindDataTyp

e
dbmBindDataType In

Binding 변수의 데이터 타입이다.

● DBM_BIND_DATA_TYPE_SHORT

● DBM_BIND_DATA_TYPE_INT

● DBM_BIND_DATA_TYPE_DOUBLE

● DBM_BIND_DATA_TYPE_FLOAT

● DBM_BIND_DATA_TYPE_LONG

● DBM_BIND_DATA_TYPE_CHAR

● DBM_BIND_DATA_TYPE_DATE

● DBM_BIND_DATA_TYPE_TIMESTAMP

aData void * In Binding할 사용자 변수 포인터이다.

aSizePtr long * In
Binding할 사용자 변수의 데이터 크기를 저장하는 8 byte 변수 포인터

이다.

154 | API Reference

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int sVar;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select * from t1 where c1 = :v1",

& sStmt);

rc = dbmBindParamByName(sHandle,

sStmt,

"v1",

DBM_BIND_DATA_TYPE_INT,

& sVar,

NULL);

}

C/C++ APIs | 155

dbmBindCol

기능

dbmPrepareStmt에 사용된 SQL문의 유형이 Select 일 때 수행된 결과를 지정한 변수에 저장하기 위해 사용한다.

SQL문 방식에서 데이터를 가져오기 위해서는 다음의 순서로 수행한다.

(dbmPrepareStmt -> dbmBindCol -> dbmExecuteStmt -> dbmFetchStmt)

dbmBindCol은 dbmFetchStmt 결과를 저장할 사용자 변수를 지정하는 API이다.

● dbmPrepareStmt 및 dbmExecuteStmt에 의해 수행된 질의가 select 문이어야 한다.

● select target 절에 기술된 각 항목의 크기와 사용자 변수의 크기가 다를 경우 오류가 발생할 수 있다.

인자

int dbmBindCol(dbmHandle * aHandle,

dbmStmt * aStmt,

int aBindIdx,

dbmBindDataType aBindType,

void * aData,

long aMaxSize,

long * aSizePtr)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Prepared 된 stmt 변수이다.

aBindIdx int In Target column이 출현하는 순서이다. (Base=1)

aBindType dbmBindDataType In Target 변수의 데이터 타입이다.

aData void * In 리턴 받는 사용자 변수 포인터이다.

aMaxSize long In 리턴 받는 사용자 변수 크기의 최대값이다

aSizePtr long * In 리턴되는 데이터 크기를 저장하는 8 byte 변수 포인터이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int sVar;

int sCol1;

156 | API Reference

int sCol2;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select c1, c2 from t1 where c1 = :v1",

& sStmt);

rc = dbmBindParamByName(sHandle,

sStmt,

"v1",

DBM_BIND_DATA_TYPE_INT,

& sVar,

NULL);

rc = dbmBindCol(sHandle,

sStmt,

1,

DBM_BIND_DATA_TYPE_INT,

& sCol1,

sizeof(int),

NULL);

rc = dbmBindCol(sHandle,

sStmt,

2,

DBM_BIND_DATA_TYPE_INT,

& sCol2,

sizeof(int),

NULL);

}

C/C++ APIs | 157

dbmBindColStruct

기능

dbmBindCol과 같은 기능으로 구조체 변수를 binding할 때 사용한다.

● dbmPrepareStmt 및 dbmExecuteStmt에 의해 수행된 질의가 select 문이어야 한다.

● dbmBindCol과 혼용하여 사용할 수 없다.

● select target에 기술된 각 항목의 크기 및 개수가 사용자 변수와 다를 경우, 오류가 발생할 수 있다.

인자

int dbmBindColStruct(dbmHandle * aHandle,

dbmStmt * aStmt,

void * aData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Prepared 된 stmt 변수이다.

aData void * In 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

int c3;

} DATA;

int main(int argc, char *argv[])

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

DATA sData;

char sErrMsg[1024];

int c1;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

TEST_ERR(sHandle, rc, "initHandle");

158 | API Reference

c1 = 10;

rc = dbmPrepareStmt(sHandle,

"select * from t1 where c1 = ?",

& sStmt);

TEST_ERR(sHandle, rc, "prepareStmt");

//중략

rc = dbmBindColStruct(sHandle,

sStmt,

&sData);

TEST_ERR(sHandle, rc, "selectTargetBind");

rc = dbmExecuteStmt(sHandle, sStmt);

if(rc)

{

dbmGetErrorData(sHandle, &rc, sErrMsg, sizeof(sErrMsg));

printf("ERR-%d] %s\n", rc, sErrMsg);

}

rc = dbmFetchStmt(sHandle, sStmt);

TEST_ERR(sHandle, rc, "fetchStmt");

printf("Out c1=%d, c2=%d, c3=%d\n", sData.c1, sData.c2, sData.c3);

rc = dbmFreeStmt(sHandle, &sStmt);

TEST_ERR(sHandle, rc, "FreeStmtInsert");

return 0;

}

C/C++ APIs | 159

dbmExecuteStmt

기능

dbmPrepareStmt에 의해 처리된 SQL문을 실행한다.

인자

int dbmExecuteStmt(dbmHandle * aHandle,

dbmStmt * aStmt)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Prepared 된 stmt 변수이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int sVar;

int sCol1;

int sCol2;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select c1, c2 from t1 where c1 = :v1",

& sStmt);

rc = dbmBindParamByName(sHandle,

sStmt,

"v1",

DBM_BIND_DATA_TYPE_INT,

& sVar,

NULL);

rc = dbmBindCol(sHandle,

sStmt,

1,

160 | API Reference

DBM_BIND_DATA_TYPE_INT,

& sCol1,

sizeof(int),

NULL);

rc = dbmBindCol(sHandle,

sStmt,

2,

DBM_BIND_DATA_TYPE_INT,

& sCol2,

sizeof(int),

NULL);

rc = dbmExecuteStmt(sHandle,

sStmt);

}

C/C++ APIs | 161

dbmFetchStmt

기능

dbmExecuteStmt에 의해 수행된 select 문 처리 결과를 한 건씩 dbmBindCol에 의해 맵핑된 사용자 변수로 저장한

다.

● Select 문이 아닌 경우 오류가 발생한다.

● dbmBindCol에 의해 미리 사용자 변수가 지정되어야 하며 잘못 설정된 경우 오류가 발생한다.

인자

int dbmFetchStmt(dbmHandle * aHandle,

dbmStmt * aStmt)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Executed 된 stmt 변수이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int sVar;

int sCol1;

int sCol2;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select c1, c2 from t1 where c1 = :v1",

& sStmt);

rc = dbmBindParamByName(sHandle,

sStmt,

"v1",

DBM_BIND_DATA_TYPE_INT,

& sVar,

162 | API Reference

NULL);

rc = dbmBindCol(sHandle,

sStmt,

1,

DBM_BIND_DATA_TYPE_INT,

& sCol1,

sizeof(int),

NULL);

rc = dbmBindCol(sHandle,

sStmt,

2,

DBM_BIND_DATA_TYPE_INT,

& sCol2,

sizeof(int),

NULL);

rc = dbmExecuteStmt(sHandle,

sStmt);

while(1)

{

rc = dbmFetchStmt(sHandle,

sStmt);

if(rc != 0)

{

break;

}

}

}

C/C++ APIs | 163

dbmFetchStmt2Json

기능

dbmExecuteStmt가 select 문을 조회한 결과를 한 건씩 JSON format text로 가져온다.

● Select 문이 아닌 경우 오류가 발생한다.

● json format string의 추가로 실제 리턴 되는 데이터 크기는 레코드 크기 보다 커짐으로 사용자 변수의 크기는

이를 고려해야 한다.

인자

int dbmFetchStmt2Json(dbmHandle * aHandle,

dbmStmt * aStmt,

char * aJsonPtr)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In Execute 된 stmt 변수이다.

aJsonPtr char * In/Out JSON format 결과가 저장될 사용자 변수 포인터이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

char sText[1024];

int sVar;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle,

"select c1, c2 from t1 where c1 = :v1",

& sStmt);

rc = dbmBindParamByName(sHandle,

sStmt,

"v1",

DBM_BIND_DATA_TYPE_INT,

164 | API Reference

& sVar,

NULL);

while(dbmFetchStmt2Json(sHandle, sStmt, sText) == 0)

{

fprintf(stdout, "%s\n", sText);

}

}

C/C++ APIs | 165

dbmInsertRow

기능

사용자 변수에 담긴 데이터를 지정된 테이블에 삽입한다.

사용자는 변수에 테이블의 형상과 동일한 offset, size 형태로 데이터를 저장한 후 호출해야 한다.

(offset, size등은 create table, desc 등을 참조한다.)

인자

int dbmInsertRow(dbmHandle * aHandle,

const char * aTableName,

void * aUserData,

int aDataSize)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aUserData void * In 사용자 변수 포인터이다.

aDataSize int In 데이터 크기이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 1;

sData.c2 = 100;

rc = dbmInsertRow(sHandle,

"t1",

& sData,

166 | API Reference

sizeof(DATA));

}

C/C++ APIs | 167

168 | API Reference

dbmInsert

기능

dbmInsertRow 와 기능은 동일하다. 다음의 차이를 가진다.

* dbmPrepareTableHandle에 의해 생성된 테이블 핸들 변수를 사용한다.

* 저장이 성공하면 테이블 내의 레코드 저장 위치를 리턴 받을 수 있다.

인자

int dbmInsert(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

void * aUserData,

int aDataSize,

long * aSlotId)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 테이블 핸들이다.

aUserData void * In 사용자 변수 포인터이다.

aDataSize int In 데이터 크기이다.

aSlotId long * out NULL이 아닌 경우 slot ID를 반환한다.

노트

Slot ID는 테이블 내 레코드가 저장되는 고유한 위치 정보를 의미한다. 여기서 리턴된 SlotID를 활용할 경우

dbmUpdate/dbmSelect/dbmDelete 함수 등에서 index 검색 비용을 줄일 수 있다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

C/C++ APIs | 169

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

long sSlotId;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

&sTableHandle);

sData.c1 = 1;

sData.c2 = 100;

rc = dbmInsert(sHandle,

sTableHandle,

& sData,

sizeof(DATA),

& sSlotId);

}

170 | API Reference

dbmUpdateRow

기능

사용자 입력변수에 저장된 key와 일치하는 한 건 이상의 데이터를 사용자 변수의 내용으로 갱신한다.

즉, 사용자 입력 변수에서 index key column에 해당하는 위치의 값을 이용하여 데이터를 탐색하고 변경 연산을 수행

한다.

인자

int dbmUpdateRow(dbmHandle * aHandle,

const char * aTableName,

void * aUserData,

int * aRowCount)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aUserData void * In 사용자 변수 포인터이다.

aRowCount int * Out Updated 된 row 개수이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 1;

sData.c2 = 100;

rc = dbmUpdateRow(sHandle,

"t1",

C/C++ APIs | 171

& sData,

& sRowCount);

}

노트

● Update 동작은 테이블 내에 일치하는 레코드 위치에 사용자 버퍼를 복사하는 과정이다. 따라서, 데이터

가 모두 포함된 상태이어야 한다. 특정 컬럼만 변경을 원할 경우 dbmUpdateRowByCols를 사용해야

한다

● Key Column Update를 지원하지 않는다.

172 | API Reference

dbmUpdate

기능

dbmUpdateRow와 기능은 동일하다. 다음의 차이를 갖는다.

* dbmPrepareTableHandle에 의해 생성된 테이블 핸들 변수를 사용한다.

* 레코드 위치 정보를 이용할 경우 Index 탐색 비용을 줄일 수 있다.

* 필요한 경우 변경 전의 data를 리턴 받을 수 있다.

인자

int dbmUpdate(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

void * aUserData,

long aSlotId,

int * aRowCount,

void * aReturnOldData);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 테이블의 핸들이다.

aUserData void * In 사용자 변수 포인터이다.

aSlotId long in -1 이 아닐 경우, 입력된 레코드 위치의 데이터를 변경한다.

aRowCount int * Out Updated 된 row 개수이다.

aReturnOldData void * Out NULL이 아닐 경우 이전 data를 반환한다.

노트

Unique index에서만 이전 데이터를 리턴 받을 수 있다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

C/C++ APIs | 173

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

DATA sOldData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

sData.c1 = 1;

sData.c2 = 100;

rc = dbmUpdate(sHandle,

sTableHandle,

& sData,

-1,

& sRowCount,

& sOldData);

}

dbmUpsertRow

기능

사용자 입력변수에 저장된 key와 일치하는 데이터가 있으면 변경하고 없으면 삽입을 수행한다.

인자

int dbmUpsertRow(dbmHandle * aHandle,

const char * aTableName,

void * aUserData,

int aDataSize);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aUserData void * In 사용자 변수 포인터이다.

174 | API Reference

aDataSize int in aUserData의 크기

인자 항목 타입 In/ out 비고

사용 예

C/C++ APIs | 175

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 1;

sData.c2 = 100;

rc = dbmUpsertRow(sHandle,

"t1",

& sData,

sizeof(DATA));

}

dbmUpsert

기능

dbmUpsertRow와 동일한 기능을 수행하며 다음의 차이를 갖는다.

* dbmPrepareTableHandle에 의해 생성된 테이블 핸들 변수를 사용한다.

* 변경이 발생할 경우 변경 전 데이터를 리턴 받을 수 있다.

인자

int dbmUpsert(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

void * aUserData,

int aDataSize,

void * aReturnOldData,

int * aInsertCnt);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 테이블의 핸들이다.

176 | API Reference

aUserData void * In 사용자 변수 포인터이다.

aDataSize int in aUserData의 크기

aReturnOldData void * Out NULL이 아닐 경우 이전 data를 반환한다.

aInsertCnt int * Out

NULL이 아닐 경우

● Insert로 성공하면 1을 반환한다.

● Update로 성공하면 0을 반환한다.

인자 항목 타입 In/ out 비고

노트

aReturnOldData, aInsertCnt 항목은 unique index에서만 동작한다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

DATA sOldData;

int sInsertCnt = 0;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

sData.c1 = 1;

sData.c2 = 100;

rc = dbmUpsert(sHandle,

sTableHandle,

& sData,

sizeof(DATA),

& sOldData,

C/C++ APIs | 177

& sInsertCnt);

}

178 | API Reference

dbmDeleteRow

기능

사용자 입력변수에 저장된 Key와 일치하는 사용자 데이터를 삭제한다.

인자

int dbmDeleteRow(dbmHandle * aHandle,

const char * aTableName,

void * aUserData,

int * aRowCount)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aUserData void * In 사용자 변수 포인터이다.

aRowCount int * Out Delete 된 row 개수이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 1;

sData.c2 = 100;

rc = dbmDeleteRow(sHandle,

"t1",

& sData,

& sRowCount);

C/C++ APIs | 179

}

180 | API Reference

dbmDelete

기능

dbmDeleteRow와 동일한 동작을 수행하며 다음의 차이를 갖는다.

* dbmPrepareTableHandle에 의해 생성된 테이블 핸들 변수를 사용한다.

* 레코드 위치 정보를 이용할 경우 Index 탐색 비용을 줄일 수 있다.

* 삭제 전 데이터를 리턴 받을 수 있다.

인자

int dbmDelete(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

void * aUserData,

long aSlotId,

int * aRowCount,

void * aReturnOldData);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 테이블의 핸들이다.

aUserData void * In 사용자 변수 포인터이다.

aSlotId long in -1 이 아닌 경우 해당 slot의 데이터를 삭제한다.

aRowCount int * Out NULL이 아닌 경우 delete 된 row 개수이다.

aReturnOldData void * Out NULL이 아닌 경우 delete 된 row의 이전 데이터이다.

노트

aReturnOldData 항목은 unique index에서만 동작한다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

C/C++ APIs | 181

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

DATA sOldData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

sData.c1 = 1;

sData.c2 = 100;

rc = dbmDelete(sHandle,

sTableHandle,

& sData,

-1,

& sRowCount,

& sOldData);

}

주의

Btree Table의 경우 delete연산이 발생해도 Index에서의 Key삭제는 Commit시점이다. 반면, Splay table t

ype에서 delete가 수행되면 key를 즉시 삭제한다. 커밋이 완료되지 않았음에도 splay table은 delete로 삭제

된 데이터는 다른 세션에 의해 조회될 수 없다. 또한 이를 포함한(Delete) 트랜잭션을 롤백하는 시점에 이미

다른 세션에 의해 동일한 Key가 삽입된 경우 delete Rollback 처리 과정은 Skip된다.

182 | API Reference

dbmBindColumn

기능

dbmUpdateRowByCols를 호출할 때 특정 column에 사용자 데이터를 binding 하기 위해 사용한다.

dbmBindColumn을 수행하는 시점에 내부 임시 버퍼에 사용자 데이터가 복제된다. 따라서 execution하기 전에 반

드시 dbmBindColumn을 호출해야 한다.

동일한 column을 대상으로 반복적으로 dbmBindColumn을 호출할 경우 마지막에 호출한 값이 저장되며 존재하지

않는 column에 대해 수행할 경우 오류가 발생한다.

인자

int dbmBindColumn(dbmHandle * aHandle,

const char * aTableName,

const char * aColumnName,

void * aUserData,

int aDataSize);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aColumnName const char * In 대상 column 이름이다.

aUserData void * In 사용자 데이터 포인터이다.

aDataSize int In aUserData의 크기 (byte) 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

char sData[1024];

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmBindColumn(sHandle,

"t1",

"col1",

sData,

sizeof(sData));

}

C/C++ APIs | 183

dbmClearBind

기능

dbmBindColumn을 수행한 정보를 삭제한다. 특정 column만 지정할 수 있으며 column을 명시하지 않고 NULL로

지정할 경우 이전에 binding 된 모든 정보를 삭제한다.

인자

int dbmClearBind(dbmHandle * aHandle,

const char * aTableName,

const char * aColumnName);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aColumnName const char * In 대상 column 이름이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

char sData[1024];

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmClearBind(sHandle,

"t1",

"col1");

rc = dbmClearBind(sHandle,

"t1",

NULL);

}

184 | API Reference

dbmUpdateRowByCols

기능

특정 column만 갱신하고자 할 경우에 사용한다. 호출하기 전에 미리 dbmBindColumn API를 이용하여 key와 변경

할 대상 컬럼에 대한 value를 포함하여 binding되어야 한다.

인자

int dbmUpdateRowByCols(dbmHandle * aHandle,

const char * aTableName,

int * aRowCount);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aRowCount int * Out 갱신된 row count를 반환한다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

char sData[1024];

int sRowCount;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmBindColumn(sHandle,

"t1",

"col1",

sData,

sizeof(sData));

rc = dbmUpdateRowByCols(sHandle,

"t1",

&sRowCount);

}

C/C++ APIs | 185

dbmUpdateByCols

기능

dbmUpdateRowByCols와 기능은 동일하다. 다음의 차이를 갖는다.

* dbmPrepareTableHandle에 의해 생성된 테이블 핸들 변수를 사용한다.

* 레코드 위치 정보를 이용할 경우 Index 탐색 비용을 줄일 수 있다.

* 필요한 경우 변경 전의 data를 리턴 받을 수 있다.(unique index일 때만 동작)

인자

int dbmUpdateByCols(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

dbmInt64 aSlotId,

dbmInt32 * aRowCount,

void * aReturnOldData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 테이블 핸들이다.

aSlotId long In -1이 아닐 경우, 입력된 레코드 위치의 데이터를 변경한다.

aRowCount int * Out Updated 된 row 개수이다.

aReturnOldData void * Out NULL이 아닐 경우 이전 data를 반환한다.

사용 예

typedef struct

{

int c1;

int c2;

int c3;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

long slotId = 3;

int sRowCount = 0;

186 | API Reference

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

sData.c2 = 1000;

rc = dbmBindColumn(sHandle,

"t1",

"c2",

sData.c2,

sizeof(sData));

rc = dbmUpdateByCols(sHandle,

sTableHandle,

slotId,

&sRowCount,

NULL);

}

dbmSelectRow

기능

사용자 입력변수에 저장된 Key와 일치하는 사용자 데이터를 리턴한다.

2건 이상의 데이터가 존재하는 경우 dbmFetchNext 계열의 API를 추가적으로 이용해야 한다.

인자

int dbmSelectRow(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

C/C++ APIs | 187

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 1;

rc = dbmSelectRow(sHandle,

"t1",

& sData);

}

노트

dbmSelectRow, dbmUpdateRow, dbmDeleteRow 등은 사용자 데이터에 key를 포함한 상태여야 한다.

dbmSelectRow는 Key가 저장된 사용자 변수에 결과를 리턴한다.

Date 타입을 반환받아야 할 경우에는 사용자가 unsigned long long 형태의 8 byte 변수를 지정하여 값을 저장할 수

있다.

다음 예제를 참고한다.

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/time.h>

#include <time.h>

#include <dbmUserAPI.h>

typedef struct

{

int c1;

long long c2; // Date 타입을 리턴 받을 변수

188 | API Reference

} DATA;

main()

{

dbmHandle *sHandle = NULL;

struct timeval ss;

time_t now;

struct tm *nowtm;

char buf[200];

DATA sData;

int sRowCount;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

if(rc)

{

printf("test fail1\n");

}

sData.c1 = 1;

rc = dbmSelectRow(sHandle, "t1", &sData);

if(rc)

{

printf("test fail2\n");

}

● Date 값을 string format으로 변환한다.

ss.tv_sec = sData.c2 / 1000000.0;

ss.tv_usec = sData.c2 % 1000000;

now = ss.tv_sec;

nowtm = localtime(&now);

strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", nowtm);

printf("c1=%d, c2=%s.%ld\n", sData.c1, buf, ss.tv_usec);

● 현재 시각으로 변경할 경우

gettimeofday(&ss, NULL);

sData.c2 = ss.tv_sec * 1000000LL + ss.tv_usec;

rc = dbmUpdateRow(sHandle, "t1", &sData, &sRowCount);

if(rc)

{

printf("test fail3\n");

}

rc = dbmSelectRow(sHandle, "t1", &sData);

C/C++ APIs | 189

if(rc)

{

printf("test fail4\n");

}

ss.tv_sec = sData.c2 / 1000000.0;

ss.tv_usec = sData.c2 % 1000000;

now = ss.tv_sec;

nowtm = localtime(&now);

strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", nowtm);

printf("c1=%d, c2=%s.%ld\n", sData.c1, buf, ss.tv_usec);

dbmCommit(sHandle);

}

================================

== Test

================================

shellPrompt> ./testPgm

c1=1, c2=2020-12-23 17:48:38.913314

c1=1, c2=2020-12-23 17:49:33.214220

190 | API Reference

dbmSelect

기능

dbmSelectRow와 동일한 기능을 수행하지만 다음의 차이를 갖는다.

* dbmPrepareTableHandle에 의해 생성된 테이블 핸들을 사용한다.

* 탐색방향 및 종료조건을 지정할 수 있다.

인자

int dbmSelect(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

void * aUserData,

void * aUntilData,

dbmScanDirection aScanDir,

dbmScanType aScanType);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandl

e

dbmTableHan

dle *
In 대상 테이블의 핸들이다.

aUserData void * In/ out
시작 조건이 되는 사용자 변수 포인터이다.

검색된 결과 데이터가 저장되는 버퍼 공간이기도 하다.

aUntilData void * In
종료 조건이 되는 사용자 변수 포인터 이다.

종료 조건이 없을 경우 NULL을 명시한다

aScanDir
dbmScanDirec

tion
In

INDEX 탐색방향을 지정한다.

● DBM_SCAN_DIR_BACKWARD: 인덱스의 역방향 탐색 (Equal 결과

를 포함하지 않음)

● DBM_SCAN_DIR_FORWARD: 인덱스의 정방향 탐색 (Equal 결과를

포함하지 않음)

● DBM_SCAN_DIR_EQUAL: 같은 값을 가지는 key 탐색

aScanType dbmScanType in

레코드 Lock 점유여부를 설정한다.

● DBM_SCAN_TYPE_RDONLY: 레코드에 Lock을 설정하지 않음

● DBM_SCAN_TYPE_FOR_UPDATE: 레코드에 Lock 을 설정함

사용 예

typedef struct

{

int c1;

C/C++ APIs | 191

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

sData.c1 = 1;

rc = dbmSelect(sHandle,

sTableHandle,

& sData,

NULL,

DBM_SCAN_DIR_EQUAL,

DBM_SCAN_TYPE_RDONLY);

}

노트

● DBM_SCAN_DIR_FORWARD는 Index 정렬 기준으로 aUserData 다음부터 순방향으로 리턴한다.

● DBM_SCAN_DIR_BACKWARD는 Index 정렬 기준으로 aUserData 이전부터 역방향으로 리턴한다.

● DBM_SCAN_DIR_EQUAL은 aUserData와 Key 값이 동일한 데이터를 반환한다.

● aUntilData의 조건은 Index의 정렬 순서를 기준으로 판단하며 범위를 넘을 경우 NOT_FOUND 에러를

리턴한다.

주의

Auto Commit Mode에서는 SCAN_TYPE을 DBM_SCAN_TYPE_FOR_UPDATE로 지정할 수 없다.

192 | API Reference

dbmSetIndex

기능

지정한 테이블에 사용할 index를 지정한다.

인자

int dbmSetIndex(dbmHandle * aHandle,

const dbmChar * aTableName,

const dbmChar * aIndexName)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 테이블 이름을 입력한다.

aIndexName const char * In 사용할 index 이름을 입력한다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

DATA sUntilData;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

rc = dbmSetIndex(sHandle, "T1", "IDX2_T1");

}

C/C++ APIs | 193

dbmFetch

기능

dbmSelect를 수행한 이후 지정된 탐색 방향으로 다음 데이터를 조회한다.

인자

int dbmFetch(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

void * aUserData,

void * aUntilData,

dbmScanDirection aScanDir,

dbmScanType aScanType);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 테이블의 핸들이다.

aUserData void * out 검색된 결과 데이터가 저장되는 버퍼 공간이다.

aUntilData void * in

종료 조건이 되는 사용자 변수 포인터 이다.

종료 조건이 없을 경우 NULL을 명시한다

(aUntilData의 값은 결과에 포함된다)

aScanDir dbmScanDirection in

탐색방향을 지정한다.

● DBM_SCAN_DIR_BACKWARD : 인덱스의 역방향 탐색

● DBM_SCAN_DIR_FORWARD : 인덱스의 정방향 탐색

● DBM_SCAN_DIR_EQUAL : 같은 값을 가지는 key 탐색

aScanType dbmScanType in

레코드 Lock 설정여부

● DBM_SCAN_TYPE_RDONLY : Lock을 설정하지 않음

● DBM_SCAN_TYPE_FOR_UPDATE : Lock을 점유함

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

194 | API Reference

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

DATA sData;

DATA sUntilData;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

sData.c1 = 10;

sUntilData.c1 = 100;

rc = dbmSelect(sHandle,

sTableHandle,

& sData,

& sUntilData,

DBM_SCAN_DIR_FORWARD,

DBM_SCAN_TYPE_RDONLY);

while(1)

{

rc = dbmFetch(sHandle,

sTableHandle,

& sData,

& sUntilData,

DBM_SCAN_DIR_FORWARD,

DBM_SCAN_TYPE_RDONLY);

if(rc != 0) break;

}

}

노트

● DBM_SCAN_DIR_FORWARD는 Index 정렬 기준으로 aUserData 다음부터 순방향으로 리턴한다.

● DBM_SCAN_DIR_BACKWARD는 Index 정렬 기준으로 aUserData 이전부터 역방향으로 리턴한다.

● DBM_SCAN_DIR_EQUAL은 aUserData와 Key 값이 동일한 데이터를 반환한다. (Non unique index

가 사용되는 경우)

● aUntilData의 조건은 Index의 정렬 순서를 기준으로 판단하며 범위를 넘을 경우 NOT_FOUND 에러를

리턴한다.

C/C++ APIs | 195

주의

Auto Commit Mode에서는 SCAN_TYPE을 DBM_SCAN_TYPE_FOR_UPDATE로 지정할 수 없다.

196 | API Reference

dbmSelectRowGT

기능

Index 정렬 기준으로 순방향 탐색 결과를 리턴한다. 이때 사용자 데이터는 포함하지 않는다.

예를 들어 Index 의 정렬이 (1, 2, 3, 4) 이며 사용자 버퍼에 담긴 Key가 "2"인 경우 (3)을 리턴한다.

Index의 정렬이 (4, 3, 2, 1)이고 사용자 버퍼에 담긴 Key가 "2"인 경우 (1)을 리턴한다.

인자

int dbmSelectRowGT(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 1;

rc = dbmSelectRowGT(sHandle,

"t1",

& sData);

}

C/C++ APIs | 197

dbmSelectRowLT

기능

Index 정렬 기준으로 역방향 탐색 결과를 리턴한다. 이때 사용자 데이터는 포함하지 않는다.

예를 들어 Index 의 정렬이 (1, 2, 3, 4) 이며 사용자 버퍼에 담긴 Key가 "2"인 경우 (1)을 리턴한다.

Index의 정렬이 (4, 3, 2, 1)이고 사용자 버퍼에 담긴 Key가 "2"인 경우 (3)을 리턴한다.

인자

int dbmSelectRowLT(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

rc = dbmSelectRowLT(sHandle,

"t1",

& sData);

}

198 | API Reference

dbmFetchNext

기능

입력된 데이터의 key 값과 동일한 다음 데이터를 조회한다.

Non-unique index에 존재하는 동일 key 값을 갖는 레코드를 가져오기 위해 사용한다.

dbmSelectRow 가 호출된 이후 사용해야 한다.

인자

int dbmFetchNext(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

rc = dbmSelectRow(sHandle,

"t1",

& sData);

while(1)

{

rc = dbmFetchNext(sHandle,

C/C++ APIs | 199

"t1",

&sData);

if(rc != 0) break;

}

}

200 | API Reference

dbmFetchNextGT

기능

Index 정렬 기준으로 순방향 탐색 결과를 리턴한다. 이때 사용자 데이터는 포함하지 않는다.

예를 들어 Index 의 정렬이 (1, 2, 3, 4) 이며 사용자 버퍼에 담긴 Key가 "2"인 경우 (3)을 리턴한다.

Index의 정렬이 (4, 3, 2, 1)이고 사용자 버퍼에 담긴 Key가 "2"인 경우 (1)을 리턴한다.

dbmSelectRow가 호출된 이후 사용해야 한다.

인자

int dbmFetchNextGT(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

rc = dbmSelectRow(sHandle,

"t1",

& sData);

while(1)

{

C/C++ APIs | 201

rc = dbmFetchNextGT(sHandle,

"t1",

&sData);

if(rc != 0) break;

}

}

202 | API Reference

dbmFetchNextLT

기능

Index 정렬 기준으로 역방향 탐색 결과를 리턴한다. 이때 사용자 데이터는 포함하지 않는다.

예를 들어 Index 의 정렬이 (1, 2, 3, 4) 이며 사용자 버퍼에 담긴 Key가 "2"인 경우 (1)을 리턴한다.

Index의 정렬이 (4, 3, 2, 1)이고 사용자 버퍼에 담긴 Key가 "2"인 경우 (3)을 리턴한다.

dbmSelectRow가 호출된 이후 사용해야 한다.

인자

int dbmFetchNextLT(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

rc = dbmSelectRow(sHandle,

"t1",

& sData);

while(1)

{

C/C++ APIs | 203

rc = dbmFetchNextLT(sHandle,

"t1",

&sData);

if(rc != 0) break;

}

}

204 | API Reference

dbmSelectForUpdateRow

기능

dbmSelectRow와 동일하며 조회된 레코드에 Lock을 점유한다.

인자

int dbmSelectForUpdateRow(dbmHandle * aHandle,

char * aTableName,

void * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aUserData void * In/ out 사용자 변수 포인터이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

rc = dbmSelectForUpdateRow(sHandle,

"t1",

& sData);

}

C/C++ APIs | 205

노트

다른 갱신 DML들과 마찬가지로, dbmSelectForUpdateRow를 수행한 경우 반드시 dbmCommit 또는, db

mRollback을 호출하여 트랜잭션을 완료해야 한다.

조회를 수행하면서 레코드 lock을 유지하는 API 종류는 다음과 같다.

● dbmSelectForUpdateRowGT

● dbmSelectForUpdateRowLT

● dbmFetchNextUpdateRowGT

● dbmFetchNextUpdateRowLT

주의

Auto commit Mode에서는 Lock을 점유하지 않는다.

206 | API Reference

dbmInsertArray

기능

다수의 레코드를 삽입할 때 사용한다. Array 방식은 성능의 장점은 없으나 원격 노드로 처리할 경우 통신횟수를 줄이

는 목적으로 사용될 수 있다.

사용자가 입력한 데이터를 모두 처리한 후 오류가 있을 경우 함수는 "1"을 리턴하고 개별 에러코드는 사용자 에러코

드 변수에 반환한다.

인자

int dbmInsertArray(dbmHandle * aHandle,

char * aTableName,

void * aDataPtr,

int aDataSingleSize,

int aDataCount,

int aRetArr[])

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName char * In 대상 테이블 이름이다.

aDataPtr void * In/ out 배열의 시작 주소를 가리키는 포인터이다.

aDataSingleSize int In 데이터 한 개의 크기를 지정한다.

aDataCount int In aDataPtr 변수에 담긴 데이터 개수를 지정한다.

aRetArr int Out 각 operation의 에러코드를 순서대로 담는다.

노트

● aDataPtr은 (aDataSingleSize X aDataCount) bytes의 크기여야 한다.

● aDataSingleSize는 Table에 저장 가능한 레코드의 크기를 의미한다. (desc를 참조하여 확인 가능)

● aRetArr은 에러가 발생한 array index 부분에 에러코드만 설정하여 반환된다.

사용 예

C/C++ APIs | 207

typedef struct

{

int c1;

int c2;

int c3;

} DATA;

int main(int argc, char *argv[])

{

dbmHandle * sHandle = NULL;

DATA sData[10];

int sErrCode[10];

int i;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

sData[i].c2 = i;

sData[i].c3 = i;

}

● 정상 처리

rc = dbmInsertArray(sHandle, "t1", sData, sizeof(DATA), 10, sErrCode);

if(rc) exit(-1);

rc = dbmCommit(sHandle);

if(rc) exit(-1);

● 에러 처리

rc = dbmInsertArray(sHandle, "t1", sData, sizeof(DATA), 10, sErrCode);

for(i = 0 ; i < 10; i ++)

{

printf("%d] retCode = %d\n", i, sErrCode[i]);

}

dbmFreeHandle(&sHandle);

return 0;

208 | API Reference

주의

● 사용자가 입력한 정보(레코드 크기, 개수, 버퍼의 크기)가 올바르지 않을 경우 잘못된 포인터 접근으로

오동작할 수 있어 주의해야 한다.

● Auto Commit Mode에서는 처리에 성공한 데이터는 커밋된다.

C/C++ APIs | 209

dbmUpdateArray

기능

다수의 레코드를 변경할 때 사용한다. Array 방식은 성능의 장점은 없으나 원격 노드로 처리할 경우 통신횟수를 줄이

는 목적으로 사용될 수 있다.

사용자가 입력한 데이터를 모두 처리한 후 오류가 있을 경우 함수는 "1"을 리턴하고 개별 에러코드는 사용자 에러코

드 변수에 반환한다.

인자

int dbmUpdateArray(dbmHandle * aHandle,

const char * aTableName,

void * aDataPtr,

int aDataCount,

int * aRowCount,

int aRetArr[])

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aDataPtr void * In/ out 배열의 시작 주소를 가리키는 포인터이다.

aDataCount int In aDataPtr 변수에 담긴 개수를 지정한다.

aRowCount int Out 전체 처리된 건수를 반환한다.

aRetArr int Out 각 operation의 에러코드를 순서대로 담는다.

노트

● aDataPtr은 (Record 크기 X aDataCount) bytes의 크기여야 한다.

● Record 크기는 Table에 저장 가능한 레코드의 크기를 의미한다. (desc를 참조하여 확인 가능)

● aRetArr은 에러가 발생한 array index 부분에 에러코드만 설정하여 반환된다.

사용 예

210 | API Reference

typedef struct

{

int c1;

int c2;

int c3;

} DATA;

int main(int argc, char *argv[])

{

dbmHandle * sHandle = NULL;

DATA sData[10];

int sErrCode[10], sRowCount;

int i;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

sData[i].c2 = i;

sData[i].c3 = i;

}

rc = dbmInsertArray(sHandle, "t1", sData, sizeof(DATA), 10, sErrCode);

if(rc) exit(-1);

rc = dbmCommit(sHandle);

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

sData[i].c2 = i*10;

sData[i].c3 = i*20;

}

rc = dbmUpdateArray(sHandle, "t1", sData, 10, &sRowCount, sErrCode);

if(rc) exit(-1);

printf("AffectedRow = %d\n", sRowCount);

rc = dbmCommit(sHandle);

if(rc) exit(-1);

dbmFreeHandle(&sHandle);

return 0;

}

C/C++ APIs | 211

주의

● 사용자가 입력한 정보(버퍼의 크기, 개수)가 올바르지 않을 경우 잘못된 포인터 접근으로 오동작할 수 있

어 주의해야 한다.

● Auto Commit Mode에서는 처리에 성공한 데이터는 커밋된다.

212 | API Reference

dbmSelectArray

기능

다수의 레코드를 조회할 때 사용한다. Array 방식은 성능의 장점은 없으나 원격 노드로 처리할 경우 통신횟수를 줄이

는 목적으로 사용될 수 있다.

사용자가 입력한 데이터를 모두 처리한 후 오류가 있을 경우 함수는 "1"을 리턴하고 개별 에러코드는 사용자 에러코

드 변수에 반환한다.

인자

int dbmSelectArray(dbmHandle * aHandle,

const char * aTableName,

void * aDataPtr,

int aDataCount,

int * aRowCount,

int aRetArr[])

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aDataPtr void * In/ out 배열의 시작 주소를 가리키는 포인터이다.

aDataCount int In aDataPtr 변수에 담긴 개수를 지정한다.

aRowCount int Out 전체 처리된 건수를 반환한다.

aRetArr int Out 각 operation의 에러코드를 순서대로 담는다.

노트

● aDataPtr은 (Record 크기 X aDataCount) bytes의 크기여야 한다.

● Record 크기는 Table에 저장 가능한 레코드의 크기를 의미한다. (desc를 참조하여 확인 가능)

● aRetArr은 에러가 발생한 array index 부분에 에러코드만 설정하여 반환된다.

사용 예

C/C++ APIs | 213

typedef struct

{

int c1;

int c2;

int c3;

} DATA;

int main(int argc, char *argv[])

{

dbmHandle * sHandle = NULL;

DATA sData[10];

int sErrCode[10], sRowCount;

int i;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

sData[i].c2 = i;

sData[i].c3 = i;

}

rc = dbmInsertArray(sHandle, "t1", sData, sizeof(DATA), 10, sErrCode);

if(rc) exit(-1);

rc = dbmCommit(sHandle);

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

}

rc = dbmSelectArray(sHandle, "t1", sData, 10, &sRowCount, sErrCode);

if(rc) exit(-1);

printf("AffectedRow = %d\n", sRowCount);

dbmFreeHandle(&sHandle);

return 0;

}

주의

사용자가 입력한 정보(버퍼의 크기, 개수)가 올바르지 않을 경우 잘못된 포인터 접근으로 오동작할 수 있어

주의해야 한다.

214 | API Reference

dbmDeleteArray

기능

다수의 레코드를 삭제할 때 사용한다. Array 방식은 성능의 장점은 없으나 원격 노드로 처리할 경우 통신횟수를 줄이

는 목적으로 사용될 수 있다.

사용자가 입력한 데이터를 모두 처리한 후 오류가 있을 경우 함수는 "1"을 리턴하고 개별 에러코드는 사용자 에러코

드 변수에 반환한다.

인자

int dbmDeleteArray(dbmHandle * aHandle,

const char * aTableName,

void * aDataPtr,

int aDataCount,

int * aRowCount,

int aRetArr[])

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aDataPtr void * In/ out 배열의 시작 주소를 가리키는 포인터이다.

aDataCount int In aDataPtr 변수에 담긴 개수를 지정한다.

aRowCount int Out 전체 처리된 건수를 반환한다.

aRetArr int Out 각 operation의 에러코드를 순서대로 담는다.

노트

● aDataPtr은 (Record 크기 X aDataCount) bytes의 크기여야 한다.

● Record 크기는 Table에 저장 가능한 레코드의 크기를 의미한다. (desc를 참조하여 확인 가능)

● aRetArr은 에러가 발생한 array index 부분에 에러코드만 설정하여 반환된다.

사용 예

C/C++ APIs | 215

typedef struct

{

int c1;

int c2;

int c3;

} DATA;

int main(int argc, char *argv[])

{

dbmHandle * sHandle = NULL;

DATA sData[10];

int sErrCode[10], sRowCount;

int i;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

sData[i].c2 = i;

sData[i].c3 = i;

}

rc = dbmInsertArray(sHandle, "t1", sData, sizeof(DATA), 10, sErrCode);

if(rc) exit(-1);

rc = dbmCommit(sHandle);

if(rc) exit(-1);

for(i = 0; i < 10; i ++)

{

sData[i].c1 = i;

}

rc = dbmDeleteArray(sHandle, "t1", sData, 10, &sRowCount, sErrCode);

if(rc) exit(-1);

printf("AffectedRow = %d\n", sRowCount);

rc = dbmCommit(sHandle);

if(rc) exit(-1);

dbmFreeHandle(&sHandle);

return 0;

}

216 | API Reference

주의

● 사용자가 입력한 정보(버퍼의 크기, 개수)가 올바르지 않을 경우 잘못된 포인터 접근으로 오동작할 수 있

어 주의해야 한다.

● Auto Commit Mode에서는 처리에 성공한 데이터는 커밋된다.

C/C++ APIs | 217

dbmEnqueue

기능

사용자 데이터를 queue 형식의 테이블에 삽입한다.

인자

int dbmEnqueue(dbmHandle * aHandle,

const char * aTableName,

int aPriority,

void * aUserData,

int aDataSize)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 queue 테이블 이름이다.

aPriority int In 0 이상의 사용자 정의 priority 이다.

aUserData void * In 사용자 변수 포인터이다.

aDataSize int In aUserData의 크기이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

rc = dbmEnqueue(sHandle,

"que1",

1,

218 | API Reference

& sData,

sizeof(DATA));

}

노트

● Commit이 완료된 이후 Dequeue가 가능하다.

● Priority가 낮을 수록 우선순위가 높다.

C/C++ APIs | 219

dbmDequeue

기능

Queue 형식의 테이블에서 한 건의 사용자 데이터를 추출한다.

인자

int dbmDequeue(dbmHandle * aHandle,

const char * aTableName,

int aInPriority,

int * aOutPriority,

void * aUserData,

int * aDataSize,

int aTimeoutMicroSecond)

인자 항목 타입 In/ out 비고

aHandle
dbmHandle

*
In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 queue 테이블 이름이다.

aInPriority int In
Dequeue를 수행할 priority를 특정할 경우 해당 값을 입력하고 그렇지 않을 경

우 -1을 입력한다. (입력된 priority와 같거나 큰 대상을 반환한다.)

aOutPriority int * Out
해당 메시지의 우선순위 정보를 반환한다. (NULL일 경우에는 반환하지 않는다.

)

aUserData void * Out 사용자 변수 포인터이다.

aDataSize int * Out aUserData의 크기이다.

aTimeoutMi

croSecond
int In Queue에 데이터가 없을 경우 대기하는 시간을 지정 (us단위) 한다.

aTimeoutMicroSecond의 설정 값은 아래 표와 같다.

aTimeout 설정값 동작 방식

-1 Queue에 데이터가 없을 경우, NOT_FOUND 에러를 반환한다.

0 Queue에 데이터가 없을 경우, 무한 대기한다.

0 보다 큰 값 aTimeout 시간 동안 queue에 데이터가 없을 경우, TIMEOUT 에러를 반환한다.

220 | API Reference

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sDataSize = 0;

int sPriority;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmDequeue(sHandle,

"que1",

-1,

&sPriority,

& sData,

& sDataSize,

1000);

}

노트

● MsgID는 dbmEnqueue 시점에 획득되는 Internal Sequence이다.

● Queue에 저장된 데이터는 (Priority, MsgID) 순으로 조합되어 정렬된다.

● Priority가 지정되지 않으면 MsgID 순서대로 출력된다.

● Priority가 동일한 경우, MsgID 순서대로 출력된다.

● Priority 값이 입력되면, 해당 값 이상인 항목만 출력된다.

dbmGetStore

C/C++ APIs | 221

기능

Store 테이블에 특정 key에 해당하는 value를 조회한다.

인자

dbmInt32 dbmGetStore(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

const char * aKey,

char * aValue)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 tableHandle 이다.

aKey const char * In 조회할 key 값이다.

aValue char * Out aKey에 해당하는 value가 저장되는 포인터 변수이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

char sKey[512];

char sValue[512];

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle, "S1", &sTableHandle);

rc = dbmGetStore(sHandle,

sTableHandle,

sKey,

sValue);

dbmFreeHandle(&sHandle);

}

노트

key, value로 사용되는 사용자 변수는 NULL일 수 없다.

key는 string형태이어야 한다.

222 | API Reference

dbmSetStore

기능

Store 테이블에 특정 key와 value를 저장한다.

인자

dbmInt32 dbmSetStore(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

const char * aKey,

const char * aValue,

int aCheckDup)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 tableHandle 이다.

aKey const char * In 저장할 데이터의 key 이다.

aValue const char * In/Out 저장할 데이터의 value 이다.

aCheckDup int In 중복 키 여부 체크하는 변수이다.

1 : 중복 키가 존재하면 에러 체크

0 : 중복 키가 존재하면 update

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

char sKey[512];

char sValue[512];

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle, "S1", &sTableHandle);

rc = dbmSetStore(sHandle,

sTableHandle,

sKey,

sValue,

0);

rc = dbmCommit(sHandle);

C/C++ APIs | 223

rc = dbmGetStore(sHandle,

sTableHandle,

sKey,

sValue);

dbmFreeHandle(&sHandle);

}

노트

key, value로 사용되는 사용자 변수는 NULL일 수 없다.

key는 string형태이어야 한다.

dbmDelStore

기능

Store 테이블에 특정 key에 해당하는 사용자 데이터를 삭제한다.

인자

dbmInt32 dbmDelStore(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

const dbmChar * aKey)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle dbmTableHandle * In 대상 tableHandle 이다.

aKey const char * In 조회할 key 값이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

char sKey[512];

char sValue[512];

224 | API Reference

int i;

int rc;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(sHandle, "S1", &sTableHandle);

for(i = 0; i < 10; i++)

{

sprintf(sKey, "k%d", i);

rc = dbmDelStore(sHandle, sTableHandle, sKey);

rc = dbmCommit(sHandle);

}

dbmFreeHandle(&sHandle);

}

노트

key, value로 사용되는 사용자 변수는 NULL일 수 없다.

key는 string형태이어야 한다.

C/C++ APIs | 225

dbmGetCurrVal

기능

sequence 객체의 현재 값을 반환한다.

인자

int dbmGetCurrVal(dbmHandle * aHandle,

const char * aTableName,

long long * aCurrVal)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 sequence 이름이다.

aCurrVal long long int Out 반환 받을 변수 포인터 (8 byte 변수 필요) 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

long long sCurrVal;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmGetNextVal(sHandle,

"seq1",

& sNextVal);

rc = dbmGetCurrVal(sHandle,

"seq1",

& sCurrVal);

}

주의

Sequence 객체에 대해 nextval이 호출되지 않은 상태에서 currval을 호출할 경우 오류가 발생한다.

226 | API Reference

dbmGetNextVal

기능

sequence 객체의 다음 값을 반환한다.

인자

int dbmGetNextVal(dbmHandle * aHandle,

const char * aTableName,

long long * aNextVal)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 sequence 이름이다.

aNextVal long long int Out 반환받을 변수의 포인터 (8 byte 변수 필요) 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

long long sNextVal;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmGetNextVal(sHandle,

"seq1",

& sNextVal);

}

C/C++ APIs | 227

dbmCommit

기능

사용자가 수행한 트랜잭션을 영구적으로 반영한다.

인자

int dbmCommit(dbmHandle * aHandle)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

rc = dbmInsertRow(sHandle, "t1", &sData, sizeof(DATA));

sData.c1 = 10;

sData.c2 = 200;

rc = dbmUpdateRow(sHandle, "t1", &sData, &sRowCount);

rc = dbmCommit(sHandle);

}

228 | API Reference

dbmRollback

기능

사용자가 수행한 트랜잭션을 rollback 한다.

인자

int dbmRollback(dbmHandle * aHandle)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

rc = dbmInsertRow(sHandle, "t1", &sData, sizeof(DATA));

sData.c1 = 10;

sData.c2 = 200;

rc = dbmUpdateRow(sHandle, "t1", &sData, &sRowCount);

rc = dbmRollback(sHandle);

}

C/C++ APIs | 229

dbmDeferCommit

기능

디스크 모드로 사용 시에만 호출 가능하며 사용자가 수행한 트랜잭션을 메모리에만 반영한다.

dbmDeferCommit이 호출된 이후에는 반드시 dbmDeferSync를 호출해야지만 트랜잭션이 정리된다.

인자

int dbmDeferCommit(dbmHandle * aHandle)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

rc = dbmInsertRow(sHandle, "t1", &sData, sizeof(DATA));

sData.c1 = 10;

sData.c2 = 200;

rc = dbmUpdateRow(sHandle, "t1", &sData, &sRowCount);

rc = dbmDeferCommit(sHandle);

}

230 | API Reference

주의

● dbmDeferCommit 후에는 해당 세션이 점유한 Lock은 모두 해제된다.

● dbmDeferCommit 이후 dbmRollback은 수행할 수 없다.

● dbmDeferCommit 후에는 dbmDeferSync 호출시점까지는 새로운 트랜잭션을 진행할 수 없다.

● 프로세스가 비정상 종료될 경우에도 Delayed Recovery는 가능하나 dbmDeferSync 가 호출되지 않은

상황에서 OS Fatal 및 H/W장애가 발생할 경우 트랜잭션은 유실된다.

dbmDeferSync

기능

dbmDeferCommit 수행으로 Memory에만 commit된 트랜잭션 내역을 디스크에 기록한다.

인자

int dbmDeferSync(dbmHandle * aHandle)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sRowCount = 0;

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

C/C++ APIs | 231

rc = dbmInsertRow(sHandle, "t1", &sData, sizeof(DATA));

sData.c1 = 10;

sData.c2 = 200;

rc = dbmUpdateRow(sHandle, "t1", &sData, &sRowCount);

rc = dbmDeferCommit(sHandle);

rc = dbmDeferSync(sHandle);

}

주의

● dbmDeferCommit 이후에만 사용할 수 있다.

● dbmDeferCommit 이후 dbmDeferSync가 호출되지 않으면 새로운 트랜잭션을 시작할 수 없다.

232 | API Reference

dbmRefineSystem

기능

지정한 Instance내의 table/index lock을 해제하거나 index를 재구축하는 복구 기능을 실행한다.

자세한 사항은 alter system refine [TableList]을 참조한다.

인자

int dbmRefineSystem(const char * aInstName,

const char * aTableName)

인자 항목 타입 In/ out 비고

aInstName const char * In instance 이름을 입력한다.

aTableName const char * In 특정 table name을 입력한다.

● Instance 이름은 필수이다.

● TableName을 지정하면 대상 테이블만 복구하고, NULL을 입력하면 instance와 관련된 모든 테이블 중 문제 상

태의 테이블을 탐색하여 복구한다.

사용 예

if(argc == 0)

{

if(dbmRefineSystem("demo", NULL) != 0) // Instance내 모든 테이블 대상

{

printf("failed to refine all\n");

exit(-1);

}

}

else

{

if(dbmRefineSystem("demo", argv[1]) != 0) // 특정 테이블만 복구할 경우

{

printf("failed to refine t1\n");

exit(-1);

}

}

C/C++ APIs | 233

노트

dbmRefineSystem은 Index segment를 재구축(Drop->Create)하는 과정으로 이미 동작 중인 Application

들과 동시성 제어를 보장하지 않는다.

234 | API Reference

dbmGetRowCount

기능

dbmExecuteStmt가 수행된 이후 대상 레코드의 개수를 리턴한다.

인자

int dbmGetRowCount(dbmHandle * aHandle,

dbmStmt * aStmt,

int * aRowCount)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aStmt dbmStmt * In dbmExecuteStmt으로 실행된 dbmStmt 변수이다.

aRowCount int * Out 반환받을 변수 포인터 (4 byte 크기의 변수) 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmStmt * sStmt = NULL;

int sRowCount;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareStmt(sHandle, "select * from t1", &sStmt);

rc = dbmExecuteStmt(sHandle, sStmt);

rc = dbmGetRowCount(sHandle, sStmt, &sRowCount);

}

C/C++ APIs | 235

dbmGetRowSize

기능

입력한 테이블의 레코드의 크기 정보를 반환한다.

인자

int dbmGetRowSize(dbmHandle * aHandle,

const char * aTableName,

int * aUserData)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 조회할 object name 이다.

aUserData int * Out 반환받을 변수 포인터 (4 byte 크기의 변수) 이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int sRowSize;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmGetRowSize(sHandle, "Table1", &sRowSize);

}

236 | API Reference

dbmGetTableName

기능

테이블 핸들로부터 테이블 명을 리턴 한다.

인자

const char * dbmGetTableName(dbmTableHandle * aTableHandle)

인자 항목 타입 In/ out 비고

aTableHandle dbmTableHandle * In dbmPrepareTableHandle 로 처리된 변수이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

const char * sTableName;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(&sHandle, "t1", &sTableHandle);

sTableName = dbmGetTableName (sTableHandle);

}

노트

dbmPrepareTableHandle이 성공한 상태이어야 한다.

C/C++ APIs | 237

dbmGetTableType

기능

테이블 핸들로부터 테이블 유형 값을 리턴 한다.

인자

dbmTableType dbmGetTableType(dbmTableHandle * aTableHandle)

인자 항목 타입 In/ out 비고

aTableHandle dbmTableHandle * In dbmPrepareTableHandle 로 처리된 변수이다.

dbmTableType의 정의는 아래와 같다.

typedef enum

{

DBM_TABLE_TYPE_INVALID = 0,

DBM_TABLE_TYPE_TABLE, // BTree Index Table

DBM_TABLE_TYPE_QUEUE, // Queue table

DBM_TABLE_TYPE_STORE, // Store table

DBM_TABLE_TYPE_SEQUENCE, // Sequence Object

DBM_TABLE_TYPE_DIRECT_TABLE, // Direct Table

DBM_TABLE_TYPE_DIRECT_QUEUE, // deprecated

DBM_TABLE_TYPE_SPLAY_TABLE, // Splay Index Table

DBM_TABLE_TYPE_LIST_TABLE, // deprecated

DBM_TABLE_TYPE_PERF_VIEW, // Performance view

DBM_TABLE_TYPE_USER_TYPE, // User-defined type

DBM_TABLE_TYPE_MAX

} dbmTableType;

노트

사용자가 생성 가능한 유형은 다음과 같다.

● DBM_TABLE_TYPE_TABLE

● DBM_TABLE_TYPE_STORE

● DBM_TABLE_TYPE_QUEUE

● DBM_TABLE_TYPE_SEQUENCE

238 | API Reference

● DBM_TABLE_TYPE_DIRECT_TABLE

● DBM_TABLE_TYPE_SPLAY_TABLE

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

dbmTableType sTableType;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(&sHandle, "t1", &sTableHandle);

sTableType = dbmGetTableType (sTableHandle);

}

C/C++ APIs | 239

dbmSetSplayMode4DML

기능

Splay table 의 삽입 연산에서 splay tree (마지막 접근한 데이터를 Root로 지정하는 동작) 를 수행할 지 여부를 설정

한다. 기본 설정은 disable이다.

인자

int dbmSetSplayMode4DML(dbmTableHandle * aTableHandle,

int aMode)

인자 항목 타입 In/ out 비고

aTableHandle dbmTableHandle * In dbmPrepareTableHandle 로 처리된 변수이다.

aMode int In
0 : no splay (default)

1 : key 삽입에 의한 splay 동작을 수행

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmPrepareTableHandle(&sHandle, "t1", &sTableHandle);

dbmSetSplayMode4DML(sTableHandle, 1);

}

240 | API Reference

dbmGetErrorData

기능

사용자 핸들에는 API 처리 과정의 오류가 순차적으로 최대 4개까지 적재된다.

핸들에 적재된 에러를 확인할 때 사용한다.

인자

int dbmGetErrorData(dbmHandle * aHandle,

int * aErrorCode,

char * aErrorMsg,

int aErrorMsgSize)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aErrorCode int * Out 에러 코드가 담길 변수 포인터이다.

aErrorMsg char * Out 에러 메시지가 저장될 변수 포인터이다.

aErrorMsgSize int In 에러 메시지를 받을 버퍼의 크기이다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sErrCode;

char sErrMsg[1024];

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

rc = dbmInsertRow(sHandle, "t1", &sData, sizeof(DATA));

if(rc)

{

C/C++ APIs | 241

while(dbmGetErrorData(sHandle, &sErrCode, sErrMsg, 1024) == 0)

{

fprintf(stdout, "ERR-%d] %s\n", sErrCode, sErrMsg);

}

}

}

노트

에러 메시지를 저장할 변수의 크기는 최소 512 byte 이상이어야 한다.

242 | API Reference

dbmGetErrorMsg

기능

API 호출로 발생한 각 오류 코드에 대한 상세 에러 메시지를 확인한다.

인자

void dbmGetErrorMsg(int aErrorCode,

char * aErrorMsg,

int aErrorMsgSize)

인자 항목 타입 In/ out 비고

aErrorCode int In 조회할 에러 코드이다.

aErrorMsg char * Out 에러 코드가 담길 변수 포인터이다.

aErrorMsgSize int In 에러 메시지가 저장될 변수의 크기를 지정한다.

사용 예

typedef struct

{

int c1;

int c2;

} DATA;

main()

{

dbmHandle * sHandle = NULL;

DATA sData;

int sErrCode;

char sErrMsg[1024];

rc = dbmInitHandle(&sHandle, "demo");

sData.c1 = 10;

sData.c2 = 100;

rc = dbmInsertRow(sHandle, "t1", &sData, sizeof(DATA));

if(rc)

{

dbmGetErrorMsg(rc, sErrMsg, sizeof(sErrMsg));

}

}

C/C++ APIs | 243

노트

에러 메시지를 저장할 변수의 크기는 최소 512 byte 이상이어야 한다.

244 | API Reference

dbmGetTableUsage

기능

지정한 테이블의 사용량 정보를 반환한다.

인자

int dbmGetTableUsage(dbmHandle * aHandle,

const char * aTableName,

long * aMaxSize,

long * aTotalSize,

long * aUsedSize,

long * aFreeSize)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 테이블 이름이다.

aMaxSize long * Out 테이블을 생성할 때 지정한 최대 row 개수이다.

aTotalSize long * Out 테이블의 확장된 상태를 포함하여 현재 저장 가능한 최대 row 개수이다.

aUsedSize long * Out
테이블에 현재 사용 중인 row 개수이다. (Commit 되지 않은 row를 포함할

수 있음)

aFreeSize long * Out 테이블 가용 공간의 개수이다. (Commit 되지 않은 row를 포함할 수 있음)

사용 예

main()

{

dbmHandle * sHandle = NULL;

long sTotal;

long sMax;

long sUsed;

long sFree;

int rc;

rc = dbmInitHandle(&sHandle,

"demo");

rc = dbmGetTableUsage(sHandle,

"t1",

&sMax,

C/C++ APIs | 245

&sTotal,

&sUsed,

&sFree);

}

노트

Slot 관리를 별도로 하는 (Normal, Queue, Store, Splay) 테이블만 유효한 정보를 리턴 한다.

246 | API Reference

dbmGetTableUsageByHandle

기능

테이블 핸들에 해당하는 테이블의 사용량 정보를 반환한다.

인자

int dbmGetTableUsageByHandle(dbmHandle * aHandle,

dbmTableHandle * aTableHandle,

long * aMaxSize,

long * aTotalSize,

long * aUsedSize,

long * aFreeSize);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle
dbmTableHand

le *
In 대상 테이블의 핸들이다.

aMaxSize long * Out 테이블을 생성할 때 지정한 최대 row 개수이다.

aTotalSize long * Out 테이블의 확장된 상태를 포함하여 현재 저장 가능한 최대 row 개수이다.

aUsedSize long * Out
테이블에 현재 사용 중인 row 개수이다. (Commit 되지 않은 row를 포함할

수 있음)

aFreeSize long * Out 테이블 가용 공간의 개수이다. (Commit 되지 않은 row를 포함할 수 있음)

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

long sTotal;

long sMax;

long sUsed;

long sFree;

int rc;

rc = dbmInitHandle(&sHandle,

"demo");

rc = dbmPrepareTableHandle(sHandle,

C/C++ APIs | 247

"t1",

& sTableHandle);

rc = dbmPrepareTableHandle(sHandle, "t1", &sTableHandle);

rc = dbmGetTableUsageByHandle(sHandle,

sTableHandle,

&sMax,

&sTotal,

&sUsed,

&sFree);

}

노트

Slot 관리를 별도로 하는 (Normal, Queue, Store, Splay) 테이블만 유효한 정보를 리턴 한다.

248 | API Reference

dbmExtendTable

기능

테이블 핸들에 해당하는 테이블에 segment를 추가한다.

추가되는 segment의 크기는 테이블 생성 시점에 옵션으로 설정된 Extend크기이다.

인자

int dbmExtendTable(dbmHandle * aHandle,

dbmTableHandle * aTableHandle);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableHandle
dbmTableHand

le *
In 대상 테이블의 핸들이다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

dbmTableHandle * sTableHandle = NULL;

rc = dbmInitHandle(&sHandle,

"demo");

rc = dbmPrepareTableHandle(sHandle,

"t1",

& sTableHandle);

rc = dbmExtendTable(sHandle,

sTableHandle);

}

노트

● Extend에 의해 확장 가능한 segment의 최대 개수는 999 개이다.

● Extend가 빈번하게 발생할 경우 삽입 성능이 저하될 수 있으므로 table 생성 시점에 init 크기를 적절하

게 설정해야 한다.

C/C++ APIs | 249

dbmExistDataInQue

기능

queue table에 데이터가 존재하는지 여부를 반환한다.

인자

int dbmExistDataInQue(dbmHandle * aHandle,

const char * aTableName,

int * aExists);

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aTableName const char * In 대상 queue table 이름이다.

aExists int * Out
● 0: 존재하지 않는다.

● 1: 한 개 이상의 데이터가 존재한다.

사용 예

main()

{

dbmHandle * sHandle = NULL;

int i;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmExistDataInQue(sHandle, "que1", &i);

}

노트

queue type 테이블만 지원한다.

250 | API Reference

dbmSetAutoCommit

기능

변경연산에 대한 자동 커밋 여부를 지정한다.

인자

int dbmSetAutoCommit(dbmHandle * aHandle,

int aMode)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aMode int In
● 0: Non auto commit mode

● 1: Auto commit mode

사용 예

main()

{

dbmHandle * sHandle = NULL;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmSetAutoCommit(sHandle, 1);

}

주의

● Auto Commit Mode에서는 dbmSelectForUpdateRow 와 같은 API들은 Lock을 점유하지 않는다.

● 진행 중인 트랜잭션이 있는 경우 dbmCommit 또는, dbmRollback으로 종료한 후 수행해야 한다.

C/C++ APIs | 251

dbmSetLoggingMode

기능

In-Memory Logging 모드를 지정한다. 변경/삭제 연산은 레코드의 이미지를 Undo영역에 복제한 후 변경을 수행한

다. 만일, 사용자가 Logging이 필요하지 않다고 판단하는 경우 API를 이용해 Logging mode를 disable시킬 수 있다.

인자

int dbmSetLoggingMode(dbmHandle * aHandle,

int aMode)

인자 항목 타입 In/ out 비고

aHandle dbmHandle * In dbmInitHandle로 처리된 변수이다.

aMode int In
● 0: Logging을 수행하지 않음

● 1: Logging을 수행함

사용 예

main()

{

dbmHandle * sHandle = NULL;

rc = dbmInitHandle(&sHandle, "demo");

rc = dbmSetAutoCommit(sHandle, 1);

}

주의

In-memory Logging을 disable할 경우 주의사항

● 트랜잭션 단위의 commit/rollback 미지원 (auto commit 동작)

● Delayed recovery 기능 미지원

252 | API Reference

2.3 JAVA

Java환경에서 Goldilocks LITE 로 접근하기 위한 Type-2 형식의 JDBC Driver를 제공한다.

Type-2 방식은 libdbmCore.so에 구현된 C API 접근을 Java-22부터 지원하는 FFI(Foreign Function Interface) 를

이용한다.

노트

● Java 22 버전 이상을 사용해야 한다.

● JDBC Spec 중 필요한 최소한의 함수들만 제공한다.

● Lite는 Java를 위한 byte 타입이 없으며 CHAR 컬럼에 String/byte[]를 저장하는 것과 같으며 결과를 얻

을 경우 사용자가 적절하게 getString, getBytes 함수를 사용해야 한다.

● DATE column은 java.sql.TIMESTAMP 타입을 사용하며, 값은 마이크로초 단위로 저장된다.

아래 표는 JAR, Driver Class, URL에 대한 정보이다.

항목 설명

Jar ${DBM_HOME}/lib/dbmJdbc.jar

Driver Class com.dbm.jdbc.dbmDriver

URL

jdbc:dbm://<IP>:<Port>/demo

● TCP 접속을 위해 dbmListener가 구동된 상태여야 한다.

● IP, PORT를 생략하면 DA방식으로 접속

예제 수행을 위해 다음 형태의 테이블을 먼저 생성한다.

create table T1

(

C1 int,

C2 short,

C3 long,

C4 double,

C5 float,

C6 char(100),

C7 date

) init 1024 extend 102400 max 4096000;

create unique index IDX_T1 on T1 (C1 asc);

JAVA | 253

Goldilocks LITE JDBC를 이용한 예제코드이다.

import java.sql.*;

import java.util.*;

import java.util.concurrent.*;

public class LiteJdbcTest {

static final int TOTAL_COUNT = 1_000_000;

static final String VALUE_1200B;

static {

char[] buf = new char[1200];

Arrays.fill(buf, 'X');

VALUE_1200B = new String(buf);

}

static class Worker implements Runnable {

int start, end;

String phase;

long[] phaseTimes;

int index;

String jdbcUrl;

Worker(int start, int end, String phase, long[] phaseTimes, int index, String jdbcUrl)

{

this.start = start;

this.end = end;

this.phase = phase;

this.phaseTimes = phaseTimes;

this.index = index;

this.jdbcUrl = jdbcUrl;

}

@Override

public void run() {

long t0 = System.nanoTime();

try (Connection conn = DriverManager.getConnection(jdbcUrl)) {

conn.setAutoCommit(true);

switch (phase) {

case "INSERT":

try (PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO t_test(id, payload) VALUES(?, ?)")) {

for (int i = start; i <= end; i++) {

pstmt.setInt(1, i);

pstmt.setString(2, VALUE_1200B);

pstmt.execute();

254 | API Reference

//conn.commit();

}

}

break;

case "UPDATE":

try (PreparedStatement pstmt = conn.prepareStatement(

"UPDATE t_test SET payload=? WHERE id=?")) {

for (int i = start; i <= end; i++) {

pstmt.setString(1, VALUE_1200B);

pstmt.setInt(2, i);

pstmt.execute();

//conn.commit();

}

}

break;

case "SELECT":

try (PreparedStatement pstmt = conn.prepareStatement(

"SELECT payload FROM t_test WHERE id=?")) {

for (int i = start; i <= end; i++) {

pstmt.setInt(1, i);

try (ResultSet rs = pstmt.executeQuery()) {

if (rs.next()) {

rs.getString(1);

}

}

}

}

break;

case "DELETE":

try (PreparedStatement pstmt = conn.prepareStatement(

"DELETE FROM t_test WHERE id=?")) {

for (int i = start; i <= end; i++) {

pstmt.setInt(1, i);

pstmt.execute();

//conn.commit();

}

}

break;

}

} catch (SQLException e) {

e.printStackTrace();

JAVA | 255

}

long t1 = System.nanoTime();

phaseTimes[index] = t1 - t0;

}

}

private static void runPhase(String phase, int threadCount, String jdbcUrl) throws

InterruptedException {

System.out.println("===== " + phase + " Phase 시작 =====");

int perThread = TOTAL_COUNT / threadCount;

long[] phaseTimes = new long[threadCount];

Thread[] threads = new Thread[threadCount];

for (int i = 0; i < threadCount; i++) {

int start = i * perThread + 1;

int end = (i == threadCount - 1) ? TOTAL_COUNT : (i + 1) * perThread;

threads[i] = new Thread(new Worker(start, end, phase, phaseTimes, i, jdbcUrl), "

worker-" + i);

threads[i].start();

}

for (Thread t : threads) t.join();

for (int i = 0; i < threadCount; i++) {

System.out.printf("Thread-%d : %.3f sec\n", i, phaseTimes[i] / 1_000_000_000.0);

}

long maxNs = 0;

for (long t : phaseTimes) maxNs = Math.max(maxNs, t);

double secTotal = maxNs / 1_000_000_000.0;

double tps = TOTAL_COUNT / secTotal;

System.out.printf("Phase Total (max of threads): %.3f sec, TPS=%.2f\n", secTotal, tps

);

System.out.println("===== " + phase + " Phase 완료 =====\n");

}

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Usage: java LiteJdbcTestMultiConn <numThreads>");

return;

}

int threadCount = Integer.parseInt(args[0]);

System.out.println("NumThreads: " + threadCount);

// SQLite in-memory DB URL

//String jdbcUrl = "jdbc:dbm://127.0.0.1:27584/demo";

String jdbcUrl = "jdbc:dbm:///demo";

Class.forName("com.dbm.jdbc.dbmDriver");

256 | API Reference

// 초기 테이블 생성

try (Connection conn = DriverManager.getConnection(jdbcUrl)) {

conn.setAutoCommit(false);

try (Statement stmt = conn.createStatement()) {

stmt.execute("DROP TABLE t_test");

} catch(Exception e) {}

}

try (Connection conn = DriverManager.getConnection(jdbcUrl)) {

try (Statement stmt = conn.createStatement()) {

stmt.execute("CREATE TABLE t_test(id int , payload CHAR(1200))");

stmt.execute("CREATE unique index idx1 on t_test(id)");

}

conn.commit();

}

runPhase("INSERT", threadCount, jdbcUrl);

runPhase("UPDATE", threadCount, jdbcUrl);

runPhase("SELECT", threadCount, jdbcUrl);

runPhase("DELETE", threadCount, jdbcUrl);

}

}

예제를 컴파일하고 실행하는 명령의 예시이다.

shell> javac -cp ${DBM_HOME}/lib/dbmJdbc.jar:. LiteJdbcTest.java

shell> java -cp ${DBM_HOME}/lib/dbmJdbc.jar:. LiteJdbcTest

Class & Method

Goldilocks LITE가 제공하는 JDBC 구현 Class 및 함수를 설명한다.

여기에 기술되지 않은 함수들은 모두 SQLFeatureNotSupportedException 으로 리턴한다.

주의

일부 구현 함수는 연동 목적으로 의미 없는 고정 값을 반환한다. (함수 설명 참조)

Class 설명

dbmConnection java.sql.Connection의 implementation

JAVA | 257

dbmStatement java.sql.Statement의 implementation

dbmPreparedStatement java.sql.PreparedStatement의 implementation

dbmResultSet java.sql.ResultSet의 implementation

dbmResultSetMeta java.sql.ResultSetMeta의 implementation

Class 설명

dbmConnection

Method 관련 C API 비고

PreparedStatement prepareStateme

nt(String sql)

dbmPrepareStmt 입력된 SQL을 수행 준비한다.

Statement createStatement() 해당 사항 없음

Statement createStatement(int result

SetType, int resultSetConcurrency)

해당 사항 없음 TYPE_FORWARD_ONLY

CONCUR_READ_ONLY

CLOSE_CURSOR_AT_COMMIT

속성으로 고정됨.

(다른 속성을 입력할 경우 에러)

Statement createStatement(int result

SetType, int resultSetConcurrency, in

t resultSetHoldability)

해당 사항 없음

void commit() dbmCommit 트랜잭션을 반영한다.

void rollback() dbmRollback 트랜잭션을 롤백한다.

void close() dbmFreeHandle 현재의 연결을 종료한다.

boolean isClosed() 해당 사항 없음 연결 종료 여부를 반환한다.

(정상인 경우 false를 반환)

boolean getAutoCommit() 해당 사항 없음 현재 Auto Commit Mode를 반환한다.

(default : false)

void setAutoCommit(boolean autoC

ommit)

dbmSetAutoCommit Auto Commit Mode를 설정한다.

dbmStatement

Method 관련 C API 비고

boolean execute(String sql) dbmExecuteStmt SQL을 수행한다.

int executeUpdate(String sql) dbmExecuteStmt SQL을 수행한다.

ResultSet executeQuery(String sql) dbmExecuteStmt SQL을 수행한다.

void close() dbmFreeStmt Statement을 닫는다.

boolean isClosed() 해당 사항 없음 Statement가 닫힌 상태인지 반환한다.

(닫힌 경우 true를 반환)

Connection getConnection() 해당 사항 없음 Statement를 생성한 Connection객체

를 반환한다.

getUpdateCount dbmGetRowCount INSERT/UPDATE/DELETE에 의해 영향

받은 레코드의 개수를 반환한다..

258 | API Reference

(SELECT의 경우는 보장하지 않음)

Method 관련 C API 비고

dbmPreparedStatement

Method 관련 C API 비고

int executeUpdate() dbmExecuteStmt preparedStatement 를 실행한다. INSE

RT/UPDATE/DELETE의 경우 영향받은

레코드 개수를 반환한다.

boolean execute() dbmExecuteStmt preparedStatement 를 실행한다.

void close() preparedStatement 객체를 제거한다.

Connection getConnection() preparedStatement를 생성한 연결 객

체를 반환한다.

void setShort(int index, short value) dbmBindParamById SHORT type 컬럼에 데이터를 바인딩 하

는 경우

void setFloat(int index, float value) dbmBindParamById FLOAT type 컬럼에 데이터를 바인딩 하

는 경우

void setDouble(int index, double val

ue)

dbmBindParamById DOUBLE type 컬럼에 데이터를 바인딩

하는 경우

void setInt(int index, int value) dbmBindParamById INT type 컬럼에 데이터를 바인딩 하는

경우

void setLong(int index, long value) dbmBindParamById LONG type 컬럼에 데이터를 바인딩 하

는 경우

void setString(int index, String value) dbmBindParamById CHAR type 컬럼에 데이터를 바인딩 하

는 경우

void setTimestamp(int index, java.sql.

Timestamp value)

dbmBindParamById DATE type 컬럼에 데이터를 바인딩 하

는 경우

void setNull(int index, int sqlType) 해당 사항 없음 index에 지정된 Bind Parameter 의 값

을 NULL로 초기화 한다.

void setByte(int index, Byte value) dbmBindParamById CHAR type 컬럼에 Byte를 바인딩 하는

경우

void setBytes(int index, byte[] value) dbmBindParamById CHAR type 컬럼에 byte[]를 바인딩 하

는 경우

ResultSet executeQuery() dbmExecuteStmt preparedStatement 를 실행한다

ResultSet getResultSet() 해당 사항 없음 마지막 수행된 결과를 반환한다.

int getUpdateCount() dbmGetRowCount INSERT/UPDATE/DELETE에 의해 영향

받은 레코드의 개수를 반환한다.

boolean getMoreResults() 해당 사항 없음 항상 false를 리턴한다.

JAVA | 259

dbmResultSet

Class 관련 C API 비고

int findColumn(String columnLabel) 해당 사항 없음 주어진 columnLabel과 일치하는 Colu

mn Index를 반환한다.

int getColumnCount() 결과셋의 컬럼 개수를 반환한다.

String getColumnTypeName(int idx) dbmGetTargetInfo 주어진 columnIndex에 해당하는 컬럼의

Java 데이터 타입명을 반환한다.

boolean next() dbmFetchStmt ResultSet에서 다음 1건을 반환한다.

short getShort(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

long getLong(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

float getFloat(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

double getDouble(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

int getInt(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

String getString(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

Timestamp getTimestamp(int colum

nIndex)

해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

byte getByte(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

byte[] getByte(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

Object getObject(int columnIndex) 해당 사항 없음 입력된 columnIndex에 해당하는 컬럼의

값을 반환한다.

(CHAR 컬럼 타입에 대한 byte 리턴은 지

원하지 않음으로 getByte, getBytes 함

수를 사용해야 한다.)

void close() 해당 사항 없음 ResultSet을 제거한다.

boolean isClosed() 해당 사항 없음 ResultSet이 닫혔는지 여부를 반환한다.

ResultSetMetaData getMetaData() 해당 사항 없음 ResultSetMeta를 반환한다.

int getType() 해당 사항 없음 ResultSet.TYPE_FORWARD_ONLY만

반환한다.

String getString(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

getShort(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

float getFloat(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

260 | API Reference

getInt(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

getLong(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

double getDouble(String columnLab

el)

해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

Timestamp getTimestamp(String col

umnLabel)

해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

byte getByte(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

byte[] getBytes(String columnLabel) 해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

Object getObject(String columnLabel

)

해당 사항 없음 입력된 columnLabel에 해당하는 컬럼의

값을 반환한다.

(CHAR 컬럼 타입에 대한 byte 리턴은 지

원하지 않음으로 getByte, getBytes 함

수를 사용해야 한다.)

boolean wasNull() 해당 사항 없음 false로만 반환 (NULL 미지원)

Class 관련 C API 비고

노트

getXXX()계열 메소드를 사용할 경우 ColumnIndex를 권장하며 ColumnName을 사용할 때에는 SQL문에

Alias를 지정하고 이를 대문자로 사용하도록 한다.

ex) SELECT payload as pp1 from table;

rs.getString("PP1");

dbmResultSetMeta

Method 관련 C API 비고

int getColumnCount() dbmGetRowCount ResultSet의 컬럼 개수를 반환한다.

int getColumnType(int column) 해당 사항 없음 입력된 ColumnIndex에 해당하는 컬럼

의 Java type을 반환한다.

String getColumnClassName(int colu

mn)

해당 사항 없음 입력된 ColumnIndex에 해당하는 컬럼

의 Java type name을 반환한다.

String getColumnLabel(int column) 해당 사항 없음 입력된 ColumnIndex에 해당하는 컬럼

의 이름을 가져온다.

String getColumnTypeName(int colu

mn)

해당 사항 없음 입력된 ColumnIndex에 해당하는 컬럼

의 Native Data Type을 반한환다.

String getColumnName(int column) 해당 사항 없음 입력된 ColumnIndex에 해당하는 컬럼

JAVA | 261

의 이름을 가져온다.

int isNullable(int column) 해당 사항 없음 true만 리턴

boolean isAutoIncrement(int column

)

해당 사항 없음 false만 리턴

boolean isCaseSensitive(int column) 해당 사항 없음 true만 리턴

boolean isSigned(int column) 해당 사항 없음 true만 리턴

boolean isReadOnly(int column) 해당 사항 없음 true만 리턴

boolean isWritable(int column) 해당 사항 없음 false만 리턴

boolean isDefinitelyWritable(int colu

mn)

해당 사항 없음 false만 리턴

Method 관련 C API 비고

Connection Pool

GOLDILOCKS LITE에서는 dbmJdbc.jar의 dbmDataSource를 이용하여 connection pool을 구성할 수 있다.

dbmConnection이 제공하는 method만 지원한다.

다음은 LITE JDBC에서 제공하는 DataSource를 사용하여 connection pool을 활용하는 예이다.

import javax.sql.DataSource;

import java.sql.*;

import java.util.List;

import java.util.ArrayList;

public class DataSourceTest {

public static void main(String[] args) throws Exception {

Class<?> clazz = Class.forName("com.dbm.jdbc.dbmDataSource");

DataSource ds = (DataSource) clazz

.getConstructor(String.class, String.class, String.class, int.class)

.newInstance(

"jdbc:dbm:///demo",

"", // USER는 지원하지 않음

"", // PASSWORD는 지원하지 않음

20 // MaxPoolSize

);

List<Connection> connections = new ArrayList<>();

for (int i = 0; i < 10; i++) {

Connection conn = ds.getConnection();

connections.add(conn);

System.out.println("connection " + (i + 1) + " acquired");

}

262 | API Reference

Connection con1 = ds.getConnection();

Statement stmt1 = con1.createStatement();

String sql = "select * from dic_table limit 1";

int i = 1;

for(Connection conn : connections) {

PreparedStatement ps = conn.prepareStatement(sql);

try (ResultSet rs = ps.executeQuery()) {

while (rs.next()) {

System.out.println(rs.getObject(1) + ", c2=" + rs.getObject(2));

}

}

i++;

conn.close();

}

ResultSet rs = stmt1.executeQuery("select count(*) from v$session");

rs.next();

System.out.println("Connection Count = " + rs.getInt(1));

}

}

생성자 유형은 다음과 같으며, 각 매개변수에 대한 설명은 아래와 같다.

dbmDataSource(String url,

String user,

String password,

int maxPoolSize)

dbmDataSource(String url,

String user, String password,

int maxPoolSize,

long poolMaximumCheckoutTime,

long poolTimeToWait)

● url: 접속 URL을 지정한다.

● user: 미지원 항목이다.

● password: 미지원 항목이다.

● maxPoolSize: Connection pool에 저장할 수 있는 connection의 최대 개수이다.

● poolMaximumCheckoutTime: 미지원 항목이다.

● poolTimeToWait: Connection pool에 가용 자원이 없을 경우 대기하는 시간이다.

JAVA | 263

노트

연결 개수는 dbmMetaManager를 통해 다음 질의를 실행하여 확인할 수 있다.

SELECT count(*) FROM v$session

MyBatis 연동

SQLMapper인 MyBatis와 연동하는 예제를 설명한다.

노트

● MyBatis가 제공하는 full-spec은 지원하지 않으며 DDL/DML등에 대한 기능만 제공한다.

● 성능을 위해 PreparedStatement를 재사용하도록 "ExecutorType.REUSE" 사용을 권장한다.

연결정보 설정

mybatis-config.xml 내에 DataSource 부분에 Driver와 URL을 기술한다.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE configuration

PUBLIC "-//mybatis.org//DTD Config 3.0//EN"

"https://mybatis.org/dtd/mybatis-3-config.dtd">

<configuration>

<environments default="dev">

<environment id="dev">

<transactionManager type="JDBC"/>

<dataSource type="UNPOOLED">

<property name="driver" value="com.dbm.jdbc.dbmDriver"/>

<property name="url" value="jdbc:dbm:///demo"/>

</dataSource>

</environment>

</environments>

<mappers>

<mapper resource="LiteMapper.xml"/>

</mappers>

264 | API Reference

</configuration>

Mapper.xml 설정예시

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE mapper

PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"

"https://mybatis.org/dtd/mybatis-3-mapper.dtd">

<mapper namespace="LiteMapper">

<insert id="insert">

INSERT INTO t_test(id, payload) VALUES(#{id}, #{payload})

</insert>

<update id="update">

UPDATE t_test SET payload=#{payload} WHERE id=#{id}

</update>

<select id="select" resultType="string">

SELECT payload FROM t_test WHERE id=#{id}

</select>

<delete id="delete">

DELETE FROM t_test WHERE id=#{id}

</delete>

</mapper>

예제코드

예제 코드는 다음과 같다.

import java.io.InputStream;

import java.util.*;

import java.util.concurrent.*;

import org.apache.ibatis.io.Resources;

import org.apache.ibatis.session.*;

public class LiteMybatisTest {

static final int TOTAL_COUNT = 1_000_000;

static final String VALUE_1200B;

static {

char[] buf = new char[1200];

Arrays.fill(buf, 'X');

VALUE_1200B = new String(buf);

}

JAVA | 265

static class Worker implements Runnable {

int start, end;

String phase;

long[] phaseTimes;

int index;

SqlSessionFactory sqlSessionFactory;

Worker(int start, int end, String phase, long[] phaseTimes, int index,

SqlSessionFactory sqlSessionFactory) {

this.start = start;

this.end = end;

this.phase = phase;

this.phaseTimes = phaseTimes;

this.index = index;

this.sqlSessionFactory = sqlSessionFactory;

}

@Override

public void run() {

long t0 = System.nanoTime();

try (SqlSession session = sqlSessionFactory.openSession(ExecutorType.REUSE, true))

{ // autoCommit=true

switch (phase) {

case "INSERT":

for (int i = start; i <= end; i++) {

session.insert("LiteMapper.insert", Map.of("id", i, "payload",

VALUE_1200B));

}

break;

case "UPDATE":

for (int i = start; i <= end; i++) {

session.update("LiteMapper.update", Map.of("id", i, "payload",

VALUE_1200B));

}

break;

case "SELECT":

for (int i = start; i <= end; i++) {

session.selectOne("LiteMapper.select", Map.of("id", i));

}

break;

case "DELETE":

for (int i = start; i <= end; i++) {

session.delete("LiteMapper.delete", Map.of("id", i));

266 | API Reference

}

break;

}

} catch (Exception e) {

e.printStackTrace();

}

long t1 = System.nanoTime();

phaseTimes[index] = t1 - t0;

}

}

private static void runPhase(String phase, int threadCount, SqlSessionFactory

sqlSessionFactory) throws InterruptedException {

System.out.println("===== " + phase + " Phase 시작 =====");

int perThread = TOTAL_COUNT / threadCount;

long[] phaseTimes = new long[threadCount];

Thread[] threads = new Thread[threadCount];

for (int i = 0; i < threadCount; i++) {

int start = i * perThread + 1;

int end = (i == threadCount - 1) ? TOTAL_COUNT : (i + 1) * perThread;

threads[i] = new Thread(new Worker(start, end, phase, phaseTimes, i,

sqlSessionFactory), "worker-" + i);

threads[i].start();

}

for (Thread t : threads) t.join();

for (int i = 0; i < threadCount; i++) {

System.out.printf("Thread-%d : %.3f sec\n", i, phaseTimes[i] / 1_000_000_000.0);

}

long maxNs = Arrays.stream(phaseTimes).max().orElse(0L);

double secTotal = maxNs / 1_000_000_000.0;

double tps = TOTAL_COUNT / secTotal;

System.out.printf("Phase Total (max of threads): %.3f sec, TPS=%.2f\n", secTotal, tps

);

System.out.println("===== " + phase + " Phase 완료 =====\n");

}

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Usage: java LiteMybatisTest <numThreads>");

return;

}

int threadCount = Integer.parseInt(args[0]);

System.out.println("NumThreads: " + threadCount);

JAVA | 267

Class.forName("com.dbm.jdbc.dbmDriver");

// SqlSessionFactory 생성

InputStream configStream = Resources.getResourceAsStream("mybatis-config.xml");

SqlSessionFactory sqlSessionFactory = new SqlSessionFactoryBuilder().build(

configStream);

// 초기 테이블 생성

try (var session = sqlSessionFactory.openSession()) {

try {

session.getConnection().createStatement().execute("DROP TABLE t_test");

} catch (Exception ignored) {}

session.getConnection().createStatement().execute("CREATE TABLE t_test(id int,

payload CHAR(1200))");

session.getConnection().createStatement().execute("CREATE UNIQUE INDEX idx1 ON t_

test(id)");

session.commit();

}

runPhase("INSERT", threadCount, sqlSessionFactory);

runPhase("UPDATE", threadCount, sqlSessionFactory);

runPhase("SELECT", threadCount, sqlSessionFactory);

runPhase("DELETE", threadCount, sqlSessionFactory);

}

}

Mybatis Connection Pool 설정

Mybatis config에 다음과 같이 설정한다.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE configuration

PUBLIC "-//mybatis.org//DTD Config 3.0//EN"

"https://mybatis.org/dtd/mybatis-3-config.dtd">

<configuration>

<environments default="dbm">

<environment id="dbm">

<transactionManager type="JDBC"/>

<dataSource type="POOLED">

<property name="driver" value="com.dbm.jdbc.dbmDriver"/>

<property name="url" value="jdbc:dbm:///demo"/>

<property name="username" value=""/>

<property name="password" value=""/>

<property name="poolMaximumActiveConnections" value="10"/>

268 | API Reference

<property name="poolMaximumIdleConnections" value="10"/>

<property name="poolMaximumCheckoutTime" value="20000"/>

<property name="poolTimeToWait" value="20000"/>

<property name="poolPingEnabled" value="true"/>

<property name="poolPingQuery" value="select 1 from dual"/>

</dataSource>

</environment>

</environments>

<mappers>

<mapper class="PoolTestMapper"/>

</mappers>

</configuration>

주의

GOLDILOCKS LITE에서는 connection pool의 일부 속성과 동작을 지원하지 않는다.

Hibernate6 연동

ORM/JPA 구현체인 Hibernate와 연동 예제를 설명한다.

Hibernate는 객체 상태를 중심으로 관리하며, 엔티티의 상태 변화와 트랜잭션을 자동으로 처리하는 기능을 제공한다.

그러나 Hibernate는 내부적으로 트랜잭션 레이어와 세션 관리 등 다양한 오버헤드를 갖고 있어,

고성능이 요구되는 경우에는 최적의 선택이 아닐 수 있다.

이러한 경우, Hibernate의 Session API에서 제공하는 doWork 메서드를 활용하면,

JDBC API를 직접 호출하여 데이터베이스와 상호작용할 수 있다.

이를 통해 Hibernate의 트랜잭션 레이어를 최소화하면서도 JDBC 기반의 높은 성능을 유지할 수 있다.

노트

● Hibernate의 방식을 사용할 수 있으나 자동DDL등의 기능은 사용할 수 없다. (미리 생성 필요)

○ Temporary table, sequence 객체등 미지원

○ Procedure 및 Tirgger 미지원

○ Data Type 제한

● 처리 가능한 SQL 제한으로 동적 SQL 조립 방식은 사용할 수 없다.

○ Join, Aggregation 미지원

○ Batch 기능 미지원 (Commit 단위를 조정하여 수행)

JAVA | 269

Session API 예제

Session API를 사용하는 예제이다.

import org.hibernate.*;

import org.hibernate.boot.MetadataSources;

import org.hibernate.boot.registry.*;

import org.hibernate.cfg.Environment;

import java.sql.*;

import java.util.*;

import java.util.concurrent.*;

public class LiteHibernateSessionAPITest {

static final int TOTAL_COUNT = 1_000_000;

static final String VALUE_1200B;

static {

char[] buf = new char[1200];

Arrays.fill(buf, 'X');

VALUE_1200B = new String(buf);

}

static class Worker implements Runnable {

int start, end;

String phase;

long[] phaseTimes;

int index;

SessionFactory sessionFactory;

Worker(int start, int end, String phase, long[] phaseTimes, int index, SessionFactory

sessionFactory) {

this.start = start;

this.end = end;

this.phase = phase;

this.phaseTimes = phaseTimes;

this.index = index;

this.sessionFactory = sessionFactory;

}

@Override

public void run() {

long t0 = System.nanoTime();

try (Session session = sessionFactory.openSession()) {

session.setHibernateFlushMode(FlushMode.MANUAL);

session.setJdbcBatchSize(0); // batch off

Transaction tx = session.beginTransaction();

270 | API Reference

int cnt = 0;

switch (phase) {

case "INSERT":

for (int i = start; i <= end; i++) {

session.createNativeQuery(

"insert into t_test (id, payload) values(:id, :payload)")

.setParameter("id", i)

.setParameter("payload", VALUE_1200B)

.executeUpdate();

if(cnt % 100 == 0) {

tx.commit();

tx = session.beginTransaction();

}

cnt++;

}

tx.commit();

tx = session.beginTransaction();

/*

session.doWork(conn -> {

conn.setAutoCommit(false);

PreparedStatement ps = conn.prepareStatement("insert into t_test(

id, payload) values(?, ?)");

for (int i = start; i <= end; i++) {

ps.setInt(1, i);

ps.setString(2, VALUE_1200B);

ps.executeUpdate();

conn.commit();

}

});

*/

break;

case "UPDATE":

for (int i = start; i <= end; i++) {

tx = session.beginTransaction();

session.createNativeQuery(

"UPDATE t_test SET payload=:payload WHERE id=:id")

.setParameter("id", i)

.setParameter("payload", VALUE_1200B)

.executeUpdate();

tx.commit();

}

JAVA | 271

break;

case "SELECT":

for (int i = start; i <= end; i++) {

String result = session.createQuery(

"SELECT payload FROM t_test WHERE id=:id", String.class)

.setParameter("id", i)

.getSingleResult();

}

break;

case "DELETE":

for (int i = start; i <= end; i++) {

tx = session.beginTransaction();

session.createNativeQuery(

"DELETE FROM t_test WHERE id=:id")

.setParameter("id", i)

.executeUpdate();

tx.commit();

}

break;

}

} catch (Exception e) {

e.printStackTrace();

}

long t1 = System.nanoTime();

phaseTimes[index] = t1 - t0;

}

}

private static void runPhase(String phase, int threadCount, SessionFactory sessionFactory)

throws InterruptedException {

System.out.println("===== " + phase + " Phase 시작 =====");

int perThread = TOTAL_COUNT / threadCount;

long[] phaseTimes = new long[threadCount];

Thread[] threads = new Thread[threadCount];

for (int i = 0; i < threadCount; i++) {

int start = i * perThread + 1;

int end = (i == threadCount - 1) ? TOTAL_COUNT : (i + 1) * perThread;

threads[i] = new Thread(new Worker(start, end, phase, phaseTimes, i,

sessionFactory), "worker-" + i);

threads[i].start();

}

for (Thread t : threads) t.join();

272 | API Reference

for (int i = 0; i < threadCount; i++) {

System.out.printf("Thread-%d : %.3f sec\n", i, phaseTimes[i] / 1_000_000_000.0);

}

long maxNs = 0;

for (long t : phaseTimes) maxNs = Math.max(maxNs, t);

double secTotal = maxNs / 1_000_000_000.0;

double tps = TOTAL_COUNT / secTotal;

System.out.printf("Phase Total (max of threads): %.3f sec, TPS=%.2f\n", secTotal, tps

);

System.out.println("===== " + phase + " Phase 완료 =====\n");

}

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Usage: java LiteHibernateTest <numThreads>");

return;

}

int threadCount = Integer.parseInt(args[0]);

System.out.println("NumThreads: " + threadCount);

// Hibernate 설정

Map<String, Object> settings = new HashMap<>();

settings.put(Environment.DRIVER, "com.dbm.jdbc.dbmDriver");

settings.put(Environment.URL, "jdbc:dbm:///demo");

settings.put(Environment.DIALECT, "dbmLiteDialect"); // 제공하는 Lite Dialect

settings.put(Environment.SHOW_SQL, "false");

settings.put(Environment.HBM2DDL_AUTO, "none");

settings.put("hibernate.jdbc.batch_size", 0); // batch off

settings.put("hibernate.statement_cache.size", 100);

settings.put(Environment.ORDER_UPDATES, false);

settings.put(Environment.ORDER_INSERTS, false);

settings.put("hibernate.query.plan_cache_max_size", 2048);

settings.put("hibernate.query.plan_parameter_metadata_max_size", 128);

settings.put("hibernate.connection.autocommit", "false");

settings.put("hibernate.connection.provider_disables_autocommit", "true");

StandardServiceRegistry registry = new StandardServiceRegistryBuilder()

.applySettings(settings)

.build();

MetadataSources sources = new MetadataSources(registry);

SessionFactory sessionFactory = sources.buildMetadata().buildSessionFactory();

// 테이블 초기화

try (Session session = sessionFactory.openSession()) {

Transaction tx = session.beginTransaction();

JAVA | 273

session.createNativeQuery("DROP TABLE t_test").executeUpdate();

tx.commit();

} catch(Exception ignored){}

try (Session session = sessionFactory.openSession()) {

Transaction tx = session.beginTransaction();

session.createNativeQuery("CREATE TABLE t_test(id int, payload CHAR(1200))").

executeUpdate();

session.createNativeQuery("CREATE UNIQUE INDEX idx1 ON t_test(id)").executeUpdate

();

tx.commit();

}

runPhase("INSERT", threadCount, sessionFactory);

runPhase("UPDATE", threadCount, sessionFactory);

runPhase("SELECT", threadCount, sessionFactory);

runPhase("DELETE", threadCount, sessionFactory);

sessionFactory.close();

StandardServiceRegistryBuilder.destroy(registry);

}

}

빌드 예시

shell> javac -cp ${DBM_HOME}/lib/dbmJdbc.jar:jlib/*:. LiteHibernateSessionAPITest.java

dbmLiteDialect.java

** dbmJdbc.jar : LITE JDBC driver

** jlib/* : hibernate가 요구하는 jar경로

** dbmDialect.java : hibernate용 LITE Dialect class

Entity 방식

Entity 방식의 예제코드이다.

import jakarta.persistence.*;

import org.hibernate.*;

import org.hibernate.cfg.Environment;

import org.hibernate.boot.MetadataSources;

import org.hibernate.boot.registry.StandardServiceRegistry;

import org.hibernate.boot.registry.StandardServiceRegistryBuilder;

import java.util.Arrays;

import java.util.HashMap;

import java.util.Map;

274 | API Reference

import java.util.concurrent.ThreadLocalRandom;

public class LiteHibernateORMTest {

static final int TOTAL_COUNT = 1_000_000;

static final String VALUE_1200B;

static {

char[] buf = new char[1200];

Arrays.fill(buf, 'X');

VALUE_1200B = new String(buf);

}

// ===== Entity 매핑 =====

@Entity(name = "TTest")

@Table(name = "t_test")

public static class TTest {

@Id

private int id;

@Column(length = 1200)

private String payload;

public TTest() {}

public TTest(int id, String payload) { this.id = id; this.payload = payload; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

public String getPayload() { return payload; }

public void setPayload(String payload) { this.payload = payload; }

}

static class Worker implements Runnable {

int start, end;

String phase;

long[] phaseTimes;

int index;

EntityManagerFactory emf;

Worker(int start, int end, String phase, long[] phaseTimes, int index,

EntityManagerFactory emf) {

this.start = start;

this.end = end;

this.phase = phase;

this.phaseTimes = phaseTimes;

this.index = index;

this.emf = emf;

}

@Override

public void run() {

JAVA | 275

long t0 = System.nanoTime();

EntityManager em = emf.createEntityManager();

try {

switch (phase) {

case "INSERT":

for (int i = start; i <= end; i++) {

EntityTransaction tx = em.getTransaction();

tx.begin();

em.persist(new TTest(i, VALUE_1200B));

tx.commit();

}

break;

case "UPDATE":

for (int i = start; i <= end; i++) {

EntityTransaction tx = em.getTransaction();

tx.begin();

TTest entity = em.find(TTest.class, i);

if (entity != null) {

entity.setPayload(VALUE_1200B);

}

tx.commit();

}

break;

case "SELECT":

for (int i = start; i <= end; i++) {

TTest entity = em.find(TTest.class, i);

}

break;

case "DELETE":

for (int i = start; i <= end; i++) {

EntityTransaction tx = em.getTransaction();

tx.begin();

TTest entity = em.find(TTest.class, i);

if (entity != null) em.remove(entity);

tx.commit();

}

break;

}

} catch (Exception e) {

e.printStackTrace();

} finally {

276 | API Reference

em.close();

}

long t1 = System.nanoTime();

phaseTimes[index] = t1 - t0;

}

}

private static void runPhase(String phase, int threadCount, EntityManagerFactory emf)

throws InterruptedException {

System.out.println("===== " + phase + " Phase 시작 =====");

int perThread = TOTAL_COUNT / threadCount;

long[] phaseTimes = new long[threadCount];

Thread[] threads = new Thread[threadCount];

for (int i = 0; i < threadCount; i++) {

int start = i * perThread + 1;

int end = (i == threadCount - 1) ? TOTAL_COUNT : (i + 1) * perThread;

threads[i] = new Thread(new Worker(start, end, phase, phaseTimes, i, emf), "worker

-" + i);

threads[i].start();

}

for (Thread t : threads) t.join();

for (int i = 0; i < threadCount; i++) {

System.out.printf("Thread-%d : %.3f sec\n", i, phaseTimes[i] / 1_000_000_000.0);

}

long maxNs = 0;

for (long t : phaseTimes) maxNs = Math.max(maxNs, t);

double secTotal = maxNs / 1_000_000_000.0;

double tps = TOTAL_COUNT / secTotal;

System.out.printf("Phase Total (max of threads): %.3f sec, TPS=%.2f\n", secTotal, tps

);

System.out.println("===== " + phase + " Phase 완료 =====\n");

}

public static void main(String[] args) throws Exception {

if (args.length != 1) {

System.out.println("Usage: java LiteHibernateORMTest <numThreads>");

return;

}

int threadCount = Integer.parseInt(args[0]);

System.out.println("NumThreads: " + threadCount);

// Hibernate + JPA 설정

Map<String, Object> settings = new HashMap<>();

settings.put(Environment.DRIVER, "com.dbm.jdbc.dbmDriver");

JAVA | 277

settings.put(Environment.URL, "jdbc:dbm:///demo");

settings.put(Environment.DIALECT, "dbmLiteDialect");

settings.put(Environment.SHOW_SQL, "false");

settings.put(Environment.HBM2DDL_AUTO, "none");

settings.put("hibernate.statement_cache.size", 100);

settings.put("hibernate.connection.autocommit", "false");

StandardServiceRegistry registry = new StandardServiceRegistryBuilder()

.applySettings(settings)

.build();

MetadataSources sources = new MetadataSources(registry);

SessionFactory sessionFactory = sources.buildMetadata().buildSessionFactory();

sources.addAnnotatedClass(TTest.class);

EntityManagerFactory emf = sources.buildMetadata().buildSessionFactory();

try (Session session = sessionFactory.openSession()) {

Transaction tx = session.beginTransaction();

try {

// 기존 테이블 제거 (없는 경우 예외 무시)

session.createNativeQuery("DROP TABLE t_test").executeUpdate();

} catch (Exception ignored) { }

tx.commit();

}

try (Session session = sessionFactory.openSession()) {

Transaction tx = session.beginTransaction();

// 테이블 생성

session.createNativeQuery("CREATE TABLE t_test (id int, payload CHAR(1200))").

executeUpdate();

// 인덱스 생성

session.createNativeQuery("CREATE UNIQUE INDEX idx1 ON t_test(id)").executeUpdate

();

tx.commit();

}

runPhase("INSERT", threadCount, emf);

runPhase("UPDATE", threadCount, emf);

runPhase("SELECT", threadCount, emf);

runPhase("DELETE", threadCount, emf);

emf.close();

StandardServiceRegistryBuilder.destroy(registry);

}

}

278 | API Reference

2.4 Python 연동

python에서는 unixODBC를 이용하여 연동이 가능하다.

unixODBC를 설치 한 후 DSN방식으로 접속이 가능하다. DSN 예제는 아래와 같다.

$ cat ~/.odbc.ini

[LITE]

HOST = 127.0.0.1 # DA일 경우 영향 없음

PORT = 27584 # DA일 경우 영향 없음

INSTANCE = demo # 접근할 Instance Name

DA_MODE = true # DA=true, TCP=false (TCP로 접속할 경우 dbmListener 필요)

DRIVER = /mnt/md1/ssd_home/lim272/new_lite/pkg/lib/libdbmCore.so # 설치 경로

[ODBC]

trace = yes # 오류가 발생하여 추적이 필요한 경우

tracefile = /tmp/odbc.log # 추적로그가 남는 위치

다음은 연동 예제코드이다.

import pyodbc

from datetime import datetime

def main():

conn_str = "DSN=LITE"

conn = None

cur = None

try:

conn = pyodbc.connect(conn_str, autocommit=False)

cur = conn.cursor()

--

DROP TABLE

--

try:

cur.execute("DROP TABLE t1")

conn.commit()

except Exception:

conn.rollback() # table 없을 수도 있음

--

CREATE TABLE

(short -> SMALLINT, long -> BIGINT)

--

cur.execute("""

Python 연동 | 279

CREATE TABLE t1 (

c1 INT,

c2 SHORT,

c3 LONG,

c4 DOUBLE,

c5 FLOAT,

c6 CHAR(1000),

c7 DATE

)

""")

--

CREATE UNIQUE INDEX

--

cur.execute("CREATE UNIQUE INDEX idx_t1 ON t1 (c1)")

conn.commit()

--

INSERT 10 ROWS

--

insert_sql = """

INSERT INTO t1 (c1, c2, c3, c4, c5, c6, c7)

VALUES (?, ?, ?, ?, ?, ?, ?)

"""

for i in range(1, 11):

cur.execute(

insert_sql,

i, # c1

i % 100, # c2

i * 1000, # c3

i * 1.1, # c4

i * 2.2, # c5

f"row-{i}".ljust(1000),

datetime.now() # c7

)

conn.commit()

--

UPDATE 10 TIMES

--

update_sql = """

UPDATE t1

SET c4 = c4 + 1.0,

c5 = c5 + 1.0

280 | API Reference

WHERE c1 = ?

"""

for i in range(1, 11):

cur.execute(update_sql, i)

conn.commit()

--

SELECT 10 ROWS

--

cur.execute("""

SELECT c1, c2, c3, c4, c5, c6, c7

FROM t1

ORDER BY 1

""")

rows = cur.fetchall()

for r in rows:

print(

f"c1={r.C1}, c2={r.C2}, c3={r.C3}, "

f"c4={r.C4}, c5={r.C5}, c7={r.C7}"

)

--

DELETE 10 ROWS

--

cur.execute("DELETE FROM t1")

conn.commit()

except Exception as e:

if conn:

conn.rollback()

print("ERROR:", e)

finally:

if cur:

cur.close()

if conn:

conn.close()

if __name__ == "__main__":

main()

노트

● DATE 컬럼은 datetime을 사용한다.

GO Lang | 281

● unixODBC를 거쳐 수행되기 때문에 성능은 제한적이다.

2.5 GO Lang

GoLang에서 LITE를 사용하는 예제이다.

mkdir gotest

cd gotest

go mod init gotest

go get github.com/alexbrainman/odbc

go run gotest.go

gotest.go 의 예시이다.

package main

import (

"database/sql"

"fmt"

"log"

"time"

_ "github.com/alexbrainman/odbc"

)

func main() {

// --

// CONNECT

// --

db, err := sql.Open("odbc", "DSN=LITE")

if err != nil {

log.Fatal(err)

}

defer db.Close()

// --

// DROP TABLE (ignore error)

// --

func() {

tx, err := db.Begin()

if err != nil {

282 | API Reference

log.Fatal(err)

}

defer tx.Rollback()

_, _ = tx.Exec("DROP TABLE t1")

tx.Commit()

}()

// --

// CREATE TABLE + INDEX

// --

tx, err := db.Begin()

if err != nil {

log.Fatal(err)

}

_, err = tx.Exec(`

CREATE TABLE t1 (

c1 INT,

c2 SHORT,

c3 LONG,

c4 DOUBLE,

c5 FLOAT,

c6 CHAR(1000),

c7 DATE

)

`)

if err != nil {

tx.Rollback()

log.Fatal(err)

}

_, err = tx.Exec("CREATE UNIQUE INDEX idx_t1 ON t1 (c1)")

if err != nil {

tx.Rollback()

log.Fatal(err)

}

if err = tx.Commit(); err != nil {

log.Fatal(err)

}

// --

// INSERT 10 ROWS

// --

tx, err = db.Begin()

if err != nil {

GO Lang | 283

log.Fatal(err)

}

insertSQL := `

INSERT INTO t1 (c1, c2, c3, c4, c5, c6, c7)

VALUES (?, ?, ?, ?, ?, ?, ?)

`

stmt, err := tx.Prepare(insertSQL)

if err != nil {

tx.Rollback()

log.Fatal(err)

}

defer stmt.Close()

for i := 1; i <= 10; i++ {

_, err = stmt.Exec(

i, // c1

i%100, // c2

i*1000, // c3

float64(i)*1.1, // c4

float64(i)*2.2, // c5

fmt.Sprintf("row-%d", i), // CHAR(1000)

time.Now(), // DATE (TIMESTAMP로 바인딩됨)

)

if err != nil {

tx.Rollback()

log.Fatal(err)

}

}

if err = tx.Commit(); err != nil {

log.Fatal(err)

}

// --

// UPDATE 10 TIMES

// --

tx, err = db.Begin()

if err != nil {

log.Fatal(err)

}

updateSQL := `

UPDATE t1

SET c4 = c4 + 1.0,

c5 = c5 + 1.0

284 | API Reference

WHERE c1 = ?

`

stmt, err = tx.Prepare(updateSQL)

if err != nil {

tx.Rollback()

log.Fatal(err)

}

defer stmt.Close()

for i := 1; i <= 10; i++ {

if _, err = stmt.Exec(i); err != nil {

tx.Rollback()

log.Fatal(err)

}

}

if err = tx.Commit(); err != nil {

log.Fatal(err)

}

// --

// SELECT 10 ROWS

// --

rows, err := db.Query(`

SELECT c1, c2, c3, c4, c5, c6, c7

FROM t1

ORDER BY 1

`)

if err != nil {

log.Fatal(err)

}

defer rows.Close()

for rows.Next() {

var (

c1 int

c2 int16

c3 int64

c4 float64

c5 float64

c6 string

c7 time.Time

)

if err := rows.Scan(&c1, &c2, &c3, &c4, &c5, &c6, &c7); err != nil {

log.Fatal(err)

Error Message | 285

}

fmt.Printf(

"c1=%d, c2=%d, c3=%d, c4=%f, c5=%f, c7=%s\n",

c1, c2, c3, c4, c5, c7.Format(time.RFC3339),

)

}

// --

// DELETE

// --

tx, err = db.Begin()

if err != nil {

log.Fatal(err)

}

if _, err = tx.Exec("DELETE FROM t1"); err != nil {

tx.Rollback()

log.Fatal(err)

}

if err = tx.Commit(); err != nil {

log.Fatal(err)

}

}

2.6 Error Message

GOLDILOCKS LITE에 정의된 에러 메시지는 다음 표와 같다.

Error defined name Error code Detail message 설명

DBM_ERRCODE_INVALID_ARGS 22001
fail to validate some parameters at internal p

rocessing

사용자 변수가 잘

못되었거나 입력

인자 혹은, 내부

처리 과정에서 인

자 검증에 오류가

있을 경우 발생

DBM_ERRCODE_MEMORY_NOT

_SUFFICIENT
22002 fail to alloc memory from OS (errno=%d)

처리과정에 내부

에서 사용하는 메

모리 공간 할당

과정에 실패할 경

우 발생

286 | API Reference

DBM_ERRCODE_FAIL_TO_ALLO

C_MEMORY
22003 fail to alloc memory from dbmAllocator

처리과정에 메모

리가 부족한 경우

발생

DBM_ERRCODE_NOT_IMPL 22004 not implemented
지원되지 않는 기

능

DBM_ERRCODE_ALREADY_SHM

_EXIST
22005 a shared memory already exists

동일한 shared

memory segme

nt가 이미 존재하

는 경우 발생

DBM_ERRCODE_CREATE_SHM_

FAIL
22006 fail to create a shared memory segment

shared memory

생성에 실패한 경

우 발생

DBM_ERRCODE_INIT_SHM_FAIL 22007 fail to initialize a shared memory segment

shared memory

를 생성하는 과정

에 공간부족등으

로 실패할 경우

발생

DBM_ERRCODE_ATTACH_SHM_

FAIL
22008 fail to attach a shared memory segment

shared memory

attach에 실패할

경우 발생

DBM_ERRCODE_SHM_OPEN_FA

IL
22009 fail to open a shared memory

/dev/shm 에 존

재하는 segment

file 열기에 실패

할 경우 발생

DBM_ERRCODE_SHM_FSTAT_F

AIL
22010 fail to get a information of shm

/dev/shm에 존

재하는 segment

file의 정보를 읽

는데 실패할 경우

발생

DBM_ERRCODE_SHM_INVALID_

SIZE
22011 invalid segment size to attach a shm

실제 Attach해야

할 크기와 segm

ent header에 기

록된 크기가 다른

경우 발생

DBM_ERRCODE_MMAP_FAIL 22012
fail to call a mmap to attach a shared memor

y segment

shared memory

attach를 위해 호

출되는 system c

all이 실패하는 경

우 발생

DBM_ERRCODE_DETACH_SHM_

FAIL
22013 fail to detach a shared memory segment

shared memory

detach 과정에

실패할 경우 발생

shared memory

Error defined name Error code Detail message 설명

Error Message | 287

DBM_ERRCODE_DROP_FAIL 22014 fail to drop a shared segment memory segment를 삭제

하는데 실패할 경

우 발생

DBM_ERRCODE_CREATE_SHM_

DIR_FAIL
22015 fail to create a directory for shared-memory

/dev/shm에 디

렉토리 생성 기능

이 지원되는 커널

버전에서 디렉토

리 생성이 실패할

경우 발생

DBM_ERRCODE_INVALID_SLOT_

NO
22016 invalid slot number (SlotId=%ld)

잘못된 Slot ID로

접근하는 경우 발

생

DBM_ERRCODE_NO_EXIST_DIC 22017 fail to attach dictionary (execute initdb)

Dictionary Insta

nce에 Attach할

수 없는 경우 발

생

DBM_ERRCODE_NOT_DEF_INST

ANCE
22018 a operation not allowed without instance

현재 Instance에

서는 수행할 수

없는 작업을 시도

하는 경우 발생

DBM_ERRCODE_NOT_EXIST_TA

BLE
22019 (%s) table not exists

테이블이 존재하

지 않는 경우 발

생

DBM_ERRCODE_NOT_EXIST_CO

LUMN
22020 (%s) Column not exists

컬럼이 존재하지

않는 경우 발생

DBM_ERRCODE_MAX_SEGMEN

T
22021

a segment has no space to extend because o

f reached max_segment

segment가 확장

가능한 개수를 넘

을 경우 발생

DBM_ERRCODE_NO_SPACE 22022
a segment has no space to extend because o

f reached max_size

segment내에 공

간이 부족한 경우

발생

DBM_ERRCODE_CONNECT_FAIL 22023 fail to connect target server

원격서버에 접속

할 수 없는 경우

발생

DBM_ERRCODE_SEND_FAIL 22024 fail to send a packet

원격서버에 pack

et전송에 실패할

경우 발생

DBM_ERRCODE_RECV_FAIL 22025 fail to receive a packet

원격서버로부터

packet수신에 실

패할 경우 발생

DBM_ERRCODE_HB_FAIL 22026 fail to send or receive a packet for HB

원격서버와 Hear

t-Beat 송/수신에

실패할 경우 발생

Error defined name Error code Detail message 설명

288 | API Reference

DBM_ERRCODE_INIT_HANDLE_F

AIL
22027 fail to initialize a handle

dbmInitHandle

호출에 실패할 경

우 발생

DBM_ERRCODE_ALLOC_HANDL

E_FAIL
22028 fail to alloc a memory for handle

dbmInitHandle

처리 과정에서 메

모리가 부족한 경

우 발생

DBM_ERRCODE_NEED_VALUE_

NULL
22029

a pointer have to be set null to initialize a ha

ndle

dbmInitHandle

의 dbmHandle

변수가 NULL로

초기화 되지 않은

경우 발생

DBM_ERRCODE_FREE_HANDLE_

FAIL
22030 fail to free a handle

dbmHandlle 해

제 처리에 실패한

경우 발생

DBM_ERRCODE_ALLOC_STMT_F

AIL
22031 fail to alloc a memory for statement

dbmPrepareSt

mt 처리 과정에

서 메모리가 부족

한 경우 발생

DBM_ERRCODE_INIT_PARSE_CT

X_FAIL
22032 fail to alloc a memory for parser-context

dbmPrepareSt

mt 처리 과정 중

SQL parsing과

정에서 메모리가

부족한 경우 발생

DBM_ERRCODE_EXECUTE_FAIL 22033 fail to execute a statement

dbmStmt 수행

에 실패한 경우

발생

DBM_ERRCODE_INVALID_STMT

_TYPE
22034 invalid stmt type

internal error c

ode

DBM_ERRCODE_INVALID_PLAN

_TYPE
22035 invalid plan type

internal error c

ode

DBM_ERRCODE_INVALID_DATA

_TYPE
22036 invalid data type

binding하는 사

용자 변수와 컬럼

타입간에 호환되

지 않는 경우 발

생

DBM_ERRCODE_INVALID_TABLE

_SIZE_OPTION
22037 invalid table size option

table 생성에 주

어지는 init, exte

nd, max의 설정

값이 올바르지 않

은 경우 발생

DBM_ERRCODE_PREPARE_FAIL 22038 "fail to prepare a statement

dbmPrepareSt

mt가 실패하는

Error defined name Error code Detail message 설명

Error Message | 289

경우 발생

DBM_ERRCODE_FREE_STMT_FA

IL
22039 fail to finalize a stmt

dbmFreeStmt가

실패하는 경우 발

생

DBM_ERRCODE_INVALID_EXPR_

TYPE
22040 invalid expr type

사용자의 SQL에

사용된 expressi

on이 올바르지

않거나 지원되지

않는 경우 발생

DBM_ERRCODE_ALLOC_MEM_F

AIL
22041 fail to alloc a memory for something

internal error c

ode

DBM_ERRCODE_INVALID_BUILT

_FUNC
22042 invalid built-in function

내부 built-in 함

수를 잘못 사용하

는 경우 발생

DBM_ERRCODE_INVALID_SEGM

ENT
22043 invalid segment

손상된 또는, Loc

k이 점유된 seg

ment 상태인 경

우 발생

DBM_ERRCODE_ALLOC_TRANS

_FAIL
22044 fail to alloc a trans for current-session

동시 접속 가능한

세션의 개수를 초

과하는 경우 발생

DBM_ERRCODE_DATA_COUNT_

MISMATCH
22045

the number of binding-data mismatch to tar

get-list

SELECT문에 기

술된 Target 개

수와 Binding한

개수가 다를 경우

발생

DBM_ERRCODE_INVALID_COLU

MN
22046 (%s) column not exists

특정 컬럼이 존재

하지 않는 경우

발생

DBM_ERRCODE_INVALID_EXPR 22047 invalid expression type

사용자의 SQL에

사용된 expressi

on이 올바르지

않거나 지원되지

않는 경우 발생

DBM_ERRCODE_CONVERT_DAT

A_FAIL
22048

fail to convert a data as invalid data-type or v

alue-size or origin-value etc.

expression 처리

과정에서 호환되

지 않는 데이터

타입, 크기등의

오류가 발생할 경

우

DBM_ERRCODE_BINDING_COL_

FAIL
22049 fail to bind a column (%s)

특정 컬럼에 대한

binding이 실패

하는 경우 발생

Error defined name Error code Detail message 설명

290 | API Reference

DBM_ERRCODE_CONVERT_OVE

RFLOW
22050 fail to convert data as overflow

데이터 값을 변환

하는 과정에서 o

verflow가 발생

할 경우

DBM_ERRCODE_NO_MORE_DA

TA
22051 no more data to fetch

일치하는 레코드

가 없는 경우 발

생

DBM_ERRCODE_DIVIDE_BY_ZER

O
22052

a operation can not be executed because of

divide by zero

expression이 0

으로 나누는 경우

가 있을 경우 발

생

DBM_ERRCODE_INVALID_GROU

P_BY
22053

invalid group-by or target-list to execute gro

up-by
deprecated

DBM_ERRCODE_NOT_EXIST_IN

DEX
22054 index not exist (%s)

지정된 index가

존재하지 않는 경

우 발생

DBM_ERRCODE_INDEX_DUPLIC

ATED
22055 index key value duplicated (%s)

key가 중복된 삽

입이 발생할 경우

DBM_ERRCODE_INDEX_KEY_N

OT_FOUND
22056 index key not found (%s)

internal error c

ode

DBM_ERRCODE_INVALID_LOG_

TYPE
22057 invalid log type

internal error c

ode

DBM_ERRCODE_DUP_COLUMN

_NAME
22058 (%s) column duplicated

create table에

서 중복된 컬럼명

이 사용될 경우

발생

DBM_ERRCODE_INVALID_DATA

_SIZE
22059 invalid data size (Limit=%d : InputSize=%d)

삽입등에서 테이

블에 저장 가능한

크기보다 큰 데이

터가 입력된 경우

발생

DBM_ERRCODE_CHANGE_SCN_

FAIL
22060

fail to change SCN of row (Segment=%s, Sl

otId=%ld)
deprecated

DBM_ERRCODE_INVALID_SCN 22061 invalid scn (SCN=%ld) deprecated

DBM_ERRCODE_COMMIT_PRO

C_FAIL
22062

fail to process a function to commit (log=%s

)

커밋처리과정에

실패할 경우 발생

DBM_ERRCODE_ROLLBACK_PR

OC_FAIL
22063

"fail to process a function to rollback (log=%

s)

롤백처리과정에

실패할 경우 발생

DBM_ERRCODE_DUP_INDEX_KE

Y_COLUMN
22064

a index with same ordering key was already

created (%s)

동일한 index ke

y의 구성 및 정렬

순서로 인덱스가

존재할 경우 발생

Error defined name Error code Detail message 설명

Error Message | 291

DBM_ERRCODE_DUP_COLUMN

_DEFINED
22065 a column definition duplicated (%s)

동일 컬럼이 이미

존재하는 경우 발

생

DBM_ERRCODE_OPEN_DISK_LO

G_FAIL
22066 fail to open a disk logfile (%s) (errno=%d)

트랜잭션 로그 파

일을 생성하는 과

정에서 실패한 경

우 발생

DBM_ERRCODE_LSEEK_DISK_LO

G_FAIL
22067

fail to locate a position of disk logfile (%s) (e

rrno=%d)

트랜잭션 로그 파

일의 기록위치를

이동시키는 과정

에 실패한 경우

발생

DBM_ERRCODE_SWITCH_DISK_

LOG_FAIL
22068 fail to switch a disk logfile

다음 트랜잭션 로

그 파일을 생성/

적용하는 과정에

실패할 경우 발생

DBM_ERRCODE_WRITE_DISK_L

OG_FAIL
22069 fail to write a disk logfile (errno=%d)

트랜잭션 로그 파

일 기록에 실패할

경우 발생

DBM_ERRCODE_FSYNC_DISK_L

OG_FAIL
22070 fail to sync a disk logfile (errno=%d)

트랜잭션 로그 파

일을 디스크로 sy

nc하는 과정에

실패할 경우 발생

DBM_ERRCODE_READ_DISK_LO

G_FAIL
22071 fail to read from a disk logfile (errno=%d)

트랜잭션 로그 파

일을 읽지 못하는

경우 발생

DBM_ERRCODE_INVALID_DISK_

LOG
22072 invalid disk log block

트랜잭션 로그 파

일에 기록된 로그

블록이 손상된 경

우 발생

DBM_ERRCODE_INVALID_TABLE

_TYPE
22073

a operation can not be executed on target-t

able (check table type)

대상 테이블이 지

원하지 않는 기능

을 실행하려 할

경우 발생

DBM_ERRCODE_INVALID_INDEX

_STAT
22075

a index (%s) invalid stat, need to rebuild ind

ex

인덱스가 Lock이

점유되어 복구가

필요한 경우 발생

DBM_ERRCODE_INVALID_TRY 22076 not supported transaction

지원하지 않는 기

능을 실행할 경우

발생

DBM_ERRCODE_INST_ALREADY

_EXISTS
22077 a instance already exists

Instance가 이미

존재하는 경우 발

생

Error defined name Error code Detail message 설명

292 | API Reference

DBM_ERRCODE_INDEX_ALREAD

Y_EXISTS
22078 a index already exists

Index가 이미 존

재하는 경우 발생

DBM_ERRCODE_ALREADY_EXIS

TS_TABLE
22079 a table already exists

Table이 이미 존

재하는 경우 발생

DBM_ERRCODE_DEAD_LOCK_D

ETECT
22080 a dead-lock detection

데드락이 발생한

경우 victim이 된

세션에 발생

DBM_ERRCODE_TOO_LONG_N

AME
22081 a length of object too long (max %d bytes)

object의 이름 길

이가 64byte를

초과하는 경우 발

생

DBM_ERRCODE_INVALID_BIND_

PARAM
22082

invalid binding parameters (index or name n

ot exist)

binding 대상이

존재하지 않는 경

우 발생

DBM_ERRCODE_MISMATCH_BI

ND_COL
22083 invalid binding column count

binding대상의

개수가 실제 SQL

문의 바인딩 개수

와 다른 경우 발

생

DBM_ERRCODE_NEED_DICT_HA

NDLE
22084

this operation can be executed by a dictionar

y handle.

DICT instance에

서 수행할 수 없

는 기능을 실행할

경우 발생

DBM_ERRCODE_NOT_EXISTS_IN

ST
22085 a instance not exists

Instance가 존재

하지 않는 경우

발생

DBM_ERRCODE_INVALID_KEY_

DATA_TYPE
22086

a index key column must have a data type as

(long, char, int, short)

Index Key 로 지

정할 수 없는 데

이터타입의 컬럼

을 사용하는 경우

발생

DBM_ERRCODE_TIMEOUT 22087 a timeout raised on this operation

Timeout except

ion이 발생한 경

우

DBM_ERRCODE_NOT_ALLOWE

D_OPERATION
22088

this operation not allowed at current-instanc

e

현재 Instance에

서 지원하지 않는

기능을 수행하려

할 경우 발생

DBM_ERRCODE_TOO_BIG_ROW

SIZE
22089 a total size of columns is too big to create

지원 가능한 최대

크기를 넘는 레코

드 길이의 테이블

을 생성할 경우

발생

Error defined name Error code Detail message 설명

Error Message | 293

DBM_ERRCODE_NEED_COMMIT

_OR_ROLLBACK
22090

fail to free a statement variable as transactio

n not completed
deprecated

DBM_ERRCODE_TOO_BIG_TO_

WRITE_LOG
22091 a log-size is too big to write a transaction log

한 트랜잭션에 수

행된 로그 크기의

합산이 최대 크기

를 넘을 경우 발

생

DBM_ERRCODE_FAIL_TO_PARS

E
22092 fail to parse a syntax

SQL문이 문법에

적합하지 않은 경

우 발생

DBM_ERRCODE_NEED_INDEX 22093 a operation via API need a index

테이블 접근에 필

요한 Index가 생

성되지 않은 경우

발생

DBM_ERRCODE_INVALID_SEQ_

OPTION
22094 a invalid number or range for sequence

sequence 생성

문법에 올바르지

않은 옵션 값이

사용된 경우 발생

DBM_ERRCODE_SEQUENCE_M

AXVALUE
22095 a sequence reached at max-value

no cycle seque

nce가 최대값까

지 도달한 경우

발생

DBM_ERRCODE_SEQUENCE_NO

T_DEF_CURRVAL
22096

a currval of sequence not yet defined (need t

o call nextval)

sequence객체가

nextval 호출 없

이 currval이 수

행된 경우 발생

DBM_ERRCODE_NOT_ENOUGH

_BUFF
22097 not enough buffer size depreacted

DBM_ERRCODE_INVALID_LICEN

SE
22098 invalid license

라이센스 오류 발

생

DBM_ERRCODE_INVALID_OFFSE

T
22099 invalid offset

internal error c

ode

DBM_ERRCODE_TOO_MANY_R

OWS
22100 too many rows deprecated

DBM_ERRCODE_CHECK_DIC_FA

IL
22101 fail to check dictionary" deprecated

DBM_ERRCODE_THREAD_FAIL 22102 fail to invoke a thread
internal error c

ode

DBM_ERRCODE_FILE_READ_FAI

L
22103 fail to read

파일 읽기에 실패

한 경우 발생

DBM_ERRCODE_FILE_WRITE_FAI

L
22104 fail to write

파일 쓰기에 실패

한 경우 발생

Error defined name Error code Detail message 설명

294 | API Reference

DBM_ERRCODE_NOT_ACTIVE_I

NSTANCE
22105 a instance not active-mode deprecated

DBM_ERRCODE_DIRECT_INVALI

D_KEY_DATA_TYPE
22106

a index key column must have a data type as

(long, int, short)

index key 로 사

용할 수 없는 데

이터 타입의 컬럼

을 지정할 경우

발생

DBM_ERRCODE_DIRECT_NEED_I

NDEX
22107

at first, need to create a index to use a direct

table

direct table에 i

ndex가 없는 상

태에서 operatio

n이 발생할 경우

DBM_ERRCODE_FAIL_TO_PREP

ARE_DISK_LOG
22108 fail to prepare a disk logfile

트랜잭션 로그 파

일을 준비하는 과

정에 오류가 발생

할 경우

DBM_ERRCODE_FAIL_TO_PREP

ARE_REPL
22109 fail to prepare replication

replication 준비

과정에 오류가 발

생하는 경우

DBM_ERRCODE_FAIL_TO_PREP

ARE_TABLE
22110 fail to prepare a table

dbmPrepareTa

ble 오류 발생 시

DBM_ERRCODE_NOT_FOUND 22111 no data found

조건에 일치하는

데이터가 검색되

지 않는 경우

DBM_ERRCODE_REPL_NOT_CO

NNECTED
22112 a replication-session not connected deprecated

DBM_ERRCODE_TOO_MANY_R

ESULT
22113 a result-set has too many rows to process

조회 결과를 임시

저장하는 메모리

가 부족한 경우

발생

DBM_ERRCODE_NOT_EXIST_PR

OC
22114 a procedure not found deprecated

DBM_ERRCODE_ALREADY_EXIS

T_PROC
22115 a procedure already exists deprecated

DBM_ERRCODE_INVALID_IDENT

IFIER
22116 invalid identifier

internal error c

ode

DBM_ERRCODE_CASE_NOT_FO

UND
22117 case not found deprecated

DBM_ERRCODE_CURSOR_ALRE

ADY_OPENED
22118 a cursor already opened deprecated

DBM_ERRCODE_CURSOR_NOT_

OPENED
22119 a cursor not opened deprecated

DBM_ERRCODE_EXCEPTION_DU
22120

a exception duplicated(Line=%d,Column=%
deprecated

Error defined name Error code Detail message 설명

Error Message | 295

PLICATED d)

DBM_ERRCODE_RAISE_USER_E

XCEPTION
22121 a user exception raised deprecated

DBM_ERRCODE_UNHANDLE_EX

CEPTION
22122 unhandled exceptions deprecated

DBM_ERRCODE_PREPARE_PRO

CEDURE
22123

fail to prepare a object/statement of proced

ure (Line=%d, Column=%d)
deprecated

DBM_ERRCODE_EXIT_ONLY_AT

_LOOP
22124

a exit/continue statement is able to be used i

n loop-statement
deprecated

DBM_ERRCODE_EXECUTE_PRO

C_FAIL
22125

fail to execute a procedure statement (Line=

%d)
deprecated

DBM_ERRCODE_CHANGED_PLA

N
22126 changed index after dbmPrepareStmt

prepared된 SQL

이 실행되는 시점

과 execute 시점

에 index 객체가

변경된 경우 발생

DBM_ERRCODE_ALREADY_ATT

ACH_TID
22127

current thread-id already attached at (Trans=

%d)

1개의 thread가

또 다른 세션을

점유하려고 시도

할 경우 발생

DBM_ERRCODE_TOO_MANY_S

EGMENT_EXTEND
22128

a count of segment expected too many chun

k. (need less than 999)

shared memory

생성 시 예상되는

extend segmen

t 개수의 합이 99

9개를 넘을 경우

발생

DBM_ERRCODE_GET_SEMAPHO

RE
22129 error get semaphore (id=%ld) deprecated

DBM_ERRCODE_CURSOR_API_A

LREADY_OPENED
22130 open cursor api already executed deprecated

DBM_ERRCODE_CURSOR_API_A

LREADY_CLOSED
22131 close cursor api already executed deprecated

DBM_ERRCODE_DDL_RAISED 22132
a handle of table re-prepared as ddl execute

d

DML 수행시점에

DDL이 발생한 것

을 감지할 경우

DBM_ERRCODE_BEGIN_TRANS_

STAT
22133

a operation can not be executed as other tra

nsaction (transId=%d) already began
deprecated

DBM_ERRCODE_NEED_NO_TX_

AT_DDL
22134

a operation can not be executed as previous

transaction need commit or rollback

트랜잭션이 종료

되지 않은 세션에

서 DDL을 수행하

는 경우 발생

DBM_ERRCODE_ALREADY_EXIS
22135 a library already exists deprecated

Error defined name Error code Detail message 설명

296 | API Reference

T_LIB

DBM_ERRCODE_NOT_EXIST_LIB 22136 a function not exists deprecated

DBM_ERRCODE_EXECUTE_USER

_FUNC_FAIL
22137

fail to execute a user function (%s:RetCode

=%d)
deprecated

DBM_ERRCODE_INVALID_TIME_

OPTION
22138 invalid time option deprecated

DBM_ERRCODE_PORT_OUT_OF

_RANGE
22139 port out of range deprecated

DBM_ERRCODE_CLIENT_MAX_

OUT_OF_RANGE
22140 client max out of range deprepcated

DBM_ERRCODE_PROCESS_MAX

_OUT_OF_RANGE
22141 process max out of range deprecated

DBM_ERRCODE_PROCESS_MIN_

OUT_OF_RANGE
22142 process min out of range deprecated

DBM_ERRCODE_PROCESS_CNT_

OUT_OF_RANGE
22143 process count out of range deprecated

DBM_ERRCODE_GSB_CREATE_F

AIL
22145 create gsb failed deprecated

DBM_ERRCODE_GSB_DROP_FAI

L
22146 drop gsb failed deprecated

DBM_ERRCODE_INVALID_JSON_

KEY_VALUE
22147 a key value has not to be json-object or array deprecated

DBM_ERRCODE_INVALID_JSON_

VALUE
22148 invalid json key-string or valueOrType deprecated

DBM_ERRCODE_ALREADY_EXIS

TS_REPL
22149 a replication name already exists

동일 이름의 이중

화 객체가 이미

존재하는 경우 발

생

DBM_ERRCODE_INVALID_DIREC

T_TABLE_INDEX
22150 a column is not valid as index in direct-table

direct table에 i

ndex로 지정하

는 컬럼의 데이터

타입등이 올바르

지 않은 경우 발

생

DBM_ERRCODE_INVALID_REPL_

DIR
22151

a value of unsent_dir property is not matche

d between anchor-file and property-file

이중화 미전송 로

그 경로가 instan

ce 생성 시점 이

후 변경된 경우

발생

DBM_ERRCODE_INVALID_PROP 22152 a property(%s) is not found or invalid value
internal error c

ode

DBM_ERRCODE_NEED_JOIN_IN
22153 a join table need index deprecated

Error defined name Error code Detail message 설명

Error Message | 297

DEX

DBM_ERRCODE_DDL_NOT_ALL

OWED_IN_REPL
22154

a DDL not allowed as a table involved in repli

cation

이중화 대상 테이

블에 DDL이 발생

할 경우

DBM_ERRCODE_NEED_INDEX_

ON_OPERATION
22155

a operation can not executed as some table

need unique-index"

unique index가

반드시 존재해야

하는 경우 발생

DBM_ERRCODE_ODBC_CALL_F

AIL
22156 fail to call ODBC_LIB (Detail:%s) deprecated

DBM_ERRCODE_NOT_EXIST_DS

N
22157 a dsn not exists deprecated

DBM_ERRCODE_ODBC_LIB_OPE

N_FAIL
22158 fail to open odbc-library deprecated

DBM_ERRCODE_ODBC_GET_SY

MBOL_FAIL
22159

fail to get a function symbol of mapping OD

BC API
deprecated

DBM_ERRCODE_INVALID_JSON_

KEY_SIZE
22160 a json key is too long deprecated

DBM_ERRCODE_ERROR_HTTP 22161 http failed deprecated

DBM_ERRCODE_INVALID_LIMIT

_OPTION
22162 invalid limit option deprecated

DBM_ERRCODE_NOT_ALLOWE

D_UPDATE
22163

a update operation not allowed on a record

with expired-time
deprecated

DBM_ERRCODE_NOT_INVALID_

CREATE_TIME

22164 a create-time of segment is invalid instance 생성 시

점보다 이전의 se

gment가 존재하

는 경우 발생

DBM_ERRCODE_CANNOT_UPD

ATE_KEY_COLUMN

22165 cannot update key column value index key 컬럼

을 update하려

는 operation이

발생할 경우

DBM_ERRCODE_INVALID_STOR

E_KEY_SIZE

22166 invalid store key size store key size보

다 큰 길이의 key

가 입력될 경우

DBM_ERRCODE_INVALID_STOR

E_VALUE_SIZE

22167 invalid store value size store value size

보다 큰 길이의 v

alue가 입력될 경

우

DBM_ERRCODE_CANNOT_EXEC

UTE

22168 a operation not applicable 지원되지 않는 o

peration이 수행

될 경우

DBM_ERRCODE_NEED_AUTH 22169 Authentication failed or password error. instance 암호화

설정된 상태에서

Error defined name Error code Detail message 설명

298 | API Reference

인증되지 않은 세

션의 operation

이 발생할 경우

DBM_ERRCODE_CHECK_LOG_D

IR

22170 some files exist in DBM_DISK_LOG_DIR create instance

시점에 기존의 트

랜잭션 로그 파일

이나 유사한 이름

으로 파일이 존재

할 경우 발생

Error defined name Error code Detail message 설명

Error Message | 299

	GOLDILOCKS LITE 3.1 Manual (ko)
	차례
	1. Getting Started
	1.1 개요
	Object
	DICTIONARY
	INSTANCE
	TABLE
	INDEX
	DIRECT TABLE
	SPLAY TABLE
	STORE TABLE
	QUEUE
	SEQUENCE

	동시성 및 복구
	Row Level Lock
	Read Committed
	Auto Dead Lock Detection
	Delayed Recovery Concept

	Disk Logging
	Replication

	1.2 Quick Start
	설치 전 작업
	/dev/shm 공간 설정
	커널 파라미터 설정

	환경 변수 및 프로퍼티
	설치 및 라이센스
	설치
	라이센스

	시작하기
	dbmMetaManager 실행 오류 시 참고 사항

	1.3 구문
	Data Definition Language (DDL)
	initdb
	기능
	구문
	사용 예

	create instance
	기능
	구문
	사용 예

	create table
	기능
	구문
	사용 예

	create index
	기능
	구문
	사용 예

	create queue
	기능
	구문
	사용 예

	create store
	기능
	구문
	사용 예

	create sequence
	기능
	구문
	사용 예

	create user_type
	기능
	구문
	사용 예

	drop index
	기능
	구문
	사용 예

	drop table (queue, store)
	기능
	구문
	사용 예

	drop sequence
	기능
	구문
	사용 예

	drop user_type
	기능
	구문
	사용 예

	drop instance
	기능
	구문
	사용 예

	alter instance active/inactive
	기능
	구문
	사용 예

	truncate table (queue, store)
	기능
	구문
	사용 예

	compact table
	기능
	구문
	사용 예

	add column
	기능
	구문
	사용 예

	drop column
	기능
	구문
	사용 예

	rename column
	기능
	구문
	사용 예

	create replication
	기능
	구문
	사용 예

	alter replication
	기능
	구문
	사용 예

	alter system replication sync
	기능
	구문
	사용 예

	drop replication
	기능
	구문
	사용 예

	set instance
	기능
	구문
	사용 예

	alter sequence [currval]
	기능
	구문
	사용 예

	alter system reset checkpoint
	기능
	구문
	사용 예

	alter system reset perf
	기능
	구문
	사용 예

	alter system refine [TableList]
	기능
	구문
	사용 예

	Data Manipulation Language(DML)
	insert
	기능
	구문
	사용 예

	update
	기능
	구문
	사용 예

	delete
	기능
	구문
	사용 예

	select 및 select for update
	기능
	구문
	사용 예

	enqueue
	기능
	구문
	사용 예

	dequeue
	기능
	구문
	사용 예

	set
	기능
	구문
	사용 예

	get
	기능
	구문
	사용 예

	Data Control Language (DCL)
	commit
	기능
	구문
	사용 예

	rollback
	기능
	구문
	사용 예

	Built-in Function
	sysdate
	사용 예

	extract
	사용 예

	datetime_str
	사용 예

	to_date('문자열', 'Format')
	사용 예

	datediff(From, to)
	사용 예

	dump(value, [base])
	사용 예

	Hex (Value)
	사용 예

	concat(target, append)
	사용 예

	instr(source, keyword, [start, #appearance])
	사용 예

	replace(source, keyword, replace)
	사용 예

	substr(source, start_position, count)
	사용 예

	length(source)
	사용 예

	ltrim / rtrim(source)
	사용 예

	lpad / rpad(source, size, padding_string)
	사용 예

	abs(value)
	사용 예

	mod(value1, value2)
	사용 예

	ceil(value)
	사용 예

	floor(value)
	사용 예

	round(value)
	사용 예

	trunc(value, [pos])
	사용 예

	random(from, to)
	사용 예

	nextval
	사용 예

	currval
	사용 예

	Digest (Value, SHA-type)
	사용 예

	Min(Column)
	사용 예

	Max(Column)
	사용 예

	Avg(Column)
	사용 예

	Sum(Column)
	사용 예

	Decode(cond_expr, case_cond, value_expr, ..., [else_expr])
	사용 예

	Upper(expr)
	사용 예

	Lower(expr)
	사용 예

	NVL(orgnExpr, valueExpr)
	사용 예

	JSON_STRING(Column_Name_List)
	사용 예

	USER_TYPE(Column_Name, Type_Name)
	사용 예

	1.4 DICTIONARY
	DICTIONARY TABLES
	DIC_INST
	DIC_TABLE
	DIC_COLUMN
	DIC_INDEX
	DIC_INDEX_COLUMN
	DIC_SEQUENCE
	DIC_REPL_INST
	DIC_REPL_TABLE

	Information View
	V$INSTANCE
	V$SESSION
	V$TRANSACTION
	V$LOG_STAT
	V$REPL_STAT
	V$TABLE_USAGE
	V$SYS_STAT
	V$SESS_STAT

	1.5 dbmMetaManager
	개요
	Internal Commands
	list
	desc
	set index
	set vertical [on/off]
	OS Command 수행
	원격 연결
	struct out (구조체 출력)
	history
	"/" (재수행 명령)
	ed
	set instance
	set password
	startup

	1.6 복구 가이드
	스냅샷 (SnapShot) 저장 및 복원
	디스크 로깅을 이용한 복원
	체크포인트
	복구

	1.7 Utility
	dbmExp
	Input Option
	사용 예 (특정 instance의 하위 object 및 데이터 추출)
	dbmExp 추출 결과물

	dbmImp
	Input Option
	사용 예

	dbmCkpt
	Input Option

	dbmDump
	Dump Memory
	dbmDump (Instance)
	사용 예

	dbmDump (Table)
	사용 예

	dbmDump (Index)
	사용 예

	Dump File
	dbmDump (Anchor)
	사용 예

	dbmDump (Datafile)
	사용 예

	dbmDump (Logfile)
	사용 예

	dbmListener
	Input Option

	dbmLogFlusher
	Input Option

	dbmMonitor
	Input Option
	사용 예

	dbmReplica
	Input Option
	사용 예

	1.8 Sizing
	Instance Sizing
	Table Sizing
	Index Sizing
	디스크 공간 산정
	트랜잭션 로그 파일
	데이터 파일
	이중화 미전송 로그 파일

	1.9 Monitoring
	LOCK 정보 확인
	처리량 확인
	Log Cache 및 Checkpoint 상태

	2. API Reference
	2.1 API 공통사항
	2.2 C/C++ APIs
	dbmInitHandle
	기능
	인자
	사용 예

	dbmConnect
	인자
	사용 예

	dbmFreeHandle
	기능
	인자
	사용 예

	dbmPrepareTable
	기능
	인자
	사용 예

	dbmPrepareTableHandle
	기능
	인자
	사용 예

	dbmAuthorize
	기능
	인자
	사용 예

	dbmPrepareStmt
	기능
	인자
	사용 예

	dbmFreeStmt
	기능
	인자
	사용 예

	dbmBindParamById
	기능
	인자
	사용 예

	dbmBindParamByName
	기능
	인자
	사용 예

	dbmBindCol
	기능
	인자
	사용 예

	dbmBindColStruct
	기능
	인자
	사용 예

	dbmExecuteStmt
	기능
	인자
	사용 예

	dbmFetchStmt
	기능
	인자
	사용 예

	dbmFetchStmt2Json
	기능
	인자
	사용 예

	dbmInsertRow
	기능
	인자
	사용 예

	dbmInsert
	기능
	인자
	사용 예

	dbmUpdateRow
	기능
	인자
	사용 예

	dbmUpdate
	기능
	인자
	사용 예

	dbmUpsertRow
	기능
	인자
	사용 예

	dbmUpsert
	기능
	인자
	사용 예

	dbmDeleteRow
	기능
	인자
	사용 예

	dbmDelete
	기능
	인자
	사용 예

	dbmBindColumn
	기능
	인자
	사용 예

	dbmClearBind
	기능
	인자
	사용 예

	dbmUpdateRowByCols
	기능
	인자
	사용 예

	dbmUpdateByCols
	기능
	인자
	사용 예

	dbmSelectRow
	기능
	인자
	사용 예

	dbmSelect
	기능
	인자
	사용 예

	dbmSetIndex
	기능
	인자
	사용 예

	dbmFetch
	기능
	인자
	사용 예

	dbmSelectRowGT
	기능
	인자
	사용 예

	dbmSelectRowLT
	기능
	인자
	사용 예

	dbmFetchNext
	기능
	인자
	사용 예

	dbmFetchNextGT
	기능
	인자
	사용 예

	dbmFetchNextLT
	기능
	인자
	사용 예

	dbmSelectForUpdateRow
	기능
	인자
	사용 예

	dbmInsertArray
	기능
	인자
	사용 예

	dbmUpdateArray
	기능
	인자
	사용 예

	dbmSelectArray
	기능
	인자
	사용 예

	dbmDeleteArray
	기능
	인자
	사용 예

	dbmEnqueue
	기능
	인자
	사용 예

	dbmDequeue
	기능
	인자
	사용 예

	dbmGetStore
	기능
	인자
	사용 예

	dbmSetStore
	기능
	인자
	사용 예

	dbmDelStore
	기능
	인자
	사용 예

	dbmGetCurrVal
	기능
	인자
	사용 예

	dbmGetNextVal
	기능
	인자
	사용 예

	dbmCommit
	기능
	인자
	사용 예

	dbmRollback
	기능
	인자
	사용 예

	dbmDeferCommit
	기능
	인자
	사용 예

	dbmDeferSync
	기능
	인자
	사용 예

	dbmRefineSystem
	기능
	인자
	사용 예

	dbmGetRowCount
	기능
	인자
	사용 예

	dbmGetRowSize
	기능
	인자
	사용 예

	dbmGetTableName
	기능
	인자
	사용 예

	dbmGetTableType
	기능
	인자
	사용 예

	dbmSetSplayMode4DML
	기능
	인자
	사용 예

	dbmGetErrorData
	기능
	인자
	사용 예

	dbmGetErrorMsg
	기능
	인자
	사용 예

	dbmGetTableUsage
	기능
	인자
	사용 예

	dbmGetTableUsageByHandle
	기능
	인자
	사용 예

	dbmExtendTable
	기능
	인자
	사용 예

	dbmExistDataInQue
	기능
	인자
	사용 예

	dbmSetAutoCommit
	기능
	인자
	사용 예

	dbmSetLoggingMode
	기능
	인자
	사용 예

	2.3 JAVA
	Class & Method
	dbmConnection
	dbmStatement
	dbmPreparedStatement
	dbmResultSet
	dbmResultSetMeta

	Connection Pool
	MyBatis 연동
	연결정보 설정
	Mapper.xml 설정예시
	예제코드
	Mybatis Connection Pool 설정

	Hibernate6 연동
	Session API 예제
	Entity 방식

	2.4 Python 연동
	2.5 GO Lang
	2.6 Error Message

