
GOLDILOCKS 3.2 User Manual (en)

SUNJESOFT Inc.

Table of Contents

iii

Table of Contents

Part I. Getting Started

1. Preface

1.1 Overview

1.2 Summary

1.3 Characteristics of GOLDILOCKS Cluster

2. Tutorial

2.1 Managing GOLDILOCKS Instance

2.2 Installing GOLDILOCKS and Creating Database

2.3 Managing Database Memory Structure

2.4 Managing Schema Object

2.5 Managing User

2.6 GOLDILOCKS Property

2.7 GOLDILOCKS Utility

3. Cluster Tutorial

3.1 Managing GOLDILOCKS Cluster System

3.2 Installing GOLDILOCKS and Creating Database

3.3 Managing Schema Object

3.4 GOLDILOCKS Property

4. What's New

4.1 Feature Matrix

4.2 What's New in GOLDILOCKS 3.2

4.3 Patch Notes

Part II. Administration Manual

5. Basic Management of GOLDILOCKS Database

. iii

. 1

. 5

.	 6

.	 7

.	 11

. 17

.	 18

.	 25

.	 43

.	 51

.	 54

.	 58

.	 60

. 63

.	 64

.	 72

.	 76

.	 87

. 91

.	 92

.	 153

.	 162

. 197

. 219

iv | Table of Contents

5.1 Creating and Configuring GOLDILOCKS Database

5.2 Starting up and Shutting down GOLDILOCKS Instance

5.3 Managing Process

5.4 Managing Memory

5.5 Monitoring

6. Structure and Storage Structure of GOLDILOCKS Database

6.1 Managing Control File

6.2 Managing Redo Log File

6.3 Managing Archive Redo Log File

6.4 Managing Tablespace

6.5 Managing Data File

7. Backup and Recovery of GOLDILOCKS Database

7.1 ARCHIVELOG Mode

7.2 Backup and Recovery

8. GOLDILOCKS Database Replication

8.1 Overview

8.2 Operating Method

8.3 Trace Log

9. Database Information

9.1 DICTIONARY_SCHEMA

9.2 INFORMATION_SCHEMA

9.3 PERFORMANCE_VIEW_SCHEMA

10. Server Property

10.1 Server Property Information

10.2 AGING_INTERVAL

10.3 AGING_PLAN_INTERVAL

10.4 ARCHIVELOG_DIR_1 ~ ARCHIVELOG_DIR_10

10.5 ARCHIVELOG_FILE

10.6 ARCHIVELOG_MODE

10.7 BACKUP_DIR_1 ~ BACKUP_DIR_10

10.8 BLOCK_READ_COUNT

10.9 BULK_IO_PAGE_COUNT

10.10 CDISPATCHER_HOT_POLICY_INTERVAL

10.11 CDISPATCHER_SOCKET_BUFFER_SIZE

10.12 CDISPATCHER_SYNC_THREADS

10.13 CDISPATCHER_THREADS

10.14 CHARACTER_SET

10.15 CHAR_LENGTH_UNITS

.	 220

.	 223

.	 231

.	 237

.	 239

. 253

.	 254

.	 258

.	 262

.	 264

.	 270

. 273

.	 274

.	 276

. 295

.	 296

.	 297

.	 304

. 307

.	 308

.	 504

.	 541

. 603

.	 604

.	 605

.	 606

.	 607

.	 608

.	 609

.	 610

.	 611

.	 612

.	 613

.	 614

.	 615

.	 616

.	 617

.	 618

| v

10.16 CHECK_DEDICATE_CONNECTION_INTERVAL

10.17 CLIENT_MAX_COUNT

10.18 CLIENT_NUMA_POLICY

10.19 CLOSE_PSM_CHILD_STMTS

10.20 CLUSTER_ASYNC_COMMIT

10.21 CLUSTER_ASYNC_REPLICATION

10.22 CLUSTER_CM_BUFFER_COUNT

10.23 CLUSTER_CM_BUFFER_SIZE

10.24 CLUSTER_CM_READ_BUFFER_SIZE

10.25 CLUSTER_COMMIT_SLAVES

10.26 CLUSTER_COMMIT_STREAM_ISOLATION

10.27 CLUSTER_CONNECTION

10.28 CLUSTER_CONNECTION_TIMEOUT_SEC

10.29 CLUSTER_DATA_SYNC_SERVERS

10.30 CLUSTER_DISPATCHER_IN_QUEUE_SIZE

10.31 CLUSTER_DISPATCHER_NUMA_STREAM_MAP

10.32 CLUSTER_DISPATCHER_OUT_QUEUE_SIZE

10.33 CLUSTER_HEARTBEAT_INTERVAL

10.34 CLUSTER_HEARTBEAT_RETRY_COUNT

10.35 CLUSTER_IGNORE_INACTIVE_MEMBER

10.36 CLUSTER_MAX_PACKET_SIZE

10.37 CLUSTER_MAX_PAYLOAD_SIZE

10.38 CLUSTER_PACKET_ALLOCATION_TIMEOUT

10.39 CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT

10.40 CLUSTER_PROTOCOL_FAILOVER_POLICY_TIMEOUT

10.41 CLUSTER_SERVER_RESPONSE_QUEUE_SIZE

10.42 CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY

10.43 CLUSTER_SPLIT_BRAIN_RETRY_COUNT

10.44 COMMITTER_HOT_POLICY_INTERVAL

10.45 CONTROL_FILE_0 ~ CONTROL_FILE_7

10.46 CONTROL_FILE_COUNT

10.47 CONTROL_FILE_TEMP_NAME

10.48 COORDINATOR_COMMIT_WRITE_MODE

10.49 CSERVERS

10.50 DATABASE_ACCESS_MODE

10.51 DATABASE_INSTANCE_NAME

10.52 DATA_STORE_MODE

10.53 DA_CLIENT_NUMA_NODE

10.54 DDL_AUTOCOMMIT

.	 620

.	 621

.	 622

.	 623

.	 624

.	 625

.	 626

.	 627

.	 628

.	 629

.	 630

.	 631

.	 632

.	 633

.	 634

.	 635

.	 636

.	 637

.	 638

.	 639

.	 640

.	 641

.	 642

.	 643

.	 644

.	 645

.	 646

.	 647

.	 648

.	 649

.	 650

.	 651

.	 652

.	 653

.	 654

.	 655

.	 656

.	 657

.	 658

vi | Table of Contents

10.55 DDL_LOCK_TIMEOUT

10.56 DEFAULT_GLOBAL_SECONDARY_INDEX_CREATION

10.57 DEFAULT_INDEX_LOGGING

10.58 DEFAULT_INDEX_PCTFREE

10.59 DEFAULT_INITRANS

10.60 DEFAULT_MAXTRANS

10.61 DEFAULT_PCTFREE

10.62 DEFAULT_PCTUSED

10.63 DEFAULT_REMOVAL_BACKUP_FILE

10.64 DEFAULT_REMOVAL_OBSOLETE_BACKUP_LIST

10.65 DEFAULT_SHARDING

10.66 DISABLE_DDL_CDC_GIVEUP

10.67 DISABLE_UPDATE_PK_CDC_GIVEUP

10.68 DISALLOWED_PROTOCOL_TARGETTYPE

10.69 DISALLOWED_PROTOCOL_TARGETTYPE_WITH_ALL

10.70 DISALLOWED_PROTOCOL_TARGETTYPE_WITH_NAME

10.71 DISPATCHER_CM_BUFFER_SIZE

10.72 DISPATCHER_CM_UNIT_SIZE

10.73 DISPATCHER_CONNECTIONS

10.74 DISPATCHER_HOT_POLICY_INTERVAL

10.75 DISPATCHER_LOAD_BALANCING

10.76 DISPATCHER_NUMA_STREAM_MAP

10.77 DISPATCHER_QUEUE_SIZE

10.78 DISPATCHER_REQUEST_MINI_QUEUE_COUNT

10.79 DISPATCHER_RESPONSE_MINI_QUEUE_COUNT

10.80 DISPATCHERS

10.81 FETCH_FAILOVER

10.82 GLOBAL_CONNECTION_ALLOW_SESSION_DEPENDENCY

10.83 GLOBAL_JOURNAL_BUFFER_SIZE

10.84 GLOBAL_JOURNAL_BUFFER_TOTAL_MAX_SIZE

10.85 GLOBAL_PROPERTY_LOCK_TIMEOUT

10.86 GLOBAL_TRANSACTION_COMMIT_WRITE_MODE

10.87 GLOBAL_TRANSACTION_ISOLATION_SCOPE

10.88 GLOBAL_TRANSACTION_LOG_DIR

10.89 GLOBAL_TRANSACTION_LOG_FILE_SIZE

10.90 GMASTER_NUMA_NODE

10.91 GMON_AUTOSTART

10.92 HINT_ERROR

10.93 IDLE_TIMEOUT

.	 659

.	 660

.	 661

.	 662

.	 663

.	 664

.	 665

.	 666

.	 667

.	 668

.	 669

.	 672

.	 673

.	 674

.	 675

.	 676

.	 677

.	 678

.	 679

.	 680

.	 681

.	 682

.	 683

.	 684

.	 685

.	 686

.	 687

.	 688

.	 689

.	 690

.	 691

.	 692

.	 693

.	 694

.	 695

.	 696

.	 697

.	 698

.	 699

| vii

10.94 INDEX_BUILD_PARALLEL_FACTOR

10.95 INDEX_TREE_MERGE_PARALLEL_FACTOR

10.96 INST_ALLOCATOR_COUNT

10.97 INST_TABLE_BLOCK_SIZE

10.98 IN_DOUBT_DECISION

10.99 JOURNAL_TEMP_DIR

10.100 KEEPALIVE_IDLE_TIME

10.101 LOCAL_CLUSTER_MEMBER

10.102 LOCAL_CLUSTER_MEMBER_HOST

10.103 LOCAL_CLUSTER_MEMBER_PORT

10.104 LOCAL_JOURNAL_BUFFER_SIZE

10.105 LOCATION_FILE

10.106 LOCATOR_QUERY_TIMEOUT

10.107 LOCK_HASH_TABLE_SIZE

10.108 LOG_BLOCK_SIZE

10.109 LOG_BUFFER_SIZE

10.110 LOG_DIR

10.111 LOG_FILE_SIZE

10.112 LOG_GROUP_COUNT

10.113 LOG_MIRROR_MODE

10.114 LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE

10.115 LOG_MIRROR_TIMEOUT

10.116 LOG_SYNC_INTERVAL

10.117 LOG_SYNC_INTERVAL_MSEC

10.118 MAX_GROUP_COUNT

10.119 MAX_JOURNAL_FILE_SIZE

10.120 MAX_NODE_COUNT

10.121 MAXIMUM_CONCURRENT_ACTIVITIES

10.122 MAXIMUM_FLANGE_COUNT

10.123 MAXIMUM_FLUSH_LOG_BLOCK_COUNT

10.124 MAXIMUM_FLUSH_PAGE_COUNT

10.125 MAXIMUM_JOURNAL_REPLAY_COUNT

10.126 MAXIMUM_NAMED_CURSOR_COUNT

10.127 MAXIMUM_SESSION_CM_BUFFER_SIZE

10.128 MEASURE_CLUSTER_LATENCY

10.129 MEMORY_MERGE_RUN_COUNT

10.130 MEMORY_SORT_RUN_SIZE

10.131 MINIMUM_UNDO_PAGE_COUNT

10.132 MIN_SAMPLE_ROW_COUNT

.	 700

.	 701

.	 702

.	 703

.	 704

.	 705

.	 706

.	 707

.	 708

.	 709

.	 710

.	 711

.	 712

.	 713

.	 714

.	 715

.	 716

.	 717

.	 718

.	 719

.	 720

.	 721

.	 722

.	 723

.	 724

.	 725

.	 726

.	 727

.	 728

.	 729

.	 730

.	 731

.	 732

.	 734

.	 735

.	 736

.	 737

.	 738

.	 739

viii | Table of Contents

10.133 NET_BUFFER_SIZE

10.134 NLS_DATE_FORMAT

10.135 NLS_TIME_FORMAT

10.136 NLS_TIME_WITH_TIME_ZONE_FORMAT

10.137 NLS_TIMESTAMP_FORMAT

10.138 NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT

10.139 NUMA

10.140 NUMA_MAP

10.141 OFFLINE_MEMBER_AFTER_FAILOVER

10.142 ONLINE_JOURNAL_REPLAY_THRESHOLD

10.143 OS_GROUP_ACCESS

10.144 PACKET_COMPRESSION_THRESHOLD

10.145 PAGE_CHECKSUM_TYPE

10.146 PARALLEL_IO_FACTOR

10.147 PARALLEL_IO_GROUP_1 ~ PARALLEL_IO_GROUP_16

10.148 PARALLEL_LOAD_FACTOR

10.149 PENDING_LOG_BUFFER_COUNT

10.150 PLAN_CACHE

10.151 PLAN_CACHE_SIZE

10.152 PRIVATE_STATIC_AREA_SIZE

10.153 PROCESS_MAX_COUNT

10.154 QUERY_TIMEOUT

10.155 READABLE_ARCHIVELOG_DIR_COUNT

10.156 READABLE_BACKUP_DIR_COUNT

10.157 REBALANCE_BLOCK_READ_COUNT

10.158 RECOMPILE_CHECK_MINIMUM_PAGE_COUNT

10.159 RECOMPILE_PAGE_PERCENT

10.160 RECOVERY_LOG_BUFFER_SIZE

10.161 REDO_LOG_COMPRESSION_THRESHOLD

10.162 REFINE_RELATION

10.163 SESSION_FATAL_BEHAVIOR

10.164 SESSION_MEMORY_INIT_SIZE

10.165 SESSION_MEMORY_SHRINK_THRESHOLD

10.166 SHARED_MEMORY_ADDRESS

10.167 SHARED_MEMORY_STATIC_KEY

10.168 SHARED_MEMORY_STATIC_NAME

10.169 SHARED_MEMORY_STATIC_SIZE

10.170 SHARED_REQUEST_QUEUE_COUNT

10.171 SHARED_SERVERS

.	 740

.	 741

.	 742

.	 743

.	 744

.	 745

.	 746

.	 747

.	 748

.	 749

.	 750

.	 751

.	 752

.	 753

.	 754

.	 755

.	 756

.	 757

.	 758

.	 759

.	 760

.	 761

.	 762

.	 763

.	 764

.	 765

.	 766

.	 767

.	 768

.	 769

.	 770

.	 771

.	 772

.	 773

.	 774

.	 775

.	 776

.	 777

.	 778

| ix

10.172 SHARED_SESSION

10.173 SNAPSHOT_STATEMENT_TIMEOUT

10.174 SQL_HISTORY_SIZE

10.175 SQL_HISTORY_TYPE

10.176 SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY

10.177 SYSTEM_LOGGER_DIR

10.178 SYSTEM_MEMORY_AUX_TABLESPACE_SIZE

10.179 SYSTEM_MEMORY_DATA_TABLESPACE_SIZE

10.180 SYSTEM_MEMORY_DICT_TABLESPACE_SIZE

10.181 SYSTEM_MEMORY_TEMP_TABLESPACE_SIZE

10.182 SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE

10.183 SYSTEM_TABLESPACE_DIR

10.184 SYSTEM_UDS_DIR

10.185 TCP_CLIENT_NUMA_NODE

10.186 TCP_NODELAY

10.187 TEMP_SEGMENT_CACHE_SIZE

10.188 TEMP_UNDO_ENABLED

10.189 TIMED_STATISTICS

10.190 TIMEZONE

10.191 TRACE_ALTER_SYSTEM

10.192 TRACE_DDL

10.193 TRACE_LOG_ID

10.194 TRACE_LOG_MSGBUF_SIZE

10.195 TRACE_LOG_TIME_DETAIL

10.196 TRACE_LOGGER

10.197 TRACE_LOGGER_REMOTE_HOST

10.198 TRACE_LOGGER_REMOTE_PORT

10.199 TRACE_LOGIN

10.200 TRACE_LONG_RUN_CURSOR

10.201 TRACE_LONG_RUN_SQL

10.202 TRACE_XA

10.203 TRANSACTION_ALLOCATION_TIMEOUT

10.204 TRANSACTION_COMMIT_WRITE_MODE

10.205 TRANSACTION_MAXIMUM_UNDO_PAGE_COUNT

10.206 TRANSACTION_TABLE_SIZE

10.207 TRANSACTION_TIMEOUT

10.208 UNDO_RELATION_ALLOCATION_TIMEOUT

10.209 UNDO_RELATION_COUNT

10.210 UNDO_SHRINK_THRESHOLD

.	 779

.	 780

.	 781

.	 782

.	 783

.	 784

.	 785

.	 786

.	 787

.	 788

.	 789

.	 790

.	 791

.	 792

.	 793

.	 794

.	 795

.	 796

.	 797

.	 798

.	 799

.	 800

.	 801

.	 802

.	 803

.	 804

.	 805

.	 806

.	 807

.	 809

.	 810

.	 811

.	 812

.	 813

.	 814

.	 816

.	 817

.	 818

.	 820

x | Table of Contents

10.211 USE_LARGE_PAGES

Part III. SQL Manual

11. SQL Elements

11.1 Syntax Elements

11.2 Data Type

11.3 Format String

11.4 Expressions

11.5 Pseudo Columns

11.6 Operators

11.7 Functions

11.8 Conditions

11.9 Built-in Data Type References

11.10 Built-in Function References

12. SQL Languages

12.1 Data Definition Language

12.2 Data Manipulation Language

12.3 Data Query Language

12.4 Control Language

12.5 Processing SQL in Cluster

13. SQL Objects

13.1 Database

13.2 Profile

13.3 Audit Policy

13.4 Authorization

13.5 Schema

13.6 Tablespace

13.7 Table

13.8 Index

13.9 View

13.10 Sequence

13.11 Synonym

13.12 Stored Procedure

13.13 Stored Function

14. Cluster Objects

14.1 Cluster System

14.2 Cluster Group

14.3 Cluster Member

.	 821

. 823

. 865

.	 866

.	 887

.	 914

.	 928

.	 935

.	 940

.	 943

.	 951

.	 963

.	 990

. 1,203

.	 1,204

.	 1,214

.	 1,222

.	 1,236

.	 1,241

. 1,289

.	 1,290

.	 1,297

.	 1,303

.	 1,331

.	 1,342

.	 1,353

.	 1,356

.	 1,362

.	 1,366

.	 1,369

.	 1,373

.	 1,376

.	 1,378

. 1,381

.	 1,382

.	 1,389

.	 1,391

| xi

14.4 Cluster Location

14.5 Cluster Table and Shard

14.6 Global Secondary Index

15. SQL Tuning

15.1 Overview

15.2 SQL Processing

15.3 Query Optimizer

15.4 SQL Execution Plan

15.5 SQL Trace Log

16. SQL References

16.1 ALTER AUDIT POLICY

16.2 ALTER CLUSTER GROUP name ADD MEMBER

16.3 ALTER CLUSTER GROUP name OFFLINE MEMBER

16.4 ALTER CLUSTER LOCATION

16.5 ALTER DATABASE ADD LOGFILE

16.6 ALTER DATABASE ARCHIVELOG

16.7 ALTER DATABASE BACKUP

16.8 ALTER DATABASE CLEAR AUDIT TRAIL

16.9 ALTER DATABASE CLEAR PASSWORD HISTORY

16.10 ALTER DATABASE DELETE BACKUP

16.11 ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

16.12 ALTER DATABASE DROP LOGFILE

16.13 ALTER DATABASE MOVE SHARD

16.14 ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS

16.15 ALTER DATABASE REBALANCE

16.16 ALTER DATABASE REBALANCE EXCLUDE CLUSTER GROUP

16.17 ALTER DATABASE RENAME LOGFILE

16.18 ALTER DATABASE RECOVER

16.19 ALTER DATABASE REGISTER

16.20 ALTER DATABASE RESET LOCAL CLUSTER MEMBER

16.21 ALTER DATABASE RESTORE

16.22 ALTER INDEX

16.23 ALTER INDEX name AGING

16.24 ALTER INDEX name STORAGE

16.25 ALTER INDEX name RENAME TO

16.26 ALTER PROFILE

16.27 ALTER SEQUENCE

16.28 ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL;

16.29 ALTER SESSION SET property_name

.	 1,393

.	 1,394

.	 1,410

. 1,413

.	 1,414

.	 1,415

.	 1,421

.	 1,455

.	 1,494

. 1,501

.	 1,502

.	 1,505

.	 1,508

.	 1,511

.	 1,513

.	 1,516

.	 1,518

.	 1,522

.	 1,524

.	 1,526

.	 1,529

.	 1,531

.	 1,534

.	 1,537

.	 1,539

.	 1,542

.	 1,545

.	 1,547

.	 1,552

.	 1,554

.	 1,556

.	 1,559

.	 1,561

.	 1,564

.	 1,568

.	 1,570

.	 1,574

.	 1,580

.	 1,582

xii | Table of Contents

16.30 ALTER SYSTEM CHECKPOINT

16.31 ALTER SYSTEM CLEANUP PLAN

16.32 ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER

16.33 ALTER SYSTEM JOIN DATABASE

16.34 ALTER SYSTEM {MOUNT | OPEN} DATABASE

16.35 ALTER SYSTEM [KILL | DISCONNECT] SESSION

16.36 ALTER SYSTEM RECONNECT GLOBAL CONNECTION

16.37 ALTER SYSTEM RESET property_name

16.38 ALTER SYSTEM SET property_name

16.39 ALTER SYSTEM SWITCH LOGFILE

16.40 ALTER TABLE

16.41 ALTER TABLE name ADD COLUMN

16.42 ALTER TABLE name SET UNUSED COLUMN

16.43 ALTER TABLE name ALTER COLUMN

16.44 ALTER TABLE name RENAME COLUMN

16.45 ALTER TABLE name ADD CONSTRAINT

16.46 ALTER TABLE name DROP CONSTRAINT

16.47 ALTER TABLE name ALTER CONSTRAINT

16.48 ALTER TABLE name RENAME CONSTRAINT

16.49 ALTER TABLE name ADD GLOBAL SECONDARY INDEX

16.50 ALTER TABLE name DROP GLOBAL SECONDARY INDEX

16.51 ALTER TABLE name ALTER GLOBAL SECONDARY INDEX

16.52 ALTER TABLE name MOVE SHARD

16.53 ALTER TABLE name REBALANCE

16.54 ALTER TABLE name REBALANCE EXCLUDE CLUSTER GROUP cluster_group_list

16.55 ALTER TABLE name SPLIT SHARD

16.56 ALTER TABLE name RENAME SHARD

16.57 ALTER TABLE name READ { ONLY | WRITE }

16.58 ALTER TABLE name RENAME TO

16.59 ALTER TABLE name STORAGE

16.60 ALTER TABLE name ADD SUPPLEMENTAL LOG

16.61 ALTER TABLE name DROP SUPPLEMENTAL LOG

16.62 ALTER TABLESPACE

16.63 ALTER TABLESPACE name RENAME TO

16.64 ALTER TABLESPACE name BACKUP

16.65 ALTER TABLESPACE name [ONLINE|OFFLINE]

16.66 ALTER TABLESPACE name ADD [DATAFILE|MEMORY]

16.67 ALTER TABLESPACE name DROP [DATAFILE|MEMORY]

16.68 ALTER TABLESPACE name RENAME DATAFILE

.	 1,584

.	 1,586

.	 1,588

.	 1,590

.	 1,593

.	 1,596

.	 1,599

.	 1,601

.	 1,604

.	 1,608

.	 1,610

.	 1,615

.	 1,619

.	 1,622

.	 1,634

.	 1,636

.	 1,639

.	 1,642

.	 1,645

.	 1,648

.	 1,654

.	 1,656

.	 1,661

.	 1,664

.	 1,666

.	 1,669

.	 1,673

.	 1,676

.	 1,679

.	 1,681

.	 1,684

.	 1,686

.	 1,688

.	 1,691

.	 1,693

.	 1,696

.	 1,699

.	 1,702

.	 1,705

| xiii

16.69 ALTER USER

16.70 ALTER VIEW

16.71 ANALYZE SYSTEM

16.72 ANALYZE TABLE

16.73 AUDIT POLICY

16.74 CLOSE cursor_name

16.75 COMMENT ON name IS

16.76 COMMIT

16.77 CREATE AUDIT POLICY

16.78 CREATE CLUSTER GROUP

16.79 CREATE CLUSTER LOCATION

16.80 CREATE INDEX

16.81 CREATE PROFILE

16.82 CREATE SCHEMA

16.83 CREATE SEQUENCE

16.84 CREATE SYNONYM

16.85 CREATE TABLE

16.86 CREATE TABLE AS SELECT

16.87 CREATE GLOBAL TEMPORARY TABLE

16.88 CREATE TABLESPACE

16.89 CREATE MEMORY DATA TABLESPACE

16.90 CREATE MEMORY TEMPORARY TABLESPACE

16.91 CREATE USER

16.92 CREATE VIEW

16.93 DECLARE cursor_name

16.94 DELETE FROM

16.95 DELETE FROM name RETURNING

16.96 DELETE FROM name RETURNING .. INTO

16.97 DELETE FROM name WHERE CURRENT OF cursor_name

16.98 DROP AUDIT POLICY

16.99 DROP CLUSTER GROUP

16.100 DROP CLUSTER LOCATION

16.101 DROP INDEX

16.102 DROP PROFILE

16.103 DROP SCHEMA

16.104 DROP SEQUENCE

16.105 DROP SYNONYM

16.106 DROP TABLE

16.107 DROP TABLESPACE

.	 1,707

.	 1,714

.	 1,717

.	 1,720

.	 1,727

.	 1,733

.	 1,735

.	 1,741

.	 1,744

.	 1,751

.	 1,754

.	 1,756

.	 1,764

.	 1,775

.	 1,780

.	 1,786

.	 1,790

.	 1,825

.	 1,832

.	 1,837

.	 1,839

.	 1,843

.	 1,847

.	 1,854

.	 1,859

.	 1,872

.	 1,876

.	 1,880

.	 1,884

.	 1,888

.	 1,890

.	 1,892

.	 1,894

.	 1,896

.	 1,898

.	 1,901

.	 1,904

.	 1,907

.	 1,911

xiv | Table of Contents

16.108 DROP USER

16.109 DROP VIEW

16.110 EXECUTE statement_name

16.111 EXECUTE IMMEDIATE 'sql_string'

16.112 FETCH cursor_name

16.113 GRANT privileges TO

16.114 INSERT INTO

16.115 INSERT INTO name RETURNING

16.116 INSERT INTO name RETURNING .. INTO

16.117 LOCK TABLE

16.118 NOAUDIT POLICY

16.119 OPEN cursor_name

16.120 PREPARE statement_name

16.121 RELEASE SAVEPOINT savepoint_specifier

16.122 REVOKE privileges FROM

16.123 ROLLBACK

16.124 SAVEPOINT savepoint_specifier

16.125 SELECT

16.126 SELECT .. FOR UPDATE

16.127 SELECT .. INTO

16.128 SELECT .. INTO .. FOR UPDATE

16.129 SET CONSTRAINTS

16.130 SET SESSION AUTHORIZATION user_identifier

16.131 SET SESSION CHARACTERISTICS AS transaction_mode

16.132 SET TIME ZONE

16.133 SET TRANSACTION transaction_mode

16.134 TRUNCATE TABLE

16.135 UPDATE

16.136 UPDATE name RETURNING

16.137 UPDATE name RETURNING .. INTO

16.138 UPDATE name WHERE CURRENT OF cursor_name

Part IV. PSM Manual

17. Overview of PSM

17.1 Features of PSM

17.2 Language Elements

17.3 Processing Transaction in PSM

18. PSM DataTypes

.	 1,914

.	 1,918

.	 1,920

.	 1,925

.	 1,928

.	 1,934

.	 1,946

.	 1,951

.	 1,955

.	 1,959

.	 1,963

.	 1,969

.	 1,973

.	 1,978

.	 1,980

.	 1,984

.	 1,988

.	 1,991

.	 2,074

.	 2,079

.	 2,082

.	 2,088

.	 2,098

.	 2,100

.	 2,102

.	 2,104

.	 2,106

.	 2,109

.	 2,114

.	 2,118

.	 2,122

. 2,127

. 2,143

.	 2,144

.	 2,146

.	 2,147

. 2,149

| xv

18.1 Built-in Data Types

18.2 Attribute Data Types

18.3 User-defined Record Type

18.4 User-defined Collection Type

18.5 SYS_REFCURSOR

19. PSM Control Statements

19.1 Assignment

19.2 PL Block

19.3 NULL Statement

19.4 Testing Conditions

19.5 Iterative Control

19.6 Sequential Control

19.7 Error Handling

20. PSM Cursor Statements

20.1 Declaration

20.2 OPEN

20.3 FETCH

20.4 CLOSE

20.5 EXPLICIT CURSOR ATTRIBUTES

20.6 IMPLICIT_CURSOR_ATTRIBUTES

20.7 CURSOR VARIABLES

21. Using PSM Subprograms

21.1 Anonymous PL Block

21.2 Nested Procedure

21.3 Nested Function

21.4 Schema-level Procedure

21.5 Schema-level Function

21.6 Built-in Procedures

22. Using SQLs in PSM

22.1 Static SQLs

22.2 Dynamic SQL

23. PSM Language Element References

23.1 Assignment Statement

23.2 Basic LOOP Statement

23.3 Block (BEGIN .. END)

23.4 CASE Statement

23.5 CLOSE Statement

23.6 Collection Method Invocation

.	 2,150

.	 2,153

.	 2,155

.	 2,157

.	 2,165

. 2,167

.	 2,168

.	 2,172

.	 2,175

.	 2,176

.	 2,179

.	 2,182

.	 2,188

. 2,203

.	 2,204

.	 2,208

.	 2,209

.	 2,211

.	 2,212

.	 2,214

.	 2,216

. 2,223

.	 2,224

.	 2,225

.	 2,227

.	 2,228

.	 2,233

.	 2,236

. 2,239

.	 2,240

.	 2,258

. 2,263

.	 2,264

.	 2,268

.	 2,270

.	 2,273

.	 2,276

.	 2,278

xvi | Table of Contents

23.7 COLLECTION Variable Declaration

23.8 CONTINUE Statement

23.9 Cursor FOR LOOP Statement

23.10 Cursor Variable Declaration

23.11 DELETE Statement Extension

23.12 EXCEPTION_INIT Pragma

23.13 Exception Declaration

23.14 Exception Handler

23.15 EXECUTE IMMEDIATE Statement

23.16 EXIT Statement

23.17 Explicit Cursor Attribute

23.18 Explicit Cursor Declaration and Definition

23.19 FETCH Statement

23.20 FOR LOOP Statement

23.21 Function Declaration and Definition

23.22 GOTO Statement

23.23 IF Statement

23.24 Implicit Cursor Attribute

23.25 INSERT Statement Extension

23.26 NULL Statement

23.27 OPEN Statement

23.28 OPEN FOR Statement

23.29 Procedure Call

23.30 Procedure Declaration and Definition

23.31 RAISE Statement

23.32 Record Variable Declaration

23.33 RETURN Statement

23.34 RETURNING INTO clause

23.35 %ROWTYPE Attribute

23.36 Scalar Variable Declaration

23.37 SELECT INTO Statement

23.38 SQLCODE Function

23.39 SQLERRM Function

23.40 %TYPE Attribute

23.41 UPDATE Statement Extension

23.42 WHILE LOOP Statement

24. PSM SQL References

24.1 ALTER FUNCTION

24.2 ALTER PROCEDURE

.	 2,282

.	 2,286

.	 2,289

.	 2,293

.	 2,295

.	 2,298

.	 2,300

.	 2,302

.	 2,305

.	 2,309

.	 2,311

.	 2,314

.	 2,318

.	 2,321

.	 2,324

.	 2,327

.	 2,329

.	 2,331

.	 2,333

.	 2,336

.	 2,338

.	 2,341

.	 2,344

.	 2,347

.	 2,349

.	 2,352

.	 2,354

.	 2,356

.	 2,358

.	 2,360

.	 2,363

.	 2,365

.	 2,367

.	 2,369

.	 2,371

.	 2,374

. 2,377

.	 2,378

.	 2,380

| xvii

24.3 CALL Statement

24.4 CREATE FUNCTION

24.5 CREATE PROCEDURE

24.6 DROP FUNCTION

24.7 DROP PROCEDURE

Part V. Developer Manual

25. ODBC

25.1 Overview of GOLDILOCKS ODBC Driver

25.2 Data Source Configuration

25.3 GLOBAL CONNECTION

25.4 Catalog Function

25.5 ODBC API References

25.6 XA API References

26. JDBC

26.1 Overview of GOLDILOCKS JDBC Driver

26.2 Feature Specification

26.3 JDBC API References

27. Embedded SQL

27.1 Precompiler

27.2 Embedded SQL

27.3 Advanced Topic

27.4 Embedded SQL Reference

28. PDO

28.1 Overview of PDO

28.2 Installation /Configuration

28.3 Usage

28.4 Examples

29. PyDBC

29.1 GOLDILOCKS PyDBC

29.2 API Reference

29.3 Exception

29.4 Data Type

30. Hibernate

30.1 Overview

30.2 Interworking with Hibernate

30.3 Examples

.	 2,383

.	 2,386

.	 2,391

.	 2,396

.	 2,399

. 2,403

. 2,411

.	 2,412

.	 2,415

.	 2,424

.	 2,430

.	 2,435

.	 2,784

. 2,801

.	 2,802

.	 2,807

.	 2,830

. 3,021

.	 3,022

.	 3,032

.	 3,148

.	 3,188

. 3,217

.	 3,218

.	 3,218

.	 3,220

.	 3,221

. 3,231

.	 3,232

.	 3,235

.	 3,250

.	 3,251

. 3,255

.	 3,256

.	 3,256

.	 3,257

xviii | Table of Contents

Part VI. Utility Manual

31. gcreatedb

31.1 Overview of gcreatedb

31.2 Command Option

32. glsnr

32.1 Overview of glsnr

32.2 Command Options

32.3 Listener Configuration

33. gsql/gsqlnet (Interactive SQL Tool)

33.1 Overview of gsql

33.2 Executing gsql

33.3 Using Interactive Command

33.4 Command Option Reference

33.5 Interactive Command References

34. gloader/gloadernet (Upload/download Tool)

34.1 Overview of gloader and gloadernet

34.2 Using gloader

34.3 Control File Syntax

34.4 gloader Argument References

35. gdump

35.1 Overview of gdump

35.2 Examples of Using gdump

36. tablediff

36.1 Overview of tablediff

36.2 Usage

37. gsyncher

37.1 Overview of gsyncher

37.2 Examples

38. gmon

38.1 Overview of gmon

38.2 Examples

39. gtrclogger

39.1 Overview of gtrclogger

39.2 Examples

40. glocator

40.1 Overview of glocator

40.2 Using glocator

. 3,265

. 3,273

.	 3,274

.	 3,276

. 3,281

.	 3,282

.	 3,283

.	 3,286

. 3,291

.	 3,292

.	 3,296

.	 3,302

.	 3,341

.	 3,349

. 3,427

.	 3,428

.	 3,432

.	 3,455

.	 3,462

. 3,477

.	 3,478

.	 3,481

. 3,495

.	 3,496

.	 3,498

. 3,505

.	 3,506

.	 3,507

. 3,511

.	 3,512

.	 3,513

. 3,515

.	 3,516

.	 3,518

. 3,519

.	 3,520

.	 3,525

| xix

40.3 Features of glocator

40.4 glocator Configuration

41. gagent

41.1 Overview of gagent

41.2 gagent Configuration

42. gloctl

42.1 Overview of gloctl

42.2 Interactive Command References

42.3 Location File

42.4 Configuration

Part VII. Replication

43. Overview

43.1 Overview of GOLDILOCKS Replication

43.2 Characteristics

44. CYCLONE

44.1 CYCLONE

44.2 Requirements

44.3 Configuration

44.4 Operating

44.5 Operating Examples

44.6 Operating CYCLONE in Cluster

44.7 Monitoring (CYMON)

45. LOGMIRROR

45.1 LOGMIRROR

45.2 Requirements

45.3 Configuration

45.4 Operating

45.5 Examples of Interworking with CYCLONE

Appendix A. Error Codes

A.1 OS Related Error

A.2 Datatype and Operation Related Error

A.3 Resource Management Related Error

A.4 Storage Management Related Error

A.5 Dictionary Cash Related Error

A.6 SQL Handling Related Error

A.7 PSM Related Error

.	 3,528

.	 3,530

. 3,537

.	 3,538

.	 3,542

. 3,547

.	 3,548

.	 3,552

.	 3,559

.	 3,561

. 3,563

. 3,567

.	 3,568

.	 3,569

. 3,571

.	 3,572

.	 3,578

.	 3,583

.	 3,601

.	 3,607

.	 3,614

.	 3,619

. 3,625

.	 3,626

.	 3,628

.	 3,630

.	 3,634

.	 3,637

. 3,643

.	 3,644

.	 3,648

.	 3,654

.	 3,656

.	 3,660

.	 3,661

.	 3,675

xx | Table of Contents

A.8 Session Related Error

A.9 ODBC Related Error

A.10 JDBC Related Error

A.11 Embedded SQL Related Error

A.12 Communication Related Error

A.13 ServerLibrary Related Error

A.14 gsql/ gsqlnet Related Error

A.15 gloader/ gloadernet Related Error

A.16 gmaster Related Error

A.17 glsnr Related Error

A.18 cyclone Related Error

A.19 LogMirror Related Error

A.20 cymon Related Error

A.21 gdispatcher Related Error

A.22 gbalancer Related Error

A.23 gsyncher Related Error

A.24 Cluster Related Error

A.25 cserver Related Error

A.26 cdispatcher Related Error

A.27 gtrclogger Related Error

A.28 glocator Related Error

A.29 gloctl Related Error

A.30 gmon Related Error

A.31 gagent Related Error

Appendix B. Wait Event

B.1 Wait Event

B.2 Class of Wait Event

B.3 Item of Wait Event

Appendix C. Open Source License

.	 3,678

.	 3,679

.	 3,681

.	 3,683

.	 3,685

.	 3,686

.	 3,687

.	 3,689

.	 3,690

.	 3,691

.	 3,692

.	 3,694

.	 3,695

.	 3,696

.	 3,697

.	 3,698

.	 3,699

.	 3,700

.	 3,701

.	 3,702

.	 3,703

.	 3,704

.	 3,705

.	 3,706

. 3,707

.	 3,708

.	 3,708

.	 3,709

. 3,727

Getting Started

Part I.

1

2 | Getting Started

1. Preface

1.1 Overview

Target Reader

1.2 Summary

GOLDILOCKS Database Management System

GOLDILOCKS Architecture

GOLDILOCKS Cluster System Architecture

1.3 Characteristics of GOLDILOCKS Cluster

Features of Cluster

Constraint of Cluster

2. Tutorial

2.1 Managing GOLDILOCKS Instance

Overview

Property Setting

Background Process

Client Process

Memory Architecture of Instance

Startup and Shutdown Instance

Start and End of Listener

2.2 Installing GOLDILOCKS and Creating Database

Overview

Release Platform

System Requirements

GOLDILOCKS Package Configuration

Installing GOLDILOCKS Software

Creating Database

Building Dictionary Schema Information

2.3 Managing Database Memory Structure

Database Memory Structure

Checking Information of Database Storage Structure

General Operation of Data Storage

Store Mode

2.4 Managing Schema Object

Schema Object

Schema Object Management Privileges

Managing Table

Managing Index

Sequence

2.5 Managing User

. 5

.	 6

.	 6

.	 7

.	 7

.	 7

.	 9

.	 11

.	 11

.	 12

. 17

.	 18

.	 18

.	 18

.	 20

.	 20

.	 21

.	 22

.	 23

.	 25

.	 25

.	 25

.	 26

.	 26

.	 32

.	 38

.	 41

.	 43

.	 43

.	 45

.	 46

.	 49

.	 51

.	 51

.	 51

.	 51

.	 52

.	 53

.	 54

| 3

Creating User

Dropping User

Altering User

2.6 GOLDILOCKS Property

Properties When Creating Database

Properties When Driving Database

2.7 GOLDILOCKS Utility

gcreatedb

gsql (GOLDILOCKS Interactive SQL Tool)

gloader (GOLDILOCKS Data Upload/download Tool)

3. Cluster Tutorial

3.1 Managing GOLDILOCKS Cluster System

Overview

Property Setting

Background Process

Client Process

Memory Structure of Instance

Start and End of Cluster System

3.2 Installing GOLDILOCKS and Creating Database

Configuring GOLDILOCKS Package

Installing GOLDILOCKS Software

Creating Database

Building Dictionary Schema Information

3.3 Managing Schema Object

Managing Table

Managing Index

Global Sequence

3.4 GOLDILOCKS Property

4. What's New

4.1 Feature Matrix

Architecture

SQL

API

Utility

Replication

4.2 What's New in GOLDILOCKS 3.2

Architecture

SQL

API

.	 54

.	 55

.	 55

.	 58

.	 58

.	 58

.	 60

.	 60

.	 61

.	 62

. 63

.	 64

.	 64

.	 64

.	 65

.	 66

.	 66

.	 67

.	 72

.	 72

.	 72

.	 73

.	 74

.	 76

.	 76

.	 82

.	 83

.	 87

. 91

.	 92

.	 92

.	 110

.	 125

.	 134

.	 149

.	 153

.	 153

.	 155

.	 157

4 | Getting Started

Utility

Replication

4.3 Patch Notes

3.2.14 Patch Note

3.2.13 Patch Note

3.2.12 Patch Note

3.2.11 Patch Note

3.2.10 Patch Note

3.2.9 Patch Note

3.2.8 Patch Note

3.2.7 Patch Note

3.2.6 Patch Note

3.2.5 Patch Note

3.2.4 Patch Note

3.2.3 Patch Note

3.2.2 Patch Note

3.2.1 Patch Note

.	 158

.	 160

.	 162

.	 162

.	 162

.	 162

.	 163

.	 168

.	 177

.	 177

.	 178

.	 179

.	 181

.	 185

.	 188

.	 189

.	 195

Preface

1.

5

6 | Preface

1.1 Overview

This user manual is intended for the user who is configuring, managing and operating GOLDILOCKS. The

purpose of this manual is to convey the basic concepts required for installation and management of GOL

DILOCKS. This manual also describes cautions when using GOLDILOCKS system.

● The description which is presented in this document can be changed according to the installation env

ironment and specific usage.

● This document is based on GOLDILOCKS 3.2 version.

● This document is based on RedHat linux - based platform.

Target Reader

The target readers are as follows.

● Programmers who need basic knowledge about how to manage GOLDILOCKS database

● Administrators and performance managers of GOLDILOCKS database

● Administrators and performance managers of GOLDILOCKS cluster system

Summary | 7

1.2 Summary

This chapter describes the basic structure and characteristics of GOLDILOCKS for the novice user. A user c

an select either a standalone or a cluster system architecture to use GOLDILOCKS. Differences of each arc

hitecture and their usages are described.

GOLDILOCKS Database Management System

GOLDILOCKS is an in-memory relational DBMS. GOLDILOCKS stores all user data in in-memory as a table

form so that it performs search and update operations of all such data effectively.

GOLDILOCKS database system consists of the following parts.

● User-installed GOLDILOCKS software binaries

● Database which is a set of tablespaces, implemented with one or more shared memory on in-memor

y

● Various files for persistence support of database

○ The data files created with the same size as shared memory per shared memory

○ Redo log files which support the recovery of the database in the event of a failure

○ Configuration files for database settings

○ Trace log files which record information such as events during database operations

● gmaster processes which manage in-memory database, and many system threads within it

GOLDILOCKS Architecture

To prevent spreading the application process failure over the entire database system, GOLDILOCKS datab

ase is a multi-process architecture based on shared memory, instead of a multi-thread architecture. The o

verall architecture of GOLDILOCKS database is as shown in figure 1. Data are loaded onto a shared mem

ory and gmaster process is a management daemon which manages database such as boot-up, log flush,

aging. Also, it stores redo log files and data files on a disk file to ensure the permanence of data. Applicat

ions using GOLDILOCKS database will use one of the following two accessing models.

8 | Preface

Figure 1 GOLDILOCKS architecture

● Direct Access (D/A) model

○ A user may use D/A model when user application is operated on the same equipment as GOLDIL

OCKS database.

○ User applications should be used by linking with GOLDILOCKS ODBC/JDBC libraries for D/A.

○ GOLDILOCKS ODBC/JDBC libraries for D/A include query processing module and storage manage

ment module inside and they process user request by directly attaching shared memory configuri

ng that database.

○ It is suitable to implement a few works which require low-latency because the communication lo

ad between application process and database process module is removed.

● Client/ Server (C/S) model

○ A user may use C/S model when user application is operated on the same equipment as GOLDIL

OCKS database or on a different equipment.

○ User applications should be used by linking with GOLDILOCKS ODBC/JDBC libraries for C/S.

○ The GOLDILOCKS development library for C/S processes user's requests through TCP communica

tion with the server (gserver) which serves the database specified in the connect string.

○ The response speed of single application of C/S is inferior to that of D/A. However, C/S does not

depend on the location of the application, and the relatively stable operation is possible even wh

en an error occurs in the application.

○ C/S model may be operated in shared mode or dedicated mode. In dedicated mode, a single serv

er (gserver) process is performed on a single client. In shared mode, it responds to multiple client

s because dispatcher (gdispatcher) and shared-server (gserver) are always running.

○ Dedicated mode is suitable for large amount of data, and shared mode is suitable for many client

s, small amount of data.

○ For more information about setting dedicated mode or shared mode, refer to odbc.ini File and Lis

Summary | 9

tener Configuration.

Note

In D/A model, an application directly accesses to database and manipulates it, and thus the datab

ase instance becomes unstable because many errors occur at an early development stages. Theref

ore, it would be efficient to develop it in C/S model at an early development stage, and then, to s

witch it to D/A model at the final development stage.

GOLDILOCKS Cluster System Architecture

GOLDILOCKS can be used by configuring a standalone database, or binding multiple databases into a sin

gle cluster and managing the database in cluster unit. In other words, a user can distribute and store tabl

e data into multiple nodes according to the desired sharding strategy. This guarantees high availability an

d improves the throughput due to the parallel processing.

GOLDILOCKS cluster system guarantees ACID of transaction which is clister-widely performed. There fore,

it provides the data reliability as same as that of the transaction performed on a standalone server when a

ny node belonging to the cluster system is connected to perform the transaction.

Each database belonging to GOLDILOCKS cluster system has a structure for multi-process structure and d

ata loading method, which is as same as the structure of the standalone database. However, cdispatcher

process and cluster server (cserver) process are added. cdispatcher is a process for efficient communiation

between member nodes in a cluster, and cluster server (cserver) process is for the data storage and mana

gement on the cluster member node. Also, tablespaces and management areas for transaction managem

ent of cluster system are added to the shared memory.

10 | Preface

Figure 2 GOLDILOCKS cluster system architecture

Characteristics of GOLDILOCKS Cluster | 11

1.3 Characteristics of GOLDILOCKS Cluster

Features of Cluster

GOLDILOCKS cluster is a cluster system of shared nothing structure and it overcomes limitations for trans

action performance and storage of an existing standalone system.

● High throughput

○ GOLDILOCKS cluster does not limit creating groups, and the linear performance can be improved

by creating groups.

○ It overcomes the limitation for the storage space of the existing memory-based standalone syste

m.

● High availability

○ If a group consists of multiple members and at least one member is running in a group, it does n

ot affect the availability.

○ Even when not every member in a group is available, other groups except for that group normall

y provides service.

● Online expansion and online recovery

○ creating groups or members are possible even when the service is in progress, and it does not aff

ect the service in progress.

○ Even the member of the suspended service due to an error can participate in a cluster online.

● Providing the perfect transaction

○ It perfectly provides the following properties of which a transaction should comply with.

■ Atomicity

■ Consistency

■ Isolation

■ Durability

● Providing the perfect MVCC (multi-version concurrency control)

○ GOLDILOCKS cluster provides a global statement level consistency as standalone system does.

○ The SQL starting at a specific point can access a desired version among the various versions when

accessing to any node.

● Providing the standard SQL and the standard DBC

○ It provides SQL which is equivalent to SQL 92.

○ It provides standard DBCs such as JDBC, ODBC.

● Application compatibility

○ The application source or SQL developed in the existing standalone system can be used in GOLDI

LOCKS cluster without modifying it.

12 | Preface

Constraint of Cluster

All SQL statements in GOLDILOCKS cluster can be used same as those in standalone system except for th

e following constraints.

Note

PRIMARY KEY for the sharded table, UNIQUE constraint and the UNIQUE INDEX should include a

sharding key.

The following is an example of a failure because the constraint of UNIQUE (name) does not include an id

column which is a sharding key.

gSQL>

CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

UNIQUE (name)

)

SHARDING BY HASH(id);

ERR-HYC00(16380): UNIQUE or PRIMARY KEY must include all sharding key columns for cluster

system

The constraint should be generated including sharding key like as UNIQUE (id, name) or UNIQUE (name,

id) in the following example.

gSQL>

CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

UNIQUE(id, name)

)

SHARDING BY HASH (id);

Table created.

Characteristics of GOLDILOCKS Cluster | 13

Note

Non-deterministic statements should have the global secondary index to distinguish the same row

s among the cluster members.

The following is an example of error which occurs when creating a table omitting the global secondary in

dex by force.

gSQL> CREATE TABLE t1 (c1 INTEGER) WITHOUT GLOBAL SECONDARY INDEX;

Table created.

gSQL> INSERT INTO t1 VALUES (1), (2), (3), (4), (5);

5 rows created.

gSQL> COMMIT;

Commit complete.

The following is an example of deleting three rows and it does not guarantee that the cluster members d

elete the same rows.

gSQL> DELETE FROM t1 FETCH 3;

ERR-42000(16423): does not support non-deterministic DML in the cluster system : global

secondary index expected

The following example does not guarantee that the cluster members update the same rows to the same

value by using RANDOM(1, 100).

gSQL> UPDATE t1 SET c1 = RANDOM(1, 100);

ERR-42000(16423): does not support non-deterministic DML in the cluster system : global

secondary index expected

The following is an example of updating the row at the current position by using updatable cursor, and it

requires the global secondary index to distinguish the same rows among cluster members.

gSQL> \var v1 INTEGER

gSQL> DECLARE cur1 CURSOR FOR SELECT c1 FROM t1 FOR UPDATE;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

gSQL> FETCH cur1 INTO :v1;

V1

--

14 | Preface

1

1 row fetched.

gSQL> UPDATE t1 SET c1 = 1 WHERE CURRENT OF cur1;

ERR-42000(16423): does not support non-deterministic DML in the cluster system : global

secondary index expected

Note

It does not support the deferrable constraint.

gSQL> ALTER TABLE t1 ADD CONSTRAINT t1_uk UNIQUE(id) DEFERRABLE;

ERR-HYC00(16388): does not support deferrable constraints in the cluster system :

ALTER TABLE t1 ADD CONSTRAINT t1_uk UNIQUE(id) DEFERRABLE

*

ERROR at line 1:

Note

It does not guarantee the sequence when using the same sequence in different servers.

• It is executed in g1n1 server.

gSQL> SELECT seq1.NEXTVAL FROM dual;

NEXTVAL

1

1 row selected.

gSQL> SELECT seq1.NEXTVAL FROM dual;

NEXTVAL

2

1 row selected.

• It is executed in g2n1 server.

gSQL> SELECT seq1.NEXTVAL FROM dual;

NEXTVAL

Characteristics of GOLDILOCKS Cluster | 15

21

1 row selected.

• It is executed again in g1n1 server.

gSQL> SELECT seq1.NEXTVAL FROM dual;

NEXTVAL

3

1 row selected.

Tutorial

2.

17

18 | Tutorial

2.1 Managing GOLDILOCKS Instance

This chapter describes the basic knowledge of managing the GOLDILOCKS instance.

Overview

GOLDILOCKS database system consists of database and instance. Database is a collection of various files

which are necessary for driving database such as dictionary data on memory, user data, data file for dictio

nary data and user data, online redo files.

Database instance consists of two parts. One is the memory portions containing the run-time information

for operating GOLDILOCKS database, and the other is the background process which is used to operate a

nd manage it. Each database instance is identified as shared memory key value and "GOLDILOCKS _DATA

" environment variable value, both are used to configure shared memory.

Property Setting

GOLDILOCKS properties are listed in $GOLDILOCKS _DATA/conf/goldilocks.properties.conf file. A user m

ay install GOLDILOCKS using the basic properties. This chapter describes the main properties such as TBS

(Tablespace), LOG, CONTROL FILE.

The followings describe main property items of when installing GOLDILOCKS.

Table 2-1 Main property items

Property Description Default value

SYSTEM_TABLESPACE_DIR

It is the directory path of installing the follo

wing system TBS.

• DICTIONARY_TBS

• MEM_DATA_TBS

• MEM_UNDO_TBS

• MEM_TEMP_TBS

• MEM_TRANS_TBS

‘<GOLDILOCKS_DATA>/db’

SYSTEM_MEMORY_DICT_TABLE

SPACE_SIZE
It is the dictionary tablespace size. 128M

SYSTEM_MEMORY_DATA_TABL

ESPACE_SIZE
It is the data tablespace size. 200M

SYSTEM_MEMORY_UNDO_TABL

ESPACE_SIZE
It is the undo tablespace size. 32M

Managing GOLDILOCKS Instance | 19

LOG_DIR It is the default log directory path. ‘<GOLDILOCKS_DATA>/wal’

SYSTEM_LOGGER_DIR It is the system log directory path. ‘<GOLDILOCKS_DATA>/trc’

CONTROL_FILE_COUNT It is the number of control files. 2

CONTROL_FILE_0 It is the first control file path.
'<GOLDILOCKS_DATA>/wal/contr

ol_0.ctl'

CONTROL_FILE_1 It is the second control file path.
'<GOLDILOCKS_DATA>/wal/contr

ol_1.ctl'

Property Description Default value

Note

● DICTIONARY_TBS: It is the tablespace which stores dictionary tables of GOLDILOCKS.

● MEM_DATA_TBS: It is the tablespace in which the user table/index is generated.

● MEM_UNDO_TBS: It is the tablespace which contains the undo (rollback) information of the t

ransaction.

● MEM_TRANS_TBS (Cluster only): It is the tablespace used for the global transaction recovery i

n cluster system. The size is automatically calculated based on the transaction table size and t

he number of cluster node.

A user can change the text property file ($GOLDILOCKS_DATA/conf/goldilocks.properties.conf), or defin

e a new variable in the form of GOLDILOCKS_<property_name> to change the database settings or instan

ce settings. In the priority, the property file takes precedence over the environment variable.

20 | Tutorial

Background Process

GOLDILOCKS has a background process (gmaster) for managing instance. gmaster consists of multiple sy

stem thread internally, and the contents are as follows.

Table 2-2 System threads

Thread Description

Main thread It starts or ends gmaster process.

Log archiving thread
It copies the previous redo log file to a specified location when switching online redo file,

and stores it.

Ager thread It cleans up the resources being used by dropped schema objects.

Page flusher thread
It distributes the task to the IO slave and controls them in order to store the dirty pages of

in-memory into the disk at checkpoint.

Log flusher thread
It periodically collects the log records accumulated in the redo log buffer, and then stores

them into online redo log file at run-time.

Checkpoint thread
It downloads the in-memory's changes to the data file on the disk and the online redo lo

g file when switching redo log file.

Cleanup thread
It cleans up resources used by abnormally terminated clients, and then rolls back the trans

actions.

IO slave thread It performs all disk IO related to data file such as checkpoint and data file loading.

Process monitor thread
It monitors after executing the processes such as balancer (gbalancer), dispatcher (gdispa

tcher), shared-server (gserver), then reexecutes when abnormal termination is detected.

Cluster Recover Thread

(Cluster only)
It recovers a global transaction in cluster system.

Failover Thread (Cluster

only)

It deals with the failover through reselecting offiline and coordinator for the members wh

en an error occurs on a specific node or in a network in cluster system.

Client Process

Client/ Server Model

The Client/ Server (C/S) model application is connected to listener (glsnr) which is waiting for access requ

est. Then it creates a new database service process (gserver), in dedicated mode, and it handles user's req

uest by using TCP communication. All these operations are carried out through inter process communicat

ion, so any signal generated in the application process does not affect on the state of the database. More

over, cleanup thread regularly checks and returns all the resources used by abnormally terminated applica

tion.

Managing GOLDILOCKS Instance | 21

Direct Access Model

GOLDILOCKS supports a direct access (D/A) model as well as Client/ Server (C/S) model. All applications u

sing D/A model are linked to the server library supported by GOLDILOCKS, and then directly access datab

ase and instance. Therefore, no other special service process exists but only the application processes doe

s exist.

When D/A model application process is interrupted abnormally by the signal generated during operation,

all resources in use will be cleaned up by the signal handler function which the library set during connecti

on. The function cleans up the resources according to the two following steps.

1. The signal handler marks an abnormal termination on the session object and terminates the process.

2. The cleanup thread of gmaster return resources to the database in the same way as C/S model after

a certain period of time.

Application processes directly access the database area in D/A model. Therefore, comply with the followi

ng precautions.

● When the D/A model application process is terminated by a fatal signal such as SEGV, the signal han

dler which was registered by the library at connection to the database should stop using shared resou

rces. If a specific signal handler should be installed in the application it should be declared before con

necting to the database.

● When forcibly shut down the application process, do not use SIGKILL (kill-9) because the process can

not detect the generation of the signal. A user should use SIGTERM, SIGQUIT or SIGUSR2.

Memory Architecture of Instance

The memory size used by the database instance is determined by the relevant properties in the property fi

le. Shared memory used by instance can be divided into static area and tablespace area. Static area includ

es basic information about public instance, each session, statement, transaction, redo log buffer, dictiona

ry cache and several other operation. Tablespace area includes page frame of each tablespace and Page

Control Header (PCH) for controlling them.

The application process memory includes instance memory attached at connection. Additionally, it includ

es process basis sharing ODBC environment, several ODBC handles, heap memory area with bind informa

tion.

22 | Tutorial

Startup and Shutdown Instance

To startup the GOLDILOCKS instance, set the SHARED_MEMORY_STATIC_KEY property differently from

other instances. After that, a user can startup the GOLDILOCKS instance by using gsql. Execute it to take

sysdba role as follows.

A user should run listener before startup or shutdown the GOLDILOCKS instance in dedicated mode of C/

S model.

A user can not startup or shutdown the GOLDILOCKS instance in shared mode of C/S model.

% gsql sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL>

Startup phrase in the SUNDB instance has several phases as follows.

● NOMOUNT

○ It starts up gmaster process which is a managing daemon of the GOLDILOCKS instance.

● MOUNT

○ It loads properties and recovery control file by using $GOLDILOCKS _DATA environment variable.

● OPEN

○ After loading the tablespace contents from data file, it recovers by using redo log, rebuilds no-lo

gging indexes, creates dictionary cache, and then waits for the user's service connection.

A user can start up the GOLDILOCKS instance by using gsql as follows.

gSQL> ＼startup nomount

Startup success

gSQL> alter system mount database;

System altered.

gSQL> alter system open database;

System altered.

To directly enter into OPEN phase, do as follows.

gSQL> ＼startup open

Startup success

If GOLDILOCKS instance is shut down, gmaster (the daemon process for management) would be termina

ted. Then, connection and database operation is no longer possible.

There are four ways to shutdown the GOLDILOCKS instance as follows.

Managing GOLDILOCKS Instance | 23

● NORMAL

○ After blocking the access of a new session and waiting until the end of all connected sessions, a

user perform a checkpoint and shuts down the instance.

● TRANSACTIONAL

○ After blocking the start of a new transaction and waiting until the end of all running transactions,

a user performs a checkpoint and shuts down the instance.

● IMMEDIATE

○ After blocking the execution of a new unit operation (Connection unit with GOLDILOCKS databa

se. e.g. FETCH or EXECUTE, etc.) and waiting until the end of all unit operations, a user rolls back

all transactions, performs a checkpoint and shuts down the instance.

● ABORT

○ Regardless of any connected session's status, a user terminates gmaster and shuts down the inst

ance.

To shutdown an instance, use gsql with sysdba role and perform \shutdown, as follows.

% gsql sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL> \shutdown normal

Shutdown success

gSQL>

Start and End of Listener

A user should run the listener to provide the service in the client/ server environment.

A user can start the listener as follows.

% glsnr --start

Listener is started successfully.

%

A user can end the listener as follows.

% glsnr --stop

Listener is stopped.

%

24 | Tutorial

For more information about listener control, refer to glsnr.

For more information about how to start or end cluster system refer to Start and End of Cluster System.

Installing GOLDILOCKS and Creating Database | 25

2.2 Installing GOLDILOCKS and Creating Database

This chapter describes how to install the GOLDILOCKS software and create a database.

Overview

GOLDILOCKS software is a compressed file with the name such as goldilocks-<version_no>-<os_type>-<c

pu_type>.tar.gz. After decompressing the file, software binaries, various samples, fundamental database

directory structures are created at the corresponding location, and then installation is completed. After th

e installation, the directory is created, and the directory is named after the package. Then directories wh

ose names are goldilocks_home and goldilocks_data are created under it.

● goldilocks_home directory

○ Binary home of GOLDILOCKS product

○ Defined as GOLDILOCKS _HOME environment variable

○ Operation binaries, libraries for the client, header files, licenses, etc. are located.

● goldilocks_data directory

○ Home of the user database (instance) which GOLDILOCKS creates.

○ Defined as GOLDILOCKS _DATA environment variable

○ A default location which has data files, log files, property files

After that, use a utility called gcreatedb in $GOLDILOCKS_HOME/bin directory to create a database in $G

OLDILOCKS _DATA directory.

Release Platform

GOLDILOCKS is available in the following release platform.

Table 2-3 Release platform

Platform Platform name OS CPU Remarks

Server

platform

linux-x86_64 linux x86_64

>= linux kernel 2.6

>= glibc 2.1

>= gcc 4.1.2

>= java 1.4

<= java 1.6

hpux11.31-itanium-64 HP-UX 11.31 itanium
>= java 1.4

<= java 1.6

26 | Tutorial

aix6-powerpc-64 AIX 6.1 powerpc
>= java 1.4

<= java 1.6

Client

platform

linux-x86_64 linux x86_64

>= linux kernel 2.6

>= glibc 2.1

>= gcc 4.1.2

>= java 1.4

<= java 1.6

linux-x86_32 linux x86_32

>= Linux kernel 2.6

>= glibc 2.1

>= gcc 4.1.2

>= java 1.4

<= java 1.6

hpux11.31-itanium-64 HP-UX 11.31 itanium
>= java 1.4

<= java 1.6

hpux11.31-itanium-32 HP-UX 11.31 itanium
>= java 1.4

<= java 1.6

aix6-powerpc-64 AIX 6.1 powerpc
>= java 1.4

<= java 1.6

windows-x86-64 Windows PENTINUM x86 java 1.6

windows-x86-32 Windows PENTINUM x86 java 1.6

Platform Platform name OS CPU Remarks

System Requirements

Check the following requirements before installing GOLDILOCKS.

● At least 2 G should be secured at the physical memory and disk space.

● A sufficient amount of paging (swap) area is required.

● The correct package version which fits into the platform to be installed is required.

GOLDILOCKS Package Configuration

This chapter describes the directory configuration when installing GOLDILOCKS.

Package Directory Configuration

Installing GOLDILOCKS and Creating Database | 27

Table 2-4 Parent directory configuration

Directory Server Client Description

GOLDILOCKS_

HOME
O O

Binaries and libraries are installed, overwriting-enabled group when

updating

GOLDILOCKS_

DATA
O X The data storing path, overwriting-unabled group

Table 2-5 Package directory configuration

Parent directory Package directory Description

GOLDILOCKS_HOME

admin Required schema script to create database

bin Execution files

lib Library files

include Header files such as ODBC, XA, Embedded SQL, etc.

license License files

sample Sample files

msg Error message files

script Script file for ease of use (It will be supported in future)

app_dev Application development

GOLDILOCKS_DATA

conf Configuration files

db Database files

wal Log files, control files

archive_log Archive log files

backup Back up files

trc Trace log files, warning message files

journal Journal file used at cluster rebalance

Package File List

The followings are description of files in a directory, and whether it is included in server package or client

package.

Table 2-6 admin/ standalone directory

File name Server Client Description

README O X Read me

DictionarySchema.sql O X Dictionary schema creating script

InformationSchema.sql O X Information schema creating script

PerformanceViewSchema.sql O X Performanceview schema creating script

28 | Tutorial

Table 2-7 admin/ cluster directory

File name Server Client Description

README O X read me

DictionarySchema.sql O X Dictionary schema creating script

InformationSchema.sql O X Information schema creating script

PerformanceViewSchema.sql O X Performanceview schema creating script

The script created in admin/standalone directory is used when using GOLDILOCKS in standalone. On the

other hand, the script created in admin/cluster directory is used when using GOLDILOCKS by configuring

cluster system.

Table 2-8 bin directory (Unix)

File name Server Client Description

README O O Read me

gmaster O X GOLDILOCKS master

gcreatedb O X Database creating tool

glsnr O X Listener control tool

gbalancer O X Loads balancer for C/S shared

gdispatcher O X Manages multiple connections for C/S shared

gserver O X Instance manager for C/S

gsql O X Interactive SQL tool

gsqlnet O O Interactive SQL tool for C/S

gpec O O Embedded SQL precompiler

logmirror O X Redo log replication tool

cyclone O X CDC replication tool

gloader O X Import/ export tool

gloadernet O O Import/ export tool for C/S

cymon O O CDC monitoring Tool

gdump O X Control/ log/ data/ binary property file viewer

gsyncher O X Synchronization utility for shared memory log and disk log files

tablediff.jar O X Table comparison tool

cdispatcher O X Manages cluster connections and distributes protocols in cluster system

cserver O X Instance manager for cluster system

gtrclogger O X Trace log manager for cluster system

gmon O X Process monitoring tool

galocator O X Location management tool

gagent O X Location provider tool

gloctl O O Interactive location editing tool

Installing GOLDILOCKS and Creating Database | 29

Table 2-9 bin directory (Windows client)

File name Server Client Description

README X O read me

gloadernet.exe X O Import/export tool for C/S

gpec.exe X O Embedded SQL precompiler

gsqlnet.exe X O Interactive SQL tool for C/S

gloctl.exe X O -

Table 2-10 lib directory (Unix)

File name Server
Client

(64 bit)

Client

(32 bit)
Description

README O O O Read me

libstib.so O X X Shared library for infiniband

libgoldilocks.a O X X D/A and C/S-inclusive static library for ODBC

libgoldilocksa.a O X X D/A-only static library for ODBC

libgoldilocksas.so O X X D/A-only shared library for ODBC

libgoldilocksc.a O O O C/S-only static library for ODBC

libgoldilockscs-ul32.so O O X
64 bit-C/S-only shared library for ODBC (SQLLEN = 4

byte)

libgoldilockscs-ul64.so O O X
64 bit-C/S-only shared library for ODBC (SQLLEN = 8

byte)

libgoldilockscs.so X X O 32 bit-C/S-only shared library for ODBC

libgoldilockscvtGB18030

_32.so
X X O 32 bit GB18030 character set conversion library

libgoldilockscvtGB18030

_64.so
O O X 64 bit GB18030 character set conversion library

libgoldilockscvtUHC_32.s

o
X X O 32 bit UHC character set conversion library

libgoldilockscvtUHC_64.s

o
O O X 64 bit UHC character set conversion library

libgoldilocksesql.a O O O Static library for embedded SQL

libgoldilocksesqls.so O O O Shared library for embedded SQL

libgoldilockss.so O X X D/A and C/S-inclusive shared library for ODBC

goldilocks4.jar O O O C/S-only JDBC library (java 1.4)

goldilocks5.jar O O O C/S-only JDBC library (java 1.5)

goldilocks6.jar O O O C/S-only JDBC library (java 1.6)

libgoldilocksjni.so O X X D/A-only JDBC shared library

Table 2-11 lib directory (Windows client)

30 | Tutorial

File name Server
Client

(64 bit)

Client

(32 bit)
Description

goldilocksc.lib X O O C/S-only static library for ODBC

goldilockscs.dll X X O 32 bit-C/S-only shared library for ODBC

goldilockscs-ul64.dll X O X
64 bit-C/S-only shared library for ODBC (SQLLEN = 8

byte)

goldilockssetup32.dll X X O 32 bit setup library for ODBC

goldilockssetup64.dll X O X 64 bit setup library for ODBC

goldilocksesql.lib X O O Static library for embedded SQL

goldilocksesqls.dll X O O Shared library for embedded SQL

goldilockscvtGB18030_

32.dll
X X O 32 bit GB18030 character set conversion library

goldilockscvtGB18030_

64.dll
X O X 64 bit GB18030 character set conversion library

goldilockscvtUHC_32.dll X X O 32 bit UHC character set conversion library

goldilockscvtUHC_64.dll X O X 64 bit UHC18030 character set conversion library

goldilocks6.jar X O O C/S-only JDBC library (for java 1.6)

gdlc.lib X O O C/S-only static library for ODBC

gdlcs.lib X O O C/S-only shared library for ODBC

gdlcs.dll X O O C/S-only shared library for ODBC

Table 2-12 include directory (Unix)

File name Server Client Description

README O O Read me

sql.h O O ODBC header file

sqlca.h O O ODBC header file

sqlext.h O O ODBC header file

sqltypes.h O O ODBC header file

sqlucode.h O O ODBC header file

goldilocks.h O O Header file for GOLDILOCKS ODBC application development

goldilockstypes.h O O GOLDILOCKS ODBC data type specification file

xa.h O O Standard XA header file

goldilocksxa.h O O GOLDILOCKS XA header file

goldilocksesql.h O O Embedded SQL header file

Table 2-13 include directory (Windows client)

File name Server Client Description

README X O Read me

goldilocks.h X O Header file for GOLDILOCKS ODBC application development

goldilockstypes.h X O GOLDILOCKS ODBC data type specification file

goldilocksxa.h X O GOLDILOCKS XA header file

Installing GOLDILOCKS and Creating Database | 31

goldilocksesql.h X O Embedded SQL header file

sqlca.h X O ODBC header file

File name Server Client Description

Table 2-14 license directory

File name Server Client Description

README O X Read me

Table 2-15 msg directory

File name Server Client Description

README O O Read me

goldilocks_error.msg O O Error message file

Table 2-16 conf directory

File name Description

README Read me

goldilocks.property.conf Database operation property text file

goldilocks.listener.conf Listener property file

goldilocks.invited.conf Client management file for database connection invited

goldilocks.excluded.conf Client management file for database connection excluded

goldilocks.gagent.conf gagent-only configuration file

tablediff.conf Tablediff configuration file

cyclone.master.conf Cyclone master only file

cyclone.slave.conf Cyclone slave only file

logmirror.master.conf LogMirror master only file

logmirror.slave.conf LogMirror slave only File

odbc.ini Template for ODBC configuration

gsql.ini Template for gsql configuration

glogin.sql Execution statement list when driving gsql

Table 2-17 db directory

File name Description

README Read me

Table 2-18 wal directory

File name Description

README Read me

32 | Tutorial

Table 2-19 archive_log directory

File name Description

README Read me

Table 2-20 backup directory

File name Description

README Read me

Table 2-21 trc directory

File name Description

README Read me

Installing GOLDILOCKS Software

This chapter describes the operating system and the environment setting before installing GOLDILOCKS.

Kernel Parameters

Shared Memory

Shared memory is a type of Inter Process Communication (IPC). It is a memory which is used for sharing d

ata in multiple programs. GOLDILOCKS uses shared memory with user programs using gsql, gloader, OD

BC for Client/ Server (C/S) environment. Because all tablespaces for operation are created in shared mem

ory, the precise parameter setting is required.

The followings are parameters and the recommended values required for the shared memory which is us

ed to install GOLDILOCKS.

Table 2-22 Kernal properties for shared memory

Parameter

name
Description

Recommended

value
Remarks

shmmax
The maximum size of single

shared memory segment

The value should be big

ger than the size of the

biggest datafile.

The value should be set bigger than the size

of the biggest datafile belonging to the desi

red tablespace.

shmmni

The maximum number of sh

ared memory segment availa

ble in system

The value should be big

ger than the value of w

hich the number of all d

atafile + 1.

The value should be set bigger than the valu

e of which the number of all datafile + 1 (sh

ared memory segment for SSA).

The total sum of all shared
The value should bebigg

It is the total sum of pages in shared memor

y available in system. Generally, it is used for

Installing GOLDILOCKS and Creating Database | 33

shmall memory segment

(The number of pages)

er than the total sum of

tablespace configuratio

n.

8 GB or bigger shared memory. If the total s

um of tablespaces in GOLDILOCKS is 32 GB,

shmall should be set bigger than it.

Parameter

name
Description

Recommended

value
Remarks

The following is an example of setting shmall when the total size of tablespaces is 32 GB.

kernel.shmmax = 34359738368

kernel.shmmni=4096

kernel.shmall = 8388609

• It is assumed that the shmmax is 32 GB and PAGE_SIZE is 4096 bytes.

8388609 = (34359738368 / 4096) + 1

• In this case, the value of shmall should be bigger than 8388609.

Semaphore

Semaphore is a kind of IPC, like as shared memory, and it is a technology to control multiple processes' b

ehavior using the resources from the operating system. Depending on semaphore setting, multiple proce

sses can simultaneously refer to a relevant resource, and when any process is in use, the other process ma

y wait until it stops using the resource.

GOLDILOCKS uses semaphore to control the access sequence to the shared memory. For example, if mult

iple GOLDILOCKS client programs request a change to the same data, it should be controlled properly. Th

e semaphore parameter value should be set to an appropriate value according to semaphore operation of

GOLDILOCKS. A general Linux value is recommended.

The followings are recommended semaphore values to install GOLDILOCKS.

Table 2-23 Recommended kernel parameter value for semaphore

Kernel parameter Description
Recommended

value

semmsl The number of semaphores per single semaphore set 250

semmni The number of semaphore sets 128

semmns
The total sum of semaphore sets

(semmni * semmsl)
32000

semopm The maximum number of semaphores per system call 100

In Linux based system such as Redhat, Ubuntu, if a user creating IPC resource logs out the session list ma

naged by systemd, then the corresponding IPC resource is automatically deleted. Therefore, the system sh

34 | Tutorial

ould be set as follows to prevent deleting the semaphore. (kernel 3.0.0 and higher)

cp -i /etc/systemd/logind.conf /etc/systemd/logind.conf_prev

cat /etc/systemd/logind.conf

[Login]

#NAutoVTs=6

#ReserveVT=6

...

RemoveIPC=no

● Modify it, then execute it.

systemctl restart systemd-logind

Network

The backlog means the sockets' queue length waiting to be accepted during the TCP socket listen. Set gls

nr's backlog in GOLDILOCKS as glsnr config file's BACKLOG. If the backlog's maximum value in system is

bigger than somaxconn, then it sets to somaxconn. In this case, somaxconn should be extended.

GOLDILOCKS uses Unix Domain Socket (UDS) queue when it operates in C/S shared mode. The queue le

ngth is set to max_dgram_qlen. If the value is small when clients access the network simultaneously, then

it leads to bottleneck state of communication among glsnr, gbalancer and gdispatcher.

The followings are recommended network values to install GOLDILOCKS.

Table 2-24 Recommended kernel parameter value for network

Kernel parameter Description
Recommended

value

somaxconn The maximum value of listen backlog 1024

max_dgram_qlen Unix domain socket queue size 256

Applying Parameters

For a one-time execution, a user can do as follows. (It is required to reapply when the user restarts the sys

tem).

[SHELL]> echo 34359738368 > /proc/sys/kernel/shmmax

[SHELL]> echo 8388608 > /proc/sys/kernel/shmall

[SHELL]> echo 4096 > /proc/sys/kernel/shmmni

[SHELL]> echo 250 32000 100 128 /proc/sys/kernel/sem

[SHELL]> echo 1024 > /proc/sys/net/core/somaxconn

[SHELL]> echo 256 > /proc/sys/net/unix/max_dgram_qlen

Installing GOLDILOCKS and Creating Database | 35

If a user wants to apply it automatically even when the user restarts the system, the user can do as follow

s in /etc/sysctl.conf.

shared memory

kernel.shmmax = 34359738368

kernel.shmall = 8388608

kernel.shmmni = 4096

semaphore

kernel.sem = 250 32000 100 128

network

net.core.somaxconn = 1024

net.unix.max_dgram_qlen = 256

Use the following command to apply the changes given above.

[SHELL]> sysctl -p

Checking Parameters

The described parameters can be checked by using the following commands.

[SHELL]> ipcs -l

------ Shared Memory Limits --------

max number of segments = 4096

max seg size (kbytes) = 33554432

max total shared memory (kbytes) = 33554432

min seg size (bytes) = 1

------ Semaphore Limits --------

max number of arrays = 128

max semaphores per array = 250

max semaphores system wide = 32000

max ops per semop call = 100

semaphore max value = 32767

Decompressing GOLDILOCKS

GOLDILOCKS package is supplied in a compressed form. The basic installation completes by decompressi

on.

The followings are simple examples of how to install the GOLDILOCKS package.

36 | Tutorial

$GOLDILOCKS_HOME=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

[SHELL]> gzip –d goldilocks-mercury.2.1.0-linux-x86_64.tar.gz

[SHELL]> tar -xvf goldilocks-server-mercury.2.1.0-linux-x86_64.tar

goldilocks-server-mercury.2.1.0-linux-x86_64/goldilocks_home/include/sqlext.h

goldilocks-server-mercury.2.1.0-linux-x86_64/goldilocks_home/include/goldilocks.h

goldilocks-server-mercury.2.1.0-linux-x86_64/goldilocks_home/include/sqlca.h

…

When the decompression completes, a user can change the directory name <package_file_name> on the

user's taste, and accordingly the user should change the environment variables of $GOLDILOCKS _HOME

and $GOLDILOCKS _DATA.

For more information about directory created by decompression, refer to GOLDILOCKS Package Configur

ation

Setting Enviromment Variables

After decompression of GOLDILOCKS package, bin and lib path will be created under $GOLDILOCKS _HO

ME directory. Then as given below, a user should add bin and lib path under PATH and LD__LIBRARY_PA

TH to execute GOLDILOCKS software and develop applications. (When developing GOLDILOCKS client ap

plication, a user should always insert $GOLDILOCKS_HOME/include to include file directory of compile op

tion.)

export PATH=$GOLDILOCKS _HOME/bin:$PATH

export LD_LIBRARY_PATH=$GOLDILOCKS _HOME/lib:$LD_LIBRARY_PATH

Environment variables are required to use GOLDILOCKS. A user should set them prior to installation beca

use some variables are referenced to even during installation.

Table 2-25 OS environment variables for GOLDILOCKS installation

Environment

variables
Description Remarks

GOLDILOCKS_

HOME

Directory path to install GOLDILO

CKS binaries

This variable is referenced during GOLDILOCKS operation, and

the directory to install GOLDILOCKS should be set as an enviro

nment variable in advance.

GOLDILOCKS_

DATA

The location to create GOLDILOC

KS database instance

This variable is referenced during GOLDILOCKS database creat

ion and operation.

PATH
Directory path of GOLDILOCKS e

xecutable file

This variable should be set to execute various GOLDILOCKS bi

naries without an absolute path.

● If the character set is different from the original character

set which is created during GOLDILOCKS database creati

on, characters (Except alphabets, numbers and special ch

aracters) may not be displayed properly. Or the string rela

Installing GOLDILOCKS and Creating Database | 37

LANG Character set of terminal ted functions may not be executed correctly.

● A user should set locale corresponding to GB18030, SQL

_ASCII, UHC, UTF8.

● e.g. export LANG=ko_KR.utf8

Environment

variables
Description Remarks

$GOLDILOCKS_HOME=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

[SHELL]> gzip –d goldilocks-mercury.2.1.0-linux-x86_64.tar.gz

[SHELL]> tar -xvf goldilocks-server-mercury.2.1.0-linux-x86_64.tar

goldilocks-server-mercury.2.1.0-linux-x86_64/goldilocks_home/include/sqlext.h

goldilocks-server-mercury.2.1.0-linux-x86_64/goldilocks_home/include/goldilocks.h

goldilocks-server-mercury.2.1.0-linux-x86_64/goldilocks_home/include/sqlca.h

…

Deleting Database

Delete datafile, control file, redo log file and archive log file (when using the archive log file) should be de

leted when deleting the existing database to recreate the GOLDILOCKS DATABASE.

The following is an example of deleting GOLDILOCKS DATABASE.

$GOLDILOCKS_BASE=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

$GOLDILOCKS_DATA=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

goldilocks_data/

$GOLDILOCKS_HOME=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

goldilocks_home/

[SHELL]> rm -rf $GOLDILOCKS_DATA/db/*.dbf

[SHELL]> rm -rf $GOLDILOCKS_DATA/wal/*.ctl

[SHELL]> rm -rf $GOLDILOCKS_DATA/wal/*.log

[SHELL]> rm -rf $GOLDILOCKS_DATA/archive_log/*.log

The location of the data file and archive file may vary depending on the settings by a user.

Deletion

GOLDILOCKS package is not provided in compressed file format, so a specific deletion rule is not required.

Delete the installed directory after terminating DATABASE.

The following is an example of deleting GOLDILOCKS package.

38 | Tutorial

$GOLDILOCKS_BASE=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

$GOLDILOCKS_DATA=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

goldilocks_data/

$GOLDILOCKS_HOME=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

goldilocks_home/

[SHELL]> rm -rf $GOLDILOCKS_DATA

[SHELL]> rm -rf $GOLDILOCKS_HOME

[SHELL]> rm -rf $GOLDILOCKS_BASE

~/.bash_profile

$GOLDILOCKS_BASE=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/ 1 Delete

$GOLDILOCKS_DATA=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

goldilocks_data/ 2 Delete

$GOLDILOCKS_HOME=/home/GOLDILOCKS/goldilocks-mercury.2.1.0-linux-x86_64/

goldilocks_home/ 3 Delete

Creating Database

Create database after the completion of property creation. A user can create database by using $GOLDIL

OCKS_HOME/bin/gcreatedb. The followings are how to use the gcreatedb commands.

[SHELL]> gcreatedb --help

Usage

gcreatedb [options]

Options:

--cluster cluster system (if not specified, stand-alone system)

--db_name database name

--db_comment database comment

--timezone timezone ({+/-}{TZH:TZM})

--character_set character set

SQL_ASCII

UTF8

UHC

GB18030

--char_length_units char length units

OCTETS

CHARACTERS

--home home directory

--member local member name

--host host address

Installing GOLDILOCKS and Creating Database | 39

--port host port

--silent suppresses the display of the result message

--help print help message

examples:

gcreatedb --db_name="goldilocks" --db_comment="goldilocks database" --timezone="+09:00"

--character_set="UTF8" --char_length_units="OCTETS" --silent

$GOLDILOCKS_HOME/conf/goldilocks.properties.conf is referenced when creating database. Then, table

space files are created in SYSTEM_TABLESPACE_DIR path in goldilocks.properties.conf with the value of

***_TABLESPACE_SIZE.

--cluster option should be specified when creating the database which is to participate in cluster system.

The followings are execution arguments of gcreatedb.

Table 2-26 Execution arguments of gcreatedb

Argument Description

--cluster
It is the database to be used in cluster system

If it is omitted, standalone database is created.

--db_name
It is the database name

If it is omitted, it is set as goldilocks.

--db_comment
It is the database description

If it is omitted, it is set as goldilocks database.

--timezone
It is the timezone.

If it is omitted, it is set as TIMEZONE property.

--character_set

It is the database character set.

GOLDILOCKS supports four types of character sets.

● GB18030: Simplified Chinese

● SQL_ASCII: Character set supporting ASCII

● UHC: Unified Hangul Code

● UTF8: Unicode Transformation Format – 8

If it is omitted, it is set as CHARACTER_SET property.

--char_length_units

It is the unit of character length.

● OCTETS: It identifies 1 byte as 1 character

● CHARACTERS: It identifies 1 character (n byte) as 1 character.

If it is omitted, it is set as CHAR_LENGTH_UNITS property.

--home

It is the database home directory.

It searches for a property file, and is referenced to as a location of creating and storin

g various DB files.

If it is omitted, it uses the value set in GOLDILOCKS_DATA environment variable.

--member
It is the member name of local database to be used in cluster system.

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER property.

--host

It is the IP address of local member to be used for communication between cluster sys

tem members

40 | Tutorial

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER_HOST property.

--port

It is the TCP listen port of local member to be used for communication between cluste

r system members

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER_PORT property.

--silent It hides display messages.

--help It displays help messages.

Argument Description

A user should consider the followings when creating database.

● Setting kernel parameter shared memory

○ If the size specified in shared memory setting is smaller than the size described in $GOLDILOCKS

_HOME/conf/goldilocks.properties.conf, a user can not create the database.

● Tablespace size

○ Tablespace files are created when the database is created, and the tablespace is used after being

allocated to the memory as big as the tablespace size when driving GOLDILOCKS. Therefore, it us

es memory even when the actual user data does not exist in the data tablespace. Therefore, a us

er should create database with the sufficient memory considering the actually available memory

as well as shared memory on GOLDILOCKS startup machine when writing goldilocks.properties.c

onf.

● Whether to use cluster system

○ It should be specified that whether the database will participatte as a member of cluster system

when creating the database. In other words, --cluster option should be omitted when executing

gcreatedb using the database as standalone, but --cluster option should be specified when using

the database as cluster system.

When database is created successfully, a user can check the following tablespace file in the path describe

d in SYSTEM_TABLESPACE_DIR of goldilocks.properties.conf.

[SHELL]> gcreatedb

Database created

[SHELL]> gcreatedb --db_name="TEST_DB" \

--db_commnet="test database comment" \

--timezone="+09:00" \

--character_set="UHC" \

--char_length_units="OCTETS"

Database created

[SHELL]> ls $GOLDILOCKS_DATA/db

system_data.dbf system_dict.dbf system_undo.dbf

The following is an example of creating database to be used in cluster system.

Installing GOLDILOCKS and Creating Database | 41

[SHELL]> gcreatedb --cluster

Database created

[SHELL]> gcreatedb --cluster --member=G1N1

Database created

[SHELL]> gcreatedb --cluster --member=G1N1 --host=127.0.0.1 --port 10101

Database created

[SHELL]> gcreatedb --cluster \

--db_name="TEST_DB" \

--home=$GOLDILOCKS_DATA \

--host=127.0.0.1 \

--port=10101 \

--db_comment="g1n1 db comment" \

--timezone="+09:00" \

--character_set="UHC" \

--char_length_units="OCTETS"

Database created

[SHELL]> ls $GOLDILOCKS_DATA/db

system_data.dbf system_dict.dbf system_trans.dbf system_undo.dbf

Building Dictionary Schema Information

Create the following schema to get the system and object information.

Caution

A user should build the following schema after database creation. Otherwise, there is a possibility

of malfunction in Catalog API of ODBC, JDBC for obtaining the object's structure information (for

example, SQLTables() function). If so, it will not interlock with third party tools.

● DICTIONARY_SCHEMA: It consists of views and tables to get object information such as DBA_*, ALL_

, USER_ .

● INFORMATION_SCHEMA: It consists of views and tables included in the SQL standard INFORMATION

_SCHEMA.

● PERFORMANCE_VIEW_SCHEMA: It consists of views to get system information by combining the fixe

d tables' information.

Views and tables included in each schemas provides convenience to get system information.

42 | Tutorial

After driving GOLDILOCKS instance on OPEN phase, a user should execute the sql files as follows. It shoul

d be done at least once after the first database creation.

Note

The scripts to build dictionary schema information are divided into the script for standalone syste

m and the script for cluster system. Therefore, a user should use the appropriate script for the pur

pose to build the information.

The following describes how to build the information by using the script for standalone database.

% gsql --as sysdba --import $GOLDILOCKS_HOME/admin/standalone/DictionarySchema.sql

% gsql --as sysdba --import $GOLDILOCKS_HOME/admin/standalone/InformationSchema.sql

% gsql --as sysdba --import $GOLDILOCKS_HOME/admin/standalone/PerformanceViewSchema.sql

The following describes how to build the information by using the script for cluster system.

% gsql --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/DictionarySchema.sql

% gsql --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/InformationSchema.sql

% gsql --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/PerformanceViewSchema.sql

Managing Database Memory Structure | 43

2.3 Managing Database Memory Structure

This chapter describes the database components which compose GOLDILOCKS instance.

Database Memory Structure

GOLDILOCKS database is divided into memory area and disk area. Memory area is a collection of tablespa

ce consisting of one or more shared memories. Owe to its in-memory database, GOLDILOCKS database n

ever goes down to the disk by replace operation.

Disk area consists of data files, control file, property file, online redo log files. Data file exists one per shar

ed memory of each tablespace, and control file contains instance configuration information. property file

stores instance environment settings, and online redo log file is used to recover database.

Control File

Control file records the physically stored information on the disk of database, and determines the status o

f database by firstly reading at the beginning of Instance startup. The control file records the following inf

ormation.

● Instance state at the time of the previous checkpoint

● Transaction durability mode (CDS/TDS) at the time of the previous startup

● Online redo log file information

● Data file information of each tablespace

Online Redo Log File

Online redo log files store all changes made to the database by transactions in instances. It is used to reco

ver unwritten changes on the data file when restarting instance after database's abnormal termination. F

our online redo log files are generated by default in the size specified in LOG_FILE_SIZE property when cr

eating database. A user can add more if the user need. The redo log files are reused in circulation manner.

Checkpoint are generated when online redo log file switches to the next file, and then some dirty pages

move down to an appropriate data file. If the checkpoint operation is delayed and the updated page doe

s not move down (ACTIVE state), all transactions will be suspended until checkpoint completion. Therefor

e, creating a suitable size online redo log file according to the application's characteristic is helpful to imp

rove the database system performance.

44 | Tutorial

Undo Segment

Undo segments records images in advance of changing operation to use when transactions partially or to

tally rollback. A single undo segment is assigned to a single transaction during update operation. Undo se

gments are stored in MEM_UNDO_TBS tablespace. It is recommended to secure enough undo tablespace,

in preparation for multiple update transactions or a single transaction with large amount of update opera

tion (bulk delete).

Data File

Data file includes the contents of tables/indexes stored in tablespace.

Data file consists of the followings.

● Page

○ The minimum unit of database I/O. The current size is 8 Kbytes.

● Extent

○ A certain number of continuous pages' collection. The minimum unit of which the segment is all

ocated space from the tablespace.

○ Extent size of each tablespace could be different.

● Segment

○ A specific type of data structure's collection. A segment consists of extent sets.

Exceptionally, a temporary tablespace, such as MEM_TEMP_TBS tablespace, does not execute redo loggi

ng, nor does data file create.

Tablespace

Database is divided into multiple tablespaces with logical structure, which contain tables and indexes. Ta

blespace is implemented as a set of one or more shared memories, and it is a tool to manage the space o

f loading data. When a user enquires V$TABLESPACE table, tablespace information on current database

will be outputted.

GOLDILOCKS supports the following tablespaces by default.

Table 2-27 Tablespaces of GOLDILOCKS

Owner Name Description

SYSTEM

DICTIONARY_TBS Default dictionary tables are stored in this tabespace to operate database.

MEM_UNDO_TBS Undo segments and transaction information are stored in this table space.

MEM_DATA_TBS
If a user does not specify a tablespace when creating schema object, the data ta

ble is stored in this tablespace by default.

MEM_TEMP_TBS

Indexes which does not specified tablespace name, and temporary tables which

are used by queries are created in the tablespace. Indexes are rebuilt when resta

Managing Database Memory Structure | 45

rting instance because logging does not occur.

MEM_TRANS_TBS
It is used to recover global transaction in cluster system. It is created only when i

t is configured as cluster system.

USER User-defined
User defines this tablespace to collect specific tables to a specific tablespace and

manage them.

Owner Name Description

Tablespace Types

There are five types of tablespace as follows.

● DICT

○ Tablespace type for storing dictionary tables and indexes.

● DATA

○ Tablespace type for storing general schema objects such as tables and indexes.

○ It becomes the subject of redo logging and page flushing.

● UNDO

○ Tablespace type for storing undo segments.

○ It becomes the subject of redo logging and page flushing.

● TEMPORARY

○ Tablespace type for storing the temporary tables and no-logging indexes which are created durin

g SELECT query.

○ It is not the subject of redo logging and page flushing.

● TRANSACTION (Cluster only)

○ Tablespace type which is used to recover global transaction in cluster system

Checking Information of Database Storage Structure

This chapter describes a method to check the information about multiple database storage structure whic

h are mentioned above.

Control File Information

Use gdump utility to check the contents because control file is stored in binary format.

[SHELL]> gdump CONTROL control_0.ctl

46 | Tutorial

Online Redo Log File Information

Retrieve the control file by using gdump tool, then the name and current state of each online redo file wil

l be displayed.

Data File Information

Retrieve the control file by using gdump tool, then the data files in each tablespaces and its states will be

displayed. Also, viewing the V$DATAFILE table, their current states will be displayed.

Tablespace Information

Retrieve the control file by using gdump tool, then the name and state of each tablespace in the current

database will be displayed. Also, a user can enquire the V$TABLESPACE table by using SQL.

Property Information

Open the text file $GOLDILOCKS_Data/conf/goldilocks.properties.conf, then the property information wil

l be displayed. When working online, retrieve V$PROPERTY table, then the information about currently a

pplied property values will be displayed.

General Operation of Data Storage

A tablespace stores data, and its operation is as follows.

Creating Tablespace

USER DATA tablespace is created as follows.

gSQL> CREATE TABLESPACE TEST_TBS DATAFILE 'TEST_TBS.dbf' SIZE 10M;

Tablespace created.

TEMPORARY tablespace does not include data file, so it is created as follows.

gSQL> CREATE TEMPORARY TABLESPACE TEST_TEMP_TBS MEMORY 'TEST_TEMP_TBS' SIZE 10M;

Tablespace created.

Managing Database Memory Structure | 47

Retrieving Tablespace Usage State

A tablespaces space is allocated or deallocated in the unit of one extent consisting of one or more consec

utive pages. A user can retrieve the size of one extent (BYTE) in a specific tablespace as follows.

gSQL> SELECT EXTENT_SIZE FROM V$TABLESPACE WHERE TBS_NAME = 'TEST_TBS';

EXTENT_SIZE

262144

1 row selected.

A user can view the state of all extents in tablespaces by using D$TABLESPACE_EXTENT table. When an e

xtent is in use, the STATE column is 'U'. When an extent is in free state, the STATE column is 'F'. Therefor

e, the remaining size of space in the current tablespace (the number of extents) can be calculated as follo

ws.

gSQL> SELECT COUNT(*) FROM D$TABLESPACE_EXTENT('TEST_TBS') WHERE STATE = 'F';

COUNT(*)

38

1 row selected.

Seeing the result above, the empty space in TEST_TBS is 38 * 262144 = 9437184 Byte.

Altering Tablespace

A user can alter the tablespaces by using Add/Remove Data File (Memory in case of temporary tablespace

s), and Online/Offline.

Add/ Drop Data File (or Memory)

If a user wants to add spaces to tablespaces while operating the database, the DATA tablespaces allocate

the additional space by using the following syntax.

gSQL> ALTER TABLESPACE TEST_TBS ADD DATAFILE 'TEST_TBS2.dbf' SIZE 10M;

Tablespace altered.

TEMPORARY tablespace adds spaces as follows. Unlike DATA tablespace, a name should be given, and th

e name should be a unique memory name in database.

gSQL> ALTER TABLESPACE TEST_TEMP_TBS ADD MEMORY 'TEST_TEMP_TBS2' SIZE 10M;

Tablespace altered.

48 | Tutorial

A user can drop the space in DATA tablespace by using the following syntax. However, if any part of the

area is used, the user can not drop it.

gSQL> ALTER TABLESPACE TEST_TBS DROP DATAFILE 'TEST_TBS2.dbf';

Tablespace altered.

Similarly, a user can withdraw the space in TEMPORARY tablespace by using the following syntax.

gSQL> ALTER TABLESPACE TEST_TEMP_TBS DROP MEMORY 'TEST_TEMP_TBS2';

Tablespace altered.

Offline Tablespace

Switch the tablespace to offline mode if a user wants to move the location of data file in the tablespace.

Use the following syntax.

gSQL> ALTER TABLESPACE TEST_TBS OFFLINE;

Tablespace altered.

A user can switch the tablespace to online mode again by using the following syntax.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

Tablespace altered.

Rename

Rename the tablespace by using the following syntax.

gSQL> ALTER TABLESPACE TEST_TBS RENAME TO TEST_TBS2;

Tablespace altered.

Switch the tablespace to offiline mode, if a user wants to change the location of data file in the tablespac

e. Then, move the data file by using OS command, rename it by using ALTER TABLESPACE statement, the

n switch the tablespace to online state.

gSQL> ALTER TABLESPACE TEST_TBS OFFLINE;

Tablespace altered.

gSQL> ALTER TABLESPACE TEST_TBS RENAME DATAFILE 'TEST_TBS.dbf' TO 'TEST_TBS_1.dbf';

ERR-42000(16164): file does not exist :

ALTER TABLESPACE TEST_TBS RENAME DATAFILE 'TEST_TBS.dbf' TO 'TEST_TBS_1.dbf'

*

ERROR at line 1:

Managing Database Memory Structure | 49

● The following procedure describes how to rename the file by using OS command.

gSQL> ALTER TABLESPACE TEST_TBS RENAME DATAFILE 'TEST_TBS.dbf' TO 'TEST_TBS_1.dbf';

Tablespace altered.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

Tablespace altered.

Dropping Tablespace

Drop an unnecessary tablespace by using the following syntax. The statement after INCLUDING is optiona

l, but if the statement is given then it will delete all the content (schema object) and data file in the tables

paces.

gSQL> DROP TABLESPACE TEST_TBS INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

Store Mode

GOLDILOCKS uses the store mode as an instance unit to maximize performance under certain circumstan

ce. Store mode defines which part of ACID property to give up to improve the operation performance in t

he transaction.

GOLDILOCKS supports two types of store modes.

● Transactional Data Store (TDS) mode

○ TDS mode is default store mode of GOLDILOCKS database.

○ Transactional Data Store (TDS) mode is general DBMS store mode. In this mode, all transactions i

n the instance write both undo log and redo log. Therefore, a user can rollback the transactions a

nd recover using data file and online redo log file even when an instance is terminated abnormall

y, because periodical checkpoint are performed.

● Concurrent Data Store (CDS) mode

○ All running transactions in the instance write undo logs, but do not write redo logs. Therefore, th

e transactions can deal with all run-time errors, and can rollback. But if an instance is terminated

abnormally or terminated using shutdown abort statement, all updated data would be lost. (It do

es not provide recover facility). It is because checkpoint action does not occur. CDS Mode control

s concurrency among transactions, so it ensures normal operations of transactions even when dif

ferent transactions access the same object at the same time.

○ CDC Mode is mainly used in run-time information oriented database in which query/update oper

ations are frequently performed but does not require durability such as cache server.

Store mode is set through the property setting when a user starts up the instance. Transactions can not b

50 | Tutorial

e executed in different store modes. The user should carefully set the store mode when the user starts up

the instance because the user can not change the instance in online mode.

Managing Schema Object | 51

2.4 Managing Schema Object

Schema Object

Schema object is a set of logical structure created by a user. GOLDILOCKS supports the following schema

objects, which are table, index, synonym, view, sequence, constraint and stored procedure.

Schema Object Management Privileges

Currently, GOLDILOCKS supports user and his privilege. Therefore, not all the users share all the created o

bjects, so the privilege should be given to a user.

Managing Table

This chapter describes table overview, methods of retrieving the table information, creating/ altering tabl

e and loading/ dropping data.

Table

A table is the most basic unit of storage containing user data. A table consists of columns and rows.

Table Type

Currently, GOLDILOCKS supports general heap table whose data saving order is irrelevant to sort order of

a particular column. However, GOLDILOCKS does not support clustered table, partitioned table.

● It supports basic heap table only.

● It supports primary key/unique/not null constraint.

● It supports the datatypes as follows.

○ BOOLEAN 		

○ SMALLINT, 		INTEGER, BIGINT, REAL, DOUBLE, NUERMIC, FLOAT 		

○ CHAR (MAX 		2000), VARCHAR (MAX 4000), BINARY, VARBINARY, LONG VARCHAR, LONG VA

RBINARY

○ DATE, 		TIME, TIMESTAMP, INTERVAL (It supports WITH/WITHOUT 		TIMEZONE of TIME/TIMEST

AMP.) 		

○ It does not support BLOB type.

52 | Tutorial

● The number of columns, indexes and constraints are not limited.

● A user can retrieve the entire table information using a query SELECT * FROM TABLES;.

If a huge number of rows are stored in a particular table, and then the table size becomes big, even bulk

delete operation does not return the table's empty space to the tablespace. But TRUNCATE operation can

return all existing space to the tablespace.

Table data can be stored and retrieved being distributed to multiple nodes according to the user's desirin

g distribution policy when using GOLDILOCKS configuring it as cluster system. For more information, refe

r to Managing Table

Managing Index

This chapter describes index overview and creating/deleting index.

Overview

Index is a subsidiary schema object which is linked to tables. A user can easily find the location of specific

ally conditioned row using the index. A user can also retrieve the row's column value if the column is the

key column of the index.

GOLDILOCKS can create as many indexes in need to tables. However, too many indexes burden the exec

ution of inserting/ changing/ deleting operation of the table, then it may lower the performance.

Primary key or unique constraint automatically creates an index on that column.

Index Property

● It supports B-link tree form index.

○ GOLDILOCKS provides B-link tree form index by default.

● The size of a single index node is 8 Kbytes. 	

● The maximum number of key columns is 32, and the maximum key length is 2000 bytes. 	

● It supports unique index.

● It supports Ascending/Descending, 	NULLS FIRST and NULLS LAST.

○ A user can define whether to sort index key columns in ascending order (ASC) or in descending

(DESC) order.

○ A user can define whether to list NULL value of the index key column at first (NULLS 		FIRST) or at

last (NULLS 		LAST).

● A user can retrieve the whole index information by using the query SELECT * FROM INDEXES;.

● A user can calculate the index size in the similar way of calculating table because index is implemente

d by segment in the same way of implementing table.

Managing Schema Object | 53

Sequence

Sequence is a schema object which generates a unique number.

A user can generate the sequence as follows.

gSQL> CREATE SEQUENCE customers_seq START WITH 1000 INCREMENT BY 1 NOCACHE NOCYCLE;

Sequence created.

A user can use the sequence by using NEXTVAL.

gSQL> SELECT customers_seq.NEXTVAL FROM dual;

A user can drop the sequence as follows.

gSQL> DROP SEQUENCE customers_seq;

Global sequence object is automatically created when user creates sequence by using GOLDILOCKS confi

guring cluster system. This object manages the global pool of the sequence value which is used being sha

red by all member nodes in cluster system. Each member node is allocated the sequence value as many as

specified from the global object when calling NEXTVAL and uses them.

For more information, refer to Global Sequence.

54 | Tutorial

2.5 Managing User

Creating User

Only the SYS user and the user with the CREATE USER ON DATABASE privilege can create a user for GOL

DILOCKS database. The CREATE SESSION ON DATABASE privilege is required to connect to the newly cre

ated user.

The followings are the syntax to create a user.

<user definition> ::=

CREATE USER user_identifier IDENTIFIED BY password

[DEFAULT TABLESPACE tablespace_name]

[TEMPORARY TABLESPACE tablespace_name]

The followings are the syntax rules and parameters to create a user.

● user_identifier 	

○ It is a username to be created.

○ The username and the role name should be unique.

○ The length of a user_identifier should be smaller than 128 bytes. 	

● password 	

○ The password is stored encrypted. 	

○ The length of a password should be smaller than 128 bytes.

○ Password is case-sensitive.

● DEFAULT 	TABLESPACE tablespace_name 	

○ It specifies the default tablespace which stores the objects such as tables, indexes (LOGGING) cre

ated by a user which is to be created.

○ If DEFAULT 		TABLESPACE clause is omitted, it is specified as the default 		data tablespace (MEM_

DATA_TBS) which is defined when creating DATABASE (<database 		definition>).

● TEMPORARY 	TABLESPACE tablespace_name 	

○ It specifies the TABLESPACE to store user-created temporary tables, index (NO LOGGING), and q

uery processing-generated intermediate results.

○ If TEMPORARY 	TABLESPACE clause is omitted, it specifies as the default temporary tablespace

(MEM_TEMP_TBS) which is defined when creating DATABASE (<database 		definition>).

● INDEX TABLESPACE tablespace_name

○ It specifies the default tablespaces to store an index object created by a user to be created.

○ If INDEX TABLESPACE clause is omitted, the default value is INDEX TABLESPACE NULL.

Managing User | 55

Dropping User

It drops the created user of GOLDILOCKS database. An access privilege and user range for dropping user

are as same as those for creating user.

The following is the syntax to drop a user.

<drop user statement> ::=

DROP USER [IF EXISTS] user_identifier [<drop behavior>]

;

<drop behavior> ::=

RESTRICT

| CASCADE

The followings are the syntax rules and parameters for dropping a user.

● IF 	EXISTS 	

○ Even when the user does not exist, an error does not occur.

● user_identifier 	

○ It is a database username to be dropped.

○ A user can not drop a user, such as SYS, which is automatically generated when the database is c

reated.

○ It does not drop objects, such as tablespace, which is not the owner but created by user_identifie

r.

● drop 	behavior 	

○ If drop 	behavior is omitted, the default value is RESTRICT.

Altering User

It alters the definition of the GOLDILOCKS database user. ALTER USER privilege is required for an ordinary

user. However, if a user is the user_identifier user, then the user can alter the definition without the privil

ege.

The followings are the syntax to alter the user definition.

<alter user statement> ::=

ALTER USER user_identifier <alter user action>

| ALTER USER PUBLIC <alter schema path>

;

<alter user action> ::=

56 | Tutorial

<alter password>

| <alter profile>

| <alter default tablespace>

| <alter temporary tablespace>

| <alter index tablespace>

| <alter schema path>

<alter password> ::=

IDENTIFIED BY new_password [REPLACE old_password]

<alter profile> ::=

PROFILE { profile_name | DEFAULT | NULL }

<password expire> ::=

PASSWORD EXPIRE

<account lock> ::=

ACCOUNT { LOCK | UNLOCK }

<alter default tablespace> ::=

DEFAULT TABLESPACE tablespace_name

<alter temporary tablespace> ::=

TEMPORARY TABLESPACE tablespace_name

<alter index tablespace> ::=

INDEX TABLESPACE { tablespace_name | NULL }

<alter schema path> ::=

SCHEMA PATH ({ schema_name | CURRENT PATH } [, ...])

The followings are the syntax rule and parameters for altering user.

● user_identifier 	

○ It is a username to be altered.

● <alter 	password> 	

○ It alters user password.

○ IDENTIFIED 		BY new_password 		

■ It changes the current password, and the new password is stored encrypted.

■ The length of a password should be smaller than 128 bytes.

■ Password is case-sensitive.

○ REPLACE 		old_password 		

■ If a user have ALTER 			USER ON DATABASE privilege, the user can omit it.

■ If a user do not have ALTER 			USER ON DATABASE privilege, the user can not omit it.

■ The user and user_identifier should be same.

● <alter profile>

○ It alters the profile for password management policies.

○ PROFILE profile_name

■ It allocates profile_name created by a user.

Managing User | 57

○ PROFILE DEFAULT

■ It allocates "DEFAULT" which is the default profile.

○ PROFILE NULL

■ It does not allocate the profile.

● <password expire>

○ It expires the user password.

● <account lock>

○ ACCOUNT LOCK

■ It locks the user account.

○ ACCOUNT UNLOCK

■ It unlocks the account lock.

● <alter 	default tablespace> 	

○ It alters user's default tablespace. 	

○ tablespace_name should be data tablespace.

● <alter 	temporary tablespace> 	

○ It alters user's temporary tablespace.

○ tablespace_name should be temporary 		tablespace.

● <alter index tablespace>

○ It alters the index tablespace of a user.

○ It assigns INDEX TABLESPACE tablespace_name

■ When assigning the data tablespace, it should be the LOGGING index.

■ When assigning the temporary tablespace, it should be the NOLOGGING index.

○ INDEX TABLESPACE NULL

■ It does not assign the index tablespace.

58 | Tutorial

2.6 GOLDILOCKS Property

GOLDILOCKS property is classified as the property which is applied when creating database and the prop

erty which can be updated at online/offline. A user can change the tablespace path and the redo log file

only at MOUNT phase of startup.

Properties When Creating Database

Table 2-28 Properties when creating database

Name Description

SYSTEM_MEMORY_DICT_TABLESPACE_SIZE Initial size of dictionary tablespace

SYSTEM_MEMORY_DATA_TABLESPACE_SIZE Initial size of system data tablespace

SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE Initial size of system undo tablespace

SYSTEM_MEMORY_TEMP_TABLESPACE_SIZE Initial size of system temporary tablespace

LOG_BLOCK_SIZE Block size of redo log file

LOG_FILE_SIZE Initial size of redo log file

LOG_GROUP_COUNT The number of redo log files

CHARACTER_SET Character set

TIMEZONE Time zone

CHAR_LENGTH_UNITS Character length unit

Properties When Driving Database

There are more than 100 properties in GOLDILOCKS database. The followings are frequently used proper

ties among them.

Table 2-29 Frequently used properties when driving database

Name Description

SHARED_MEMORY_STATIC_KEY Key value to create the shared memory

SHARED_MEMORY_STATIC_SIZE Size of the shared memory

DATA_STORE_MODE Storage mode of GOLDILOCKS instance

LOG_BUFFER_SIZE Log buffer size

LOG_DIR Directory path of redo log

PRIVATE_STATIC_AREA_SIZE Static area size per session

CLIENT_MAX_COUNT The maximum number of accessible session

PROCESS_MAX_COUNT The maximum number of process

GOLDILOCKS Property | 59

NET_BUFFER_SIZE Network buffer size per session

Name Description

60 | Tutorial

2.7 GOLDILOCKS Utility

gcreatedb

The gcreatedb utility initializes GOLDILOCKS database and gets ready for the service. The gcreatedb gene

rates data files and log files in the GOLDILOCKS_DATA environment variable location according to given

properties. The following is a syntax.

[SHELL]> gcreatedb --help

Usage

gcreatedb [options]

Options:

--cluster cluster system (if not specified, stand-alone system)

--db_name database name

--db_comment database comment

--timezone timezone ({+/-}{TZH:TZM})

--character_set character set

SQL_ASCII

UTF8

UHC

GB18030

--char_length_units char length units

OCTETS

CHARACTERS

--home home directory

--member local member name

--host host address

--port host port

--silent suppresses the display of the result message

--help print help message

examples:

gcreatedb --db_name="goldilocks" --db_comment="goldilocks database" --timezone="+09:00"

--character_set="UTF8" --char_length_units="OCTETS" --silent

Tablespace files are created in SYSTEM_TABLESPACE_DIR of goldilocks.properties.conf as each value of *

**_TABLESPACE_SIZE by referring to $GOLDILOCKS_HOME/conf/goldilocks.properties.conf when creati

ng the database.

The followings are execution arguments of gcreatedb command.

GOLDILOCKS Utility | 61

Table 2-30 Execution arguments of gcreatedb

Argument Description

--cluster
It is the database to be used in cluster system.

If it is omitted, standalone database is created.

--db_name
It is the database name.

If it is omitted, it is set as goldilocks.

--db_comment
It is the database description.

If it is omitted, it is set as goldilocks database.

--timezone
It is the timezone.

If it is omitted, it is set as TIMEZONE property.

--character_set

It is the database character set.

GOLDILOCKS supports four types of character sets.

● GB18030: Simplified Chinese

● SQL_ASCII: Character set supporting ASCII

● UHC: Unified Hangul Code

● UTF8: Unicode Transformation Format – 8

If it is omitted, it is set as CHARACTER_SET property.

--char_length_units

It is the unit of character length.

● OCTETS: It identifies 1 byte as 1 character

● CHARACTERS: It identifies 1 character (n byte) as 1 character.

If it is omitted, it is set as CHAR_LENGTH_UNITS property.

--home

It is the database home directory.

It searches for a property file, and is referenced to as a location of creating and storin

g various DB files.

If it is omitted, it uses the value set in GOLDILOCKS_DATA environment variable.

--member
It is the member name of local database to be used in cluster system.

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER property.

--host

It is the IP address of local member to be used for communication between cluster sys

tem members.

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER_HOST property.

--port

It is the TCP listen port of local member to be used for communication between cluste

r system members.

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER_PORT property.

--silent It hides display messages.

--help It displays help messages.

gsql (GOLDILOCKS Interactive SQL Tool)

gsql is an interactive command line utility to execute SQL statements for managing GOLDILOCKS databas

e. DBA creates initial table schema by using gsql, or checks the current database state.

62 | Tutorial

The following is the gsql syntax.

[SHELL]> gsql <userid> <passwd>

gSQL> CREATE TABLE T1 (COL1 INTEGER);

create success

gSQL> \q

[SHELL]>

gloader (GOLDILOCKS Data Upload/download Tool)

The gloader utility downloads existing data in database to a file in text format, or it uploads an existing d

ata in text format to a new database. The text data file format of gloader is Comma-Separated Value (CS

V).

The following is how to use gloader.

gloader [export|import] userid/passwd control='control_file_name' \

data='data_file_name' log='log_file_name' bad='bad_file_name'

Table 2-31 Arguments of gloader

Argument Description

export | import
It declares whether to downlad the contents of existing table to data_file_name, or to

upload existing data in data_file_name to a specified tabe in control_file_name.

userid It specifies user ID.

passwd It specifies the password of the userid.

control
It specifies the file path in which detailed settings are written during export/import op

eration.

data It specifies target data file to export, or data file to import.

log
It specifies log file path in which the progress and the elapsed time of import/export o

peration.

bad
It specifies bad file path which records data records failed in insertion at importing du

e to various errors.

The following is an example of a control file.

TABLE TEST_TBL

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

Cluster Tutorial

3.

63

64 | Cluster Tutorial

3.1 Managing GOLDILOCKS Cluster System

This chapter describes the basic information for configuring and managing the cluster system by using m

ultiple GOLDILOCKS databases. Only the parts added to the cluster system or distinguishing the cluster sy

stem comparing to the standalone database are described in this chapter, so it is prerequisite to read the

standalone database tutorial before read this chapter.

Overview

GOLDILOCKS can be used by configuring a standalone database as described in the previous chapter. Or,

a user can also bind multiple databases into a single cluster, then select an appropriate solution for data d

istribution. In other words, a user can customize how to distribute massive data to multiple servers when

using GOLDILOCKS cluster system. This guarantees high availability and improves the throughput due to t

he parallel processing.

GOLDILOCKS cluster system consists of one or more cluster groups, and a cluster group consists of one or

more cluster members. It does not require an extra application server or a meta server. Applications are o

perated accessing to cluster members corresponding to the data server. Cluster members belonging to th

e same cluster group keeps the same data replication.

A user should determine whether to use GOLDILOCKS database as standalone system or as cluster system,

when creating database of each node. To use it as cluster system, a user should add options related to clu

ster when creating database of each node.

Property Setting

Properties to build cluster system are described in $GOLDILOCKS_DATA/conf/goldilocks.property.conf file

of each server like as when using standalone database. Main properties for TBS (tablespace), LOG, CONT

ROL FILE can be set as same as setting in standalone system even when using cluster system. However, th

ere should not be the same path or port of files among cluster members when creating multiple database

s to configure cluster system in a single server.

The followings describe main property items of when configuring cluster system.

Table 3-1 Main property items

Property Description Default value

It is the directory path of installing the following syst

em TBS.

Managing GOLDILOCKS Cluster System | 65

SYSTEM_TABLESPACE_DIR ● DICTIONARY_TBS

● MEM_DATA_TBS

● MEM_UNDO_TBS

● MEM_TEMP_TBS

● MEM_TRANS_TBS

‘<GOLDILOCKS_DATA>/db’

SYSTEM_MEMORY_DICT_T

ABLESPACE_SIZE
It is the dictionary tablespace size. 256M

SYSTEM_MEMORY_DATA_T

ABLESPACE_SIZE
It is the data tablespace size. 200M

SYSTEM_MEMORY_UNDO_

TABLESPACE_SIZE
It is the undo tablespace size. 32M

LOG_DIR It is the default log directory path. ‘<GOLDILOCKS_DATA>/wal’

SYSTEM_LOGGER_DIR It is the system log directory path. ‘<GOLDILOCKS_DATA>/trc’

CONTROL_FILE_COUNT It is the number of control files. 2

CONTROL_FILE_0 It is the first control file path.
'<GOLDILOCKS_DATA>/wal/

control_0.ctl'

CONTROL_FILE_1 It is the second control file path.
'<GOLDILOCKS_DATA>/wal/

control_1.ctl'

LOCAL_CLUSTER_MEMBER
It is the name of cluster member of which local serve

r uses in cluster system.
‘G1N1’

LOCAL_CLUSTER_MEMBER_

HOST
It is the host name of local server. '127.0.0.1'

LOCAL_CLUSTER_MEMBER_

PORT

It is TCP listen port of which local server uses for the

communication in cluster system.
10101

Property Description Default value

The name of cluster member and host-port combination should be unique in cluster system. To omit the

property setting above, provide information by using --member, --host, --port options when creating data

base using gcreatedb. The member information provided by property or gcreatedb option is stored and m

anaged in $GOLDILOCKS_DATA/wal/location.ctl file.

To modify the properties, update the text property file ($GOLDILOCKS_DATA/conf/goldilocks.properties.

conf), or define a new variable in a form of GOLDILOCKS_<property_name> in an environment variable. T

he property file is prior to the environment variable.

Background Process

GOLDILOCKS cluster system has the background process (gmaster) to manage instances per each membe

r node. gmaster of each node consists of multiple system threads internally. Most of them are as same as

those in standalone system, but the following system threads are added to manage cluster system.

66 | Cluster Tutorial

The following threads are performed only when starting the database created as cluster mode.

● Cluster recover thread: It recovers global transaction in cluster system.

● Failover thread: It deals with the failover through reselecting offiline and coordinator for the member

s when an error occurs on a specific node or in a network in cluster system.

Two following processes are additionally driven when using GOLDILOCKS as cluster system.

● cdispatcher: It transmit/receive cluster packet and manages sessions.

● cserver: It performs operation of modifying and querying for the database to which the member nod

e belongs.

GOLDILOCKS cluster system requires complex cluster protocol communication among member nodes, an

d cluster dispatcher (cdispatcher) is a process to efficiently perform the management of network commu

nication context and packet distribution mechanism. In addition, it performs monitoring continuously the

validity of cluster session through heartbeat.

In cluster system, SQL performing in a specific node (driver node) needs to store data on the remote mem

ber node by referring to the sharding strategy of the target table or enquires the data stored in the corres

ponding node. In this case, a process is required to process this request and return the result in each me

mber node, and that process is cserver.

Client Process

A user can use both client server (C/S) model and direct access (D/A) model in cluster system like as stand

alone system. However, each member node of cluster system has its own listener, so the client program s

hould know the listen port of the cluster member to access beforehand (in C/S mode). A user can process

various transactions when accessing to any node of cluster system like as standalone database.

Signal handling, cleanup for connection, releasing shared resources in cluster system are processes as sa

me as those in standalone system.

Memory Structure of Instance

GOLDILOCKS cluster system is used to bind multiple shared-nothing databases to a management unit wh

ich is a single cluster system. Therefore, a method of using memory of cluster member nodes is similar to

that of standalone. The memory size of which each member node uses are determined by properties set i

n its own property. Static area contains instance basic information for database management, informatio

n for each session, statement, transaction, redo log buffer, dictionary cache, and other operational infor

mation like as standalone system. Additionally, information for management of cluster session such as inf

Managing GOLDILOCKS Cluster System | 67

ormation for location and cluster session are also stored.

Tablespace area consists of page frames and page control header (PCH). The page frame contains the co

ntents of each tablespace and PCH controls those page frames.

The application process memory contains instance memories attached when connecting, ODBC environm

ent shared in process unit, various ODBC handles and heap memory area containing other information su

ch as bind information.

Start and End of Cluster System

To start GOLDILOCKS system, create instance on each member node beforehand (gcreatedb), and then r

egister cluster group and cluster member. Later, a user can start or end the system by using sysdba role th

rough gsql and gsqlnet.

listenershould be in operation if a user wants to start or end GOLDILOCKS cluster system in dedicated mo

de of C/S model(to use gsqlnet).

GOLDILOCKS cluster system can not be started or ended in the shared mode of C/S model.

% gsql --as sysdba

Enter user-name: sys

Enter password:

Connected to an idle instance.

gSQL>

GOLDILOCKS cluster system has the following startup phases. OPEN phase is subdivided into LOCAL OPE

N and GLOBAL OPEN unlike the standalone system.

● NOMOUNT

○ It launches gmaster which is a demon to manage GOLDILOCKS instance.

● MOUNT

○ It reads properties, and the control file for the recovery by using $GOLDILOCKS_DATA environme

nt variable.

● LOCAL OPEN

○ It loads tablespace content from data files, then performs recovery by using the redo log files, an

d recovers in-doubt global transaction, newly build no-logging indexes, and creates dictionary ca

ches.

● OPEN (GLOBAL OPEN)

○ It connects cluster sessions of each cluster member, arranges shard map, selects a global manage

r (global coordinator) and a group manager (group coordinator), then waits for the user to acce

ss the service.

68 | Cluster Tutorial

To start or end the GOLDILOCKS cluster system the cluster system environment should be configured perf

orming the following preliminary works. If the member name, host address, port number are uniquely giv

en when creating each member database by using gcreatedb, the property setting process for each node

can be omitted.

● Setting property: Update property files to be used on each member node.

● Creating database: Create the database through gcreatedb on each member node.

● Creating cluster group and adding a member: Create a group and a member configuring cluster syste

m.

● Driving listener: The listner on each node should be driven beforehand to use gsqlnet.

Use the following syntaxes to create a cluster group or a member.

● ALTER CLUSTER GROUP name ADD MEMBER

● CREATE CLUSTER GROUP

• Creating database: It is performed on each node.

% gcreatedb --cluster --db_name='goldilocks' --member='g1n1' \

--host='192.168.0.11' --port 10110

% gcreatedb --cluster --db_name='goldilocks' --member='g1n2' \

--host='192.168.0.12' --port 10120

• Creating a cluster group and a member: It is performed on a single node.

gSQL> create cluster group g1 cluster member g1n1

host '192.168.0.11' port 10110;

gSQL> alter cluster group g1 add cluster member g1n2

host '192.168.0.12' port 10120;

If the configuration of GOLDILOCKS cluster system is completed as above, the entire cluster system can b

e started or ended by using the following two methods.

● Accessing to each member node to start or end nodes one by one

○ Use \startup and \shutdown commands.

● Start or end the entire member node at once in a single member node

○ Connect through gsqlnet, and then use \cstartup and \cshutdown commands.

The following describes the first method above which is how to access each member node then drive clus

ter system. \startup command is used to directly enter into LOCAL OPEN phase without the intermediate

phase. This can be operated being subdividing into three phases, which are \startup nomount, alter syste

m mount database, and alter system open local database.

Drive up to LOCAL OPEN phase on each node through \startup, and then access a single node and drive

Managing GOLDILOCKS Cluster System | 69

up to GLOBAL OPEN phase.

• Startup up to LOCAL OPEN: It is performed on each member node.

% gsql sys gliese --as sysdba

gSQL> \startup

Startup success.

• Startup up to OPEN: It is performed on a single node.

% gsql sys gliese --as sysdba

gSQL> alter system open global database;

System altered.

Starting up with the first method can be a burden to an operator if many nodes are included in cluster sys

tem. It is because the entire process from end of cluster system to LOCAL OPEN should be performed eve

rytime on every member node. The following is a simple method to startup the entire member for the eas

e of operation.

• Startup to GLOBAL OPEN: It is performed on a single node.

% gsqlnet sys gliese --as sysdba

gSQL> \cstartup

Startup success.

Note

● \cstartup and \cshutdown commands can be performed only in gsqlnet, and it is not support

ed in gsql. Also, listener should be driven beforehand on every member node to be driven.

● To build GOLDILOCKS cluster system containing multiple members on a single physical node,

home directory name, member name and the cluster port information should not be duplicat

ed when creating each database.

When GOLDILOCKS system ends, gmaster, the management daemon process, ends on each member no

de, so it does not allow any more connection or other database operations.

The followings are two ending modes of GOLDILOCKS cluster system.

70 | Cluster Tutorial

● NORMAL: It blocks an access of a new session, waits for the termination of all sessions, performs che

ckpoint, then unloads the instance.

● ABORT: It immediately terminates gmaster regardless of the state of connected sessions, and unloads

the instance.

If \shutdown command is performed by using gsql as follows, only the connected member node is termin

ated.

% gsql sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL> \shutdown normal

Shutdown success

gSQL>

To terminate the entire member belonging to cluster system at once, use \cshutdown command of gsqlnet

as follows. The normal option can be omitted.

% gsqlnet sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL> \cshutdown normal

Shutdown success

gSQL>

Caution

Using abort option when performing \cshutdown, it terminates the entire member node by force.

Therefore, some member nodes may fail to join cluster system when restarting it by using \cstartu

p. Although the failed nodes can join through the following join commands and rebalance proces

s, it is recommended to terminate it by using \cshutdown normal which is a safe method.

To terminate and start a member node or some member nodes belonging to cluster system, follow the pr

ocess below. The following describes how to restart only the G1N2 node among cluster member nodes t

hen make it join cluster system.

% gsql sys gliese --as sysdba --dsn=g1n2

Connected to GOLDILOCKS Database.

gSQL> \shutdown normal

Shutdown success

gSQL> \startup

Startup success

Managing GOLDILOCKS Cluster System | 71

gSQL> alter system join database;

System altered.

To restart a member node and make it rejoin cluster system, rebalancing operation for the altered table

may be required if the corresponding node is terminated when a transaction occurs. It the rebalancing op

eration is not performed, the transaction performing on a driver node may fail to alter the table on which

the rebalaning is not performed.

A rebalancing operation is a process which synchronizes data distribution policy and property information

of table among member nodes, and dividedly stores table data again in each member nodes according to

the data distribution policy.

% gsql sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL> \shutdown normal

Shutdown success

gSQL> \startup

Startup success

gSQL> alter system join database;

ERR-42000(16405): some tables in the database need to be rebalanced

System altered.

gSQL> alter database rebalance;

Database altered.

72 | Cluster Tutorial

3.2 Installing GOLDILOCKS and Creating Database

Installing and creating member database which is to be included in GOLDILOCKS cluster system is almost

as same as those in standalone system. This chapter describes only the unique feature and method used f

or installing and creating database of cluster system comparing to standalone system.

Configuring GOLDILOCKS Package

The package used to configure GOLDILOCKS cluster system is as same as those of standalone database.

However, the scripts to build dictionary and performance view are divided into the script for standalone s

ystem and the script for cluster system. Therefore, a user should use the appropriate script for the purpos

e to build the information after creating the database.

The script for standalone database is located below the $GOLDILOCKS_HOME/admin/standalone director

y and the script for cluster system is located below the $GOLDILOCKS_HOME/admin/cluster directory.

Table 3-2 admin/standalone directory

File name Description

README Read me

DictionarySchema.sql It is the dictionary schema creation script.

InformationSchema.sql It is the information schema creation script.

PerformanceViewSchema.sql It is the PerformanceView schema creation script.

Table 3-3 admin/cluster directory

File name Description

README Read me

DictionarySchema.sql It is the dictionary schema creation script.

InformationSchema.sql It is the information schema creation script.

PerformanceViewSchema.sql It is the PerformanceView schema creation script.

Installing GOLDILOCKS Software

GOLDILOCKS software should be installed on every member node belonging to cluster system, and the in

stalling method is as same as that of standalone system. The method for setting and checking kernel para

meter, setting environment variable are as same as those of standalone system, so refer to the correspon

ding tutorial.

Installing GOLDILOCKS and Creating Database | 73

In this case, be cautious that setting properties for each cluster member node, database name, database

version, character set, time zone should be same for the normal operation of cluster system.

Creating Database

Use gcreatedb utility to create database on each member node configuring cluster system like as standalo

ne system.

The following options of gcreatedb are used only when creating cluster database. Other options are as sa

me as standalone system.

Table 3-4 Execution arguments of gcreatedb

Argument Description

--cluster
It represents that it is cluster database.

When it is omitted, standalone database is created.

--member
The member name of local database to be used in cluster system.

When it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER property.

--host

IP address of local member to be used for communication between cluster system me

mbers.

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER_HOST property.

--port

TCP listen port of local member to be used for communication between cluster syste

m members

If it is omitted, it uses the value set in LOCAL_CLUSTER_MEMBER_PORT property.

The following is an example of creating database to be used in cluster system.

[SHELL]> gcreatedb --cluster

Database created

[SHELL]> gcreatedb --cluster --member=G1N1

Database created

[SHELL]> gcreatedb --cluster --member=G1N1 --host=127.0.0.1 --port 10101

Database created

[SHELL]> gcreatedb --cluster \

--db_name="TEST_DB" \

--home=$GOLDILOCKS_DATA \

--host=127.0.0.1 \

--port=10101 \

--db_comment="g1n1 db comment" \

--timezone="+09:00" \

--character_set="UHC" \

--char_length_units="OCTETS"

74 | Cluster Tutorial

Database created

[SHELL]> ls $GOLDILOCKS_DATA/db

system_data.dbf system_dict.dbf system_trans.dbf system_undo.dbf

Building Dictionary Schema Information

To normally use cluster system, the dictionary schema information should be built like as standalone syste

m. If the following schema is not built, the catalog API (e.g. SQLTables() function) of ODBC, JDBC obtaini

ng object's structure information malfunctions, then it can not interwork with the third party tools. In con

clusion, it should be built after creating database.

It is recommended to build schema in cluster system after completing the operation of creating a cluster

group and a member. It is because GOLDILOCKS automatically creates schema on every member node w

hen performing creation script by connecting to a member node after completing cluster system configur

ation.

● DICTIONARY_SCHEMA: It consists of tables and views inquiring object information such as DBA_*, A

LL_*, USER_*.

● INFORMATION_SCHEMA: It consists of tables and views included in the SQL standard INFORMATION

_SCHEMA.

● PERFORMANCE_VIEW_SCHEMA: It consists of views inquiring system information combining inform

ation of fixed tables.

The followings describe how to build schema by using the script for cluster system. Perform the operation

by accessing to a single member node in GLOBAL OPEN phase as described above.

% gsql sys gliese --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/DictionarySchema.sql

% gsql sys gliese --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/InformationSchema.sql

% gsql sys gliese --as sysdba --import

$GOLDILOCKS_HOME/admin/cluster/PerformanceViewSchema.sql

Various structure information can be viewed by using the schema information built above. What is differe

nt from standalone system is that a user can extract only the desired node information by giving group na

me and member node after the object when inquiring the information.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL> select origin_member_name, stat_name, stat_value

2 from gv$system_mem_stat

3 where stat_name = 'PLAN_CACHE_TOTAL_SIZE';

ORIGIN_MEMBER_NAME STAT_NAME STAT_VALUE

Installing GOLDILOCKS and Creating Database | 75

------------------ --------------------- ----------

G1N1 PLAN_CACHE_TOTAL_SIZE 17844952

G2N2 PLAN_CACHE_TOTAL_SIZE 16796288

G2N1 PLAN_CACHE_TOTAL_SIZE 16796288

G1N2 PLAN_CACHE_TOTAL_SIZE 16796288

G3N1 PLAN_CACHE_TOTAL_SIZE 16796288

G3N2 PLAN_CACHE_TOTAL_SIZE 16796288

6 rows selected.

gSQL> select origin_member_name, stat_name, stat_value

2 from gv$system_mem_stat@g1n2

3 where stat_name = 'PLAN_CACHE_TOTAL_SIZE';

ORIGIN_MEMBER_NAME STAT_NAME STAT_VALUE

------------------ --------------------- ----------

G1N2 PLAN_CACHE_TOTAL_SIZE 16796288

1 row selected.

gSQL> select origin_member_name, stat_name, stat_value

2 from gv$system_mem_stat@g1

3 where stat_name = 'PLAN_CACHE_TOTAL_SIZE';

ORIGIN_MEMBER_NAME STAT_NAME STAT_VALUE

------------------ --------------------- ----------

G1N1 PLAN_CACHE_TOTAL_SIZE 17844952

G1N2 PLAN_CACHE_TOTAL_SIZE 16796288

2 row selected.

76 | Cluster Tutorial

3.3 Managing Schema Object

The schema object is a logical structure created by a user. GOLDILOCKS cluster system supports the sche

ma objects such as table, index and global sequence. This chapter describes features of each schema obje

ct in cluster system comparing to standalone system. How to efficiently manage them is also described.

Managing Table

A user can specifies one of four following sharding strategies as an option when creating a table in GOLD

ILOCKS cluster system. Sharding strategy is how to distribute and store table data to each cluster group in

cluster system. This option can be specified only in cluster system, and it can not be used when database i

s created as standalone.

● Cloned strategy

○ It equally copies entire table data.

● Hash sharding strategy

○ It distributes table data based on the hash value of sharding key.

● Range sharding strategy

○ It distributes table data based on the range value of sharding key.

● List sharding strategy

○ It distributes table data based on the list value of sharding key.

For more information about creating table, refer to CREATE TABLE and Cluster Table and Shard.

When omitting the sharding strategy option, it is defined by DEFAULT_SHARDING property. The default v

alue of DEFAULT_SHARDING is 0, and it creates cloned table.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128)

);

If a table is created without giving the sharding strategy by as user as above, then GOLDILOCKS cluster sy

stem internally creates a table by using the following syntax.

CREATE TABLE t1

(

id INTEGER,

Managing Schema Object | 77

name VARCHAR(128)

)

CLONED

AT CLUSTER WIDE

;

Note

Hash/Range/List sharded table should comply with the followings when creating constraints.

- PRIMARY KEY, UNIQUE constraint should include the sharding key.

Cloned Strategy

It does not distribute the table data based on a specific condition, but it copies all data. The target of cop

ying data can be all nodes in cluster system, or it can be a specific cluster group. In other words, it arrang

es clones in cluster members of a defined cluster group.

● AT CLUSTER WIDE

○ It arranges clones in all cluster members of all cluster group in cluster system.

○ When adding a cluster group or cluster member, a user can rearranges clones by using ALTER TA

BLE name REBALANCE statement.

● AT CLUSTER GROUP group_list

○ It arranges clones in all cluster members of a defines cluster group.

○ When adding a cluster member to a defined cluster group, a user can rearranges clones by using

ALTER TABLE name REBALANCE statement.

○ Adding cluster group does not affect the rearrangement of clones.

When the option is omitted, the default value is automatically set to AT CLUSTER WIDE.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128)

)

CLONED

AT CLUSTER WIDE;

CREATE TABLE t1

(

id INTEGER,

78 | Cluster Tutorial

name VARCHAR(128)

)

CLONED

AT CLUSTER GROUP G1, G2;

Hash Sharding Strategy

It distributes the table data based on the hash value of a column defined as a sharding key.

To use hash sharding strategy, sharing key should be defined complying with the following conditions.

● Up to 32 columns can be listed.

● The duplicated column can not be used.

● The column of LONG VARCHAR or LONG VARBINARY type can not be used.

CREATE TABLE t1 (id INTEGER, name VARCHAR(128))

SHARDING BY HASH(id);

When hash sharding related options are omitted as above, GOLDILOCKS system interprets it as follows.

CREATE TABLE t1 (id INTEGER, name VARCHAR(128))

SHARDING BY HASH(id)

SHARD COUNT 24

AT CLUSTER WIDE;

Table rows are distributes to one of 24 shards based on hash value of id column, and 24 shards are equall

y arranged over the entire cluster system. For more information, refer to Cluster Table and Shard.

Range Sharding Strategy

It distributes the table data based on the range value of the column defined as a sharding key. The shards

are classified based on each range value, and they can be arranged by defining a specific group, or arrang

ed as CLUSTER WIDE.

The following is a syntax of defining six range shards based on the range value of the sharding key colum

n, and creating a table to distribute them as CLUSTER WIDE. If a cluster group is created after creating a t

able, the rearrangement of shard containing the created group can be performed by using REBALANCE f

eature.

● Create a range sharded table.

● Arrange six shards in existing cluster groups (g1, g2, g3).

Managing Schema Object | 79

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY RANGE (id)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (200000),

SHARD s2 VALUES LESS THAN (400000),

SHARD s3 VALUES LESS THAN (500000),

SHARD s4 VALUES LESS THAN (600000),

SHARD s5 VALUES LESS THAN (800000),

SHARD s6 VALUES LESS THAN (MAXVALUE)

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Rearrange the range shard.

● Rearrange six shards in cluster groups (g1, g2, g3, g4) in which the added group is included.

ALTER TABLE t1 REBALANCE;

The following is a syntax of defining range shards, which are defined based on the range of sharding key

column value, only to be arranged in a specific cluster group. In other words, the shard s1 whose range v

alue is smaller than 200000 is allocated in cluster group g1, s2 is allocated in cluster group g2, and shard

s3 is allocated in g3. Like as shards can not be rearranged by using REBALANCE feature even when a clus

ter group is added later in a table created by defining cluster group.

● Create a range sharded table.

● Allocate each range shards to defined cluster groups.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY RANGE (id)

SHARD s1 VALUES LESS THAN (200000) AT CLUSTER GROUP g1,

80 | Cluster Tutorial

SHARD s2 VALUES LESS THAN (400000) AT CLUSTER GROUP g2,

SHARD s3 VALUES LESS THAN (500000) AT CLUSTER GROUP g3,

SHARD s4 VALUES LESS THAN (600000) AT CLUSTER GROUP g2,

SHARD s5 VALUES LESS THAN (800000) AT CLUSTER GROUP g3,

SHARD s6 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP g1

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Rearrange the range shard.

● A shard is not allocated to the newly created cluster group (g4).

ALTER TABLE t1 REBALANCE;

The following conditions should be considered to specify the range sharding key.

● Up to 32 columns can be listed.

● The duplicated column can not be used.

● The column of LONG VARCHAR or LONG VARBINARY type can not be used.

List Sharding Strategy

It distributes the table data based on the list value of the column defined as a sharding key. Like as the ra

nge sharding strategy, each shard can be arranged by defining a specific group, or arranged as CLUSTER

WIDE.

The followings are conditions to define the shard key in list sharding strategy.

● Only a single column can be used.

● The column of LONG VARCHAR or LONG VARBINARY type can not be used.

The following is a syntax of creating a table of which created list shards are arranged as CLUSTER WIDE.

Use REBALANCE feature to rearrange shards including a cluster group created after creating a table.

● Create a list sharded table.

● Arrange five shards in existing cluster groups (g1, g2, g3).

CREATE TABLE city

(

Managing Schema Object | 81

id INTEGER,

name VARCHAR(32)

)

SHARDING BY LIST (name)

AT CLUSTER WIDE

SHARD s1 VALUES IN ('SEOUL'),

SHARD s2 VALUES IN ('PUSAN', 'ULSAN', 'DAEGU'),

SHARD s3 VALUES IN ('DAEJEON', 'GWANGJU'),

SHARD s4 VALUES IN ('ANSAN', 'GOYANG'),

SHARD s5 VALUES IN (DEFAULT)

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Rearrange the list shard.

● Rearrange five shards in cluster groups (g1, g2, g3, g4) in which the created group is included.

ALTER TABLE city REBALANCE;

The following is a syntax of defining list shards, which are defined based on the list value of sharding key

column value, only to be arranged in a specific cluster group. Shards can not be rearranged by using REB

ALANCE feature even when a cluster group is created.

● Create a list sharded table.

● Allocate each range shards to defined cluster groups.

CREATE TABLE city

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY LIST (name)

SHARD s1 VALUES IN ('SEOUL') AT CLUSTER GROUP g1,

SHARD s2 VALUES IN ('PUSAN', 'ULSAN', 'DAEGU') AT CLUSTER GROUP g2,

SHARD s3 VALUES IN ('DAEJEON', 'GWANGJU') AT CLUSTER GROUP g3,

SHARD s4 VALUES IN ('ANSAN', 'GOYANG') AT CLUSTER GROUP g2,

SHARD s5 VALUES IN (DEFAULT) AT CLUSTER GROUP g1

;

82 | Cluster Tutorial

● Create a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Rearrange the list shard.

● A shard is not allocated to the newly created cluster group (g4).

ALTER TABLE city REBALANCE;

Managing Index

Global Secondary Index

In cluster system, multiple member nodes exist, and table records are dividedly stored or duplicated based

on the shard strategy. Standalone system guarantees the uniqueness of a record by storing unique value

(Row Identifier: RID) in the database when the record is stored. However, in cluster system, each node ca

n have the duplicated value, so the uniqueness can not be guaranteed.

Therefore, it is required to guarantee the uniqueness of a record in cluster system. This is a reason why gl

obal RID(GRID) is added. The GRID value of a record is not updated even when the record is updated, so i

t is not updated when shard key is updated then moved to another shard, then it guarantees the uniquen

ess of a specific record in cluster system.

Global secondary index is a B-tree index which consists of keys to search the GRID value of the records qu

ickly in cluster system.

A user can select whether to create global secondary index through the following properties when creati

ng a table. The user also can delete or recreate the global secondary index after table creation is complet

ed. Only one global secondary index can be created per table.

For more information, refer to DEFAULT_GLOBAL_SECONDARY_INDEX_CREATION.

A global secondary index is necessary to perform the non-deterministic query for a table. If a global secon

dary index does not exist in a table, then a non-deterministic query fails as follows.

gSQL> DELETE FROM T1 LIMIT 1;

ERR-42000(16423): does not support non-deterministic DML in the cluster system : global

secondary index expected

Enquire USER_GSI_PLACE DICTIONARY, or use ALL_GSI_PLACE and DBA_GSI_PLACE dictionary to check

if the global secondary index of a table is created.

Managing Schema Object | 83

gSQL> CREATE TABLE T1(I1 INTEGER);

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT *

2 FROM USER_GSI_PLACE@LOCAL

3 WHERE TABLE_NAME = 'T1';

TABLE_SCHEMA TABLE_NAME GROUP_ID GROUP_NAME MEMBER_ID MEMBER_NAME MEMBER_OFFLINE

------------ ---------- -------- ---------- --------- ----------- --------------

BLOCKS

PUBLIC T1 1 G1 1 G1N1 FALSE

64

PUBLIC T1 1 G1 2 G1N2 FALSE

null

2 rows selected.

gSQL> DROP TABLE T1;

Table dropped.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT *

2 FROM USER_GSI_PLACE@LOCAL

3 WHERE TABLE_NAME = 'T1';

no rows selected.

Global Sequence

GOLDILOCKS cluster system provides global sequence object which are an expansion of the existing sequ

ence for multiple member nodes to share and use the set of sequence value fitting into user defined cond

itions. In other words, the global sequence object is internally and automatically created when a user crea

tes a sequence in cluster system, then the sequence values in a specific range are allocated and used whe

n calling NEXTVAL on each member node. The following is a syntax of creating and using the global sequ

ence, which are as same as those of sequence in standalone.

gSQL> CREATE SEQUENCE global_user_seq START WITH 1000 INCREMENT BY 1 NOCACHE NOCYCLE;

Sequence created.

gSQL> SELECT global_user_seq.NEXTVAL FROM dual;

NEXTVAL

84 | Cluster Tutorial

1

1 row selected.

gSQL> DROP SEQUENCE global_user_seq;

Sequence dropped.

Like as the sequence used in standalone, the global sequence object can define a cache size as a creating

option, and this means acquiring several sequence value from the global sequence object and loading at l

ocal cache. The followings are local cache status of each member node and return values of when calling

NEXTVAL, this is when creating the global sequence object by setting cache size to 5.

gSQL> CREATE SEQUENCE seq START WITH 1 CACHE 5;

Sequence created.

Member name NEXTVAL result

The number of remaining

local cache sequence Description

G1N1 G1N2

G1N1 1 4 0
From Global Object

(Alloc 1 ~ 5)

G1N1 2 3 0 From Local Cache

G1N1 3 2 0 From Local Cache

G1N2 6 3 4
From Global Object

(Alloc 6 ~ 10)

G1N2 7 3 3 From Local Cache

G1N2 8 3 2 From Local Cache

G1N2 9 3 1 From Local Cache

G1N2 10 3 0 From Local Cache

G1N2 11 3 4
From Global Object

(Alloc 11 ~ 15)

G1N2 12 3 3 From Local Cache

G1N1 4 1 3 From Local Cache

G1N1 5 0 3 From Local Cache

G1N1 16 4 3
From Global Object

(Alloc 16 ~ 20)

In the table above, the sequence values are allocated to G1N1 and G1N2 two times each (four times in to

tal) from the global sequence object. The cache option value is set to 5 when creating a sequence, so five

sequence values are allocated each from the global object. Those five sequences allocated to a member n

ode is stored in its own local cache, then it is returned one by one whenever calling NEXTVAL.

● G1N1

○ The values of five sequences (1~5) are allocated from the global sequence object when calling th

e first NEXTVAL.

Managing Schema Object | 85

○ A single sequence is returned as a result of NEXTVAL and the values of other four sequences are l

oaded in its own local cache.

○ NEXTVAL called later returns in turn the values of the sequences loaded in the local cache.

● G1N2

○ The values of sequences (6~10) which are after the sequences allocated on G1N1 are allocated

when calling the first NEXTVAL.

○ 6 is returned as a result of NEXTVAL, and the values of other four sequences (7~10) are loaded i

n its own local cache.

○ NEXTVAL called later returns the sequence values loaded in the local cache.

○ Local cache is run out, so values of other five sequences (11~15) are allocated again from the glo

bal sequence object.

● G1N1

○ Local cache is run out, so the values of five sequences (16~20) after the sequences allocated last

on G1N2 are allocated.

The sequence as big as the CACHE size are allocated to all member nodes when NEXTVAL has never bee

n called on its own node or when all allocated nodes are run out. Therefore, if a system needs to acquire

the sequence value quickly, it is required to set the appropriate cache size when creating a sequence to pr

event too much frequent allocation. It is because, unlike standalone database, allocating sequence from t

he global sequence object is accompanied by the network communication cost.

The sequence values loaded in local cache can not be reused when database restarts due to a system erro

r or operational work. The sequence values are allocated again from the global sequence object when cal

ling NEXTVAL for the first time since the restart. Therefore, the CACHE size allocated when creating the s

equence also means the range value of sequence which is possible to be lost when an error occurs, so th

e size should be set appropriately considering not only the corresponding feature but also loss range.

The result value of calling NEXTVAL from a specific node may not be sequential in cluster system. In the e

xample above, the return value is not sequential when G1N1 node calls NEXTVAL. After the first allocate

d value(1~5) is run out, 16~20 is allocated second, so 16 is returned to a user as the next sequence value

of 5. It is because a single global sequence pool is allocated competitively to multiple nodes.

The followings are features and constraints of global sequence object, comparing to the sequence for exi

sting standalone database.

● The sign can not be modified by using INCREMENT BY option in ALTER SEQUENCE statement. (The si

ze can be modified.)

● The duplicated value among member nodes can be returned depending on the pool size of entire seq

uence when using CYCLE option. Therefore, create the sequence pool big enough, considering INCR

EMENT BY, CACHE SIZE, and the number of cluster member nodes when CYCLE option is in need.

● The return value from a specific node may not be sequential even when an error does not occur. Of c

ourse, if only one member node calls NEXTVAL, then sequential sequence value is obtained.

● The CACHE SIZE is 1 for NOCACHE, so the additional sequence values are not loaded in local cache. I

n this case, only one sequence is allocated from the global sequence object whenever calling NEXTV

86 | Cluster Tutorial

AL, and it increases the network cost and degrades the performance.

● Creating, updating and deleting sequences are operated as AUTO COMMIT.

● All sequence values loaded in local cache of all nodes are reset when the size of CACHE and INCREM

ENT are updated by ALTER statement. In other words, a new sequence set should be allocated from t

he global sequence object when calling NEXTVAL afterwards.

GOLDILOCKS Property | 87

3.4 GOLDILOCKS Property

The followings are main properties used in GOLDILOCKS cluster system.

Table 3-5 Main properties of GOLDILOCKS

Name Description

LOCAL_CLUSTER_MEMBER Member name

LOCAL_CLUSTER_MEMBER_HOST Host address for connecting to cluster session

LOCAL_CLUSTER_MEMBER_PORT Port for connecting to cluster session

CDISPATCHER_THREADS The number of cluster dispatcher threads

CSERVERS The number of cluster server process

CLUSTER_DATA_SYNC_SERVERS The number of cluster server process to synchronize replica data

Each property has the following two alterable scopes in GOLDILOCKS cluster system.

● LOCAL: It can alter property values not only for entire member but also for a specific member only.

● GLOBAL: It can not alter the property value only for a specific member, but it should alter the propert

y value for all members.

For example, PRIVATE_STATIC_AREA_SIZE properties can be altered up to the LOCAL range (IS_GLOBAL

column = FALSE) as follows, so the property value can be altered by using alter system set statement not

only for entire member but also for a specific member only. If AT clause is not added to after alter system

set statement, the altered properties are applied to all members of cluster system.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL> select origin_member_name, property_name, property_value, is_global

2 from gv$property

3 where property_name = 'PRIVATE_STATIC_AREA_SIZE';

ORIGIN_MEMBER_NAME PROPERTY_NAME PROPERTY_VALUE IS_GLOBAL

------------------ ------------------------ -------------- ---------

G1N1 PRIVATE_STATIC_AREA_SIZE 104857600 FALSE

G1N2 PRIVATE_STATIC_AREA_SIZE 104857600 FALSE

2 rows selected.

gSQL> alter system set private_static_area_size = 200000000 at g1n2;

System altered.

gSQL> select origin_member_name, property_name, property_value, is_global

2 from gv$property

3 where property_name = 'PRIVATE_STATIC_AREA_SIZE';

ORIGIN_MEMBER_NAME PROPERTY_NAME PROPERTY_VALUE IS_GLOBAL

88 | Cluster Tutorial

------------------ ------------------------ -------------- ---------

G1N1 PRIVATE_STATIC_AREA_SIZE 104857600 FALSE

G1N2 PRIVATE_STATIC_AREA_SIZE 200000000 FALSE

2 rows selected.

gSQL> alter system set private_static_area_size = 300000000;

System altered.

gSQL> select origin_member_name, property_name, property_value, is_global

2 from gv$property

3 where property_name = 'PRIVATE_STATIC_AREA_SIZE';

ORIGIN_MEMBER_NAME PROPERTY_NAME PROPERTY_VALUE IS_GLOBAL

------------------ ------------------------ -------------- ---------

G1N1 PRIVATE_STATIC_AREA_SIZE 300000000 FALSE

G1N2 PRIVATE_STATIC_AREA_SIZE 300000000 FALSE

2 rows selected.

However, DDL_AUTOCOMMIT can be altered up to GLOBAL as follows. Therefore, an error occurs when

specifying a member by using AT clause in alter system set statement.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL> select origin_member_name, property_name, property_value, is_global

2 from gv$property

3 where property_name = 'DDL_AUTOCOMMIT';

ORIGIN_MEMBER_NAME PROPERTY_NAME PROPERTY_VALUE IS_GLOBAL

------------------ -------------- -------------- ---------

G1N1 DDL_AUTOCOMMIT NO TRUE

G1N2 DDL_AUTOCOMMIT NO TRUE

2 rows selected.

gSQL> alter system set ddl_autocommit = false at g1n2;

ERR-42000(16398): the domain of property does not match with domain 'G1N2' :

alter system set ddl_autocommit = false at g1n2

*

ERROR at line 1:

gSQL> alter system set ddl_autocommit = false;

System altered.

gSQL> select origin_member_name, property_name, property_value, is_global

2 from gv$property

3 where property_name = 'DDL_AUTOCOMMIT';

ORIGIN_MEMBER_NAME PROPERTY_NAME PROPERTY_VALUE IS_GLOBAL

------------------ -------------- -------------- ---------

G1N1 DDL_AUTOCOMMIT NO TRUE

GOLDILOCKS Property | 89

G1N2 DDL_AUTOCOMMIT NO TRUE

2 rows selected.

What's New

4.

91

92 | What's New

4.1 Feature Matrix

This chapter briefly describes the features added to each major version.

Architecture

System Architecture

The following is a feature matrix for system architecture.

Table 4-1 Feature matrix for system architecture

Feature 1.x 2.x 3.1 3.2

Shared Nothing Cluster X X O O

DA (Direct Attach) O O O O

JDBC DA (Direct Attach) X X O O

C/S (Client/Server) Dedicated X O O O

C/S (Client/Server) Shared X O O O

multi-process applications O O O O

multi-threaded applications O O O O

Linux platform O O O O

HP platform X O O O

AIX platform X O O O

Windows Client Platform X O O O

CDC(Change Data Capture) replication X O O O

CDC replication with log mirror X O O O

multi-level start up X O O O

parallel database loading O O O O

parallel index build X O O O

SQL plan cache X O O O

Feature Matrix | 93

Storage Internal

The following is a feature matrix for storage internal.

Table 4-2 Feature matrix for storage internal

Feature 1.x 2.x 3.1 3.2

memory dictionary tablespace O O O O

memory data tablespace O O O O

memory undo tablespace O O O O

memory temporary tablespace X O O O

memory bitmap data segment O O O O

memory bitmap undo segment O O O O

memory bitmap instant segment X O O O

memory heap table O O O O

memory instant table X O O O

memory B-tree index O O O O

memory instant B-tree X O O O

memory instant hash X O O O

global secondary index X X O O

94 | What's New

Transaction Control

The following is a feature matrix for transaction control.

Table 4-3 Feature matrix for transaction control

Feature 1.x 2.x 3.1 3.2

CDS(Concurrency Data Store) database mode O O O O

TDS(Transactional Data Store) database mode O O O O

read-only database X O O O

read/write database O O O O

flat transaction O O O O

distributed transaction X O O O

read-only transaction X O O O

read/write transaction O O O O

READ COMMITTED isolation level O O O O

SERIALIZABLE isolation level with SELECT FOR UPDATE O O O O

MVCC(Multi Version Concurrency Control) O O O O

multi-version read consistency O O O O

multi-statement consistent read O O O O

implicit lock for DML O O O O

writer don't blocks readers O O O O

row-level locking O O O O

deadlock detection O O O O

deadlock resolution O O O O

lock granularity O O O O

read lock O O O O

write lock O O O O

intention lock O O O O

WAL(Write Ahead Logging) O O O O

repeat history O O O O

restart recovery O O O O

circular logging O O O O

buffered logging O O O O

logging group X O O O

supplemental logging X O O O

mirrored logging X O O O

synchronous commit O O O O

asynchronous commit O O O O

grouped commit O O O O

total rollback O O O O

implicit statement rollback O O O O

Feature Matrix | 95

savepoint management X O O O

Feature 1.x 2.x 3.1 3.2

96 | What's New

Backup & Recovery

The following is a feature matrix for backup & recovery.

Table 4-4 Feature matrix for backup & recovery

Feature 1.x 2.x 3.1 3.2

off-line backup O O O O

on-line backup X O O O

full backup X O O O

incremental backup X O O O

complete recovery O O O O

incomplete recovery X O O O

auto instance recovery O O O O

tablespace recovery X O O O

file recovery X O O O

Feature Matrix | 97

Database Information

DICTIONARY_SCHEMA Schema

The following is a feature matrix for DICTIONARY_SCHEMA schema.

Table 4-5 Feature matrix for DICTIONARY_SCHEMA schema

Family Feature 1.x 2.x 3.1 3.2

Views of ALL_family

ALL_ALL_TABLES X O O O

ALL_ARGUMENTS X X O O

ALL_CATALOG X O O O

ALL_CLUSTER_TABLES X X O O

ALL_COL_COMMENTS X O O O

ALL_COL_PLACE X X O X

ALL_COL_PRIVS X O O O

ALL_COL_PRIVS_MADE X O O O

ALL_COL_PRIVS_RECD X O O O

ALL_CONSTRAINTS X O O O

ALL_CONS_COLUMNS X O O O

ALL_DB_PRIVS X O O O

ALL_DB_PRIVS_MADE X O O O

ALL_DB_PRIVS_RECD X O O O

ALL_DEPENDENCIES X X O O

ALL_GLOBAL_SECONDARY_INDEXES X X O O

ALL_GSI_PLACE X X O O

ALL_INDEXES X O O O

ALL_IND_COLUMNS X O O O

ALL_IND_PLACE X X O O

ALL_NONSCHEMA_COMMENTS X O O O

ALL_OBJECTS X O O O

ALL_PROCEDURES X X O O

ALL_PROC_PRIVS X X O O

ALL_PROC_PRIV_MADE X X O O

ALL_PROC_PRIV_RECD X X O O

ALL_SCHEMAS X O O O

ALL_SCHEMA_PATH X O O O

ALL_SCHEMA_PRIVS X O O O

ALL_SCHEMA_PRIVS_MADE X O O O

ALL_SCHEMA_PRIVS_RECD X O O O

ALL_SEQUENCES X O O O

ALL_SEQ_PRIVS X O O O

98 | What's New

ALL_SEQ_PRIVS_MADE X O O O

ALL_SEQ_PRIVS_RECD X O O O

ALL_SHARD_KEY_COLUMNS X X O O

ALL_SOURCE X X O O

ALL_SYNONYMS X O O O

ALL_TABLES X O O O

ALL_TAB_COLS X O O O

ALL_TAB_COLUMNS X O O O

ALL_TAB_COMMENTS X O O O

ALL_TAB_IDENTITY_COLS X O O O

ALL_TAB_PLACE X X X O

ALL_TAB_SHARDS X X O O

ALL_TAB_PRIVS X O O O

ALL_TAB_PRIVS_MADE X O O O

ALL_TAB_PRIVS_RECD X O O O

ALL_TBS_PRIVS X O O O

ALL_TBS_PRIVS_MADE X O O O

ALL_TBS_PRIVS_RECD X O O O

ALL_USERS X O O O

ALL_VIEWS X O O O

DBA_ALL_TABLES X O O O

DBA_ARGUMENTS X X O O

DBA_CATALOG X O O O

DBA_CLUSTER X X O O

DBA_CLUSTER_COMMENTS X X O O

DBA_CLUSTER_TABLES X X O O

DBA_COL_COMMENTS X O O O

DBA_COL_PLACE X X O X

DBA_COL_PRIVS X O O O

DBA_CONSTRAINTS X O O O

DBA_CONS_COLUMNS X O O O

DBA_DB_PRIVS X O O O

DBA_DEPENDENCIES X X O O

DBA_EXTENTS X O O O

DBA_GLOBAL_SECONDARY_INDEXES X X O O

DBA_GSI_PLACE X X O O

DBA_INDEXES X O O O

DBA_IND_COLUMNS X O O O

DBA_IND_PLACE X X O O

DBA_NONSCHEMA_COMMENTS X O O O

Family Feature 1.x 2.x 3.1 3.2

Feature Matrix | 99

Views of DBA_family DBA_OBJECTS X O O O

DBA_PROCEDURES X X O O

DBA_PROC_PRIVS X X O O

DBA_PROFILES X O O O

DBA_SCHEMAS X O O O

DBA_SCHEMA_PATH X O O O

DBA_SCHEMA_PRIVS X O O O

DBA_SEQUENCES X O O O

DBA_SEQ_PRIVS X O O O

DBA_SHARD_KEY_COLUMNS X X O O

DBA_SOURCE X X O O

DBA_STAT_SYSTEM X X O O

DBA_SYNONYMS X O O O

DBA_SYS_PRIVS X O O O

DBA_TABLES X O O O

DBA_TABLESPACES X O O O

DBA_TAB_COLS X O O O

DBA_TAB_COLUMNS X O O O

DBA_TAB_COMMENTS X O O O

DBA_TAB_IDENTITY_COLS X O O O

DBA_TAB_PLACE X X O O

DBA_TAB_PRIVS X O O O

DBA_TAB_SHARDS X X O O

DBA_TBS_PRIVS X O O O

DBA_USERS X O O O

DBA_VIEWS X O O O

USER_ALL_TABLES X O O O

USER_ARGUMENTS X X O O

USER_CATALOG X O O O

USER_CLUSTER_TABLES X X O O

USER_COL_COMMENTS X O O O

USER_COL_PLACE X X O X

USER_COL_PRIVS X O O O

USER_COL_PRIVS_MADE X O O O

USER_COL_PRIVS_RECD X O O O

USER_CONSTRAINTS X O O O

USER_CONS_COLUMNS X O O O

USER_DEPENDENCIES X X O O

USER_EXTENTS X O O O

USER_GLOBAL_SECONDARY_INDEXES X X O O

Family Feature 1.x 2.x 3.1 3.2

100 | What's New

Views of USER_family USER_GSI_PLACE X X O O

USER_INDEXES X O O O

USER_IND_COLUMNS X O O O

USER_IND_PLACE X X O O

USER_OBJECTS X O O O

USER_PROCEDURES X X O O

USER_PROC_PRIVS X X O O

USER_PROC_PRIVS_MADE X X O O

USER_PROC_PRIVS_RECD X X O O

USER_SCHEMAS X O O O

USER_SCHEMA_PATH X O O O

USER_SCHEMA_PRIVS X O O O

USER_SCHEMA_PRIVS_MADE X O O O

USER_SCHEMA_PRIVS_RECD X O O O

USER_SEQUENCES X O O O

USER_SEQ_PRIVS X O O O

USER_SEQ_PRIVS_MADE X O O O

USER_SEQ_PRIVS_RECD X O O O

USER_SHARD_KEY_COLUMNS X X O O

USER_SOURCE X X O O

USER_SYNONYMS X O O O

USER_SYS_PRIVS X O O O

USER_TABLES X O O O

USER_TABLESPACES X O O O

USER_TAB_COLS X O O O

USER_TAB_COLUMNS X O O O

USER_TAB_COMMENTS X O O O

USER_TAB_IDENTITY_COLS X O O O

USER_TAB_PLACE X X O O

USER_TAB_PRIVS X O O O

USER_TAB_PRIVS_MADE X O O O

USER_TAB_PRIVS_RECD X O O O

USER_TAB_SHARDS X X O O

USER_USERS X O O O

USER_VIEWS X O O O

AUDIT_POLICIES X X X O

AUDIT_POLICY_ENABLED X X X O

AUDIT_POLICY_OPTIONS X X X O

AUDIT_TRAIL X X X O

DATABASE_PROPERTIES X O O O

Family Feature 1.x 2.x 3.1 3.2

Feature Matrix | 101

Other views DBC_TABLE_TYPE_INFO X O O O

DICTIONARY X O O O

DICT_COLUMNS X O O O

IMPLEMENTATION_INFO X O O O

IMPLEMENTATION_INFO_BASE X O O O

JDBC_CLIENT_PROPS X O O O

PRODUCT X O O O

SESSION_PRIVS X O O O

SUPPLEMENTAL_LOG_TABLE_INFO X O O O

Aliased Synonym

COLS X O O O

DICT X O O O

IND X O O O

OBJ X O O O

SEQ X O O O

TABS X O O O

Family Feature 1.x 2.x 3.1 3.2

INFORMATION_SCHEMA Schema

The following is a feature matrix for INFORMATION_SCHEMA schema.

Table 4-6 Feature matrix for INFORMATION_SCHEMA schema

Feature 1.x 2.x 3.1 3.2

COLUMNS X O O O

COLUMN_PRIVILEGES X O O O

CONSTRAINT_COLUMN_USAGE X O O O

CONSTRAINT_TABLE_USAGE X O O O

INFORMATION_SCHEMA_CATALOG_NAME X O O O

KEY_COLUMN_USAGE X O O O

PARAMETERS X X O O

REFERENTIAL_CONSTRAINTS X O O O

ROUTINES X X O O

ROUTINE_PRIVILEGES X X O O

ROUTINE_ROUTINE_USAGE X X O O

ROUTINE_SEQUENCE_USAGE X X O O

ROUTINE_TABLE_USAGE X X O O

SCHEMATA X O O O

SEQUENCES X O O O

SQL_FEATURES X O O O

SQL_IMPLEMENTATION_INFO X O O O

SQL_PACKAGES X O O O

102 | What's New

SQL_PARTS X O O O

SQL_SIZING X O O O

STATISTICS X O O O

TABLES X O O O

TABLE_CONSTRAINTS X O O O

TABLE_PRIVILEGES X O O O

USAGE_PRIVILEGES X O O O

VIEWS X O O O

VIEW_ROUTINE_USAGE X X O O

VIEW_TABLE_USAGE X O O O

Feature 1.x 2.x 3.1 3.2

PERFORMANCE_VIEW_SCHEMA Schema

The following is a feature matrix for PERFORMANCE_VIEW_SCHEMA schema.

Table 4-7 Feature matrix for PERFORMANCE_VIEW_SCHEMA schema

Feature 1.x 2.x 3.1 3.2

GV$____ X X O O

V$AGABLE_INFO X X O O

V$ARCHIVELOG X O O O

V$AUDITABLE_DB_PRIVILEGES X X X O

V$AUDITABLE_SYSTEM_ACTIONS X X X O

V$BACKUP X O O O

V$BALANCER X O O O

V$CLUSTER_DISPATCHER X X O O

V$CLUSTER_LOCATION X X O O

V$CLUSTER_MEMBER X X O O

V$COLUMNS X O O O

V$CONTROLFILE X O O O

V$DATAFILE X O O O

V$DB_FILE X O O O

V$DISPATCHER X O O O

V$ERROR_CODE X O O O

V$GLOBAL_TRANSACTION X O O O

V$JOURNALING X X O O

V$INCREMENTAL_BACKUP X O O O

V$INSTANCE X O O O

V$KEYWORDS X O O O

V$LATCH X O O O

V$LOCK_WAIT X O O O

Feature Matrix | 103

V$LOGFILE X O O O

V$PROCESS_MEM_STAT X O O O

V$PROCESS_SQL_STAT X O O O

V$PROCESS_STAT X O O O

V$PROPERTY X O O O

V$PSM_RESERVED_WORDS X X O O

V$QUEUE X O O O

V$RESERVED_WORDS X O O O

V$SESSION X O O O

V$SESSION_AUDIT X X X O

V$SESSION_CONNECT_INFO X O O O

V$SESSION_EVENT X X O O

V$SESSION_MEM_STAT X O O O

V$SESSION_SQL_STAT X O O O

V$SESSION_STAT X O O O

V$SESSION_WAIT X X O O

V$SHARED_MODE X O O O

V$SHARED_SERVER X O O O

V$SHM_SEGMENT X O O O

V$SPROPERTY X O O O

V$SQLFN_METADATA X O O O

V$SQL_CACHE X O O O

V$SQL_COMMAND X X O O

V$SQL_HISTORY X X O O

V$STATEMENT X O O O

V$SYSTEM_EVENT X X O O

V$SYSTEM_MEM_STAT X O O O

V$SYSTEM_SQL_STAT X O O O

V$SYSTEM_STAT X O O O

V$TABLES X O O O

V$TABLESPACE X O O O

V$TABLESPACE_STAT X X O O

V$TRANSACTION X O O O

V$WAIT_EVENT_CLASS_NAME X X O O

V$WAIT_EVENT_NAME X X O O

V$XA_TRANSATION X X O O

Feature 1.x 2.x 3.1 3.2

104 | What's New

Server Property

The following is a feature matrix for server property.

Table 4-8 Feature matrix for server property

Feature 1.x 2.x 3.1 3.2

AGING_INTERVAL O O O O

AGING_PLAN_INTERVAL X O O O

ARCHIVELOG_DIR O O X X

ARCHIVELOG_DIR_1 ~ DIR_10 X O O O

ARCHIVELOG_FILE X O O O

ARCHIVELOG_MODE X O O O

BACKUP_DIR_1 ~ DIR_10 X O O O

BLOCK_READ_COUNT O O O O

BULK_IO_PAGE_COUNT X O O O

CDISPATCHER_HOT_POLICY_INTERVAL X X O O

CDISPATCHER_SOCKET_BUFFER_SIZE X X O O

CDISPATCHER_THREADS X X O O

CHAR_LENGTH_UNITS X O O O

CHARACTER_SET X O O O

CHECK_DEDICATE_CONNECTION_INTERVAL X X O O

CHECK_DEDICATE_SOCKET X X O X

CLIENT_MAX_COUNT O O O O

CLIENT_NUMA_POLICY X X O O

CLOSE_PSM_CHILD_STMTS X X O O

CLUSTER_ASYNC_COMMIT X X O O

CLUSTER_ASYNC_REPLICATION X X O O

CLUSTER_CM_BUFFER_COUNT X X O O

CLUSTER_CM_BUFFER_SIZE X X O O

CLUSTER_CM_READ_BUFFER_SIZE X X O O

CLUSTER_COMMIT_SLAVES X X O O

CLUSTER_COMMIT_STREAM_ISOLATION X X O O

CLUSTER_CONNECTION X X O O

CLUSTER_CONNECTION_TIMEOUT_SEC X X O O

CLUSTER_DATA_SYNC_SERVERS X X O O

CLUSTER_DISPATCHER_IN_QUEUE_SIZE X X O O

CLUSTER_DISPATCHER_NUMA_STREAM_MAP X X O O

CLUSTER_DISPATCHER_OUT_QUEUE_SIZE X X O O

CLUSTER_HEARTBEAT_INTERVAL X X O O

CLUSTER_HEARTBEAT_RETRY_COUNT X X O O

CLUSTER_IGNORE_INACTIVE_MEMBER X X O O

Feature Matrix | 105

CLUSTER_MAX_PACKET_SIZE X X O O

CLUSTER_MAX_PAYLOAD_SIZE X X O O

CLUSTER_PACKET_ALLOCATION_TIMEOUT X X O O

CLUSTER_SERVER_RESPONSE_QUEUE_SIZE X X O O

CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY X X O O

CLUSTER_SPLIT_BRAIN_RETRY_COUNT X X O O

COMMITTER_HOT_POLICY_INTERVAL X X O O

CONTROL_FILE_0 ~ FILE_7 X O O O

CONTROL_FILE_COUNT X O O O

CONTROL_FILE_TEMP_NAME X O O O

COORDINATOR_COMMIT_WRITE_MODE X X O O

CSERVERS X X O O

DA_CLIENT_NUMA_MODE X X O O

DATA_STORE_MODE O O O O

DATABASE_ACCESS_MODE X O O O

DATABASE_INSTANCE_NAME X X O O

DDL_AUTOCOMMIT X O O O

DDL_LOCK_TIMEOUT O O O O

DEFAULT_GLOBAL_SECONDARY_INDEX_CREATION X X O O

DEFAULT_INDEX_LOGGING X O O O

DEFAULT_INDEX_PCTFREE X X O O

DEFAULT_INITRANS O O O O

DEFAULT_MAXTRANS O O O O

DEFAULT_PCTFREE O O O O

DEFAULT_PCTUSED O O O O

DEFAULT_REMOVAL_BACKUP_FILE X O O O

DEFAULT_REMOVAL_OBSOLETE_BACKUP_LIST X O O O

DEFAULT_SHARDING X X O O

DISABLE_DDL_CDC_GIVEUP X O O O

DISABLE_UPDATE_PK_CDC_GIVEUP X O O O

DISALLOWED_PROTOCOL_TARGETTYPE X X O O

DISALLOWED_PROTOCOL_TARGETTYPE_WITH_ALL X X X O

DISALLOWED_PROTOCOL_TARGETTYPE_WITH_NAME X X O O

DISPATCHERS X O O O

DISPATCHER_CM_BUFFER_SIZE X O O O

DISPATCHER_CM_UNIT_SIZE X O O O

DISPATCHER_CONNECTIONS X O O O

DISPATCHER_HOT_POLICY_INTERVAL X X O O

DISPATCHER_LOAD_BALANCING X X O O

DISPATCHER_NUMA_STREAM_MAP X X O O

Feature 1.x 2.x 3.1 3.2

106 | What's New

DISPATCHER_QUEUE_SIZE X O O O

DISPATCHER_REQUEST_MINI_QUEUE_COUNT X X O O

DISPATCHER_RESPONSE_MINI_QUEUE_COUNT X X O O

FETCH_FAILOVER X X O O

GLOBAL_CONNECTION_ALLOW_SESSION_DEPENDENCY X X X O

GLOBAL_JOURNAL_BUFFER_SIZE X X O O

GLOBAL_JOURNAL_BUFFER_TOTAL_MAX_SIZE X X O O

GLOBAL_PROPERTY_LOCK_TIMEOUT X X O O

GLOBAL_TRANSACTION_COMMIT_WRITE_MODE X X O O

GLOBAL_TRANSACTION_ISOLATION_SCOPE X X O O

GLOBAL_TRANSACTION_LOG_DIR X X O O

GLOBAL_TRANSACTION_LOG_FILE_SIZE X X O O

GMASTER_NUMA_NODE X X O O

GMON_AUTOSTART X X O O

HINT_ERROR X O O O

IDLE_TIMEOUT O O O O

IN_DOUBT_DECISION X O O O

INDEX_BUILD_PARALLEL_FACTOR X O O O

INDEX_TREE_MERGE_PARALLEL_FACTOR X X O O

INST_ALLOCATOR_COUNT X X O O

INST_TABLE_BLOCK_SIZE X X O O

JOURNAL_TEMP_DIR X X O O

KEEPALIVE_IDLE_TIME X O O O

LOCAL_CLUSTER_MEMBER X X O O

LOCAL_CLUSTER_MEMBER_HOST X X O O

LOCAL_CLUSTER_MEMBER_PORT X X O O

LOCAL_JOURNAL_BUFFER_SIZE X X O O

LOCATION_FILE X X O O

LOCATOR_QUERY_TIMEOUT X X O O

LOCK_HASH_TABLE_SIZE X O O O

LOG_BLOCK_SIZE O O O O

LOG_BUFFER_SIZE O O O O

LOG_DIR O O O O

LOG_FILE_SIZE O O O O

LOG_GROUP_COUNT O O O O

LOG_MIRROR_MODE X O O O

LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE X O O O

LOG_MIRROR_TIMEOUT X O O O

LOG_SYNC_INTERVAL X O O O

LOG_SYNC_INTERVAL_MSEC X X O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 107

MAX_GROUP_COUNT X X O O

MAX_JOURNAL_FILE_SIZE X X O O

MAX_NODE_COUNT X X O O

MAXIMUM_CONCURRENT_ACTIVITIES X O O O

MAXIMUM_FLANGE_COUNT X X O O

MAXIMUM_FLUSH_LOG_BLOCK_COUNT O O O O

MAXIMUM_FLUSH_PAGE_COUNT O O O O

MAXIMUM_JOURNAL_REPLAY_COUNT X X X O

MAXIMUM_NAMED_CURSOR_COUNT X O O O

MAXIMUM_SESSION_CM_BUFFER_SIZE X O O O

MEASURE_CLUSTER_LATENCY X X O O

MEDIA_RECOVERY_LOG_BUFFER_SIZE X O X X

MEMORY_MERGE_RUN_COUNT X O O O

MEMORY_SORT_RUN_SIZE X O O O

MIN_SAMPLE_ROW_COUNT X X O O

MINIMUM_UNDO_PAGE_COUNT O O O O

NET_BUFFER_SIZE X O O O

NLS_DATE_FORMAT X O O O

NLS_TIME_FORMAT X O O O

NLS_TIME_WITH_TIME_ZONE_FORMAT X O O O

NLS_TIMESTAMP_FORMAT X O O O

NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT X O O O

NUMA X X O O

NUMA_MAP X X O O

OFFLINE_MEMBER_AFTER_FAILOVER X X O O

ONLINE_JOURNAL_REPLAY_THRESHOLD X X X O

OS_GROUP_ACCESS X X O O

PACKET_COMPRESSION_THRESHOLD X X X O

PAGE_CHECKSUM_TYPE X O O O

PARALLEL_IO_FACTOR O O O O

PARALLEL_IO_GROUP_1 ~ GROUP_16 O O O O

PARALLEL_LOAD_FACTOR O O O O

PENDING_LOG_BUFFER_COUNT O O O O

PLAN_CACHE X O O O

PLAN_CACHE_SIZE X O O O

PRIVATE_STATIC_AREA_SIZE X O O O

PROCESS_MAX_COUNT O O O O

QUERY_TIMEOUT O O O O

READABLE_ARCHIVELOG_DIR_COUNT X O O O

READABLE_BACKUP_DIR_COUNT X O O O

Feature 1.x 2.x 3.1 3.2

108 | What's New

REBALANCE_BLOCK_READ_COUNT X X O O

RECOMPILE_CHECK_MINIMUM_PAGE_COUNT X O O X

RECOMPILE_PAGE_PERCENT X O O X

RECOVERY_LOG_BUFFER_SIZE X X O O

REDO_LOG_COMPRESSION_THRESHOLD X X X O

REFINE_RELATION X O O O

SESSION_FATAL_BEHAVIOR X O O O

SESSION_MEMORY_INIT_SIZE X X X O

SESSION_MEMORY_SHRINK_THRESHOLD X X X O

SHARED_MEMORY_ADDRESS O O O O

SHARED_MEMORY_STATIC_KEY O O O O

SHARED_MEMORY_STATIC_NAME O O O O

SHARED_MEMORY_STATIC_SIZE O O O O

SHARED_REQUEST_QUEUE_COUNT X O O O

SHARED_SERVERS X O O O

SHARED_SESSION X O O O

SNAPSHOT_STATEMENT_TIMEOUT X O O O

SQL_HISTORY_SIZE X X O O

SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY X O O O

SYSTEM_LOGGER_DIR X O O O

SYSTEM_MEMORY_AUX_TABLESPACE_SIZE X X X O

SYSTEM_MEMORY_DATA_TABLESPACE_SIZE O O O O

SYSTEM_MEMORY_DICT_TABLESPACE_SIZE O O O O

SYSTEM_MEMORY_TEMP_TABLESPACE_SIZE O O O O

SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE O O O O

SYSTEM_TABLESPACE_DIR O O O O

SYSTEM_UDS_DIR X X O O

TCP_NODELAY X X O O

TEMP_SEGMENT_CACHE_SIZE X X X O

TEMP_UNDO_ENABLED X X X O

TIMED_STATISTICS X X O O

TIMER_INTERVAL O O X X

TIMEZONE X O O O

TRACE_ALTER_SYSTEM X O O O

TRACE_DDL O O O O

TRACE_LOG_ID X O O O

TRACE_LOG_MSGBUG_SIZE X X O O

TRACE_LOG_TIME_DETAIL X O O O

TRACE_LOGGER X X O O

TRACE_LOGGER_REMOTE_HOST X X O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 109

TRACE_LOGGER_REMOTE_PORT X X O O

TRACE_LOGIN X O O O

TRACE_LONG_RUN_CURSOR X O O O

TRACE_LONG_RUN_SQL X O O O

TRACE_XA X O O O

TRANSACTION_ALLOCATION_TIMEOUT X X X O

TRANSACTION_COMMIT_WRITE_MODE O O O O

TRANSACTION_MAXIMUM_UNDO_PAGE_COUNT X O O O

TRANSACTION_TABLE_SIZE O O O O

TRANSACTION_TIMEOUT X X O O

UNDO_RELATION_ALLOCATION_TIMEOUT X X X O

UNDO_RELATION_COUNT O O O O

UNDO_SHRINK_THRESHOLD X O O O

USE_LARGE_PAGES X X X O

Feature 1.x 2.x 3.1 3.2

110 | What's New

SQL

SQL Element

Data Type

The following is a feature matrix for data type.

Table 4-9 Feature matrix for data type

Type Feature 1.x 2.x 3.1 3.2

Character string type

CHAR O O O O

VARCHAR O O O O

LONG VARCHAR X O O O

Binary string type

BINARY O O O O

VARBINARY O O O O

LONG VARBINARY X O O O

Decimal number type

SMALLINT X O O O

INTEGER X O O O

BIGINT X O O O

NUMERIC O O O O

DECIMAL X X O O

NUMBER X O O O

REAL X O O O

DOUBLE PRECISION X O O O

FLOAT X O O O

Binary number type

NATIVE_SMALLINT X O O O

NATIVE_INTEGER X O O O

NATIVE_BIGINT X O O O

NATIVE_REAL X O O O

NATIVE_DOUBLE X O O O

BOOLEAN type BOOLEAN O O O O

Date/ time type

DATE O O O O

TIME O O O O

TIME WITH TIME ZONE O O O O

TIMESTAMP O O O O

TIMESTAMP WITH TIME ZONE O O O O

INTERVAL YEAR TO MONTH O O O O

INTERVAL YEAR O O O O

INTERVAL MONTH O O O O

INTERVAL DAY TO SECOND O O O O

Feature Matrix | 111

INTERVAL type INTERVAL DAY O O O O

INTERVAL HOUR O O O O

INTERVAL MINUTE O O O O

INTERVAL SECOND O O O O

INTERVAL DAY TO HOUR O O O O

INTERVAL DAY TO MINUTE O O O O

INTERVAL HOUR TO MINUTE O O O O

INTERVAL HOUR TO SECOND O O O O

INTERVAL MINUTE TO SECOND O O O O

ROWID type ROWID X O O O

Type Feature 1.x 2.x 3.1 3.2

Function

The following is a feature matrix for function.

Table 4-10 Feature matrix for function

Feature 1.x 2.x 3.1 3.2

expr1 * expr2 O O O O

expr1 + expr2 O O O O

datetime + interval X O O O

＋ expr O O O O

expr1 - expr2 O O O O

datetime - interval X O O O

- expr O O O O

expr1 / expr2 O O O O

str1 || str2 O O O O

expr <comp> expr O O O O

expr <comp> (subquery) X O O O

(subquery) <comp> expr X O O O

(subquery) <comp> (subquery) X O O O

(expr, ...) <comp> (expr, ...) X O O O

(expr, ...) <comp> (subquery) X O O O

(subquery) <comp> (expr, ...) X O O O

expr <comp> {ALL|ANY|SOME} (expr, ...) X O O O

expr <comp> {ALL|ANY|SOME} (subquery) X O O O

(subquery) <comp> {ALL|ANY|SOME} (expr, ...) X O O O

(subquery) <comp> {ALL|ANY|SOME} (subquery) X O O O

(expr, ...) <comp> {ALL|ANY|SOME} (expr_list, ...) X O O O

(expr, ...) <comp> {ALL|ANY|SOME} (subquery) X O O O

(subquery) <comp> {ALL|ANY|SOME} (expr_list, ...) X O O O

112 | What's New

ABS(num) O O O O

ACOS(num) O O O O

ADDDATE(date, interval) X O O O

ADDDATE(expr, days) X O O O

ADDTIME(expr1, expr2) X O O O

ADD_MONTHS(date, number) X O O O

AND O O O O

ASCII(char) X X O O

ASIN(num) O O O O

ATAN(num) O O O O

ATAN2(num1, num2) O O O O

AVG(num) X O O O

expr1 [NOT] BETWEEN [ASYMMETRIC|SYMMETRIC] expr2 AND exp

r3

X O O O

BITAND(num1, num2) O O O O

BITNOT(num) O O O O

BITOR(num1, num2) O O O O

BITXOR(num1, num2) O O O O

BIT_LENGTH(str) O O O O

BYTE_LENGTH(str) O O O O

CASE .. WHEN .. THEN .. ELSE .. END X O O O

CASE2(condition, result, ...) X O O O

CAST(expr AS datatype) O O O O

CBRT(num) O O O O

CEIL(num) O O O O

CEILING(num) O O O O

CHAR_LENGTH(str) O O O O

CHARACTER_LENGTH(str) O O O O

CHR(num) X X O O

CLOCK_DATE() O O O O

CLOCK_LOCALTIME() O O O O

CLOCK_LOCALTIMESTAMP() O O O O

CLOCK_TIME() O O O O

CLOCK_TIMESTAMP() O O O O

COALESCE(expr1, ..., exprN) X O O O

CONCAT(str1, str2) O O O O

CONCATENATE(str1, str2) O O O O

COS(num) O O O O

COT(num) O O O O

COUNT(expr) X O O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 113

COUNT(*) X O O O

CURRENT_CATALOG O O O O

CURRENT_DATE O O O O

CURRENT_SCHEMA O O O O

CURRENT_TIME O O O O

CURRENT_TIMESTAMP O O O O

CURRENT_USER O O O O

seq.CURRVAL O O O O

CURRVAL(seq) O O O O

DATEADD(datepart, number, date) O O O O

DATEDIFF(datepart, startdate, enddate) X O O O

DATE_ADD(date, interval) X O O O

DATE_PART(field, datetime) X O O O

DECODE(expr, comparison, result, ...) X O O O

DEGREES(radians) O O O O

DIGEST (data, type) X X O O

DUMP(expr) X O O O

EXISTS(subquery) X O O O

EXP(num) O O O O

EXTRACT(field FROM datetime) X O O O

FACTORIAL(num) O O O O

FLOOR(num) O O O O

FROM_BASE64(str) X X O O

GREATEST(expr, ...) X O O O

HEX(str) X X O O

expr1 [NOT] IN (expr, ...) X O O O

expr1 [NOT] IN (subquery) X O O O

subquery [NOT] IN (<expr_list>) X O O O

subquery [NOT] IN (subquery) X O O O

<expr_list> [NOT] IN (<expr_list>, ...) X O O O

<expr_list> [NOT] IN (subquery) X O O O

subquery [NOT] IN (<expr_list>, ...) X O O O

INITCAP(str) X O O O

INSTR(str, substr, ...) X O O O

IS NOT NULL O O O O

IS NULL O O O O

LAST_DAY(date) X O O O

LAST_IDENTITY_VALUE() X X O O

LEAST(expr, ...) X O O O

LENGTH(str) O O O O

Feature 1.x 2.x 3.1 3.2

114 | What's New

LENGTHB(str) O O O O

string [NOT] LIKE pattern ESCAPE escape_char X O O O

LN(num) O O O O

LOCALTIME O O O O

LOCALTIMESTAMP O O O O

LOCAL_GROUP_ID() X X O O

LOCAL_GROUP_NAME() X X O O

LOCAL_MEMBER_ID() X X O O

LOCAL_MEMBER_NAME() X X O O

LOG(num2) O O O O

LOG(num1, num2) O O O O

LOGON_USER() X O O O

LOWER(str) O O O O

LPAD(str, length, fill) X O O O

LTRIM(str, [str]) X O O O

MAX(expr) X O O O

MIN(expr) X O O O

MOD(num1, num2) O O O O

MONTHS_BETWEEN(date1, date2) X X X O

NEXT_DAY(date, day) X X O O

seq.NEXTVAL O O O O

NEXTVAL(seq) O O O O

NEXT VALUE FOR seq O O O O

NOT X O O O

NULLIF(expr1, expr2) X O O O

NVL(expr1, expr2) X O O O

NVL2(expr1, expr2, expr3) X O O O

OCTET_LENGTH(str) O O O O

OVERLAY(str1 PLACING str2 FROM start FOR length) X O O O

OR X O O O

PI() O O O O

POSITION(str1 IN str2) O O O O

POWER(num1, num2) O O O O

RADIANS(degrees) O O O O

RANDOM(min, max) O O O O

REPEAT(str, num) X O O O

REPLACE(str, from, to) X O O O

REVERSE(str) X X X O

ROUND(num) X O O O

ROUND(date, fmt) X O O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 115

ROWID_GRID_BLOCK_ID(rowid) X X O O

ROWID_GRID_BLOCK_SEQ(rowid) X X O O

ROWID_MEMBER_ID(rowid) X X O O

ROWID_OBJECT_ID(rowid) X O O O

ROWID_PAGE_ID(rowid) X O O O

ROWID_ROW_NUMBER(rowid) X O O O

ROWID_SHARD_ID(rowid) X X O O

ROWID_TABLESPACE_ID(rowid) X O O O

ROWNUM X X O O

RPAD(str, length, fill) X O O O

RTRIM(str, [str]) X O O O

SESSION_ID() X O O O

SESSION_SERIAL() X O O O

SESSION_USER X O O O

SHARD_GROUP_ID(table, expr) X X O O

SHARD_GROUP_NAME(table_name, shard_key_value [, ...]) X X O O

SHARD_ID(table, expr) X X O O

SHARD_NAME(table_name, shard_key_value [, ...]) X X O O

SHIFT_LEFT(num, cnt) O O O O

SHIFT_RIGHT(num, cnt) O O O O

SIGN(num) O O O O

SIN(num) O O O O

SPLIT_PART(str, delimiter, field) X O O O

SQRT(num) O O O O

STATEMENT_DATE() O O O O

STATEMENT_LOCALTIME() O O O O

STATEMENT_LOCALTIMESTAMP() O O O O

STATEMENT_TIME() O O O O

STATEMENT_TIMESTAMP() O O O O

STATEMENT_VIEW_SCN() X O O O

STATEMENT_VIEW_SCN_DCN() X X O O

STATEMENT_VIEW_SCN_GCN() X X O O

STATEMENT_VIEW_SCN_LCN() X X O O

STDDEV([ALL | DISTINCT] expr) X X X O

STDDEV_POP(expr) X X X O

STDDEV_SAMP(expr) X X X O

SUBSTR(str FROM start FOR length) X O O O

SUBSTR(str, start, length) X O O O

SUBSTRB(str, start, length) X O O O

SUBSTRING(str FROM start FOR length) X O O O

Feature 1.x 2.x 3.1 3.2

116 | What's New

SUBSTRING(str, start, length) X O O O

SUM(expr) X O O O

SYSDATE O O O O

SYS_EXTRACT_UTC(datetime_with_timezone) X X O O

SYSTIME O O O O

SYSTIMESTAMP O O O O

TAN(num) O O O O

TO_CHAR(datetime, fmt) X O O O

TO_CHAR(number, fmt) X O O O

TO_BASE64(str) X X O O

TO_DATE(str, fmt) X O O O

TO_NATIVE_DOUBLE(str, fmt) X O O O

TO_NATIVE_REAL(str, fmt) X O O O

TO_NUMBER(num, fmt) X O O O

TO_TIME(str, fmt) X O O O

TO_TIME_TZ(str, fmt) X O O O

TO_TIME_WITH_TIME_ZONE(str, fmt) X O O O

TO_TIMESTAMP(str, fmt) X O O O

TO_TIMESTAMP_TZ(str, fmt) X O O O

TO_TIMESTAMP_WITH_TIME_ZONE(str, fmt) X O O O

TRANSACTION_DATE() O O O O

TRANSACTION_LOCALTIME() O O O O

TRANSACTION_LOCALTIMESTAMP() O O O O

TRANSACTION_TIME() O O O O

TRANSACTION_TIMESTAMP() O O O O

TRANSLATE(str, from, to) X O O O

TRIM(LEADING|TRAILING|BOTH trim_char FROM source) O O O O

TRUNC(num, scale) X O O O

TRUNC(date, fmt) X O O O

UPPER(str) O O O O

UNHEX(str) X X O O

UNHEX_TO_CHARSTR(str) X X O O

USER_ID() O O O O

UUID() X X O O

VAR_POP(expr) X X X O

VAR_SAMP(expr) X X X O

VARIANCE([ALL | DISTINCT] expr) X X X O

VERSION() O O O O

WIDTH_BUCKET(num, min, max, cnt) O O O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 117

Object

SQL Object

The following is a feature matrix for DDL which creates/ drops/ alters an SQL object.

Table 4-11 Feature matrix for SQL object DDL

Object Feature 1.x 2.x 3.1 3.2

Database

object

ALTER DATABASE ARCHIVELOG X O O O

ALTER DATABASE ADD LOGFILE X O O O

ALTER DATABASE DROP LOGFILE X O O O

ALTER DATABASE RENAME LOGFILE X O O O

ALTER DATABASE BEGIN/END BACKUP X O O O

ALTER DATABASE RECOVER X O O O

ALTER DATABASE RECOVER TABLESPACE X O O O

ALTER DATABASE REGISTER X O O O

ALTER DATABASE RESTORE X O O O

ANALYZE SYSTEM X X O O

COMMENT ON object IS .. X O O O

Profile

object

CREATE PROFILE X O O O

DROP PROFILE X O O O

ALTER PROFILE X O O O

Audit policy

object

CREATE AUDIT POLICY X X X O

DROP AUDIT POLICY X X X O

ALTER AUDIT POLICY X X X O

AUDIT POLICY X X X O

NOAUDIT POLICY X X X O

Authorization

object

CREATE USER X O O O

DROP USER X O O O

ALTER USER X O O O

GRANT privileges TO X O O O

REVOKE privileges FROM X O O O

Schema

object

CREATE SCHEMA X O O O

DROP SCHEMA X O O O

Tablespace

object

CREATE MEMORY DATA TABLESPACE X O O O

CREATE MEMORY TEMPORARY TABLESPACE X O O O

DROP TABLESPACE X O O O

ALTER TABLESPACE .. RENAME TO X O O O

ALTER TABLESPACE .. BEGIN/END BACKUP X O O O

ALTER TABLESPACE .. ADD [DATAFILE|MEMORY] O O O O

ALTER TABLESPACE .. DROP [DATAFILE|MEMORY] X O O O

118 | What's New

ALTER TABLESPACE .. RENAME DATAFILE X O O O

ALTER TABLESPACE .. { ONLINE | OFFLINE } X O O O

Table

object

CREATE TABLE O O O O

CREATE TABLE AS SELECT X O O O

CREATE GLOBAL TEMPORARY TABLE X X X O

CREATE GLOBAL TEMPORARY TABLE AS SELECT X X X O

DROP TABLE O O O O

TRUNCATE TABLE X O O O

ALTER TABLE .. STORAGE X O O O

ALTER TABLE .. RENAME TO X O O O

ALTER TABLE .. ADD COLUMN X O O O

ALTER TABLE .. SET UNUSED COLUMN X O O O

ALTER TABLE .. ALTER COLUMN X O O O

ALTER TABLE .. RENAME COLUMN X O O O

ALTER TABLE .. RENAME CONSTRAINT X X X O

ALTER TABLE .. ADD CONSTRAINT X O O O

ALTER TABLE .. DROP CONSTRAINT X O O O

ALTER TABLE .. ALTER CONSTRAINT X O O O

ALTER TABLE .. ADD SUPPLEMENTAL LOG X O O O

ALTER TABLE .. DROP SUPPLEMENTAL LOG X O O O

ALTER TABLE .. READ { ONLY | WRITE } X X X O

ANALYZE TABLE X X O O

View

object

CREATE VIEW X O O O

DROP VIEW X O O O

ALTER VIEW X O O O

Index

object

CREATE INDEX O O O O

DROP INDEX O O O O

ALTER INDEX .. AGING X X O O

ALTER INDEX .. STORAGE X O O O

ALTER INDEX .. RENAME X X X O

Sequence

object

CREATE SEQUENCE O O O O

DROP SEQUENCE O O O O

ALTER SEQUENCE X O O O

Synonym

object

CREATE SYNONYM X O O O

DROP SYNONYM X O O O

CREATE PUBLIC SYNONYM X O O O

DROP PUBLIC SYNONYM X O O O

Stored procedure

object

CREATE PROCEDURE X X O O

DROP PROCEDURE X X O O

ALTER PROCEDURE X X O O

Object Feature 1.x 2.x 3.1 3.2

Feature Matrix | 119

Stored function

object

CREATE FUNCTION X X O O

DROP FUNCTION X X O O

ALTER FUNCTION X X O O

Object Feature 1.x 2.x 3.1 3.2

120 | What's New

Cluster Object

The following is a feature matrix for DDL which creates/ drops/ alters a cluster object.

Table 4-12 Feature matrix for cluster object DDL

Object Feature 1.x 2.x 3.1 3.2

Cluster system

object

ALTER DATABASE REBALANCE X X O O

ALTER DATABASE DROP INACTIVE CLUSTER MEM

BERS
X X O O

Cluster group

object

CREATE CLUSTER GROUP X X O O

DROP CLUSTER GROUP X X O O

Cluster member

object

ALTER CLUSTER GROUP name ADD MEMBER X X O O

ALTER CLUSTER GROUP name OFFLINE MEMBER X X O O

ALTER DATABASE RESET LOCAL CLUSTER MEMBE

R
X X O O

ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBE

R
X X X O

ALTER SYSTEM JOIN DATABASE X X O O

Cluster location

object

CREATE CLUSTER LOCATION X X O O

DROP CLUSTER LOCATION X X O O

ALTER CLUSTER LOCATION X X O O

Cluster table and shard

object

ALTER TABLE name REBALANCE X X O O

ALTER TABLE name MOVE SHARD X X O O

ALTER TABLE name SPLIT SHARD X X O O

ALTER TABLE name RENAME SHARD X X X O

Global secondary inde

x

object

ALTER TABLE name ADD GLOBAL SECONDARY IN

DEX
X X O O

ALTER TABLE name DROP GLOBAL SECONDARY I

NDEX
X X O O

ALTER TABLE name ALTER GLOBAL SECONDARY I

NDEX
X X O O

Feature Matrix | 121

SQL Language

DML

The following is a feature matrix for DML which manipulates data.

Table 4-13 Feature matrix for DML

Feature 1.x 2.x 3.1 3.2

INSERT INTO .. O O O O

INSERT INTO .. RETURNING query X O O O

INSERT INTO .. RETURNING .. INTO .. X O O O

DELETE FROM .. O O O O

DELETE FROM .. RETURNING query X O O O

DELETE FROM .. RETURNING .. INTO .. X O O O

DELETE FROM .. WHERE CURRENT OF cursor X O O O

UPDATE .. O O O O

UPDATE .. RETURNING query X O O O

UPDATE .. RETURNING .. INTO .. X O O O

UPDATE .. WHERE CURRENT OF cursor X O O O

CALL proc_name X X O O

Query

The following is a feature matrix for SELECT statement which enquires data.

Table 4-14 Feature matrix for SELECT

Feature 1.x 2.x 3.1 3.2

<query expression> O O O O

<query specification> O O O O

<select list> O O O O

<from clause> O O O O

<joined table> X O O O

<where clause> O O O O

<group by clause> X O O O

<order by clause> X O O O

<offset limit clause> O O O O

<set operator> X O O O

<subquery> X O O O

<hint clause> X O O O

122 | What's New

Control Language

The following is a feature matrix for control statement.

Table 4-15 Feature matrix for control statement

Control statement Feature 1.x 2.x 3.1 3.2

Transaction

COMMIT O O O O

ROLLBACK O O O O

SAVEPOINT X O O O

RELEASE SAVEPOINT X O O O

LOCK TABLE X O O O

SET CONSTRAINTS X O O O

SET TRANSACTION X O O O

Session

SET SESSION CHARACTERISTICS AS X O O O

SET SESSION AUTHORIZATION X O O O

SET TIME ZONE X O O O

ALTER SESSION SET property O O O O

System

ALTER SYSTEM {OPEN|MOUNT} DATABASE X O O O

ALTER SYSTEM CHECKPOINT O O O O

ALTER SYSTEM KILL SESSION X O O O

ALTER SYSTEM RECONNECT GLOBAL CONNECTION X X X O

ALTER SYSTEM SWITCH LOGFILE X O O O

ALTER SYSTEM SET property X O O O

ALTER SYSTEM RESET property X O O O

Feature Matrix | 123

PSM Language

The following is a feature matrix for persistent stored module (PSM) language element.

Table 4-16 Feature matrix for persistent stored module (PSM) language element

Feature 1.x 2.x 3.1 3.2

Assignment Statement X X O O

Basic LOOP Statement X X O O

Block (BEGIN .. END) X X O O

CASE Statement X X O O

CLOSE Statement X X O O

Collection Method Invocation X X O O

Collection Variable Declaration X X O O

CONTINUE Statement X X O O

Cursor FOR LOOP Statement X X O O

Cursor Variable Declaration X X O O

DELETE Statement Extension X X O O

EXCEPTION_INIT Pragma X X O O

Exception Declaration X X O O

Exception Handler X X O O

EXECUTE IMMEDIATE Statement X X O O

EXIT Statement X X O O

Explicit Cursor Declaration and Definition X X O O

FETCH Statement X X O O

FOR LOOP Statement X X O O

GOTO Statement X X O O

IF Statement X X O O

Implicit Cursor Attribute X X O O

INSERT Statement Extension X X O O

Named Cursor Attribute X X O O

NULL Statement X X O O

OPEN Statement X X O O

OPEN FOR Statement X X O O

Procedure Call X X O O

Procedure Declaration and Definition X X O O

RAISE Statement X X O O

Record Variable Declaration X X O O

RETURN Statement X X O O

RETURNING INTO clause X X O O

%ROWTYPE Attribute X X O O

Scalar Variable Declaration X X O O

124 | What's New

SELECT INTO Statement X X O O

SQLCODE Function X X O O

SQLERRM Function X X O O

%TYPE Attribute X X O O

UPDATE Statement Extension X X O O

WHILE LOOP Statement X X O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 125

API

ODBC

The following is a feature matrix for the ODBC standard API.

Table 4-17 Feature matrix for the ODBC standard API

Feature 1.x 2.x 3.1 3.2

SQLAllocHandle() O O O O

SQLBindCol() O O O O

SQLBindParameter() O O O O

SQLCloseCursor() O O O O

SQLColAttribute() X O O O

SQLColumnPrivileges() X O O O

SQLColumns() X O O O

SQLConnect() O O O O

SQLDescribeCol() O O O O

SQLDescribeParam() O O O O

SQLDisconnect() O O O O

SQLDriverConnect() X O O O

SQLEndTran() O O O O

SQLExecDirect() O O O O

SQLExecute() O O O O

SQLExtendedFetch() X O O O

SQLFetch() O O O O

SQLFetchScroll() X O O O

SQLForeignKeys() X O O O

SQLFreeHandle() O O O O

SQLFreeStmt() O O O O

SQLGetConnectAttr() O O O O

SQLGetCursorName() X O O O

SQLGetData() X O O O

SQLGetDescField() O O O O

SQLGetDescRec() O O O O

SQLGetDiagField() O O O O

SQLGetDiagRec() O O O O

SQLGetEnvAttr() O O O O

SQLGetFunctions() O O O O

SQLGetInfo() X O O O

SQLGetStmtAttr() O O O O

126 | What's New

SQLGetTypeInfo() X O O O

SQLMoreResults() X O O O

SQLNumParams() O O O O

SQLNumResultCols() O O O O

SQLParamData() X O O O

SQLPrepare() O O O O

SQLPrimaryKeys() X O O O

SQLProcedureColumns() X O O O

SQLProcedures() X O O O

SQLPutData() X O O O

SQLRowCount() O O O O

SQLSetConnectAttr() O O O O

SQLSetCursorName() X O O O

SQLSetDescField() O O O O

SQLSetDescRec() O O O O

SQLSetEnvAttr() O O O O

SQLSetPos() X O O O

SQLSetStmtAttr() O O O O

SQLSpecialColumns() X O O O

SQLStatistics() X O O O

SQLTablePrivileges() X O O O

SQLTables() X O O O

Feature 1.x 2.x 3.1 3.2

The following is a feature matrix for API other than the ODBC standard API.

Table 4-18 Feature matrix for API other than the ODBC standard

Feature 1.x 2.x 3.1 3.2

xa_open X O O O

xa_close X O O O

xa_start X O O O

xa_end X O O O

xa_rollback X O O O

xa_prepare X O O O

xa_commit X O O O

xa_recover X O O O

xa_forget X O O O

SQLGetXaSwitch X O O O

SQLGetXaConnectionHandle X O O O

SQLGetGroupCount X X X O

SQLGetGroupIDs X X X O

Feature Matrix | 127

SQLGetGroupName X X X O

SQLGetSuitableGroupID X X X O

Feature 1.x 2.x 3.1 3.2

128 | What's New

JDBC

The following is a class feature matrix for JDBC.

Table 4-19 Class feature matrix for JDBC

Feature 1.x 2.x 3.1 3.2

CallableStatement X X O O

CommonDataSource X O O O

Connection X O O O

ConnectionPoolDataSource X O O O

DatabaseMetaData X O O O

DataSource X O O O

Driver X O O O

ParameterMetaData X O O O

PooledConnection X O O O

PreparedStatement X O O O

ResultSet X O O O

ResultSetMetaData X O O O

RowId X O O O

Savepoint X O O O

Statement X O O O

XAConnection X O O O

XADataSource X O O O

XAResource X O O O

GoldilocksInterval X O O O

GoldilocksTypes X O O O

Feature Matrix | 129

Embedded SQL

Precompiler Option

The following is a feature matrix for precompiler option.

Table 4-20 Feature matrix for precompiler option

Feature 1.x 2.x 3.1 3.2

--help X O O O

--include-path X O O O

--no-prompt X O O O

--output X O O O

--unsafe-null X O O O

--version X O O O

Embedded SQL-only Syntax

The following is a feature matrix of embedded SQL-only syntax.

Table 4-21 Feature matrix for embedded SQL-only syntax

Feature 1.x 2.x 3.1 3.2

EXEC SQL AT X O O O

EXEC SQL ATOMIC INSERT X O O O

EXEC SQL AUTOCOMMIT X O O O

EXEC SQL BEGIN DECLARE SECTION X O O O

EXEC SQL COMMIT RELEASE X O O O

EXEC SQL CONNECT X O O O

EXEC SQL CONTEXT ALLOCATE X O O O

EXEC SQL CONTEXT FREE X O O O

EXEC SQL CONTEXT USE X O O O

EXEC SQL DISCONNECT X O O O

EXEC SQL END DECLARE SECTION X O O O

EXEC SQL FOR X O O O

EXEC SQL GET GROUPID X X X O

EXEC SQL INCLUDE X O O O

EXEC SQL INCLUDE SQLCA X O O O

EXEC SQL OPTION X O O O

EXEC SQL ROLLBACK RELEASE X O O O

EXEC SQL WHENEVER X O O O

130 | What's New

Host Variable Data Type

The following is a feature matrix for embedded SQL data type which can be used for HOST variables.

Table 4-22 Feature matrix for host variable data type

Feature 1.x 2.x 3.1 3.2

C native type X O O O

struct, union X O O O

typedef X O O O

VARCHAR X O O O

LONG VARCHAR X O O O

BINARY X O O O

LONG VARBINARY X O O O

BOOLEAN X O O O

NUMBER X O O O

DATE X O O O

TIME X O O O

TIME WITH TIMEZONE X O O O

TIMESTAMP X O O O

TIMESTAMP WITH TIMEZONE X O O O

INTERVAL YEAR X O O O

INTERVAL MONTH X O O O

INTERVAL DAY X O O O

INTERVAL HOUR X O O O

INTERVAL MINUTE X O O O

INTERVAL SECOND X O O O

INTERVAL YEAR TO MONTH X O O O

INTERVAL DAY TO HOUR X O O O

INTERVAL DAY TO MINUTE X O O O

INTERVAL DAY TO SECOND X O O O

INTERVAL HOUR TO MINUTE X O O O

INTERVAL HOUR TO SECOND X O O O

INTERVAL MINUTE TO SECOND X O O O

Dynamic SQL

The following is a feature matrix for dynamic SQL.

Table 4-23 Feature matrix for dynamic SQL

Feature 1.x 2.x 3.1 3.2

SELECT .. INTO X O O O

EXECUTE IMMEDIATE sql X O O O

Feature Matrix | 131

PREPARE stmt X O O O

EXECUTE stmt X O O O

DECLARE cursor FOR sql X O O O

DECLARE cursor FOR stmt X O O O

OPEN cursor X O O O

OPEN cursor USING X O O O

FETCH cursor INTO X O O O

CLOSE cursor X O O O

DELETE .. WHERE CURRENT OF cursor X O O O

UPDATE .. WHERE CURRENT OF cursor X O O O

Feature 1.x 2.x 3.1 3.2

132 | What's New

PyDBC

Module

The following is a method feature matrix for pygoldilocks provided by PyDBC.

Table 4-24 Feature matrix for pygoldilock method

Feature 1.x 2.x 3.1 3.2

connect X X X O

Date X X X O

Time X X X O

Timestamp X X X O

DateFromTicks X X X O

TimeFromTicks X X X O

TimestampFromTicks X X X O

Binary X X X O

STRING X X X O

BINARY X X X O

NUMBER X X X O

DATETIME X X X O

ROWID X X X O

getDecimalSeparator X X X O

setDecimalSeparator X X X O

The following is an attribute feature matrix for pygoldilocks module.

Table 4-25 Feature matrix for pygoldilock attribute

Feature 1.x 2.x 3.1 3.2

apilevel X X X O

threadsafety X X X O

paramstyle X X X O

version X X X O

lowercase X X X O

Connection

The following is a method feature matrix for connection object.

Table 4-26 Feature matrix for connection method

Feature 1.x 2.x 3.1 3.2

cursor X X X O

commit X X X O

Feature Matrix | 133

rollback X X X O

close X X X O

getinfo X X X O

execute X X X O

set_attr X X X O

Feature 1.x 2.x 3.1 3.2

The following is an attribute feature matrix for connection object.

Table 4-27 Feature matrix for connection attribute

Feature 1.x 2.x 3.1 3.2

autocommit X X X O

searchescape X X X O

timeout X X X O

Cursor

The following is a method feature matrix for cursor object.

Table 4-28 Feature matrix for cursor method

Feature 1.x 2.x 3.1 3.2

excute X X X O

executemany X X X O

fetchone X X X O

fetchall X X X O

fetchmany X X X O

commit X X X O

rollback X X X O

skip X X X O

nextset X X X O

close X X X O

setinputsizes X X X O

setoutputsize X X X O

callproc X X X O

callfunc X X X O

tables X X X O

columns X X X O

statistics X X X O

rowIdColumns X X X O

rowVerColumns X X X O

primaryKeys X X X O

134 | What's New

foreignKeys X X X O

procedures X X X O

getTypeInfo X X X O

Feature 1.x 2.x 3.1 3.2

The following is an attribute feature matrix for cursor object.

Table 4-29 Feature matrix for cursor attribute

Feature 1.x 2.x 3.1 3.2

Description X X X O

rowcount X X X O

arraysize X X X O

connection X X X O

fast_executemany X X X O

Row

The following is an attribute feature matrix for row object.

Table 4-30 Feature matrix for row attribute

Feature 1.x 2.x 3.1 3.2

cursor_description X X X O

Utility

gcreatedb

Command Usage

The following is a feature matrix for command usage of gcreatedb.

Table 4-31 Feature matrix for command usage of gcreatedb

Feature 1.x 2.x 3.1 3.2

--character_set O O O O

--char_length_units X O O O

--cluster X X O O

--db_comment O O O O

--help O O O O

--host X X O O

Feature Matrix | 135

--member X X O O

--port X X O O

--silent O O O O

--timezone X O O O

Feature 1.x 2.x 3.1 3.2

136 | What's New

glsnr

Command Usage

The following is a feature matrix for command usage of glsnr.

Table 4-32 Feature matrix for command usage of glsnr

Feature 1.x 2.x 3.1 3.2

--help X O O O

--home X X O O

--silent X O O O

--start X O O O

--status X O O O

--stop X O O O

Configuration File

The following is a feature matrix for configuration of glsnr.

Table 4-33 Feature matrix for configuration of glsnr

Feature 1.x 2.x 3.1 3.2

BACKLOG X O O O

DEFAULT_CS_MODE X O O O

LISTENER_LOG_DIR X X O O

LISTEN_PORT X O O O

TCP_EXCLUDED X O O O

TCP_INVITED X O O O

TCP_HOST X O O O

TCP_VALIDNODE_CHECKING X O O O

TIMEOUT X O O O

USR_DIR X X O O

Feature Matrix | 137

gsql/gsqlnet

Command Usage

The following is a feature matrix for command usage of gsql.

Table 4-34 Feature matrix for command usage of gsql

Feature 1.x 2.x 3.1 3.2

username password O O O O

--as {SYSDBA|ADMIN} X O O O

--conn-string X O O O

--dsn X O O O

--enable-color O O O O

--help O O O O

--import O O O O

--no-prompt O O O O

--prompt O O O O

--silent O O O O

--version O O O O

Interactive gsql Command

The following is a feature matrix for interactive gsql command.

Table 4-35 Feature matrix for interactive gsql command

Feature 1.x 2.x 3.1 3.2

\\ O O O O

\connect userid password [as sysdba] X O O O

\cshutdown X X O O

\cstartup X X O O

\ddl_cluster X X O O

\ddl_db X O O O

\ddl_tablespace X O O O

\ddl_profile X O O O

\ddl_audit_policy X X X O

\ddl_auth X O O O

\ddl_schema X O O O

\ddl_publicsynonym X O O O

\ddl_table X O O O

\ddl_constraint X O O O

\ddl_index X O O O

\ddl_view X O O O

138 | What's New

\ddl_sequence X O O O

\ddl_synonym X O O O

\ddl_procedure X X O O

\desc O O O O

\dynamic sql :var X O O O

\exec O O O O

\exec :var := :value O O O O

\exec sql O O O O

\explain plan [on|only] O O O O

\help O O O O

\history O O O O

\host {os_command} X X O O

\import O O O O

\idesc O O O O

\{n} O O O O

\prepare sql O O O O

\print O O O O

\quit O O O O

\set autocommit O O O O

\set color O O O O

\set colsize X O O O

\set ddlsize X O O O

\set error O O O O

\set history O O O O

\set linesize O O O O

\set numsize X O O O

\set pagesize O O O O

\set timing O O O O

\set vertical O O O O

\shutdown {abort|immediate|transactional|normal} X O O O

\startup {nomount|mount|open} X O O O

\var O O O O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 139

gloader/gloadernet

Command Usage

The following is a feature matrix for command usage of gloader.

Table 4-36 Feature matrix for command usage of gloader

Feature 1.x 2.x 3.1 3.2

username password O O O O

--array O O O O

--atomic O O O O

--bad O O O O

--buffered X O O O

--commit O O O O

--control O O O O

--data O O O O

--dsn X O O O

--errors X O O O

--export O O O O

--fieldterm X X O O

--filesize X O O O

--format X O O O

--help O O O O

--import O O O O

--lineterm X X O O

--log O O O O

--no-prompt O O O O

--parallel O O O O

--propagation X O O O

--qualifier X X O O

--silent O O O O

--AsTIMESTAMP X O O O

--where X X X O

Control File Syntax

The following is a feature matrix for control file syntax of gloader.

Table 4-37 Feature matrix for control file syntax of gloader

Feature 1.x 2.x 3.1 3.2

CHARACTERSET X O O O

FIELDS TERMINATED BY O O O O

140 | What's New

OPTIONALLY ENCLOSED BY O O O O

TABLE table_name O O O O

TABLE schema_name.table_name X O O O

LTRIM X X O O

RTRIM X X O O

LINES TERMINATED BY X X O O

WHERE X X X O

Feature 1.x 2.x 3.1 3.2

Feature Matrix | 141

gdump

Command Usage

The following is a feature matrix for command usage of gdump.

Table 4-38 Feature matrix for command usage of gdump

Item Feature 1.x 2.x 3.1 3.2

Common arguments --silent X O O O

File type

BACKUP X O O O

COMMIT_LOG X X O O

CONTROL X O O O

DATA X O O O

LOG X O O O

LOG_BUFFER X X O O

PEND_BUFFER X X O O

PROPERTY X O O O

BACKUP file arguments

--body X O O O

--tbs X O O O

--number X O O O

--fetch X O O O

CONTROL file arguments --section X O O O

DATA file arguments

--header X O O O

--number X O O O

--fetch X O O O

LOG file arguments

--all X X O O

--fetch X O O O

--header X X O O

--number X O O O

--offset X O O O

142 | What's New

tablediff

Configuration File

The following is a feature matrix for configuration file of tablediff.

Table 4-39 Feature matrix for configuration file of tablediff

Item Feature 1.x 2.x 3.1 3.2

Source table

SOURCE_PASSWORD X O O O

SOURCE_SCHEMA X O O O

SOURCE_TABLE X O O O

SOURCE_URL X O O O

SOURCE_USER X O O O

Target table

TARGET_PASSWORD X O O O

TARGET_SCHEMA X O O O

TARGET_TABLE X O O O

TARGET_URL X O O O

TARGET_USER X O O O

Sync operation

TARGET_INSERT X O O O

TARGET_UPDATE X O O O

TARGET_DELETE X O O O

SOURCE_INSERT X O O O

Operation options

DIFF_BIN_FILE X O O O

DIFF_OUT_FILE X O O O

DISPLAY_CALL_STACK X O O O

DISPLAY_ROW_UNIT X O O O

EXCLUDE_COLUMNS X O O O

LOGGING_ON_DIFF X O O O

LOGGING_ON_SUCCESS X O O O

JOB_QUEUE_SIZE X O O O

JOB_THREAD X O O O

JOB_UNIT_SIZE X O O O

PARTITION_RANGE X O O O

SYNC_OUT_FILE X O O O

WHERE_CLAUSE X O O O

Feature Matrix | 143

gsyncher

Command Usage

The following is a feature matrix for command usage of gsyncher.

Table 4-40 Feature matrix for command usage of gsyncher

Feature 1.x 2.x 3.1 3.2

--log X O O O

--silent X O O O

--home X X O O

--copy-right X O O O

--backup-path X O O O

--help X O O O

144 | What's New

gmon

Command Usage

The following is a feature matrix for command usage of gmon.

Table 4-41 Feature matrix for command usage of gmon

Feature 1.x 2.x 3.1 3.2

--start X X O O

--stop X X O O

--status X X O O

--home X X O O

--silent X X O O

--no-copyright X X O O

--help X X O O

Feature Matrix | 145

gtrclogger

Command Usage

The following is a feature matrix for command usage of gtrclogger.

Table 4-42 Feature matrix for command usage of gtrclogger

Feature 1.x 2.x 3.1 3.2

--dir X X O O

--help X X O O

--port X X O O

--start X X O O

--stop X X O O

146 | What's New

glocator

Command Usage

The following is a feature matrix for command usage of glocator.

Table 4-43 Feature matrix for command usage of glocator

Feature 1.x 2.x 3.1 3.2

--create X X O O

--start X X O O

--stop X X O O

--conf X X O O

--status X X O O

--sync X X X O

--silent X X O O

--no-copyright X X O O

--help X X O O

Configuration File

The following is a feature matrix for configuration file of glocator.

Table 4-44 Feature matrix for configuration file of glocator

Feature 1.x 2.x 3.1 3.2

PORT X X O O

WORKER_COUNT X X O O

SESSION_QUEUE_SIZE X X O O

SESSION_ALLOCATOR_SIZE X X O O

PACKET_ALLOCATOR_SIZE X X O O

SYSTEM_LOGGER_DIR X X O O

SYSTEM_UDS_DIR X X O O

LOCATION_FILE_DIR X X O O

LOCATION_FILE_SIZE X X O O

LOCATION_FILE_MAX_SIZE X X O O

SESSION_TIMEOUT X X O O

FAILOVER_TIMEOUT X X O O

ALTERNATE_LOCATORS X X X O

SYNC_RETRY_COUNT X X X O

SYNC_RESPONSE_TIMEOUT X X X O

Feature Matrix | 147

gagent

Command Usage

The following is a feature matrix for command usage of gagent.

Table 4-45 Feature matrix for command usage of gagent

Feature 1.x 2.x 3.1 3.2

--start X X O O

--stop X X O O

--conf X X O O

--status X X O O

--home X X O O

--silent X X O O

--no-copyright X X O O

--help X X O O

Configuration File

The following is a feature matrix for configuration file of gagent.

Table 4-46 Feature matrix for configuration file of gagent

Feature 1.x 2.x 3.1 3.2

PORT X X O O

LOCATOR_HOST X X O O

LOCATOR_PORT X X O O

COMMAND_QUEUE_SIZE X X O O

COMMAND_ALLOCATOR_SIZE X X O O

PACKET_ALLOCATOR_SIZE X X O O

SYSTEM_LOGGER_DIR X X O O

SESSION_TIMEOUT X X O O

UPDATE_LOCATION_TIME X X O O

ALTERNATE_LOCATORS X X X O

148 | What's New

gloctl

Command Usage

The following is a feature matrix for command usage of gloctl.

Table 4-47 Feature matrix for command usage of gloctl

Feature 1.x 2.x 3.1 3.2

--dsn X X O X

--conf X X X O

--ip X X O O

--port X X O O

--import X X O O

--silent X X O O

--no-copyright X X O O

--help X X O O

Configuration File

The following is a feature matrix for configuration file of gloctl.

Table 4-48 Feature matrix for configuration file of gloctl

Feature 1.x 2.x 3.1 3.2

PORT X X X O

LOCATOR_HOST X X X O

LOCATOR_PORT X X X O

Feature Matrix | 149

Replication

cyclone

Command Usage

The following is a feature matrix for command usage of cyclone.

Table 4-49 Feature matrix for command usage of cyclone

Feature 1.x 2.x 3.1 3.2

--conf X O O O

--encrypt X X O O

--group X O O O

--help X O O O

--key X X O O

--master X O O O

--reset X O O O

--silent X O O O

--slave X O O O

--start X O O O

--status X O O O

--stop X O O O

--sync X O O O

--stand-alone X X X O

--recovery X X X O

--local X X X O

Configuration File

The following is a feature matrix for configuration file of cyclone.

Table 4-50 Feature matrix for configuration file of cyclone

Configuration Feature 1.x 2.x 3.1 3.2

Common configuration

COMM_CHUNK_COUNT X O O O

DSN X O O O

USER_ENCRYPT_PW X X O O

GROUP_NAME X O O O

HOST_IP X O O O

HOST_EXTERNAL_IP X X O O

HOST_PORT X O O O

PORT X O O O

150 | What's New

PROTOCOL X X O O

USER_ID X O O O

USER_PW X O O O

MASTER configuration

CAPTURE_TABLE X O O O

LOG_PATH X O O O

READ_LOG_BLOCK_COUNT X O O O

TRANS_SORT_AREA_SIZE X O O O

TRANS_FILE_PATH X O O O

SYNCHER_COUNT X O O O

SYNC_ARRAY_SIZE X O O O

GIVEUP_INTERVAL X O O O

LOG_CAPTURE_INTERVAL_1 X X O O

LOG_CAPTURE_INTERVAL_2 X X O O

SLAVE configuration

APPLIER_COUNT X O O O

APPLY_ARRAY_SIZE X O X X

APPLY_COMMIT_SIZE X O O O

APPLY_TABLE X O O O

MASTER_IP X O O O

PROPAGATE_MODE X O O O

CLUSTER X X X O

ORACLE_DRIVER X X X O

Configuration Feature 1.x 2.x 3.1 3.2

Feature Matrix | 151

logmirror

Command Usage

The following is a feature matrix for command usage of logmirror.

Table 4-51 Feature matrix for command usage of logmirror

Feature 1.x 2.x 3.1 3.2

--conf X O O O

--help X O O O

--infiniband X O O O

--master X O O O

--silent X O O O

--slave X O O O

--start X O O O

--stop X O O O

Configuration File

The following is a feature matrix for configuration file of logmirror.

Table 4-52 Feature matrix for configuration file of logmirror

Configuration Feature 1.x 2.x 3.1 3.2

Common configuration PORT X O O O

MASTER configuration

DSN X O O O

HOST_IP X O O O

HOST_PORT X O O O

PROTOCOL X X O O

USER_ID X O O O

USER_PW X O O O

SLAVE configuration
LOG_PATH X O O O

MASTER_IP X O O O

152 | What's New

cymon

Command Usage

The following is a feature matrix for command usage of cymon.

Table 4-53 Feature matrix for command usage of cymon

Feature 1.x 2.x 3.1 3.2

--conf X O O O

--help X O O O

--cycle X O O O

--key X X O O

--start X O O O

--stop X O O O

--status X O O O

What's New in GOLDILOCKS 3.2 | 153

4.2 What's New in GOLDILOCKS 3.2

This chapter briefly describes the features added to GOLDILOCKS 3.2.

Architecture

System Architecture

It has not been changed.

Storage Internal

It has not been changed.

Transaction Control

It has not been changed.

Backup & Recovery

It has not been changed.

Database Information

DICTIONARY_SCHEMA

The following views have been added to enquire the information about audit policy object.

● AUDIT_POLICIES

● AUDIT_POLICY_OPTIONS

● AUDIT_POLICY_ENABLED

AUDIT_TRAIL has been added to enquire the audit record.

The following views are deleted.

● ALL_COL_PLACE

● DBA_COL_PLACE

● USER_COL_PLACE

154 | What's New

INFORMATION_SCHEMA

It has not been changed.

PERFORMANCE_VIEW_SCHEMA

The following views have been added to enquire the information which can be listed in a system action a

nd in a privilege action when defining audit policy options.

● V$AUDITABLE_DB_PRIVILEGES

● V$AUDITABLE_SYSTEM_ACTIONS

Server Property

Property for Global Temporary Table Has Been Added

TEMP_UNDO_ENABLED property has been added to assign the undo logging tablespace for the global te

mporary table.

TEMP_SEGMENT_CACHE_SIZE has been added to assign the segment cache size of the global temporary

table or the global temporary index.

Recompile Feature Based on the Change of Pages Are Deleted

The recompile feature based on the change of pages, which is supported until 3.1, are deleted. Therefore,

the following properties are not supported any more.

● RECOMPILE_CHECK_MINIMUM_PAGE_COUNT

● RECOMPILE_PAGE_PERCENT

Property for Auxiliary Tablespace Has Been Added

SYSTEM_MEMORY_AUX_TABLESPACE_SIZE property has been added to determine the size of the auxili

ary tablespace

Property for Communication Data Compression Has Been Added

PACKET_COMPRESSION_THRESHOLD property has been added to determine whether to compress the c

ommunication data.

Property for Redo Log Compression Has Been Added

REDO_LOG_COMPRESSION_THRESHOLD property has been added to determine whether to compress th

e redo log.

What's New in GOLDILOCKS 3.2 | 155

USE_LARGE_PAGES Property Has Been Added

USE_LARGE_PAGES property has been added to use HugePage.

SQL

SQL Element

Data Type

It has not been changed.

Function

The following aggregation functions related to variation have been added.

STDDEV

STDDEV_POP

STDDEV_SAMP

VARIANCE

VAR_POP

VAR_SAMP

The string function REVERSE has been added.

The date function MONTHS_BETWEEN has been added.

Object

Audit Policy

Audit policy object which can audit SQL performance has been added.

Global Temporary Table

Global temporary table which is a temporary table depending on the session has been added.

SQL Language

Parallel Processing of ANALYZE TABLE Statement

Parallel processing option has been added to ANALYZE TABLE statement.

156 | What's New

Audit Policy DDL

The following DDLs which can control audit policy objects have been added.

● Creating audit policy

○ CREATE AUDIT POLICY

● Dropping audit policy

○ DROP AUDIT POLICY

● Altering audit policy

○ ALTER AUDIT POLICY

● Activating audit policy

○ AUDIT POLICY

● Deactivating audit policy

○ NOAUDIT POLICY

● Dropping audit trail

○ ALTER DATABASE CLEAR AUDIT TRAIL

User DDL

User's default index tablespace has been added.

● Creating a user

○ CREATE USER

● Altering a user

○ ALTER USER

Table DDL

The following DDLs which alters the table object have been added.

● Altering the name of the table constraints

○ ALTER TABLE name RENAME CONSTRAINT

● Altering the table properties

○ ALTER TABLE name READ { ONLY | WRITE }

● Altering the specific shard name of a table in a cluster environment

○ ALTER TABLE name RENAME SHARD

DDL creating global temporary table has been added.

Index DDL

The following DDL altering an index object has been added.

● Altering the index name

What's New in GOLDILOCKS 3.2 | 157

○ ALTER INDEX name RENAME TO

Cluster System DDL

The following DDL altering a cluster system object has been added.

● Assigning an irrecoverable cluster member

○ ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER

System DCL

The following DCL controlling a system object has been added.

● Setting the reconnection of a session using GLOBAL CONNECTION

○ ALTER SYSTEM RECONNECT GLOBAL CONNECTION

API

ODBC

odbc.ini

LOCATOR_SERVICE and PACKET_COMPRESSION_THRESHOLD have been added to odbc.ini file as a dat

a source name keyword.

ALTERNATE_LOCATORS and CONNECTION_TIMEOUT have been added as a location keyword.

GLOBAL CONNECTION

It supports global connection.

Statement Attributes

SQL_ATTR_FETCH_FAILOVER has been added to the statement property values.

JDBC

Connection Property

packet_compression_threshold has been added to connection property.

158 | What's New

Embedded SQL

EXEC SQL GET GROUPID INTO statement has been added.

PDO

PDO driver which can access GOLDILOCKS from PDO has been added from Venus 3.2 version.

PyDBC

PyDBC which is API for python language is provided from Venus 3.2 version.

Ruby

Ruby driver which is API for ruby language is provided from Venus 3.2 version.

Hibernate

The source which can interwork with hibernate, Java ORM framework, is provided from Venus 3.2 versio

n.

Utility

gcreatedb

It has not been changed.

glsnr

It has not been changed.

gsql/gsqlnet

DDL Output of an Audit Policy Object

\ddl_audit_policy, an interactive command, has been added to output DDL of an audit object.

http://222.108.147.73:1975/r/document/view/431d3f752175c85a

What's New in GOLDILOCKS 3.2 | 159

SET HEADING {ON | OFF}

\set heading has been added to set whether to output the header in the query result.

gloader/gloadernet

WHERE Clause

The following conditional clauses can be set in an export (data download).

● WHERE

● --where

--group-id

gloader command argument --group-id has been added.

--directio-size

gloader command argument --directio-size has been added.

gdump

It has not been changed.

tablediff

It has not been changed.

gsyncher

It has not been changed.

gmon

It has not been changed.

gtrclogger

It has not been changed.

160 | What's New

glocator

Configuration

ALTERNATE_LOCATORS has been added as a configuration keyword which is related to the replication.

Argument

--sync option has been added to an argument.

gagent

Configuration

ALTERNATE_LOCATORS has been added as a configuration keyword.

gloctl

Configuration

Configuration file which sets the driving environment of gloctl has been added.

conf option which assigns the configuration file has been added.

--dsn

dsn option of when driving gloctl is deleted.

Replication

cyclone

Recovery function has been added.

Operating CYCLONE in Cluster function has been added.

Database supporting the slave supports ORACLE_DRIVER as well as GOLDILOCKS.

Executing optionsof the standalone have been added.

What's New in GOLDILOCKS 3.2 | 161

Local executing options have been added.

logmirror

It has not been changed.

cymon

It has not been changed.

162 | What's New

4.3 Patch Notes

3.2.14 Patch Note

ISSUE-6253 It supports the property to use the normal page when it fai

ls to allocate the shared memory using the large page.

Description

It supports USE_LARGE_PAGES property. This property allows to use the normal page and the large page

when allocating the shared memory. This property also allows to allocate the shared memory using the n

ormal page when it fails to allocate the shared memory using the large page.

Workaround

The patch is required.

3.2.13 Patch Note

ISSUE-5862 If the connection object is shared in the multi-thread progr

am of JDBC, the deadlock occurs.

Description

If the connection object is shared and used in the multi-thread program, the deadlock occurs.

Workaround

Create each different connection object per the thread, and use them.

3.2.12 Patch Note

Patch Notes | 163

ISSUE-4362 It is abnormally terminated because cserver refers to the fr

eed memory in the cluster.

Description

If executing another dml after freeing the memory used in c server session when the remote member perf

orms dml in the cluster, then it is abnormally terminated. It is because it uses the freed memory, and this i

s a bug, but this error has been fixed.

3.2.11 Patch Note

ISSUE-3869 The result of row status is wrong when executing array fet

ch in ODBC.

Description

When executing array fetch in ODBC, the status value of the row can be seen after calling SQLFetch funct

ion. If the returned value of SQLFetch is not SQL_SUCCESS, then it is required to check the row status or t

he diagnostic.

However, even when the returned value of SQLFetch is SQL_SUCCESS_WITH_INFO, the diagnostic messa

ge is seen but all row statuses are SQL_ROW_SUCCESS, which are wrong.

Symptom

The following is the string data which can not be converted to number.

CREATE TABLE T1 (I1 VARCHAR(10));

INSERT INTO T1 VALUES ('1');

INSERT INTO T1 VALUES ('2A');

INSERT INTO T1 VALUES ('3');

INSERT INTO T1 VALUES ('AB');

COMMIT;

The following is a part of an example of executing array fetch after converting the data above to the num

eric type.

sRet = SQLPrepare(sStmt,

(SQLCHAR*)"SELECT I1 FROM T1 ORDER BY I1",

SQL_NTS);

sRet = SQLBindCol(sStmt,

164 | What's New

1,

SQL_C_LONG,

sI1,

sizeof(SQLINTEGER),

sI1Ind);

sRet = SQLSetStmtAttr(sStmt,

SQL_ATTR_ROW_BIND_TYPE,

(SQLPOINTER)SQL_BIND_BY_COLUMN,

0);

sRet = SQLSetStmtAttr(sStmt,

SQL_ATTR_ROW_STATUS_PTR,

sRowStatus,

0);

sRet = SQLExecute(sStmt);

sRet = SQLFetch(sStmt);

switch(sRet)

{

case SQL_SUCCESS_WITH_INFO:

for(i = 0; i < sFetched; i++)

printf("row status: %d\n", sRowStatus[i]);

break;

default

break;

}

The data can not be converted to number is included, but all row statuses are SQL_ROW_SUCCESS.

row status: 0

row status: 0

row status: 0

row status: 0

Workaround

The patch is required.

Patch Notes | 165

ISSUE-3534 gagent does not shutdown the server, but the server is ter

minated by itself during the cluster failover process.

Description

If gagent receives the non-viability result during the cluster failover process, then gagent used to shutdow

n the server by executing SHUTDOWN ABORT. However it has been changed so the server is terminated

by itself.

ISSUE-3534 glocator is changed to transfer the result only to gagent w

hich enquired while processing the cluster failover.

Description

glocator transfers the failover result not only to gagent which enquired but also to another gagent which

is a failover target, during the cluster failover process. However, in this case, gagent which is a failover tar

get also transfers a query to glocator to process the cluster failover. Therefore, glocator is changed to tra

nsfer the result only to gagent which enquired.

ISSUE-3314 When registerOutParameter() and set..() which are the me

thod of CallableStatement in JDBC are used in the same parameter, th

en the normal value can not be get.

Description

A bind type is set to INPUT OUTPUT by using registerOutParameter() method and set...() method to get t

he out parameter value by calling the procedure whose bind type is not clear by using CallableStatement.

Then, it does not return the normal value when calling get...() method to get the result value of the out p

arameter.

Symptom

Create a table and a procedure as follows.

CREATE TABLE PROC_TABLE (I1 INTEGER);

INSERT INTO PROC_TABLE VALUES (1);

INSERT INTO PROC_TABLE VALUES (2);

INSERT INTO PROC_TABLE VALUES (3);

INSERT INTO PROC_TABLE VALUES (4);

INSERT INTO PROC_TABLE VALUES (5);

166 | What's New

INSERT INTO PROC_TABLE VALUES (6);

COMMIT;

CREATE OR REPLACE PROCEDURE PROC_TEST_1(A1 INTEGER, A2 OUT INTEGER)

IS

BEGIN

SELECT COUNT(*)

INTO A2

FROM PROC_TABLE

WHERE I1 >= A1;

END;

/

The following is a result of calling the procedure PROC_TEST_1 in gsql. The result value is stored in the ou

t value of the second parameter.

gSQL> var v1 integer

gSQL> var v2 integer

gSQL> exec :v1 := 1

gSQL> call proc_test_1 (:v1,:v2);

Procedure Call complete.

gSQL> print

NAME VALUE

------------------ -----

VAR_ELAPSED_TIME__ null

V1 1

V2 6

gSQL>

The following is a part of the program code, calling procedure PROC_TEST_1.

CallableStatement sCstmt = aCon.prepareCall("CALL PROC_TEST_1(?, ?)");

sCstmt.setInt(1, 1);

sCstmt.setInt(2, 1);

sCstmt.registerOutParameter(1, Types.INTEGER);

sCstmt.registerOutParameter(2, Types.INTEGER);

sCstmt.execute();

System.out.println("OUTPUT: " + sCstmt.getInt(1) + ", " + sCstmt.getInt(2));

sCstmt.close();

When executing the program, then the out parameter value is stored in the first parameter as follows inst

ead of the second parameter.

Patch Notes | 167

OUTPUT: 6, 0

Workaround

Make sure the input, output types as follows, and avoid using set method neither registerOutParameter

method above, then the normal result is output.

CallableStatement sCstmt = aCon.prepareCall("CALL PROC_TEST_1(?, ?)");

sCstmt.setInt(1, 1);

sCstmt.registerOutParameter(2, Types.INTEGER);

sCstmt.execute();

System.out.println("OUTPUT: " + sCstmt.getInt(1) + ", " + sCstmt.getInt(2));

sCstmt.close();

OUTPUT: 1, 6

ISSUE-3302 An error occurs when executing getBytes() method which i

s the method of CallableStatement in JDBC.

Description

When the out parameter type in CallableStatement is either BINARY, VARBINARY or LONG VARBINARY, t

hen using getBytes() method causes an error.

Symptom

The following is an example of registering the out parameter as Types.BINARY in CallableStatement.

CallableStatement sCStmt = aCon.prepareCall("BEGIN ? := x'aaff'; END; ");

sCStmt.registerOutParameter(1, java.sql.Types.BINARY);

sCStmt.executeUpdate();

byte[] sValue = sCStmt.getBytes(1);

When executing the program containing the codes above, then an error occurs.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1

at indep.jdbc.dt.RowCache.readBytes(RowCache.java:637)

at indep.jdbc.dt.Column.getBytes(Column.java:589)

at indep.jdbc.core.JdbcCallableStatement.getBytes(JdbcCallableStatement.java:316)

168 | What's New

Workaround

The patch is required.

gloader command argument --group-id has been added.

Description

--group-id argument uploads the data in the sharded table by group in the cluster environment.

gloader command argument --directio-size has been added.

Description

--directio-size argument is used to modify the direct IO size.

3.2.10 Patch Note

ISSUE-3253 When recovering the offline tablespace during the service,

then it does not recover the log written on the log buffer.

Description

When switching the offline tablespace in GOLDILOCKS to online, it may requires the recovery or may not.

The recovery is required when IMMEDIATE option is used in the offline statement, or when that tablespac

e was shifted to offline due to an error occurred in the data file during the operation. In this case, the log

about that tablespace may remain in the buffer, but the recovery is performed only with the logs written

on the log file, so the system can be abnormally terminated or the database becomes inconsistent.

Symptom

It creates the table T1 in the tablespace created by a user, then deletes the datafile and creates the check

point while the transaction TX1 updates T1. If the datafile does not exists while performing the checkpoi

nt, then it shifts that tablespace to offline, then rolls back the transaction TX1. Moreover, if recovering th

e offline tablespace and shifting to online when the log in the log buffer is not written on the disk yet, th

en the it is abnormally terminated.

Workaround

The patch is required.

Patch Notes | 169

ISSUE-3222 When GOLDILOCKS system process in the cluster environ

ment hangs up, then the entire system stops.

Description

If the GOLDILOCKS system process of the remote cluster member hangs up, so it can not transfer the res

pond when waiting for the response after transferring the protocol to the remote cluster member in the c

luster environment, then not only the session waiting for the response but also the entire system stops. It

happens because the query timeout or the session status is not checked for the protocol which should rec

eive the respond within GOLDILOCKS. This error has been fixed by terminating the session which does no

t responds within the specified time or by making the remote cluster member which does not responds t

o be failover then proceeding the service.

When using the policy terminating the session, it waits for the time (seconds) specified in CLUSTER_PROT

OCOL_SESSION_FATAL_POLICY_TIMEOUT, then terminates the session. However, when using the failove

r policy, it waits for the time (seconds) specified in CLUSTER_PROTOCOL_FAILOVER_POLICY_TIMEOUT, t

hen it makes the remote cluster member which does not responds to be failover.

Symptom

When committing in the session connected to G1N1 after making the commit server of G1N2 member in

an 1 by 2 cluster which consists of G1N1, G1N2 to hang up, then the session can not receive the respons

e so stops.

When performing ALTER SYSTEM SWITCH LOGFILE in the session connected to G1N1 after making the g

master of G1N2 member to hangup, then the session can not receive the response and stops.

Workaround

The patch is required.

ISSUE-3175 gpec can not process the annotation in #define statement.

Description

If an annotation exists in #define statements, then gpec can not process it.

Symptom

The macro AA in the following gc file should be same, which is 1. However, gpec can not process the an

notation in the macro, so it is processed wrong. If gpec processes the following gc file, then the warning

message is output.

170 | What's New

#define AA 1 /* comment */

#define AA 1

ERR-42000(41028): 'AA' macro is already defined at line 3, in file test.gc

Workaround

The patch is required.

ISSUE-3175 gpec can not process define statement normally in #if, #els

e.

Description

If #define is used between #if and #endif or between #else and #endif, the gpec can not normally proces

s it.

Symptom

If #define which belongs to the false condition exists between #if and #endif or between #else and #endi

f, the gpec should not process it, but it actually processes it.

gpec should not process #define AA 2 which is the false condition in the following gc file, but actually gp

ec does not ignore it instead processes it so that an error occurs.

#if 1

#define AA 1

#else

#define AA 2

#endif

ERR-42000(41028): 'AA' macro is already defined at line 4, in file test.gc

Workaround

The patch is required.

Patch Notes | 171

ISSUE-3175 The number #define statements which are processed by g

pec is fixed.

Description

The number of #define statements managed by gpec is fixed into 256, and if it exceeds 256, then an erro

r occurs.

Symptom

If the number of each different #define statements in the gc file exceed 256, then the following error occ

urs.

ERR-42000(41000): syntax error at line 258, in file test.gc

ERR-42000(41027): too many 'define' macro (256)

Workaround

The patch is required.

ISSUE-3175 gpec can not process the empty bracket annotation norma

lly.

Description

If the bracket annotation containing any contents comes next to the empty bracket annotation such as /*

*/ , then gpec can not parsing it normally.

Symptom

An empty bracket annotation and an ordinary bracket annotation are used together in the following gc fil

e.

/**/

EXEC SQL BEGIN DECLARE SECTION;

int value;

EXEC SQL END DECLARE SECTION;

/* comment */

EXEC SQL SELECT 1 INTO :value FROM DUAL;

If gpec parses this gc file, then the following error occurs during the progress.

172 | What's New

ERR-42000(41000): syntax error at line 8, in file a.gc:

SELECT 1 INTO :value FROM DUAL;

^ ^

Error at line 1

ERR-42000(41002): Host variable "value" not declared

ERR-42000(41006): Fatal error while doing embedded SQL precompiling

Workaround

Do not use an empty bracket annotation.

ISSUE-3243 When glsnr receives the wrong protocol it is terminated.

Description

When glsnr receives the wrong protocol, then it is terminated, and this error has been fixed. After the mo

dification glsnr is not terminated though the following log message is output.

2020-01-15 17:57:51.835036 THREAD(27742,139777341413120)]

[LISTENER] Invalid communication protocol : 192.168.0.123

Symptom

When glsnr receives the wrong protocol, glsnr outputs the following log message then is terminated.

[2020-01-15 11:14:28.738666 THREAD(5706,140285308184384)]

[LISTENER] abnormally terminated

ERR-08S01(24001): Invalid communication protocol

Workaround

The patch is required.

ISSUE-3174 LOCALITY_GROUP_POLICY, LOCALITY_GROUP_PATH, LO

CALITY_MEMBER_POLICY, LOCALITY_MEMBER_PATH have been add

ed to ODBC properties.

Description

The followings have been added to ODBC properties.

● LOCALITY_GROUP_POLICY

Patch Notes | 173

● LOCALITY_GROUP_PATH

● LOCALITY_MEMBER_POLICY

● LOCALITY_MEMBER_PATH

ISSUE-3220 When multiple subquery conditions exists for more than th

ree joins, some subquery conditions are omitted

Description

If two or more subquery conditions exist when joining three more more tables, then the location in which

the subquery conditions are processes is determined. (push-down subquery filter)

In this case, if the first subquery condition is placed at the lowest table, and the second subquery conditio

n is placed at the upper join, then the first subquery condition is omitted.

Symptom

Create the table and the data as follows.

CREATE TABLE r (r_c1 INTEGER,

r_c2 INTEGER);

COMMIT;

CREATE TABLE s (s_c1 INTEGER,

s_c2 INTEGER);

COMMIT;

CREATE TABLE t (t_c1 INTEGER,

t_c2 INTEGER);

COMMIT;

CREATE TABLE u (u_c1 INTEGER,

u_c2 INTEGER);

COMMIT;

CREATE TABLE v (v_c1 INTEGER,

v_c2 INTEGER);

COMMIT;

INSERT INTO r VALUES (1, 1);

INSERT INTO s VALUES (1, 1);

INSERT INTO t VALUES (1, 1);

INSERT INTO u VALUES (1, 1);

INSERT INTO v VALUES (1, 1);

COMMIT;

If EXISTS condition exists like as the following query, then the result satisfying the condition does not exis

174 | What's New

t.

SELECT

*

FROM r,

s,

t

WHERE r_c1 = s_c1

AND s_c1 = t_c1

AND EXISTS (

SELECT u_c1

FROM u

GROUP BY u_c1

HAVING u_c1 < 0

)

;

no rows selected.

However, if AND NOT EXISTS subquery condition is inserted to the query above as follows, then the wron

g query result is created.

--# wrong result

SELECT

*

FROM r,

s,

t

WHERE r_c1 = s_c1

AND s_c1 = t_c1

AND EXISTS (

SELECT u_c1

FROM u

GROUP BY u_c1

HAVING u_c1 < 0

)

AND NOT EXISTS (SELECT *

FROM v

WHERE v_c1 = r_c1 + s_c1)

;

R_C1 R_C2 S_C1 S_C2 T_C1 T_C2

---- ---- ---- ---- ---- ----

Patch Notes | 175

1 1 1 1 1 1

1 row selected.

Workaround

Insert NO_PUSH_SUBQ hint to NOT EXISTS subquery as follows, then the correct result is obtained.

SELECT

*

FROM r,

s,

t

WHERE r_c1 = s_c1

AND s_c1 = t_c1

AND EXISTS (

SELECT u_c1

FROM u

GROUP BY u_c1

HAVING u_c1 < 0

)

AND NOT EXISTS (SELECT /*+ NO_PUSH_SUBQ */ *

FROM v

WHERE v_c1 = r_c1 + s_c1)

;

no rows selected.

ISSUE-3199 It can not be processed normally when obtaining GroupId i

n array in EmbeddedSQL.

Description

The program is abnormally terminated when obtaining GroupId in array then executing the cached SQL s

tatement again.

Symptom

EXEC SQL BEGIN DECLARE SECTION;

int sGroupId[5];

int sValue[5];

EXEC SQL END DECLARE SECTION;

int i;

176 | What's New

for(i = 0; i < 5; i++) {

sValue[i] = i;

}

EXEC SQL GET GROUPID INTO: sGroupId

INSERT INTO TEST_T1 VALUES(:sValue);

EXEC SQL

INSERT INTO TEST_T1 VALUES(:sValue);

The program is abnormally terminated if performing the cached INSERT INTO TEST_T1 VALUES(:sValue)

statement again.

Workaround

Do not use an array, otherwise alter the host variable not to use the cached SQL statement.

ISSUE-3197 gpec can not process < ... > string normally.

Description

If < > exists on the same line, then gpec can not parsing it normally.

Symptom

for(i = 0; i < 5; i++) { // > COMMENT

sValue[i] = i;

}

It can not process < 5; i++) { // > string normally, so an error occurs when performing gpec.

Workaround

Write the gc file by relocating the bracket or the comment as follows.

for(i = 0; i < 5; i++) // > COMMENT

{

sValue[i] = i;

}

for(i = 0; i < 5; i++) {

// > COMMENT

sValue[i] = i;

}

Patch Notes | 177

3.2.9 Patch Note

ISSUE-3188 set heading has been added in gsql.

Description

It can be set whether to output the header in the query result by using set heading {on|off}.

3.2.8 Patch Note

ISSUE-3175 gpec can not process a non-ascii character.

Description

When gpec processes the preprocessor whose #if, #ifdef, #elif and #else are false groups, the contents in

the group are converted into whitespaces. However, a non-ascii character in the false group is not conver

ted into a whitespace.

Symptom

#if 0

EXEC SQL INSERT INTO TEST_T1 VALUES(:sC1, :sC2); -- 주석

#endif

When gpec processes the example above, then all contents should be converted into whitespaces, but a

non-ascii character remains the same.

주석

Workaround

Process a non-ascii character in a form of c annotation.

ISSUE-2958 The group ID of the SQL statement can be obtained in the

embedded SQL.

178 | What's New

Description

It obtains the the group ID of the delete/ insert/ select/ update statement in the table in which the shard

key is set, in the cluster environment which uses the global connection. For more information, refer to E

XEC SQL GET GROUPID INTO.

ISSUE-3186 When two nodes are abnormally terminated at a time, the

n a hang may occur during the failover.

Description

When a domain coordinator node and a global coordinator node are abnormally terminated at a time, th

en a hang may occur during the failover, and this error has been fixed.

Symptom

A hang may occur during the failover, then the online transaction service of the groups to which the abn

ormally terminated nodes belong may stop operating.

Workaround

The patch is required.

3.2.7 Patch Note

ISSUE-3093 An error occurs while gpec parses the preprocessor #defin

e.

Description

An error occurs when C reserved word comes to the alternative string of the preprocessor #define.

Symptom

#define SQLCA_STORAGE_CLASS extern

A parsing error occurs when executing gpec.

$ gpec test.gc

FileName: test.gc

Pre-compile test.gc -> test.c

Patch Notes | 179

ERR-42000(41000): syntax error at line 1, in file test.gc:

#define SQLCA_STORAGE_CLASS extern

............................^

Error at line 1, in file test.gc

Workaround

Define the keyword in an ordinary header file which does not execute gpec.

3.2.6 Patch Note

ISSUE-3149 gpec can not parse the file normally which uses a structure

array in SELECT INTO statement.

Description

gpec can not process the gc file normally which uses a structure array as a host variable in SELECT INTO st

atement.

Symptom

EXEC SQL BEGIN DECLARE SECTION;

typedef struct AA

{

char c1[10+1];

char c2[10+1];

char c3[10+1];

char c4[10+1];

} AA;

AA sArr[10];

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT c1,c2,c3, c4

INTO :sArr FROM EMP;

STL_TRY(sqlca.sqlcode == 0);

SELECT INTO statement in the example above is altered to the following incorrect statement.

sqlargs.sqlstmt = (char *)"SELECT c1,c2,c3,c4\n"

" INTO :sArr ?, ?FROM EMP\n"

180 | What's New

Workaround

The patch is required.

ISSUE-3145 SSA is increasing due to allocating the new memory even t

hough the available memory exists in the session.

Description

The memories used after the session is started can be reused, and it is managed into multiple levels accor

ding to its size for an efficient memory allocation for the memory fragment. However, the new memory c

hunk is allocated when reallocating the released memory instead of the memory which is available to be r

eallocated to minimize the fragment, then it continuously increases SSA, and this error has been fixed.

Symptom

When viewing V$SYSTEM_MEM_STAT while retrieving the table which includes LONG VARBINARY type,

it can be viewed that VARIABLE_STATIC_ALLOC_SIZE is continuously increasing.

gSQL> SELECT STAT_NAME, ROUND(STAT_VALUE/1024/1024) FROM V$SYSTEM_MEM_STAT WHERE STAT_NAME =

'VARIABLE_STATIC_ALLOC_SIZE';

STAT_NAME ROUND(STAT_VALUE/1024/1024)

-------------------------- ---------------------------

VARIABLE_STATIC_ALLOC_SIZE 1800.25

1 row selected.

gSQL> SELECT STAT_NAME, ROUND(STAT_VALUE/1024/1024) FROM V$SYSTEM_MEM_STAT WHERE STAT_NAME =

'VARIABLE_STATIC_ALLOC_SIZE';

STAT_NAME ROUND(STAT_VALUE/1024/1024)

-------------------------- ---------------------------

VARIABLE_STATIC_ALLOC_SIZE 3663.41

1 row selected.

Workaround

The patch is required.

Patch Notes | 181

ISSUE-3144 gloader can not import the data normally when the first ch

aracter of the field delimiter and that of the line terminator are the sa

me.

Description

If the first character of the field delimiter and that of the line terminator are the same, then the data may

be missing or gloader process may be abnormally terminated.

Symptom

>$ cat test.dat

1234^C2^C3456^S

>$ gloader test test -i --tablename TEST --fieldterm ^C --lineterm ^R\n --data test.dat

gSQL> SELECT * FROM TEST

I1 I2 I3

---- -- -------

1234 C2 3456S

1 row selected.

The first character of the field delimiter and that of the line terminator are the same, which is ^. The corre

ct result value of the column I3 when gloader imported the data is supposed to be 3456^S, but the actua

l value is an incorrect value in which ^ is missing.

Workaround

Use different characters for the first character of the field delimiter and that of the line terminator each ot

her.

3.2.5 Patch Note

ISSUE-3093 gpec can process #define and #undef only when they wer

e declared in the declare section. Also, it does not alter the statement

about the false value of if group such as #ifdef into a white space.

Description

gpec processed #define and #undef which were declared in the declare section, so it can not process the

macro in the if group such as #if, #ifdef. Also it does not alter the c code of the if group which correspon

182 | What's New

ds to the false value into a white space, so preprocessor is not available in the middle of the c code or the

SQL statement.

Symptom

If preprocessors #define and #undef are not declared in the declare section, then gpec can not recognize

the corresponding macro because it could not process #define and #undef. A user should repeatedly writ

e the same contents because it can not use SQL the preprocessor corresponding to the if group in the mi

ddle of SQL.

#define _DEV_

EXEC SQL BEGIN DECLARE SECTION;

char

#ifdef _DEV_ 1

sTrue[10]; 2

#else

sFalse[10];

#endif

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT 3

#ifdef _DEV_

"true" INTO :sTrue

#else

"false" INTO :sFalse

#endif

FROM DUAL;

Note

1 It is false because _DEV_ is declared outside of the declare section.

2 The preprocessor is not processed as a white space, so gpec processes it as a parsing error.

3 An error occurs during parsing the SQL statement.

Workaround

Declare the preprocessors #define and #undef in the declare section, and do not use preprocessors in the

middle of the c code and the SQL statement.

Patch Notes | 183

ISSUE-3075 An error occurs because the data type is changed when re

peatedly executingPreparedStatement.setCharactertStream(int, Reade

r, int) method and PreparedStatement.addBatch() method in JDBC

Description

The data type was determined by using the parameter length when executing PreparedStatement class m

ethod of JDBC such as setAsciiStream(), setBinaryStream(), setCharacterStream() methods, and it has bee

n changed to use only the long data type.

Symptom

When calling addBatch() method after setting the data of the length which was allowed for the VARCHA

R type by setCharacterStream() method, and trying to set the data which exceeds the length which was

allowed for the VARCHAR by setCharacterStream() method, then the data type is changed from VARCHA

R to LONG VARCHAR, which is an error.

gSQL> create table t1 (i1 long varchar);

Table created.

sPstmt.setCharacterStream(1, new StringReader(DATA), DATA.length());

sPstmt.addBatch();

sPstmt.setCharacterStream(2, new StringReader(BIG_DATA), BIG_DATA.length());

sPstmt.addBatch();

Caused by: java.sql.SQLException: Parameter type[LONG VARCHAR] is mismatch with previous

type[VARCHAR] during batch

Workaround

set Ascii/ Binary/ Character Stream() methods of PrepraredStatement class have two methods, which are

the method with the parameter length and the method without the parameter length. Use the method

without the parameter length among them.

ISSUE-3056 Characters which returns TRUE/ FALSE when performing R

esultSet.getBoolean() in JDBC have been diversified.

Description

Previously, only "true", "false" character strings could be converted into boolean type when ResultSet.get

Boolean() in JDBC, but "t", "f", "y", "n", "yes", "no", "on", "off", "1" and "0" characters can also be convert

184 | What's New

ed into boolean type now.

Symptom

When reading "0" and "1" with ResultSet.getBoolean(), then an error occurs.

gSQL> create table t1 (i1 varchar(10));

Table created.

gSQL> insert into t1 values ('1');

1 row created.

gSQL> commit;

Commit complete.

ResultSet rs = stmt.executeQuery("select * from t1");

while(rs.next())

{

System.out.println(rs.getBoolean(1));

}

Exception in thread "main" java.sql.SQLException: The value[1] is out of range of [boolean]

type

Workaround

The patch is required.

ISSUE-3055 Transferring an invalid character when connecting server a

nd client whose character sets are different each other

Description

It transfers an invalid character when connecting server and client whose character sets are different each

other, and this error has been fixed.

Symptom

The user "가" is created in Linux server.

gSQL> create user "가" identified by test;

User created.

gSQL> grant create session to "가";

Patch Notes | 185

Grant succeeded.

gSQL> commit;

Commit complete.

An error occurs when connecting from Windows client to Linux server.

D:\goldilocks_home\bin>gsqlnet.exe "가" test

ERR-28000(16004): invalid username/password; logon denied

It is operated normally when connecting from Linux client to Linux server.

% gsqlnet "가" test

gSQL>

Workaround

Either set character sets in the server and that in the client same, or include only ASCII in a string which is

used for the connection.

ISSUE-2359 cluster peer without a parent session

Description

A cluster peer without a parent session exists in a remote node, and this error has been fixed.

Symptom

When an error occurs while altering password when a parent session tries to login, then a cluster peer wi

thout a parent session may exist in a remote node

A cluster peer session may be created in a remote node while altering password, and if it fails to alter the

password then the parent session is terminated without terminating the cluster peer session.

Workaround

The patch is required.

3.2.4 Patch Note

186 | What's New

ISSUE-3026 Altering the location of AT statement when performing \d

dl_tablespace in gsql

Description

AT statement is located in a wrong position when performing \ddl_tablespace in gsql, and this error has

been fixed.

Symptom

An error occurs when perfroming SQL statement which is created with \ddl_tablespace.

gSQL> create tablespace test_tbs datafile 'test.dbf' size 10m;

Tablespace created.

gSQL> \ddl_tablespace test_tbs

SET SESSION AUTHORIZATION "SYS";

CREATE MEMORY DATA TABLESPACE "TEST_TBS"

DATAFILE

'/home/sunje/goldilocks_data/db/test.dbf'

AT "G2N1"

SIZE 10485760 REUSE

,

'/home/sunje/goldilocks_data/db/test.dbf'

AT "G2N2"

SIZE 10485760 REUSE

ONLINE

LOGGING

EXTSIZE 262144

;

COMMIT;

gSQL> CREATE MEMORY DATA TABLESPACE "TEST_TBS"

DATAFILE

'/home/sunje/goldilocks_data/db/test.dbf'

AT "G2N1"

SIZE 10485760 REUSE

,

'/home/sunje/goldilocks_data/db/test.dbf'

AT "G2N2"

SIZE 10485760 REUSE

ONLINE

Patch Notes | 187

LOGGING

EXTSIZE 262144;

ERR-42000(40000): syntax error:

AT "G2N1"

^^

Error at line 4

Workaround

Alter the location of AT statement in SQL which is created with \ddl_tablespace.

gSQL> CREATE MEMORY DATA TABLESPACE "TEST_TBS"

DATAFILE

'/home/sunje/goldilocks_data/db/test.dbf'

SIZE 10485760 REUSE

AT "G2N1"

,

'/home/sunje/goldilocks_data/db/test.dbf'

SIZE 10485760 REUSE

AT "G2N2"

ONLINE LOGGING

EXTSIZE 262144;

Tablespace created.

ISSUE-3023 BEGIN BACKUP AT DOMAIN error

Description

It is not normally operated when using AT DOMAIN clause to backup only within a specific group or a me

mber, and this error has been fixed.

Symptom

BEGIN BACKUP fails even when the member G1N2 is being operated with ARCHIVELOG as follows.

gSQL> SELECT ARCHIVELOG_MODE FROM V$ARCHIVELOG;

ARCHIVELOG_MODE

ARCHIVELOG

1 row selected.

gSQL> ALTER DATABASE BEGIN BACKUP AT G1N2;

ERR-HY000(16247): MEMBER(G1N1): cannot BACKUP; noarchivelog mode

188 | What's New

Workaround

Perform BACKUP BEGIN/ END without using AT DOMAIN.

3.2.3 Patch Note

ISSUE-3006 A transaction is created when performing EXPLAIN PLAN

ONLY

Description

A transaction is created when performing EXPLAIN PLAN ONLY, and this error has been fixed.

Symptom

gSQL> select * from x$transaction;

no rows selected.

gSQL> \explain plan only update t2 set c2 = 1 where c1 = 10;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | UPDATE STATEMENT |

|

| 1 | UPDATE ("T2") |

0 |

| 2 | INDEX ACCESS ("T2", "T2_PRIMARY_KEY_INDEX") [CLONED] |

0 |

==

====

0 - SQL : UPDATE "PUBLIC"."T2"@LOCAL "_A1" SET("C2")=(:_V0) WHERE "_A1"."C1" = :_V1

2 - READ INDEX COLUMNS : C1

MIN RANGE : C1 = 10

MAX RANGE : C1 = 10

<<< end print plan

gSQL> select * from x$transaction;

Patch Notes | 189

PHYSICAL_TRANS_ID LOGICAL_TRANS_ID DRIVER_MEMBER_POS DRIVER_MEMBER_ID DRIVER_TRANS_ID SLOT_ID

STATE IS_XA INDOUBT_TRANS_BEHAVIOR ATTRIBUTE ISOLATION_LEVEL VIEW_SCN COMMIT_SCN

PREV_COMMIT_SCN TCN BEGIN_LSN USED_UNDO_PAGE_COUNT UNDO_SEGMENT_ID SEQ BEGIN_TIME

PROPAGATE_LOG REPREPARABLE GRID_SEQ WEIGHT

----------------- ---------------- ----------------- ---------------- --------------- -------

------ ----- ---------------------- --------- --------------- -------- ----------

--------------- --- --------- -------------------- --------------- ---

-------------------------- ------------- ------------ -------- ------

-65480 458808 0 1 458808 56

ACTIVE FALSE 0 READ_ONLY READ COMMITTED 502.1.77 -1.-1.-1 502.0.77

1 -1 0 4294901760 7 2019-07-02 17:40:13.659857 TRUE

TRUE 7 HIGH

1 row selected.

gSQL> commit;

Commit complete.

gSQL> select * from x$transaction;

no rows selected.

Workaround

The patch is required.

3.2.2 Patch Note

ISSUE-2947 The previous version data of a remote group which was ex

ecuted in the same session is retrieved in cluster environment.

Description

If selecting after executing a domain transaction which is updatable only in a specific remote group of a s

ession, then the previous version data is retrieved, and this error has been fixed.

Symptom

Add a record to a shard in G1 after creating a sharded table in cluster groups G1, G2 as follows.

gSQL> CREATE TABLE T1 (C1 NUMBER) SHARDING BY RANGE (C1)

SHARD S1 VALUES LESS THAN (1000) AT CLUSTER GROUP G1,

SHARD S2 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP G2;

Table created.

190 | What's New

gSQL> ALTER TABLE T1 ADD PRIMARY KEY (C1);

Table altered.

gSQL> INSERT INTO T1 VALUES (1);

1 row created.

gSQL> COMMIT;

Commit complete.

Delete a record (transaction T1) of group G1 in a session (session 1) connected to a member of group G2,

then execute a global transaction (transaction T2) in another session (session 2) and commit. When com

mitting T1 and retrieving the record of G1, while T2 is completed in group G1 and is not completed in G

2, then the deleted recorded is retrieved.

gSQL> DELETE FROM T1 WHERE C1 = 1; // T1 -- session 1

1 row deleted.

gSQL> CREATE TABLE T2 (I1 INTEGER); // T2 -- session 2

Table created.

gSQL> COMMIT; // -- session 2

Commit complete.

gSQL> COMMIT; // -- session 1

Commit complete.

gSQL> SELECT * FROM T1 WHERE C1 = 1; // -- session 1

C1

--

1

1 row selected.

Workaround

When selecting after executing a domain transaction in the same session, execute it by replace SELECT st

atement with SELECT FOR UPDATE.

ISSUE-2965 Data is missing when BigDecimal types is used as a parame

ter in JDBC

Description

It the value exceeding the double type precision is used as a parameter in BigDecimal type, then the data i

s missing, and this error has been fixed.

Patch Notes | 191

Symptom

The data is missing without the user's intention.

gSQL> CREATE TABLE T1 (C1 NUMBER);

Table created.

PreparedStatement pstmt = con.prepareStatement("INSERT INTO T1 VALUES (?)");

pstmt.setBigDecimal(1, new BigDecimal("12345678901234567890.123456789"));

pstmt.executeUpdate();

gSQL> select * from t1;

C1

12345678901234600000

1 row selected.

Workaround

Process it with a string instead of the BigDecimal type.

pstmt.setString(1, "12345678901234567890.123456789");

gSQL> \set numsize 40

gSQL> select * from t1;

C1

12345678901234567890.123456789

1 row selected.

ISSUE-2955 gsqlnet can not consecutively execute cstartup or cshutdo

wn in cluster environment.

Description

gsqlnet builds the connecting information of a location file and glocator through ODBC.

This information is built when executing cstartup or cshutdown for the first time.

When executing cstartup or cshutdown for the second time, then it ignores the information construction

process. However, the flag configuration is wrong, so an error occurs.

192 | What's New

Symptom

An error occurs when gsqlnet process executes cstartup or cshutdown, then executes it again.

Workaround

Restart gsqlnet session and execute cstartup or cshutdown.

ISSUE-2943 agable scn does not increase when a query timeout occurs

in cluster environment.

Description

When processing DML in async in a cluster environment, it sets the view scn information of remote mem

bers in a session. In this case, if an exception such as query timeout occurs when there is not anyremote

member to whom DML is successfully transferred, then the view scn information of remotemembers set i

n the session can not be initialized, and which is a bug. Therefore, the agable scn of the system does not i

ncrease while the session is connected even though the statement in progress does not exist in a system.

Therefore, it is fixed to initialize the view scn information of remote members when an exception occurs

while processing an async to prevent an error.

Symptom

agable scn stops after a query timeout occurs in cluster environment, so the undo, data segments becom

e insufficient.

Workaround

Terminate the session in which a query timeout occurred.

ISSUE-2927 Deadlock Due to the Lack of Transaction Slot

Description

A hang may occur due to the lack of transaction slots when all server processes allocate transaction slots

and the transactions do not release slots. It is fixed to make an error on the corresponding patch when th

e specified time passed.

Symptom

A hang may occur due to the lack of transaction slots when multiple transactions simultaneously occur in

multiple sessions.

Patch Notes | 193

Workaround

The patch is required.

ISSUE-2922 Adding SQL_ATTR_FETCH_FAILOVER to statement attribut

e in ODBC

Description

SQL_ATTR_FETCH_FAILOVER has been added to statement attribute in ODBC, and the following values c

an be set.

● SQL_FETCH_FAILOVER_OFF

● SQL_FETCH_FAILOVER_ON

SQLSetStmtAttr(stmt,

SQL_ATTR_FETCH_FAILOVER,

(SQLPOINTER)SQL_FETCH_FAILOVER_ON,

0)

Symptom

There is not any symptom.

Workaround

The patch is required.

ISSUE-2513 EXEC SQL AT :sConn DISCONNECT can not detect VARCH

AR type

Description

gpec detects VARCHAR type as char type in EXEC SQL AT clause.

Symptom

When using VARCHAR type variable in EXEC SQL AT clause, gpec does not process it as VARCHAR type b

ut processes it as char type.

● Example gc file

194 | What's New

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sAT[20];

EXEC SQL END DECLARE SECTION;

EXEC SQL AT :sAT DISCONNECT;

● Example c file generated by gpec

sqlargs.conn = (char *)sAT;

sqlargs.sql_ca = &sqlca;

sqlargs.sql_state = SQLSTATE;

sqlargs.sqltype = 35;

sqlargs.sqlfn = (char *)__FILE__;

sqlargs.sqlln = __LINE__;

sqlargs.sqlstmt = NULL;

sqlargs.atomic = 0;

sqlargs.unsafenull = 0;

sqlargs.iters = 0;

DBESQL_Disconnect(NULL, &sqlargs, NULL, 0);

It processes VARCHAR type as char * type, so an error occurs when compiling a c file created by gpec.

Workaround

Use char type instead of VARCHAR type.

ISSUE-2349 When gpec processes a preprocessor, __LINE__ macro indi

ates the wrong line.

Description

When gpec processes a preprocessor such as #if, __LINE__ macro indicates the wrong line.

Symptom

When gpec processes a preprocessor such as #if, #ifdef, #ifndef, #else, #elif, a comment has been added

so it leads to a wrong value unlike the intended __LINE__ macro value.

● Example gc file

#if 0

printf("[%s:%d] if\n", __FILE__, __LINE__);

#else

Patch Notes | 195

printf("[%s:%d] else\n", __FILE__, __LINE__);

#endif

printf("[%s:%d] endif\n", __FILE__, __LINE__);

The following is a result of which gpec processes the code.

● Example c file generated by gpec

#if 0

/*Macro condition FALSE*/

printf("[%s:%d] if\n", __FILE__, __LINE__);

#else

/*Macro condition TRUE*/

printf("[%s:%d] else\n", __FILE__, __LINE__);

#endif

printf("[%s:%d] endif\n", __FILE__, __LINE__);

If gpec executes the created c file, then unexpected line is output.

$./pp_bug

[pp_bug.gc:9] else

[pp_bug.gc:11] endif

The following is a normal __LINE__ macro value.

$./pp_bug

[pp_bug.gc:7] else

[pp_bug.gc:9] endif

Workaround

The patch is required.

3.2.1 Patch Note

ISSUE-2902 Deadlock When Referring to the Global Sequence Value in

Cluster Environment

196 | What's New

Description

A deadlock occurs while acquiring the global sequence latch for the entire cluster member to get the nex

t value because the cashed value in local members were run out when referring to the global sequence v

alue in cluster environment.

Symptom

A hang occurs due to a deadlock when repeatedly performing a statement of which multiple sessions sim

ultaneously refers to the global sequence.

Workaround

The patch is required.

Administration Manual

Part II.

197

198 | Administration Manual

5. Basic Management of GOLDILOCKS Database

5.1 Creating and Configuring GOLDILOCKS Database

Creating Database

Specifying Initial Property

Managing Initial Property Using GOLDILOCKS Configuration File

5.2 Starting up and Shutting down GOLDILOCKS Instance

Starting up Instance

Shutting down Instance

5.3 Managing Process

Master Process

Listener Process

5.4 Managing Memory

GOLDILOCKS Memory Architecture

Managing SSA

Managing PSA

5.5 Monitoring

Monitoring with Trace File

Monitoring Performance Using View

6. Structure and Storage Structure of GOLDILOCKS Database

6.1 Managing Control File

Control File Contents

Multiplexing Control File

Restoring Corrupted Control File

Control File Information

6.2 Managing Redo Log File

Redo Log File Structure

Redo Log Group and Its Member

Restoring Corrupted Redo Log File

Redo Log File Information

6.3 Managing Archive Redo Log File

Creating Archive Redo Log File

Maintaining and Dropping Archive Redo Log File

Multiplexing Archive Redo Log File Directory

6.4 Managing Tablespace

Tablespace Type

Managing Tablespace and Data File

6.5 Managing Data File

Data File Matching

Data File Information

. 219

.	 220

.	 220

.	 221

.	 221

.	 223

.	 223

.	 228

.	 231

.	 231

.	 236

.	 237

.	 237

.	 237

.	 238

.	 239

.	 239

.	 251

. 253

.	 254

.	 254

.	 256

.	 256

.	 257

.	 258

.	 258

.	 259

.	 260

.	 261

.	 262

.	 262

.	 262

.	 263

.	 264

.	 264

.	 264

.	 270

.	 270

.	 271

| 199

7. Backup and Recovery of GOLDILOCKS Database

7.1 ARCHIVELOG Mode

ACHIVELOG Mode

NOARCHIVELOG Mode

7.2 Backup and Recovery

Backup

Recovery

8. GOLDILOCKS Database Replication

8.1 Overview

8.2 Operating Method

CYCLONE

LOGMIRROR

8.3 Trace Log

Troubleshooting of CYCLONE

Troubleshooting of LOGMIRROR

9. Database Information

9.1 DICTIONARY_SCHEMA

Views of ALL_family

Views of DBA_family

Views of USER_family

Other Views

Aliased Synonym

9.2 INFORMATION_SCHEMA

COLUMNS

COLUMN_PRIVILEGES

CONSTRAINT_COLUMN_USAGE

CONSTRAINT_TABLE_USAGE

INFORMATION_SCHEMA_CATALOG_NAME

KEY_COLUMN_USAGE

PARAMETERS

REFERENTIAL_CONSTRAINTS

ROUTINES

ROUTINE_PRIVILEGES

ROUTINE_ROUTINE_USAGE

ROUTINE_SEQUENCE_USAGE

ROUTINE_TABLE_USAGE

SCHEMATA

SEQUENCES

. 273

.	 274

.	 274

.	 274

.	 276

.	 276

.	 280

. 295

.	 296

.	 297

.	 297

.	 302

.	 304

.	 304

.	 305

. 307

.	 308

.	 309

.	 372

.	 429

.	 488

.	 503

.	 504

.	 505

.	 508

.	 509

.	 510

.	 511

.	 512

.	 513

.	 516

.	 518

.	 522

.	 523

.	 524

.	 525

.	 526

.	 527

200 | Administration Manual

SQL_FEATURES

SQL_IMPLEMENTATION_INFO

SQL_PACKAGES

SQL_PARTS

SQL_SIZING

STATISTICS

TABLES

TABLE_CONSTRAINTS

TABLE_PRIVILEGES

USAGE_PRIVILEGES

VIEWS

VIEW_ROUTINE_USAGE

VIEW_TABLE_USAGE

9.3 PERFORMANCE_VIEW_SCHEMA

GV$ Global View

V$AGABLE_INFO

V$ARCHIVELOG

V$AUDITABLE_DB_PRIVILEGES

V$AUDITABLE_SYSTEM_ACTIONS

V$BACKUP

V$BALANCER

V$CLUSTER_DISPATCHER

V$CLUSTER_LOCATION

V$CLUSTER_MEMBER

V$COLUMNS

V$CONTROLFILE

V$DATAFILE

V$DB_FILE

V$DISPATCHER

V$ERROR_CODE

V$GLOBAL_TRANSACTION

V$INCREMENTAL_BACKUP

V$INSTANCE

V$JOURNALING

V$KEYWORDS

V$LATCH

V$LOGFILE

V$LOCK_WAIT

V$PROCESS_STAT

.	 528

.	 529

.	 530

.	 531

.	 532

.	 533

.	 534

.	 535

.	 536

.	 537

.	 538

.	 539

.	 540

.	 541

.	 543

.	 545

.	 546

.	 547

.	 548

.	 549

.	 550

.	 551

.	 552

.	 553

.	 554

.	 555

.	 556

.	 557

.	 558

.	 559

.	 560

.	 561

.	 562

.	 563

.	 564

.	 565

.	 566

.	 567

.	 568

| 201

V$PROCESS_MEM_STAT

V$PROCESS_SQL_STAT

V$PROPERTY

V$PSM_RESERVED_WORDS

V$QUEUE

V$RESERVED_WORDS

V$SESSION

V$SESSION_AUDIT

V$SESSION_CONNECT_INFO

V$SESSION_EVENT

V$SESSION_STAT

V$SESSION_MEM_STAT

V$SESSION_SQL_STAT

V$SESSION_WAIT

V$SHARED_MODE

V$SHARED_SERVER

V$SHM_SEGMENT

V$SPROPERTY

V$SQLFN_METADATA

V$SQL_CACHE

V$SQL_COMMAND

V$SQL_HISTORY

V$STATEMENT

V$SYSTEM_EVENT

V$SYSTEM_STAT

V$SYSTEM_MEM_STAT

V$SYSTEM_SQL_STAT

V$TABLES

V$TABLESPACE

V$TABLESPACE_STAT

V$TRANSACTION

V$WAIT_EVENT_CLASS_NAME

V$WAIT_EVENT_NAME

V$XA_TRANSACTION

10. Server Property

10.1 Server Property Information

10.2 AGING_INTERVAL

Basic Information

Description

.	 569

.	 570

.	 571

.	 572

.	 573

.	 574

.	 575

.	 576

.	 577

.	 578

.	 579

.	 580

.	 581

.	 582

.	 583

.	 584

.	 585

.	 586

.	 587

.	 588

.	 589

.	 590

.	 591

.	 592

.	 593

.	 594

.	 595

.	 596

.	 597

.	 598

.	 599

.	 600

.	 601

.	 602

. 603

.	 604

.	 605

.	 605

.	 605

202 | Administration Manual

10.3 AGING_PLAN_INTERVAL

Basic Information

Description

10.4 ARCHIVELOG_DIR_1 ~ ARCHIVELOG_DIR_10

Basic Information

Description

10.5 ARCHIVELOG_FILE

Basic Information

Description

10.6 ARCHIVELOG_MODE

Basic Information

Description

10.7 BACKUP_DIR_1 ~ BACKUP_DIR_10

Basic Information

Description

10.8 BLOCK_READ_COUNT

Basic Information

Description

10.9 BULK_IO_PAGE_COUNT

Basic Information

Description

10.10 CDISPATCHER_HOT_POLICY_INTERVAL

Basic Information

Description

10.11 CDISPATCHER_SOCKET_BUFFER_SIZE

Basic Information

Description

10.12 CDISPATCHER_SYNC_THREADS

Basic Information

Description

10.13 CDISPATCHER_THREADS

Basic Information

Description

10.14 CHARACTER_SET

Basic Information

Description

10.15 CHAR_LENGTH_UNITS

Basic Information

Description

.	 606

.	 606

.	 606

.	 607

.	 607

.	 607

.	 608

.	 608

.	 608

.	 609

.	 609

.	 609

.	 610

.	 610

.	 610

.	 611

.	 611

.	 611

.	 612

.	 612

.	 612

.	 613

.	 613

.	 613

.	 614

.	 614

.	 614

.	 615

.	 615

.	 615

.	 616

.	 616

.	 616

.	 617

.	 617

.	 617

.	 618

.	 618

.	 618

| 203

10.16 CHECK_DEDICATE_CONNECTION_INTERVAL

Basic Information

Description

10.17 CLIENT_MAX_COUNT

Basic Information

Description

10.18 CLIENT_NUMA_POLICY

Basic Information

Description

10.19 CLOSE_PSM_CHILD_STMTS

Basic Information

Description

10.20 CLUSTER_ASYNC_COMMIT

Basic Information

Description

10.21 CLUSTER_ASYNC_REPLICATION

Basic Information

Description

10.22 CLUSTER_CM_BUFFER_COUNT

Basic Information

Description

10.23 CLUSTER_CM_BUFFER_SIZE

Basic Information

Description

10.24 CLUSTER_CM_READ_BUFFER_SIZE

Basic Information

Description

10.25 CLUSTER_COMMIT_SLAVES

Basic Information

Description

10.26 CLUSTER_COMMIT_STREAM_ISOLATION

Basic Information

Description

10.27 CLUSTER_CONNECTION

Basic Information

Description

10.28 CLUSTER_CONNECTION_TIMEOUT_SEC

Basic Information

Description

.	 620

.	 620

.	 620

.	 621

.	 621

.	 621

.	 622

.	 622

.	 622

.	 623

.	 623

.	 623

.	 624

.	 624

.	 624

.	 625

.	 625

.	 625

.	 626

.	 626

.	 626

.	 627

.	 627

.	 627

.	 628

.	 628

.	 628

.	 629

.	 629

.	 629

.	 630

.	 630

.	 630

.	 631

.	 631

.	 631

.	 632

.	 632

.	 632

204 | Administration Manual

10.29 CLUSTER_DATA_SYNC_SERVERS

Basic Information

Description

10.30 CLUSTER_DISPATCHER_IN_QUEUE_SIZE

Basic Information

Description

10.31 CLUSTER_DISPATCHER_NUMA_STREAM_MAP

Basic Information

Description

10.32 CLUSTER_DISPATCHER_OUT_QUEUE_SIZE

Basic Information

Description

10.33 CLUSTER_HEARTBEAT_INTERVAL

Basic Information

Description

10.34 CLUSTER_HEARTBEAT_RETRY_COUNT

Basic Information

Description

10.35 CLUSTER_IGNORE_INACTIVE_MEMBER

Basic Information

Description

10.36 CLUSTER_MAX_PACKET_SIZE

Basic Information

Description

10.37 CLUSTER_MAX_PAYLOAD_SIZE

Basic Information

Description

10.38 CLUSTER_PACKET_ALLOCATION_TIMEOUT

Basic Information

Description

10.39 CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT

Basic Information

Description

10.40 CLUSTER_PROTOCOL_FAILOVER_POLICY_TIMEOUT

Basic Information

Description

10.41 CLUSTER_SERVER_RESPONSE_QUEUE_SIZE

Basic Information

Description

.	 633

.	 633

.	 633

.	 634

.	 634

.	 634

.	 635

.	 635

.	 635

.	 636

.	 636

.	 636

.	 637

.	 637

.	 637

.	 638

.	 638

.	 638

.	 639

.	 639

.	 639

.	 640

.	 640

.	 640

.	 641

.	 641

.	 641

.	 642

.	 642

.	 642

.	 643

.	 643

.	 643

.	 644

.	 644

.	 644

.	 645

.	 645

.	 645

| 205

10.42 CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY

Basic Information

Description

10.43 CLUSTER_SPLIT_BRAIN_RETRY_COUNT

Basic Information

Description

10.44 COMMITTER_HOT_POLICY_INTERVAL

Basic Information

Description

10.45 CONTROL_FILE_0 ~ CONTROL_FILE_7

Basic Information

Description

10.46 CONTROL_FILE_COUNT

Basic Information

Description

10.47 CONTROL_FILE_TEMP_NAME

Basic Information

Description

10.48 COORDINATOR_COMMIT_WRITE_MODE

Basic Information

Description

10.49 CSERVERS

Basic Information

Description

10.50 DATABASE_ACCESS_MODE

Basic Information

Description

10.51 DATABASE_INSTANCE_NAME

Basic Information

Description

10.52 DATA_STORE_MODE

Basic Information

Description

10.53 DA_CLIENT_NUMA_NODE

Basic Information

Description

10.54 DDL_AUTOCOMMIT

Basic Information

Description

.	 646

.	 646

.	 646

.	 647

.	 647

.	 647

.	 648

.	 648

.	 648

.	 649

.	 649

.	 649

.	 650

.	 650

.	 650

.	 651

.	 651

.	 651

.	 652

.	 652

.	 652

.	 653

.	 653

.	 653

.	 654

.	 654

.	 654

.	 655

.	 655

.	 655

.	 656

.	 656

.	 656

.	 657

.	 657

.	 657

.	 658

.	 658

.	 658

206 | Administration Manual

10.55 DDL_LOCK_TIMEOUT

Basic Information

Description

10.56 DEFAULT_GLOBAL_SECONDARY_INDEX_CREATION

Basic Information

Description

10.57 DEFAULT_INDEX_LOGGING

Basic Information

Description

10.58 DEFAULT_INDEX_PCTFREE

Basic Information

Description

10.59 DEFAULT_INITRANS

Basic Information

Description

10.60 DEFAULT_MAXTRANS

Basic Information

Description

10.61 DEFAULT_PCTFREE

Basic Information

Description

10.62 DEFAULT_PCTUSED

Basic Information

Description

10.63 DEFAULT_REMOVAL_BACKUP_FILE

Basic Information

Description

10.64 DEFAULT_REMOVAL_OBSOLETE_BACKUP_LIST

Basic Information

Description

10.65 DEFAULT_SHARDING

Basic Information

Description

10.66 DISABLE_DDL_CDC_GIVEUP

Basic Information

Description

10.67 DISABLE_UPDATE_PK_CDC_GIVEUP

Basic Information

Description

.	 659

.	 659

.	 659

.	 660

.	 660

.	 660

.	 661

.	 661

.	 661

.	 662

.	 662

.	 662

.	 663

.	 663

.	 663

.	 664

.	 664

.	 664

.	 665

.	 665

.	 665

.	 666

.	 666

.	 666

.	 667

.	 667

.	 667

.	 668

.	 668

.	 668

.	 669

.	 669

.	 669

.	 672

.	 672

.	 672

.	 673

.	 673

.	 673

| 207

10.68 DISALLOWED_PROTOCOL_TARGETTYPE

Basic Information

Description

10.69 DISALLOWED_PROTOCOL_TARGETTYPE_WITH_ALL

Basic Information

Description

10.70 DISALLOWED_PROTOCOL_TARGETTYPE_WITH_NAME

Basic Information

Description

10.71 DISPATCHER_CM_BUFFER_SIZE

Basic Information

Description

10.72 DISPATCHER_CM_UNIT_SIZE

Basic Information

Description

10.73 DISPATCHER_CONNECTIONS

Basic Information

Description

10.74 DISPATCHER_HOT_POLICY_INTERVAL

Basic Information

Description

10.75 DISPATCHER_LOAD_BALANCING

Basic Information

Description

10.76 DISPATCHER_NUMA_STREAM_MAP

Basic Information

Description

10.77 DISPATCHER_QUEUE_SIZE

Basic Information

Description

10.78 DISPATCHER_REQUEST_MINI_QUEUE_COUNT

Basic Information

Description

10.79 DISPATCHER_RESPONSE_MINI_QUEUE_COUNT

Basic Information

Description

10.80 DISPATCHERS

Basic Information

Description

.	 674

.	 674

.	 674

.	 675

.	 675

.	 675

.	 676

.	 676

.	 676

.	 677

.	 677

.	 677

.	 678

.	 678

.	 678

.	 679

.	 679

.	 679

.	 680

.	 680

.	 680

.	 681

.	 681

.	 681

.	 682

.	 682

.	 682

.	 683

.	 683

.	 683

.	 684

.	 684

.	 684

.	 685

.	 685

.	 685

.	 686

.	 686

.	 686

208 | Administration Manual

10.81 FETCH_FAILOVER

Basic Information

Description

10.82 GLOBAL_CONNECTION_ALLOW_SESSION_DEPENDENCY

Basic Information

Description

10.83 GLOBAL_JOURNAL_BUFFER_SIZE

Basic Information

Description

10.84 GLOBAL_JOURNAL_BUFFER_TOTAL_MAX_SIZE

Basic Information

Description

10.85 GLOBAL_PROPERTY_LOCK_TIMEOUT

Basic Information

Description

10.86 GLOBAL_TRANSACTION_COMMIT_WRITE_MODE

Basic Information

Description

10.87 GLOBAL_TRANSACTION_ISOLATION_SCOPE

Basic Information

Description

10.88 GLOBAL_TRANSACTION_LOG_DIR

Basic Information

Description

10.89 GLOBAL_TRANSACTION_LOG_FILE_SIZE

Basic Information

Description

10.90 GMASTER_NUMA_NODE

Basic Information

Description

10.91 GMON_AUTOSTART

Basic Information

Description

10.92 HINT_ERROR

Basic Information

Description

10.93 IDLE_TIMEOUT

Basic Information

Description

.	 687

.	 687

.	 687

.	 688

.	 688

.	 688

.	 689

.	 689

.	 689

.	 690

.	 690

.	 690

.	 691

.	 691

.	 691

.	 692

.	 692

.	 692

.	 693

.	 693

.	 693

.	 694

.	 694

.	 694

.	 695

.	 695

.	 695

.	 696

.	 696

.	 696

.	 697

.	 697

.	 697

.	 698

.	 698

.	 698

.	 699

.	 699

.	 699

| 209

10.94 INDEX_BUILD_PARALLEL_FACTOR

Basic Information

Description

10.95 INDEX_TREE_MERGE_PARALLEL_FACTOR

Basic Information

Description

10.96 INST_ALLOCATOR_COUNT

Basic Information

Description

10.97 INST_TABLE_BLOCK_SIZE

Basic Information

Description

10.98 IN_DOUBT_DECISION

Basic Information

Description

10.99 JOURNAL_TEMP_DIR

Basic Information

Description

10.100 KEEPALIVE_IDLE_TIME

Basic Information

Description

10.101 LOCAL_CLUSTER_MEMBER

Basic Information

Description

10.102 LOCAL_CLUSTER_MEMBER_HOST

Basic Information

Description

10.103 LOCAL_CLUSTER_MEMBER_PORT

Basic Information

Description

10.104 LOCAL_JOURNAL_BUFFER_SIZE

Basic Information

Description

10.105 LOCATION_FILE

Basic Information

Description

10.106 LOCATOR_QUERY_TIMEOUT

Basic Information

Description

.	 700

.	 700

.	 700

.	 701

.	 701

.	 701

.	 702

.	 702

.	 702

.	 703

.	 703

.	 703

.	 704

.	 704

.	 704

.	 705

.	 705

.	 705

.	 706

.	 706

.	 706

.	 707

.	 707

.	 707

.	 708

.	 708

.	 708

.	 709

.	 709

.	 709

.	 710

.	 710

.	 710

.	 711

.	 711

.	 711

.	 712

.	 712

.	 712

210 | Administration Manual

10.107 LOCK_HASH_TABLE_SIZE

Basic Information

Description

10.108 LOG_BLOCK_SIZE

Basic Information

Description

10.109 LOG_BUFFER_SIZE

Basic Information

Description

10.110 LOG_DIR

Basic Information

Description

10.111 LOG_FILE_SIZE

Basic Information

Description

10.112 LOG_GROUP_COUNT

Basic Information

Description

10.113 LOG_MIRROR_MODE

Basic Information

Description

10.114 LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE

Basic Information

Description

10.115 LOG_MIRROR_TIMEOUT

Basic Information

Description

10.116 LOG_SYNC_INTERVAL

Basic Information

Description

10.117 LOG_SYNC_INTERVAL_MSEC

Basic Information

Description

10.118 MAX_GROUP_COUNT

Basic Information

Description

10.119 MAX_JOURNAL_FILE_SIZE

Basic Information

Description

.	 713

.	 713

.	 713

.	 714

.	 714

.	 714

.	 715

.	 715

.	 715

.	 716

.	 716

.	 716

.	 717

.	 717

.	 717

.	 718

.	 718

.	 718

.	 719

.	 719

.	 719

.	 720

.	 720

.	 720

.	 721

.	 721

.	 721

.	 722

.	 722

.	 722

.	 723

.	 723

.	 723

.	 724

.	 724

.	 724

.	 725

.	 725

.	 725

| 211

10.120 MAX_NODE_COUNT

Basic Information

Description

10.121 MAXIMUM_CONCURRENT_ACTIVITIES

Basic Information

Description

10.122 MAXIMUM_FLANGE_COUNT

Basic Information

Description

10.123 MAXIMUM_FLUSH_LOG_BLOCK_COUNT

Basic Information

Description

10.124 MAXIMUM_FLUSH_PAGE_COUNT

Basic Information

Description

10.125 MAXIMUM_JOURNAL_REPLAY_COUNT

Basic Information

Description

10.126 MAXIMUM_NAMED_CURSOR_COUNT

Basic Information

Description

10.127 MAXIMUM_SESSION_CM_BUFFER_SIZE

Basic Information

Description

10.128 MEASURE_CLUSTER_LATENCY

Basic Information

Description

10.129 MEMORY_MERGE_RUN_COUNT

Basic Information

Description

10.130 MEMORY_SORT_RUN_SIZE

Basic Information

Description

10.131 MINIMUM_UNDO_PAGE_COUNT

Basic Information

Description

10.132 MIN_SAMPLE_ROW_COUNT

Basic Information

Description

.	 726

.	 726

.	 726

.	 727

.	 727

.	 727

.	 728

.	 728

.	 728

.	 729

.	 729

.	 729

.	 730

.	 730

.	 730

.	 731

.	 731

.	 731

.	 732

.	 732

.	 732

.	 734

.	 734

.	 734

.	 735

.	 735

.	 735

.	 736

.	 736

.	 736

.	 737

.	 737

.	 737

.	 738

.	 738

.	 738

.	 739

.	 739

.	 739

212 | Administration Manual

10.133 NET_BUFFER_SIZE

Basic Information

Description

10.134 NLS_DATE_FORMAT

Basic Information

Description

10.135 NLS_TIME_FORMAT

Basic Information

Description

10.136 NLS_TIME_WITH_TIME_ZONE_FORMAT

Basic Information

Description

10.137 NLS_TIMESTAMP_FORMAT

Basic Information

Description

10.138 NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT

Basic Information

Description

10.139 NUMA

Basic Information

Description

10.140 NUMA_MAP

Basic Information

Description

10.141 OFFLINE_MEMBER_AFTER_FAILOVER

Basic Information

Description

10.142 ONLINE_JOURNAL_REPLAY_THRESHOLD

Basic Information

Description

10.143 OS_GROUP_ACCESS

Basic Information

Description

10.144 PACKET_COMPRESSION_THRESHOLD

Basic Information

Description

10.145 PAGE_CHECKSUM_TYPE

Basic Information

Description

.	 740

.	 740

.	 740

.	 741

.	 741

.	 741

.	 742

.	 742

.	 742

.	 743

.	 743

.	 743

.	 744

.	 744

.	 744

.	 745

.	 745

.	 745

.	 746

.	 746

.	 746

.	 747

.	 747

.	 747

.	 748

.	 748

.	 748

.	 749

.	 749

.	 749

.	 750

.	 750

.	 750

.	 751

.	 751

.	 751

.	 752

.	 752

.	 752

| 213

10.146 PARALLEL_IO_FACTOR

Basic Information

Description

10.147 PARALLEL_IO_GROUP_1 ~ PARALLEL_IO_GROUP_16

Basic Information

Description

10.148 PARALLEL_LOAD_FACTOR

Basic Information

Description

10.149 PENDING_LOG_BUFFER_COUNT

Basic Information

Description

10.150 PLAN_CACHE

Basic Information

Description

10.151 PLAN_CACHE_SIZE

Basic Information

Description

10.152 PRIVATE_STATIC_AREA_SIZE

Basic Information

Description

10.153 PROCESS_MAX_COUNT

Basic Information

Description

10.154 QUERY_TIMEOUT

Basic Information

Description

10.155 READABLE_ARCHIVELOG_DIR_COUNT

Basic Information

Description

10.156 READABLE_BACKUP_DIR_COUNT

Basic Information

Description

10.157 REBALANCE_BLOCK_READ_COUNT

Basic Information

Description

10.158 RECOMPILE_CHECK_MINIMUM_PAGE_COUNT

Basic Information

Description

.	 753

.	 753

.	 753

.	 754

.	 754

.	 754

.	 755

.	 755

.	 755

.	 756

.	 756

.	 756

.	 757

.	 757

.	 757

.	 758

.	 758

.	 758

.	 759

.	 759

.	 759

.	 760

.	 760

.	 760

.	 761

.	 761

.	 761

.	 762

.	 762

.	 762

.	 763

.	 763

.	 763

.	 764

.	 764

.	 764

.	 765

.	 765

.	 765

214 | Administration Manual

10.159 RECOMPILE_PAGE_PERCENT

Basic Information

Description

10.160 RECOVERY_LOG_BUFFER_SIZE

Basic Information

Description

10.161 REDO_LOG_COMPRESSION_THRESHOLD

Basic Information

Description

10.162 REFINE_RELATION

Basic Information

Description

10.163 SESSION_FATAL_BEHAVIOR

Basic Information

Description

10.164 SESSION_MEMORY_INIT_SIZE

Basic Information

Description

10.165 SESSION_MEMORY_SHRINK_THRESHOLD

Basic Information

Description

10.166 SHARED_MEMORY_ADDRESS

Basic Information

Description

10.167 SHARED_MEMORY_STATIC_KEY

Basic Information

Description

10.168 SHARED_MEMORY_STATIC_NAME

Basic Information

Description

10.169 SHARED_MEMORY_STATIC_SIZE

Basic Information

Description

10.170 SHARED_REQUEST_QUEUE_COUNT

Basic Information

Description

10.171 SHARED_SERVERS

Basic Information

Description

.	 766

.	 766

.	 766

.	 767

.	 767

.	 767

.	 768

.	 768

.	 768

.	 769

.	 769

.	 769

.	 770

.	 770

.	 770

.	 771

.	 771

.	 771

.	 772

.	 772

.	 772

.	 773

.	 773

.	 773

.	 774

.	 774

.	 774

.	 775

.	 775

.	 775

.	 776

.	 776

.	 776

.	 777

.	 777

.	 777

.	 778

.	 778

.	 778

| 215

10.172 SHARED_SESSION

Basic Information

Description

10.173 SNAPSHOT_STATEMENT_TIMEOUT

Basic Information

Description

10.174 SQL_HISTORY_SIZE

Basic Information

Description

10.175 SQL_HISTORY_TYPE

Basic Information

Description

10.176 SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY

Basic Information

Description

10.177 SYSTEM_LOGGER_DIR

Basic Information

Description

10.178 SYSTEM_MEMORY_AUX_TABLESPACE_SIZE

Basic Information

Description

10.179 SYSTEM_MEMORY_DATA_TABLESPACE_SIZE

Basic Information

Description

10.180 SYSTEM_MEMORY_DICT_TABLESPACE_SIZE

Basic Information

Description

10.181 SYSTEM_MEMORY_TEMP_TABLESPACE_SIZE

Basic Information

Description

10.182 SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE

Basic Information

Description

10.183 SYSTEM_TABLESPACE_DIR

Basic Information

Description

10.184 SYSTEM_UDS_DIR

Basic Information

Description

.	 779

.	 779

.	 779

.	 780

.	 780

.	 780

.	 781

.	 781

.	 781

.	 782

.	 782

.	 782

.	 783

.	 783

.	 783

.	 784

.	 784

.	 784

.	 785

.	 785

.	 785

.	 786

.	 786

.	 786

.	 787

.	 787

.	 787

.	 788

.	 788

.	 788

.	 789

.	 789

.	 789

.	 790

.	 790

.	 790

.	 791

.	 791

.	 791

216 | Administration Manual

10.185 TCP_CLIENT_NUMA_NODE

Basic Information

Description

10.186 TCP_NODELAY

Basic Information

Description

10.187 TEMP_SEGMENT_CACHE_SIZE

Basic Information

Description

10.188 TEMP_UNDO_ENABLED

Basic Information

Description

10.189 TIMED_STATISTICS

Basic Information

Description

10.190 TIMEZONE

Basic Information

Description

10.191 TRACE_ALTER_SYSTEM

Basic Information

Description

10.192 TRACE_DDL

Basic Information

Description

10.193 TRACE_LOG_ID

Basic Information

Description

10.194 TRACE_LOG_MSGBUF_SIZE

Basic Information

Description

10.195 TRACE_LOG_TIME_DETAIL

Basic Information

Description

10.196 TRACE_LOGGER

Basic Information

Description

10.197 TRACE_LOGGER_REMOTE_HOST

Basic Information

Description

.	 792

.	 792

.	 792

.	 793

.	 793

.	 793

.	 794

.	 794

.	 794

.	 795

.	 795

.	 795

.	 796

.	 796

.	 796

.	 797

.	 797

.	 797

.	 798

.	 798

.	 798

.	 799

.	 799

.	 799

.	 800

.	 800

.	 800

.	 801

.	 801

.	 801

.	 802

.	 802

.	 802

.	 803

.	 803

.	 803

.	 804

.	 804

.	 804

| 217

10.198 TRACE_LOGGER_REMOTE_PORT

Basic Information

Description

10.199 TRACE_LOGIN

Basic Information

Description

10.200 TRACE_LONG_RUN_CURSOR

Basic Information

Description

10.201 TRACE_LONG_RUN_SQL

Basic Information

Description

10.202 TRACE_XA

Basic Information

Description

10.203 TRANSACTION_ALLOCATION_TIMEOUT

Basic Information

Description

10.204 TRANSACTION_COMMIT_WRITE_MODE

Basic Information

Description

10.205 TRANSACTION_MAXIMUM_UNDO_PAGE_COUNT

Basic Information

Description

10.206 TRANSACTION_TABLE_SIZE

Basic Information

Description

10.207 TRANSACTION_TIMEOUT

Basic Information

Description

10.208 UNDO_RELATION_ALLOCATION_TIMEOUT

Basic Information

Description

10.209 UNDO_RELATION_COUNT

Basic Information

Description

10.210 UNDO_SHRINK_THRESHOLD

Basic Information

Description

.	 805

.	 805

.	 805

.	 806

.	 806

.	 806

.	 807

.	 807

.	 807

.	 809

.	 809

.	 809

.	 810

.	 810

.	 810

.	 811

.	 811

.	 811

.	 812

.	 812

.	 812

.	 813

.	 813

.	 813

.	 814

.	 814

.	 814

.	 816

.	 816

.	 816

.	 817

.	 817

.	 817

.	 818

.	 818

.	 818

.	 820

.	 820

.	 820

218 | Administration Manual

10.211 USE_LARGE_PAGES

Basic Information

Description

.	 821

.	 821

.	 821

Basic Management of GOLDILOCKS Database

5.

219

220 | Basic Management of GOLDILOCKS Database

5.1 Creating and Configuring GOLDILOCKS Databa

se

Creating Database

Create database using gcreatedb which is included in GOLDILOCKS package. Before creating database, t

he followings should be considered.

Table 5-1 Considerations when creating database

Considerations For more information, refer to

Consider the space size of tables and indexes to be used in database.
● Structure and Storage Structur

e of GOLDILOCKS Database

Consider the location to create database files. It is because the database p

erformance will be improved by properly distributing the files and dispersi

ng the disk IO. For example, a user can allocate redo log file to a separate

disk or stripe it, and then disperse data file into a number of disks, to exec

ute a parallel disk IO operation.

● Managing Redo Log File

Be aware of each property's concepts and its operation which are set in se

rver property file, then constantly manage them.

● Specifying Initial Property

● Managing Initial Property Usin

g GOLDILOCKS Configuration

File

● Server Property

In addition to the above considerations, refer to Creating Database in Getting Started for more options to

be considered when creating database.

A user should set environment variables to use GOLDILOCKS, and the variables are $GOLDILOCKS_HOME

and $GOLDILOCKS_DATA. The property file, goldilock.properties.conf, for creating and managing GOLDI

LOCKS database is in $GOLDILOCKS_DATA/conf.

● GOLDILOCKS_HOME: Binaries which are included in GOLDILOCKS package are installed here, and it c

an be overwritten during software version upgrading (The license backup is required.)

● GOLDILOCKS_DATA: Log file, data file, control file which are used by GOLDILOCKS database are inst

alled here, and it can not be overwritten.

Creating and Configuring GOLDILOCKS Database | 221

Specifying Initial Property

A user can use properties to control the information for operation and management in GOLDILOCKS.

Initial Property

Set the properties of when creating or starting the database as follows.

1. Setting system environment variable

I. Change it by typing in the command window in which GOLDILOCKS is installed and database is

created or operated.

II. It is necessary to add the prefix before the property name, and the prefix is GOLDILOCKS_.

● The following is an example of changing SHARED_MEMORY_STATIC_SIZE to 100M.

export GOLDILOCKS_SHARED_MEMORY_STATIC_SIZE=100M

2. Property file: The prefix is not required, so change it directly in the property file.

● The following is an example of changing SHARED_MEMORY_STATIC_SIZE to 200M.

● Shared memory static size (100M ~ 32G)

SHARED_MEMORY_STATIC_SIZE = 200M

Note

If the same property is set to system environment variable and property file, then the value of the

property file will be applied. For example, if SHARED_MEMORY_STATIC_SIZE is set to 100M as th

e system enviroment variable, and SHARED_MEMORY_STATIC_SIZE is set to 200M as the propert

y file, then SHARED_MEMORY_STATIC_SIZE will be applied to 200M when operating database.

Managing Initial Property Using GOLDILOCKS Configuration F

ile

Property file is in $GOLDILOCKS_DATA/conf, and is divided into two according to the file format.

● Text property file

○ File name: goldilocks.properties.conf

222 | Basic Management of GOLDILOCKS Database

○ It is "property name = value" format file, and a user can directly edit it.

○ If a binary property file exists, it does not read text property file.

● Binary property file

○ It is created by the system, and a user can not edit it directly.

○ File name: goldilocks.properties.binary

○ Use gdump tool to retrieve the binary file's contents.

Note

If a text property file and a binary property file exist together, it reads the binary property file only.

The text property file is not processed. This binary property file is managed by user SQL (ALTER SY

STEM SET), and can be edited using SQL only.

For information, refer to ALTER SYSTEM SET property_name, ALTER SYSTEM RESET property_na

me.

● Editing text property file

○ Use "PROPERTY_NAME = VALUE" format.

○ Use '#' for annotation.

○ Property has one of the following three data types.

■ Character data type: Use a single quote (') to set the character value. Use <GOLDILOCKS_DA

TA> if the character value includes $GOLDILOCKS_DATA link.

■ Numeric data type: Do not use calculation for numeric data. For example, LOG_BUFFER_SIZE

=1024 * 1024 is not allowed to use. Its size is selectable accordingly such as K (kilobyte), M

(megabyte), G (gigabyte), T (terabyte), and P (petabyte)

■ Boolean data type: Allowed to use ON/OFF, ENABLE/DISABLE, 1/0 and TRUE/FALSE, YES/NO.

Starting up and Shutting down GOLDILOCKS Instance | 223

5.2 Starting up and Shutting down GOLDILOCKS I

nstance

This chapter describes starting up and shutting down of GOLDILOCKS instance.

Starting up Instance

GOLDILOCKS instance can be started only by a user with SYSDBA privilege.

GOLDILOCKS instance can be started by using DA(Direct Attach) method and dedicated method of C/S(C

lient/Server). However, it can not be started by using shared method of C/S.

Multi-level Startup

GOLDILOCKS has multi-level startup procedure. Multi-level startup procedure enables to change the data

base's state by the intervention of administrator in each phase.

The phases are idle, nomount, mount, open, and each phase has the following features.

Idle Phase

The idle phase is a state in which an instance is not started up.

If connecting to gsql when an instance is not started, then it will be connected to idle instance as follows.

In this phase, any sever command can not be executed except for \startup.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> select * from dual;

ERR-08003(40044): connection does not exist

gSQL>

● Administrator operations in idle phase

○ Adjusting the property required to start up the instance

○ Transition to nomount using \startup in gsql

● Operation in an instance at the nomount transition

○ Starting up gmaster which is a daemon managing GOLDILOCKS instance

○ Starting up timer thread and cleanup thread in gmaster

○ Allocating and initializing Shared memory Static Area (SSA).

224 | Basic Management of GOLDILOCKS Database

Table 5-2 Applied properties at the transition to nomount

Property name Description

CLIENT_MAX_COUNT Maximum number of connectable sessions

CONTROL_FILE_0 ~ 7 Path of control file

CONTROL_FILE_COUNT The number of valid path among the path of control file

DATA_STORE_MODE Store mode of GOLDILOCKS instance

PLAN_CACHE_SIZE Maximum size of shared memory for plan cache

PROCESS_MAX_COUNT Maximum number of connectable process

SHARED_MEMORY_ADDRESS Address of shared memory

SHARED_MEMORY_STATIC_NAME Name of shared memory

SHARED_MEMORY_STATIC_KEY Key value for creating shared memory

SHARED_MEMORY_STATIC_SIZE Size of shared memory to be created

SYSTEM_LOGGER_DIR Path of system logger

Properties can not be changed in idle phase. An administrator changes the properties as follows.

To use an environment variable, then set GOLDILOCKS_[property_name] to a desired value and transit it t

o nomount. Then, the properties will be applied.

% export GOLDILOCKS_CLIENT_MAX_COUNT=1000

To use 'SCOPE = FILE', record the property value to be changed in the file. The recorded property will be

applied at nomount transition.

gSQL> alter system set client_max_count = 1000 scope = file;

System altered.

gSQL> \shutdown

Shutdown success

gSQL> \startup

Startup success

gSQL>

Nomount Phase

The nomount phase is a state in which it is not mounted to database, and only the gmaster process has b

een started. A gmaster is a daemon which manages GOLDILOCKS instance.

The following describes how to transit idle phase to nomount phase.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> \startup nomount

Startup success

Starting up and Shutting down GOLDILOCKS Instance | 225

gSQL>

● Administrator operations in nomount phase

○ Adjusting nomount property

○ For more information, refer to 16.34 ALTER SYSTEM {MOUNT | OPEN} DATABASE, 16.

21 ALTER DATABASE RESTORE.

● Operation in an instance at the mount transition

○ Loading the control file to database

○ Preparing for database recovery

○ Starting up threads in gmaster such as checkpoint, log flusher, page flusher, IO slave, archive log

Table 5-3 Updatable properties in nomount phase

Property name Description

DATABASE_ACCESS_MODE Database access mode (READ ONLY, READ WRITE)

LOG_BUFFER_SIZE Redo log buffer size

PARALLEL_LOAD_FACTOR The number of threads for parallel operations after loading database

PARALLEL_IO_FACTOR The number of parallel threads for loading database

PARALLEL_IO_GROUP_1 ~ 16 Datafile group at parallel loading

PENDING_LOG_BUFFER_COUNT The number of delayed log buffers

TRANSACTION_TABLE_SIZE Transaction table size

UNDO_RELATION_COUNT The number of undo relations

Mount Phase

The mount phase is a state in which it is mounted to database, and the database recognizes the control fi

le. All sections in the control file is controllable in this phase.

The following describes how to transit nomount phase to mount phase.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> \startup nomount

Startup success

gSQL> alter system mount database;

System altered.

gSQL>

● Administrator operations in mount phase

○ Adjusting mount properties

○ ALTER SYSTEM {MOUNT | OPEN} DATABASE

226 | Basic Management of GOLDILOCKS Database

○ ALTER DATABASE ADD LOGFILE

○ ALTER DATABASE DROP LOGFILE

○ ALTER DATABASE RENAME LOGFILE

○ ALTER DATABASE { ARCHIVELOG | NOARCHIVELOG }

○ ALTER DATABASE DELETE BACKUP

○ ALTER DATABASE REGISTER

○ ALTER DATABASE RECOVER

○ ALTER DATABASE RESTORE

○ ALTER SESSION SET property_name

○ ALTER SYSTEM RESET property_name

○ ALTER SYSTEM SWITCH LOGFILE

○ ALTER SYSTEM [KILL | DISCONNECT] SESSION

○ ALTER TABLESPACE name ADD [DATAFILE|MEMORY]

○ ALTER TABLESPACE name RENAME DATAFILE

○ ALTER TABLESPACE name [ONLINE|OFFLINE]

● Operation in an instance at the open transition

○ Loading all data file used in an instance to shared memory

○ Performing instance recovery

○ Creating NOLOGGING index

○ Deleting objects or files which are not deleted by ager thread

○ Creating cache for dictionary objects

○ If "SHARED_SESSION" property is set to YES, process monitor thread in gmaster will be started u

p.

○ Process monitor thread executes balancer process, dispatcher process, shared-server process.

Table 5-4 Updatable property in mount

Property name Description

ARCHIVELOG_FILE Prefix name of archive file

IN_DOUBT_DECISION Decision about in-doubt transaction

LOCK_HASH_TABLE_SIZE Hash table size of lock administrator

LOG_MIRROR_MODE Log mirroring mode

LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE Shared memory size for log mirroring

SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY
Whether to perform supplemental logging at the database-lev

el

Open Phase

The open phase is a state in which all the data file is loaded to memory, and it is ready for service. All ope

rations are allowed in this phase.

Starting up and Shutting down GOLDILOCKS Instance | 227

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> \startup mount

Startup success

gSQL> alter system open database;

System altered.

gSQL>

The database access mode is selectable at the transition to open phase. The database access modes are di

vided into READ_ONLY mode and READ_WRITE mode. The READ_ONLY mode can only read data in dat

abase, but READ_WRITE mode can both read and write the data.

To open database in READ_ONLY mode, the previous database should be normally shut down. If the acc

ess mode is omitted, it refers to the DATABASE_ACCESS_MODE property value when opening database.

gSQL> \shutdown abort

Shutdown success

gSQL> \startup mount

Startup success

gSQL> alter system open database read only;

ERR-42000(14038): unable to recover database in READ ONLY mode

gSQL> alter system open database read write;

System altered.

...

gSQL> \shutdown normal

Shutdown success

gSQL> \startup mount

Startup success

gSQL> alter system open database read only;

System altered.

Diagnosis

It is possible to execute several phases at a same time using a single command(\startup) when starting u

p instance. If a certain phase fails, the administrator should figure out in which phase the failure occurs. C

heck using to which phase the instance has come using V$INSTANCE. Then the administrator can continu

e operations of startup instance from the subsequent phase.

The following is an example of starting up instance to open phase after \startup failure.

% gsql sys gliese --as sysdba

Connected to an idle instance.

228 | Basic Management of GOLDILOCKS Database

gSQL> \startup

ERR-42000(14051): media recovery required - 'TEST_TBS'

gSQL> select INSTANCE_STATUS from v$instance;

INSTANCE_STATUS

MOUNTED

1 row selected.

...

gSQL> alter system open database;

System altered.

Shutting down Instance

GOLDILOCKS instance can be terminated only by a user with SYSDBA privilege. It is not allowed to create

new session during shutdown.

GOLDILOCKS instance can be shut down by Direct Attach (D/A) method and dedicated method of Client/

Server (C/S), but it can not be shut down by shared method of C/S.

% gsql sys gliese --as sysdba

ERR-RD000(13034): Service is not available

There are four types of instance shutdown mode, and they are shutdown normal, shutdown transactiona

l, shutdown immediate and shutdown abort.

Shutdown Normal

The shutdown normal is set by default if a particular mode is not specified when shutting down. Use this

type if a user wants to shut down an instance normally.

gSQL> \shutdown normal

Shutdown success

gSQL>

The followings describe the characteristics of shutdown normal.

● New session is not allowed.

● New transactions and statements are allowed in session which already have been connected.

● Waiting for all the sessions which are connected to the instance to be shut down.

● It does not execute instance recovery process when starting up the instance.

Starting up and Shutting down GOLDILOCKS Instance | 229

Shutdown Transactional

Use this type to shut down the currently proceeding transactions normally even when the session is forcib

ly shut down.

gSQL> \shutdown transactional

Shutdown success

gSQL>

The followings describe the characteristics of shutdown transactional.

● Neither new session nor is new transaction allowed.

● New statements are allowed in ongoing transaction.

● Waiting for the ongoing transactions to be shut down.

● The session will be automatically terminated after the ongoing transactions is terminated.

● It does not execute instance recovery process when starting up the instance.

Shutdown Immediate

Use this type to terminate the instance when a user can not terminate current transactions.

gSQL> \shutdown immediate

Shutdown success

gSQL>

The followings describe the characteristics of shutdown immediate.

● Neither new session nor is new transaction allowed.

● Forcibly shut down ongoing sessions and transactions.

● Waiting until the background thread of the system to be completed.

● It does not execute instance recovery process when starting up the instance.

Shutdown Abort

Use this type when a user judged the instance is in an abnormal state.

gSQL> \shutdown abort

Shutdown success

gSQL>

The followings describe the characteristics of shutdown abort.

● Neither new session nor is new transaction allowed.

230 | Basic Management of GOLDILOCKS Database

● Forcibly shut down ongoing sessions and transactions.

● Instantly shut down the background thread of the system.

● It executes instance recovery process when starting up the instance.

Managing Process | 231

5.3 Managing Process

This chapter describes the background processes of GOLDILOCKS instance.

Master Process

Master process performs the asynchronous operation for database performance and monitoring. It consis

ts of many threads.

The master process' executable file name is gmaster.

Checkpoint Thread

Checkpoint thread executes asynchronous checkpoint events which occur in the log flushing thread. The

checkpoint event occurs whenever redo log file is switched.

Checkpoint event is executed asynchronously regardless of a user, and its log is recorded in system.trc as f

ollows.

[2014-09-11 14:04:34.704465 THREAD(14497,140178383427328)] [INFORMATION]

[CHECKPOINT] begin

...

[2014-09-11 14:04:34.743933 THREAD(14497,140178383427328)] [INFORMATION]

[CHECKPOINT] save control file

[2014-09-11 14:04:34.759521 THREAD(14497,140178383427328)] [INFORMATION]

[CHECKPOINT] end

Log Flushing Thread

User transactions record redo log in log buffer, and it is periodically recorded in log file by log flushing thr

ead.

Log switching occurs when redo log is recorded to the end of the log file, then it will be recorded in the n

ext redo log file. When the log switching occurs, checkpoint event is transferred to a checkpoint thread.

If reusable log file does not exist when the log file is switched, all queries except for the read-only queries

will wait until the reusable log file is created.

The message remains as follows in system.trc when logging is blocked.

232 | Basic Management of GOLDILOCKS Database

...

[2014-09-11 14:31:44.315871 THREAD(19102,139674683647744)] [INFORMATION]

[LOG FLUSHER] disable logging - blocked lfsn(1)

...

Log Archiving Thread

The log archiving thread asynchronously archives redo log file. This thread is executed only when databas

e is operated in ARCHIVELOG mode.

Log archiving is a part of checkpoint process, and it is executed by log archiving event in which the check

point thread occurred.

The message remains as follows in system.trc when redo_0_0.log is archived to archive_0.log.

[2014-09-11 14:13:32.515996 THREAD(16913,140631135463168)] [INFORMATION]

[ARCHIVELOG BEGIN] LOG(/home/test/work/product/Gliese/home/wal/redo_0_0.log(0)) =>

ARCHIVE(/home/test/work/product/Gliese/home/archive_log/archive_0.log)

[2014-09-11 14:13:33.145850 THREAD(16913,140631135463168)] [INFORMATION]

[ARCHIVELOG END] (/home/test/work/product/Gliese/home/archive_log/archive_0.log) : SUCCESS

...

Ager Thread

Ager thread physically drops the logically dropped database objects.

DROP TABLE statement executes only logical drop operation to maintain statement level consistency in G

OLDILOCKS. Therefore, the statement which was invoked before DROP TABLE can explore the records of

dropped table even when DROP TABLE is executed.

The message remains as follows in system.trc when table and tablespaces are physically dropped.

[2014-09-11 14:13:37.966788 THREAD(16925,139892990408448)] [INFORMATION]

[AGER] aging table - object scn(4561), object view scn(4562), type(0), physical

id(25043954302976)

...

[2014-09-11 14:13:37.966917 THREAD(16925,139892990408448)] [INFORMATION]

[AGER] aging tablespace - object scn(4561), object view scn(4564), tablespace id(61)

Managing Process | 233

Timer Thread

Timer thread asynchronously sets time to the system to reduce the time measuring cost of user transactio

ns, and the user transactions read the time set in the system.

The set time precision is 10 ms.

The followings describe the case of using the time set in the timer thread. The time error is 10 ms.

● Time out: QUERY_TIMEOUT, IDLE_TIMEOUT, DDL_LOCK_TIMEOUT, ...

● Message record time written in trace log

● Startup time of login statement or transaction

● Time recorded in transaction commit redo log

Page Flusher & IO Slave Threads

It applies the updated data pages to the disk when a checkpoint occurs. The updated information is store

d in multiple data files in a tablespace. For that, the page flusher thread distributes operations to IO slave

threads per each tablespace and data files and manages them. Then the IO slave threads record the upda

ted pages in the data file in parallel.

Storing the updated pages as many as possible at a time improves performance. The number of written p

ages at each time follow the properties in MAXIMUM_FLUSH_PAGE_COUNT.

After the updated pages are written to the data file, the message remains in system.trc is as follows.

[2014-09-11 14:13:38.329162 THREAD(16925,139893221086976)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 0, datafile : 0)

[2014-09-11 14:13:38.552161 THREAD(16925,139893221086976)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 1, datafile : 0)

[2014-09-11 14:13:38.587510 THREAD(16925,139893221086976)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 2, datafile : 0)

[2014-09-11 14:13:38.587831 THREAD(16925,139893221086976)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 62, datafile : 0)

[2014-09-11 14:13:38.620239 THREAD(16925,139893221086976)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 63, datafile : 0)

Cleanup Thread

Cleanup thread cleans up the system resource asynchronously, and performs the following operations.

● It cleans up normally terminated session. GOLDILOCKS processes termination of a user session logical

ly, and uses cleanup thread for physical termination of a session.

● It cleans up abnormally terminated session. If the session is using transactions, then they will be rolled

234 | Basic Management of GOLDILOCKS Database

back.

● It checks the time-out of snapshot statements. If a session exceeds the time-out, it is forced to be ter

minated.

When cleaning up the abnormally terminated session, a message remains in system.trc as follows.

[2014-09-12 10:34:38.387349 THREAD(23003,140722556352256)] [WARNING]

[CLEANUP] cleaning session - env(19), session(20), transaction(FFFFFFFFFFFFFFFF),

program(gsql), pid(23209), thread(140080441665280)

[2014-09-12 10:34:38.387515 THREAD(23003,140722556352256)] [WARNING]

[CLEANUP] cleaning up 1 sessions

If a snapshot statement exceeds the time-out, a message remains in system.trc as follows.

[2014-09-12 10:49:21.842179 THREAD(3972,139706316711680)] [WARNING]

[CLEANUP] long statement timeout - pid(8029), thread(140053960505088), program(gsql),

statement start time(2014-09-12 10:48:49.963471)

If abnormally terminated session is terminated by 'kill-9' signal during changing shared memory when exc

lusive latch is acquired, it is no longer possible to operate the database. In this situation, a message remai

ns in system.trc as follows, and the instance should be terminated using SHUTDOWN ABORT.

[2014-09-12 11:12:58.809249 THREAD(15313,140671386121984)] [WARNING]

[CLEANUP] failed to cleaning session - server restart required

...... dead session in critical section - env(3), session(4), transaction(47001E0004),

pid(15296), thread(140178075756288)

Process Monitor Thread

The process monitor thread executes processes, and monitors them.

● It is executed only when "SHARED_SESSION" property is set to YES.

● It executes load-balancer (gbalancer), dispatcher(gdispatcher), shared-server(gserver), and re-execute

s them when they are abnormally terminated.

● It does not monitor listener (glsnr) process.

Cluster Recover Thread

When starting up a node on a cluster system environment, if the node phases up to the mount phase, th

en the cluster recover thread is created. If there is an in-doubt transaction, the cluster recover thread com

municates with the cluster recover thread on the remote node, and recovers the in-doubt transaction.

If there is an in-doubt transaction, the cluster recover thread communicates with the cluster recover threa

Managing Process | 235

d on the remote node, and figures out the status of the in-doubt transaction. If the remote node is restar

ted and it is not recovered yet, then it transfers a message requesting the preferential completion of reco

very and recovers the in-doubt transaction status after the recovery is completed.

The in-doubt transaction statuses figured out through the remote node are NONE, PREPARE, COMMIT, a

nd ROLLBACK. If the cluster recover thread received the response such as COMMIT, ROLLBACK from at le

ast one remote node, then it performs COMMIT or ROLLBACK. If the cluster recover thread received the r

esponse such as NONE, PREPARE from all remote nodes, then it performs ROLLBACK because COMMIT o

r ROLLBACK never has been performed on any cluster node.

The in-doubt transaction recovery using the cluster recover thread leaves the following messages in syste

m.trc.

[2018-11-22 16:52:00.466805 INSTANCE(G3N2) THREAD(7828,140557371479808)] [WARNING]

[CLUSTER RECOVER] begin recovery

[2018-11-22 16:52:00.467221 INSTANCE(G3N2) THREAD(7828,140557371479808)] [WARNING]

[CLUSTER RECOVER] commit in-doubt transaction - commit scn(999.0.439), global transaction

id(1.29294650), local transaction id(4)

[2018-11-22 16:52:00.468253 INSTANCE(G3N2) THREAD(7828,140557371479808)] [WARNING]

[CLUSTER RECOVER] rollback in-doubt transaction - commit scn(1000.439), global transaction

id(4.34406459), local transaction id(59)

[2018-11-22 16:52:00.469198 INSTANCE(G3N2) THREAD(7828,140557371479808)] [WARNING]

[CLUSTER RECOVER] commit in-doubt transaction - commit scn(1001.0.439), global transaction

id(5.35127356), local transaction id(60)

Failover Thread

When starting up a node on a cluster system environment, if the node phases up to the LOCAL OPEN pha

se, then the cluster failover thread is created. Cluster failover thread performs the failover for the error no

de by reselecting a coordinator or offlining when an error occurs on a specific node or the network in the

cluster system.

In a situation requiring the failover, a normal node which acquired a failover lock among other normal no

des communicates with failover threads of other nodes, then performs the failover.

The failover performed by the failover thread leaves the following messages in system.trc.

[2018-11-22 15:27:34.619208 INSTANCE(G1N1) THREAD(20140,140219957368576)] [INFORMATION]

[FAILOVER] begin - failover member(5)

[2018-11-22 15:27:34.619418 INSTANCE(G1N1) THREAD(20140,140219957368576)] [INFORMATION]

[FAILOVER] acquire failover lock - driver(0), target(5), driver seq(1)

[2018-11-22 15:27:34.619692 INSTANCE(G1N1) THREAD(20183,140317097449216)] [INFORMATION]

[CDISPATCHER-S2] disconnect member - target member(5)

236 | Basic Management of GOLDILOCKS Database

[2018-11-22 15:27:34.619893 INSTANCE(G1N1) THREAD(20183,140317097449216)] [INFORMATION]

[CDISPATCHER-S2] finalize sender socket - member(5)

[2018-11-22 15:27:34.621860 INSTANCE(G1N1) THREAD(20140,140219957368576)] [INFORMATION]

[FAILOVER] acquire failover lock

...

[2018-11-22 15:27:38.726436 INSTANCE(G1N1) THREAD(20140,140219957368576)]

[INFORMATION][FAILOVER] member(5) has failovered

[2018-11-22 15:27:38.728624 INSTANCE(G1N1) THREAD(20140,140219957368576)] [INFORMATION]

[FAILOVER] release failover lock - driver(-1), target(5), driver seq(1)

[2018-11-22 15:27:38.728786 INSTANCE(G1N1) THREAD(20140,140219957368576)] [WARNING]

reset remote session map - member(5)

[2018-11-22 15:27:38.729679 INSTANCE(G1N1) THREAD(20140,140219957368576)] [INFORMATION]

[FAILOVER] finished

Listener Process

Listener process enables remote access through the network in a client/server environment. Listener proc

ess waits for a client connection using LISTEN_PORT. If connected in dedicated mode, new gserver starts,

and connects a client. If connected in shared mode, it selects underloaded dispatcher (gdispatcher) using

load-balancer (gbalancer), and connects a client.

gserver is a kind of operation server, and it executes a client request.

If LISTEN_PORT is already in use, the following error occurs.

% glsnr --start

ERR-HY000(11077): given address is already in use

Listener process operates independently from the instance. In other words, listener process can start up a

nd shut down regardless of instance start up anytime.

Managing Memory | 237

5.4 Managing Memory

GOLDILOCKS Memory Architecture

GOLDILOCKS uses SSA which is a memory shared by all sessions in the system, a shared memory for data

base pages, and PSA (heap memory) which each session uses independently.

Figure 1 Shared memory

Managing SSA

Shared Static Area (SSA) is a memory area to store information which is shared by the system's all session

s.

A new process should use the same physical address for using SSA. It is because the position of all inform

ation referenced by SSA uses the physical address.

238 | Basic Management of GOLDILOCKS Database

The physical starting address of SSA is determined by SHARED_MEMORY_STATIC_KEY and SESSION_FAT

AL_BEHAVIOR. The following error occurs when another program is already using shared memory key ass

igned by the same SHARED_MEMORY_STATIC_KEY, and the memory assigned by SHARED_MEMORY_A

DDRESS.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> \startup

ERR-HY000(11029): shared memory segment exists

gSQL>

SSA stores main information, and they are log buffer, dictionary cache, plan cache, session pool, lock poo

l, and transaction pool.

SSA size is determined by SHARED_MEMORY_STATIC_SIZE. The system automatically manages memories

used in session/lock/transaction pool and dictionary cache, and a user can not arbitrarily manage them. H

owever, a user can arbitrarily manage the usage of log buffer and plan cache.

If the default value of log buffer and plan cache are increased, SHARED_MEMORY_STATIC_SIZE should b

e increased accordingly. Otherwise, the following error occurs.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> \startup

ERR-HY000(13010): Insufficient static area

gSQL>

Managing PSA

Private Static Area (PSA) is a heap memory area, and it is used independently by each session. PRIVATE_S

TATIC_AREA_SIZE determines the maximum size of PSA.

An initial size is allocated to PSA when a session is created. If additional memory is required in the session,

PSA can be allocated up to its maximum size. The following error occurs when it exceeds the maximum si

ze.

ERR-HY000(13011): Unable to extend memory: [MAX: 104857600, TOTAL: 102764408, ALLOC: 2097240]

DESC: private static area

Monitoring | 239

5.5 Monitoring

Database monitoring is needed not only to detect and prevent the problem which can be an issue in the f

uture, but also to find a way to improve database management. For monitoring, GOLDILOCKS database

provides text file type trace log and several performance views.

Monitoring with Trace File

From when the instance starts up until it terminates, GOLDILOCKS database provides the system log whic

h records the overall system error, warning, information. In addition, it provides XA transaction log, trace

log such as DDL log, and SQL Trace Log. For more information, refer to 15.5 SQL Trace Log.

Managing Trace Log File

GOLDILOCKS database's trace log file consists of system.trc file and xa.trc file. The system.trc file records

system log and DDL log, and xa.trc file records XA transaction log. Trace log file is created in directory set

in SYSTEM_LOGGER_DIR property. Therefore, it is generally created in trc directory below the directory s

pecified in GOLDILOCKS_DATA environment variable. The trace log file's size is 10 Mbytes. If its space is i

nsufficient, the existing trace log file with unique file extension is preserved, and the new trace log file is

created.

Listener trace log file is created as listener.trc in trc directory below the directory specified by GOLDILOCK

S_DATA environment variable. The log file size is 10 Mbytes. If the space is insufficient, the existing log fil

e with unique file extension is preserved, and the new trace log file is created.

Except for system log, XA transaction log and DDL log can ON/OFF the monitoring. Set the TRACE_DDL p

roperty value to 0 to turn off the DDL log, or set it to 1 to turn on the DDL log. XA log is set in the same

way using the TRACE_XA property.

System Log

The errors, warnings, and information which occurred in database instance from when master process st

arts up until it terminates are recorded in the system log.

System Log Format

System log is recorded in the following format.

240 | Basic Management of GOLDILOCKS Database

['log record data and time' THREAD('process Id', 'thread handle')] ['log level']

['log prefix'] 'log body'

● 'log record date and time' is the date and time of the recorded log.

● THREAD('process Id', 'thread handle') is the information of log process id and thread handle.

● 'log prefix' is the entity or feature which created the log, and 'log body' is the detailed information.

● 'Log level' is the level of log recorded in system log, and its value is FATAL, ABORT, WARNING, INFO.

'log level' has the properties as follows.

Table 5-5 Log level properties

Log level Description Processing

FATAL

The state which mas

ter or client process i

s shut down abnorm

ally.

The client should be reconnected in case of client process FATAL, and th

e database instance should be shut down and restarted in case of system

FATAL.

Backup the data file, control file, redo log file, system log file and contac

t the manufacturer.

ABORT

The state to continu

e service after rollba

ck.

It is the normal state for system operation. Execute it again after eliminat

ing the rollback cause.

WARNING
Operational warning

s

The abnormal state of database instance. there is no operational proble

m but cause analysis is needed.

INFO Operational informa

tion

-

For example, the following system log recorded the operational information at 17:30:55 on September 1

1 in 2014 by process id 21395 (The thread handle is 139982731163392). Log prefix is 'STARTUP-SM' an

d was executing the storage manager when the master process of GOLDILOCKS database started up. It

means that the transition to NO-MOUNT phase had been done during multilevel startup.

[2014-09-11 17:30:55.758164 THREAD(21395,139982731163392)] [INFORMATION]

[STARTUP-SM] NO-MOUNT PHASE

Operational Information of GOLDILOCKS Database

It is the log for creating database instance, multilevel startup and shutdown, loading data file, recovering

restart and media. It records the necessary information for the operation of the master process from whe

n master process starts up until it terminates.

● GOLDILOCKS instance creation log

The system log records the following information when database instance is created. It creates the contro

l file after the transition to NO-MOUNT phase to create database.

Monitoring | 241

===

Startup GOLDILOCKS

TIME : 2014-09-03 14:43:17.321020

===

[2014-09-03 14:43:17.321134 THREAD(14979,140542517491456)] [INFORMATION]

[STARTUP-SM] NO-MOUNT PHASE

[2014-09-03 14:43:17.321658 THREAD(14979,140542517491456)] [INFORMATION]

[STARTUP-SM] DATA_STORE_MODE(2)

[2014-09-03 14:43:17.335809 THREAD(14979,140542517491456)] [INFORMATION]

.... copy control file from '/goldilocks_data/wal/control_0.ctl' to

'/goldilocks_data/wal/control_1.ctl'

Then, it moves to transition to OPEN phase, and creates the system tablespace.

[2014-09-03 14:43:17.401356 THREAD(14979,140542517491456)] [INFORMATION]

[STARTUP-SM] MOUNT PHASE

[2014-09-03 14:43:19.319769 THREAD(14979,140542517491456)] [INFORMATION]

[STARTUP-SM] PRE-OPEN PHASE

[2014-09-03 14:43:19.320494 THREAD(14979,140542517491456)] [INFORMATION]

[STARTUP-SM] RECOVER TABLESPACE AND DATAFILE STATE

[2014-09-03 14:43:19.326269 THREAD(14979,140542517491456)] [INFORMATION]

[STARTUP-SM] OPEN PHASE

[2014-09-03 14:43:21.005536 THREAD(14979,140542517491456)] [INFORMATION]

[TABLESPACE] Create Tablespace(0)

[2014-09-03 14:43:21.005593 THREAD(14979,140542517491456)] [INFORMATION]

[TABLESPACE] Create Tablespace(1)

...

After creating the system tablespace, it executes checkpoint, and terminates the database instance.

[2014-09-03 14:43:21.788129 THREAD(14979,140542517491456)] [INFORMATION]

[CHECKPOINT] begin - checkpoint lid(0,10128,13), checkpoint lsn(10512), oldest lsn(10512)

[2014-09-03 14:43:21.788188 THREAD(14979,140542517491456)] [INFORMATION]

[CHECKPOINT] body - checkpoint lid(-1,0,0), checkpoint lsn(-1), active transaction count(0)

[2014-09-03 14:43:21.788203 THREAD(14979,140542517491456)] [INFORMATION]

[CHECKPOINT] end - checkpoint lid(0,10128,77), checkpoint lsn(10513)

[2014-09-03 14:43:21.788214 THREAD(14979,140542517491456)] [INFORMATION]

[CHECKPOINT] flush redo log

[2014-09-03 14:43:21.949589 THREAD(14979,140542517491456)] [INFORMATION]

[CHECKPOINT] save control file

[2014-09-03 14:43:21.957563 THREAD(14979,140542517491456)] [INFORMATION]

242 | Basic Management of GOLDILOCKS Database

[SHUTDOWN-SM] CLOSE

[2014-09-03 14:43:21.957595 THREAD(14979,140542517491456)] [INFORMATION]

[SHUTDOWN-SM] POST CLOSE

[2014-09-03 14:43:21.992521 THREAD(14979,140542517491456)] [INFORMATION]

[SHUTDOWN-SM] DISMOUNT

[2014-09-03 14:43:21.992557 THREAD(14979,140542517491456)] [INFORMATION]

[SHUTDOWN-SM] INIT

● GOLDILOCKS instance startup log

Master process records logs such as multilevel startup of database instance, loading data file, restart reco

very, media recovery. After the transition to MOUNT phase, the data file is loaded.

===

Startup GOLDILOCKS

TIME : 2014-09-03 14:43:22.162601

===

[2014-09-03 14:43:22.162765 THREAD(14982,140025756808960)] [INFORMATION]

[STARTUP-SM] NO-MOUNT PHASE

[2014-09-03 14:43:22.163389 THREAD(14982,140025756808960)] [INFORMATION]

[STARTUP-SM] DATA_STORE_MODE(2)

[2014-09-03 14:43:22.429311 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] MOUNT PHASE

[2014-09-03 14:43:22.559395 THREAD(14983,140025756808960)] [INFORMATION]

[EVENT] system startup : SUCCESS

[2014-09-03 14:43:22.568526 THREAD(14981,139649517561600)] [INFORMATION]

[STARTUP] MOUNT PHASE

[2014-09-03 14:43:22.571200 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] LOAD DATAFILES

[2014-09-03 14:43:22.571241 THREAD(14983,140025756808960)] [INFORMATION]

.... datafile '/goldilocks_data/db/system_dict.dbf' assigned to PARALLEL_IO_GROUP_1

...

[2014-09-03 14:43:22.571562 THREAD(14983,140025280841472)] [INFORMATION]

.... LOAD DATAFILE(/goldilocks_data/db/system_dict.dbf)

...

After loading data file to the memory, it executes the recovery.

[2014-09-03 14:43:23.537256 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] REFINE TABLESPACE AND DATAFILE

[2014-09-03 14:43:23.631974 THREAD(14983,140025756808960)] [INFORMATION]

[RESTART REDO] begin

Monitoring | 243

[2014-09-03 14:43:23.634374 THREAD(14983,140025756808960)] [INFORMATION]

[RESTART REOD] read checkpoint log - checkpoint log id(0,10128,13), oldest lsn(10512), system

scn(7)

[2014-09-03 14:43:23.756293 THREAD(14983,140025756808960)] [INFORMATION]

[RESTART REDO] ready to redo - start lid(0,10128,13), lsn(10512)

...

[2014-09-03 14:43:24.090755 THREAD(14983,140025756808960)] [INFORMATION]

[RESTART REDO] end - restart lsn(10514), restart scn(7)

[2014-09-03 14:43:24.091551 THREAD(14983,140025756808960)] [INFORMATION]

[RESTART UNDO] begin

[2014-09-03 14:43:24.091598 THREAD(14983,140025756808960)] [INFORMATION]

[RESTART UNDO] end

After recovery, it executes checkpoint, reflects the recovery result to disk data file. Then, it creates index,

moves to the transition to OPEN phase.

[2014-09-03 14:43:24.111878 THREAD(14983,140025633163008)] [INFORMATION]

[CHECKPOINT] begin

...

[2014-09-03 14:43:24.129995 THREAD(14983,140025633163008)] [INFORMATION]

[CHECKPOINT] save control file

[2014-09-03 14:43:24.135864 THREAD(14983,140025633163008)] [INFORMATION]

[CHECKPOINT] end

[2014-09-03 14:43:24.144525 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] PRE-OPEN PHASE

[2014-09-03 14:43:24.202782 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] RECOVER TABLESPACE AND DATAFILE STATE

[2014-09-03 14:43:24.210158 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] REFINE RELATIONS

[2014-09-03 14:43:24.210304 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] REBUILD INDEXES

[2014-09-03 14:43:24.210375 THREAD(14983,140025756808960)] [INFORMATION]

[STARTUP-SM] OPEN PHASE

[2014-09-03 14:43:24.332064 THREAD(14983,140025756808960)] [INFORMATION]

[EVENT] system startup : SUCCESS

[2014-09-03 14:43:24.340843 THREAD(14981,139649517561600)] [INFORMATION]

[STARTUP] OPEN PHASE

● GOLDILOCKS instance termination log

When it shuts down database instance, it reflects all data file to the disk, executes checkpoint, then termi

nates the master process.

244 | Basic Management of GOLDILOCKS Database

[2014-09-03 14:48:03.467293 THREAD(15416,139855812097792)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 0, datafile : 0)

...

[2014-09-03 14:48:03.748958 THREAD(15416,139855908558592)] [INFORMATION]

[PAGE FLUSHER] flushed lsn(137496), flushed page count(9216)]

[2014-09-03 14:48:03.761055 THREAD(15416,139856376227584)] [INFORMATION]

[CHECKPOINT] begin

...

[2014-09-03 14:48:03.780011 THREAD(15416,139856376227584)] [INFORMATION]

[CHECKPOINT] save control file

[2014-09-03 14:48:03.786387 THREAD(15416,139856376227584)] [INFORMATION]

[CHECKPOINT] end

[2014-09-03 14:48:03.791251 THREAD(15416,139856430274304)] [INFORMATION]

[SHUTDOWN-SM] CLOSE

[2014-09-03 14:48:03.791383 THREAD(15416,139856430274304)] [INFORMATION]

[SHUTDOWN-SM] POST CLOSE

[2014-09-03 14:48:03.824445 THREAD(15416,139856430274304)] [INFORMATION]

[SHUTDOWN-SM] DISMOUNT

[2014-09-03 14:48:03.824518 THREAD(15416,139856430274304)] [INFORMATION]

[EVENT] system shutdown : SUCCESS

[2014-09-03 14:48:04.267130 THREAD(15416,139856430274304)] [INFORMATION]

[SHUTDOWN-SM] INIT

If \shutdown abort forcibly stopped the server, neither checkpoint, nor is normal server shutdown execute

d.

[2014-09-03 14:51:45.353154 THREAD(8989,139949509089024)] [INFORMATION]

[SHUTDOWN] skip CLOSE phase

[2014-09-03 14:51:45.678461 THREAD(8989,139949509089024)] [INFORMATION]

[SHUTDOWN] skip DISMOUNT phase

[2014-09-03 14:51:45.678696 THREAD(8989,139949509089024)] [INFORMATION]

[EVENT] system shutdown : SUCCESS

[2014-09-03 14:51:45.678928 THREAD(8989,139949509089024)] [INFORMATION]

[SHUTDOWN-SM] INIT

● The logs of master process checkpoint, log flusher, log archiving, ager, parallel IO, cleanup thread dur

ing database operation

A checkpoint reflects to disk all data files which are updated only in memory and not written to the disk y

et at checkpoint time. If it uses the parallel IO, it executes parallel IO in data file units. One unit of checkp

oint log is from '[CHECKPOINT] begin' to '[CHECKPOINT] end'.

Monitoring | 245

[IO SLAVE] is a log which is recorded by IO thread dedicated to parallel IO. '[IO SLAVE] flush data file (tab

lespace: 0, datafile: 0)' log is recorded after the data file (whose datafile id is '0' and whose tablespace id

is 0) is reflected to the disk. These data file flush logs are repeatedly recorded as many as the number of d

ata file at checkpoint time.

'[PAGE FLUSHER] flushed lsn(139039), flushed page count(9216)]' means that the reflected minimum Ls

n in the disk is 139039, and reflected pages are 9216. The last log Lsn archives redo log files which are s

maller than 139039. They record checkpoint log and control file, then stores them in the disk.

If a database is large its checkpoint time will be longer. Check if the datafile is continuously being recorde

d by tracking [IO SLAVE] logs. And if disk IO does not operate and stops, then check if log archiving is in

progress. If the space is insufficient , then spare the space and ensure the log archiving proceed normally.

If checkpoint fails '[CHECKPOINT] CHECKPOINT was failed' log will be recorded. The checkpoint can be s

pecially omitted at checkpoint time due to the log file switch, where '[CHECKPOINT] CHECKPOINT was sk

ipped' log might be recorded.

[2014-09-12 15:54:59.654427 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] begin

[2014-09-12 15:54:59.654798 THREAD(13780,140493029623552)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 0, datafile : 0)

[2014-09-12 15:54:59.835173 THREAD(13780,140493029623552)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 1, datafile : 0)

[2014-09-12 15:54:59.893991 THREAD(13780,140493029623552)] [INFORMATION]

[IO SLAVE] flush datafile (tablespace : 2, datafile : 0)

[2014-09-12 15:54:59.926753 THREAD(13780,140493050603264)] [INFORMATION]

[PAGE FLUSHER] flushed lsn(138895), flushed page count(9216)]

[2014-09-12 15:54:59.926989 THREAD(13780,140492777965312)] [INFORMATION]

[ARCHIVING] stable lsn(139039)

[2014-09-12 15:54:59.933780 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] begin - checkpoint lid(0,55527,13), checkpoint lsn(139040), oldest lsn(139040)

[2014-09-12 15:54:59.933825 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] body - checkpoint lid(0,55527,77), checkpoint lsn(139041), active transaction

count(1)

[2014-09-12 15:54:59.933844 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] end - checkpoint lid(0,55527,155), checkpoint lsn(139042)

[2014-09-12 15:54:59.933859 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] flush redo log

[2014-09-12 15:54:59.936154 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] save control file

[2014-09-12 15:54:59.942850 THREAD(13780,140493515450112)] [INFORMATION]

[CHECKPOINT] end

246 | Basic Management of GOLDILOCKS Database

Log flusher records the system log when the log buffer stops flushing to disk, and when it restarts the sto

pped flusher. If the next log group is not reusable log file, the logging stops until it becomes reusable. Th

e following describes an example when the logging is stopped because the redo log file of which sequen

ce number is 34 has not been archived.

[2014-09-12 16:01:57.514303 THREAD(13780,140573333325568)] [INFORMATION]

[LOG FLUSHER] disable logging - blocked lfsn(34)

If the logging stops, then the transaction stops, so an immediate action is needed. When checkpoint is ex

ecuted and archiving is done, the logging will restarts.

[2014-09-12 16:01:58.079236 THREAD(13780,140380267869952)] [INFORMATION]

[ARCHIVING] enable logging - blocked lfsn(34), inactivated lfsn(34)

Log archiving thread archives the redo log file of ACTIVE state, and it records the system log. One unit is f

rom '[ARCHIVING] stable lsn(...)' to '[ARCHIVING] inactivate group ...'. If database is operated in archive l

og mode, the redo file archiving log(from'[ARCHIVELOG BEGIN] ...' to '[ARCHIVELOG END] ...') is record

ed.

[2014-09-02 17:41:56.762950 THREAD(20800,140129584793344)] [INFORMATION]

[ARCHIVING] stable lsn(144143)

[2014-09-02 17:41:56.763549 THREAD(20800,140129584793344)] [INFORMATION]

[ARCHIVELOG BEGIN] LOG(/goldilocks_data/wal/redo_0_0.log(8)) =>

ARCHIVE(/goldilocks_data/archive_log/archive_8.log)

[2014-09-02 17:41:57.385936 THREAD(20800,140129584793344)] [INFORMATION]

[ARCHIVELOG END] (/goldilocks_data/archive_log/archive_8.log) : SUCCESS

[2014-09-02 17:41:57.385987 THREAD(20800,140129584793344)] [INFORMATION]

[ARCHIVING] inactivate group #0(8)

If the log 'Archiving was failed - ...' outputs after the log '[ARCHIVELOG BEGIN] ...' ,, then log archiving is

failed. This failure should be immediately resolved in order that the service will be enabled by reusing the

redo log file in active state.

The table whose ager is dropped and the aging information for the tablespace will be recorded as follows.

When dropping the table, the table lock is also deleted, and the table scn information, scn which is able t

o aging at aging time and the aging information of table lock will be recorded. If a table has an index, it

will be deleted when dropping the table.

[2014-09-03 12:13:56.539971 THREAD(5225,139821699815168)] [INFORMATION]

[AGER] aging index - object scn(224), type(0), physical id(22634477649920)

[2014-09-03 12:13:56.540388 THREAD(5225,139821699815168)] [INFORMATION]

[AGER] aging table - object scn(224), object view scn(225), type(0), physical

Monitoring | 247

id(22630182682624)

[2014-09-03 12:13:56.540491 THREAD(5225,139821699815168)] [INFORMATION]

[AGER] aging lock item - object scn(226), agable stmt scn(228), physical id(22630182682624)

When deleting a tablespace, tablespace scn, aging available scn at aging time and dropped tablespace id

are recorded.

[2014-09-03 12:13:56.540553 THREAD(5225,139821699815168)] [INFORMATION]

[AGER] aging tablespace - object scn(224), object view scn(227), tablespace id(5)

The cleanup thread records the information about abnormally terminated session as follows. Even when

a user session is abnormally terminated, the resources of the session is cleaned up, so the database instan

ce or other users continue to operate.

[2014-09-03 13:43:02.220139 THREAD(7768,140298504156928)] [WARNING]

[CLEANUP] snipe at zombie session - pid(7766), thread(139967223228160), program(gsql)

[2014-09-03 13:43:02.220211 THREAD(7768,140298504156928)] [WARNING]

[CLEANUP] cleaning session - env(3), session(4), transaction(FFFFFFFFFFFFFFFF), program(gsql),

pid(7766), thread(139967223228160)

[2014-09-03 13:43:02.220270 THREAD(7768,140298504156928)] [WARNING]

[CLEANUP] cleaning up 1 sessions

● Log of creating, dropping, altering tablespace by a user

The system log records the operations of creating, deleting, updating of a user tablespace. Tablespace rel

ated to DDL is recorded by default, regardless of TRACE_DDL ON/OFF. DDL failure will not be recorded in

the system log. Therefore, a user should operate the system by setting TRACE_DDL to ON in order to figu

re out more details about DDL log and the causes of its failure.

[2014-09-15 10:26:41.649909 THREAD(24881,140468897289984)] [INFORMATION]

[TABLESPACE] Create Tablespace(7)

[2014-09-15 10:26:55.966385 THREAD(24881,140468897289984)] [INFORMATION]

[DATAFILE] add datafile(/home/zkyungoh/work/product/Gliese/home/db/TEST1.dbf)

[2014-09-15 10:27:11.325897 THREAD(24881,140468897289984)] [INFORMATION]

[DATAFILE] Drop Datafile(/home/zkyungoh/work/product/Gliese/home/db/TEST1.dbf)

...

[2014-09-15 10:32:00.669550 THREAD(24881,140468897289984)] [INFORMATION]

[TABLESPACE] drop tablespace (7)

● System internal error and index creation failure log

An internal error occurs when GOLDILOCKS database system error occurs but the exact cause of the failu

248 | Basic Management of GOLDILOCKS Database

re can not be defined. If an internal error occurs, the SQL statement which raised the error is rolled back.

The service is continuously available because the error does not affect the system nor does other sessions.

By the way, if the error raising SQL statement is executed again, it could be failed for the same reason, or

the cause of failure could disappear and the operation could succeed. Therefore, a user should not chang

e the database at the point of failure, but should request cause analysis to find the cause.

The index creation fails if the same key index on a table exists when creating UNIQUE index. Even though

the index creation fails, it does not affect the index tables which are already created. Therefore, it does n

ot affect the service.

[2014-09-15 11:26:59.640345 THREAD(7819,140737354012416)] [INFORMATION]

Index creation failed (physical id : 22638772617216, error code : 14016)

XA Log

It records the success or failure log of start, close, end, rollback, prepare, commit, recover, forget operatio

ns of XA transaction interface for processing distributed transactions. GOLDILOCKS database does not re

cord XA trace log by default. TRACE_XA should be set to ON to record the XA trace log as follows. For m

ore information, refer to XA API References.

gSQL> alter system set trace_xa = yes;

System altered.

XA trace log is recorded in 'xa.trc' as follows. At first, executed XA interface is recorded, and then the sta

tus (complete or failed) is recorded. The information such as session id and transaction id is also recorded.

If it fails, the error code defined in XA API References is recorded.

[2014-09-15 11:45:19.599018 THREAD(7966,139931504572160)] [INFORMATION]

xa_start() complete - session(4), xid(0.3231.00), flags(0)

[2014-09-15 11:45:19.599360 THREAD(7966,139931504572160)] [INFORMATION]

xa_end() complete - session(4), xid(0.3231.00), flags(4000000)

[2014-09-15 11:45:19.599418 THREAD(7966,139931504572160)] [INFORMATION]

xa_prepare() complete - session(4), xid(0.3231.00), flags(0)

[2014-09-15 11:45:22.864563 THREAD(7966,139931504572160)] [INFORMATION]

xa_recover() complete - session(4), xid(), flags(1000000)

[2014-09-15 11:45:22.864829 THREAD(7966,139931504572160)] [INFORMATION]

xa_commit() complete - session(4), xid(0.3231.00), flags(0)

[2014-09-15 11:45:22.864887 THREAD(7966,139931504572160)] [INFORMATION]

xa_rollback() complete - session(4), xid(0.3232.00), flags(0)

[2014-09-15 11:45:22.885951 THREAD(7966,139931504572160)] [INFORMATION]

xa_forget() complete - session(4), xid(0.3230.00), flags(0)

Monitoring | 249

[2014-09-15 11:45:22.886017 THREAD(7966,139931504572160)] [INFORMATION]

xa_forget() failed - session(4), xid(0.3231.00), flags(0), xa_error(-4)

DDL Log

For all DDL (creating, dropping, altering) generated in GOLDILOCKS database, the DDL generating sessio

ns, overall SQL statements, status of success or failure are added in system log. In GOLDILOCKS database,

DDL log is not recorded by default. TRACE_DDL should be set to ON as follows to record DDL trace log.

gSQL> alter system set trace_ddl = yes;

System altered.

The followings describe an example of which DDL log is recorded when a tablespace is created using the

DDL.

gSQL> CREATE TABLESPACE TEST_TBS1

DATAFILE 'TEST_TBS1_01.dbf' SIZE 10M,

'TEST_TBS1_02.dbf' SIZE 10M,

'TEST_TBS1_03.dbf' SIZE 10M;

Tablespace created.

[2014-09-15 12:26:29.209210 THREAD(8149,140267442067200)] [INFORMATION]

[SESSION:11][DDL success] CREATE TABLESPACE TEST_TBS1

DATAFILE 'TEST_TBS1_01.dbf' SIZE 10M,

'TEST_TBS1_02.dbf' SIZE 10M,

'TEST_TBS1_03.dbf' SIZE 10M

[2014-09-15 12:26:29.209277 THREAD(8149,140267442067200)] [INFORMATION]

[SESSION:11][COMMIT with DDL]

If DDL statement fails, 'DDL failure' is recorded as follows.

gSQL> ALTER TABLESPACE TEST_TBS1 ADD DATAFILE 'TEST_TBS1_04.dbf' SIZE 10M;

ERR-42000(16130): file is already exist -

'/home/zkyungoh/work/product/Gliese/home/db/TEST_TBS1_04.dbf' :

ALTER TABLESPACE TEST_TBS1 ADD DATAFILE 'TEST_TBS1_04.dbf' SIZE 10M

*

ERROR at line 1:

[2014-09-15 12:45:08.598789 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][DDL failure] ALTER TABLESPACE TEST_TBS1 ADD DATAFILE 'TEST_TBS1_01.dbf' SIZE 10M

DDL log for table or index DDL statement is recorded in the same way. After creating a table or an index,

250 | Basic Management of GOLDILOCKS Database

the committed DDL log is as follows.

gSQL> CREATE TABLE T1 (I1 NATIVE_INTEGER) TABLESPACE TEST_TBS1;

Table created.

gSQL> CREATE INDEX T1X ON T1 (I1);

Index created.

gSQL> COMMIT;

Commit complete.

[2014-09-15 12:40:37.887952 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][DDL success] CREATE TABLE T1 (I1 NATIVE_INTEGER) TABLESPACE TEST_TBS1

[2014-09-15 12:40:47.451806 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][DDL success] CREATE INDEX T1X ON T1 (I1)

[2014-09-15 12:40:51.017975 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][COMMIT with DDL]

The following is a rollback DDL log after creating a table or an index.

[2014-09-15 12:42:27.367722 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][DDL success] CREATE TABLE T1 (I1 NATIVE_INTEGER) TABLESPACE TEST_TBS1

[2014-09-15 12:42:31.317436 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][DDL success] CREATE INDEX T1X ON T1 (I1)

[2014-09-15 12:42:34.601738 THREAD(8115,140191085913856)] [INFORMATION]

[SESSION:4][ROLLBACK with DDL]

Trace Log Replication

Replication trace log is recorded in a separate file when using GOLDILOCKS' replication tool such as CYCL

ONE and LOGMIRROR. For more information about replication trace log, refer to operating CYCLONE in

CYCLONE chapter and operating in LOGMIRROR chapter.

Listener Log

The errors and information which occurs from the startup of listener process until the end of the process

are recorded in the listener log.

Listener Log Format

The listener log is recorded in the following format.

Monitoring | 251

['log recorded date and time' THREAD('process id', 'thread handle')]

['log prefix'] 'log body'

● 'log record date and time' is the date and time of the recorded log.

● THREAD ('process Id', 'thread handle') is the information of log process id and thread handle.

● 'log prefix' is the entity or feature which created the log, and 'log body' is the detailed information.

Monitoring Performance Using View

Concurrency control for multi-user is needed because database is accessed or updated by multiple users a

t the same time. The concurrency should be provided for system data and shared resources as well as exp

licit data by SQL statements. GOLDILOCKS controls the concurrency using latch.

The concurrency control using lock can cause a deadlock when same data is updated by multiple differen

t transactions. The concurrency control using latch (supported by GOLDILOCKS) can cause a deadlock, to

o. It is because the deadlock affects the performance, so a view is provided to handle the latch when a de

adlock occurs.

The transactions generating the deadlock will be found when using V$LOCK_WAIT. Then, the administra

tor should monitor them, and unlock the deadlock. For more information about V$LOCK_WAIT, refer to

V$LOCK_WAIT. For more information for monitoring latch item causing the deadlock, refer to V$LATCH.

Structure and Storage Structure of
GOLDILOCKS Database

6.

253

254 | Structure and Storage Structure of GOLDILOCKS Database

6.1 Managing Control File

A database instance should be created to use GOLDILOCKS database, and the control file is created whe

n creating a database instance. The information is written on the control file when GOLDILOCKS multilev

el startup moves from nomount level to mount level. The absolute path and the size of the file to be used

in database are recognized by using the recorded information on the control file. The control file is a bina

ry file and database information is stored as follows.

Control File Contents

Table 6-1 GOLDILOCKS database system information

Item Description

Data store mode It stores mode which is set when database starts up. (TDS, CDS)

Server state
It is the database instance state. (NONE, RECOVERED, RECOVERING, SERVICE, SHUTDOWN

)

Last checkpoint lsn It is the LSN of the checkpoint which was executed last in the database.

Table 6-2 Log information

Item Description

Checkpoint lid, lsn
It is the log information (LSN, log position) of the checkpoint which was e

xecuted last in the database.

Last inactivated log file sequence It is the log file sequence which was changed to inactive last.

Archivelog mode It is the archivelog mode of the database in operation.

Creation time It is the database created time.

Database information stores information about database operating, all tablespace in use, and data. The d

atabase operating information stored in the control file is as follows.

Table 6-3 Database information

Item Description

Transaction table size It is the maximum number of using transaction table in database.

Undo relation count It is the number of using undo relations in database.

Tablespace count It is the number of tablespaces in use created in database.

New tablespace id It is the tablespace ID to be created later.

Tablespace information is stored in the control file as follows.

Managing Control File | 255

Table 6-4 Tablespace information

Item Description

Tablespace id It is a unique tablespace ID.

Attributes
It is the attribute of a tablespace such as storage device (memory, disk), persistence at

tribute (temporary, persistent), tablespace usage (dictionary, undo, data, temporary).

Page count in extent It is the number of extent pages.

State It is the tablespace status. (CREATING, CREATED, DROPPING, DROPPED, AGING)

Relation id It is the relation ID to store pending operation of tablespace.

New data file id It is the data file ID which is set when new data file is inserted to tablespace.

Is logging It is the logging mode of a tablespace. (LOGGING, NOLOGGING)

Is online It is the online or offline status of a tablespace. (ONLINE, OFFLINE)

Data file count It is the number of data files used by a tablespace.

Offline lsn
It is the last LSN which executes recovery if needed, in order to shift offline tablespace

to online.

Offline state

It is the status of offline tablespace. (CONSISTENT, INCONSISTENT)

CONSISTENT offline tablespace does not have to be recovered when shifting the statu

s to online. It is because the tablespace status is shifted to offline after the most recen

t data in memory is stored to disk. On the other hand, INCONSISTENT offline tablespa

ce executes recovery using the log when shifting to online.

Data file information is stored in the control file as follows.

Table 6-5 Data file information

Item Description

Name It is the data file name including the absolute path which stores data.

State It is the data file status. (CREATING, CREATED, DROPPING, DROPPED, AGING)

Data file id It is the unique data file ID in a tablespace.

Auto extend It is whether to extended automatically or not when a data file is full.

Size It is the data file size.

Next size It is the size to be extend when a data file is full.

Max size It is the maximum size of extendable data file.

Timestamp It is the time when data file was created.

Checkpoint lsn, lid
It is the checkpoint log information when the last checkpoint is executed in the data file. (LS

N, log position)

Creation lsn, lid It is the checkpoint log information of when a data file is created. (LSN, log position)

It stores each incremental backup information operated in the database. GOLDILOCKS database supports

the incremental backup for database and tablespaces, and the incremental backup information is stored i

n the control file as follows.

256 | Structure and Storage Structure of GOLDILOCKS Database

Table 6-6 Incremental backup information

Item Description

Backup lsn, lid
It is the checkpoint log information which was executed last at the beginning of back

up. (LSN, log position)

Begin time It is the incremental backup beginning time.

Completion time It is the incremental backup completion time.

Tablespace id

It is the unique tablespace ID of which an incremental backup is executed.

If incremental backup for a tablespace is executed, its tablespace ID is recorded. If the

backup is not executed for a tablespace, then the maximum tablespace ID (65535) is

recorded.

Level It is the level of executed incremental backup.

Object type It is the target of incremental backup. (database, control file, tablespace)

Backup file name It is the name of the incremental backup file.

Backup option It is the incremental backup option. (cumulative, differential)

Multiplexing Control File

The control file stores the physical structure of GOLDILOCKS database and the information about data co

nsistency. If the control file is corrupted or deleted by mistake, it is not possible to operate database.

Therefore, GOLDILOCKS database recommends creating at least two or more control files and keep them

in physically separated disks. GOLDILOCKS supports multiplexing up to 8. To add control files when creati

ng a database, set the number of multiplexing control files in the property file, and set the path of each c

ontrol file. To add control files when operating database, increase the property value for control file multi

plexing, and add the control file paths.

Restoring Corrupted Control File

If a control file is corrupted due to database's abnormal termination, the corrupted control file is restored

using a normal control file among multiplexed control files, and then it is restarted.

If all multiplexed control files are corrupted, the backup control file is restored, and the incomplete media

recovery is executed for archive redo log files and redo log files, and then it is restarted. For more informa

tion about incomplete recovery using the backup control file, refer to When all multiplexed control files ar

e corrupted in recovery examples.

Managing Control File | 257

Control File Information

A user can enquire the control file name by using V$CONTROLFILE which is the performance view to retri

eve the location and the name of the control file as follows.

gSQL> SELECT CONTROLFILE_NAME FROM V$CONTROLFILE;

CONTROLFILE_NAME

/goldilocks_data/wal/control_0.ctl

/goldilocks_data/wal/control_1.ctl

2 rows selected.

A user can retrieve the correct information written in the control file using gdump the dump tool of GOL

DILOCKS.

258 | Structure and Storage Structure of GOLDILOCKS Database

6.2 Managing Redo Log File

GOLDILOCKS uses the redo log files to ensure database persistency. In other words, the database can be

restored to the state before shutdown database using the redo log files and data files when GOLDILOCKS

database is abnormally terminated due to various reasons.

In order to do so, GOLDILOCKS database uses Write Ahead Logging (WAL) policy to store log of all updat

e operations.

The updated data by the update operation is not recorded in the data file, but the log for the update ope

ration is recorded in the redo log file. It is because it is much more efficient in the terms of database perfo

rmance. Whenever each update operation is recorded in the data file, a random access occurs and the up

date operations for the same file causes the excessive disk IO. However, the update log is smaller than th

e updated data, and it performs the efficient disk IO in a way being appended at the end of log file.

GOLDILOCKS database uses log buffer in shared memory to record the updated logs to the log buffer, an

d then records log buffer to the log file all together, and it leads to more efficient disk IO.

Redo Log File Structure

The redo log buffer and log file in GOLDILOCKS have a circular structure. The log files are created as man

y as predefined number of log groups, and then they record logs. If a log file is full, the following log file i

s used. When all log files are used up, the previously used log file is reused. The log file is a circular struct

ure consisting of a single log group of several members. GOLDILOCKS performs the logging using minim

um four log groups.

Figure 1 GOLDILOCKS redo log file, log buffer structure

Managing Redo Log File | 259

Redo Log Group and Its Member

GOLDILOCKS database uses a log group and members to record logs to the disk log file during database

operation. A single redo log file is a member of a log group, and a log group consists of several log mem

bers. Log group which consists of many members ensures high availability because other log members ca

n be used when a particular disk fails or a particular log member is corrupted.

The system records logs to a log group, and if the log group is full, the following group is used. This is a ci

rcular log group. The currently used log group shifts to the following log group one and this is called as lo

g switching.

A log group, the number of members and each of its position are set by the property when creating data

base. They can be altered by adding or dropping syntax when operating database.

Log Group State

The state of log group is initialized to UNUSED when creating it. It is changed to CURRENT, ACTIVE, and I

NACTIVE state by the system during operation.

Table 6-7 GOLDILOCKS log group state

Log group state Description

UNUSED The log group has never been used after creation.

CURRENT The log group is being used by the current system.

ACTIVE It is not yet ready to be reused after CURRENT log group is switched.

INACTIVE ACTIVE state log group is ready to be reused.

ACTIVE log group can not be reused in the system, but it can be reused after it is changed to INACTIVE by

archive log thread. Archive log thread wakes up by an event before the checkpoint is completed, and it c

hanges ACTIVE log groups to INACTIVE state. In order to do so, log archiving thread archives log file in A

CTIVE log group, then change it to INACTIVE when the system is operated in ARCHIVELOG mode. If the s

ystem is operated in NOARCHIVELOG mode, then the ACTIVE log group is immediately reusable after cha

nging the log group state to INACTIVE.

Adding Log Group and Log Member

Adding Log Group

Adding log group is allowed only in mount phase of GOLDILOCKS database multilevel startup. The new l

og group is added next to the CURRENT state of the log group which is currently being used.

The following is an example to add a new log group whose file name is 'abc.log', and file size is 20 Mbyt

es to group ID 10.

260 | Structure and Storage Structure of GOLDILOCKS Database

ALTER DATABASE ADD LOGFILE GROUP 10 ('abc.log') SIZE 20M;

Adding Log Member

A new log member can be added for the stability of log group in use. It can be added in mount phase of

GOLDILOCKS database multilevel startup in the same way of adding log group. The following is an exam

ple to add the log file named as 'test log' to group ID 10. The log file size is not specified because the log

member size in a log group is same.

ALTER DATABASE ADD LOGFILE MEMBER 'test.log' TO GROUP 10;

Altering Log Member Name

The position and the file name of the log member in use can be altered by executing RENAME in mount

phase. RENAME is executed for log member when the log member's disk is physically failed or the log me

mber should be transferred to another disk in terms of performance.

The following is an example to RENAME the log file '/disk1/goldilocks_data/wal/redo_0_0.log' to the log

file '/disk2/goldilocks_data/wal/redo_0_0.log'.

ALTER DATABASE RENAME LOGFILE '/disk1/GOLDILOCKS_data/wal/redo_0_0.log' TO

'/disk2/GOLDILOCKS_data/wal/redo_0_0.log';

Dropping Log Group or Log Member

A log member or log group in use can be dropped in mount phase when a user wants to reduce log grou

ps, log members or when log file disk is failed.

The following is an example to drop all members of log group ID 10.

ALTER DATABASE DROP LOGFILE GROUP 10;

Dropping log member is allowed only when at least two members exist in the log group.

The following is an example to drop the '/disk1/goldilocks_data/wal/redo_0_0.log' log member.

ALTER DATABASE DROP LOGFILE MEMBER '/disk1/GOLDILOCKS_data/wal/redo_0_0.log';

Restoring Corrupted Redo Log File

If the system fails and the redo log files are corrupted, then the restart recovery fails and the system can n

ot be operated. If normal log members exist in the corrupted log group, the restart recovery and the syste

Managing Redo Log File | 261

m operation can be executed by copying the log file of the normal log member to the corrupted log files.

If all log files in a log group are corrupted or there is only one log member, it can be restarted by executin

g incomplete media recovery. The incomplete media recovery is restricted to the normal log file.

For more information about incomplete media recovery, refer to Incomplete Recovery.

Redo Log File Information

A user can enquire V$LOGFILE which is a performance view to retrieve the location and the name of the r

edo log files. When inquiring V$LOGFILE, the log file name, its log group ID, its state, the file size are retri

eved as follows.

gSQL> SELECT FILE_NAME, GROUP_ID, GROUP_STATE, FILE_SIZE FROM V$LOGFILE;

FILE_NAME GROUP_ID GROUP_STATE FILE_SIZE

---------------------------------- -------- ----------- ---------

/disk1/goldilocks_data/wal/redo_0_0.log 0 INACTIVE 104857600

/disk1/goldilocks_data/wal/redo_1_0.log 1 CURRENT 104857600

/disk1/goldilocks_data/wal/redo_2_0.log 2 UNUSED 104857600

/disk1/goldilocks_data/wal/redo_3_0.log 3 UNUSED 104857600

4 rows selected.

262 | Structure and Storage Structure of GOLDILOCKS Database

6.3 Managing Archive Redo Log File

The database should be operated in archive log mode for media recovery using backup, because GOLDIL

OCKS redo log file reuses log group which is used when circular structure log group is used. Then the wri

tten completed redo log files are copied to the archive redo log files.

For more information about GOLDILOCKS database's archive log mode, refer to ARCHIVELOG Mode .

Creating Archive Redo Log File

The redo log file is copied to archive redo log file directory by log archiving thread which is GOLDILOCKS

database's system thread. Log archiving thread is activated by checkpoint thread during checkpoint, and i

t archives the proper object among redo log files.

Archive redo log file is created in the directory set by the ARCHIVELOG_DIR_ 1 property. The name of arc

hive redo log file is composed of its prefix set by the ARCHIVELOG_FILE property and of the sequence nu

mber of each redo log file.

Maintaining and Dropping Archive Redo Log File

Media recovery using backup can fail if archive redo log files, similarly to the redo log files, are arbitrarily

dropped. Therefore, archive redo log files should be saved with backup files, and the archive redo log file

s for media backup can be dropped when the backup file is not needed any more.

Backup is copying the data file which is downloaded to the disk by the most recent checkpoint. Therefore,

the archive log files of the oldest LSN and later are needed to recover media using backup. Checkpoint is

executed by the system when redo log file is switched, so one or more checkpoint logs exist in every log fi

le except for the redo file in CURRENT state.

The followings describe how to get the archive redo log file required for media recovery using backup file.

1. Get the checkpoint LSN which is recorded in the file header of backup data files.

2. Dump the archive redo log file, and get the archive redo log file including checkpoint LSN.

3. The archive redo log file needed for the media recovery using backup begins just before the archive r

edo log file of No. 2.

Dump the control file and get the checkpoint LSN to get the archive redo log file needed for incremental

backup. Subsequent process is as same as the entire backup process.

If backup files are not needed any more, the archive redo log file required for the media recovery using ba

Managing Archive Redo Log File | 263

ckup can be removed.

Multiplexing Archive Redo Log File Directory

If the archive redo log file is moved from the directory set in ARCHIVELOG_DIR_1 to the other directory o

r media to preserve the archive redo log file, the media recovery fails because it can not find the required

archive redo log file.

Move the archive redo log file back to the directory set in ARCHIVELOG_DIR_1 to resolve this problem. Or

set the archive log files existing directory to ARCHIVELOG_DIR_2 ~ ARCHIVELOG_DIR_10, and add archiv

e redo file directory for media recovery. READABLE_ARCHIVELOG_DIR_COUNT should be set as many as

the number of directory when using ARCHIVELOG_DIR_2 ~ ARCHIVELOG_DIR_10 for the media recovery.

264 | Structure and Storage Structure of GOLDILOCKS Database

6.4 Managing Tablespace

All the data used in database are stored in physical disk file, and use the database's logical structure for ef

ficient data management and performance. GOLDILOCKS manages the disk space efficiently by using the

logical structure such as tablespace, segment, extent, and page.

A tablespace can include multiple data files, and each tablespace is set to online/offline to support high d

ata availability. Distributing data storing disks improves the IO performance, and reduces the contention

of physical disk IO.

Tablespace Type

GOLDILOCKS tablespace is divided into SYSTEM tablespace and non-SYSTEM tablespace. SYSTEM tables

pace is created when database is created, and it is used and controlled only by the GOLDILOCKS system.

Non-SYSTEM tablespace is created and used by a user.

SYSTEM Tablespace

It is created when GOLDILOCKS database is created, and it is essential for database operation. There are

dictionary tablespace, undo tablespace and system temporary tablespace.

Non-SYSTEM Tablespace

It is a tablespace in which tables and indexes are stored for data storing, and a user can arbitrarily creates

or drops.

Managing Tablespace and Data File

Managing Tablespace

Managing Tablespace State

The GOLDILOCKS database tablespace state is divided into online and offline. The offline tablespace is no

t accessible. A user can arbitrarily set the tablespace state to offline. Or, an abnormal tablespace can be s

et to offline by the system. The system tablespace should not be set to offline.

● Offline tablespace

Managing Tablespace | 265

GOLDILOCKS database flushes all data files in the tablespace to disk before the tablespace is set to offline.

All related logs should be flushed to disk to flush data file. Therefore, a recovery is not needed when swit

ching to online later. However, it is applied when DDLs occurred in the offline tablespace state is changed

to online state.

A tablespace can be immediately set to offline using IMMEDIATE mode, without flushing data file. In this

case, the tablespace state is changed to online after media recovery when setting the tablespace to onlin

e.

Table 6-8 Tablespace offline option

Option Description
Media recovery when setting

the tablespace to online

NORMAL
Flushing all the data file related logs in tablespace to the

disk, then set it to offline
Media recovery is not required.

IMMEDIATE Immediately setting a tablespace to offline Media recovery is required.

GOLDILOCKS can set tablespace to offline in mount phase. To do so, the service should be normally termi

nated, or the server should be operated in ARCHIVELOG mode. This method provides high availability by

performing service excluding the unrecoverable tablespaces when starts up database.

gSQL> ALTER TABLESPACE TEST_TBS OFFLINE;

Tablespace altered.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

Tablespace altered.

gSQL> ALTER TABLESPACE TEST_TBS OFFLINE IMMEDIATE;

Tablespace altered.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

ERR-42000(14051): media recovery required - 'TEST_TBS'

gSQL> ALTER DATABASE RECOVER TABLESPACE TEST_TBS;

Database altered.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

266 | Structure and Storage Structure of GOLDILOCKS Database

Tablespace altered.

Attributes of Tablespace

The followings are attributes of tablespace in GOLDILOCKS database. PERSISTENT or TEMPORARY indicat

es whether persistence is ensured or not. DATA or UNDO indicates the type of tablespace and stored dat

a.

Table 6-9 Tablespace attributes of GOLDILOCKS database

Attributes Description

Persistence
PERSISTENT

It supports persistence of data stored in a tablespace. (A recovery is require

d.)

TEMPORARY It does not support persistence of data stored in a tablespace.

Type of stored dat

a

DATA It stores the user input data.

UNDO It stores data required for MVCC of database.

DICT It stores dictionary information for database operation.

TEMPORARY It stores data for SQL processing.

Managing Tablespace

● Creating user tablespace

It creates a new user tablespace. The name of tablespace being used in the database instance should be

unique when creating tablespace. A tablespace can have up to 1024 data files, and the size of each data

file can be up to 30 GBytes. The database can create tablespaces up to 65,535, including system tablespa

ce.

The data file name including the absolute path in the data file should be unique. Use 'REUSE' option to re

use the existing data file which is not being used in database. An extent size of a tablespace is selectable

among 64 Kbytes, 128 Kbytes, 256 Kbytes, 512 Kbytes and 1 Mbyte, and the default extent size is 256 K

bytes.

gSQL> CREATE TABLESPACE TEST_TBS DATAFILE

'/goldilocks1/db/TEST_TBS1.dbf' SIZE 20M,

'/goldilocks2/db/TEST_TBS2.dbf' SIZE 50M,

'/goldilocks3/db/TEST_TBS3.dbf' SIZE 100M REUSE;

Tablespace created.

The state can be set to ONLINE/OFFLINE when creating tablespace, and the LOGGING/NOLOGGING prop

erty also can be set.

● Dropping tablespace

Managing Tablespace | 267

The tablespace and data file can be dropped when the tablespace is not needed any more. The unused ta

blespace should be dropped not to waste the resources. It is because once tablespace is created, the add

ed disk data file and memory is created and remains.

gSQL> DROP TABLESPACE TEST_TBS;

Tablespace dropped.

Dropping the tablespace does not drop its table index in use by default. Therefore, INCLUDING CONTENT

S option should be used together when dropping tablespace including tables or indexes in use.

gSQL> DROP TABLESPACE TEST_TBS;

ERR-42000(16148): tablespace not empty, use INCLUDING CONTENTS option :

drop tablespace TEST_TBS

*

ERROR at line 1:

gSQL> DROP TABLESPACE TEST_TBS INCLUDING CONTENTS;

Tablespace dropped.

Use AND DATAFILES option to drop the data files added in the tablespace.

gSQL> DROP TABLESPACE TEST_TBS INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

● Altering tablespace size

Add datafiles to the tablespace or drop datafiles from the tablespace to alter the tablespace size. Add ne

w datafiles to tablespace to spare space when the storing space is not enough during database operation.

Or, drop unused datafile from tablespace not to waste the space.

gSQL> ALTER TABLESPACE TEST_TBS ADD DATAFILE 'TEST_TBS2.dbf' SIZE 20M;

Tablespace altered.

gSQL> ALTER TABLESPACE TEST_TBS DROP DATAFILE 'TEST_TBS2.dbf;

Tablespace altered.

The data file could be dropped from tablespace only when is has never been used since its creation. The d

ata file can not be dropped once it has been used even when all data was dropped.

ALTER TABLESPACE TEST_TBS DROP DATAFILE 'TEST_TBS2.dbf';

ERR-42000(14044): datafile not empty

● Managing temporary tablespace

Temporary tablespace does not store data file, but it allocates memory of specified size. Create the tempo

268 | Structure and Storage Structure of GOLDILOCKS Database

rary tablespace as follows.

gSQL> CREATE TEMPORARY TABLESPACE TEST_TBS MEMORY 'TEST_TEMP_TBS' SIZE 10M EXTSIZE 256K;

Tablespace created.

Add memory to the temporary tablespace as follows.

gSQL> ALTER TABLESPACE TEST_TBS ADD MEMORY 'TEST_TBS2' SIZE 10M;

Tablespace altered.

Drop the unused memory from the temporary tablespace as follows.

gSQL> ALTER TABLESPACE TEST_TBS DROP MEMORY 'TEST_TBS2';

Tablespace altered.

Drop the temporary tablespace as follows.

gSQL> DROP TABLESPACE TEST_TBS INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

Transferring Data File

The data file storage path stored in the database should be modified when altering the datafile storage di

sk, or directory.

The following is an example to describe how to modify the path when transferring the datafile '/goldilock

s1/db/TEST_TBS1.dbf' in tablespace TEST_TBS to '/goldilocks4/db/TEST_TBS1.dbf'.

gSQL> ALTER TABLESPACE TEST_TBS RENAME DATAFILE

'/goldilocks1/db/TEST_TBS1.dbf' TO '/goldilocks4/db/TEST_TBS1.dbf';

Tablespace altered.

Tablespace Information

For more information about the tablespaces created in database, refer to V$TABLESPACE.

gSQL> \DESC V$TABLESPACE

COLUMN_NAME TYPE IS_NULLABLE

------------- ---------------------- -----------

TBS_NAME CHARACTER VARYING(128) FALSE

TBS_ID NUMBER FALSE

TBS_ATTR CHARACTER VARYING(128) FALSE

IS_LOGGING BOOLEAN FALSE

Managing Tablespace | 269

IS_ONLINE BOOLEAN FALSE

OFFLINE_STATE CHARACTER VARYING(32) FALSE

EXTENT_SIZE NUMBER FALSE

PAGE_SIZE NUMBER FALSE

270 | Structure and Storage Structure of GOLDILOCKS Database

6.5 Managing Data File

Data File Matching

Data file can be corrupted due to disk failure, database defects or human error. If the corrupted data file i

s used in database, serious problems occurs.

GOLDILOCKS database ensures the matching of the data file using a checksum for each page of the data

file. GOLDILOCKS database's page checksum is generated using LSN and CRC value, and it is stored in ea

ch page. A user sets the page checksum type using the value in PAGE_CHECKSUM_TYPE, and uses LSN f

or the default value.

The page checksum is checked when loading the data file into the memory at database startup. If an erro

r occurs concerning the checksum value, the database can not start up the service.

The following is an example to describe the database startup failure when the datafile TEST_TBS.dbf in th

e tablespace TEST_TBS created by a user is not matching.

gSQL> \STARTUP MOUNT

Startup success

gSQL> ALTER SYSTEM OPEN DATABASE;

ERR-HY000(14094): datafile recovery required - datafile(/goldilocks/db/TEST_TBS.dbf) of

tablespace(TEST_TBS) corrupted

In case when the data file is not matching, set its tablespace having the data file to OFFLINE, or recover th

e data file to restart the database.

The following describes how to start up the database after setting the tablespace to OFFLINE.

gSQL> \STARTUP MOUNT

Startup success

gSQL> ALTER SYSTEM OPEN DATABASE;

ERR-HY000(14094): datafile recovery required - datafile(/goldilocks/db/TEST_TBS.dbf) of

tablespace(TEST_TBS) corrupted

gSQL> ALTER TABLESPACE TEST_TBS OFFLINE IMMEDIATE;

Tablespace altered.

gSQL> ALTER SYSTEM OPEN DATABASE;

System altered.

Data file full backup or incremental backup should exist when recovering the data file.

The following describes how to recover the data file when backup exists.

Managing Data File | 271

gSQL> \STARTUP MOUNT

Startup success

gSQL> ALTER SYSTEM OPEN DATABASE;

ERR-HY000(14094): datafile recovery required - datafile(/goldilocks/db/TEST_TBS.dbf) of

tablespace(TEST_TBS) corrupted

gSQL> ALTER DATABASE RECOVER DATAFILE 'TEST_TBS.dbf' CORRUPTION;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE;

System altered.

Data File Information

For more information about data files being used in database, refer to V$DATAFILE.

gSQL> \DESC V$DATAFILE

COLUMN_NAME TYPE IS_NULLABLE

-------------- ------------------------------ -----------

TBS_NAME CHARACTER VARYING(128) FALSE

DATAFILE_NAME CHARACTER VARYING(1024) FALSE

CHECKPOINT_LSN NUMBER FALSE

CREATION_TIME TIMESTAMP(2) WITHOUT TIME ZONE FALSE

FILE_SIZE NUMBER FALSE

Backup and Recovery of GOLDILOCKS
Database

7.

273

274 | Backup and Recovery of GOLDILOCKS Database

This chapter describes GOLDILOCKS database backup and recovery, database ARCHIVELOG mode for the

backup and recovery.

7.1 ARCHIVELOG Mode

GOLDILOCKS database executes logging using circular log group. A circular log group consists of at least

four log groups, and if all log allocated to a log group are run out, then following log group is used. If all

created log groups are run out, the first log group is reused. In this case, the new log file is not created b

ut the previously recorded log file is reused.

The previously written logs are lost if a log group is reused in NOARCHIVELOG mode. Therefore, if an ad

ministrator does not manage the completed logging group, the completed transactions logs disappears

while operating in NOARCHIVELOG mode.

On the other hand, in ARCHIVELOG mode, the system archives log files prior to reusing it when using the

following log groups after the completion of recording on log file in a log group. Then the completed log

s are permanently preserved unless they are deliberately deleted.

ACHIVELOG Mode

Log files should be archived before they are reused. It is because all log files after backup moment is requi

red for the recovery using backup, and the backup could be needed anytime. Therefore, the backup is su

pported only in ARCHIVELOG mode.

The service can be interrupted in busy system due to archiving when operating in ARCHIVELOG mode. Al

so, an additional space is needed to store files.

NOARCHIVELOG Mode

Backup is not supported in NOARCHIVELOG mode, because it can not be determined if the log files of be

fore reusing exist.

However, system does not archive log files. Therefore, the interruption due to an archiving at checkpoint

when bulk logs are continuously being recorded does not occur. Also, it does not need a storage space fo

r archive log files.

NOARCHIIVELOG mode is set by the 'ARCHIVELOG_MODE' property value when creating database. Data

ARCHIVELOG Mode | 275

base is created in NOARCHIIVELOG mode if the 'ARCHIVELOG_MODE' value is 0, and it is created in ARC

HIIVELOG mode when the 'ARCHIVELOG_MODE' value is 1. This property is valid only when creating dat

abase, and it is not referenced when operating database.

Execute the following syntax in mount phase of GOLDILOCKS database startup level to change ARCHIVEL

OG mode during database operation.

gSQL> ALTER DATABASE ARCHIVELOG;

Database altered.

gSQL> ALTER DATABASE NOARCHIVELOG;

Database altered.

Enquire ARCHIVELOG_MODE of V$ARCHIVELOG which is the performance view to retrieve archive log m

ode set in database.

gSQL> SELECT ARCHIVELOG_MODE FROM V$ARCHIVELOG;

ARCHIVELOG_MODE

NOARCHIVELOG

1 row selected.

276 | Backup and Recovery of GOLDILOCKS Database

7.2 Backup and Recovery

Backup

The Purpose of Backup and Recovery

Database can protect and recover data when various failures or data loss occurs. There are many reasons

for failures. The duplicated copy is required especially when the database is physically corrupted or dama

ged by disaster, and this is called as backup.

When database service is not available due to various failures, it becomes available again by using current

database or backup, and this is called as recovery. The restart recovery is to recover by using the current d

atabase. The media recovery is to recover by using the backup. GOLDILOCKS automatically or manually p

erforms the media recovery to recover the backup data file, then recover and restarts by the restart recov

ery.

Backup

Database backup is divided into physical backup and logical backup. Generally, backup means making co

py of data files online. This chapter describes the online physical backup.

Table 7-1 Database backup type

Backup type Backup form Database state Description

Physical backup

Cold backup Offline
Creating the copy of data file

Stopping service to execute backup

Hot backup Online

Creating the copy of data file

Executing backup during service operation

Available only in ARCHIVELOG mode

Logical backup Export backup Online
Backup/recovery in table unit

Exporting regardless of HW/OS

GOLDILOCKS uses data files and control files for executing service, and they should be recovered when th

ey were corrupted from a failure. A control file is created when creating database, and stores necessary in

formation to operate database. A data file stores actual data, and they are data files in system tablespace

s created when database is created and datafiles in user made tablespace. Use backup files for recovery w

hen some of those control files or data files are corrupted.

In other words, control files and data files should be backed up for recovery. In order to do so, GOLDILOC

KS supports control file backup, database backup, and tablespace backup.

Depending on the backup method, it is divided into full backups and incremental backups. Full backup co

Backup and Recovery | 277

pies data files in time of backup, and an incremental backup copies only modified parts since the previous

backup. The full backup copies data files, so the copy as big as the data file is created everytime of backu

p. Therefore, it consumes the storage space as much as the size of database or tablespace.

On the other hand, the size of the incremental backup is relatively small because it copies only the modifi

ed part after the previous backup.

Table 7-2 Full backup vs. incremental backup

Item Full backup Incremental backup

Backup object
● Database: Entire data file which is being used by database

● Tablespace: Data files in database's specific tablespace

Description

● Backup entire data file which is bei

ng used by database or tablespace

● Creating a backup file per a data fi

le

● Restoring the required data file aft

er failure by using appropriate bac

kup method, then recover it

● Backup the modified part of the data file being

used by database or tablespace after the previou

s backup

● Creating an incremental backup file in which the

modified part is recorded

● Recovery by using multiple incremental backups

after failure

Full Backup

Use full backup to execute database backup and tablespace backup. Database backup is to backup contr

ol files and data files.

Control File Backup

Backup the control file as follows. Specify the backup control file name including the absolute path, or sp

ecify the backup control file name only. If only the backup control file name is specified, the backup file is

created in the path set in the 'LOG_DIR' property.

gSQL> ALTER DATABASE BACKUP CONTROLFILE TO '/goldilocks_data/backup/backup.ctl';

Database altered.

Database Backup

Database backup can backup entire data file being used in database. When backup data file, recording o

n the file should be prevented while coping the data file. If the file is used during copying, the data file be

comes inconsistent, and even worse it will be inconsistent within a page. Set the database to the state w

hich enables backup to prevent those inconsistencies.

gSQL> ALTER DATABASE BEGIN BACKUP;

Database altered.

278 | Backup and Recovery of GOLDILOCKS Database

Use operating system's file copy feature to create the copy of data file on database backup enabled state.

Then set it as follows, then the database backup is completed, and it is writable.

gSQL> ALTER DATABASE END BACKUP;

Database altered.

Tablespace Backup

Tablespace backup can backup data files being used by a specified tablespace. Set it to backup enabled st

ate by using the tablespace name (tablespace_name) as follows for the same reason of database backup.

gSQL> ALTER TABLESPACE TEST_TBS BEGIN BACKUP;

Tablespace altered.

Use operating system's file copy feature to create the copy of tablespace's data file on tablespace backup

enabled state. Then, complete the tablespace backup as follows.

gSQL> ALTER TABLESPACE TEST_TBS END BACKUP;

Tablespace altered.

Incremental Backup

An incremental backup supports database unit backup and tablespace unit as same as full backup. An inc

remental backup does not backup control files separately, but the control file is backed up together when

executing the database incremental backup.

GOLDILOCKS supports incremental level from 0 to 4 for an incremental backup. When an incremental ba

ckup is executed for the first time, the level should be set to 0, and backup the entire data file. Set the inc

remental backup level to 1 or higher to back up only the modified parts since the last backup when execu

ting the incremental backup later.

The given level of incremental backup searches for the time when the same level or lower level was execu

ted. Then, it backups only the modified parts after the previous backup.

For example, after performing level 0 backup, level 2 backup(1) backs up only the modified parts after th

e level 0 backup, and level 2 backup(2) backs up the modified part after the level 2(1) backup. In the sam

e way, level 2 backup(3), (4), (5), (6) backs up the modified part after the level 2 backup. The level 1 back

up which was executed lastly backs up all modified parts after the level 0 backup.

Backup and Recovery | 279

Figure 1 Incremental backup

Database Incremental Backup

Execute an incremental backup on the entire data file of database as follows. At first, the entire data file

of database is backed up at level 0.

gSQL> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0;

Database altered.

And then, the modified part after level 0 is backed up at level 1.

gSQL> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1;

Database altered.

Tablespace Incremental Backup

At first, the entire data file of tablespace is backed up at level 0 as follows in the same way as the databas

e backup.

gSQL> ALTER TABLESPACE TEST_TBS BACKUP INCREMENTAL LEVEL 0;

Tablespace altered.

And then, the modified part after level 0 is backed up at level 1.

gSQL> ALTER TABLESPACE TEST_TBS BACKUP INCREMENTAL LEVEL 1;

Tablespace altered.

280 | Backup and Recovery of GOLDILOCKS Database

Recovery

Database guarantees data consistency by executing recovery when a failure occurs or database is corrupt

ed.

The types of database failure are as follows.

Table 7-3 Database failure type

Failure type Causes and symtoms Solution

Transaction failure
Transaction failure and deadlock due to the logical error (bad input,

overflow, data not found)
Abort transaction

System crash
Corruption of volatile storage device due to an abnormal terminatio

n (blackout) of DBMS or OS
Restart recovery

Media failure Corruption of non-volatile storage device
Restore,

restart recovery

Abort the executing transactions, rollback all database updates and release obtained lock items to solve tr

ansaction failure.

Database processes are abnormally terminated at system crash, so the recent information stored in volatil

e storage are not reflected in the non-volatile storage, and they are lost. Startup database, and recover th

e database to the state when it was consistent before abnormal termination. This process is called as rest

art recovery. To recover the database, the restart recovery uses control files, data files, and log files which

were used by database before the failure.

The recovery using database file before failure is not possible if non-volatile storage device is corrupted. It

is because control files, datafiles and log files are corrupted so that they can not be used for recovery. In t

his case, recover the database file by using previously archived backup files and log files, then execute the

recovery.

GOLDILOCKS supports both the complete recovery and the incomplete recovery. The complete recovery r

ecovers the datafile to the latest and consistent state by using the log file. The complete recovery targets

database, tablespace and data file. For the tablespace and data file, the complete recovery is available for

the offline tablespace even during the database service. The complete recovery is divided into the automa

tic recovery and the manual recovery. The automatic recovery is performed when restarting the database,

and the manual recovery uses the recovery statement supported by GOLDILOCKS.

The incomplete recovery is available only for the database, and it recovers to the consistent state of a spe

cific point. The incomplete recovery is performed only manually. It incompletely recovers at once up to th

e specific point, or it performs the user selective incomplete recovery. The user selective incomplete recov

ery is a method of which a user selects a log file available to recover and recovers up to that user selected

log file.

If both the complete recovery and the incomplete recovery is required, then use redo log and archive log f

Backup and Recovery | 281

iles.

Table 7-4 Database recovery

Recovery Target Description

Complete recovery

Database,

tablespace,

datafile

● Automatic recovery (Recovers at the restart)

● Manual recovery (Manually recovers the database, tablespace a

nd data file.)

Incomplete recovery Database

● Manual recovery only

○ Incomplete recovery at once

○ User selective incomplete recovery

Automatic Recovery

The automatic recovery is executed when restarting after a normal or abnormal termination of database.

It uses the control files, data files and log files which were used just before the termination.

Especially when the latest database file is corrupted, the backed up database file is recovered and the aut

omatic recovery is executed by using the archive log file.

The recovery is executed in three phases, and they are analysis, redo and undo.

Analysis

Two operations are executed in analysis phase.

First, it searches for the first log to perform the restart recovery. For that, it refers to the most recently exe

cuted checkpoint log, and looks for the most recent checkpoint log from the log information recorded in

control file.

Second, it initialize the transaction table of the system. It uses transaction information which was execute

d at checkpoint written on checkpoint log to initialize system transaction table.

Restart Redo

All logs, from the first log obtained in the analysis phase for restart recovery to the last log recorded in th

e redo log files, execute restart redo. The transaction table is updated when a transaction is completed or

a new transaction is started during this process.

Restart Undo

After restart redo is completed, it performs the transaction rollback by performing undo all incomplete tra

nsactions remained in the transaction table.

282 | Backup and Recovery of GOLDILOCKS Database

Recovery Using Backup

If control files, data files and log files are corrupted or does not exist, the recovery should be performed a

fter it is recovered by using the backup file. It is complicated to find the log on which the recovery starts

when performing the recovery by using the backed up control file or the data file.

Analysis for Recovery Using Backup

In analysis phase for the recovery using backup, like as the automatic recovery, it searches for the first log

for recovery and initializes the transaction table. It searches for the oldest LSN among the checkpoint LSN

recorded in all the data file's file header, then selects the minimum value by comparing it with checkpoint

LSN recorded in control file to find the first log for recovery.

The checkpoint LSN recorded in data file header stores the checkpointed LSN of the corresponding data fi

le. Therefore, when using the backup datafile, select the oldest checkpoint LSN, and then select the mini

mum value comparing to the checkpoint LSN in the control file, then the minimum checkpoint LSN for th

e recovery is determined.

Figure 2 Procedure to determine the minimum checkpoint LSN for the recovery

Recovery Using Archive Log Files

The recovery using archive log files uses not only redo log files but also archive log files, when the minimu

m checkpoint LSN defined for the recovery is in an archive log file. The recovery using the backup is execu

ted in a unit of database, tablespace and data file. Database recovery is executed only on MOUNT phase,

and the recovery in tablespace and data file unit is executed on MOUNT phase or OPEN phase.

● Restoring the backup data files

Backup and Recovery | 283

Restoring data files is executed by using the full backup or the incremental backup. A user directly execut

es the full backup by using operating system's file copy command to restore data. On the other hand, the

incremental backup is executed by using restoring syntax of GOLDILOCKS. The tablespace should be OFF

LINE to restore data files on OPEN phase.

The followings describe how to restore data files using incremental backup.

gSQL> ALTER DATABASE RESTORE;

Database altered.

gSQL> ALTER DATABASE RESTORE TABLESPACE TEST_TBS;

Database altered.

● Manual recovery after restoring data files

The followings describe how to execute recovery using the syntax of recovery after restoring data files.

gSQL> ALTER DATABASE RECOVER;

Database altered.

gSQL> ALTER DATABASE RECOVER TABLESPACE TEST_TBS;

Database altered.

Incomplete Recovery

If the restart recovery is not available due to a user mistake during operation, corrupted control files, or c

orrupted redo log files and archive log files nor can the recovery restore consistency of database, then exe

cute the incomplete recovery. The incomplete recovery restores data only until the point-in-time.

The followings are when the incomplete recovery is required.

Corrupted Control Files

Control files are multiplexed, so they can be recovered using uncorrupted files if not all of the multiplexed

files are corrupted.

However, if all control files are corrupted, recovery should be executed using the backup control files. In t

his case, the complete recovery is impossible because the log information of the control files can be chan

ged. The recovery restores only until point-in-time.

284 | Backup and Recovery of GOLDILOCKS Database

Restoring Backup Control File

When control files are corrupted, copy other multiplexed control files to keep control files up-to-date.

However, when all multiplexed control files are corrupted, restore the backup control files, then perform

the recovery. The log information which is changed after the backup can not be recovered when executin

g recovery using the backup data files.

Corrupted Redo Log File

GOLDILOCKS consists redo log files with several log members in a log group to prevent log file corruption.

However, if all log members in a log group are corrupted, it can not be recovered using redo log file. In th

is case, an incomplete recovery should be executed until uncorrupted log file.

Corrupted Archive Log File

In recovery, if archive log file is corrupted, then incomplete recovery should be executed until uncorrupte

d log file. The process is as same as when redo log file is corrupted.

User's Mistake

When a user dropped an important table by mistake, or inserted, updated, deleted wrong data, it should

be recovered back to the point before the mistake.

Incomplete Recovery of GOLDILOCKS Database

GOLDILOCKS supports two types of incomplete recovery. One of the recovery is executed until the point

which an operator specified. The other recovery is executed in log file unit interactively between an opera

tor and system.

The incomplete recovery until a specified point can specify the point-in-time by using a specified log's LSN,

specified time, or a specified SCN.

Incomplete recovery is executed for the entire database only on MOUNT phase. Incomplete recovery in th

e specific tablespace unit is not supported due to the database consistency problem.

● Incomplete recovery until specified LSN

It searches for log which will complete the incomplete recovery, then executes the recovery until the log

's LSN.

The following is an example of executing the incomplete recovery until log LSN 1000.

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE 1000;

Database altered;

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE LSN 1000;

Database altered;

Backup and Recovery | 285

● Incomplete recovery until specified SCN

It searches for SCN which will complete the incomplete recovery, then executes the recovery until the log

's SCN.

The following is an example of executing the incomplete recovery until SCN 300.

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE SCN 300;

Database altered;

Note

SCN is not sequentially recorded so even when the incomplete recovery is executed until SCN 300,

it may be recovered beyond SCN 300. The following is an example of the recovery when SCN is re

versed.

Log: --- LSN 90 (SCN 3) -- LSN 91 (SCN 5) -- LSN 92 (SCN 4)

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE SCN 3;

→ It is recovered until LSN 90.

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE SCN 4;

→ It is recovered until LSN 92. (It is recovered until LSN 92 in which SCN 4 is.)

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE SCN 5;

→ It is recovered until LSN 92. (Both SCN 4, SCN 5 are arbitrarily recovered until SCN5)

● Incomplete recovery until specified time

It searches for the time which will complete the incomplete recovery, then executes the recovery until the

specified time.

The following is an example of executing the incomplete recovery until '2017-05-18 16:10:10.00000'.

gSQL> ALTER DATABASE RECOVER UNTIL TIME '2017-05-18 16:10:10.000000';

Database altered;

● Interactive incomplete recovery

If the log file is corrupted, it executes the recovery until just before the corrupted log file. For that, GOLDI

LOCKS suggests an operator the required log files, and the operator executes the incomplete recovery by

using the GOLDILOCKS' recommended log file or a new log file.

286 | Backup and Recovery of GOLDILOCKS Database

The following is an example of executing the interactive incomplete recovery of GOLDILOCKS. GOLDILOC

KS suggests log files required for the recovery when executing BEGIN for the incomplete recovery. The op

erator executes the incomplete recovery by using the GOLDILOCKS' recommended log file, or may descri

be the log file for the recovery.

gSQL> ALTER DATABASE BEGIN INCOMPLETE RECOVERY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_0.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 139992)

Database altered.

gSQL> ALTER DATABASE RECOVER AUTOMATICALLY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_1.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 144143)

Database altered.

gSQL> ALTER DATABASE END INCOMPLETE RECOVERY;

Database altered.

Restarting Database after Incomplete Recovery

After the incomplete recovery is completed, a user can not restart database in a normal way. It is because

the recovered GOLDILOCKS database by the incomplete recovery has nothing to do with the current redo

log files. A user should reset the redo log file to restart database because database is at the previous poin

t, and the current redo log file is about the log after then. Use RESETLOGS option when restarting GOLDI

LOCKS database after the incomplete recovery.

gSQL> ALTER SYSTEM OPEN DATABASE;

ERR-HY000(14083): must use RESETLOGS option for database open

gSQL> ALTER SYSTEM OPEN DATABASE RESETLOGS;

System altered.

Cautions for Incomplete Recovery

Incomplete recovery is executed until the specific point to create consistent database, but it is not easy to

find the specific point. All redo log files are reset after the incomplete recovery. Therefore, all the control

files, data files, redo log files in database should be backed up offline before the incomplete recovery. Th

en the incomplete recovery should be executed several times to find the correct point.

Archive log files are needed during the incomplete recovery. However, the newly recovered database is di

fferent from the previous database, so drop the archive redo log file created by the previous database.

Backup and Recovery | 287

Recovery Examples

Corrupted Control File

GOLDILOCKS database control files store the important information about the physical structure of datab

ase and the database consistency. If it is corrupted or dropped by mistake, the database can not be opera

ted.

GOLDILOCKS database multiplexes at least 2 up to 8 control files. If there is at least one valid control file,

the remaining control files are restored, then the database can be restarted.

When a valid multiplexed control file exists

If the multiplexed control file '/goldilocks_data/wal/control_1.ctl' is corrupted, restarting database fails as

follows.

gSQL> \STARTUP

ERR-HY000(14097): control file is corrupted - '/goldilocks_data/wal/control_1.ctl'

Copy the valid control file '/goldilocks_data/wal/control_0.ctl' to '/goldilocks_data/wal/control_1.ctl', and

drop the shared memory which failed to restart. Then restart the database.

$ cp /goldilocks_data/wal/control_0.ctl /goldilocks_data/wal/control_1.ctl

gSQL> \SHUTDOWN

Shutdown success

gSQL> \STARTUP

Startup success

When all multiplexed control files are corrupted

If all multiplexed control files are corrupted, a user can restart the database using backup control files afte

r incomplete recovery. The database's physical structure can be changed after backing up control files. Th

erefore, the incomplete recovery should be executed when restoring control files using backup control fil

es. Archive log files and redo log files still exist even after incomplete recovery. Therefore, an administrato

r executes GOLDILOCKS interactive incomplete recovery to manually restore until 'CURRENT' state redo lo

g file.

The backup control file can be copied to multiplexed control files by operating system's file copy feature,

or they can be restored by GOLDILOCKS database's recovery feature as follows. The control file recovery c

an be executed only in NOMOUNT phase of GOLDILOCKS multilevel startup.

gSQL> \STARTUP NOMOUNT

Startup success

gSQL> ALTER DATABASE RESTORE CONTROLFILE FROM '/goldilocks_data/backup/backup.ctl';

Database altered.

288 | Backup and Recovery of GOLDILOCKS Database

After restoring the backup control files, execute the incomplete recovery in MOUNT phase as follows.

gSQL> ALTER SYSTEM MOUNT DATABASE;

System altered.

gSQL> ALTER DATABASE BEGIN INCOMPLETE RECOVERY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_0.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 137499)

Database altered.

gSQL> ALTER DATABASE RECOVER AUTOMATICALLY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_1.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 137667)

Database altered.

gSQL> ALTER DATABASE RECOVER '/goldilocks/wal/redo_1_0.log';

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_2.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 137672)

Database altered.

gSQL> ALTER DATABASE END INCOMPLETE RECOVERY;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE RESETLOGS;

System altered.

Corrupted Data File

If a data file is corrupted or dropped, the complete recovery is executed by using the backup data files. Th

e full backup restores the data files by copying the backup files, and the incremental backup restores the

data files by using the GOLDILOCKS' restoring syntax.

The restoration and recovery of data files are executed in database unit or in tablespace unit. It can also b

e executed in the tablespace unit of the corresponding data file. The recovery in tablespace unit can be ex

ecuted in MOUNT phase or OPEN phase. The tablespace should be in OFFLINE state to restore and recove

r data files on OPEN phase.

● Recovering the corrupted data files using full backup in MOUNT phase

Execute the complete recovery after copying the backup data file /goldilocks/backup/test.dbf to /goldiloc

ks/db/test.dbf.

$ cp /goldilocks/backup/test.dbf /goldilocks/db/test.dbf

gSQL> \STARTUP MOUNT

System altered.

gSQL> ALTER DATABASE RECOVER;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE;

Backup and Recovery | 289

System altered.

● Recovering the corrupted data files using full backup in OPEN phase

gSQL> SELECT IS_ONLINE FROM V$TABLESPACE WHERE TBS_NAME = 'TEST_TBS';

IS_ONLINE

FALSE

1 row selected.

$ cp /goldilocks/backup/test.dbf /goldilocks/db/test.dbf

gSQL> ALTER DATABASE RECOVER TABLESPACE TEST_TBS;

Database altered.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

Tablespace altered.

● Recovering the corrupted data files using incremental backup in MOUNT phase

gSQL> \STARTUP MOUNT

System altered.

gSQL> ALTER DATABASE RESTORE;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE;

System altered.

● Recovering the corrupted data files using incremental backup in OPEN phase

gSQL> SELECT IS_ONLINE FROM V$TABLESPACE WHERE TBS_NAME = 'TEST_TBS';

IS_ONLINE

FALSE

1 row selected.

gSQL> ALTER DATABASE RESTORE TABLESPACE TEST_TBS;

Database altered.

gSQL> ALTER TABLESPACE TEST_TBS ONLINE;

Tablespace altered.

User's Mistake (Table Dropping or Wrong Insert/drop/update)

GOLDILOCKS database supports DDL rollback of table and index if the table TEST is dropped by mistake.

Namely, a user can rollback to cancel the table dropping instead of committing as follows even if a user d

ropped the table.

290 | Backup and Recovery of GOLDILOCKS Database

gSQL> DROP TABLE TEST;

Table dropped.

gSQL> ROLLBACK;

Rollback complete.

gSQL> \DESC TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- ------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER(10) TRUE

gSQL> DROP TABLE TEST;

Table dropped.

gSQL> COMMIT;

Commit complete.

gSQL> \DESC TEST

ERR-42000(16040): table or view does not exist :

SELECT * FROM TEST WHERE 1 = 0

*

ERROR at line 1:

If table dropping is committed it can not be rolled back. Therefore, execute GOLDILOCKS incomplete rec

overy to recover until the specific point of the database using backup. Then, the data is recovered until th

e time before the table dropping. Restart the database after that.

The backup file at the point before the table dropping is used to restore the table in incomplete media re

covery. The correct point can be found, as described above, by repeating the recovery several times to fin

d the time of table dropped. At that time, the gdump tool is used to dump the log file and analyze it.

Assuming LSN is 1000 at the time after table dropping, the incomplete recovery is executed as follows.

gSQL> \STARTUP MOUNT

System altered.

gSQL> ALTER DATABASE RECOVER UNTIL CHANGE 1000;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE RESETLOGS;

System altered

gSQL> \DESC TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- ------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER(10) TRUE

Backup and Recovery | 291

Corrupted Log Files (Archive File, Redo Log File)

● Corrupted archive log file during recovery

Assume that the data files are corrupted and a user are executing recovery using the backup data files. Al

so, assume that the specific archive log file is corrupted during the recovery so that the recovery can not b

e completed.

For example, there are archive log files such as 'archive_0.log', 'archive_1.log', 'archive_2.log', 'archive_3

.log'. An 'archive_3.log' is corrupted, and the recovery can not be executed. In this case, incomplete reco

very is executed until 'archive_2.log', and the database is restarted.

gSQL> \STARTUP MOUNT

System altered

gSQL> ALTER DATABASE BEGIN INCOMPLETE RECOVERY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_0.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 139992)

Database altered.

gSQL> ALTER DATABASE RECOVER AUTOMATICALLY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_3.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 194143)

Database altered.

gSQL> ALTER DATABASE END INCOMPLETE RECOVERY;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE RESETLOGS;

System altered

● Corrupted redo log file

Assume that a failure occurs when operating database so the CURRENT log group in which logs are flush

ed is corrupted.

For example, when an abnormal termination occurs in the state of the following log groups, the manual r

ecovery is executed and completes the incomplete recovery. It is because the log group 3, 0 is not archive

d yet.

Table 7-5 Log group state

Log group Log group state Log file sequence no. Prev last LSN

Log group 0 ACTIVE 8 80000

Log group 1 CURRENT 9 90000

Log group 2 INACTIVE 6 60000

Log group 3 ACTIVE 7 70000

292 | Backup and Recovery of GOLDILOCKS Database

gSQL> \STARTUP MOUNT

System altered

gSQL> ALTER DATABASE BEGIN INCOMPLETE RECOVERY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_0.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 1000)

Database altered.

gSQL> ALTER DATABASE RECOVER AUTOMATICALLY;

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_7.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 70001)

Database altered.

gSQL> ALTER DATABASE RECOVER '/goldilocks/wal/redo_3_0.log';

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_8.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 80001)

Database altered.

gSQL> ALTER DATABASE RECOVER '/goldilocks/wal/redo_0_0.log';

ERR-01000(14104): Warning: suggestion '/goldilocks/archive_log/archive_9.log'

ERR-01000(14103): Warning: media recovery needs a logfile including log (Lsn 90001)

Database altered.

gSQL> ALTER DATABASE END INCOMPLETE RECOVERY;

Database altered.

gSQL> ALTER SYSTEM OPEN DATABASE RESETLOGS;

System altered

More Recent Datafile Than Log

All tablespaces created in GOLDILOCKS database consists of pages, and each page set the log LSN which

was recorded by a transaction having updated that page last is set as the page LSN. Therefore, all page LS

Ns in the datafile have the same or smaller value than the LSN of the latest log recorded in the redo log fil

e of the log group.

When restartig the database, if a specific page's LSN of the data file has a bigger value than the latest log'

s LSN, then it corrupts the database consistency and the normal service is not available. GOLDILOCKS dat

abase checks the data file and log when restarting so that this abnormal situation does not happen.

If any page whose LSN has bigger value than the latest log's LSN is in the data file, then restarting the dat

abase fails as follows.

gSQL> \STARTUP

ERR-HY000(14114): exist inconsistent datafiles; need to restore more older backup datafiles or

more recent redo logfiles

To solve this problem, restore the backup data file consisting of LSNs smaller than the latest log LSN. Or, r

estart the database after restoring the log file on which the LSN log bigger than the data file is recorded.

Backup and Recovery | 293

Check the trace file to find the data file to restore.

For example, if the following messages are output on the trace file when restarting fails, then the page w

hose LSN is '126787' in '/data/db/system_dic.dbf' data file, and this value is bigger than the latest log LS

N of the log file '126652'. Therefore, for the restart, restore the previous backup data file, or restore the l

og file on which the log LSN same or bigger than '126787' is recorded. Also, if several pages of the data f

ile has a LSN value bigger than the log file LSN, then restore the log file bigger than the maximum value a

mong them to restart and provide the service.

[2016-01-15 12:41:14.045679 THREAD(10581,139799401453312)] [INFORMATION]

[STARTUP_SM] the max page lsn '126787' of datafile '/data/db/system_dict.dbf' is more recent

than the latest redo log lsn '126652'.

[2016-01-15 12:41:14.045705 THREAD(10581,139799401453312)] [INFORMATION]

[STARTUP_SM] the max page lsn '126830' of datafile '/data/db/system_undo.dbf' is more recent

than the latest redo log lsn '126652'.

[2016-01-15 12:41:14.045729 THREAD(10581,139799401453312)] [INFORMATION]

[STARTUP_SM] the max page lsn '126829' of datafile '/data/db/test_log.dbf' is more recent than

the latest redo log lsn '126652'.

in doubt Transaction Recovery in Cluster Environment

The transactions in the cluster environment are divided into global transaction, domain transaction and lo

cal transaction. The global transaction is performed in two or more cluster groups, the domain transactio

n is performed in a single cluster group and the local transaction is performed in a single cluter member.

The local transaction uses only the local member's log when performing the recovery. The domain transa

ction uses the local member's log when performing the recovery, and performs the rollback when an abn

ormal termination occurs without completing the transaction, and performs the synchronization with a gr

oup member through the rebalance if needed.

The global transaction uses 2 phase commit protocol to commit. 2 phase commit is performed as follows

for GOLDILOCKS global transaction.

● PREPARE phase

○ It transfers PREPARE messages from the driver member to all members, and waits for the respon

d message.

○ It moves on to COMMIT phase when it receives the respond message of PREPARE from all memb

ers, or it rolls back when at least one member fails or does not respond.

● COMMIT phase

○ It transfers COMMIT messages from the driver member to all members, and waits for the respon

d message.

○ It commits even when a member fails.

294 | Backup and Recovery of GOLDILOCKS Database

If a member is abnormally terminated without recording the commit log on COMMIT phase, it should obt

ain the state information from other members when restarting. It is because it is unable to know if the gl

obal transaction in 'PREPARE' state was committed or rolled back, when restarting.

For that, GOLDILOCKS records the committed global transaction information in transaction record form i

n MEM_TRANS_TBS. Also, when recording a new record in that record, the previous record is recorded in

commit.log if needed. Later, the abnormally terminated member performs the restart recovery or the ma

nual recovery by using the log. It performs the recovery by obtaining the transaction COMMIT/ROLLBACK

information from members in service when in doubt transaction in 'PREPARE' state is remained.

GOLDILOCKS Database Replication

8.

295

296 | GOLDILOCKS Database Replication

8.1 Overview

This chapter describes CYCLONE and LOGMIRROR.

GOLDILOCKS supports two types of replication, and they are CYCLONE and LOGMIRROR. CYCLONE repli

cates transactions using CDC, and LOGMIRROR replicates redo log files in the source database.

Table 8-1 Replication tool

Tool Replication target Description

CYCLONE Transaction
It uses CDC method, and replicates the transaction reflected in mast

er, then reflect it to slave.

LOGMIRROR Redo log file It identically replicates redo file in master database to slave.

● CYCLONE

○ It uses Change Data Capture (CDC) method to analyze and treat redo log files of the source data

base, then applies them to a remote database.

○ It supports only asynchronous (async) method because it analyzes contents stored in database's r

edo log file.

● LOGMIRROR

○ It replicates redo log files stored in the source database to a remote database.

○ It is used to avoid the data loss of CYCLONE which is executed in async method.

Operating Method | 297

8.2 Operating Method

CYCLONE

For more information about general operating method and option, refer to CYCLONE.

Adding and Deleting Nodes

CYCLONE is performed in a group unit, and it is as same as the replication nodes. Add a group when add

ing nodes, drop a group when deleting nodes.

Examples of Adding Nodes

● Record the group 2 to be added in master configuration file.

○ Set a unique port per each group.

○ The default master configuration file is $GOLDILOCKS_DATA/conf/cyclone.master.conf.

○ The following is an example of group 1 node in operation.

...

...

GROUP_NAME = Group1

{

PORT = 21102

CAPTURE_TABLE =

(

testTable1,

testTable2

)

}

○ The following is an example of group 2 node to be added.

GROUP_NAME = Group2

{

PORT = 21103

CAPTURE_TABLE =

(

testTable5,

298 | GOLDILOCKS Database Replication

testTable6

)

}

● Record the group 2 to be added in slave configuration file.

○ The port of group 2 should be as same as the port added to the existing master.

○ The default slave configuration file is $GOLDILOCKS_DATA/conf/cyclone.slave.conf.

○ The following is an example of group 1 node in operation.

...

...

GROUP_NAME = Group1

{

PORT = 21102

APPLY_TABLE =

(

testTable1 To testTable3,

testTable2 To testTable4

)

}

○ The following is an example of group 2 node to be added.

GROUP_NAME = Group2

{

PORT = 21103

APPLY_TABLE =

(

testTable5 To testTable7,

testTable6 To testTable8

)

}

● Execute and check the added group 2 node in the master device as follows.

prompt> cyclone --master --start --group Group2

[GROUP2] Startup done as Master.

prompt> cyclone --master --status

======================================

| CYCLONE STATUS - MASTER |

======================================

Operating Method | 299

GROUP1 Running...

GROUP2 Running...

● Execute and check the added group 2 node in the slave device as follows.

prompt> cyclone --slave --start --group Group2

[GROUP2] Startup done as Slave.

prompt> cyclone --slave --status

======================================

CYCLONE STATUS - SLAVE

======================================

GROUP1 Running...

GROUP2 Running...

Examples of Deleting Nodes

● Terminate the group 2 node to be deleted in the slave device as follows.

prompt> cyclone --slave --stop --group Group2

stop done.

prompt> cyclone --slave --status

======================================

CYCLONE STATUS - SLAVE

======================================

GROUP1 Running...

● Terminate the group 2 node to be deleted in the master device as follows.

prompt> cyclone --master --stop --group Group2

stop done.

prompt> cyclone --master --status

======================================

CYCLONE STATUS - MASTER

======================================

GROUP1 Running...

● Drop the group 2 node to be deleted from the master configuration file.

○ The default master configuration file is $GOLDILOCKS_DATA/conf/cyclone.master.conf.

300 | GOLDILOCKS Database Replication

○ The following is an example of group 1 node in operation.

...

...

GROUP_NAME = Group1

{

PORT = 21102

CAPTURE_TABLE =

(

testTable1,

testTable2

)

}

○ The following is an example of deleting group 2 node.

GROUP_NAME = Group2

{

PORT = 21103

CAPTURE_TABLE =

(

testTable5,

testTable6

)

}

● Drop the group 2 node to be deleted from the slave configuration file as follows.

○ The default slave configuration file is $GOLDILOCKS_DATA/conf/cyclone.slave.conf.

○ The following is an example of group 1 node in operation.

...

...

GROUP_NAME = Group1

{

PORT = 21102

APPLY_TABLE =

(

testTable1 To testTable3,

testTable2 To testTable4

)

}

Operating Method | 301

○ The following is an example of deleting group 2 node.

GROUP_NAME = Group2

{

PORT = 21103

APPLY_TABLE =

(

testTable5 To testTable7,

testTable6 To testTable8

)

}

Initializing Replication

Initializing replication is executed when existing replication nodes or a group's table gives up execution d

ue to DDL operation. A specific node or entire node can be initialized.

The initializing replication is performed by restarting replication being operated in slave using --reset opti

on.

On the other hand, master does not require any operation.

Examples of Initializing Replication on a Specific Node

● Terminate the group 2 node to be initialized in the slave device as follows.

prompt> cyclone --slave --stop --group Group2

stop done.

prompt> cyclone --slave --status

======================================

CYCLONE STATUS - SLAVE

======================================

GROUP1 Running...

● Restart group 2 node in slave device using --reset option.

○ Master device does not require any operation.

○ Replication restarts from the current point.

prompt> cyclone --slave --start --reset --group Group2

[GROUP2] Startup done as Slave.

prompt> cyclone --slave --status

======================================

302 | GOLDILOCKS Database Replication

CYCLONE STATUS - SLAVE

======================================

GROUP1 Running...

GROUP2 Running...

Examples of Initializing Replication of All Nodes

● Terminate all CYCLONE in operation in the slave device as follows.

prompt> cyclone --stop --slave

● Restart CYCLONE in slave device using --reset option.

○ Master device does not require any operation.

○ Replication starts from the current point.

prompt> cyclone --slave --start --reset

[GROUP1] Startup done as Slave.

[GROUP2] Startup done as Slave.

prompt> cyclone --slave --status

======================================

CYCLONE STATUS - SLAVE

======================================

GROUP1 Running...

GROUP2 Running...

LOGMIRROR

For more information about general operation method and options, refer to LOGMIRROR.

Retrieving LOGMIRROR State

GOLDILOCKS includes the response waiting procedure of LOGMIRROR when GOLDILOCKS interworks wi

th LOGMIRROR. If LOGMIRROR is waiting for response, GOLDILOCKS is also waiting in a blocked state. T

his state can be retrieved in v$system_stat.

gSQL> SELECT * FROM V$SYSTEM_STAT WHERE STAT_NAME='LOG_MIRROR_SYNC_STATE';

STAT_NAME STAT_VALUE COMMENTS

--------------------- ------ ---

Operating Method | 303

LOG_MIRROR_SYNC_STATE 0 logmirror sync state(0 : sync, 1 : blocked)

1 row selected.

If STAT_VALUE is 0, it is not a standby state but an ordinary state. If STAT_VALUE is 1, it is a blocked state

waiting for a response. To restart GOLDILOCKS service while LOGMIRROR is waiting for a response, LOG

MIRROR service can be stopped by modifying LOG_MIRROR_TIMEOUT as follows.

gSQL> ALTER SYSTEM SET LOG_MIRROR_TIMEOUT = 20;

System altered.

Initializing Replication

Initializing replication of LOGMIRROR should be done manually. This is to prevent data dropping or the u

nrecoverable situation driven by the user's incorrect option usage.

Note

Control files and redo log files are stored in LOGMIRROR slave. The required information for the o

peration is stored and updated in the control files.

Examples of Initializing Replication

● Terminate LOGMIRROR in operation in the slave device as follows.

prompt> logmirror --slave --stop

stop done.

● Terminate LOGMIRROR in operation in the master device as follows.

prompt> logmirror --master --stop

stop done.

● Drop the replicated control files and redo log files from the slave device.

○ For more information about the path, refer to 'LOG_PATH' option described in the slave configur

ation file.

○ The default LOGMIRROR slave configuration file is $GOLDILOCKS_DATA/conf/logmirror.slave.co

nf.

304 | GOLDILOCKS Database Replication

8.3 Trace Log

The followings are detailed information about the trace log.

Table 8-2 Trace log

Name Category File name

CYCLONE
Master cyclone_master_GROUP_NAME.trc

Slave cyclone_slave_GROUP_NAME.trc

LOGMIRROR
Master LogMirror_master.trc

Slave LogMirror_slave.trc

Troubleshooting of CYCLONE

The followings are error messages and troubleshooting of CYCLONE.

Table 8-3 Troubleshooting of CYCLONE

Error message Solution

Service is not available Ensure that GOLDILOCKS is normally running.

table does not exist Check the table name described in the configuration file.

schema does not exist Check the schema name described in the configuration file.

previously added. Maybe duplicate

d
Check if a table is duplicated in the configuration file.

table must have a primary key Ensure that a table in the configuration file has the primary key.

internal error occurred. Check the error details.

table must set supplemental log Ensure that supplemental logging is executed in GOLDILOCKS.

group XXX is already running Check if the corresponding group is already running.

GOLDILOCKS_DATA system enviro

nment is invalid
Ensure that GOLDILOCKS_DATA environment variable is set.

log file reused or invalid. restart cyc

lone with '--reset' option

This error occurs when the redo log file is reused or archived redo log file doe

s not exist. In this case, initialize CYCLONE and restart it.

fail to analyze flow
This error occurs when analyzing an abnormal redo log file.

Ensure that the release version between master and slave are same.

Communication link failure Check the network state. Restart CYCLONE.

Master disconnect abnormally Check the network state. Restart CYCLONE.

Protocol error occurred Check the error details.

Already slave connected Check if the slave is already running.

Invalid group name
Check the specified group name at the startup/termination. The group name

should be same as described in the configuration file.

Trace Log | 305

Invalid capture information
This error occurs when the existing operating information is abnormal. In this

case, initialize CYCLONE and restart it.

Redo log file read timeout Ensure that the archived redo log files normally exist.

Invalid archive log file
The archived redo log file is not normal. In this case, initialize CYCLONE and r

estart it.

Fail to write file Check the available space in the disk, and restart CYCLONE.

Invalid Meta File
This error occurs when the meta files which are managed by CYCLONE are co

rrupted. In this case, initialize CYCLONE and restart it.

Redo log file does not exist Ensure that GOLDILOCKS which is operated as master is normally running.

[APPLIER-INSERT] XXX INSERT is failed due to XXX.

[APPLIER-DELETE] XXX DELETE is failed due to XXX.

[APPLIER-UPDATE] XXX UPDATE is failed due to XXX.

Error message Solution

Troubleshooting of LOGMIRROR

The followings are error messages and troubleshooting of LOGMIRROR.

Table 8-4 Troubleshooting of LOGMIRROR

Error message Solution

Service is not available Ensure that GOLDILOCKS is normally running.

Invalid Protocol value Check the error details.

file does not exist Ensure that the corresponding file normally exists.

invalid Control file The control file is corrupted. Initialize and restart LOGMIRROR.

Communication link failure Check the network state. Restart LOGMIRROR.

GOLDILOCKS_DATA system en

vironment is invalid
Ensure that GOLDILOCKS_DATA environment variable is set.

There is no Shared Memory Are

a for LogMirror

Ensure that LOG_MIRROR_MODE property is normally set to 'enabled' in properti

es of GOLDILOCKS which is operated as master.

Master disconnect abnormally Check the network state. Restart LOGMIRROR.

Invalid Log File Ensure that the corresponding file normally exists.

Connection Information does n

ot exist
Ensure that GOLDILOCKS connecting information in configuration files is normal.

Archive Log File does not exist
Ensure that ARCHIVELOG_MODE in GOLDILOCKS which is operated as master is

normally set.

Database Information

9.

307

308 | Database Information

9.1 DICTIONARY_SCHEMA

DICTIONARY_SCHEMA contains views or tables to get SQL objects and their information in the system.

Note

The views and tables in DICTIONARY_SCHEMA can be retrieved from the open phase.

Execute DictionarySchema.sql as follows to use the views.

● For standalone

% gsql sys gliese --as sysdba --import $GOLDILOCKS_HOME/admin/standalone/DictionarySchema.sql

● For cluster

% gsql sys gliese --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/DictionarySchema.sql

Information is retrieved as follows according to the names of views or tables.

● ALL-family view

○ The view name begins with ALL_

○ Information about accessible objects by a current user

● DBA-family view

○ The view name begins with DBA_

○ Information about all objects whose current user has DBA privileges (ACCESS CONTROL ON DAT

ABASE).

● USER-family view

○ The view name begins with USER_

○ Information about objects which are owned by the current user

DICTIONARY_SCHEMA | 309

Views of ALL_family

It retrieves information about objects accessible by a current user.

ALL_ALL_TABLES

ALL_ALL_TABLES describes the object tables and relational tables accessible to the current user.

Table 9-1 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

TABLESPACE_NA

ME
VARCHAR(128) Name of the tablespace containing the table

CLUSTER_NAME VARCHAR(128)
● reserved

Name of the cluster

IOT_NAME VARCHAR(128)
● reserved

Name of the index-organized table

STATUS VARCHAR(32)
If a previous DROP TABLE operation failed, indicates whether the table is un

usable (UNUSABLE) or valid (VALID)

PCT_FREE NUMBER Minimum percentage of free space in a block

PCT_USED NUMBER Minimum percentage of used space in a block

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent (in bytes)

NEXT_EXTENT NUMBER Size of secondary extents (in bytes)

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

FREELISTS NUMBER
● reserved

Number of process freelists allocated to the segment

FREELIST_GROU

PS
NUMBER

● reserved

Number of freelist groups allocated to the segment

LOGGING VARCHAR(3) Indicates whether or not changes to the table are logged

BACKED_UP VARCHAR(1)

● reserved

Indicates whether the table has been backed up since the last modification

(Y) or not (N)

NUM_ROWS NUMBER Number of rows in the table

310 | Database Information

BLOCKS NUMBER Number of used blocks in the table

EMPTY_BLOCKS NUMBER
● reserved

Number of empty (never used) blocks in the table

AVG_SPACE NUMBER
● reserved

Average available free space in the table

CHAIN_CNT NUMBER

● reserved

Number of rows in the table that are chained from one data block to anoth

er or that have migrated to a new block, requiring a link to preserve the old

rowid

AVG_ROW_LEN NUMBER
● reserved

Average row length, including row overhead

AVG_SPACE_FRE

ELIST_BLOCKS
NUMBER

● reserved

Average freespace of all blocks on a freelist

NUM_FREELIST_

BLOCKS
NUMBER

● reserved

Number of blocks on the freelist

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the table, or DEFAULT

INSTANCES VARCHAR(32)
● reserved

Number of instances across which the table is to be scanned, or DEFAULT

CACHE VARCHAR(1)

● reserved

Indicates whether the table is to be cached in the buffer cache (Y) or not (N

)

TABLE_LOCK VARCHAR(32)
Indicates whether table locking is enabled (ENABLED) or disabled (DISABLE

D)

SAMPLE_SIZE NUMBER Sample size used in analyzing the table

LAST_ANALYZED

TIMESTAMP(6)

WITHOUT TIME Z

ONE

Date on which the table was most recently analyzed

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the table is partitioned (YES) or not (NO)

IOT_TYPE VARCHAR(32)

● reserved

If the table is an index-organized table, then IOT_TYPE is IOT, IOT_OVERFLO

W, or IOT_MAPPING.

OBJECT_ID_TYPE VARCHAR(32)

● reserved

Indicates whether the object ID (OID) is USER-DEFINED or SYSTEM GENERA

TED

TABLE_TYPE_O

WNER
VARCHAR(128)

● reserved

If an object table, owner of the type from which the table is created

TABLE_TYPE VARCHAR(128)
● reserved

If an object table, type of the table

● reserved

Column name Data type Description

DICTIONARY_SCHEMA | 311

TEMPORARY VARCHAR(1) Indicates whether the table is temporary (Y) or not (N)

SECONDARY VARCHAR(1)
● reserved

Indicates whether the table is a secondary object created by cartridge

NESTED VARCHAR(3)
● reserved

Indicates whether the table is a nested table (YES) or not (NO)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for table blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for table blocks

CELL_FLASH_CA

CHE
VARCHAR(32) Cell flash cache hint to be used for table blocks

ROW_MOVEME

NT
VARCHAR(32)

● reserved

If a partitioned table, indicates whether row movement is enabled (ENABLE

D) or disabled (DISABLED)

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether statistics for the table as a whole

(global statistics) are accurate (YES)

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) or not (N

O)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

SKIP_CORRUPT VARCHAR(32)

● reserved

Indicates whether Database ignores blocks marked corrupt during table and

index scans (ENABLED) or raises an error (DISABLED)

MONITORING VARCHAR(3)

● reserved

Indicates whether the table has the MONITORING attribute set (YES) or not

(NO)

CLUSTER_OWNE

R
VARCHAR(128)

● reserved

Owner of the cluster, if any

DEPENDENCIES VARCHAR(32)

● reserved

Indicates whether row-level dependency tracking is enabled (ENABLED) or d

isabled (DISABLED)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether table compression is enabled (ENABLED) or not (DISABLE

D)

COMPRESS_FOR VARCHAR(32)
● reserved

Default compression for what kind of operations

DROPPED VARCHAR(3)

● reserved

Indicates whether the table has been dropped and is in the recycle bin (YES)

or not (NO)

Column name Data type Description

312 | Database Information

READ_ONLY VARCHAR(3) Indicates whether the table IS READ-ONLY (YES) or not (NO)

SEGMENT_CREA

TED
VARCHAR(3) Indicates whether the table segment has been created (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 313

ALL_ARGUMENTS

ALL_ARGUMENTS lists all arguments of functions, procedures.

Table 9-2 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of function, procedures or package

SCHEMA_NAME VARCHAR(128) Schema Name of function, procedures or package

OBJECT_NAME VARCHAR(128) Name of function, procedures

PACKAGE_NAME VARCHAR(128) Package Name of function, procedures

OBJECT_ID NUMBER ID of a function, procedures

SUBPROGRAM_ID NUMBER ID of procedures in package

ARGUMENT_NAME VARCHAR(128) Name of argument or attribute name of record type argument

POSITION NUMBER Position of argument or position of attribute in record type

SEQUENCE NUMBER Sequential order of argument and its attributes

DATA_LEVEL NUMBER Nesting depth of the argument for composite types

DATA_TYPE VARCHAR(128) Data type of the argument

DEFAULTED VARCHAR(1) Whether or not the argument is defaulted

DEFAULT_VALUE VARCHAR(1) Reserved for future use

DEFAULT_LENGTH VARCHAR(1) Reserved for future use

IN_OUT VARCHAR(32) Direction of the argument (IN, OUT, IN/OUT)

DATA_LENGTH NUMBER Length of the column(in bytes)

DATA_PRECISION NUMBER Length in decimal digits(NUMBER) or binary digits(FLOAT)

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

RADIX NUMBER Argument radix for a number

CHARACTER_SET_NAME VARCHAR(128) Character set name for the argument

TYPE_OWNER VARCHAR(128) Owner of the type of the argument

TYPE_NAME VARCHAR(128) Name of the type of the argument

TYPE_SUBNAME VARCHAR(128) Name of the type of the argument declared in package

TYPE_LINK VARCHAR(128) Name of the type of the argument declared in a remote package

PLS_TYPE VARCHAR(128) Name of the type of the argument at PSM

CHAR_LENGTH NUMBER Character limit for string datatypes

CHAR_USED VARCHAR(1) Whether the byte limit(B) or char limit(C) is official for the string

ORIGIN_CON_ID VARCHAR(256) ID of the container where the data originates

314 | Database Information

ALL_CATALOG

ALL_CATALOG displays the tables, views, synonyms, and sequences accessible to the current user.

Table 9-3 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_SCHEMA VARCHAR(128) Schema of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_NAME VARCHAR(128) Name of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_TYPE VARCHAR(32) Type of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

DICTIONARY_SCHEMA | 315

ALL_CLUSTER_TABLES

ALL_CLUSTER_TABLES describes all cluster tables accessible to the current user in the cluster system.

Note

It is available only on a cluster.

Table 9-4 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

SHARD_STRATEGY VARCHAR(32)

Sharding strategy of the table:

the value in (CLONED, HASH SHARDING, RANGE SHARDING, LIST S

HARDING)

SHARD_PLACEMENT VARCHAR(32)
Shard placement of the table:

the value in (AT CLUSTER WIDE or AT CLUSTER GROUP)

SHARD_COUNT NUMBER Shard count of the table (if cloned table, the value is null)

SHARD_KEY_COUNT NUMBER
Shard key column count of the table (if cloned table, the value is nul

l)

HAS_GSI VARCHAR(3)
Indicate whether the table has global secondary index: (YES) or (NO

)

DROPPED VARCHAR(3)
Indicates whether the table has been dropped and is in the recycle b

in (YES) or not (NO)

316 | Database Information

ALL_COL_COMMENTS

ALL_COL_COMMENTS displays comments on the columns of the tables and views accessible to the curre

nt user.

Table 9-5 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

COMMENTS VARCHAR(1024) Comment on the column

DICTIONARY_SCHEMA | 317

ALL_COL_PRIVS

ALL_COL_PRIVS describes the object grants, for which the current user is the object owner, grantor, or gr

antee, or for which an enabled role or PUBLIC is the grantee.

Table 9-6 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

PRIVILEGE VARCHAR(32) Privilege on the column

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

318 | Database Information

ALL_COL_PRIVS_MADE

ALL_COL_PRIVS_MADE describes the column object grants for which the current user is the object owne

r or grantor.

Table 9-7 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the column

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 319

ALL_COL_PRIVS_RECD

ALL_COL_PRIVS_RECD describes the column object grants, for which the current user is the grantee, or f

or which an enabled role or PUBLIC is the grantee.

Table 9-8 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the column

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

320 | Database Information

ALL_CONSTRAINTS

ALL_CONSTRAINTS describes constraint definitions on tables accessible to the current user.

Table 9-9 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the constraint definition

CONSTRAINT_S

CHEMA
VARCHAR(128) Schema of the constraint definition

CONSTRAINT_N

AME
VARCHAR(128) Name of the constraint definition

CONSTRAINT_T

YPE
VARCHAR(1)

Type of the constraint definition: the value in (C: check constraint, P: Pri

mary key, U: Unique Key, R: Referential intgrity)

TABLE_OWNER VARCHAR(128) Owner of the table (or view) associated with the constraint definition

TABLE_SCHEMA VARCHAR(128) Schema of the table (or view) associated with the constraint definition

TABLE_NAME VARCHAR(128) Name of the table (or view) associated with the constraint definition

SEARCH_CONDI

TION
LONG VARCHAR Text of search condition for a check constraint

R_OWNER VARCHAR(128) Owner of the unique constraint definition for the referenced table

R_SCHEMA VARCHAR(128) Schema of the unique constraint definition for the referenced table

R_CONSTRAINT_

NAME
VARCHAR(128) Name of the unique constraint definition for the referenced table

DELETE_RULE VARCHAR(32)
Delete rule for a referential constraint: the value in (NO ACTION, RESTRI

CT, CASCADE, SET NULL, SET DEFAULT)

UPDATE_RULE VARCHAR(32)
Update rule for a referential constraint: the value in (NO ACTION, REST

RICT, CASCADE, SET NULL, SET DEFAULT)

STATUS VARCHAR(32) Enforcement status of the constraint: the value in (ENABLED, DISABLE)

DEFERRABLE VARCHAR(32)
Indicates whether the constraint is deferrable (DEFERRABLE) or not (NO

T DEFERRABLE)

DEFERRED VARCHAR(32)
Indicates whether the constraint was initially deferred (DEFERRED) or no

t (IMMEDIATE)

VALIDATED VARCHAR(32)
Indicates whether all data may obey the constraint or not: the value in (

VALIDATED, NOT VALIDATED)

GENERATED VARCHAR(32)
Indicates whether the name of the constraint is user-generated (USER N

AME) or system-generated (GENERATED NAME)

BAD VARCHAR(32)

● reserved

Indicates whether this constraint specifies a century in an ambiguous ma

nner (BAD) or not (NULL)

RELY VARCHAR(32)

● reserved

When NOT VALIDATED, indicates whether the constraint is to be taken i

nto account for query rewrite (RELY) or not (NULL)

LAST_CHANGE
TIMESTAMP(2) WIT

HOUT TIME ZONE
When the constraint was last enabled or disabled

DICTIONARY_SCHEMA | 321

INDEX_OWNER VARCHAR(128) Owner of the index associated with the key constraint

INDEX_SCHEMA VARCHAR(128) Schema of the index associated with the key constraint

INDEX_NAME VARCHAR(128) Name of the index associated with the key constraint

INVALID VARCHAR(32) Indicates whether the constraint is invalid (INVALID) or not (NULL)

VIEW_RELATED VARCHAR(32)
Indicates whether the constraint depends on a view (DEPEND ON VIEW)

or not (NULL)

COMMENTS VARCHAR(1024) Comments of the constraint definition

Column name Data type Description

322 | Database Information

ALL_CONS_COLUMNS

ALL_CONS_COLUMNS describes columns that are accessible to the current user and that are specified in

constraints.

Table 9-10 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the constraint definition

CONSTRAINT_SCHE

MA
VARCHAR(128) Schema of the constraint definition

CONSTRAINT_NAM

E
VARCHAR(128) Name of the constraint definition

TABLE_OWNER VARCHAR(128) Owner of the table with the constraint definition

TABLE_SCHEMA VARCHAR(128) Schema of the table with the constraint definition

TABLE_NAME VARCHAR(128) Name of the table with the constraint definition

COLUMN_NAME VARCHAR(128)
Name of the column or attribute of the object type column specifie

d in the constraint definition

POSITION NUMBER
Original position of the column or attribute in the definition of the

object

DICTIONARY_SCHEMA | 323

ALL_DB_PRIVS

ALL_DB_PRIVS describes the database grants, for which the current user is the grantor, or grantee, or for

which an enabled role or PUBLIC is the grantee.

Table 9-11 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PRIVILEGE VARCHAR(32) Privilege on the database

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the G

RANT OPTION (YES) or not (NO)

324 | Database Information

ALL_DB_PRIVS_MADE

ALL_DB_PRIVS_MADE describes the database grants for which the current user is the grantor.

Table 9-12 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the database

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 325

ALL_DB_PRIVS_RECD

ALL_DB_PRIVS_RECD describes the database grants, for which the current user is the grantee, or for whic

h an enabled role or PUBLIC is the grantee.

Table 9-13 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the database

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

326 | Database Information

ALL_DEPENDENCIES

ALL_DEPENDENCIES describes dependencies between objects accessible to the current user

Table 9-14 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of object

SCHEMA_NAME VARCHAR(128) Schema Name of object

NAME VARCHAR(128) Name of object

TYPE VARCHAR(32)
Type of object: FUNCTION, PROCEDURE, VIEW, PACKAGE, PACKA

GE BODY, TRIGGER

REFERENCED_OWNE

R
VARCHAR(128) Owner of the referenced object

REFERENCED_SCHE

MA_NAME
VARCHAR(128) Schema Name of the referenced object

REFERENCED_TYPE VARCHAR(32)
Type of the referenced object: FUNCTION, PROCEDURE, TABLE, VIE

W, SEQUENCE, PACKAGE, PACKAGE BODY, TRIGGER

REFERENCED_LINK_

NAME
VARCHAR(128) Name of the link to the parent object

REFERENCED_NAME VARCHAR(128) Name of the referenced object

DEPENDENCY_TYPE VARCHAR(32)
Indicates whether the dependency is a REF dependency (REF) or not

(HARD)

DICTIONARY_SCHEMA | 327

ALL_GLOBAL_SECONDARY_INDEXES

ALL_GLOBAL_SECONDARY_INDEXES describes the global secondary indexes on the tables accessible to t

he current user.

Note

It is available only on a cluster.

Table 9-15 Column information

Column name Data type Description

TABLE_OWNER VARCHAR(128) Owner of the global secondary indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the global secondary indexed object

TABLE_NAME VARCHAR(128) Name of the global secondary indexed object

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the global secondary index

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent

NEXT_EXTENT NUMBER Size of secondary extents

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_FREE NUMBER Minimum percentage of free space in a block

LOGGING VARCHAR(3)
Indicates whether or not changes to the global secondary index are l

ogged: (YES) or (NO)

BLOCKS NUMBER Number of used blocks in the global secondary index

328 | Database Information

ALL_GSI_PLACE

ALL_GSI_PLACE describes node placement of all global secondary indexes on the tables accessible to the

current user in the cluster system.

Note

It is available only on a cluster.

Table 9-16 Column information

Column name Data type Description

TABLE_OWNER VARCHAR(128) Owner of the global secondary indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the global secondary indexed object

TABLE_NAME VARCHAR(128) Name of the global secondary indexed object

GROUP_ID NUMBER
Group identifier of the node where the global secondary index place

d

GROUP_NAME VARCHAR(128) Group name of the node where the global secondary index placed

MEMBER_ID NUMBER
Member identifier of the node where the global secondary index pla

ced

MEMBER_NAME VARCHAR(128)
Member name of the node where the global secondary index place

d

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

BLOCKS NUMBER
Number of used blocks of the node where the global secondary ind

ex placed

DICTIONARY_SCHEMA | 329

ALL_INDEXES

ALL_INDEXES describes the indexes on the tables accessible to the current user.

Table 9-17 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the index

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

INDEX_TYPE VARCHAR(32)

Type of the index: the value in (NORMAL, NORMAL/REV, BITMAP,

FUNCTION-BASED NORMAL, FUNCTION-BASED NORMAL/REV, FUN

CTION-BASED BITMAP, IOT - TOP, DOMAIN)

TABLE_OWNER VARCHAR(128) Owner of the indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the indexed object

TABLE_NAME VARCHAR(128) Name of the indexed object

TABLE_TYPE VARCHAR(32)
Type of the indexed object: the value in (NEXT OBJECT, INDEX, TAB

LE, VIEW, SYNONYM, SEQUENCE)

UNIQUENESS VARCHAR(32)
Indicates whether the index is unique (UNIQUE) or nonunique (NON

UNIQUE)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether index compression is enabled (ENABLED) or not

(DISABLED)

PREFIX_LENGTH NUMBER
● reserved

Number of columns in the prefix of the compression key

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the index

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent

NEXT_EXTENT NUMBER Size of secondary extents

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

PCT_THRESHOLD NUMBER
● reserved

Threshold percentage of block space allowed per index entry

INCLUDE_COLUMN NUMBER

● reserved

Column ID of the last column to be included in index-organized tabl

e primary key (non-overflow) index

FREELISTS NUMBER
● reserved

Number of process freelists allocated to this segment

FREELIST_GROUPS NUMBER
● reserved

Number of freelist groups allocated to this segment

330 | Database Information

PCT_FREE NUMBER Minimum percentage of free space in a block

LOGGING VARCHAR(3)
Indicates whether or not changes to the index are logged: (YES) or

(NO)

BLOCKS NUMBER Number of used blocks in the index

BLEVEL NUMBER
● reserved

B-Tree level (depth of the index from its root block to its leaf blocks)

LEAF_BLOCKS NUMBER
● reserved

Number of leaf blocks in the index

DISTINCT_KEYS NUMBER Number of distinct indexed values.

AVG_LEAF_BLOCKS_

PER_KEY
NUMBER

● reserved

Average number of leaf blocks in which each distinct value in the in

dex appears, rounded to the nearest integer

AVG_DATA_BLOCKS

_PER_KEY
NUMBER

● reserved

Average number of data blocks in the table that are pointed to by a

distinct value in the index rounded to the nearest integer

CLUSTERING_FACTO

R
NUMBER

● reserved

Indicates the amount of order of the rows in the table based on the

values of the index

STATUS VARCHAR(32) Indicates whether a nonpartitioned index is VALID or UNUSABLE

NUM_ROWS NUMBER
● reserved

Number of rows in the index

SAMPLE_SIZE NUMBER Size of the sample used to analyze the index

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this index was most recently analyzed

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the index, or DEFAULT

INSTANCES VARCHAR(32)

● reserved

Number of instances across which the indexes to be scanned, or DE

FAULT

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the index is partitioned (YES) or not (NO)

TEMPORARY VARCHAR(1) Indicates whether the index is on a temporary table (Y) or not (N)

GENERATED VARCHAR(1)
Indicates whether the name of the index is system-generated (Y) or

not (N)

SECONDARY VARCHAR(1)
Indicates whether the index is a secondary object created by the me

thod of the Data Cartridge (Y) or not (N)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for index blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for index blocks

● reserved

Column name Data type Description

DICTIONARY_SCHEMA | 331

CELL_FLASH_CACHE VARCHAR(32) Cell flash cache hint to be used for index blocks

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) o

r not (NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

PCT_DIRECT_ACCES

S
NUMBER

● reserved

For a secondary index on an index-organized table, the percentage

of rows with VALID guess

ITYP_OWNER VARCHAR(128)
● reserved

For a domain index, the owner of the indextype

ITYP_NAME VARCHAR(128)
● reserved

For a domain index, the name of the indextype

PARAMETERS VARCHAR(1024)
● reserved

For a domain index, the parameter string

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned indexes, indicates whether statistics were collected b

y analyzing the index as a whole (YES) or were estimated from statis

tics on underlying index partitions and subpartitions (NO)

DOMIDX_STATUS VARCHAR(32)
● reserved

Status of a domain index

DOMIDX_OPSTATUS VARCHAR(32)
● reserved

Status of the operation on a domain index

FUNCIDX_STATUS VARCHAR(32)
● reserved

Status of a function-based index

JOIN_INDEX VARCHAR(3)
● reserved

Indicates whether the index is a join index (YES) or not (NO)

IOT_REDUNDANT_P

KEY_ELIM
VARCHAR(3)

● reserved

Indicates whether redundant primary key columns are eliminated fro

m secondary indexes on index-organized tables (YES) or not (NO)

DROPPED VARCHAR(3)

● reserved

Indicates whether the index has been dropped and is in the recycle

bin (YES) or not (NO)

VISIBILITY VARCHAR(3)
● reserved

Indicates whether the index is VISIBLE or INVISIBLE to the optimizer

DOMIDX_MANAGE

MENT
VARCHAR(32)

● reserved

If this is a domain index, indicates whether the domain index is syste

m-managed (SYSTEM_MANAGED) or user-managed (USER_MANA

GED)

SEGMENT_CREATED VARCHAR(3)
Indicates whether the index segment has been created (YES) or not

(NO)

Column name Data type Description

332 | Database Information

COMMENTS VARCHAR(1024) Comments of the index

EMPTY_BLOCKS NUMBER Number of empty blocks in the index

Column name Data type Description

DICTIONARY_SCHEMA | 333

ALL_IND_COLUMNS

ALL_IND_COLUMNS describes the columns of indexes on all tables accessible to the current user.

Table 9-18 Column information

Column name Data type Description

INDEX_OWNER VARCHAR(128) Owner of the index

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

TABLE_OWNER VARCHAR(128) Owner of the table or cluster

TABLE_SCHEMA VARCHAR(128) Schema of the table or cluster

TABLE_NAME VARCHAR(128) Name of the table or cluster

COLUMN_NAME VARCHAR(128) Column name or attribute of the object type column

COLUMN_POSITION NUMBER Position of the column or attribute within the index

COLUMN_LENGTH NUMBER Indexed length of the column

CHAR_LENGTH NUMBER Maximum codepoint length of the column

DESCEND VARCHAR(32)
Indicates whether the column is sorted in descending order (DESC)

or ascending order (ASC)

NULL_ORDER VARCHAR(32)
Indicates whether the null value of the column is sorted in nulls first

order (NULLS FIRST) or nulls last order (NULLS LAST)

334 | Database Information

ALL_IND_PLACE

ALL_IND_PLACE describes node placement of the indexes on the tables accessible to the current user in t

he cluster system.

Note

It is available only on a cluster.

Table 9-19 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the index

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

TABLE_OWNER VARCHAR(128) Owner of the indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the indexed object

TABLE_NAME VARCHAR(128) Name of the indexed object

GROUP_ID NUMBER Group identifier of the node where the index placed

GROUP_NAME VARCHAR(128) Group name of the node where the index placed

MEMBER_ID NUMBER Member identifier of the node where the index placed

MEMBER_NAME VARCHAR(128) Member name of the node where the index placed

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

DISTINCT_KEYS NUMBER (deprecated)

SAMPLE_SIZE NUMBER (deprecated)

BLOCKS NUMBER Number of used blocks of the node where the index placed

LAST_ANALYZED
TIMESTAMP(2) WITH

OUT TIME ZONE
(deprecated)

DICTIONARY_SCHEMA | 335

ALL_NONSCHEMA_COMMENTS

ALL_NONSCHEMA_COMMENTS displays comments on all non-schema objects (database, authorizations,

schemas, tablespaces) accessible to the current user.

Table 9-20 Column information

Column name Data type Description

OBJECT_NAME VARCHAR(128) Name of the non-schema object

OBJECT_TYPE VARCHAR(32)
Type of the non-schema object: DATABASE, AUTHORIZATION, SCH

EMA, TABLESPACE

COMMENTS VARCHAR(1024) Comments of the non-schema object

336 | Database Information

ALL_OBJECTS

ALL_OBJECTS describes all objects accessible to the current user.

Table 9-21 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

SCHEMA_NAME VARCHAR(128) Schema of the object

OBJECT_NAME VARCHAR(128) Name of the object

SUBOBJECT_NA

ME
VARCHAR(128) Name of the subobject (for example, partition)

OBJECT_ID NUMBER Dictionary object number of the object

DATA_OBJECT_I

D
NUMBER Dictionary object number of the segment that contains the object

OBJECT_TYPE VARCHAR(32) Type of the object (such as TABLE, INDEX)

CREATED

TIMESTAMP(2)

WITHOUT TIME Z

ONE

Timestamp for the creation of the object

LAST_DDL_TIME

TIMESTAMP(2)

WITHOUT TIME Z

ONE

Timestamp for the last modification of the object resulting from a DDL stat

ement

TIMESTAMP VARCHAR(32) Timestamp for the specification of the object (character data)

STATUS VARCHAR(32) Status of the object: the value in (VALID, INVALID, N/A)

TEMPORARY VARCHAR(1)
Indicates whether the object is temporary (the current session can see only

data that it placed in this object itself) (Y) or not (N)

GENERATED VARCHAR(1)

* reserved

Indicates whether the name of this object was system-generated (Y) or not

(N)

SECONDARY VARCHAR(1)

● reserved

Indicates whether this is a secondary object created by the ODCIIndexCreat

e method of the Oracle Data Cartridge (Y) or not (N)

NAMESPACE NUMBER Namespace for the object

EDITION_NAME VARCHAR(128)
● reserved

Name of the edition in which the object is actual

DICTIONARY_SCHEMA | 337

ALL_PROCEDURES

ALL_PROCEDURES lists all function, procedures or package

Table 9-22 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of function, procedures or package

SCHEMA_NAME VARCHAR(128) Schema Name of function, procedures or package

OBJECT_NAME VARCHAR(128) Name of function, procedures or package

PROCEDURE_NAME VARCHAR(128) Name when a procedures in package

OBJECT_ID NUMBER ID of a function, procedures or package

SUBPROGRAM_ID NUMBER ID of procedures in package

OVERLOAD VARCHAR(32) ID of overloading procedure in package

OBJECT_TYPE VARCHAR(32) Type of function, procedures or package

AGGREGATE VARCHAR(3)
Indicate whether the procedure is an aggreage function(YES) or not

(NO)

PIPELINED VARCHAR(3)
Indicate whether the procedure is a pipelined table function(YES) or

not(NO)

IMPLTYPEOWNER VARCHAR(128) Name of the owner of the implementation type, if any

IMPLTYPENAME VARCHAR(128) Name of the implementation type, if any

PARALLEL VARCHAR(3)
Indicates whether the procedure or function is parallel-enabled (YES

) or not (NO)

INTERFACE VARCHAR(3)
YES, if the procedure/function is a table function implemented usin

g the SQLCLI interface; otherwise NO

DETERMINISTIC VARCHAR(3)
YES, if the procedure/function is declared to be deterministic; other

wise NO

AUTHID VARCHAR(32)
Indicates whether the procedure/function is declared to execute as

DEFINER or CURRENT_USER (invoker)

338 | Database Information

ALL_PROC_PRIVS

ALL_PROC_PRIVS describes the procedure grants, for which the current user is the procedure owner, gra

ntor, or grantee, or for which an enabled role or PUBLIC is the grantee.

Table 9-23 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 339

ALL_PROC_PRIVS_MADE

ALL_PROC_PRIVS_MADE describes the procedure grants for which the current user is the procedure own

er or grantor.

Table 9-24 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

340 | Database Information

ALL_PROC_PRIVS_RECD

ALL_PROC_PRIVS_RECD describes the procedure grants, for which the current user is the grantee, or for

which an enabled role or PUBLIC is the grantee.

Table 9-25 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 341

ALL_SCHEMAS

ALL_SCHEMAS identifies the schemata in a catalog that are owned by given user or accessible to given us

er or role.

Table 9-26 Column information

Column name Data type Description

SCHEMA_OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

CREATED_TIME TIMESTAMP(2) WITHOUT TIME ZONE Created time of the schema

MODIFIED_TIME TIMESTAMP(2) WITHOUT TIME ZONE Last modified time of the schema

COMMENTS VARCHAR(1024) Comments of the schema

342 | Database Information

ALL_SCHEMA_PATH

ALL_SCHEMA_PATH describes the schema search order of the current user and PUBLIC, for naming resol

ution of unqualified SQL schema objects.

Table 9-27 Column information

Column name Data type Description

AUTH_NAME VARCHAR(128) Name of the authorization

SCHEMA_NAME VARCHAR(128) Name of the schema

SEARCH_ORDER NUMBER Schema search order of the authorization

DICTIONARY_SCHEMA | 343

ALL_SCHEMA_PRIVS

ALL_SCHEMA_PRIVS describes the schema grants, for which the current user is the schema owner, grant

or, or grantee, or for which an enabled role or PUBLIC is the grantee.

Table 9-28 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

344 | Database Information

ALL_SCHEMA_PRIVS_MADE

ALL_SCHEMA_PRIVS_MADE describes the schema grants, for which the current user is the grantor.

Table 9-29 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 345

ALL_SCHEMA_PRIVS_RECD

ALL_SCHEMA_PRIVS_RECD describes the schema grants, for which the current user is the grantee, or for

which an enabled role or PUBLIC is the grantee.

Table 9-30 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

346 | Database Information

ALL_SEQUENCES

ALL_SEQUENCES describes all sequences accessible to the current user.

Table 9-31 Column information

Column name Data type Description

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Sequence name

MIN_VALUE NUMBER Minimum value of the sequence

MAX_VALUE NUMBER Maximum value of the sequence

INCREMENT_BY NUMBER Value by which sequence is incremented

CYCLE_FLAG VARCHAR(1)
Indicates whether the sequence wraps around on reaching the limit

(Y) or not (N)

ORDER_FLAG VARCHAR(1)
Indicates whether sequence numbers are generated in order (Y) or

not (N)

CACHE_SIZE NUMBER Number of sequence numbers to cache

LAST_NUMBER NUMBER

Last sequence number written to database. If a sequence uses cachi

ng, the number written to database is the last number placed in the

sequence cache.

COMMENTS VARCHAR(1024) Comments of the sequence

DICTIONARY_SCHEMA | 347

ALL_SEQ_PRIVS

ALL_SEQ_PRIVS describes the sequence grants, for which the current user is the sequence owner, granto

r, or grantee, or for which an enabled role or PUBLIC is the grantee.

Table 9-32 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

348 | Database Information

ALL_SEQ_PRIVS_MADE

ALL_SEQ_PRIVS_MADE describes the sequence grants for which the current user is the sequence owner

or grantor.

Table 9-33 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 349

ALL_SEQ_PRIVS_RECD

ALL_SEQ_PRIVS_RECD describes the sequence grants, for which the current user is the grantee, or for wh

ich an enabled role or PUBLIC is the grantee.

Table 9-34 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

350 | Database Information

ALL_SHARD_KEY_COLUMNS

ALL_SHARD_KEY_COLUMNS describes shard key columns of all shareded tables accessible to the current

user in the cluster system.

Note

It is available only on a cluster.

Table 9-35 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

COLUMN_NAME VARCHAR(128) Column name of the shard key

COLUMN_POSITION NUMBER Position of the column within the shard key

DICTIONARY_SCHEMA | 351

ALL_SOURCE

ALL_SOURCE describes the text source of the stored objects accessible to the current user.

Table 9-36 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of object

SCHEMA_NAME VARCHAR(128) Schema Name of object

NAME VARCHAR(128) Name of object

TYPE VARCHAR(32)
Type of object: FUNCTION, PROCEDURE, PACKAGE, PACKAGE BOD

Y, TRIGGER

LINE NUMBER Line number of this line of source

TEXT LONG VARCHAR Text source of the strored object

ORIGIN_CON_ID VARCHAR(256) ID of the container where the data originates

352 | Database Information

ALL_SYNONYMS

ALL_SYNONYMS describes all synonyms.

Table 9-37 Column information

Column name Data type Description

SYNONYM_OWNER VARCHAR(128) Owner of the synonym

SYNONYM_SCHEMA VARCHAR(128) Schema of the synonym

SYNONYM_NAME VARCHAR(128) Synonym name

OBJECT_SCHEMA_NAME VARCHAR(128) Object schema name

OBJECT_NAME VARCHAR(128) Object name

DB_LINK VARCHAR(128) Reserved for future use

DICTIONARY_SCHEMA | 353

ALL_TABLES

ALL_TABLES describes the relational tables accessible to the current user.

Table 9-38 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the table

CLUSTER_NAME VARCHAR(128)
● reserved

Name of the cluster

IOT_NAME VARCHAR(128)
● reserved

Name of the index-organized table

STATUS VARCHAR(32)

● reserved

If a previous DROP TABLE operation failed, indicates whether the ta

ble is unusable (UNUSABLE) or valid (VALID)

PCT_FREE NUMBER Minimum percentage of free space in a block

PCT_USED NUMBER Minimum percentage of used space in a block

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent (in bytes)

NEXT_EXTENT NUMBER Size of secondary extents (in bytes)

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

FREELISTS NUMBER
● reserved

Number of process freelists allocated to the segment

FREELIST_GROUPS NUMBER
● reserved

Number of freelist groups allocated to the segment

LOGGING VARCHAR(3) Indicates whether or not changes to the table are logged

BACKED_UP VARCHAR(1)

● reserved

Indicates whether the table has been backed up since the last modifi

cation (Y) or not (N)

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER Number of used blocks in the table

EMPTY_BLOCKS NUMBER
● reserved

Number of empty (never used) blocks in the table

AVG_SPACE NUMBER
● reserved

Average available free space in the table

● reserved

354 | Database Information

CHAIN_CNT NUMBER Number of rows in the table that are chained from one data block t

o another or that have migrated to a new block, requiring a link to p

reserve the old rowid

AVG_ROW_LEN NUMBER
● reserved

Average row length, including row overhead

AVG_SPACE_FREELIS

T_BLOCKS
NUMBER

● reserved

Average freespace of all blocks on a freelist

NUM_FREELIST_BLO

CKS
NUMBER

● reserved

Number of blocks on the freelist

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the table, or DEFAULT

INSTANCES VARCHAR(32)

● reserved

Number of instances across which the table is to be scanned, or DEF

AULT

CACHE VARCHAR(1)

● reserved

Indicates whether the table is to be cached in the buffer cache (Y) o

r not (N)

TABLE_LOCK VARCHAR(32)
Indicates whether table locking is enabled (ENABLED) or disabled (D

ISABLED)

SAMPLE_SIZE NUMBER Sample size used in analyzing the table

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which the table was most recently analyzed

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the table is partitioned (YES) or not (NO)

IOT_TYPE VARCHAR(32)

● reserved

If the table is an index-organized table, then IOT_TYPE is IOT, IOT_O

VERFLOW, or IOT_MAPPING.

TEMPORARY VARCHAR(1) Indicates whether the table is temporary (Y) or not (N)

SECONDARY VARCHAR(1)

● reserved

Indicates whether the table is a secondary object created by cartridg

e

NESTED VARCHAR(3)
● reserved

Indicates whether the table is a nested table (YES) or not (NO)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for table blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for table blocks

CELL_FLASH_CACHE VARCHAR(32)
● reserved

Cell flash cache hint to be used for table blocks

ROW_MOVEMENT VARCHAR(32)

● reserved

If a partitioned table, indicates whether row movement is enabled

Column name Data type Description

DICTIONARY_SCHEMA | 355

(ENABLED) or disabled (DISABLED)

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether statistics for the table as a

whole (global statistics) are accurate (YES)

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) o

r not (NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

SKIP_CORRUPT VARCHAR(32)

● reserved

Indicates whether Database ignores blocks marked corrupt during ta

ble and index scans (ENABLED) or raises an error (DISABLED)

MONITORING VARCHAR(3)

● reserved

Indicates whether the table has the MONITORING attribute set (YES

) or not (NO)

CLUSTER_OWNER VARCHAR(128)
● reserved

Owner of the cluster, if any

DEPENDENCIES VARCHAR(32)

● reserved

Indicates whether row-level dependency tracking is enabled (ENABL

ED) or disabled (DISABLED)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether table compression is enabled (ENABLED) or not

(DISABLED)

COMPRESS_FOR VARCHAR(32)
● reserved

Default compression for what kind of operations

DROPPED VARCHAR(3)

● reserved

Indicates whether the table has been dropped and is in the recycle b

in (YES) or not (NO)

READ_ONLY VARCHAR(3) Indicates whether the table IS READ-ONLY (YES) or not (NO)

SEGMENT_CREATED VARCHAR(3)
Indicates whether the table segment has been created (YES) or not

(NO)

RESULT_CACHE VARCHAR(32)

● reserved

Result cache mode annotation for the table: the value in (NULL, DE

FAULT, FORCE, MANUAL)

Column name Data type Description

356 | Database Information

ALL_TAB_COLS

ALL_TAB_COLS describes the columns (including hidden columns) of the tables, views, and clusters acces

sible to the current user.

Table 9-39 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE VARCHAR(128) Datatype of the column

DATA_TYPE_MOD VARCHAR(3)
● reserved

Datatype modifier of the column

DATA_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the datatype of the column

DATA_LENGTH NUMBER Length of the column (in bytes)

DATA_PRECISION NUMBER
Decimal precision for NUMBER datatype; binary precision for FLOAT

datatype; NULL for all other datatypes

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

NULLABLE VARCHAR(1) Indicates whether a column allows NULLs.

COLUMN_ID NUMBER Sequence number of the column as created

DEFAULT_LENGTH NUMBER Length of the default value for the column

DATA_DEFAULT LONG VARCHAR Default value for the column

NUM_DISTINCT NUMBER Number of distinct values in the column

LOW_VALUE VARBINARY(32) Low value in the column

HIGH_VALUE VARBINARY(32) High value in the column

DENSITY NUMBER

● reserved

If a histogram is available on COLUMN_NAME, then this column dis

plays the selectivity of a value that spans fewer than 2 endpoints in t

he histogram.

NUM_NULLS NUMBER Number of NULLs in the column

NUM_BUCKETS NUMBER
● reserved

Number of buckets in the histogram for the column

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this column was most recently analyzed

SAMPLE_SIZE NUMBER Sample size used in analyzing this column

CHARACTER_SET_N

AME
VARCHAR(128)

● reserved

Name of the character set

CHAR_COL_DECL_LE

NGTH
NUMBER

● reserved

Declaration length of the character type column

● reserved

DICTIONARY_SCHEMA | 357

GLOBAL_STATS VARCHAR(3) For partitioned tables, indicates whether column statistics were coll

ected for the table

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

AVG_COL_LEN NUMBER Average length of the column (in bytes)

CHAR_LENGTH NUMBER Displays the length of the column in characters.

CHAR_USED VARCHAR(1)
Indicates that the column uses BYTE length semantics (B) or CHAR l

ength semantics (C)

V80_FMT_IMAGE VARCHAR(3)

● reserved

Indicates whether the column data is in release older image format

(YES) or not (NO)

DATA_UPGRADED VARCHAR(3)

● reserved

Indicates whether the column data has been upgraded to the latest

type version format (YES) or not (NO)

HIDDEN_COLUMN VARCHAR(3) Indicates whether the column is a hidden column (YES) or not (NO)

VIRTUAL_COLUMN VARCHAR(3)
● reserved

Indicates whether the column is a virtual column (YES) or not (NO)

SEGMENT_COLUMN

_ID
NUMBER Sequence number of the column in the segment

INTERNAL_COLUMN

_ID
NUMBER Internal sequence number of the column

HISTOGRAM VARCHAR(32)
● reserved

Indicates existence/type of histogram

QUALIFIED_COL_NA

ME
VARCHAR(4000) Qualified column name

IDENTITY_COLUMN VARCHAR(3) Indicates whether this is an identity column (YES) or not (NO)

Column name Data type Description

358 | Database Information

ALL_TAB_COLUMNS

ALL_TAB_COLUMNS describes the columns of the tables, views, and clusters accessible to the current use

r.

Table 9-40 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE VARCHAR(128) Datatype of the column

DATA_TYPE_MOD VARCHAR(3)
● reserved

Datatype modifier of the column

DATA_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the datatype of the column

DATA_LENGTH NUMBER Length of the column (in bytes)

DATA_PRECISION NUMBER
Decimal precision for NUMBER datatype; binary precision for FLOAT

datatype; NULL for all other datatypes

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

NULLABLE VARCHAR(1) Indicates whether a column allows NULLs.

COLUMN_ID NUMBER Sequence number of the column as created

DEFAULT_LENGTH NUMBER Length of the default value for the column

DATA_DEFAULT LONG VARCHAR Default value for the column

NUM_DISTINCT NUMBER Number of distinct values in the column

LOW_VALUE VARBINARY(32) Low value in the column

HIGH_VALUE VARBINARY(32) High value in the column

DENSITY NUMBER

● reserved

If a histogram is available on COLUMN_NAME, then this column dis

plays the selectivity of a value that spans fewer than 2 endpoints in t

he histogram.

NUM_NULLS NUMBER Number of NULLs in the column

NUM_BUCKETS NUMBER
● reserved

Number of buckets in the histogram for the column

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this column was most recently analyzed

SAMPLE_SIZE NUMBER Sample size used in analyzing this column

CHARACTER_SET_N

AME
VARCHAR(128)

● reserved

Name of the character set

CHAR_COL_DECL_LE

NGTH
NUMBER Declaration length of the character type column

● reserved

DICTIONARY_SCHEMA | 359

GLOBAL_STATS VARCHAR(3) For partitioned tables, indicates whether column statistics were coll

ected for the table

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

AVG_COL_LEN NUMBER Average length of the column (in bytes)

CHAR_LENGTH NUMBER Displays the length of the column in characters.

CHAR_USED VARCHAR(1)
Indicates that the column uses BYTE length semantics (B) or CHAR l

ength semantics (C)

V80_FMT_IMAGE VARCHAR(3)

● reserved

Indicates whether the column data is in release older image format

(YES) or not (NO)

DATA_UPGRADED VARCHAR(3)

● reserved

Indicates whether the column data has been upgraded to the latest

type version format (YES) or not (NO)

HISTOGRAM VARCHAR(32)
● reserved

Indicates existence/type of histogram

IDENTITY_COLUMN VARCHAR(3) Indicates whether this is an identity column (YES) or not (NO)

Column name Data type Description

360 | Database Information

ALL_TAB_COMMENTS

ALL_TAB_COMMENTS displays comments on the tables and views accessible to the current user.

Table 9-41 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

TABLE_TYPE VARCHAR(32) Type of the object

COMMENTS VARCHAR(1024) Comment on the object

DICTIONARY_SCHEMA | 361

ALL_TAB_IDENTITY_COLS

ALL_TAB_IDENTITY_COLS describes all table identity columns.

Table 9-42 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

COLUMN_NAME VARCHAR(128) Name of the identity column

GENERATION_TYPE VARCHAR(32)
Generation type of the identity column. Possible values are ALWAYS

or BY DEFAULT

IDENTITY_OPTIONS VARCHAR(1024) Options for the identity column sequence generator

362 | Database Information

ALL_TAB_PLACE

ALL_TAB_PLACE describes node placement of all cluster tables accessible to the current user in the cluste

r system.

Note

It is available only on a cluster.

Table 9-43 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

GROUP_ID NUMBER Group identifier of the node where the table placed

GROUP_NAME VARCHAR(128) Group name of the node where the table placed

MEMBER_ID NUMBER Member identifier of the node where the table placed

MEMBER_NAME VARCHAR(128) Member name of the node where the table placed

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

SCN VARCHAR(64) table scn of the node where the table placed

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER Number of used blocks of the node where the table placed

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which the table was most recently analyzed

DICTIONARY_SCHEMA | 363

ALL_TAB_SHARDS

ALL_TAB_SHARDS describes shard information of sharded tables accessible to the current user in the clus

ter system.

Note

It is available only on a cluster.

Table 9-44 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

SHARD_STRATEGY VARCHAR(32)
Sharding strategy of the table:

the value in (HASH SHARDING, RANGE SHARDING, LIST SHARDING)

SHARD_NAME VARCHAR(128) Shard name

SHARD_NUMBER NUMBER Shard number

SHARD_DEFINITION LONG VARCHAR Shard definition (if hash sharded, the value is null)

GROUP_ID NUMBER Group identifier where the shard placed

GROUP_NAME VARCHAR(128) Group Name where the shard placed

364 | Database Information

ALL_TAB_PRIVS

ALL_TAB_PRIVS describes the object grants, for which the current user is the object owner, grantor, or gr

antee, or for which an enabled role or PUBLIC is the grantee.

Table 9-45 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

DICTIONARY_SCHEMA | 365

ALL_TAB_PRIVS_MADE

ALL_TAB_PRIVS_MADE describes the object grants for which the current user is the object owner or gran

tor.

Table 9-46 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

366 | Database Information

ALL_TAB_PRIVS_RECD

ALL_TAB_PRIVS_RECD describes object grants, for which the current user is the grantee, or for which an

enabled role or PUBLIC is the grantee.

Table 9-47 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

DICTIONARY_SCHEMA | 367

ALL_TBS_PRIVS

ALL_TBS_PRIVS describes the tablespace grants, for which the current user is the grantor, or grantee, or f

or which an enabled role or PUBLIC is the grantee.

Table 9-48 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLESPACE_NAME VARCHAR(128) Name of the tablespace

PRIVILEGE VARCHAR(32) Privilege on the tablespace

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

368 | Database Information

ALL_TBS_PRIVS_MADE

ALL_TBS_PRIVS_MADE describes the tablespace grants for which the current user is the grantor.

Table 9-49 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLESPACE_NAME VARCHAR(128) Name of the tablespace

PRIVILEGE VARCHAR(32) Privilege on the tablespace

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 369

ALL_TBS_PRIVS_RECD

ALL_TBS_PRIVS_RECD describes the tablespace grants, for which the current user is the grantee, or for w

hich an enabled role or PUBLIC is the grantee.

Table 9-50 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLESPACE_NAME VARCHAR(128) Name of the tablespace

PRIVILEGE VARCHAR(32) Privilege on the tablespace

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

370 | Database Information

ALL_USERS

ALL_USERS lists all users of the database visible to the current user.

Table 9-51 Column information

Column name Data type Description

USERNAME VARCHAR(128) Name of the user

USER_ID NUMBER ID number of the user

CREATED TIMESTAMP(2) WITHOUT TIME ZONE User creation timestamp

DICTIONARY_SCHEMA | 371

ALL_VIEWS

ALL_VIEWS describes the views accessible to the current user.

Table 9-52 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the view

VIEW_SCHEMA VARCHAR(128) Schema of the view

VIEW_NAME VARCHAR(128) Name of the view

TEXT_LENGTH NUMBER Length of the view text

TEXT LONG VARCHAR View text

TYPE_TEXT_LENGTH NUMBER
● reserved

Length of the type clause of the typed view

TYPE_TEXT VARCHAR(4000)
● reserved

Type clause of the typed view

OID_TEXT_LENGTH NUMBER
● reserved

Length of the WITH OID clause of the typed view

OID_TEXT VARCHAR(4000)
● reserved

WITH OID clause of the typed view

VIEW_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the type of the view if the view is a typed view

VIEW_TYPE VARCHAR(32)
● reserved

Type of the view if the view is a typed view

SUPERVIEW_NAME VARCHAR(128)
● reserved

Name of the superview

EDITIONING_VIEW VARCHAR(1)
● reserved

Reserved for future use

READ_ONLY VARCHAR(1) Indicates whether the view is read-only (Y) or not (N)

372 | Database Information

Views of DBA_family

The current user has DBA privileges (ACCESS CONTROL ON DATABASE), and the user can retrieve inform

ation about all objects.

DBA_ALL_TABLES

DBA_ALL_TABLES describes all object tables and relational tables in the database.

Table 9-53 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

TABLESPACE_NA

ME
VARCHAR(128) Name of the tablespace containing the table

CLUSTER_NAME VARCHAR(128)
● reserved

Name of the cluster

IOT_NAME VARCHAR(128)
● reserved

Name of the index-organized table

STATUS VARCHAR(32)

● reserved

If a previous DROP TABLE operation failed, indicates whether the table is u

nusable (UNUSABLE) or valid (VALID)

PCT_FREE NUMBER Minimum percentage of free space in a block

PCT_USED NUMBER Minimum percentage of used space in a block

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent (in bytes)

NEXT_EXTENT NUMBER Size of secondary extents (in bytes)

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

FREELISTS NUMBER
● reserved

Number of process freelists allocated to the segment

FREELIST_GROU

PS
NUMBER

● reserved

Number of freelist groups allocated to the segment

LOGGING VARCHAR(3) Indicates whether or not changes to the table are logged

BACKED_UP VARCHAR(1)

● reserved

Indicates whether the table has been backed up since the last modification

DICTIONARY_SCHEMA | 373

(Y) or not (N)

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER
● reserved

Number of used blocks in the table

EMPTY_BLOCKS NUMBER
● reserved

Number of empty (never used) blocks in the table

AVG_SPACE NUMBER
● reserved

Average available free space in the table

CHAIN_CNT NUMBER

● reserved

Number of rows in the table that are chained from one data block to anoth

er or that have migrated to a new block, requiring a link to preserve the old

rowid

AVG_ROW_LEN NUMBER
● reserved

Average row length, including row overhead

AVG_SPACE_FRE

ELIST_BLOCKS
NUMBER

● reserved

Average freespace of all blocks on a freelist

NUM_FREELIST_

BLOCKS
NUMBER

● reserved

Number of blocks on the freelist

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the table, or DEFAULT

INSTANCES VARCHAR(32)
● reserved

Number of instances across which the table is to be scanned, or DEFAULT

CACHE VARCHAR(1)

● reserved

Indicates whether the table is to be cached in the buffer cache (Y) or not (N

)

TABLE_LOCK VARCHAR(32)
Indicates whether table locking is enabled (ENABLED) or disabled (DISABLE

D)

SAMPLE_SIZE NUMBER Sample size used in analyzing the table

LAST_ANALYZED

TIMESTAMP(6)

WITHOUT TIME Z

ONE

Date on which the table was most recently analyzed

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the table is partitioned (YES) or not (NO)

IOT_TYPE VARCHAR(32)

● reserved

If the table is an index-organized table, then IOT_TYPE is IOT, IOT_OVERFL

OW, or IOT_MAPPING.

OBJECT_ID_TYPE VARCHAR(32)

● reserved

Indicates whether the object ID (OID) is USER-DEFINED or SYSTEM GENER

ATED

TABLE_TYPE_O

WNER
VARCHAR(128)

● reserved

If an object table, owner of the type from which the table is created

Column name Data type Description

374 | Database Information

TABLE_TYPE VARCHAR(128)
● reserved

If an object table, type of the table

TEMPORARY VARCHAR(1) Indicates whether the table is temporary (Y) or not (N)

SECONDARY VARCHAR(1)
● reserved

Indicates whether the table is a secondary object created by cartridge

NESTED VARCHAR(3)
● reserved

Indicates whether the table is a nested table (YES) or not (NO)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for table blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for table blocks

CELL_FLASH_CA

CHE
VARCHAR(32)

● reserved

Cell flash cache hint to be used for table blocks

ROW_MOVEME

NT
VARCHAR(32)

● reserved

If a partitioned table, indicates whether row movement is enabled (ENABLE

D) or disabled (DISABLED)

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether statistics for the table as a whole

(global statistics) are accurate (YES)

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) or not

(NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

SKIP_CORRUPT VARCHAR(32)

● reserved

Indicates whether Database ignores blocks marked corrupt during table an

d index scans (ENABLED) or raises an error (DISABLED)

MONITORING VARCHAR(3)

● reserved

Indicates whether the table has the MONITORING attribute set (YES) or not

(NO)

CLUSTER_OWNE

R
VARCHAR(128)

● reserved

Owner of the cluster, if any

DEPENDENCIES VARCHAR(32)

● reserved

Indicates whether row-level dependency tracking is enabled (ENABLED) or

disabled (DISABLED)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether table compression is enabled (ENABLED) or not (DISABLE

D)

COMPRESS_FOR VARCHAR(32)
● reserved

Default compression for what kind of operations

● reserved

Column name Data type Description

DICTIONARY_SCHEMA | 375

DROPPED VARCHAR(3) Indicates whether the table has been dropped and is in the recycle bin (YES

) or not (NO)

READ_ONLY VARCHAR(3) Indicates whether the table IS READ-ONLY (YES) or not (NO)

SEGMENT_CREA

TED
VARCHAR(3) Indicates whether the table segment has been created (YES) or not (NO)

Column name Data type Description

376 | Database Information

DBA_ARGUMENTS

DBA_ARGUMENTS lists all arguments of functions, procedures.

Table 9-54 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of function, procedures or package

SCHEMA_NAME VARCHAR(128) Schema Name of function, procedures or package

OBJECT_NAME VARCHAR(128) Name of function, procedures

PACKAGE_NAME VARCHAR(128) Package Name of function, procedures

OBJECT_ID NUMBER ID of a function, procedures

SUBPROGRAM_ID NUMBER ID of procedures in package

ARGUMENT_NAME VARCHAR(128) Name of argument or attribute name of record type argument

POSITION NUMBER Position of argument or position of attribute in record type

SEQUENCE NUMBER Sequential order of argument and its attributes

DATA_LEVEL NUMBER Nesting depth of the argument for composite types

DATA_TYPE VARCHAR(128) Data type of the argument

DEFAULTED VARCHAR(1) Whether or not the argument is defaulted

DEFAULT_VALUE VARCHAR(1) Reserved for future use

DEFAULT_LENGTH VARCHAR(1) Reserved for future use

IN_OUT VARCHAR(32) Direction of the argument (IN, OUT, IN/OUT)

DATA_LENGTH NUMBER Length of the column(in bytes)

DATA_PRECISION NUMBER Length in decimal digits(NUMBER) or binary digits(FLOAT)

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

RADIX NUMBER Argument radix for a number

CHARACTER_SET_NAME VARCHAR(128) Character set name for the argument

TYPE_OWNER VARCHAR(128) Owner of the type of the argument

TYPE_NAME VARCHAR(128) Name of the type of the argument

TYPE_SUBNAME VARCHAR(128) Name of the type of the argument declared in package

TYPE_LINK VARCHAR(128) Name of the type of the argument declared in a remote package

PLS_TYPE VARCHAR(128) Name of the type of the argument at PSM

CHAR_LENGTH NUMBER Character limit for string datatypes

CHAR_USED VARCHAR(1) Whether the byte limit(B) or char limit(C) is official for the string

ORIGIN_CON_ID VARCHAR(256) ID of the container where the data originates

DICTIONARY_SCHEMA | 377

DBA_CATALOG

DBA_CATALOG lists all tables, views, synonyms, and sequences in the database.

Table 9-55 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_SCHEMA VARCHAR(128) Schema of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_NAME VARCHAR(128) Name of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_TYPE VARCHAR(32) Type of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

378 | Database Information

DBA_CLUSTER

DBA_CLUSTER describes all cluster members in the cluster system.

Note

It is available only on a cluster.

Table 9-56 Column information

Column name Data type Description

GROUP_ID NUMBER Group identifier of the cluster member

GROUP_NAME VARCHAR(128) Group name of the cluster member

MEMBER_ID NUMBER Member identifier of the cluster member

MEMBER_NAME VARCHAR(128) Member name of the cluster member

MEMBER_HOST VARCHAR(128) Host address of the cluster member

MEMBER_PORT NUMBER Port number of the cluster member

DICTIONARY_SCHEMA | 379

DBA_CLUSTER_COMMENTS

DBA_CLUSTER_COMMENTS displays comments on the cluster objects in the cluster system.

Note

It is available only on a cluster.

Table 9-57 Column information

Column name Data type Description

OBJECT_NAME VARCHAR(128) Name of the cluster object

OBJECT_TYPE VARCHAR(32) Type of the cluster object: CLUSTER GROUP, CLUSTER MEMBER

COMMENTS VARCHAR(1024) Comment on the cluster object

380 | Database Information

DBA_CLUSTER_TABLES

DBA_CLUSTER_TABLES describes all cluster tables in the cluster system.

Note

It is available only on a cluster.

Table 9-58 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

SHARD_STRATEGY VARCHAR(32)

Sharding strategy of the table:

the value in (CLONED, HASH SHARDING, RANGE SHARDING, LIST S

HARDING)

SHARD_PLACEMENT VARCHAR(32)
Shard placement of the table:

the value in (AT CLUSTER WIDE or AT CLUSTER GROUP)

SHARD_COUNT NUMBER Shard count of the table (if cloned table, the value is null)

SHARD_KEY_COUNT NUMBER
Shard key column count of the table (if cloned table, the value is nul

l)

HAS_GSI VARCHAR(3)
Indicate whether the table has global secondary index: (YES) or (NO

)

DICTIONARY_SCHEMA | 381

DBA_COL_COMMENTS

DBA_COL_COMMENTS displays comments on the columns of all tables and views in the database.

Table 9-59 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

COMMENTS VARCHAR(1024) Comment on the column

382 | Database Information

DBA_COL_PRIVS

DBA_COL_PRIVS describes all column object grants in the database.

Table 9-60 Column information

Column name Data type Description

GRANTOR CHARACTER VARYING(128) Name of the user who performed the grant

GRANTEE CHARACTER VARYING(128) Name of the user or role to whom access was granted

OWNER CHARACTER VARYING(128) Owner of the object

TABLE_SCHEMA CHARACTER VARYING(128) Schema of the object

TABLE_NAME CHARACTER VARYING(128) Name of the object

COLUMN_NAME CHARACTER VARYING(128) Name of the column

PRIVILEGE CHARACTER VARYING(32) Privilege on the column

GRANTABLE CHARACTER VARYING(3)
Indicates whether the privilege was granted with the GRA

NT OPTION (YES) or not (NO)

DICTIONARY_SCHEMA | 383

DBA_CONSTRAINTS

DBA_CONSTRAINTS describes all constraint definitions on all tables in the database.

Table 9-61 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the constraint definition

CONSTRAINT_SCHE

MA
VARCHAR(128) Schema of the constraint definition

CONSTRAINT_NAME VARCHAR(128) Name of the constraint definition

CONSTRAINT_TYPE VARCHAR(1)
Type of the constraint definition: the value in (C: check constraint, P:

Primary key, U: Unique Key, R: Referential intgrity)

TABLE_OWNER VARCHAR(128)
Owner of the table (or view) associated with the constraint definitio

n

TABLE_SCHEMA VARCHAR(128)
Schema of the table (or view) associated with the constraint definiti

on

TABLE_NAME VARCHAR(128) Name of the table (or view) associated with the constraint definition

SEARCH_CONDITION LONG VARCHAR Text of search condition for a check constraint

R_OWNER VARCHAR(128) Owner of the unique constraint definition for the referenced table

R_SCHEMA VARCHAR(128) Schema of the unique constraint definition for the referenced table

R_CONSTRAINT_NA

ME
VARCHAR(128) Name of the unique constraint definition for the referenced table

DELETE_RULE VARCHAR(32)
Delete rule for a referential constraint: the value in (NO ACTION, RE

STRICT, CASCADE, SET NULL, SET DEFAULT)

UPDATE_RULE VARCHAR(32)
Update rule for a referential constraint: the value in (NO ACTION, R

ESTRICT, CASCADE, SET NULL, SET DEFAULT)

STATUS VARCHAR(32)
Enforcement status of the constraint: the value in (ENABLED, DISAB

LE)

DEFERRABLE VARCHAR(32)
Indicates whether the constraint is deferrable (DEFERRABLE) or not

(NOT DEFERRABLE)

DEFERRED VARCHAR(32)
Indicates whether the constraint was initially deferred (DEFERRED) o

r not (IMMEDIATE)

VALIDATED VARCHAR(32)
Indicates whether all data may obey the constraint or not: the value

in (VALIDATED, NOT VALIDATED)

GENERATED VARCHAR(32)
Indicates whether the name of the constraint is user-generated (USE

R NAME) or system-generated (GENERATED NAME)

BAD VARCHAR(32)

● reserved

Indicates whether this constraint specifies a century in an ambiguou

s manner (BAD) or not (NULL)

RELY VARCHAR(32)

● reserved

When NOT VALIDATED, indicates whether the constraint is to be ta

ken into account for query rewrite (RELY) or not (NULL)

TIMESTAMP(2) WITH

384 | Database Information

LAST_CHANGE OUT TIME ZONE When the constraint was last enabled or disabled

INDEX_OWNER VARCHAR(128) Owner of the index associated with the key constraint

INDEX_SCHEMA VARCHAR(128) Schema of the index associated with the key constraint

INDEX_NAME VARCHAR(128) Name of the index associated with the key constraint

INVALID VARCHAR(32) Indicates whether the constraint is invalid (INVALID) or not (NULL)

VIEW_RELATED VARCHAR(32)

● reserved

Indicates whether the constraint depends on a view (DEPEND ON VI

EW) or not (NULL)

COMMENTS VARCHAR(1024) Comments of the constraint definition

Column name Data type Description

DICTIONARY_SCHEMA | 385

DBA_CONS_COLUMNS

DBA_CONS_COLUMNS describes all columns in the database that are specified in constraints.

Table 9-62 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the constraint definition

CONSTRAINT_SCHE

MA
VARCHAR(128) Schema of the constraint definition

CONSTRAINT_NAME VARCHAR(128) Name of the constraint definition

TABLE_OWNER VARCHAR(128) Owner of the table with the constraint definition

TABLE_SCHEMA VARCHAR(128) Schema of the table with the constraint definition

TABLE_NAME VARCHAR(128) Name of the table with the constraint definition

COLUMN_NAME VARCHAR(128)
Name of the column or attribute of the object type column specified

in the constraint definition

POSITION NUMBER
Original position of the column or attribute in the definition of the o

bject

386 | Database Information

DBA_DB_PRIVS

DBA_DB_PRIVS describes all database grants in the database.

Table 9-63 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PRIVILEGE VARCHAR(32) Privilege on the database

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 387

DBA_DEPENDENCIES

DBA_DEPENDENCIES describes all dependencies between objects in the database

Table 9-64 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of object

SCHEMA_NAME VARCHAR(128) Schema Name of object

NAME VARCHAR(128) Name of object

TYPE VARCHAR(32)
Type of object: FUNCTION, PROCEDURE, VIEW, PACKAGE, PACK

AGE BODY, TRIGGER

REFERENCED_OWNER VARCHAR(128) Owner of the referenced object

REFERENCED_SCHEMA

_NAME
VARCHAR(128) Schema Name of the referenced object

REFERENCED_TYPE VARCHAR(32)
Type of the referenced object: FUNCTION, PROCEDURE, TABLE, V

IEW, SEQUENCE, PACKAGE, PACKAGE BODY, TRIGGER

REFERENCED_LINK_NA

ME
VARCHAR(128) Name of the link to the parent object

REFERENCED_NAME VARCHAR(128) Name of the referenced object

DEPENDENCY_TYPE VARCHAR(32)
Indicates whether the dependency is a REF dependency (REF) or n

ot (HARD)

388 | Database Information

DBA_EXTENTS

DBA_EXTENTS describes the extents comprising the segments in all tablespaces in the database.

Table 9-65 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the segment associated with the extent

SEGMENT_SCHEMA VARCHAR(128) Schema of the segment associated with the extent

SEGMENT_NAME VARCHAR(128) Name of the segment associated with the extent

PARTITION_NAME VARCHAR(128)
● reserved

Object Partition Name (Set to NULL for non-partitioned objects)

SEGMENT_TYPE VARCHAR(32) Type of the segment: TABLE, INDEX

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the extent

EXTENT_ID NUMBER
● reserved

Extent number in the segment

FILE_ID NUMBER
● reserved

File identifier number of the file containing the extent

BLOCK_ID NUMBER
● reserved

Starting block number of the extent

BYTES NUMBER Size of the extent in bytes

BLOCKS NUMBER Size of the extent in Oracle blocks

RELATIVE_FNO NUMBER
● reserved

Relative file number of the first extent block

DICTIONARY_SCHEMA | 389

DBA_GLOBAL_SECONDARY_INDEXES

DBA_GLOBAL_SECONDARY_INDEXES describes all global secondary indexes in the database.

Note

It is available only on a cluster.

Table 9-66 Column information

Column name Data type Description

TABLE_OWNER VARCHAR(128) Owner of the global secondary indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the global secondary indexed object

TABLE_NAME VARCHAR(128) Name of the global secondary indexed object

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the global secondary index

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent

NEXT_EXTENT NUMBER Size of secondary extents

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_FREE NUMBER Minimum percentage of free space in a block

LOGGING VARCHAR(3)
Indicates whether or not changes to the global secondary index are l

ogged: (YES) or (NO)

BLOCKS NUMBER Number of used blocks in the global secondary index

390 | Database Information

DBA_GSI_PLACE

DBA_GSI_PLACE describes node placement of all global secondary indexes in the cluster system.

Note

It is available only on a cluster.

Table 9-67 Column information

Column name Data type Description

TABLE_OWNER VARCHAR(128) Owner of the global secondary indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the global secondary indexed object

TABLE_NAME VARCHAR(128) Name of the global secondary indexed object

GROUP_ID NUMBER
Group identifier of the node where the global secondary index place

d

GROUP_NAME VARCHAR(128) Group name of the node where the global secondary index placed

MEMBER_ID NUMBER
Member identifier of the node where the global secondary index pla

ced

MEMBER_NAME VARCHAR(128)
Member name of the node where the global secondary index place

d

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

BLOCKS NUMBER
Number of used blocks of the node where the global secondary ind

ex placed

DICTIONARY_SCHEMA | 391

DBA_INDEXES

DBA_INDEXES describes all indexes in the database.

Table 9-68 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the index

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

INDEX_TYPE VARCHAR(32)

Type of the index: the value in (NORMAL, NORMAL/REV, BITMAP,

FUNCTION-BASED NORMAL, FUNCTION-BASED NORMAL/REV, FUN

CTION-BASED BITMAP, IOT - TOP, DOMAIN)

TABLE_OWNER VARCHAR(128) Owner of the indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the indexed object

TABLE_NAME VARCHAR(128) Name of the indexed object

TABLE_TYPE VARCHAR(32)
Type of the indexed object: the value in (NEXT OBJECT, INDEX, TAB

LE, VIEW, SYNONYM, SEQUENCE)

UNIQUENESS VARCHAR(32)
Indicates whether the index is unique (UNIQUE) or nonunique (NON

UNIQUE)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether index compression is enabled (ENABLED) or not

(DISABLED)

PREFIX_LENGTH NUMBER
● reserved

Number of columns in the prefix of the compression key

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the index

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent

NEXT_EXTENT NUMBER Size of secondary extents

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

PCT_THRESHOLD NUMBER
● reserved

Threshold percentage of block space allowed per index entry

INCLUDE_COLUMN NUMBER

● reserved

Column ID of the last column to be included in index-organized tab

le primary key (non-overflow) index

FREELISTS NUMBER
● reserved

Number of process freelists allocated to this segment

FREELIST_GROUPS NUMBER
● reserved

Number of freelist groups allocated to this segment

392 | Database Information

PCT_FREE NUMBER Minimum percentage of free space in a block

LOGGING VARCHAR(3)
Indicates whether or not changes to the index are logged: (YES) or

(NO)

BLOCKS NUMBER Number of used blocks in the index

BLEVEL NUMBER

● reserved

B-Tree level (depth of the index from its root block to its leaf blocks

)

LEAF_BLOCKS NUMBER
● reserved

Number of leaf blocks in the index

DISTINCT_KEYS NUMBER Number of distinct indexed values.

AVG_LEAF_BLOCKS_

PER_KEY
NUMBER

● reserved

Average number of leaf blocks in which each distinct value in the in

dex appears, rounded to the nearest integer

AVG_DATA_BLOCKS

_PER_KEY
NUMBER

● reserved

Average number of data blocks in the table that are pointed to by a

distinct value in the index rounded to the nearest integer

CLUSTERING_FACTO

R
NUMBER

● reserved

Indicates the amount of order of the rows in the table based on the

values of the index

STATUS VARCHAR(32)
● reserved

Indicates whether a nonpartitioned index is VALID or UNUSABLE

NUM_ROWS NUMBER
● reserved

Number of rows in the index

SAMPLE_SIZE NUMBER Size of the sample used to analyze the index

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this index was most recently analyzed

DEGREE VARCHAR(32)

● reserved

Number of threads per instance for scanning the index, or DEFAUL

T

INSTANCES VARCHAR(32)

● reserved

Number of instances across which the indexes to be scanned, or DE

FAULT

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the index is partitioned (YES) or not (NO)

TEMPORARY VARCHAR(1) Indicates whether the index is on a temporary table (Y) or not (N)

GENERATED VARCHAR(1)
Indicates whether the name of the index is system-generated (Y) or

not (N)

SECONDARY VARCHAR(1)

● reserved

Indicates whether the index is a secondary object created by the me

thod of the Data Cartridge (Y) or not (N)

● reserved

Column name Data type Description

DICTIONARY_SCHEMA | 393

BUFFER_POOL VARCHAR(32) Buffer pool to be used for index blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for index blocks

CELL_FLASH_CACHE VARCHAR(32)
● reserved

Cell flash cache hint to be used for index blocks

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

PCT_DIRECT_ACCES

S
NUMBER

● reserved

For a secondary index on an index-organized table, the percentage

of rows with VALID guess

ITYP_OWNER VARCHAR(128)
● reserved

For a domain index, the owner of the indextype

ITYP_NAME VARCHAR(128)
● reserved

For a domain index, the name of the indextype

PARAMETERS VARCHAR(1024)
● reserved

For a domain index, the parameter string

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned indexes, indicates whether statistics were collected

by analyzing the index as a whole (YES) or were estimated from stat

istics on underlying index partitions and subpartitions (NO)

DOMIDX_STATUS VARCHAR(32)
● reserved

Status of a domain index

DOMIDX_OPSTATUS VARCHAR(32)
● reserved

Status of the operation on a domain index

FUNCIDX_STATUS VARCHAR(32)
● reserved

Status of a function-based index

JOIN_INDEX VARCHAR(3)
● reserved

Indicates whether the index is a join index (YES) or not (NO)

IOT_REDUNDANT_P

KEY_ELIM
VARCHAR(3)

● reserved

Indicates whether redundant primary key columns are eliminated fr

om secondary indexes on index-organized tables (YES) or not (NO)

DROPPED VARCHAR(3)

● reserved

Indicates whether the index has been dropped and is in the recycle

bin (YES) or not (NO)

VISIBILITY VARCHAR(3)
● reserved

Indicates whether the index is VISIBLE or INVISIBLE to the optimizer

DOMIDX_MANAGE

● reserved

If this is a domain index, indicates whether the domain index is syst

Column name Data type Description

394 | Database Information

MENT VARCHAR(32) em-managed (SYSTEM_MANAGED) or user-managed (USER_MAN

AGED)

SEGMENT_CREATED VARCHAR(3)
Indicates whether the index segment has been created (YES) or not

(NO)

COMMENTS VARCHAR(1024) Comments of the index

EMPTY_BLOCKS NUMBER Number of empty blocks in the index

Column name Data type Description

DICTIONARY_SCHEMA | 395

DBA_IND_COLUMNS

DBA_IND_COLUMNS describes the columns of all the indexes on all tables and clusters in the database.

Table 9-69 Column information

Column name Data type Description

INDEX_OWNER VARCHAR(128) Owner of the index

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

TABLE_OWNER VARCHAR(128) Owner of the table or cluster

TABLE_SCHEMA VARCHAR(128) Schema of the table or cluster

TABLE_NAME VARCHAR(128) Name of the table or cluster

COLUMN_NAME VARCHAR(128) Column name or attribute of the object type column

COLUMN_POSITION NUMBER Position of the column or attribute within the index

COLUMN_LENGTH NUMBER Indexed length of the column

CHAR_LENGTH NUMBER
● reserved

Maximum codepoint length of the column

DESCEND VARCHAR(32)
Indicates whether the column is sorted in descending order (DESC)

or ascending order (ASC)

NULL_ORDER VARCHAR(32)
Indicates whether the null value of the column is sorted in nulls first

order (NULLS FIRST) or nulls last order (NULLS LAST)

396 | Database Information

DBA_IND_PLACE

DBA_IND_PLACE describes node placement of all indexes in the cluster system.

Note

It is available only on a cluster.

Table 9-70 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the index

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

TABLE_OWNER VARCHAR(128) Owner of the indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the indexed object

TABLE_NAME VARCHAR(128) Name of the indexed object

GROUP_ID NUMBER Group identifier of the node where the index placed

GROUP_NAME VARCHAR(128) Group name of the node where the index placed

MEMBER_ID NUMBER Member identifier of the node where the index placed

MEMBER_NAME VARCHAR(128) Member name of the node where the index placed

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

DISTINCT_KEYS NUMBER (deprecated)

SAMPLE_SIZE NUMBER (deprecated)

BLOCKS NUMBER Number of used blocks of the node where the index placed

LAST_ANALYZED
TIMESTAMP(2) WITH

OUT TIME ZONE
(deprecated)

DICTIONARY_SCHEMA | 397

DBA_NONSCHEMA_COMMENTS

DBA_NONSCHEMA_COMMENTS displays comments on all non-schema objects (database, authorizations,

schemas, tablespaces).

Table 9-71 Column information

Column name Data type Description

OBJECT_NAME VARCHAR(128) Name of the non-schema object

OBJECT_TYPE VARCHAR(32)
Type of the non-schema object: DATABASE, PROFILE, AUTHORIZATI

ON, SCHEMA, TABLESPACE

COMMENTS VARCHAR(1024) Comments of the non-schema object

398 | Database Information

DBA_OBJECTS

DBA_OBJECTS describes all objects in the database.

Table 9-72 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

SCHEMA_NAME VARCHAR(128) Schema of the object

OBJECT_NAME VARCHAR(128) Name of the object

SUBOBJECT_NAME VARCHAR(128) Name of the subobject (for example, partition)

OBJECT_ID NUMBER Dictionary object number of the object

DATA_OBJECT_ID NUMBER Dictionary object number of the segment that contains the object

OBJECT_TYPE VARCHAR(32) Type of the object (such as TABLE, INDEX)

CREATED
TIMESTAMP(2) WITH

OUT TIME ZONE
Timestamp for the creation of the object

LAST_DDL_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE

Timestamp for the last modification of the object resulting from a D

DL statement

TIMESTAMP VARCHAR(32) Timestamp for the specification of the object (character data)

STATUS VARCHAR(32) Status of the object: the value in (VALID, INVALID, N/A)

TEMPORARY VARCHAR(1)
Indicates whether the object is temporary (the current session can s

ee only data that it placed in this object itself) (Y) or not (N)

GENERATED VARCHAR(1)
Indicates whether the name of this object was system-generated (Y)

or not (N)

SECONDARY VARCHAR(1)
Indicates whether this is a secondary object created by the ODCIInde

xCreate method of the Oracle Data Cartridge (Y) or not (N)

NAMESPACE NUMBER Namespace for the object

EDITION_NAME VARCHAR(128)
● reserved

Name of the edition in which the object is actual

DICTIONARY_SCHEMA | 399

DBA_PROCEDURES

DBA_PROCEDURES lists all function, procedures or package

Table 9-73 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of function, procedures or package

SCHEMA_NAME VARCHAR(128) Schema Name of function, procedures or package

OBJECT_NAME VARCHAR(128) Name of function, procedures or package

PROCEDURE_NAME VARCHAR(128) Name when a procedures in package

OBJECT_ID NUMBER ID of a function, procedures or package

SUBPROGRAM_ID NUMBER ID of procedures in package

OVERLOAD VARCHAR(32) ID of overloading procedure in package

OBJECT_TYPE VARCHAR(32) Type of function, procedures or package

AGGREGATE VARCHAR(3)
Indicate whether the procedure is an aggreage function(YES) or not

(NO)

PIPELINED VARCHAR(3)
Indicate whether the procedure is a pipelined table function(YES) or

not(NO)

IMPLTYPEOWNER VARCHAR(128) Name of the owner of the implementation type, if any

IMPLTYPENAME VARCHAR(128) Name of the implementation type, if any

PARALLEL VARCHAR(3)
Indicates whether the procedure or function is parallel-enabled (YES

) or not (NO)

INTERFACE VARCHAR(3)
YES, if the procedure/function is a table function implemented usin

g the SQLCLI interface; otherwise NO

DETERMINISTIC VARCHAR(3)
YES, if the procedure/function is declared to be deterministic; other

wise NO

AUTHID VARCHAR(32)
Indicates whether the procedure/function is declared to execute as

DEFINER or CURRENT_USER (invoker)

400 | Database Information

DBA_PROC_PRIVS

DBA_PROC_PRIVS describes the procedure grants, for which the current user is the procedure owner, gra

ntor, or grantee, or for which an enabled role or PUBLIC is the grantee.

Table 9-74 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTI

ON (YES) or not (NO)

DICTIONARY_SCHEMA | 401

DBA_PROFILES

DBA_PROFILES displays all profiles and their limits.

Table 9-75 Column information

Column name Data type Description

PROFILE_NAME VARCHAR(128) Profile name

RESOURCE_NAME VARCHAR(128) Resource name

RESOURCE_TYPE VARCHAR(32)
Indicates whether the resource profile is a KERNEL or a PASSWORD

parameter

LIMIT_VALUE LONG VARCHAR Limit placed on this resource for this profile

COMMON VARCHAR(3) Indicates whether a given profile is common. (YES or NO)

402 | Database Information

DBA_SCHEMAS

Identify the schemata in the database.

Table 9-76 Column information

Column name Data type Description

SCHEMA_OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

CREATED_TIME TIMESTAMP(2) WITHOUT TIME ZONE Created time of the schema

MODIFIED_TIME TIMESTAMP(2) WITHOUT TIME ZONE Last modified time of the schema

COMMENTS VARCHAR(1024) Comments of the schema

DICTIONARY_SCHEMA | 403

DBA_SCHEMA_PATH

DBA_SCHEMA_PATH describes the schema search order of all authorizations in the database.

Table 9-77 Column information

Column name Data type Description

AUTH_NAME VARCHAR(128) Name of the authorization

SCHEMA_NAME VARCHAR(128) Name of the schema

SEARCH_ORDER NUMBER Schema search order of the authorization

404 | Database Information

DBA_SCHEMA_PRIVS

DBA_SCHEMA_PRIVS describes all schema grants in the database.

Table 9-78 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 405

DBA_SEQUENCES

DBA_SEQUENCES describes all sequences in the database.

Table 9-79 Column information

Column name Data type Description

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Sequence name

MIN_VALUE NUMBER Minimum value of the sequence

MAX_VALUE NUMBER Maximum value of the sequence

INCREMENT_BY NUMBER Value by which sequence is incremented

CYCLE_FLAG VARCHAR(1)
Indicates whether the sequence wraps around on reaching the limit

(Y) or not (N)

ORDER_FLAG VARCHAR(1)

● reserved

Indicates whether sequence numbers are generated in order (Y) or

not (N)

CACHE_SIZE NUMBER Number of sequence numbers to cache

LAST_NUMBER NUMBER

Last sequence number written to database. If a sequence uses cachi

ng, the number written to database is the last number placed in the

sequence cache.

COMMENTS VARCHAR(1024) Comments of the sequence

406 | Database Information

DBA_SEQ_PRIVS

DBA_SEQ_PRIVS describes all sequence grants in the database.

Table 9-80 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 407

DBA_SHARD_KEY_COLUMNS

DBA_SHARD_KEY_COLUMNS describes shard key columns of all shareded tables in the cluster system.

Note

It is available only on a cluster.

Table 9-81 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

COLUMN_NAME VARCHAR(128) Column name of the shard key

COLUMN_POSITION NUMBER Position of the column within the shard key

408 | Database Information

DBA_SOURCE

DBA_SOURCE describes the text source of the stored objects accessible to the current user.

Table 9-82 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of object

SCHEMA_NAME VARCHAR(128) Schema Name of object

NAME VARCHAR(128) Name of object

TYPE VARCHAR(32)
Type of object: FUNCTION, PROCEDURE, PACKAGE, PACKAGE BOD

Y, TRIGGER

LINE NUMBER Line number of this line of source

TEXT LONG VARCHAR Text source of the strored object

ORIGIN_CON_ID VARCHAR(256) ID of the container where the data originates

DICTIONARY_SCHEMA | 409

DBA_STAT_SYSTEM

DBA_STAT_SYSTEM describes analyzed system statistics.

Table 9-83 Column information

Column name Data type Description

CPU_OPS NATIVE_BIGINT OPS(operations per second) of CPU

NETWORK_IOPS NATIVE_BIGINT IOPS(I/O operations per second) of Cluster NETWORK

NETWORK_BUFSIZE NATIVE_BIGINT buffer size of Cluster NETWORK when analyzed

LAST_ANALYZED
TIMESTAMP(2) WITH

OUT TIME ZONE
Date on which the table was most recently analyzed

410 | Database Information

DBA_SYS_PRIVS

DBA_SYS_PRIVS describes all system (database, tablespace, schema) privileges in the database.

Table 9-84 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the grantee

PRIVILEGE VARCHAR(256) System(database, tablespace, schema) privilege

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

ADMIN_OPTION VARCHAR(3) equal to GRANTABLE column

DICTIONARY_SCHEMA | 411

DBA_SYNONYMS

DBA_SYNONYMS describes all synonyms in the database.

Table 9-85 Column information

Column name Data type Description

SYNONYM_OWNER VARCHAR(128) Owner of the synonym

SYNONYM_SCHEMA VARCHAR(128) Schema of the synonym

SYNONYM_NAME VARCHAR(128) Synonym name

OBJECT_SCHEMA_NAME VARCHAR(128) Object schema name

OBJECT_NAME VARCHAR(128) Object name

DB_LINK VARCHAR(128) Reserved for future use

412 | Database Information

DBA_TABLES

DBA_TABLES describes all relational tables in the database.

Table 9-86 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

TABLESPACE_NA

ME
VARCHAR(128) Name of the tablespace containing the table

CLUSTER_NAME VARCHAR(128)
● reserved

Name of the cluster

IOT_NAME VARCHAR(128)
● reserved

Name of the index-organized table

STATUS VARCHAR(32)

● reserved

If a previous DROP TABLE operation failed, indicates whether the table is u

nusable (UNUSABLE) or valid (VALID)

PCT_FREE NUMBER Minimum percentage of free space in a block

PCT_USED NUMBER Minimum percentage of used space in a block

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent (in bytes)

NEXT_EXTENT NUMBER Size of secondary extents (in bytes)

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

FREELISTS NUMBER
● reserved

Number of process freelists allocated to the segment

FREELIST_GROU

PS
NUMBER

● reserved

Number of freelist groups allocated to the segment

LOGGING VARCHAR(3) Indicates whether or not changes to the table are logged

BACKED_UP VARCHAR(1)

● reserved

Indicates whether the table has been backed up since the last modification

(Y) or not (N)

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER
● reserved

Number of used blocks in the table

EMPTY_BLOCKS NUMBER
● reserved

Number of empty (never used) blocks in the table

● reserved

DICTIONARY_SCHEMA | 413

AVG_SPACE NUMBER Average available free space in the table

CHAIN_CNT NUMBER

● reserved

Number of rows in the table that are chained from one data block to anoth

er or that have migrated to a new block, requiring a link to preserve the old

rowid

AVG_ROW_LEN NUMBER
● reserved

Average row length, including row overhead

AVG_SPACE_FRE

ELIST_BLOCKS
NUMBER

● reserved

Average freespace of all blocks on a freelist

NUM_FREELIST_

BLOCKS
NUMBER

● reserved

Number of blocks on the freelist

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the table, or DEFAULT

INSTANCES VARCHAR(32)
● reserved

Number of instances across which the table is to be scanned, or DEFAULT

CACHE VARCHAR(1)

● reserved

Indicates whether the table is to be cached in the buffer cache (Y) or not (N

)

TABLE_LOCK VARCHAR(32)
Indicates whether table locking is enabled (ENABLED) or disabled (DISABLE

D)

SAMPLE_SIZE NUMBER Sample size used in analyzing the table

LAST_ANALYZED

TIMESTAMP(6)

WITHOUT TIME Z

ONE

Date on which the table was most recently analyzed

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the table is partitioned (YES) or not (NO)

IOT_TYPE VARCHAR(32)

● reserved

If the table is an index-organized table, then IOT_TYPE is IOT, IOT_OVERFL

OW, or IOT_MAPPING.

TEMPORARY VARCHAR(1) Indicates whether the table is temporary (Y) or not (N)

SECONDARY VARCHAR(1)
● reserved

Indicates whether the table is a secondary object created by cartridge

NESTED VARCHAR(3)
● reserved

Indicates whether the table is a nested table (YES) or not (NO)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for table blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for table blocks

CELL_FLASH_CA

CHE
VARCHAR(32)

● reserved

Cell flash cache hint to be used for table blocks

● reserved

Column name Data type Description

414 | Database Information

ROW_MOVEME

NT

VARCHAR(32) If a partitioned table, indicates whether row movement is enabled (ENABLE

D) or disabled (DISABLED)

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether statistics for the table as a whole

(global statistics) are accurate (YES)

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) or not

(NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

SKIP_CORRUPT VARCHAR(32)

● reserved

Indicates whether Database ignores blocks marked corrupt during table an

d index scans (ENABLED) or raises an error (DISABLED)

MONITORING VARCHAR(3)

● reserved

Indicates whether the table has the MONITORING attribute set (YES) or not

(NO)

CLUSTER_OWNE

R
VARCHAR(128)

● reserved

Owner of the cluster, if any

DEPENDENCIES VARCHAR(32)

● reserved

Indicates whether row-level dependency tracking is enabled (ENABLED) or

disabled (DISABLED)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether table compression is enabled (ENABLED) or not (DISABLE

D)

COMPRESS_FOR VARCHAR(32)
● reserved

Default compression for what kind of operations

DROPPED VARCHAR(3)

● reserved

Indicates whether the table has been dropped and is in the recycle bin (YES

) or not (NO)

READ_ONLY VARCHAR(3) Indicates whether the table IS READ-ONLY (YES) or not (NO)

SEGMENT_CREA

TED
VARCHAR(3) Indicates whether the table segment has been created (YES) or not (NO)

RESULT_CACHE VARCHAR(32)

● reserved

Result cache mode annotation for the table: the value in (NULL, DEFAULT,

FORCE, MANUAL)

Column name Data type Description

DICTIONARY_SCHEMA | 415

DBA_TABLESPACES

DBA_TABLESPACES describes all tablespaces in the database.

Table 9-87 Column information

Column name Data type Description

TABLESPACE_NAME VARCHAR(128) Name of the tablespace

BLOCK_SIZE NUMBER Tablespace block size

INITIAL_EXTENT NUMBER
● reserved

Default initial extent size (in bytes)

NEXT_EXTENT NUMBER
● reserved

Default incremental extent size (in bytes)

MIN_EXTENTS NUMBER
● reserved

Default minimum number of extents

MAX_EXTENTS NUMBER
● reserved

Default maximum number of extents

MAX_SIZE NUMBER
● reserved

Default maximum size of segments

PCT_INCREASE NUMBER
● reserved

Default percent increase for extent size

MIN_EXTLEN NUMBER
● reserved

Minimum extent size for this tablespace (in bytes)

STATUS VARCHAR(32) Tablespace status: the value in (ONLINE, OFFLINE, READ ONLY)

CONTENTS VARCHAR(32)
Tablespace contents: the value in (SYSTEM, DATA, TEMPORARY, U

NDO)

LOGGING VARCHAR(32) Default logging attribute: LOGGING, NOLOGGING

FORCE_LOGGING VARCHAR(3)

● reserved

Indicates whether the tablespace is under force logging mode (YES)

or not (NO)

EXTENT_MANAGEM

ENT
VARCHAR(32)

● reserved

Indicates whether the extents in the tablespace are dictionary mana

ged (DICTIONARY) or locally managed (LOCAL)

ALLOCATION_TYPE VARCHAR(32)

● reserved

Type of extent allocation in effect for the tablespace: the value in (

SYSTEM, UNIFORM, USER)

PLUGGED_IN VARCHAR(3)
● reserved

Indicates whether the tablespace is plugged in (YES) or not (NO)

SEGMENT_SPACE_M

ANAGEMENT
VARCHAR(32)

● reserved

Indicates whether the free and used segment space in the tablespa

ce is managed using free lists (MANUAL) or bitmaps (AUTO)

DEF_TAB_COMPRES

SION
VARCHAR(32)

● reserved

Indicates whether default table compression is enabled (ENABLED)

416 | Database Information

or not (DISABLED)

RETENTION VARCHAR(32)

● reserved

Undo tablespace retention: the value in (GUARANTEE, NOGUARA

NTEE, NOT APPLY)

BIGFILE VARCHAR(3)

● reserved

Indicates whether the tablespace is a bigfile tablespace (YES) or a s

mallfile tablespace (NO)

PREDICATE_EVALUA

TION
VARCHAR(32)

● reserved

Indicates whether predicates are evaluated by host (HOST) or by sto

rage (STORAGE)

ENCRYPTED VARCHAR(3)
● reserved

Indicates whether the tablespace is encrypted (YES) or not (NO)

COMPRESS_FOR VARCHAR(32)
● reserved

Indicates whether the tablespace is encrypted (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 417

DBA_TAB_COLS

DBA_TAB_COLS describes the columns (including hidden columns) of all tables, views, and clusters in the

database.

Table 9-88 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE VARCHAR(128) Datatype of the column

DATA_TYPE_MOD VARCHAR(3)
● reserved

Datatype modifier of the column

DATA_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the datatype of the column

DATA_LENGTH NUMBER Length of the column (in bytes)

DATA_PRECISION NUMBER
Decimal precision for NUMBER datatype; binary precision for FLOAT

datatype; NULL for all other datatypes

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

NULLABLE VARCHAR(1) Indicates whether a column allows NULLs.

COLUMN_ID NUMBER Sequence number of the column as created

DEFAULT_LENGTH NUMBER Length of the default value for the column

DATA_DEFAULT LONG VARCHAR Default value for the column

NUM_DISTINCT NUMBER Number of distinct values in the column

LOW_VALUE VARBINARY(32) Low value in the column

HIGH_VALUE VARBINARY(32) High value in the column

DENSITY NUMBER

● reserved

If a histogram is available on COLUMN_NAME, then this column dis

plays the selectivity of a value that spans fewer than 2 endpoints in t

he histogram.

NUM_NULLS NUMBER Number of NULLs in the column

NUM_BUCKETS NUMBER
● reserved

Number of buckets in the histogram for the column

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this column was most recently analyzed

SAMPLE_SIZE NUMBER Sample size used in analyzing this column

CHARACTER_SET_N

AME
VARCHAR(128)

● reserved

Name of the character set

CHAR_COL_DECL_LE

NGTH
NUMBER Declaration length of the character type column

● reserved

418 | Database Information

GLOBAL_STATS VARCHAR(3) For partitioned tables, indicates whether column statistics were coll

ected for the table

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

AVG_COL_LEN NUMBER Average length of the column (in bytes)

CHAR_LENGTH NUMBER Displays the length of the column in characters.

CHAR_USED VARCHAR(1)
Indicates that the column uses BYTE length semantics (B) or CHAR l

ength semantics (C)

V80_FMT_IMAGE VARCHAR(3)

● reserved

Indicates whether the column data is in release older image format

(YES) or not (NO)

DATA_UPGRADED VARCHAR(3)

● reserved

Indicates whether the column data has been upgraded to the latest

type version format (YES) or not (NO)

HIDDEN_COLUMN VARCHAR(3) Indicates whether the column is a hidden column (YES) or not (NO)

VIRTUAL_COLUMN VARCHAR(3)
● reserved

Indicates whether the column is a virtual column (YES) or not (NO)

SEGMENT_COLUMN

_ID
NUMBER Sequence number of the column in the segment

INTERNAL_COLUMN

_ID
NUMBER Internal sequence number of the column

HISTOGRAM VARCHAR(32)
● reserved

Indicates existence/type of histogram

QUALIFIED_COL_NA

ME
VARCHAR(4000) Qualified column name

IDENTITY_COLUMN VARCHAR(3) Indicates whether this is an identity column (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 419

DBA_TAB_COLUMNS

DBA_TAB_COLUMNS describes the columns of the tables, views, and clusters accessible to the current us

er.

Table 9-89 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE VARCHAR(128) Datatype of the column

DATA_TYPE_MOD VARCHAR(3)
● reserved

Datatype modifier of the column

DATA_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the datatype of the column

DATA_LENGTH NUMBER Length of the column (in bytes)

DATA_PRECISION NUMBER
Decimal precision for NUMBER datatype; binary precision for FLOAT

datatype; NULL for all other datatypes

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

NULLABLE VARCHAR(1) Indicates whether a column allows NULLs.

COLUMN_ID NUMBER Sequence number of the column as created

DEFAULT_LENGTH NUMBER Length of the default value for the column

DATA_DEFAULT LONG VARCHAR Default value for the column

NUM_DISTINCT NUMBER Number of distinct values in the column

LOW_VALUE VARBINARY(32) Low value in the column

HIGH_VALUE VARBINARY(32) High value in the column

DENSITY NUMBER

● reserved

If a histogram is available on COLUMN_NAME, then this column dis

plays the selectivity of a value that spans fewer than 2 endpoints in t

he histogram.

NUM_NULLS NUMBER Number of NULLs in the column

NUM_BUCKETS NUMBER
● reserved

Number of buckets in the histogram for the column

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this column was most recently analyzed

SAMPLE_SIZE NUMBER Sample size used in analyzing this column

CHARACTER_SET_N

AME
VARCHAR(128)

● reserved

Name of the character set

CHAR_COL_DECL_LE

NGTH
NUMBER Declaration length of the character type column

● reserved

420 | Database Information

GLOBAL_STATS VARCHAR(3) For partitioned tables, indicates whether column statistics were coll

ected for the table

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

AVG_COL_LEN NUMBER Average length of the column (in bytes)

CHAR_LENGTH NUMBER Displays the length of the column in characters.

CHAR_USED VARCHAR(1)
Indicates that the column uses BYTE length semantics (B) or CHAR l

ength semantics (C)

V80_FMT_IMAGE VARCHAR(3)

● reserved

Indicates whether the column data is in release older image format

(YES) or not (NO)

DATA_UPGRADED VARCHAR(3)

● reserved

Indicates whether the column data has been upgraded to the latest

type version format (YES) or not (NO)

HISTOGRAM VARCHAR(32)
● reserved

Indicates existence/type of histogram

IDENTITY_COLUMN VARCHAR(3) Indicates whether this is an identity column (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 421

DBA_TAB_COMMENTS

DBA_TAB_COMMENTS displays comments on all tables and views in the database.

Table 9-90 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

TABLE_TYPE VARCHAR(32) Type of the object

COMMENTS VARCHAR(1024) Comment on the object

422 | Database Information

DBA_TAB_IDENTITY_COLS

DBA_TAB_IDENTITY_COLS describes all table identity columns.

Table 9-91 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

COLUMN_NAME VARCHAR(128) Name of the identity column

GENERATION_TYPE VARCHAR(32)
Generation type of the identity column. Possible values are ALWAYS

or BY DEFAULT

IDENTITY_OPTIONS VARCHAR(1024) Options for the identity column sequence generator

DICTIONARY_SCHEMA | 423

DBA_TAB_PLACE

DBA_TAB_PLACE describes node placement of all cluster tables in the cluster system.

Note

It is available only on a cluster.

Table 9-92 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

GROUP_ID NUMBER Group identifier of the node where the table placed

GROUP_NAME VARCHAR(128) Group name of the node where the table placed

MEMBER_ID NUMBER Member identifier of the node where the table placed

MEMBER_NAME VARCHAR(128) Member name of the node where the table placed

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

SCN VARCHAR(64) table scn of the node where the table placed

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER Number of used blocks of the node where the table placed

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which the table was most recently analyzed

424 | Database Information

DBA_TAB_PRIVS

DBA_TAB_PRIVS describes all object grants in the database.

Table 9-93 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

DICTIONARY_SCHEMA | 425

DBA_TAB_SHARDS

DBA_TAB_SHARDS describes shard information of all sharded tables in the cluster system.

Note

It is available only on a cluster.

Table 9-94 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the table

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

SHARD_STRATEGY VARCHAR(32)
Sharding strategy of the table:

the value in (HASH SHARDING, RANGE SHARDING, LIST SHARDING)

SHARD_NAME VARCHAR(128) Shard name

SHARD_NUMBER NUMBER Shard number

SHARD_DEFINITION LONG VARCHAR Shard definition (if hash sharded, the value is null)

GROUP_ID NUMBER Group identifier where the shard placed

GROUP_NAME VARCHAR(128) Group Name where the shard placed

426 | Database Information

DBA_TBS_PRIVS

DBA_TBS_PRIVS describes all tablespace grants in the database.

Table 9-95 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLESPACE_NAME VARCHAR(128) Name of the tablespace

PRIVILEGE VARCHAR(32) Privilege on the tablespace

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 427

DBA_USERS

DBA_USERS describes all users of the database.

Table 9-96 Column information

Column name Data type Description

USERNAME VARCHAR(128) Name of the user

USER_ID NUMBER ID number of the user

PASSWORD VARCHAR(128) encrypted password

ACCOUNT_STAT

US
VARCHAR(32)

Account status: the value in (OPEN, EXPIRED, EXPIRED(GRACE), LOCKED(T

IMED), LOCKED, EXPIRED & LOCKED(TIMED), EXPIRED(GRACE) & LOCKED

(TIMED), EXPIRED & LOCKED, EXPIRED(GRACE) & LOCKED)

LOCK_DATE

TIMESTAMP(2)

WITHOUT TIME Z

ONE

Timestamp the account was locked if account status was LOCKED

EXPIRY_DATE

TIMESTAMP(2)

WITHOUT TIME Z

ONE

Timestamp of expiration of the account

FAILED_LOGIN_A

TTEMPTS
NUMBER Consecutive failed login attempts count

DEFAULT_TABLE

SPACE
VARCHAR(128) Default tablespace for data

TEMPORARY_TA

BLESPACE
VARCHAR(128)

Name of the default tablespace for temporary tables or the name of a tables

pace group

INDEX_TABLESP

ACE
VARCHAR(128) Default tablespace for index

CREATED

TIMESTAMP(2)

WITHOUT TIME Z

ONE

User creation timestamp

PROFIL_NAME VARCHAR(128) User resource profile name

INITIAL_RSRC_C

ONSUMER_GRO

UP

VARCHAR(128)
● reserved

Initial resource consumer group for the user

EXTERNAL_NAM

E
VARCHAR(128)

● reserved

User external name

PASSWORD_VER

SIONS
VARCHAR(32)

● reserved

Shows the list of versions of the password hashes (verifiers).

EDITIONS_ENABL

ED
VARCHAR(1)

Indicates whether editions have been enabled for the corresponding user (Y

) or not (N).

AUTHENTICATIO

N_TYPE
VARCHAR(32)

● reserved

Indicates the authentication mechanism for the user.

428 | Database Information

DBA_VIEWS

DBA_VIEWS describes all views in the database.

Table 9-97 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the view

VIEW_SCHEMA VARCHAR(128) Schema of the view

VIEW_NAME VARCHAR(128) Name of the view

TEXT_LENGTH NUMBER Length of the view text

TEXT LONG VARCHAR View text

TYPE_TEXT_LENGTH NUMBER
● reserved

Length of the type clause of the typed view

TYPE_TEXT VARCHAR(4000)
● reserved

Type clause of the typed view

OID_TEXT_LENGTH NUMBER
● reserved

Length of the WITH OID clause of the typed view

OID_TEXT VARCHAR(4000)
● reserved

WITH OID clause of the typed view

VIEW_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the type of the view if the view is a typed view

VIEW_TYPE VARCHAR(32)
● reserved

Type of the view if the view is a typed view

SUPERVIEW_NAME VARCHAR(128)
● reserved

Name of the superview

EDITIONING_VIEW VARCHAR(1) Reserved for future use

READ_ONLY VARCHAR(1) Indicates whether the view is read-only (Y) or not (N)

DICTIONARY_SCHEMA | 429

Views of USER_family

It retrieves information about objects which are owned by current user.

USER_ALL_TABLES

USER_ALL_TABLES describes the object tables and relational tables owned by the current user.

Table 9-98 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the table

CLUSTER_NAME VARCHAR(128)
● reserved

Name of the cluster

IOT_NAME VARCHAR(128)
● reserved

Name of the index-organized table

STATUS VARCHAR(32)

● reserved

If a previous DROP TABLE operation failed, indicates whether the ta

ble is unusable (UNUSABLE) or valid (VALID)

PCT_FREE NUMBER Minimum percentage of free space in a block

PCT_USED NUMBER Minimum percentage of used space in a block

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent (in bytes)

NEXT_EXTENT NUMBER Size of secondary extents (in bytes)

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

FREELISTS NUMBER
● reserved

Number of process freelists allocated to the segment

FREELIST_GROUPS NUMBER
● reserved

Number of freelist groups allocated to the segment

LOGGING VARCHAR(3) Indicates whether or not changes to the table are logged

BACKED_UP VARCHAR(1)

● reserved

Indicates whether the table has been backed up since the last modi

fication (Y) or not (N)

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER Number of used blocks in the table

430 | Database Information

EMPTY_BLOCKS NUMBER
● reserved

Number of empty (never used) blocks in the table

AVG_SPACE NUMBER
● reserved

Average available free space in the table

CHAIN_CNT NUMBER

● reserved

Number of rows in the table that are chained from one data block t

o another or that have migrated to a new block, requiring a link to p

reserve the old rowid

AVG_ROW_LEN NUMBER
● reserved

Average row length, including row overhead

AVG_SPACE_FREELIS

T_BLOCKS
NUMBER

● reserved

Average freespace of all blocks on a freelist

NUM_FREELIST_BLO

CKS
NUMBER

● reserved

Number of blocks on the freelist

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the table, or DEFAULT

INSTANCES VARCHAR(32)

● reserved

Number of instances across which the table is to be scanned, or DE

FAULT

CACHE VARCHAR(1)

● reserved

Indicates whether the table is to be cached in the buffer cache (Y) o

r not (N)

TABLE_LOCK VARCHAR(32)
Indicates whether table locking is enabled (ENABLED) or disabled (D

ISABLED)

SAMPLE_SIZE NUMBER Sample size used in analyzing the table

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which the table was most recently analyzed

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the table is partitioned (YES) or not (NO)

IOT_TYPE VARCHAR(32)

● reserved

If the table is an index-organized table, then IOT_TYPE is IOT, IOT_

OVERFLOW, or IOT_MAPPING.

OBJECT_ID_TYPE VARCHAR(32)

● reserved

Indicates whether the object ID (OID) is USER-DEFINED or SYSTEM

GENERATED

TABLE_TYPE_OWNE

R
VARCHAR(128)

● reserved

If an object table, owner of the type from which the table is created

TABLE_TYPE VARCHAR(128)
● reserved

If an object table, type of the table

TEMPORARY VARCHAR(1) Indicates whether the table is temporary (Y) or not (N)

● reserved

Column name Data type Description

DICTIONARY_SCHEMA | 431

SECONDARY VARCHAR(1) Indicates whether the table is a secondary object created by cartrid

ge

NESTED VARCHAR(3)
● reserved

Indicates whether the table is a nested table (YES) or not (NO)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for table blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for table blocks

CELL_FLASH_CACHE VARCHAR(32)
● reserved

Cell flash cache hint to be used for table blocks

ROW_MOVEMENT VARCHAR(32)

● reserved

If a partitioned table, indicates whether row movement is enabled

(ENABLED) or disabled (DISABLED)

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether statistics for the table as a

whole (global statistics) are accurate (YES)

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

SKIP_CORRUPT VARCHAR(32)

● reserved

Indicates whether Database ignores blocks marked corrupt during t

able and index scans (ENABLED) or raises an error (DISABLED)

MONITORING VARCHAR(3)

● reserved

Indicates whether the table has the MONITORING attribute set (YES

) or not (NO)

CLUSTER_OWNER VARCHAR(128)
● reserved

Owner of the cluster, if any

DEPENDENCIES VARCHAR(32)

● reserved

Indicates whether row-level dependency tracking is enabled (ENABL

ED) or disabled (DISABLED)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether table compression is enabled (ENABLED) or not

(DISABLED)

COMPRESS_FOR VARCHAR(32)
● reserved

Default compression for what kind of operations

DROPPED VARCHAR(3)

● reserved

Indicates whether the table has been dropped and is in the recycle b

in (YES) or not (NO)

READ_ONLY VARCHAR(3) Indicates whether the table IS READ-ONLY (YES) or not (NO)

Column name Data type Description

432 | Database Information

SEGMENT_CREATED VARCHAR(3)
Indicates whether the table segment has been created (YES) or not

(NO)

Column name Data type Description

DICTIONARY_SCHEMA | 433

USER_ARGUMENTS

USER_ARGUMENTS lists all arguments of functions, procedures.

Table 9-99 Column information

Column name Data type Description

SCHEMA_NAME VARCHAR(128) Schema Name of function, procedures or package

OBJECT_NAME VARCHAR(128) Name of function, procedures

PACKAGE_NAME VARCHAR(128) Package Name of function, procedures

OBJECT_ID NUMBER ID of a function, procedures

SUBPROGRAM_ID NUMBER ID of procedures in package

ARGUMENT_NAME VARCHAR(128) Name of argument or attribute name of record type argument

POSITION NUMBER Position of argument or position of attribute in record type

SEQUENCE NUMBER Sequential order of argument and its attributes

DATA_LEVEL NUMBER Nesting depth of the argument for composite types

DATA_TYPE VARCHAR(128) Data type of the argument

DEFAULTED VARCHAR(1) Whether or not the argument is defaulted

DEFAULT_VALUE VARCHAR(1) Reserved for future use

DEFAULT_LENGTH VARCHAR(1) Reserved for future use

IN_OUT VARCHAR(32) Direction of the argument (IN, OUT, IN/OUT)

DATA_LENGTH NUMBER Length of the column(in bytes)

DATA_PRECISION NUMBER Length in decimal digits(NUMBER) or binary digits(FLOAT)

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

RADIX NUMBER Argument radix for a number

CHARACTER_SET_NAME VARCHAR(128) Character set name for the argument

TYPE_OWNER VARCHAR(128) Owner of the type of the argument

TYPE_NAME VARCHAR(128) Name of the type of the argument

TYPE_SUBNAME VARCHAR(128) Name of the type of the argument declared in package

TYPE_LINK VARCHAR(128) Name of the type of the argument declared in a remote package

PLS_TYPE VARCHAR(128) Name of the type of the argument at PSM

CHAR_LENGTH NUMBER Character limit for string datatypes

CHAR_USED VARCHAR(1) Whether the byte limit(B) or char limit(C) is official for the string

ORIGIN_CON_ID VARCHAR(256) ID of the container where the data originates

434 | Database Information

USER_CATALOG

USER_CATALOG lists tables, views, synonyms, and sequences owned by the current user.

Table 9-100 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_NAME VARCHAR(128) Name of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

TABLE_TYPE VARCHAR(32) Type of the TABLE, VIEW, SYNONYM, SEQUENCE, or UNDEFINED

DICTIONARY_SCHEMA | 435

USER_COL_COMMENTS

USER_COL_COMMENTS displays comments on the columns of the tables and views owned by the curren

t user.

Table 9-101 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

COMMENTS VARCHAR(1024) Comment on the column

436 | Database Information

USER_CLUSTER_TABLES

USER_CLUSTER_TABLES describes all cluster tables owned by the current user in the cluster system.

Note

It is available only on a cluster.

Table 9-102 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

SHARD_STRATEGY VARCHAR(32)

Sharding strategy of the table:

the value in (CLONED, HASH SHARDING, RANGE SHARDING, LIST S

HARDING)

SHARD_PLACEMENT VARCHAR(32)
Shard placement of the table:

the value in (AT CLUSTER WIDE or AT CLUSTER GROUP)

SHARD_COUNT NUMBER Shard count of the table (if cloned table, the value is null)

SHARD_KEY_COUNT NUMBER
Shard key column count of the table (if cloned table, the value is nul

l)

HAS_GSI VARCHAR(3)
Indicate whether the table has global secondary index: (YES) or (NO

)

DICTIONARY_SCHEMA | 437

USER_COL_PRIVS

USER_COL_PRIVS describes the column object grants for which the current user is the object owner, gran

tor, or grantee.

Table 9-103 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the column

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

438 | Database Information

USER_COL_PRIVS_MADE

USER_COL_PRIVS_MADE describes the column object grants for which the current user is the object own

er.

Table 9-104 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the column

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 439

USER_COL_PRIVS_RECD

USER_COL_PRIVS_RECD describes the column object grants for which the current user is the grantee.

Table 9-105 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Name of the column

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the column

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

440 | Database Information

USER_CONSTRAINTS

USER_CONSTRAINTS describes all constraint definitions on tables owned by the current user.

Table 9-106 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the constraint definition

CONSTRAINT_SC

HEMA
VARCHAR(128) Schema of the constraint definition

CONSTRAINT_N

AME
VARCHAR(128) Name of the constraint definition

CONSTRAINT_TY

PE
VARCHAR(1)

Type of the constraint definition: the value in (C: check constraint, P: Pri

mary key, U: Unique Key, R: Referential intgrity)

TABLE_OWNER VARCHAR(128) Owner of the table (or view) associated with the constraint definition

TABLE_SCHEMA VARCHAR(128) Schema of the table (or view) associated with the constraint definition

TABLE_NAME VARCHAR(128) Name of the table (or view) associated with the constraint definition

SEARCH_CONDIT

ION
LONG VARCHAR Text of search condition for a check constraint

R_OWNER VARCHAR(128) Owner of the unique constraint definition for the referenced table

R_SCHEMA VARCHAR(128) Schema of the unique constraint definition for the referenced table

R_CONSTRAINT_

NAME
VARCHAR(128) Name of the unique constraint definition for the referenced table

DELETE_RULE VARCHAR(32)
Delete rule for a referential constraint: the value in (NO ACTION, RESTRIC

T, CASCADE, SET NULL, SET DEFAULT)

UPDATE_RULE VARCHAR(32)
Update rule for a referential constraint: the value in (NO ACTION, RESTRI

CT, CASCADE, SET NULL, SET DEFAULT)

STATUS VARCHAR(32) Enforcement status of the constraint: the value in (ENABLED, DISABLE)

DEFERRABLE VARCHAR(32)
Indicates whether the constraint is deferrable (DEFERRABLE) or not (NOT

DEFERRABLE)

DEFERRED VARCHAR(32)
Indicates whether the constraint was initially deferred (DEFERRED) or not

(IMMEDIATE)

VALIDATED VARCHAR(32)
Indicates whether all data may obey the constraint or not: the value in (V

ALIDATED, NOT VALIDATED)

GENERATED VARCHAR(32)
Indicates whether the name of the constraint is user-generated (USER NA

ME) or system-generated (GENERATED NAME)

BAD VARCHAR(32)

● reserved

Indicates whether this constraint specifies a century in an ambiguous man

ner (BAD) or not (NULL)

RELY VARCHAR(32)

● reserved

When NOT VALIDATED, indicates whether the constraint is to be taken in

to account for query rewrite (RELY) or not (NULL)

LAST_CHANGE
TIMESTAMP(2) WIT

HOUT TIME ZONE
When the constraint was last enabled or disabled

DICTIONARY_SCHEMA | 441

INDEX_OWNER VARCHAR(128) Owner of the index associated with the key constraint

INDEX_SCHEMA VARCHAR(128) Schema of the index associated with the key constraint

INDEX_NAME VARCHAR(128) Name of the index associated with the key constraint

INVALID VARCHAR(32) Indicates whether the constraint is invalid (INVALID) or not (NULL)

VIEW_RELATED VARCHAR(32)

● reserved

Indicates whether the constraint depends on a view (DEPEND ON VIEW) o

r not (NULL)

COMMENTS VARCHAR(1024) Comments of the constraint definition

Column name Data type Description

442 | Database Information

USER_CONS_COLUMNS

USER_CONS_COLUMNS describes columns that are owned by the current user and that are specified in c

onstraint definitions.

Table 9-107 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the constraint definition

CONSTRAINT_SCHE

MA
VARCHAR(128) Schema of the constraint definition

CONSTRAINT_NAME VARCHAR(128) Name of the constraint definition

TABLE_OWNER VARCHAR(128) Owner of the table with the constraint definition

TABLE_SCHEMA VARCHAR(128) Schema of the table with the constraint definition

TABLE_NAME VARCHAR(128) Name of the table with the constraint definition

COLUMN_NAME VARCHAR(128)
Name of the column or attribute of the object type column specified

in the constraint definition

POSITION NUMBER
Original position of the column or attribute in the definition of the o

bject

DICTIONARY_SCHEMA | 443

USER_DEPENDENCIES

USER_DEPENDENCIES describes dependencies between objects accessible to the current user

Table 9-108 Column information

Column name Data type Description

SCHEMA_NAME VARCHAR(128) Schema Name of object

NAME VARCHAR(128) Name of object

TYPE VARCHAR(32)
Type of object: FUNCTION, PROCEDURE, VIEW, PACKAGE, PACKA

GE BODY, TRIGGER

REFERENCED_OWNE

R
VARCHAR(128) Owner of the referenced object

REFERENCED_SCHE

MA_NAME
VARCHAR(128) Schema Name of the referenced object

REFERENCED_TYPE VARCHAR(32)
Type of the referenced object: FUNCTION, PROCEDURE, TABLE, VIE

W, SEQUENCE, PACKAGE, PACKAGE BODY, TRIGGER

REFERENCED_LINK_

NAME
VARCHAR(128) Name of the link to the parent object

REFERENCED_NAME VARCHAR(128) Name of the referenced object

DEPENDENCY_TYPE VARCHAR(32)
Indicates whether the dependency is a REF dependency (REF) or not

(HARD)

444 | Database Information

USER_EXTENTS

USER_EXTENTS describes the extents comprising the segments owned by the current user's objects.

Table 9-109 Column information

Column name Data type Description

SEGMENT_SCHEMA VARCHAR(128) Schema of the segment associated with the extent

SEGMENT_NAME VARCHAR(128) Name of the segment associated with the extent

PARTITION_NAME VARCHAR(128)
● reserved

Object Partition Name (Set to NULL for non-partitioned objects)

SEGMENT_TYPE VARCHAR(32) Type of the segment: TABLE, INDEX

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the extent

EXTENT_ID NUMBER
● reserved

Extent number in the segment

BYTES NUMBER Size of the extent in bytes

BLOCKS NUMBER Size of the extent in Oracle blocks

DICTIONARY_SCHEMA | 445

USER_GLOBAL_SECONDARY_INDEXES

USER_GLOBAL_SECONDARY_INDEXES describes the global secondary indexes on the tables owned by th

e current user.

Note

It is available only on a cluster.

Table 9-110 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the global secondary indexed object

TABLE_NAME VARCHAR(128) Name of the global secondary indexed object

TABLESPACE_NAME VARCHAR(128) Name of the tablespace containing the global secondary index

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent

NEXT_EXTENT NUMBER Size of secondary extents

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_FREE NUMBER Minimum percentage of free space in a block

LOGGING VARCHAR(3)
Indicates whether or not changes to the global secondary index are l

ogged: (YES) or (NO)

BLOCKS NUMBER Number of used blocks in the global secondary index

446 | Database Information

USER_GSI_PLACE

USER_GSI_PLACE describes node placement of all global secondary indexes on the tables owned by the c

urrent user in the cluster system.

Note

It is available only on a cluster.

Table 9-111 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the global secondary indexed object

TABLE_NAME VARCHAR(128) Name of the global secondary indexed object

GROUP_ID NUMBER
Group identifier of the node where the global secondary index place

d

GROUP_NAME VARCHAR(128) Group name of the node where the global secondary index placed

MEMBER_ID NUMBER
Member identifier of the node where the global secondary index pla

ced

MEMBER_NAME VARCHAR(128)
Member name of the node where the global secondary index place

d

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

BLOCKS NUMBER
Number of used blocks of the node where the global secondary ind

ex placed

DICTIONARY_SCHEMA | 447

USER_INDEXES

USER_INDEXES describes indexes owned by the current user.

Table 9-112 Column information

Column name Data type Description

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

INDEX_TYPE VARCHAR(32)

Type of the index: the value in (NORMAL, NORMAL/REV, BITMAP, FUNCTI

ON-BASED NORMAL, FUNCTION-BASED NORMAL/REV, FUNCTION-BASED

BITMAP, IOT - TOP, DOMAIN)

TABLE_OWNER VARCHAR(128) Owner of the indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the indexed object

TABLE_NAME VARCHAR(128) Name of the indexed object

TABLE_TYPE VARCHAR(32)
Type of the indexed object: the value in (NEXT OBJECT, INDEX, TABLE, VIE

W, SYNONYM, SEQUENCE)

UNIQUENESS VARCHAR(32)
Indicates whether the index is unique (UNIQUE) or nonunique (NONUNIQU

E)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether index compression is enabled (ENABLED) or not (DISABLE

D)

PREFIX_LENGTH NUMBER
● reserved

Number of columns in the prefix of the compression key

TABLESPACE_NA

ME
VARCHAR(128) Name of the tablespace containing the index

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent

NEXT_EXTENT NUMBER Size of secondary extents

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

PCT_THRESHOLD NUMBER
● reserved

Threshold percentage of block space allowed per index entry

INCLUDE_COLU

MN
NUMBER

● reserved

Column ID of the last column to be included in index-organized table prima

ry key (non-overflow) index

FREELISTS NUMBER
● reserved

Number of process freelists allocated to this segment

FREELIST_GROU

PS
NUMBER

● reserved

Number of freelist groups allocated to this segment

448 | Database Information

PCT_FREE NUMBER Minimum percentage of free space in a block

LOGGING VARCHAR(3) ndicates whether or not changes to the index are logged: (YES) or (NO)

BLOCKS NUMBER Number of used blocks in the index

BLEVEL NUMBER
● reserved

B-Tree level (depth of the index from its root block to its leaf blocks)

LEAF_BLOCKS NUMBER
● reserved

Number of leaf blocks in the index

DISTINCT_KEYS NUMBER Number of distinct indexed values.

AVG_LEAF_BLOC

KS_PER_KEY
NUMBER

● reserved

Average number of leaf blocks in which each distinct value in the index app

ears, rounded to the nearest integer

AVG_DATA_BLO

CKS_PER_KEY
NUMBER

● reserved

Average number of data blocks in the table that are pointed to by a distinct

value in the index rounded to the nearest integer

CLUSTERING_FA

CTOR
NUMBER

● reserved

Indicates the amount of order of the rows in the table based on the values

of the index

STATUS VARCHAR(32)
● reserved

Indicates whether a nonpartitioned index is VALID or UNUSABLE

NUM_ROWS NUMBER
● reserved

Number of rows in the index

SAMPLE_SIZE NUMBER Size of the sample used to analyze the index

LAST_ANALYZED

TIMESTAMP(6)

WITHOUT TIME Z

ONE

Date on which this index was most recently analyzed

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the index, or DEFAULT

INSTANCES VARCHAR(32)
● reserved

Number of instances across which the indexes to be scanned, or DEFAULT

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the index is partitioned (YES) or not (NO)

TEMPORARY VARCHAR(1) Indicates whether the index is on a temporary table (Y) or not (N)

GENERATED VARCHAR(1) Indicates whether the name of the index is system-generated (Y) or not (N)

SECONDARY VARCHAR(1)

● reserved

Indicates whether the index is a secondary object created by the method of

the Data Cartridge (Y) or not (N)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for index blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for index blocks

CELL_FLASH_CA ● reserved

Column name Data type Description

DICTIONARY_SCHEMA | 449

CHE VARCHAR(32) Cell flash cache hint to be used for index blocks

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) or not

(NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

PCT_DIRECT_AC

CESS
NUMBER

● reserved

For a secondary index on an index-organized table, the percentage of rows

with VALID guess

ITYP_OWNER VARCHAR(128)
● reserved

For a domain index, the owner of the indextype

ITYP_NAME VARCHAR(128)
● reserved

For a domain index, the name of the indextype

PARAMETERS VARCHAR(1024)
● reserved

For a domain index, the parameter string

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned indexes, indicates whether statistics were collected by analy

zing the index as a whole (YES) or were estimated from statistics on underly

ing index partitions and subpartitions (NO)

DOMIDX_STATU

S
VARCHAR(32)

● reserved

Status of a domain index

DOMIDX_OPSTA

TUS
VARCHAR(32)

● reserved

Status of the operation on a domain index

FUNCIDX_STATU

S
VARCHAR(32)

● reserved

Status of a function-based index

JOIN_INDEX VARCHAR(3)
● reserved

Indicates whether the index is a join index (YES) or not (NO)

IOT_REDUNDAN

T_PKEY_ELIM
VARCHAR(3)

● reserved

Indicates whether redundant primary key columns are eliminated from seco

ndary indexes on index-organized tables (YES) or not (NO)

DROPPED VARCHAR(3)
Indicates whether the index has been dropped and is in the recycle bin (YES

) or not (NO)

VISIBILITY VARCHAR(3)
● reserved

Indicates whether the index is VISIBLE or INVISIBLE to the optimizer

DOMIDX_MANA

GEMENT
VARCHAR(32)

● reserved

If this is a domain index, indicates whether the domain index is system-man

aged (SYSTEM_MANAGED) or user-managed (USER_MANAGED)

SEGMENT_CREA

TED
VARCHAR(3) Indicates whether the index segment has been created (YES) or not (NO)

COMMENTS VARCHAR(1024) Comments of the index

EMPTY_BLOCKS NUMBER Number of empty blocks in the index

Column name Data type Description

450 | Database Information

USER_IND_COLUMNS

USER_IND_COLUMNS describes the columns of the indexes owned by the current user and columns of in

dexes on tables owned by the current user.

Table 9-113 Column information

Column name Data type Description

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

TABLE_SCHEMA VARCHAR(128) Schema of the table or cluster

TABLE_NAME VARCHAR(128) Name of the table or cluster

COLUMN_NAME VARCHAR(128) Column name or attribute of the object type column

COLUMN_POSITION NUMBER Position of the column or attribute within the index

COLUMN_LENGTH NUMBER Indexed length of the column

CHAR_LENGTH NUMBER
● reserved

Maximum codepoint length of the column

DESCEND VARCHAR(32)
Indicates whether the column is sorted in descending order (DESC)

or ascending order (ASC)

NULL_ORDER VARCHAR(32)
Indicates whether the null value of the column is sorted in nulls first

order (NULLS FIRST) or nulls last order (NULLS LAST)

DICTIONARY_SCHEMA | 451

USER_IND_PLACE

USER_IND_PLACE describes node placement of the indexes owned by the current user in the cluster syste

m.

Note

It is available only on a cluster.

Table 9-114 Column information

Column name Data type Description

INDEX_SCHEMA VARCHAR(128) Schema of the index

INDEX_NAME VARCHAR(128) Name of the index

TABLE_OWNER VARCHAR(128) Owner of the indexed object

TABLE_SCHEMA VARCHAR(128) Schema of the indexed object

TABLE_NAME VARCHAR(128) Name of the indexed object

GROUP_ID NUMBER Group identifier of the node where the index placed

GROUP_NAME VARCHAR(128) Group name of the node where the index placed

MEMBER_ID NUMBER Member identifier of the node where the index placed

MEMBER_NAME VARCHAR(128) Member name of the node where the index placed

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

DISTINCT_KEYS NUMBER (deprecated)

SAMPLE_SIZE NUMBER (deprecated)

BLOCKS NUMBER Number of used blocks of the node where the index placed

LAST_ANALYZED
TIMESTAMP(2) WITH

OUT TIME ZONE
(deprecated)

452 | Database Information

USER_OBJECTS

USER_OBJECTS describes all objects owned by the current user.

Table 9-115 Column information

Column name Data type Description

SCHEMA_NAME VARCHAR(128) Schema of the object

OBJECT_NAME VARCHAR(128) Name of the object

SUBOBJECT_NAM

E
VARCHAR(128) Name of the subobject (for example, partition)

OBJECT_ID NUMBER Dictionary object number of the object

DATA_OBJECT_ID NUMBER Dictionary object number of the segment that contains the object

OBJECT_TYPE VARCHAR(32) Type of the object (such as TABLE, INDEX)

CREATED
TIMESTAMP(2) WITH

OUT TIME ZONE
Timestamp for the creation of the object

LAST_DDL_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE

Timestamp for the last modification of the object resulting from a DDL

statement

TIMESTAMP VARCHAR(32) Timestamp for the specification of the object (character data)

STATUS VARCHAR(32)
● reserved

Status of the object: the value in (VALID, INVALID, N/A)

TEMPORARY VARCHAR(1)
Indicates whether the object is temporary (the current session can see

only data that it placed in this object itself) (Y) or not (N)

GENERATED VARCHAR(1)
Indicates whether the name of this object was system-generated (Y) o

r not (N)

SECONDARY VARCHAR(1)

● reserved

Indicates whether this is a secondary object created by the ODCIIndex

Create method of the Oracle Data Cartridge (Y) or not (N)

NAMESPACE NUMBER Namespace for the object

EDITION_NAME VARCHAR(128)
● reserved

Name of the edition in which the object is actual

DICTIONARY_SCHEMA | 453

USER_PROCEDURES

USER_PROCEDURES lists of procedures owned by the current user.

Table 9-116 Column information

Column name Data type Description

SCHEMA_NAME VARCHAR(128) Schema Name of function, procedures or package

OBJECT_NAME VARCHAR(128) Name of function, procedures or package

PROCEDURE_NAME VARCHAR(128) Name when a procedures in package

OBJECT_ID NUMBER ID of a function, procedures or package

SUBPROGRAM_ID NUMBER ID of procedures in package

OVERLOAD VARCHAR(32) ID of overloading procedure in package

OBJECT_TYPE VARCHAR(32) Type of function, procedures or package

AGGREGATE VARCHAR(3)
Indicate whether the procedure is an aggreage function(YES) or not

(NO)

PIPELINED VARCHAR(3)
Indicate whether the procedure is a pipelined table function(YES) or

not(NO)

IMPLTYPEOWNER VARCHAR(128) Name of the owner of the implementation type, if any

IMPLTYPENAME VARCHAR(128) Name of the implementation type, if any

PARALLEL VARCHAR(3)
Indicates whether the procedure or function is parallel-enabled (YES

) or not (NO)

INTERFACE VARCHAR(3)
YES, if the procedure/function is a table function implemented usin

g the SQLCLI interface; otherwise NO

DETERMINISTIC VARCHAR(3)
YES, if the procedure/function is declared to be deterministic; other

wise NO

AUTHID VARCHAR(32)
Indicates whether the procedure/function is declared to execute as

DEFINER or CURRENT_USER (invoker)

454 | Database Information

USER_PROC_PRIVS

USER_PROC_PRIVS describes the procedure grants for which the current user is the procedure owner, gr

antor, or grantee.

Table 9-117 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTI

ON (YES) or not (NO)

DICTIONARY_SCHEMA | 455

USER_PROC_PRIVS_MADE

USER_PROC_PRIVS_MADE describes the procedure grants for which the current user is the procedure ow

ner or grantor.

Table 9-118 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTI

ON (YES) or not (NO)

456 | Database Information

USER_PROC_PRIVS_RECD

USER_PROC_PRIVS_RECD describes the procedure grants, for which the current user is the grantee, or fo

r which an enabled role or PUBLIC is the grantee.

Table 9-119 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

PROCEDURE_OWNER VARCHAR(128) Owner of the procedure, function or package

PROCEDURE_SCHEMA VARCHAR(128) Schema of the procedure, function or package

PROCEDURE_NAME VARCHAR(128) Name of the procedure, function or package

PRIVILEGE VARCHAR(32) Privilege on the procedure, function or package

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTI

ON (YES) or not (NO)

DICTIONARY_SCHEMA | 457

USER_SCHEMAS

USER_SCHEMAS identifies the schemata in a catalog that are owned by current user.

Table 9-120 Column information

Column name Data type Description

SCHEMA_OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

CREATED_TIME TIMESTAMP(2) WITHOUT TIME ZONE Created time of the schema

MODIFIED_TIME TIMESTAMP(2) WITHOUT TIME ZONE Last modified time of the schema

COMMENTS VARCHAR(1024) Comments of the schema

458 | Database Information

USER_SCHEMA_PATH

USER_SCHEMA_PATH describes the schema search order of the current user, for naming resolution of un

qualified SQL schema objects.

Table 9-121 Column information

Column name Data type Description

AUTH_NAME VARCHAR(128) Name of the user

SCHEMA_NAME VARCHAR(128) Name of the schema

SEARCH_ORDER NUMBER Schema search order of the user

DICTIONARY_SCHEMA | 459

USER_SCHEMA_PRIVS

USER_SCHEMA_PRIVS describes the schema grants, for which the current user is the schema owner, gra

ntor, or grantee.

Table 9-122 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

460 | Database Information

USER_SCHEMA_PRIVS_MADE

USER_SCHEMA_PRIVS_MADE describes the schema grants for which the current user is the schema own

er.

Table 9-123 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 461

USER_SCHEMA_PRIVS_RECD

USER_SCHEMA_PRIVS_RECD describes the schema grants for which the current user is the grantee.

Table 9-124 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the schema

SCHEMA_NAME VARCHAR(128) Name of the schema

PRIVILEGE VARCHAR(32) Privilege on the schema

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

462 | Database Information

USER_SEQUENCES

USER_SEQUENCES describes all sequences owned by the current user.

Table 9-125 Column information

Column name Data type Description

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Sequence name

MIN_VALUE NUMBER Minimum value of the sequence

MAX_VALUE NUMBER Maximum value of the sequence

INCREMENT_BY NUMBER Value by which sequence is incremented

CYCLE_FLAG VARCHAR(1)
Indicates whether the sequence wraps around on reaching the limit

(Y) or not (N)

ORDER_FLAG VARCHAR(1)

● reserved

Indicates whether sequence numbers are generated in order (Y) or

not (N)

CACHE_SIZE NUMBER Number of sequence numbers to cache

LAST_NUMBER NUMBER

Last sequence number written to database. If a sequence uses cachi

ng, the number written to database is the last number placed in the

sequence cache.

COMMENTS VARCHAR(1024) Comments of the sequence

DICTIONARY_SCHEMA | 463

USER_SEQ_PRIVS

USER_SEQ_PRIVS describes the sequence grants for which the current user is the sequence owner, grant

or, or grantee.

Table 9-126 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

464 | Database Information

USER_SEQ_PRIVS_MADE

USER_SEQ_PRIVS_MADE describes the sequence grants for which the current user is the sequence owner.

Table 9-127 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

DICTIONARY_SCHEMA | 465

USER_SEQ_PRIVS_RECD

USER_SEQ_PRIVS_RECD describes the sequence grants for which the current user is the grantee.

Table 9-128 Column information

Column name Data type Description

GRANTOR VARCHAR(128) Name of the user who performed the grant

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

SEQUENCE_OWNER VARCHAR(128) Owner of the sequence

SEQUENCE_SCHEM

A
VARCHAR(128) Schema of the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

PRIVILEGE VARCHAR(32) Privilege on the sequence

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

466 | Database Information

USER_SHARD_KEY_COLUMNS

USER_SHARD_KEY_COLUMNS describes shard key columns of shareded tables owned by the current use

r in the cluster system.

Note

It is available only on a cluster.

Table 9-129 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

COLUMN_NAME VARCHAR(128) Column name of the shard key

COLUMN_POSITION NUMBER Position of the column within the shard key

DICTIONARY_SCHEMA | 467

USER_SOURCE

USER_SOURCE describes the text source of the stored objects accessible to the current user.

Table 9-130 Column information

Column name Data type Description

SCHEMA_NAME VARCHAR(128) Schema Name of object

NAME VARCHAR(128) Name of object

TYPE VARCHAR(32)
Type of object: FUNCTION, PROCEDURE, PACKAGE, PACKAGE BOD

Y, TRIGGER

LINE NUMBER Line number of this line of source

TEXT LONG VARCHAR Text source of the strored object

ORIGIN_CON_ID VARCHAR(256) ID of the container where the data originates

468 | Database Information

USER_SYNONYMS

USER_SYNONYMS describes all synonyms owned by the current user.

Table 9-131 Column information

Column name Data type Description

SYNONYM_OWNER VARCHAR(128) Owner of the synonym

SYNONYM_SCHEMA VARCHAR(128) Schema of the synonym

SYNONYM_NAME VARCHAR(128) Synonym name

OBJECT_SCHEMA_NAME VARCHAR(128) Object schema name

OBJECT_NAME VARCHAR(128) Object name

DB_LINK VARCHAR(128) Reserved for future use

DICTIONARY_SCHEMA | 469

USER_SYS_PRIVS

USER_SYS_PRIVS describes system (database, tablespace, schema) privileges granted to the current user

or PUBLIC.

Table 9-132 Column information

Column name Data type Description

USERNAME VARCHAR(128) Name of the user, or PUBLIC

PRIVILEGE VARCHAR(256) System(database, tablespace, schema) privilege

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

ADMIN_OPTION VARCHAR(3) equal to GRANTABLE column

470 | Database Information

USER_TABLES

USER_TABLES describes the relational tables owned by the current user.

Table 9-133 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

TABLESPACE_NA

ME
VARCHAR(128) Name of the tablespace containing the table

CLUSTER_NAME VARCHAR(128)
● reserved

Name of the cluster

IOT_NAME VARCHAR(128)
● reserved

Name of the index-organized table

STATUS VARCHAR(32)

● reserved

If a previous DROP TABLE operation failed, indicates whether the table is u

nusable (UNUSABLE) or valid (VALID)

PCT_FREE NUMBER Minimum percentage of free space in a block

PCT_USED NUMBER Minimum percentage of used space in a block

INI_TRANS NUMBER Initial number of transactions

MAX_TRANS NUMBER Maximum number of transactions

INITIAL_EXTENT NUMBER Size of the initial extent (in bytes)

NEXT_EXTENT NUMBER Size of secondary extents (in bytes)

MIN_EXTENTS NUMBER Minimum number of extents allowed in the segment

MAX_EXTENTS NUMBER Maximum number of extents allowed in the segment

PCT_INCREASE NUMBER
● reserved

Percentage increase in extent size

FREELISTS NUMBER
● reserved

Number of process freelists allocated to the segment

FREELIST_GROU

PS
NUMBER

● reserved

Number of freelist groups allocated to the segment

LOGGING VARCHAR(3) Indicates whether or not changes to the table are logged

BACKED_UP VARCHAR(1)

● reserved

Indicates whether the table has been backed up since the last modification

(Y) or not (N)

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER Number of used blocks in the table

EMPTY_BLOCKS NUMBER
● reserved

Number of empty (never used) blocks in the table

AVG_SPACE NUMBER
● reserved

Average available free space in the table

● reserved

DICTIONARY_SCHEMA | 471

CHAIN_CNT NUMBER Number of rows in the table that are chained from one data block to anoth

er or that have migrated to a new block, requiring a link to preserve the old

rowid

AVG_ROW_LEN NUMBER
● reserved

Average row length, including row overhead

AVG_SPACE_FRE

ELIST_BLOCKS
NUMBER

● reserved

Average freespace of all blocks on a freelist

NUM_FREELIST_

BLOCKS
NUMBER

● reserved

Number of blocks on the freelist

DEGREE VARCHAR(32)
● reserved

Number of threads per instance for scanning the table, or DEFAULT

INSTANCES VARCHAR(32)
● reserved

Number of instances across which the table is to be scanned, or DEFAULT

CACHE VARCHAR(1)

● reserved

Indicates whether the table is to be cached in the buffer cache (Y) or not (N

)

TABLE_LOCK VARCHAR(32)
Indicates whether table locking is enabled (ENABLED) or disabled (DISABLE

D)

SAMPLE_SIZE NUMBER Sample size used in analyzing the table

LAST_ANALYZED

TIMESTAMP(6)

WITHOUT TIME Z

ONE

Date on which the table was most recently analyzed

PARTITIONED VARCHAR(3)
● reserved

Indicates whether the table is partitioned (YES) or not (NO)

IOT_TYPE VARCHAR(32)

● reserved

If the table is an index-organized table, then IOT_TYPE is IOT, IOT_OVERFL

OW, or IOT_MAPPING.

TEMPORARY VARCHAR(1) Indicates whether the table is temporary (Y) or not (N)

SECONDARY VARCHAR(1)
● reserved

Indicates whether the table is a secondary object created by cartridge

NESTED VARCHAR(3)
● reserved

Indicates whether the table is a nested table (YES) or not (NO)

BUFFER_POOL VARCHAR(32)
● reserved

Buffer pool to be used for table blocks

FLASH_CACHE VARCHAR(32)
● reserved

Database Smart Flash Cache hint to be used for table blocks

CELL_FLASH_CA

CHE
VARCHAR(32)

● reserved

Cell flash cache hint to be used for table blocks

ROW_MOVEME

NT
VARCHAR(32)

● reserved

If a partitioned table, indicates whether row movement is enabled (ENABLE

D) or disabled (DISABLED)

Column name Data type Description

472 | Database Information

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether statistics for the table as a whole

(global statistics) are accurate (YES)

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES) or not

(NO)

DURATION VARCHAR(32)
● reserved

Indicates the duration of a temporary table

SKIP_CORRUPT VARCHAR(32)

● reserved

Indicates whether Database ignores blocks marked corrupt during table an

d index scans (ENABLED) or raises an error (DISABLED)

MONITORING VARCHAR(3)

● reserved

Indicates whether the table has the MONITORING attribute set (YES) or not

(NO)

CLUSTER_OWNE

R
VARCHAR(128)

● reserved

Owner of the cluster, if any

DEPENDENCIES VARCHAR(32)

● reserved

Indicates whether row-level dependency tracking is enabled (ENABLED) or

disabled (DISABLED)

COMPRESSION VARCHAR(32)

● reserved

Indicates whether table compression is enabled (ENABLED) or not (DISABLE

D)

COMPRESS_FOR VARCHAR(32)
● reserved

Default compression for what kind of operations

DROPPED VARCHAR(3)

● reserved

Indicates whether the table has been dropped and is in the recycle bin (YES

) or not (NO)

READ_ONLY VARCHAR(3) Indicates whether the table IS READ-ONLY (YES) or not (NO)

SEGMENT_CREA

TED
VARCHAR(3) Indicates whether the table segment has been created (YES) or not (NO)

RESULT_CACHE VARCHAR(32)

● reserved

Result cache mode annotation for the table: the value in (NULL, DEFAULT,

FORCE, MANUAL)

Column name Data type Description

DICTIONARY_SCHEMA | 473

USER_TABLESPACES

USER_TABLESPACES describes the tablespaces accessible to the current user.

Table 9-134 Column information

Column name Data type Description

TABLESPACE_NAME VARCHAR(128) Name of the tablespace

BLOCK_SIZE NUMBER Tablespace block size

INITIAL_EXTENT NUMBER
● reserved

Default initial extent size (in bytes)

NEXT_EXTENT NUMBER
● reserved

Default incremental extent size (in bytes)

MIN_EXTENTS NUMBER
● reserved

Default minimum number of extents

MAX_EXTENTS NUMBER
● reserved

Default maximum number of extents

MAX_SIZE NUMBER
● reserved

Default maximum size of segments

PCT_INCREASE NUMBER
● reserved

Default percent increase for extent size

MIN_EXTLEN NUMBER
● reserved

Minimum extent size for this tablespace (in bytes)

STATUS VARCHAR(32) Tablespace status: the value in (ONLINE, OFFLINE, READ ONLY)

CONTENTS VARCHAR(32)
Tablespace contents: the value in (SYSTEM, DATA, TEMPORARY, U

NDO)

LOGGING VARCHAR(32) Default logging attribute: LOGGING, NOLOGGING

FORCE_LOGGING VARCHAR(3)

● reserved

Indicates whether the tablespace is under force logging mode (YES)

or not (NO)

EXTENT_MANAGEM

ENT
VARCHAR(32)

● reserved

Indicates whether the extents in the tablespace are dictionary mana

ged (DICTIONARY) or locally managed (LOCAL)

ALLOCATION_TYPE VARCHAR(32)

● reserved

Type of extent allocation in effect for the tablespace: the value in (

SYSTEM, UNIFORM, USER)

SEGMENT_SPACE_M

ANAGEMENT
VARCHAR(32)

● reserved

Indicates whether the free and used segment space in the tablespa

ce is managed using free lists (MANUAL) or bitmaps (AUTO)

DEF_TAB_COMPRES

SION
VARCHAR(32)

● reserved

Indicates whether default table compression is enabled (ENABLED)

or not (DISABLED)

● reserved

474 | Database Information

RETENTION VARCHAR(32) Undo tablespace retention: the value in (GUARANTEE, NOGUARA

NTEE, NOT APPLY)

BIGFILE VARCHAR(3)

● reserved

Indicates whether the tablespace is a bigfile tablespace (YES) or a s

mallfile tablespace (NO)

PREDICATE_EVALUA

TION
VARCHAR(32)

● reserved

Indicates whether predicates are evaluated by host (HOST) or by sto

rage (STORAGE)

ENCRYPTED VARCHAR(3)
● reserved

Indicates whether the tablespace is encrypted (YES) or not (NO)

COMPRESS_FOR VARCHAR(32)
● reserved

Indicates whether the tablespace is encrypted (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 475

USER_TAB_COLS

USER_TAB_COLS describes the columns (including hidden columns) of the tables, views, and clusters ow

ned by the current user.

Table 9-135 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE VARCHAR(128) Datatype of the column

DATA_TYPE_MOD VARCHAR(3)
● reserved

Datatype modifier of the column

DATA_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the datatype of the column

DATA_LENGTH NUMBER Length of the column (in bytes)

DATA_PRECISION NUMBER
Decimal precision for NUMBER datatype; binary precision for F

LOAT datatype; NULL for all other datatypes

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

NULLABLE VARCHAR(1) Indicates whether a column allows NULLs.

COLUMN_ID NUMBER Sequence number of the column as created

DEFAULT_LENGTH NUMBER Length of the default value for the column

DATA_DEFAULT LONG VARCHAR Default value for the column

NUM_DISTINCT NUMBER Number of distinct values in the column

LOW_VALUE VARBINARY(32) Low value in the column

HIGH_VALUE VARBINARY(32) High value in the column

DENSITY NUMBER

● reserved

If a histogram is available on COLUMN_NAME, then this colu

mn displays the selectivity of a value that spans fewer than 2 e

ndpoints in the histogram.

NUM_NULLS NUMBER Number of NULLs in the column

NUM_BUCKETS NUMBER
● reserved

Number of buckets in the histogram for the column

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this column was most recently analyzed

SAMPLE_SIZE NUMBER Sample size used in analyzing this column

CHARACTER_SET_NAME VARCHAR(128)
● reserved

Name of the character set

CHAR_COL_DECL_LENGTH NUMBER Declaration length of the character type column

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether column statistics wer

e collected for the table

476 | Database Information

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user

(YES) or not (NO)

AVG_COL_LEN NUMBER Average length of the column (in bytes)

CHAR_LENGTH NUMBER Displays the length of the column in characters.

CHAR_USED VARCHAR(1)
Indicates that the column uses BYTE length semantics (B) or C

HAR length semantics (C)

V80_FMT_IMAGE VARCHAR(3)

● reserved

Indicates whether the column data is in release older image f

ormat (YES) or not (NO)

DATA_UPGRADED VARCHAR(3)

● reserved

Indicates whether the column data has been upgraded to the

latest type version format (YES) or not (NO)

HIDDEN_COLUMN VARCHAR(3)
Indicates whether the column is a hidden column (YES) or not

(NO)

VIRTUAL_COLUMN VARCHAR(3)

● reserved

Indicates whether the column is a virtual column (YES) or not

(NO)

SEGMENT_COLUMN_ID NUMBER Sequence number of the column in the segment

INTERNAL_COLUMN_ID NUMBER Internal sequence number of the column

HISTOGRAM VARCHAR(32)
● reserved

Indicates existence/type of histogram

QUALIFIED_COL_NAME VARCHAR(4000) Qualified column name

IDENTITY_COLUMN VARCHAR(3) Indicates whether this is an identity column (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 477

USER_TAB_COLUMNS

USER_TAB_COLUMNS describes the columns of the tables, views, and clusters owned by the current user.

Table 9-136 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE VARCHAR(128) Datatype of the column

DATA_TYPE_MOD VARCHAR(3)
● reserved

Datatype modifier of the column

DATA_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the datatype of the column

DATA_LENGTH NUMBER Length of the column (in bytes)

DATA_PRECISION NUMBER
Decimal precision for NUMBER datatype; binary precision for FLOAT

datatype; NULL for all other datatypes

DATA_SCALE NUMBER Digits to the right of the decimal point in a number

NULLABLE VARCHAR(1) Indicates whether a column allows NULLs.

COLUMN_ID NUMBER Sequence number of the column as created

DEFAULT_LENGTH NUMBER Length of the default value for the column

DATA_DEFAULT LONG VARCHAR Default value for the column

NUM_DISTINCT NUMBER Number of distinct values in the column

LOW_VALUE VARBINARY(32) Low value in the column

HIGH_VALUE VARBINARY(32) High value in the column

DENSITY NUMBER

● reserved

If a histogram is available on COLUMN_NAME, then this column dis

plays the selectivity of a value that spans fewer than 2 endpoints in t

he histogram.

NUM_NULLS NUMBER Number of NULLs in the column

NUM_BUCKETS NUMBER
● reserved

Number of buckets in the histogram for the column

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which this column was most recently analyzed

SAMPLE_SIZE NUMBER Sample size used in analyzing this column

CHARACTER_SET_N

AME
VARCHAR(128)

● reserved

Name of the character set

CHAR_COL_DECL_LE

NGTH
NUMBER Declaration length of the character type column

GLOBAL_STATS VARCHAR(3)

● reserved

For partitioned tables, indicates whether column statistics were coll

ected for the table

478 | Database Information

USER_STATS VARCHAR(3)

● reserved

Indicates whether statistics were entered directly by the user (YES)

or not (NO)

AVG_COL_LEN NUMBER Average length of the column (in bytes)

CHAR_LENGTH NUMBER Displays the length of the column in characters.

CHAR_USED VARCHAR(1)
Indicates that the column uses BYTE length semantics (B) or CHAR l

ength semantics (C)

V80_FMT_IMAGE VARCHAR(3)

● reserved

Indicates whether the column data is in release older image format

(YES) or not (NO)

DATA_UPGRADED VARCHAR(3)

● reserved

Indicates whether the column data has been upgraded to the latest

type version format (YES) or not (NO)

HISTOGRAM VARCHAR(32)
● reserved

Indicates existence/type of histogram

IDENTITY_COLUMN VARCHAR(3) Indicates whether this is an identity column (YES) or not (NO)

Column name Data type Description

DICTIONARY_SCHEMA | 479

USER_TAB_COMMENTS

USER_TAB_COMMENTS displays comments on the tables and views owned by the current user.

Table 9-137 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

TABLE_TYPE VARCHAR(32) Type of the object

COMMENTS VARCHAR(1024) Comment on the object

480 | Database Information

USER_TAB_IDENTITY_COLS

USER_TAB_IDENTITY_COLS describes all table identity columns.

Table 9-138 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

COLUMN_NAME VARCHAR(128) Name of the identity column

GENERATION_TYPE VARCHAR(32)
Generation type of the identity column. Possible values are ALWAYS

or BY DEFAULT

IDENTITY_OPTIONS VARCHAR(1024) Options for the identity column sequence generator

DICTIONARY_SCHEMA | 481

USER_TAB_PLACE

USER_TAB_PLACE describes node placement of cluster tables owned by the current user in the cluster sys

tem.

Note

It is available only on a cluster.

Table 9-139 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

GROUP_ID NUMBER Group identifier of the node where the table placed

GROUP_NAME VARCHAR(128) Group name of the node where the table placed

MEMBER_ID NUMBER Member identifier of the node where the table placed

MEMBER_NAME VARCHAR(128) Member name of the node where the table placed

MEMBER_OFFLINE BOOLEAN data of the cluster member is offline or not

SCN VARCHAR(64) table scn of the node where the table placed

NUM_ROWS NUMBER Number of rows in the table

BLOCKS NUMBER Number of used blocks of the node where the table placed

LAST_ANALYZED
TIMESTAMP(6) WITH

OUT TIME ZONE
Date on which the table was most recently analyzed

482 | Database Information

USER_TAB_PRIVS

USER_TAB_PRIVS describes the object grants for which the current user is the object owner, grantor, or g

rantee.

Table 9-140 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

DICTIONARY_SCHEMA | 483

USER_TAB_PRIVS_MADE

USER_TAB_PRIVS_MADE describes the object grants for which the current user is the object owner.

Table 9-141 Column information

Column name Data type Description

GRANTEE VARCHAR(128) Name of the user or role to whom access was granted

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

484 | Database Information

USER_TAB_PRIVS_RECD

USER_TAB_PRIVS_RECD describes the object grants for which the current user is the grantee.

Table 9-142 Column information

Column name Data type Description

OWNER VARCHAR(128) Owner of the object

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

GRANTOR VARCHAR(128) Name of the user who performed the grant

PRIVILEGE VARCHAR(32) Privilege on the object

GRANTABLE VARCHAR(3)
Indicates whether the privilege was granted with the GRANT OPTIO

N (YES) or not (NO)

HIERARCHY VARCHAR(3)
Indicates whether the privilege was granted with the HIERARCHY O

PTION (YES) or not (NO)

DICTIONARY_SCHEMA | 485

USER_TAB_SHARDS

USER_TAB_SHARDS describes shard information of sharded tables owned by the current user in the clust

er system.

Note

It is available only on a cluster.

Table 9-143 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the table

TABLE_NAME VARCHAR(128) Name of the table

SHARD_STRATEGY VARCHAR(32)
Sharding strategy of the table:

the value in (HASH SHARDING, RANGE SHARDING, LIST SHARDING)

SHARD_NAME VARCHAR(128) Shard name

SHARD_NUMBER NUMBER Shard number

SHARD_DEFINITION LONG VARCHAR Shard definition (if hash sharded, the value is null)

GROUP_ID NUMBER Group identifier where the shard placed

GROUP_NAME VARCHAR(128) Group Name where the shard placed

486 | Database Information

USER_USERS

USER_USERS describes the current user.

Table 9-144 Column information

Column name Data type Description

USERNAME VARCHAR(128) Name of the user

USER_ID NUMBER ID number of the user

ACCOUNT_STATUS VARCHAR(32)

Account status: the value in (OPEN, EXPIRED, EXPIRED(GRAC

E), LOCKED(TIMED), LOCKED, EXPIRED & LOCKED(TIMED), E

XPIRED(GRACE) & LOCKED(TIMED), EXPIRED & LOCKED, EXPI

RED(GRACE) & LOCKED)

LOCK_DATE
TIMESTAMP(2) WITH

OUT TIME ZONE

Timestamp the account was locked if account status was LOC

KED

EXPIRY_DATE
TIMESTAMP(2) WITH

OUT TIME ZONE
Timestamp of expiration of the account

DEFAULT_TABLESPACE VARCHAR(128) Default tablespace for data

TEMPORARY_TABLESPAC

E
VARCHAR(128)

Name of the default tablespace for temporary tables or the na

me of a tablespace group

INDEX_TABLESPACE VARCHAR(128) Default tablespace for index

CREATED
TIMESTAMP(2) WITH

OUT TIME ZONE
User creation timestamp

INITIAL_RSRC_CONSUMER

_GROUP
VARCHAR(128)

● reserved

Initial resource consumer group for the user

EXTERNAL_NAME VARCHAR(128)
● reserved

User external name

DICTIONARY_SCHEMA | 487

USER_VIEWS

USER_VIEWS describes the views owned by the current user.

Table 9-145 Column information

Column name Data type Description

VIEW_SCHEMA VARCHAR(128) Schema of the view

VIEW_NAME VARCHAR(128) Name of the view

TEXT_LENGTH NUMBER Length of the view text

TEXT LONG VARCHAR View text

TYPE_TEXT_LENGTH NUMBER
● reserved

Length of the type clause of the typed view

TYPE_TEXT VARCHAR(4000)
● reserved

Type clause of the typed view

OID_TEXT_LENGTH NUMBER
● reserved

Length of the WITH OID clause of the typed view

OID_TEXT VARCHAR(4000)
● reserved

WITH OID clause of the typed view

VIEW_TYPE_OWNER VARCHAR(128)
● reserved

Owner of the type of the view if the view is a typed view

VIEW_TYPE VARCHAR(32)
● reserved

Type of the view if the view is a typed view

SUPERVIEW_NAME VARCHAR(128)
● reserved

Name of the superview

EDITIONING_VIEW VARCHAR(1) Reserved for future use

READ_ONLY VARCHAR(1) Indicates whether the view is read-only (Y) or not (N)

488 | Database Information

Other Views

There are other views or tables which are none of All-family, DBA-family or USER-family.

AUDIT_POLICIES

AUDIT_POLICIES contains one row for each audit policy.

Table 9-146 Column information

Column name Data type Description

POLICY_NAME VARCHAR(128) audit policy name

ENABLED VARCHAR(3) indicates whether the audit policy is enabled (YES) or not (NO)

CREATED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
created time of the audit policy

MODIFIED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
last modified time of the audit policy

COMMENTS VARCHAR(1024) comments of the audit policy

DICTIONARY_SCHEMA | 489

AUDIT_POLICY_OPTIONS

AUDIT_POLICY_OPTIONS describes all audit policies created in the database.

Table 9-147 Column information

Column name Data type Description

POLICY_NAME VARCHAR(128) audit policy name

AUDIT_OPTION VARCHAR(32) auditing option defined in the audit policy

AUDIT_OPTION_TYP

E
VARCHAR(32)

The values of AUDIT_OPTION_TYPE_NAME in ('DATABASE PRIVILE

GE', 'SYSTEM ACTION', 'OBJECT ACTION')

OBJECT_SCHEMA VARCHAR(128) schema name, for an object-specific auditing option

OBJECT_NAME VARCHAR(128) object name, for an object-specific auditing option

OBJECT_TYPE VARCHAR(32) object type name, for an object-specific auditing option

490 | Database Information

AUDIT_POLICY_ENABLED

AUDIT_POLICY_ENABLE describes all the audit policies that are enable in the database.

Table 9-148 Column information

Column name Data type Description

POLICY_NAME VARCHAR(128) audit policy name

ENABLED_OPT VARCHAR(32)
enable option of the audit policy, the possible values are BY, EXCEP

T

USER_NAME VARCHAR(128) user name for whom the audit policy is enable

WHEN_SUCCESS VARCHAR(3)
indicates whether the audit policy is enable for auditing successful e

vents or not

WHEN_FAILURE VARCHAR(3)
indicates whether the audit policy is enable for auditing unsuccessfu

l events or not

DICTIONARY_SCHEMA | 491

AUDIT_TRAIL

AUDIT_TRAIL displays audit records from the audit trail.

Table 9-149 Column information

Column name Data type Description

MEMBER_NAME VARCHAR(128) cluster member name

SESSION_ID NUMBER session identifier

SESSION_SERIAL NUMBER session serial number

LOGON_USERNAME VARCHAR(128) logon user name of the user whose actions were audited

CURRENT_USERNAM

E
VARCHAR(128) effective user for the statement execution

SERVER_PROCESS NUMBER server process identifer for the session

CLIENT_PROGRAM_N

AME
VARCHAR(128) client program used for session

CLIENT_USERNAME VARCHAR(128) client operating system user name for the session

CLIENT_PROCESS NUMBER client process identifer for the session

CLIENT_HOST VARCHAR(128) client host ip address for the session

CLIENT_PORT NUMBER client port number for the session

CLIENT_TERMINAL VARCHAR(128) client terminal name for the session

TRANSACTION_ID NUMBER transaction identifier

SCN VARCHAR(128)
system change number (SCN) string of the query at the ti

me of the event

GCN NUMBER
global change number (GCN) of the query at the time of t

he event

DCN NUMBER
domain change number (DCN) of the query at the time of

the event

LCN NUMBER
local change number (LCN) of the query at the time of the

event

STMT_NO NUMBER numeric number for each statement run in a session

SQL_TEXT LONG VARCHAR SQL associated with the event

SQL_BINDS LONG VARCHAR list of bind variables, if any, associated with SQL_TEXT

RETURN_CODE NUMBER
error code generated by the action, zero if the action succ

eeded

ERROR_MESSAGE VARCHAR(1024)
error message generated by the action, null if the action s

ucceeded

ENTRY_ID NUMBER audit trail entry identifier in the session

EVENT_TIMESTAMP
TIMESTAMP(2) WITHOUT TIM

E ZONE

timestamp of the creation of the audit trail entry in local ti

me zone

POLICY_NAME VARCHAR(128) audit policy name that caused the current audit record

PRIVILEGE_USED VARCHAR(32) database privilege used to execute the action

ACTION_NAME VARCHAR(32) action name executed by the user

492 | Database Information

OBJECT_TYPE VARCHAR(32) object type of object affected by the action

OBJECT_SCHEMA VARCHAR(128) schema name of object affected by the action

OBJECT_NAME VARCHAR(128) object name of object affected by the action

Column name Data type Description

DICTIONARY_SCHEMA | 493

DATABASE_PROPERTIES

DATABASE_PROPERTIES lists permanent database properties.

Table 9-150 Column information

Column name Data type Description

PROPERTY_NAME VARCHAR(128) Property name

PROPERTY_VALUE VARCHAR(4000) Property value

DESCRIPTION VARCHAR(4000) Property description

494 | Database Information

DBC_TABLE_TYPE_INFO

Identify the ODBC/JDBC table types available in this database.

Table 9-151 Column information

Column name Data type Description

DBC_TABLE_TYPE_ID NUMBER number identifier of the table type in ODBC/JDBC

DBC_TABLE_TYPE VARCHAR(128) name of the table type in ODBC/JDBC

IS_SUPPORTED BOOLEAN is supported feature

COMMENTS VARCHAR(1024) comments of the table type

DICTIONARY_SCHEMA | 495

DICTIONARY

DICTIONARY contains descriptions of data dictionary tables and views.

Table 9-152 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

COMMENTS VARCHAR(1024) Text comment on the object

496 | Database Information

DICT_COLUMNS

DICT_COLUMNS contains descriptions of columns in data dictionary tables and views.

Table 9-153 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object that contains the column

TABLE_NAME VARCHAR(128) Name of the object that contains the column

COLUMN_NAME VARCHAR(128) Name of the column

COMMENTS VARCHAR(1024) Text comment on the column

DICTIONARY_SCHEMA | 497

IMPLEMENTATION_INFO

IMPLEMENTATION_INFO contains information about various aspects that are left implementation-define

d.

Table 9-154 Column information

Column name Data type Description

IMPLEMENTATION_I

NFO_ID
NUMBER identifier of the implementation item

IMPLEMENTATION_I

NFO_NAME
VARCHAR(1024) descriptive name of the implementation item

INTEGER_VALUE NUMBER
Value of the implementation item, or null if the value is contained in

the column CHARACTER_VALUE

CHARACTER_VALUE VARCHAR(1024)
Value of the implementation item, or null if the value is contained in

the column INTEGER_VALUE

COMMENTS VARCHAR(1024) possibly a comment pertaining to the implementation item

498 | Database Information

IMPLEMENTATION_INFO_BASE

The IMPLEMENTATION_INFO_BASE table has one row for each implementation information item.

Table 9-155 Column information

Column name Data type Description

ID VARCHAR(32) identifier string of the implementation item

SUB_ID VARCHAR(32) identifier string of the implementation item

NAME VARCHAR(1024) descriptive name of the implementation item

SUB_NAME VARCHAR(1024) descriptive name of the implementation item

IS_SUPPORTED BOOLEAN TRUE if the implementation item is supported, FALSE if not

INTEGER_VALUE NUMBER
Value of the implementation item, or null if the value is contained in

the column CHARACTER_VALUE

CHARACTER_VALUE VARCHAR(1024)
Value of the implementation item, or null if the value is contained in

the column INTEGER_VALUE

COMMENTS VARCHAR(1024) possibly a comment pertaining to the implementation item

DICTIONARY_SCHEMA | 499

JDBC_CLIENT_PROPS

JDBC_CLIENT_PROPS is the set of jdbc client properties.

Table 9-156 Column information

Column name Data type Description

NAME VARCHAR(128) property name

MAX_LEN NATIVE_INTEGER max length of a value

DEFAULT_VALUE VARCHAR(128) default value

DESCRIPTION VARCHAR(256) descrption on that property

500 | Database Information

PRODUCT

PRODUCT is about the product name, version for ODBC, JDBC interface.

Table 9-157 Column information

Column name Data type Description

NAME VARCHAR(32) the product name

VERSION VARCHAR(128) product full version information

PRODUCT_VERSION NUMBER product version

MAJOR_VERSION NUMBER major version

MINOR_VERSION NUMBER minor version

PATCH_VERSION NUMBER patch version

DICTIONARY_SCHEMA | 501

SESSION_PRIVS

SESSION_PRIVS describes the privileges that are currently available to the user.

Table 9-158 Column information

Column name Data type Description

PRIVILEGE VARCHAR(256) Name of the privilege

502 | Database Information

SUPPLEMENTAL_LOG_TABLE_INFO

SUPPLEMENTAL_LOG_TABLE_INFO describes table-level supplemental logging status.

Table 9-159 Column information

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema of the object

TABLE_NAME VARCHAR(128) Name of the object

SUPPLEMENTAL_LO

G_DATA_PK
VARCHAR(32)

Status of table-level PRIMARY KEY COLUMNS supplemental logging:

IMPLICIT, EXPLICIT, NO

DICTIONARY_SCHEMA | 503

Aliased Synonym

It is the public synonym which indicates the view or table in DICTIONARY_SCHEMA.

COLS

COLS is a public synonym for USER_TAB_COLUMNS.

DICT

DICT is a public synonym for DICTIONARY.

IND

IND is a public synonym for USER_INDEXES.

OBJ

OBJ is a public synonym for USER_OBJECTS.

SEQ

SEQ is a public synonym for USER_SEQUENCES.

TABS

TABS is a public synonym for USER_TABLES.

504 | Database Information

9.2 INFORMATION_SCHEMA

Views of INFORMATION_SCHEMA schema provides the same information as those defined in the SQL sta

ndard.

Execute InformationSchema.sql as follows to use the views.

● For standalone

% gsql sys gliese --as sysdba --import

$GOLDILOCKS_HOME/admin/standalone/InformationSchema.sql

● For cluster

% gsql sys gliese --as sysdba --import $GOLDILOCKS_HOME/admin/cluster/InformationSchema.sql

Note

Views and tables of INFORMATION_SCHEMA can be retrieved from OPEN phase.

INFORMATION_SCHEMA | 505

COLUMNS

Identify the columns of tables defined in this catalog that are accessible to given user or role.

Table 9-160 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128) catalog name of the column

TABLE_OWNER VARCHAR(128) owner name of the column

TABLE_SCHEMA VARCHAR(128) schema name of the column

TABLE_NAME VARCHAR(128) table name of the column

COLUMN_NAME VARCHAR(128) column name

ORDINAL_POSITION NUMBER the ordinal position (> 0) of the column in the table

COLUMN_DEFAULT LONG VARCHAR the default for the column

IS_NULLABLE BOOLEAN is nullable of the column

DATA_TYPE VARCHAR(128) the standard name of the data type

CHARACTER_MAXIMUM_LE

NGTH
NUMBER the maximum length in characters

CHARACTER_OCTET_LENGT

H
NUMBER the maximum length in octets

NUMERIC_PRECISION NUMBER the numeric precision of the numerical Data type

NUMERIC_PRECISION_RADIX NUMBER
the radix (2 or 10) of the precision of the numerical data ty

pe

NUMERIC_SCALE NUMBER the numeric scale of the exact numerical data type

DATETIME_PRECISION NUMBER
for a datetime or interval type, the value is the fractional sec

onds precision

INTERVAL_TYPE VARCHAR(32)

for a interval type, the value is in (YEAR, MONTH, DAY, HO

UR, MINUTE, SECOND, YEAR TO MONTH, DAY TO HOUR,

DAY TO MINUTE, DAY TO SECOND, HOUR TO MINUTE, HO

UR TO SECOND, MINUTE TO SECOND)

INTERVAL_PRECISION NUMBER for a interval type, the value is the leading precision

CHARACTER_SET_CATALOG VARCHAR(128)
catalog name of the character set if is is a character string ty

pe

CHARACTER_SET_SCHEMA VARCHAR(128)
schema name of the character set if is is a character string ty

pe

CHARACTER_SET_NAME VARCHAR(128)
character set name of the character set if is is a character str

ing type

COLLATION_CATALOG VARCHAR(128)
catalog name of the applicable collation if is is a character st

ring type

COLLATION_SCHEMA VARCHAR(128)
schema name of the applicable collation if is is a character s

tring type

COLLATION_NAME VARCHAR(128)
collation name of the applicable collation if is is a character

506 | Database Information

string type

DOMAIN_CATALOG VARCHAR(128)
catalog name of the domain used by the column being desc

ribed

DOMAIN_SCHEMA VARCHAR(128)
schema name of the domain used by the column being desc

ribed

DOMAIN_NAME VARCHAR(128)
domain name of the domain used by the column being desc

ribed

UDT_CATALOG VARCHAR(128)
catalog name of the user-defined type of the data type bein

g described

UDT_SCHEMA VARCHAR(128)
schema name of the user-defined type of the data type bein

g described

UDT_NAME VARCHAR(128)
user-defined type name of the user-defined type of the data

type being described

SCOPE_CATALOG VARCHAR(128)
catalog name of the referenceable table if DATA_TYPE is RE

F

SCOPE_SCHEMA VARCHAR(128)
schema name of the referenceable table if DATA_TYPE is R

EF

SCOPE_NAME VARCHAR(128) scope name of the referenceable table if DATA_TYPE is REF

MAXIMUM_CARDINALITY NUMBER maximum cardinality if DATA_TYPE is ARRAY

DTD_IDENTIFIER NUMBER data type descriptor identifier

IS_SELF_REFERENCING BOOLEAN is a self-referencing column

IS_IDENTITY BOOLEAN is an identity column

IDENTITY_GENERATION VARCHAR(32)
for an identity column, the value is in (ALWAYS, BY DEFAU

LT)

IDENTITY_START NUMBER
for an identity column, the start value of the identity colum

n

IDENTITY_INCREMENT NUMBER for an identity column, the increment of the identity column

IDENTITY_MAXIMUM NUMBER
for an identity column, the maximum value of the identity c

olumn

IDENTITY_MINIMUM NUMBER
for an identity column, the minimum value of the identity c

olumn

IDENTITY_CYCLE BOOLEAN for an identity column, the cycle option

IS_GENERATED BOOLEAN is a generated column

GENERATION_EXPRESSION VARCHAR(128)
for a generated column, the text of the generation expressi

on

IS_SYSTEM_VERSION_START BOOLEAN is a system-version start column

IS_SYSTEM_VERSION_END BOOLEAN is a system-version end column

SYSTEM_VERSION_TIMESTA

MP_GENERATION
VARCHAR(32) for a system-version column, the value is ALWAYS

IS_UPDATABLE BOOLEAN is an updatable column

DECLARED_DATA_TYPE VARCHAR(128) the data type name that a user declared

Column name Data type Description

INFORMATION_SCHEMA | 507

DECLARED_NUMERIC_PRECI

SION
NUMBER the precision value that a user declared

DECLARED_NUMERIC_SCAL

E
NUMBER the scale value that a user declared

COMMENTS VARCHAR(1024) comments of the column

Column name Data type Description

508 | Database Information

COLUMN_PRIVILEGES

Identify the privileges on columns of tables defined in this catalog that are available to or granted by a giv

en user or role.

Table 9-161 Column information

Column name Data type Description

GRANTOR VARCHAR(128) authorization name of the user who granted column privileges

GRANTEE VARCHAR(128)
authorization name of some user or role, or PUBLIC to indicate all us

ers, to whom the column privilege being described is granted

TABLE_CATALOG VARCHAR(128)
catalog name of the column on which the privilege being described

was granted

TABLE_OWNER VARCHAR(128)
table owner name of the column on which the privilege being descri

bed was granted

TABLE_SCHEMA VARCHAR(128)
schema name of the column on which the privilege being described

was granted

TABLE_NAME VARCHAR(128)
table name of the column on which the privilege being described w

as granted

COLUMN_NAME VARCHAR(128)
column name of the column on which the privilege being described

was granted

PRIVILEGE_TYPE VARCHAR(32) the value is in (SELECT, INSERT, UPDATE, REFERENCES)

IS_GRANTABLE BOOLEAN is grantable

INFORMATION_SCHEMA | 509

CONSTRAINT_COLUMN_USAGE

Identify the columns used by referential constraints, unique constraints, check constraints, and assertions

defined in this catalog and owned by a given user or role.

Table 9-162 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128)
catalog name of the column that participates in the constraint being

described

TABLE_OWNER VARCHAR(128)
owner name of the column that participates in the constraint being

described

TABLE_SCHEMA VARCHAR(128)
schema name of the column that participates in the constraint bein

g described

TABLE_NAME VARCHAR(128)
table name of the column that participates in the constraint being d

escribed

COLUMN_NAME VARCHAR(128) column name that participates in the constraint being described

CONSTRAINT_CATAL

OG
VARCHAR(128) catalog name of the constraint

CONSTRAINT_OWNE

R
VARCHAR(128) owner name of the constraint

CONSTRAINT_SCHE

MA
VARCHAR(128) schema name of the constraint

CONSTRAINT_NAME VARCHAR(128) constraint name

510 | Database Information

CONSTRAINT_TABLE_USAGE

Identify the tables that are used by referential constraints, unique constraints, check constraints, and asse

rtions defined in this catalog and owned by a given user or role.

Table 9-163 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128)
catalog name of the table that participates in the constraint being d

escribed

TABLE_OWNER VARCHAR(128)
owner name of the table that participates in the constraint being de

scribed

TABLE_SCHEMA VARCHAR(128)
schema name of the table that participates in the constraint being d

escribed

TABLE_NAME VARCHAR(128) table name that participates in the constraint being described

CONSTRAINT_CATAL

OG
VARCHAR(128) catalog name of the constraint

CONSTRAINT_OWNE

R
VARCHAR(128) owner name of the constraint

CONSTRAINT_SCHE

MA
VARCHAR(128) schema name of the constraint

CONSTRAINT_NAME VARCHAR(128) constraint name

INFORMATION_SCHEMA | 511

INFORMATION_SCHEMA_CATALOG_NAME

Identify the catalog that contains the Information Schema

Table 9-164 Column information

Column name Data type Description

CATALOG_NAME VARCHAR(128) the name of catalog in which this Information Schema resides

512 | Database Information

KEY_COLUMN_USAGE

Identify the columns defined in this catalog that are constrained as keys and that are accessible by a given

user or role.

Table 9-165 Column information

Column name Data type Description

CONSTRAINT_CATALOG VARCHAR(128) catalog name of the constraint

CONSTRAINT_OWNER VARCHAR(128) owner name of the constraint

CONSTRAINT_SCHEMA VARCHAR(128) schema name of the constraint

CONSTRAINT_NAME VARCHAR(128) constraint name

TABLE_CATALOG VARCHAR(128)
catalog name of the column that participates in the constraint

being described

TABLE_OWNER VARCHAR(128)
owner name of the column that participates in the constraint

being described

TABLE_SCHEMA VARCHAR(128)
schema name of the column that participates in the constraint

being described

TABLE_NAME VARCHAR(128)
table name of the column that participates in the constraint b

eing described

COLUMN_NAME VARCHAR(128)
column name that participates in the constraint being describe

d

ORDINAL_POSITION NUMBER

the ordinal position of the specific column in the constraint be

ing described. If the constraint described is a key of cardinality

1 (one), then the value of ORDINAL_POSITION is always 1 (on

e).

POSITION_IN_UNIQUE_CO

NSTRAINT
NUMBER

If the constraint being described is a foreign key constraint, th

en the value of POSITION_IN_UNIQUE_CONSTRAINT is the ord

inal position of the referenced column corresponding to the re

ferencing column being described, in the corresponding uniqu

e key constraint.

INFORMATION_SCHEMA | 513

PARAMETERS

Identify the SQL parameters of SQL-invoked routines defined in this catalog that are accessible to a given

user or role.

Table 9-166 Column information

Column name Data type Description

SPECIFIC_CATALOG VARCHAR(128)

catalog name of the specific name of the SQL- invoke

d routine that contains the SQL parameter being descr

ibed

SPECIFIC_OWNER VARCHAR(128)

owner name of the specific name of the SQL- invoked

routine that contains the SQL parameter being describ

ed

SPECIFIC_SCHEMA VARCHAR(128)

schema name of the specific name of the SQL- invoke

d routine that contains the SQL parameter being descr

ibed

SPECIFIC_NAME VARCHAR(128)
specific name of the SQL- invoked routine that contai

ns the SQL parameter being described

ORDINAL_POSITION NUMBER
ordinal position of the SQL- invoked routine that cont

ains the SQL parameter being described

PARAMETER_MODE VARCHAR(32)
parameter mode of the SQL parameter being describe

d

IS_RESULT BOOLEAN
the parameter is RESULT parameter of type-preserving

function

AS_LOCATOR BOOLEAN the parameter is passed as locator

PARAMETER_NAME VARCHAR(128) name of the SQL parameter being descaibed

FROM_SQL_SPECIFIC_CATALOG VARCHAR(128)
specific catalog name of the from-sql routine for the i

nput parameter being described

FROM_SQL_SPECIFIC_SCHEMA VARCHAR(128)
specific schema name of the from-sql routine for the i

nput parameter being described

FROM_SQL_SPECIFIC_NAME VARCHAR(128)
specific name of the from-sql routine for the input par

ameter being described

TO_SQL_SPECIFIC_CATALOG VARCHAR(128)
specific catalog name of the to-sql routine for the inp

ut parameter being described

TO_SQL_SPECIFIC_SCHEMA VARCHAR(128)
specific schema name of the to-sql routine for the inp

ut parameter being described

TO_SQL_SPECIFIC_NAME VARCHAR(128)
specific name of the to-sql routine for the input para

meter being described

DATA_TYPE VARCHAR(128) data type of the SQL parameter being described

CHARACTER_MAXIMUM_LENGTH NUMBER
maximum length of the SQL parameter being describe

d

maximum length in octets of the SQL parameter bein

514 | Database Information

CHARACTER_OCTET_LENGTH NUMBER g described

CHARACTER_SET_CATALOG VARCHAR(128)
character set catalog name of the data type of the SQ

L parameter being described

CHARACTER_SET_SCHEMA VARCHAR(128)
character set schema name of the data type of the SQ

L parameter being described

CHARACTER_SET_NAME VARCHAR(128)
character set name of the data type of the SQL param

eter being described

COLLATION_CATALOG VARCHAR(128)
collation catalog name of the data type of the SQL par

ameter being described

COLLATION_SCHEMA VARCHAR(128)
collation schema name of the data type of the SQL pa

rameter being described

COLLATION_NAME VARCHAR(128)
collation name of the data type of the SQL parameter

being described

NUMERIC_PRECISION NUMBER
precision of the data type of the SQL parameter being

described

NUMERIC_PRECISION_RADIX NUMBER
precision radix of the data type of the SQL parameter

being described

NUMERIC_SCALE NUMBER
scale of the data type of the SQL parameter being des

cribed

DATETIME_PRECISION NUMBER
fractional second precisions of the data type of the SQ

L parameter being described

INTERVAL_TYPE VARCHAR(32)
interval qualifier of the data type of the SQL paramete

r being described

INTERVAL_PRECISION NUMBER
interval precision of the data type of the SQL paramet

er being described

UDT_CATALOG VARCHAR(128)
catalog name of UDT of the data type of the SQL para

meter being described

UDT_SCHEMA VARCHAR(128)
schema name of UDT of the data type of the SQL para

meter being described

UDT_NAME VARCHAR(128)
name of UDT of the data type of the SQL parameter b

eing described

SCOPE_CATALOG VARCHAR(128)
catalog name of referenceable tables of the data type

of the SQL parameter being described

SCOPE_SCHEMA VARCHAR(128)
schema name of referenceable tables of the data type

of the SQL parameter being described

SCOPE_NAME VARCHAR(128)
name of referenceable tables of the data type of the S

QL parameter being described

MAXIMUM_CARDINALITY NUMBER
maximum cardinality of the data type of the SQL para

meter being described

DTD_IDENTIFIER NUMBER
dtd identifier of the data type of the SQL parameter b

eing described

declared data type of the SQL parameter being descri

Column name Data type Description

INFORMATION_SCHEMA | 515

DECLARED_DATA_TYPE VARCHAR(128) bed

DECLARED_NUMERIC_PRECISION NUMBER
precision of declared data type of the SQL parameter

being described

DECLARED_NUMERIC_SCALE NUMBER
scale of declared data type of the SQL parameter bein

g described

PARAMETER_DEFAULT LONG VARCHAR default value of the SQL parameter being described

Column name Data type Description

516 | Database Information

REFERENTIAL_CONSTRAINTS

Identify the referential constraints defined on tables in this catalog that are accessible to a given user or r

ole.

Table 9-167 Column information

Column name Data type Description

CONSTRAINT_CA

TALOG
VARCHAR(128) catalog name of the referential constraint

CONSTRAINT_O

WNER
VARCHAR(128) owner name who owns the referential constraint

CONSTRAINT_SC

HEMA
VARCHAR(128) schema name of the referential constraint being described

CONSTRAINT_NA

ME
VARCHAR(128) referential constraint name

CONSTRAINT_TA

BLE_NAME
VARCHAR(128)

name of the table to which the referential constraint being described applie

s

CONSTRAINT_CO

LUMN_NAME
VARCHAR(128)

column name of the table to which the referential constraint being describe

d applies

ORDINAL_POSITI

ON
NUMBER

the ordinal position of the specific column in the referentail constraint being

described.

UNIQUE_CONST

RAINT_CATALOG
VARCHAR(128)

catalog name of the unique or primary key constraint applied to the referen

ced column list being described

UNIQUE_CONST

RAINT_OWNER
VARCHAR(128)

owner name of the unique or primary key constraint applied to the referenc

ed column list being described

UNIQUE_CONST

RAINT_SCHEMA
VARCHAR(128)

schema name of the unique or primary key constraint applied to the referen

ced column list being described

UNIQUE_CONST

RAINT_NAME
VARCHAR(128)

constraint name of the unique or primary key constraint applied to the refer

enced column list being described

UNIQUE_CONST

RAINT_TABLE_N

AME

VARCHAR(128)
table name of the unique or primary key constraint applied to the reference

d column list being described

UNIQUE_CONST

RAINT_COLUMN

_NAME

VARCHAR(128)
column name of the unique or primary key constraint applied to the referen

ced column list being described

IS_PRIMARY_KEY BOOLEAN
whether the constraint applied to the referenced column list being describe

d, is primary key or not

MATCH_OPTION VARCHAR(32)
the referential constraint that has a match option: the value in (SIMPLE, PA

RTIAL, FULL)

UPDATE_RULE VARCHAR(32)
the referential constraint that has an update rule: the value in (NO ACTION,

RESTRICT, CASCADE, SET NULL, SET DEFAULT)

the referential constraint that has a delete rule: the value in (NO ACTION, R

INFORMATION_SCHEMA | 517

DELETE_RULE VARCHAR(32) ESTRICT, CASCADE, SET NULL, SET DEFAULT)

IS_DEFERRABLE BOOLEAN is a deferrable constraint

INITIALLY_DEFER

RED
BOOLEAN is an initially deferred constraint

Column name Data type Description

518 | Database Information

ROUTINES

Identify the SQL-invoked routines in this catalog that are accessible to a given user or role.

Table 9-168 Column information

Column name Data type Description

SPECIFIC_CATALOG VARCHAR(128) specific catalog name of the routine

SPECIFIC_OWNER VARCHAR(128) specific owner name of the routine

SPECIFIC_SCHEMA VARCHAR(128) specific schema name of the routine

SPECIFIC_NAME VARCHAR(128) specific name of the routine

ROUTINE_CATALOG VARCHAR(128) catalog name of the routine

ROUTINE_OWNER VARCHAR(128) owner name of the routine

ROUTINE_SCHEMA VARCHAR(128) schema name of the routine

ROUTINE_NAME VARCHAR(128) null

ROUTINE_TYPE VARCHAR(128) name of the routine

MODULE_CATALOG VARCHAR(128) module name of the routine

MODULE_SCHEMA VARCHAR(128) schema name of the module in which the routine is defined

MODULE_NAME VARCHAR(128) name of the module in which the routine is defined

UDT_CATALOG VARCHAR(128)
catalog name of the user-defined data type which defined the

routine as a method function

UDT_SCHEMA VARCHAR(128)
schema name of the user-defined data type which defined the

routine as a method function

UDT_NAME VARCHAR(128)
name of the user-defined data type which defined the routine

as a method function

DATA_TYPE VARCHAR(128) data type the routine returns

CHARACTER_MAXIMUM_L

ENGTH
NUMBER maximum character length of data type the routine returns

CHARACTER_OCTET_LENG

TH
NUMBER

maximum character length in octets of data type the routine r

eturns

CHARACTER_SET_CATALO

G
VARCHAR(128) character set catalog name of data type the routine returns

CHARACTER_SET_SCHEM

A
VARCHAR(128) character set schema name of data type the routine returns

CHARACTER_SET_NAME VARCHAR(128) character set name of data type the routine returns

COLLATION_CATALOG VARCHAR(128) collation catalog name of data type the routine returns

COLLATION_SCHEMA VARCHAR(128) collation schema name of data type the routine returns

COLLATION_NAME VARCHAR(128) collation name of data type the routine returns

NUMERIC_PRECISION NUMBER precision of data type the routine returns

NUMERIC_PRECISION_RAD

IX
NUMBER precision radix of data type the routine returns

NUMERIC_SCALE NUMBER scale of data type the routine returns

INFORMATION_SCHEMA | 519

DATETIME_PRECISION NUMBER fractional seconds precision of data type the routine returns

INTERVAL_TYPE VARCHAR(32) interval qualifier for data type the routine returns

INTERVAL_PRECISION NUMBER interval leading field precision of data type the routine returns

TYPE_UDT_CATALOG VARCHAR(128)
catalog name of the user-defined data type, which is the data

type the routine returns

TYPE_UDT_SCHEMA VARCHAR(128)
schema name of the user-defined data type, which is the data

type the routine returns

TYPE_UDT_NAME VARCHAR(128)
name of the user-defined data type, which is the data type the

routine returns

SCOPE_CATALOG VARCHAR(128) catalog name of referenceable table

SCOPE_SCHEMA VARCHAR(128) schema name of referenceable table

SCOPE_NAME VARCHAR(128) name of referenceable table

MAXIMUM_CARDINALITY NUMBER maximum cardinality of data type the routine returns

DTD_IDENTIFIER NUMBER dtd ientifier of data type the routine returns

ROUTINE_BODY VARCHAR(32) type of the routine body

ROUTINE_DEFINITION LONG VARCHAR catalog name of the routine

EXTERNAL_NAME VARCHAR(128) external name of the external routine

EXTERNAL_LANGUAGE VARCHAR(32) language of the external routine

PARAMETER_STYLE VARCHAR(32) SQL parameter passing style of the external routine

IS_DETERMINISTIC BOOLEAN the routine is deterministic or not

SQL_DATA_ACCESS VARCHAR(32) routine possibly contains SQL or access data

IS_NULL_CALL BOOLEAN routine returns NULL if any of parameter values are NULL

SQL_PATH VARCHAR(1024) described SQL PATH when the routine is defined

SCHEMA_LEVEL_ROUTINE BOOLEAN the routine is schema-level routine

MAX_DYNAMIC_RESULT_S

ETS
NUMBER max result set count of the routine

IS_USER_DEFINED_CAST BOOLEAN the routine is a function that is a user-defined cast function

IS_IMPLICITLY_INVOCABLE BOOLEAN the user-defined cast function is implicitly invocable

SECURITY_TYPE VARCHAR(32) security type of the routine(DEFINER/INVOKER)

TO_SQL_SPECIFIC_CATALO

G
VARCHAR(128) catalog name of the to-sql routine of the result type of routine

TO_SQL_SPECIFIC_SCHEM

A
VARCHAR(128) schema name of the to-sql routine of the result type of routine

TO_SQL_SPECIFIC_NAME VARCHAR(128) name of the to-sql routine of the result type of routine

AS_LOCATOR BOOLEAN return value of the routine is passed as locator

CREATED
TIMESTAMP(2) WIT

HOUT TIME ZONE
creation time of the routine

LAST_ALTERED
TIMESTAMP(2) WIT

HOUT TIME ZONE
most lately altered time of the routine

NEW_SAVEPOINT_LEVEL BOOLEAN specifiy new savepoint level or not

Column name Data type Description

520 | Database Information

IS_UDT_DEPENDENT BOOLEAN routine is dependent

RESULT_CAST_FROM_DAT

A_TYPE
VARCHAR(128)

data type which is specificed in result cast clause of the routin

e definition

RESULT_CAST_AS_LOCAT

OR
BOOLEAN

locator indication which is specificed in result cast clause of th

e routine definition

RESULT_CAST_CHAR_MAX

_LENGTH
NUMBER

maximum character length of data type which is specificed in r

esult cast clause of the routine definition

RESULT_CAST_CHAR_OCT

ET_LENGTH
NUMBER

maximum character length in octets of data type which is spec

ificed in result cast clause of the routine definition

RESULT_CAST_CHAR_SET_

CATALOG
VARCHAR(128)

character set catalog name of data type which is specificed in r

esult cast clause of the routine definition

RESULT_CAST_CHAR_SET_

SCHEMA
VARCHAR(128)

character set schema name of data type which is specificed in

result cast clause of the routine definition

RESULT_CAST_CHARACTE

R_SET_NAME
VARCHAR(128)

character set name of data type which is specificed in result ca

st clause of the routine definition

RESULT_CAST_COLLATION

_CATALOG
VARCHAR(128)

collation catalog name of data type which is specificed in resul

t cast clause of the routine definition

RESULT_CAST_COLLATION

_SCHEMA
VARCHAR(128)

collation schema name of data type which is specificed in resul

t cast clause of the routine definition

RESULT_CAST_COLLATION

_NAME
VARCHAR(128)

collation name of data type which is specificed in result cast cl

ause of the routine definition

RESULT_CAST_NUMERIC_P

RECISION
NUMBER

precision of data type which is specificed in result cast clause o

f the routine definition

RESULT_CAST_NUMERIC_

RADIX
NUMBER

precision radix of data type which is specificed in result cast cl

ause of the routine definition

RESULT_CAST_NUMERIC_S

CALE
NUMBER

scale of data type which is specificed in result cast clause of th

e routine definition

RESULT_CAST_DATETIME_

PRECISION
NUMBER

fractional seconds precision of data type which is specificed in

result cast clause of the routine definition

RESULT_CAST_INTERVAL_T

YPE
VARCHAR(32)

interval qualifier of data type which is specificed in result cast c

lause of the routine definition

RESULT_CAST_INTERVAL_

PRECISION
NUMBER

interval precision of data type which is specificed in result cast

clause of the routine definition

RESULT_CAST_TYPE_UDT_

CATALOG
VARCHAR(128)

UDT catalog name of data type which is specificed in result cas

t clause of the routine definition

RESULT_CAST_TYPE_UDT_

SCHEMA
VARCHAR(128)

UDT schema name of data type which is specificed in result ca

st clause of the routine definition

RESULT_CAST_TYPE_UDT_

NAME
VARCHAR(128)

UDT name of data type which is specificed in result cast clause

of the routine definition

RESULT_CAST_SCOPE_CAT

ALOG
VARCHAR(128)

catalog name of referenceable table described in result cast cl

ause of the routine definition

RESULT_CAST_SCOPE_SCH schema name of referenceable table described in result cast cl

Column name Data type Description

INFORMATION_SCHEMA | 521

EMA VARCHAR(128) ause of the routine definition

RESULT_CAST_SCOPE_NA

ME
VARCHAR(128)

name of referenceable table described in result cast clause of t

he routine definition

RESULT_CAST_MAX_CARD

INALITY
NUMBER

maximum cardinality of data type which is specificed in result

cast clause of the routine definition

RESULT_CAST_DTD_IDENTI

FIER
NUMBER

dtd identifier of data type which is specificed in result cast clau

se of the routine definition

DECLARED_DATA_TYPE VARCHAR(128) declared data type of the routine returns

DECLARED_NUMERIC_PRE

CISION
NUMBER declared data type precision of the routine returns

DECLARED_NUMERIC_SCA

LE
NUMBER declared data type scale of the routine returns

RESULT_CAST_FROM_DEC

LARED_DATA_TYPE
VARCHAR(128)

declared data type which is specificed in result cast clause of t

he routine definition

RESULT_CAST_DECLARED_

NUMERIC_PRECISION
NUMBER

declared data type precision which is specificed in result cast cl

ause of the routine definition

RESULT_CAST_DECLARED_

NUMERIC_SCALE
NUMBER

declared data type scale which is specificed in result cast claus

e of the routine definition

Column name Data type Description

522 | Database Information

ROUTINE_PRIVILEGES

Identify the privileges on SQL-invoked routines defined in this catalog that are available to or granted by a

given user or role.

Table 9-169 Column information

Column name Data type Description

GRANTOR VARCHAR(128) authorization name of the user who granted routine privileges

GRANTEE VARCHAR(128)
authorization name of some user or role, or PUBLIC to indicate all us

ers, to whom the routine privilege being described is granted

SPECIFIC_CATALOG VARCHAR(128)
specific catalog name of the SQL-invoked routine on which the privil

ege being described was granted

SPECIFIC_OWNER VARCHAR(128)
specific owner name of the the SQL-invoked routine on which the p

rivilege being described was granted

SPECIFIC_SCHEMA VARCHAR(128)
specific schema name of the the SQL-invoked routine on which the

privilege being described was granted

SPECIFIC_NAME VARCHAR(128)
specific name of the the SQL-invoked routine on which the privilege

being described was granted

ROUTINE_CATALOG VARCHAR(128)
routine catalog name of the SQL-invoked routine on which the privil

ege being described was granted

ROUTINE_OWNER VARCHAR(128) null

ROUTINE_SCHEMA VARCHAR(128)
routine schema name of the the SQL-invoked routine on which the

privilege being described was granted

ROUTINE_NAME VARCHAR(128)
routine name of the the SQL-invoked routine on which the privilege

being described was granted

PRIVILEGE_TYPE VARCHAR(32) the value is in (EXECUTE)

IS_GRANTABLE BOOLEAN is grantable

INFORMATION_SCHEMA | 523

ROUTINE_ROUTINE_USAGE

Identify each SQL-invoked routine owned by a given user or role on which an SQL routine defined in this

catalog is dependent.

Table 9-170 Column information

Column name Data type Description

SPECIFIC_CATALOG VARCHAR(128) specific catalog name of the routine

SPECIFIC_OWNER VARCHAR(128) specific owner name of the routine

SPECIFIC_SCHEMA VARCHAR(128) specific schema name of the routine

SPECIFIC_NAME VARCHAR(128) specific name of the routine

ROUTINE_CATALOG VARCHAR(128)
routine catalog name of a routine contained in routine body of the

SQL-invoked routine

ROUTINE_OWNER VARCHAR(128)
routine owner name of a routine contained in routine body of the S

QL-invoked routine

ROUTINE_SCHEMA VARCHAR(128)
routine schema name of a routine contained in routine body of the

SQL-invoked routine

ROUTINE_NAME VARCHAR(128)
routine name of a routine contained in routine body of the SQL-invo

ked routine

524 | Database Information

ROUTINE_SEQUENCE_USAGE

Identify each external sequence generator owned by a given user or role on which some SQL routine defi

ned in this catalog is dependent.

Table 9-171 Column information

Column name Data type Description

SPECIFIC_CATALOG VARCHAR(128) specific catalog name of the routine

SPECIFIC_OWNER VARCHAR(128) specific owner name of the routine

SPECIFIC_SCHEMA VARCHAR(128) specific schema name of the routine

SPECIFIC_NAME VARCHAR(128) specific name of the routine

SEQUENCE_CATALOG VARCHAR(128)
catalog name of the sequence of contained in routine body of the

SQL-invoked routine

SEQUENCE_OWNER VARCHAR(128)
owner name of the sequence of contained in routine body of the

SQL-invoked routine

SEQUENCE_SCHEMA VARCHAR(128)
schema name of the sequence of contained in routine body of th

e SQL-invoked routine

SEQUENCE_NAME VARCHAR(128)
sequence name of contained in routine body of the SQL-invoked r

outine

INFORMATION_SCHEMA | 525

ROUTINE_TABLE_USAGE

Identify the tables owned by a given user or role on which SQL routines defined in this catalog are depen

dent.

Table 9-172 Column information

Column name Data type Description

SPECIFIC_CATALOG VARCHAR(128) specific catalog name of the routine

SPECIFIC_OWNER VARCHAR(128) specific owner name of the routine

SPECIFIC_SCHEMA VARCHAR(128) specific schema name of the routine

SPECIFIC_NAME VARCHAR(128) specific name of the routine

TABLE_CATALOG VARCHAR(128)
catalog name of the table of contained in routine body of the SQL-i

nvoked routine

TABLE_OWNER VARCHAR(128)
owner name of the table of contained in routine body of the SQL-in

voked routine

TABLE_SCHEMA VARCHAR(128)
schema name of the table of contained in routine body of the SQL-i

nvoked routine

TABLE_NAME VARCHAR(128) table name of contained in routine body of the SQL-invoked routine

526 | Database Information

SCHEMATA

Identify the schemata in a catalog that are owned by given user or accessible to given user or role.

Table 9-173 Column information

Column name Data type Description

CATALOG_NAME VARCHAR(128) catalog name of the schema

SCHEMA_NAME VARCHAR(128) schema name

SCHEMA_OWNER VARCHAR(128) authorization name who owns the schema

DEFAULT_CHARACTER_S

ET_CATALOG
VARCHAR(128)

catalog name of the default character set for columns and

domains in the schemata

DEFAULT_CHARACTER_S

ET_SCHEMA
VARCHAR(128)

schema name of the default character set for columns and

domains in the schemata

DEFAULT_CHARACTER_S

ET_NAME
VARCHAR(128)

character set name of the default character set for columns

and domains in the schemata

SQL_PATH VARCHAR(1024) character representation of schema path specification

CREATED_TIME
TIMESTAMP(2) WITHOU

T TIME ZONE
created time of the schema

MODIFIED_TIME
TIMESTAMP(2) WITHOU

T TIME ZONE
last modified time of the schema

COMMENTS VARCHAR(1024) comments of the schema

INFORMATION_SCHEMA | 527

SEQUENCES

Identify the external sequence generators defined in this catalog that are accessible to a given user or role.

Table 9-174 Column information

Column name Data type Description

SEQUENCE_CATALOG VARCHAR(128) catalog name of the sequence

SEQUENCE_OWNER VARCHAR(128) owner name of the sequence

SEQUENCE_SCHEMA VARCHAR(128) schema name of the sequence

SEQUENCE_NAME VARCHAR(128) sequence name

DATA_TYPE VARCHAR(128) the standard name of the data type

NUMERIC_PRECISION NUMBER the numeric precision of the numerical data type

NUMERIC_PRECISION_RA

DIX
NUMBER the radix (2 or 10) of the precision of the numerical data type

NUMERIC_SCALE NUMBER the numeric scale of the exact numerical data type

START_VALUE NUMBER the start value of the sequence generator

MINIMUM_VALUE NUMBER the minimum value of the sequence generator

MAXIMUM_VALUE NUMBER the maximum value of the sequence generator

INCREMENT NUMBER the increment of the sequence generator

CYCLE_OPTION BOOLEAN cycle option

CACHE_SIZE NATIVE_INTEGER number of sequence numbers to cache

DECLARED_DATA_TYPE VARCHAR(128) the data type name that a user declared

DECLARED_NUMERIC_PRE

CISION
NUMBER the precision value that a user declared

DECLARED_NUMERIC_SC

ALE
NUMBER the scale value that a user declared

CREATED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
created time of the sequence generator

MODIFIED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
last modified time of the sequence generator

COMMENTS VARCHAR(1024) comments of the sequence generator

528 | Database Information

SQL_FEATURES

List the features and subfeatures of this ISO/IEC 9075 standard, and indicate which of these the SQL-impl

ementation supports.

Table 9-175 Column information

Column name Data type Description

FEATURE_ID VARCHAR(32) identifier string of the conformance element

FEATURE_NAME VARCHAR(1024) descriptive name of the conformance element

SUB_FEATURE_ID VARCHAR(32)
identifier string of the subfeature, or a single space if not a subfeatu

re

SUB_FEATURE_NAM

E
VARCHAR(1024)

descriptive name of the subfeature, or a single space if not a subfeat

ure

IS_SUPPORTED BOOLEAN

TRUE if an SQL-implementation fully supports that conformance ele

ment described when SQL-data in the identified catalog is accessed

through that implementation, FALSE if not

IS_VERIFIED_BY VARCHAR(1024)

If full support for the conformance element described has been verif

ied by testing, then the IS_VERIFIED_BY column shall contain inform

ation identifying the conformance test used to verify the conforman

ce claim; otherwise, IS_VERIFIED_BY shall be the null value

COMMENTS VARCHAR(1024) possibly a comment pertaining to the conformance element

INFORMATION_SCHEMA | 529

SQL_IMPLEMENTATION_INFO

List the SQL-implementation information items defined in this ISO/IEC 9075 standard and, for each of the

se, indicate the value supported by the SQL-implementation.

Table 9-176 Column information

Column name Data type Description

IMPLEMENTATION_I

NFO_ID
VARCHAR(32) identifier string of the implementation information item

IMPLEMENTATION_I

NFO_NAME
VARCHAR(1024) descriptive name of the implementation information item

INTEGER_VALUE NATIVE_INTEGER
value of the implementation information item, or null if the value is

contained in the column CHARACTER_VALUE

CHARACTER_VALUE VARCHAR(32)
value of the implementation information item, or null if the value is

contained in the column INTEGER_VALUE

COMMENTS VARCHAR(1024)
possibly a comment pertaining to the implementation information it

em

530 | Database Information

SQL_PACKAGES

List the packages of this ISO/IEC 9075 standard, and indicate which of these the SQL-implementation sup

ports.

Table 9-177 Column information

Column name Data type Description

ID VARCHAR(32) identifier string of the conformance element

NAME VARCHAR(1024) descriptive name of the conformance element

IS_SUPPORTED BOOLEAN

TRUE if an SQL-implementation fully supports that conformance ele

ment described when SQL-data in the identified catalog is accessed

through that implementation, FALSE if not

IS_VERIFIED_BY VARCHAR(1024)

If full support for the conformance element described has been verif

ied by testing, then the IS_VERIFIED_BY column shall contain inform

ation identifying the conformance test used to verify the conforman

ce claim; otherwise, IS_VERIFIED_BY shall be the null value

COMMENTS VARCHAR(1024) possibly a comment pertaining to the conformance element

INFORMATION_SCHEMA | 531

SQL_PARTS

List the parts of this ISO/IEC 9075 standard, and indicate which of these the SQL-implementation support

s.

Table 9-178 Column information

Column name Data type Description

ID VARCHAR(32) identifier string of the conformance element

NAME VARCHAR(1024) descriptive name of the conformance element

IS_SUPPORTED BOOLEAN

TRUE if an SQL-implementation fully supports that conformance ele

ment described when SQL-data in the identified catalog is accessed

through that implementation, FALSE if not

IS_VERIFIED_BY VARCHAR(1024)

If full support for the conformance element described has been verif

ied by testing, then the IS_VERIFIED_BY column shall contain inform

ation identifying the conformance test used to verify the conforman

ce claim; otherwise, IS_VERIFIED_BY shall be the null value

COMMENTS VARCHAR(1024) possibly a comment pertaining to the conformance element

532 | Database Information

SQL_SIZING

List the sizing items of this ISO/IEC 9075 standard, for each of these, indicate the size supported by the S

QL-implementation.

Table 9-179 Column information

Column name Data type Description

SIZING_ID NATIVE_INTEGER identifier of the sizing item

SIZING_NAME VARCHAR(1024) descriptive name of the sizing item

SUPPORTED_VALUE NATIVE_INTEGER

value of the sizing item, or 0 if the size is unlimited or cannot be det

ermined, or null if the features for which the sizing item is applicabl

e are not supported

COMMENTS VARCHAR(1024) possibly a comment pertaining to the sizing item

INFORMATION_SCHEMA | 533

STATISTICS

Provide a list of statistics about a single table and the indexes associated with the table that are accessible

to a given user or role.

Table 9-180 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128) catalog name of the table

TABLE_OWNER VARCHAR(128) owner name of the table

TABLE_SCHEMA VARCHAR(128) schema name of the table

TABLE_NAME VARCHAR(128) table name of the table

STAT_TYPE VARCHAR(32)
statistics type: the value in (TABLE STAT, INDEX CLUSTERED, INDEX

HASHED, INDEX OTHER)

NON_UNIQUE BOOLEAN indicates whether the index does not allow duplicate values

INDEX_CATALOG VARCHAR(128) catalog name of the index

INDEX_OWNER VARCHAR(128) owner name of the index

INDEX_SCHEMA VARCHAR(128) schema name of the index

INDEX_NAME VARCHAR(128) name of the index

COLUMN_NAME VARCHAR(128) column name that participates in the index

ORDINAL_POSITION NUMBER ordinal position of the specific column in the index described

IS_ASCENDING_ORD

ER
BOOLEAN

index key column being described is sorted in ASCENDING(TRUE) or

DESCENDING(FALSE) order

IS_NULLS_FIRST BOOLEAN
the null values of the key column are sorted before(TRUE) or after(F

ALSE) non-null values

CARDINALITY NUMBER
if STAT_TYPE is (TABLE TYPE), then this is the number of rows in th

e table; otherwise, it is the number of unique values in the index

PAGES NUMBER

if STAT_TYPE is (TABLE TYPE), then this is the number of pages use

d for the table; otherwise, it is the number of pages used for the cur

rent index.

FILTER_CONDITION VARCHAR(1024) filter condition, if any.

COMMENTS VARCHAR(1024)
if STAT_TYPE is (TABLE TYPE), then this is the table comments; othe

rwise, it is the index comments.

534 | Database Information

TABLES

Identify the tables defined in this catalog that are accessible to a given user or role

Table 9-181 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128) catalog name of the table

TABLE_OWNER VARCHAR(128) owner name of the table

TABLE_SCHEMA VARCHAR(128) schema name of the table

TABLE_NAME VARCHAR(128) table name of the table

TABLE_TYPE VARCHAR(32)
the value is in (BASE TABLE, VIEW, GLOBAL TEMPORARY, LOCAL T

EMPORARY, SYSTEM VERSIONED, FIXED TABLE, DUMP TABLE)

DBC_TABLE_TYPE VARCHAR(32)
ODBC/JDBC table type: the value is in (TABLE, VIEW, GLOBAL TEM

PORARY, LOCAL TEMPORARY, SYSTEM TABLE, ALIAS, SYNONYM)

TABLESPACE_NAME VARCHAR(128) tablespace name of the table, NULL if view

SYSTEM_VERSION_S

TART_COLUMN_NA

ME

VARCHAR(128)
if the table is a system-versioned table, then the name of the system

-version start column of the table

SYSTEM_VERSION_E

ND_COLUMN_NAME
VARCHAR(128)

if the table is a system-versioned table, then the name of the system

-version end column of the table

SYSTEM_VERSION_R

ETENTION_PERIOD
VARCHAR(32)

if the table is a system-versioned table, then the character represent

ation of the value of the retention period of the table

SELF_REFERENCING_

COLUMN_NAME
VARCHAR(128)

if the table is a typed table, then the name of the self-referencing co

lumn of the table

REFERENCE_GENER

ATION
VARCHAR(32)

if the table has a self-referencing column, the value is in (SYSTEM G

ENERATED, USER GENERATED, DERIVED)

USER_DEFINED_TYP

E_CATALOG
VARCHAR(128)

if the table being described is a table of a structured type, the catalo

g name of the structured type

USER_DEFINED_TYP

E_SCHEMA
VARCHAR(128)

if the table being described is a table of a structured type, the schem

a name of the structured type

USER_DEFINED_TYP

E_NAME
VARCHAR(128)

if the table being described is a table of a structured type, the name

of the structured type

IS_INSERTABLE_INTO BOOLEAN is an insertable-into table

IS_TYPED BOOLEAN is a typed table

COMMIT_ACTION VARCHAR(32)
if the table is a temporary table, the value is in (DELETE, PRESERVE

)

CREATED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
created time of the table

MODIFIED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
last modified time of the table

COMMENTS VARCHAR(1024) comments of the table

INFORMATION_SCHEMA | 535

TABLE_CONSTRAINTS

Identify the table constraints defined on tables in this catalog that are accessible to a given user or role

Table 9-182 Column information

Column name Data type Description

CONSTRAINT_CATALOG VARCHAR(128) catalog name of the constraint

CONSTRAINT_OWNER VARCHAR(128) authorization name who owns the constraint

CONSTRAINT_SCHEMA VARCHAR(128) schema name of the constraint being described

CONSTRAINT_NAME VARCHAR(128) constraint name

TABLE_CATALOG VARCHAR(128)
catalog name of the table to which the table constraint being

described applies

TABLE_OWNER VARCHAR(128)
authorization name who owns the table to to which the table

constraint being described applies

TABLE_SCHEMA VARCHAR(128)
schema name of the table to to which the table constraint bei

ng described applies

TABLE_NAME VARCHAR(128)
table name of the table to to which the table constraint being

described applies

CONSTRAINT_TYPE VARCHAR(32)
the value is in (PRIMARY KEY, UNIQUE, FOREIGN KEY, NOT N

ULL, CHECK)

IS_DEFERRABLE BOOLEAN is a deferrable constraint

INITIALLY_DEFERRED BOOLEAN is an initially deferred constraint

ENFORCED BOOLEAN is an enforced constraint

CREATED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
created time of the constraint

MODIFIED_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
last modified time of the constraint

COMMENTS VARCHAR(1024) comments of the constraint

536 | Database Information

TABLE_PRIVILEGES

Identify the privileges on tables of tables defined in this catalog that are available to or granted by a given

user or role.

Table 9-183 Column information

Column name Data type Description

GRANTOR VARCHAR(128) authorization name of the user who granted table privileges

GRANTEE VARCHAR(128)
authorization name of some user or role, or PUBLIC to indicate all us

ers, to whom the table privilege being described is granted

TABLE_CATALOG VARCHAR(128)
catalog name of the table on which the privilege being described w

as granted

TABLE_OWNER VARCHAR(128)
table owner name of the table on which the privilege being describe

d was granted

TABLE_SCHEMA VARCHAR(128)
schema name of the table on which the privilege being described w

as granted

TABLE_NAME VARCHAR(128) table name on which the privilege being described was granted

PRIVILEGE_TYPE VARCHAR(32)
the value is in (CONTROL, SELECT, INSERT, UPDATE, DELETE, REFE

RENCES, LOCK, INDEX, ALTER)

IS_GRANTABLE BOOLEAN is grantable

WITH_HIERARCHY BOOLEAN whether the privilege was granted WITH HIERARCHY OPTION or not

INFORMATION_SCHEMA | 537

USAGE_PRIVILEGES

Identify the USAGE privileges on objects defined in this catalog that are available to or granted by a given

user or role.

Table 9-184 Column information

Column name Data type Description

GRANTOR VARCHAR(128)
authorization name of the user who granted usage privileges, on th

e object of the type identified by OBJECT_TYPE

GRANTEE VARCHAR(128)
authorization identifier of some user or role, or PUBLIC to indicate al

l users, to whom the usage privilege being described is granted

OBJECT_CATALOG VARCHAR(128)
catalog name of the object of the type identified by OBJECT_TYPE o

n which the privilege being described was granted

OBJECT_OWNER VARCHAR(128)
owner name of the object of the type identified by OBJECT_TYPE on

which the privilege being described was granted

OBJECT_SCHEMA VARCHAR(128)
schema name of the object of the type identified by OBJECT_TYPE o

n which the privilege being described was granted

OBJECT_NAME VARCHAR(128)
object name of the type identified by OBJECT_TYPE on which the pr

ivilege being described was granted

OBJECT_TYPE VARCHAR(32)
the value is in (DOMAIN, CHARACTER SET, COLLATION, TRANSLATI

ON, SEQUENCE)

PRIVILEGE_TYPE VARCHAR(32) the value is in (USAGE)

IS_GRANTABLE BOOLEAN is grantable

538 | Database Information

VIEWS

Identify the viewed tables defined in this catalog that are accessible to a given user or role.

Table 9-185 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128) catalog name of the viewed table

TABLE_OWNER VARCHAR(128) owner name of the viewed table

TABLE_SCHEMA VARCHAR(128) schema name of the viewed table

TABLE_NAME VARCHAR(128) view name of the viewed table

VIEW_DEFINITION LONG VARCHAR
the character representation of the user-specified query expre

ssion contained in the corresponding view descriptor

CHECK_OPTION VARCHAR(32) the value is in (CASCADED, LOCAL, NONE)

IS_UPDATABLE BOOLEAN is an updatable view

INSERTABLE_INTO BOOLEAN is an insertable view

IS_TRIGGER_UPDATABLE BOOLEAN
whether an update INSTEAD OF trigger is defined on the view

or not

IS_TRIGGER_DELETABLE BOOLEAN
whether a delete INSTEAD OF trigger is defined on the view or

not

IS_TRIGGER_INSERTABLE_I

NTO
BOOLEAN

whether an insert INSTEAD OF trigger is defined on the view o

r not

IS_COMPILED BOOLEAN whether the view is compiled or not

IS_AFFECTED BOOLEAN
whether the view is affected by modification of underlying obj

ect or not

COMMENTS VARCHAR(1024) comments of the view

INFORMATION_SCHEMA | 539

VIEW_ROUTINE_USAGE

Identify each routine owned by a given user or role on which a view defined in this catalog is dependent.

Table 9-186 Column information

Column name Data type Description

TABLE_CATALOG VARCHAR(128) catalog name of the viewed table

TABLE_OWNER VARCHAR(128) owner name of the viewed table

TABLE_SCHEMA VARCHAR(128) schema name of the viewed table

TABLE_NAME VARCHAR(128) view name of the viewed table

SPECIFIC_CATALOG VARCHAR(128)
specific catalog name of a routine contained in the query expression

of the view being described

SPECIFIC_OWNER VARCHAR(128)
specific owner name of a routine contained in the query expression

of the view being described

SPECIFIC_SCHEMA VARCHAR(128)
specific schema name of a routine contained in the query expression

of the view being described

SPECIFIC_NAME VARCHAR(128)
specific name of a routine contained in the query expression of the v

iew being described

540 | Database Information

VIEW_TABLE_USAGE

Identify the tables on which viewed tables defined in this catalog and owned by a given user or role are d

ependent.

Table 9-187 Column information

Column name Data type Description

VIEW_CATALOG VARCHAR(128) catalog name of the viewed table

VIEW_OWNER VARCHAR(128) owner name of the viewed table

VIEW_SCHEMA VARCHAR(128) schema name of the viewed table

VIEW_NAME VARCHAR(128) view name of the viewed table

TABLE_CATALOG VARCHAR(128)
catalog name of a table that is explicitly or implicitly referenced in th

e original query expression of the compiled view being described

TABLE_OWNER VARCHAR(128)
owner name of a table that is explicitly or implicitly referenced in the

original query expression of the compiled view being described

TABLE_SCHEMA VARCHAR(128)
schema name of a table that is explicitly or implicitly referenced in th

e original query expression of the compiled view being described

TABLE_NAME VARCHAR(128)
table name of a table that is explicitly or implicitly referenced in the

original query expression of the compiled view being described

PERFORMANCE_VIEW_SCHEMA | 541

9.3 PERFORMANCE_VIEW_SCHEMA

PERFORMANCE_VIEW_SCHEMA schema consists of views which can retrieve the current state of the syst

em.

Execute PerformanceViewSchema.sql as follows to use the views.

● For standalone

% gsql sys gliese --as sysdba --import

$GOLDILOCKS_HOME/admin/standalone/PerformanceViewSchema.sql

● For cluster

% gsql sys gliese --as sysdba --import

$GOLDILOCKS_HOME/admin/cluster/PerformanceViewSchema.sql

The retrievable Information of PERFORMANCE_VIEW_SCHEMA views vary upon its phase of the startup.

(nomount, mount, open)

Execute the followings to figure out the startup phase in which each views are retrieved.

gSQL> select table_name, startup_phase from v$tables order by 1;

TABLE_NAME STARTUP_PHASE

-------------------- -------------

V$AGABLE_INFO OPEN

V$ARCHIVELOG MOUNT

V$BACKUP MOUNT

V$BALANCER OPEN

V$COLUMNS OPEN

V$CONTROLFILE MOUNT

V$DATAFILE MOUNT

V$DB_FILE MOUNT

V$DISPATCHER OPEN

V$ERROR_CODE NO_MOUNT

V$INCREMENTAL_BACKUP MOUNT

V$INSTANCE NO_MOUNT

V$KEYWORDS NO_MOUNT

V$LATCH NO_MOUNT

V$LOCK_WAIT OPEN

V$LOGFILE MOUNT

V$PROCESS_MEM_STAT NO_MOUNT

542 | Database Information

V$PROCESS_SQL_STAT NO_MOUNT

V$PROCESS_STAT NO_MOUNT

V$PROPERTY NO_MOUNT

TABLE_NAME STARTUP_PHASE

---------------------- -------------

V$PSM_RESERVED_WORDS NO_MOUNT

V$QUEUE OPEN

V$RESERVED_WORDS NO_MOUNT

V$SESSION NO_MOUNT

V$SESSION_CONNECT_INFO NO_MOUNT

V$SESSION_EVENT OPEN

V$SESSION_MEM_STAT NO_MOUNT

V$SESSION_SQL_STAT NO_MOUNT

V$SESSION_STAT NO_MOUNT

V$SESSION_WAIT OPEN

V$SHARED_MODE OPEN

V$SHARED_SERVER OPEN

V$SHM_SEGMENT NO_MOUNT

V$SPROPERTY NO_MOUNT

V$SQLFN_METADATA NO_MOUNT

V$SQL_CACHE NO_MOUNT

V$SQL_COMMAND OPEN

V$SQL_HISTORY NO_MOUNT

V$STATEMENT NO_MOUNT

V$SYSTEM_EVENT OPEN

TABLE_NAME STARTUP_PHASE

----------------------- -------------

V$SYSTEM_MEM_STAT NO_MOUNT

V$SYSTEM_SQL_STAT NO_MOUNT

V$SYSTEM_STAT NO_MOUNT

V$TABLES NO_MOUNT

V$TABLESPACE MOUNT

V$TABLESPACE_STAT OPEN

V$TRANSACTION OPEN

V$WAIT_EVENT_CLASS_NAME OPEN

V$WAIT_EVENT_NAME OPEN

V$XA_TRANSACTION OPEN

50 rows selected.

PERFORMANCE_VIEW_SCHEMA | 543

GV$ Global View

The cluster provides GV$ view corresponding to almost every V$ views.

V$ view retrieves the information of the currently connected server, but GV$ view retrieves the informati

on of all servers.

GV$ view includes all column information of V$ view, and it additionally has ORIGIN_MEMBER_NAME co

lumn which is a server having acquired the data (cluster member).

Note

It is available only on a cluster.

For example, V$TRANSACTION information retrieves the transaction information of the currently connect

ed server as follows.

gSQL> SELECT TRANS_ID, SESSION_ID, TRANS_VIEW_SCN, START_TIME FROM V$TRANSACTION;

TRANS_ID SESSION_ID TRANS_VIEW_SCN START_TIME

-------- ---------- -------------- --------------------------

40501296 48 1098.1.26 2017-04-07 17:14:01.912637

On the other hand, GV$TRANSACTION information retrieves the transaction information of all servers as

follows.

gSQL> SELECT ORIGIN_MEMBER_NAME, TRANS_ID, SESSION_ID, TRANS_VIEW_SCN, START_TIME FROM

GV$TRANSACTION;

ORIGIN_MEMBER_NAME TRANS_ID SESSION_ID TRANS_VIEW_SCN START_TIME

------------------ -------- ---------- -------------- --------------------------

G1N1 40501296 48 1098.1.26 2017-04-07 17:14:01.912637

G2N2 40304688 48 1098.0.888 2017-04-07 17:14:55.134015

G2N1 42205232 48 1098.0.888 2017-04-07 17:14:55.135996

G1N2 40435760 48 1098.1.889 2017-04-07 17:14:01.910138

In the example above, the ORIGIN_MEMBER_NAME information indicates that the transaction informatio

n were obtained from the cluster members corresponding to G1N1, G2N1, G1N2, G2N2 each.

The information of a specific remote server can be retrieved by using the condition for ORIGIN_MEMBER_

NAME column as follows.

544 | Database Information

gSQL>

SELECT ORIGIN_MEMBER_NAME, TRANS_ID, SESSION_ID, TRANS_VIEW_SCN, START_TIME

FROM GV$TRANSACTION

WHERE ORIGIN_MEMBER_NAME IN ('G2N1', 'G3N2');

ORIGIN_MEMBER_NAME TRANS_ID SESSION_ID TRANS_VIEW_SCN START_TIME

------------------ -------- ---------- -------------- --------------------------

G3N2 32178224 48 1099.0.888 2017-04-07 17:33:10.934752

G2N1 42270768 48 1099.0.888 2017-04-07 17:31:14.726007

2 rows selected.

PERFORMANCE_VIEW_SCHEMA | 545

V$AGABLE_INFO

The V$AGABLE_INFO displays the system agable information.

Table 9-188 Column information

Column name Data type Description

SCN VARCHAR(32) system scn

AGABLE_SCN VARCHAR(32) system agable scn

AGABLE_SCN_GAP VARCHAR(32) gap between system scn and agable scn

OLDEST_SESSION_ID NUMBER identifier of session blocking aging

546 | Database Information

V$ARCHIVELOG

The V$ARCHIVELOG displays information of log archiving.

Table 9-189 Column information

Column name Data type Description

ARCHIVELOG_MODE VARCHAR(32)
database log mode: the value in (NOARCHIVELOG, ARCHIVEL

OG)

LAST_ARCHIVED_LOG NUMBER sequence number of last archived log file

ARCHIVELOG_DIR VARCHAR(1024) archive destination path

ARCHIVELOG_FILE_PREFIX VARCHAR(128) file prefix name of the archived log

PERFORMANCE_VIEW_SCHEMA | 547

V$AUDITABLE_DB_PRIVILEGES

The V$AUDITABLE_DB_PRIVILEGES displays auditable database privileges.

Table 9-190 Column information

Column name Data type Description

PRIVILEGE_ID NUMBER database privilege identifier

PRIVILEGE_NAME VARCHAR(128) database privilege name

548 | Database Information

V$AUDITABLE_SYSTEM_ACTIONS

The V$AUDITABLE_SYSTEM_ACTIONS displays auditable system actions.

Table 9-191 Column information

Column name Data type Description

ACTION_ID NUMBER auditable system action identifier

ACTION_NAME VARCHAR(128) auditable system action name

PERFORMANCE_VIEW_SCHEMA | 549

V$BACKUP

The V$BACKUP displays information of backup.

Table 9-192 Column information

Column name Data type Description

TBS_NAME VARCHAR(128) tablespace name

BACKUP_STATUS VARCHAR(16)
indicates whether the tablespace begin backup (ACTIVE) or not (I

NACTIVE)

BACKUP_LSN NUMBER the last checkpoint lsn of tablespace when backup started

550 | Database Information

V$BALANCER

The V$BALANCER displays information of balancer.

Table 9-193 Column information

Column name Data type Description

PROCESS_ID NUMBER balancer process identifier

CUR_CONNECTIONS NUMBER current number of connections

CONNECTIONS NUMBER total number of connections

CONNECTIONS_HIGHWATER NUMBER highest number of connections

MAX_CONNECTIONS NUMBER maximum connections

STATUS VARCHAR(16) status

PERFORMANCE_VIEW_SCHEMA | 551

V$CLUSTER_DISPATCHER

The V$CLUSTER_DISPATCHER displays cluster dispatcher information.

Note

It is available only on a cluster.

Table 9-194 Column information

Column name Data type Description

DISPATCHER_ID NUMBER dispatcher identifier

IS_SYNC BOOLEAN whether the dispatcher is sync or not

RX_BYTES NUMBER total amount of data that has received through the dispatcher

TX_BYTES NUMBER total amount of data that has transmitted through the dispatcher

RX_JOBS NUMBER the total number of jobs received

TX_JOBS NUMBER the total number of jobs transmitted

552 | Database Information

V$CLUSTER_LOCATION

The V$CLUSTER_LOCATION displays cluster location information.

Note

It is available only on a cluster.

Table 9-195 Column information

Column name Data type Description

MEMBER_NAME VARCHAR(128) member name

HOST VARCHAR(128) host address of a member

PORT NUMBER host port of a member

PERFORMANCE_VIEW_SCHEMA | 553

V$CLUSTER_MEMBER

The V$CLUSTER_MEMBER displays cluster member information.

Note

It is available only on a cluster.

Table 9-196 Column information

Column name Data type Description

MEMBER_ID NUMBER member identifier

MEMBER_POSITION NUMBER member position

STATUS VARCHAR(64) status of the member: the value in (ACTIVE, INACTIVE)

IS_GLOBAL_COORD BOOLEAN indicates whether a member is global coordnator (TRUE) or not (FALSE)

IS_GROUP_COORD BOOLEAN indicates whether a member is group coordnator (TRUE) or not (FALSE)

554 | Database Information

V$COLUMNS

The V$COLUMNS has one row for each column of all the performance views (views beginning with V$).

Execute \desc as follows to retrieve the column information of performance view in nomount or mount p

hase in which V$COLUMNS is not available.

gSQL> \desc V$INSTANCE

COLUMN_NAME TYPE IS_NULLABLE

--------------- ------------------------------ -----------

RELEASE_VERSION VARCHAR(64) FALSE

STARTUP_TIME TIMESTAMP(2) WITHOUT TIME ZONE FALSE

INSTANCE_STATUS VARCHAR(16) FALSE

Table 9-197 Column information

Column name Data type Description

TABLE_OWNER VARCHAR(128) owner name who owns the performance view

TABLE_SCHEMA VARCHAR(128) schema name of the performance view

TABLE_NAME VARCHAR(128) name of the performance view

COLUMN_NAME VARCHAR(128) column name

ORDINAL_POSITION NUMBER the ordinal position (> 0) of the column in the performance view

DATA_TYPE VARCHAR(128) the data type name that a user declared

DATA_PRECISION NUMBER the precision value that a user declared

DATA_SCALE NUMBER the scale value that a user declared

COMMENTS VARCHAR(1024) comments of the column

PERFORMANCE_VIEW_SCHEMA | 555

V$CONTROLFILE

This view displays information about GOLDILOCKS control files.

Table 9-198 Column information

Column name Data type Description

STATUS VARCHAR(16) control file status (VALID, CORRUPTED)

CONTROLFILE_NAME VARCHAR(1152) control file name (absolute path)

LAST_CHECKPOINT_LSN NATIVE_BIGINT the last checkpoint lsn

IS_PRIMARY BOLLEAN indicates whether the control file is primary

556 | Database Information

V$DATAFILE

The V$DATAFILE displays information of all datafiles.

Table 9-199 Column information

Column name Data type Description

TBS_NAME VARCHAR(128) tablespace name

DATAFILE_NAME VARCHAR(1024) datafile name (absolute path)

CHECKPOINT_LSN NUMBER LSN at last checkpoint (null if temporary tablespace)

CREATION_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
timestamp of the datafile creation

FILE_SIZE NUMBER datafile size (in bytes)

LOADED_CHECKPOI

NT_LSN
NUMBER checkpoint LSN of the datafile loaded in memory

CORRUPT_PAGE_CO

UNT
NUMBER number of corrupt pages in the datafile

PERFORMANCE_VIEW_SCHEMA | 557

V$DB_FILE

The V$DB_FILE displays a list of all files using in database.

Table 9-200 Column information

Column name Data type Description

FILE_NAME VARCHAR(1024) file name

FILE_TYPE VARCHAR(16) file type

558 | Database Information

V$DISPATCHER

The V$DISPATCHER displays information of dispatchers.

Table 9-201 Column information

Column name Data type Description

PROCESS_ID NUMBER dispatcher process identifier

RESPONSE_JOB_COUNT NUMBER response job count

ACCEPT NUMBER indicates whether this dispatcher is accepting new connections

START_TIME NUMBER process start time

CUR_CONNECTIONS NUMBER current number of connections

CONNECTIONS NUMBER total number of connections

CONNECTIONS_HIGHWATER NUMBER highest number of connections

MAX_CONNECTIONS NUMBER maximum connections

RECV_STATUS VARCHAR(16) receive status

RECV_BYTES NUMBER total bytes of received

RECV_UNITS NUMBER total units of received

RECV_IDLE NUMBER total idle time of receive (1/100 second)

RECV_BUSY NUMBER total busy time of receive (1/100 second)

SEND_STATUS VARCHAR(16) send status

SEND_BYTES NUMBER total bytes of sent

SEND_UNITS NUMBER total units of sent

SEND_IDLE NUMBER total idle time of send (1/100 second)

SEND_BUSY NUMBER total busy time of send (1/100 second)

PERFORMANCE_VIEW_SCHEMA | 559

V$ERROR_CODE

The V$ERROR_CODE displays a list of all GOLDILOCKS error codes.

Table 9-202 Column information

Column name Data type Description

ERROR_CODE NUMBER GOLDILOCKS error code

SQL_STATE VARCHAR(32) standard SQLSTATE code

ERROR_MESSAGE VARCHAR(1024) error message

560 | Database Information

V$GLOBAL_TRANSACTION

The V$GLOBAL_TRANSACTION displays information on the currently active global transactions.

Table 9-203 Column information

Column name Data type Description

GLOBAL_TRANS_ID VARCHAR(1024) global transaction identifier

LOCAL_TRANS_ID NUMBER local transaction identifier

GLOBAL_TRANS_STATE VARCHAR(32)
state of the global transaction: the value in (NOTR, ACTIVE, I

DLE, PREPARED, ROLLBACK_ONLY, HEURISTIC_COMPLETED)

ASSO_STATE VARCHAR(32)
associate state of the global transaction: the value in (NOT_A

SSOCIATED, ASSOCIATED, ASSOCIATION_SUSPENDED)

START_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
global transaction start time

IS_REPREPARABLE BOOLEAN indicates whether the global transaction is repreparable

PERFORMANCE_VIEW_SCHEMA | 561

V$INCREMENTAL_BACKUP

The V$INCREMENTAL_BACKUP displays information about control files and datafiles in backup sets from

the control file.

Table 9-204 Column information

Column name Data type Description

BACKUP_NAME VARCHAR(1024) backup file name (absolute path)

BACKUP_SCOPE VARCHAR(128)
incremental backup scope: the value in (database, tablespace, co

ntrol)

INCREMENTAL_LEVEL NUMBER incremental backup level: the value in (0, 1, 2, 3, 4)

INCREMENTAL_TYPE VARCHAR(32)
incremental backup type: the value in (DIFFERENTIAL, CUMULATI

VE)

LSN NUMBER all changes up to checkpoint LSN are included in this backup

BEGIN_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
incremental backup beginning time

COMPLETION_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
incremental backup completion time

562 | Database Information

V$INSTANCE

This view displays the state of the current instance.

Note

When database is transited to open phase, it is possible to select READ ONLY or READ WRITE. If n

ot selected, DATA_ACCESS_MODE is determined by the value of DATABASE_ACCESS_MODE pro

perty. DATA_ACCESS_MODE is displayed as NONE in nomount or mount phase.

Table 9-205 Column information

Column name Data type Description

RELEASE_VERSION VARCHAR(64) release version

STARTUP_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
time when the instance was started

INSTANCE_STATUS VARCHAR(16)
status of the instance: the value in (STARTED, MOUNTED, OP

EN)

DATA_ACCESS_MODE VARCHAR(16)
data access mode of the instance: the value in (NONE, READ_

ONLY, READ_WRITE)

PERFORMANCE_VIEW_SCHEMA | 563

V$JOURNALING

The V$JOURNALING displays journaling information.

Note

It is available only on a cluster.

Table 9-206 Column information

Column name Data type Description

TABLE_NAME VARCHAR(128) table name

SHARD_ID NUMBER shard identifier

RECORD_COUNT NUMBER journaled record count

TOTAL_SIZE NUMBER total size of journaled records (byte)

564 | Database Information

V$KEYWORDS

The V$KEYWORDS displays a list of all SQL keywords.

Table 9-207 Column information

Column name Data type Description

KEYWORD_NAME VARCHAR(128) name of keyword

KEYWORD_LENGTH NUMBER length of the keyword

IS_RESERVED BOOLEAN
indicates whether the keyword cannot be used as an identifier (TRU

E) or whether the keyword is not reserved (FALSE)

PERFORMANCE_VIEW_SCHEMA | 565

V$LATCH

The V$LATCH shows latch information.

Table 9-208 Column information

Column name Data type Description

LATCH_DESCRIPTION VARCHAR(64) latch description

REF_COUNT NUMBER reference count

SPIN_LOCK VARCHAR(3) indicates whether the spin lock is locked (YES) or not (NO)

WAIT_COUNT NUMBER wait count

CURRENT_MODE VARCHAR(32) current latch mode: the value in (INITIAL, SHARED, EXCLUSIVE)

566 | Database Information

V$LOGFILE

The V$LOGFILE displays information of all redo log members.

Table 9-209 Column information

Column name Data type Description

GROUP_ID NUMBER redo log group identifier

FILE_NAME VARCHAR(1024) name of the log member

GROUP_STATE VARCHAR(32)
state of the log group: the value in (UNUSED, ACTIVE, CURRENT, IN

ACTIVE)

FILE_SEQ NUMBER file sequence number of the log member

FILE_SIZE NUMBER file size of the log member (in bytes)

PERFORMANCE_VIEW_SCHEMA | 567

V$LOCK_WAIT

This view lists the locks currently held and outstanding requests for a lock.

Table 9-210 Column information

Column name Data type Description

GRANT_TRANS_ID NUMBER transaction identifier that holds the lock

REQUEST_TRANS_ID NUMBER transaction identifier that requests the lock

568 | Database Information

V$PROCESS_STAT

The V$PROCESS_STAT displays goldilocks process statistics.

Table 9-211 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

PROC_ID NUMBER goldilocks process identifier

STAT_VALUE NUMBER statistic value

PERFORMANCE_VIEW_SCHEMA | 569

V$PROCESS_MEM_STAT

The V$PROCESS_MEM_STAT displays goldilocks process memory statistics.

Table 9-212 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

PROC_ID NUMBER goldilocks process identifier

STAT_VALUE NUMBER statistic value

570 | Database Information

V$PROCESS_SQL_STAT

The V$PROCESS_SQL_STAT displays goldilocks process SQL statistics.

Table 9-213 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

PROC_ID NUMBER goldilocks process identifier

STAT_VALUE NUMBER statistic value

PERFORMANCE_VIEW_SCHEMA | 571

V$PROPERTY

The V$PROPERTY displays a list of all properties at current session. Otherwise, the instance-wide value.

Table 9-214 Column information

Column name Data type Description

PROPERTY_NAME VARCHAR(128) name of the property

DESCRIPTION VARCHAR(2048) description of the property

DATA_TYPE VARCHAR(32) data type of the property

STARTUP_PHASE VARCHAR(32)
modifiable startup-phase: the value IN (NO MOUNT / MOUNT / OP

EN & [BELOW|ABOVE])

VALUE_UNIT VARCHAR(32) unit of the property value: the value in (NONE, BYTE, MS(milisec))

PROPERTY_VALUE VARCHAR(2048) property value for the session. otherwise, the instance-wide value

PROPERTY_SOURCE VARCHAR(32)
source of the current property value: the value IN (USER, DEFAULT,

ENV_VAR, BINARY_FILE, FILE, SYSTEM)

INIT_VALUE VARCHAR(2048) property init value for the session

INIT_SOURCE VARCHAR(32)
source of the current property INIT_VALUE: the value IN (USER, DEF

AULT, ENV_VAR, BINARY_FILE, FILE, SYSTEM)

MIN_VALUE NUMBER minimum value for property. null if type is varchar

MAX_VALUE NUMBER maximum value for property. null if type is varchar

SES_MODIFIABLE VARCHAR(32)
property can be changed with ALTER SESSION or not: the value in (

TRUE, FALSE)

SYS_MODIFIABLE VARCHAR(32)
property can be changed with ALTER SYSTEM and when the chang

e takes effect: the value in (NONE, FALSE, IMMEDIATE, DEFERRED)

IS_MODIFIABLE VARCHAR(32) property can be changed or not: the value in (TRUE, FALSE)

572 | Database Information

V$PSM_RESERVED_WORDS

The V$PSM_RESERVED_WORDS displays a list of all PSM reserved keywords. Reserved words cannot be u

sed in variable name or procedure name.

Table 9-215 Column information

Column name Data type Description

KEYWORD_NAME VARCHAR(128) name of keyword

KEYWORD_LENGTH NUMBER length of the keyword

PERFORMANCE_VIEW_SCHEMA | 573

V$QUEUE

The V$QUEUE displays information of queue.

Table 9-216 Column information

Column name Data type Description

TYPE NUMBER queue type (COMMON or DISPATCHER)

INDEX NUMBER index

QUEUED NUMBER number of items in the queue

WAIT NUMBER total time that all items in this queue have waited (1/100 second)

TOTALQ VARCHAR(128) total number of items that have ever been in the queue

574 | Database Information

V$RESERVED_WORDS

The V$RESERVED_WORDS displays a list of all SQL reserved keywords. Reserved words cannot be used in

table name or column name.

Table 9-217 Column information

Column name Data type Description

KEYWORD_NAME VARCHAR(128) name of keyword

KEYWORD_LENGTH NUMBER length of the keyword

PERFORMANCE_VIEW_SCHEMA | 575

V$SESSION

The V$SESSION displays session information for each current session.

Table 9-218 Column information

Column name Data type Description

SESSION_ID NUMBER session identifier

SERIAL_NO NUMBER session serial number

TRANS_ID NUMBER transaction identifier (-1 if inactive transaction)

CONNECTION_TYPE VARCHAR(32) connection type: the value in (DA, TCP)

USER_NAME VARCHAR(128) user name

SESSION_STATUS VARCHAR(32)
status of the session: the value in (CONNECTED, SIGNALED, SNIPED,

DEAD)

SERVER_TYPE VARCHAR(32) server type: the value in (DEDICATED, SHARED)

PROCESS_ID NUMBER client process identifier

LOGON_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
logon time

PROGRAM_NAME VARCHAR(128) program name

CLIENT_ADDRESS VARCHAR(1024) client address (null if DA)

CLIENT_PORT NUMBER client port (0 if DA)

FAILOVER_TYPE VARCHAR(13)
indicates whether and to what extent transparent application failov

er (TAF) is enabled for the session (NONE, SESSION)

FAILED_OVER VARCHAR(3)
indicates whether the session is running in failover mode and failove

r has occurred (YES) or not (NO)

IS_AUDITED VARCHAR(3) indicates whether the session is audited (YES) or not (NO)

576 | Database Information

V$SESSION_AUDIT

The V$SESSION_AUDIT displays audited session information.

Table 9-219 Column information

Column name Data type Description

SESSION_ID NUMBER session identifier

SERIAL_NO NUMBER session serial number

POLICY_NAME VARCHAR(128) active audit policy name

WHEN_SUCCESS VARCHAR(3)
indicates whether the audit policy is enable for auditing successful e

vents or not

WHEN_FAILURE VARCHAR(3)
indicates whether the audit policy is enable for auditing unsuccessfu

l events or not

PERFORMANCE_VIEW_SCHEMA | 577

V$SESSION_CONNECT_INFO

The V$SESSION_CONNECT_INFO displays information about network connections for the current session.

Table 9-220 Column information

Column name Data type Description

SESSION_ID NUMBER session identifier

SERIAL_NO NUMBER session serial number

CLIENT_CHARSET VARCHAR(40) client character set

578 | Database Information

V$SESSION_EVENT

The V$SESSION_EVENT displays information on waits for an event by a session.

Table 9-221 Column information

Column name Data type Description

SESSION_ID NUMBER ID of the session

WAIT_EVENT_ID NUMBER Identifier of the wait event

WAIT_EVENT_NAME VARCHAR(64) Name of the wait event

TOTAL_WAITS NUMBER Total number of waits for the event

TOTAL_TIMEOUTS NUMBER Total number of timeouts for the event

TIME_WAITED NUMBER Total amount of time waited for the event (microsecond)

AVERAGE_WAIT NUMBER Average amount of time waited for the event (microsecond)

MAX_WAIT NUMBER Maximum time waited for the event by the session (microsecond)

CLASS_NAME VARCHAR(64) Name of the class of the wait event

PERFORMANCE_VIEW_SCHEMA | 579

V$SESSION_STAT

The V$SESSION_STAT displays session statistics.

Table 9-222 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

SESS_ID NUMBER session identifier

STAT_VALUE NUMBER statistic value

580 | Database Information

V$SESSION_MEM_STAT

The V$SESSION_MEM_STAT displays session memory statistics.

Table 9-223 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

SESS_ID NUMBER session identifier

STAT_VALUE NUMBER statistic value

PERFORMANCE_VIEW_SCHEMA | 581

V$SESSION_SQL_STAT

The V$SESSION_SQL_STAT displays session SQL statistics.

Table 9-224 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

SESS_ID NUMBER session identifier

STAT_VALUE NUMBER statistic value

582 | Database Information

V$SESSION_WAIT

The V$SESSION_WAIT displays the current or last wait for each session.

Table 9-225 Column information

Column name Data type Description

SESSION_ID NUMBER ID of the session

SEQ_NO NUMBER Identifier of the wait event

WAIT_EVENT_ID NUMBER Name of the wait event

WAIT_EVENT_N

AME
VARCHAR(64)

A number that uniquely identifies the current or last wait (incremented for e

ach wait)

P1TEXT VARCHAR(64) Description of the first parameter for the wait event

P1 NUMBER First wait event parameter (in decimal)

P1HEX VARCHAR(32) First wait event parameter (in hex)

P2TEXT VARCHAR(64) Description of the second parameter for the wait event

P2 NUMBER Second wait event parameter (in decimal)

P2HEX VARCHAR(32) Second wait event parameter (in hex)

P3TEXT VARCHAR(64) Description of the third parameter for the wait event

P3 NUMBER Third wait event parameter (in decimal)

P3HEX VARCHAR(32) Third wait event parameter (in hex)

STATE VARCHAR(64) Wait state

WAIT_TIME NUMBER

If the session is currently waiting, then the value is time waited for the curre

nt wait. If the session is not in a wait, then the value is the duration of the la

st wait (in microseconds)

TIME_SINCE_LAS

T_WAIT

NUMBER Time elapsed since the end of the last wait (in microseconds). If the session i

s currently in a wait, then the value is 0.

CLASS_NAME VARCHAR(64) Name of the class of the wait event

PERFORMANCE_VIEW_SCHEMA | 583

V$SHARED_MODE

The V$SHARED_MODE displays information of shared mode.

Table 9-226 Column information

Column name Data type Description

NAME VARCHAR(128) name

VALUE VARCHAR(128) value

584 | Database Information

V$SHARED_SERVER

The V$SHARED_SERVER displays information of shared servers.

Table 9-227 Column information

Column name Data type Description

PROCESS_ID NUMBER shared server process identifier

PROCESSED_JOB_COUNT NUMBER processed job count

STATUS VARCHAR(128) status

IDLE NUMBER total idle time (1/100 second)

BUSY NUMBER total busy time (1/100 second)

PERFORMANCE_VIEW_SCHEMA | 585

V$SHM_SEGMENT

The V$SHM_SEGMENT displays a list of all shared memory segments.

Table 9-228 Column information

Column name Data type Description

SHM_NAME VARCHAR(32) shared memory segment name

SHM_ID NUMBER shared memory segment identifier

SHM_SIZE NUMBER shared memory segment size (in bytes)

SHM_KEY NUMBER shared memory segment key

SHM_SEQ NUMBER shared memory segment sequence

SHM_ADDR VARCHAR(32) start address of the shared memory segment

586 | Database Information

V$SPROPERTY

The V$SPROPERTY displays a list of Properties. This is store a binary property file.

Table 9-229 Column information

Column name Data type Description

PROPERTY_NAME VARCHAR(128) name of the property

DESCRIPTION VARCHAR(2048) description of the property

DATA_TYPE VARCHAR(32) data type of the property

STARTUP_PHASE VARCHAR(32)
modifiable startup-phase: the value IN (NO MOUNT / MOUNT / OP

EN & [BELOW|ABOVE])

VALUE_UNIT VARCHAR(32) unit of the property value: the value in (NONE, BYTE, MS(milisec))

PROPERTY_VALUE VARCHAR(2048) property value stored in the binary property file

PROPERTY_SOURCE VARCHAR(32) source of the current property value: the value is BINARY_FILE

INIT_VALUE VARCHAR(2048) property init value for the system

INIT_SOURCE VARCHAR(32)
source of the current property INIT_VALUE: the value IN (USER, DEF

AULT, ENV_VAR, BINARY_FILE, FILE, SYSTEM)

MIN_VALUE NUMBER minimum value for property. null if type is varchar

MAX_VALUE NUMBER maximum value for property. null if type is varchar

SES_MODIFIABLE VARCHAR(32)
property can be changed with ALTER SESSION or not: the value in (

TRUE, FALSE)

SYS_MODIFIABLE VARCHAR(32)
property can be changed with ALTER SYSTEM and when the chang

e takes effect: the value in (NONE, FALSE, IMMEDIATE, DEFERRED)

IS_MODIFIABLE VARCHAR(32) property can be changed or not: the value in (TRUE, FALSE)

PERFORMANCE_VIEW_SCHEMA | 587

V$SQLFN_METADATA

The V$SQLFN_METADATA contains metadata about operators and built-in functions

Table 9-230 Column information

Column name Data type Description

FUNC_NAME VARCHAR(128) name of the built-in function

MINARGS NUMBER minimum number of arguments for the function

MAXARGS NUMBER maximum number of arguments for the function

IS_AGGREGATE BOOLEAN
indicates whether the function is an aggregate function (TRUE) or not (FALS

E)

588 | Database Information

V$SQL_CACHE

The V$SQL_CACHE lists statistics of shared SQL plan.

Table 9-231 Column information

Column name Data type Description

SQL_HANDLE NUMBER SQL handle

HASH_VALUE NUMBER hash value of the SQL statement

REF_COUNT NUMBER count of prepared statements referencing the statement

PLAN_SIZE NUMBER the total plan size of the SQL statement (in bytes)

CLOCK_ID NUMBER clock identifier

PLAN_AGE NUMBER plan age

USER_NAME VARCHAR(128) user name

BIND_PARAM_COUNT NUMBER count of bind parameters

SQL_TEXT LONG VARCHAR SQL full text

PLAN_COUNT NUMBER physical plan count of the SQL statement

PLAN_ID NUMBER plan identifier

PLAN_SIZE NUMBER the total plan size of the SQL statement (in bytes)

PLAN_IS_ATOMIC BOOLEAN plan is atomic array insert or not

PLAN_TEXT LONG VARCHAR plan text for SQL statement

PERFORMANCE_VIEW_SCHEMA | 589

V$SQL_COMMAND

The V$SQL_COMMAND lists attribute information of each SQL command.

Table 9-232 Column information

Column name Data type Description

COMMAND VARCHAR(128) SQL command

FROM_PHASE VARCHAR(32) executable from start-up phase

UNTIL_PHASE VARCHAR(32) executable until start-up phase

ACCESS_MODE VARCHAR(32)
database access mode: values in (NONE, READ & WRITE, READ, RE

AD & LOCK)

NEED_FETCH VARCHAR(32) the command is a query which has result set and need fetch

IS_DDL VARCHAR(3) the command is a DDL(Data Defintion Language) or not

AUTO_COMMIT VARCHAR(3) the command is auto-commit or not

IS_CACHEABLE VARCHAR(3) the command is plan-cacheable or not

AUDIT_ACTION VARCHAR(128) auditiable action name for the SQL command

590 | Database Information

V$SQL_HISTORY

The V$SQL_HISTORY displays information of SQLs.

Table 9-233 Column information

Column name Data type Description

DRIVER_MEMBER_POS NUMBER driver member position

SESSION_ID NUMBER session identifier

START_TIME
TIMESTAMP(2) WITHOUT TI

ME ZONE
statement start time

EXEC_TIME NUMBER execution time(us)

PREPARED BOOLEAN
indicates whether the statement is prepared (YES)

or not (NO)

SUCCESS BOOLEAN
indicates whether the statement is success (YES)

or not (NO)

STATUS CHARACTER VARYING(16)
status of the statement: the value in

(RUNNING, DONE)

SQL_TEXT
CHARACTER VARYING(1024

)
first 1024 bytes of the SQL text for the statement

PERFORMANCE_VIEW_SCHEMA | 591

V$STATEMENT

The V$STATEMENT lists all statements.

Table 9-234 Column information

Column name Data type Description

SESSION_ID NUMBER session identifier

STMT_ID NUMBER statement identifier in a session

STMT_VIEW_SCN NUMBER statement view scn

SQL_TEXT VARCHAR(1024) first 1024 bytes of the SQL text for the statement

START_TIME TIMESTAMP(2) WITHOUT TIME ZONE statement start time

592 | Database Information

V$SYSTEM_EVENT

The V$SYSTEM_EVENT displays information on total waits for an event.

Table 9-235 Column information

Column name Data type Description

WAIT_EVENT_ID NUMBER Identifier of the wait event

WAIT_EVENT_NAME VARCHAR(64) Name of the wait event

TOTAL_WAITS NUMBER Total number of waits for the event

TOTAL_TIMEOUTS NUMBER Total number of timeouts for the event

TIME_WAITED NUMBER Total amount of time waited for the event (microsecond)

AVERAGE_WAIT NUMBER Average amount of time waited for the event (microsecond)

CLASS_NAME VARCHAR(64) Name of the class of the wait event

PERFORMANCE_VIEW_SCHEMA | 593

V$SYSTEM_STAT

The V$SYSTEM_STAT displays system statistics.

Table 9-236 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

STAT_VALUE NUMBER statistic value

COMMENTS VARCHAR(1024) comments

594 | Database Information

V$SYSTEM_MEM_STAT

The V$SYSTEM_MEM_STAT displays system memory statistics.

Table 9-237 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

STAT_VALUE NUMBER statistic value

COMMENTS VARCHAR(1024) comments

PERFORMANCE_VIEW_SCHEMA | 595

V$SYSTEM_SQL_STAT

The V$SYSTEM_SQL_STAT displays system SQL statistics.

Table 9-238 Column information

Column name Data type Description

STAT_NAME VARCHAR(128) statistic name

STAT_VALUE NUMBER statistic value

COMMENTS VARCHAR(1024) comments

596 | Database Information

V$TABLES

The V$TABLES contains the definitions of all the performance views (views beginning with V$).

Table 9-239 Column information

Column name Data type Description

TABLE_OWNER VARCHAR(128) owner name who owns the performance view

TABLE_SCHEMA VARCHAR(128) schema name of the performance view

TABLE_NAME VARCHAR(128) name of the performance view

STARTUP_PHASE VARCHAR(32) visible startup phase of the performance view

CREATED_TIME TIMESTAMP(2) WITHOUT TIME ZONE
● available only in OPEN phase

created time of the performance view

MODIFIED_TIME TIMESTAMP(2) WITHOUT TIME ZONE
● available only in OPEN phase

modified time of the performance view

COMMENTS VARCHAR(1024)
● available only in OPEN phase

comments of the performance view

PERFORMANCE_VIEW_SCHEMA | 597

V$TABLESPACE

This view displays tablespace information.

Table 9-240 Column information

Column name Data type Description

TBS_NAME VARCHAR(128) tablespace name

TBS_ID NUMBER tablespace identifier

TBS_ATTR VARCHAR(128)

tablespace attribute: the value in (device attribute (MEMORY) | tem

porary attribute (TEMPORARY, PERSISTENT) | usage attribute(DICT,

UNDO, DATA, TEMPORARY))

IS_LOGGING BOOLEAN
indicates whether the tablespace is a logging tablespace (YES) or n

ot (NO)

IS_ONLINE BOOLEAN
indicates whether the tablespace is ONLINE (YES) or OFFLINE (NO

)

OFFLINE_STATE VARCHAR(32)
indicates whether the tablespace can be taken online normally (CO

NSISTENT) or not (INCONSISTENT). null if the tablespace is ONLINE

EXTENT_SIZE NUMBER extent size of the tablespace (in bytes)

PAGE_SIZE NUMBER page size of the tablespace (in bytes)

598 | Database Information

V$TABLESPACE_STAT

This view displays tablespace statistical information.

Table 9-241 Column information

Column name Data type Description

TBS_NAME VARCHAR(128) tablespace name

TBS_ID NUMBER tablespace identifier

TOTAL_EXT_COUNT NUMBER total extent count of the tablespace

USED_META_EXT_COUNT NUMBER meta extent count currently used on the tablespace

USED_DATA_EXT_COUNT NUMBER data extent count currently used on the tablespace

FREE_EXT_COUNT NUMBER free extent count of the tablespace

EXTENT_SIZE NUMBER extent size of the tablespace (in bytes)

PERFORMANCE_VIEW_SCHEMA | 599

V$TRANSACTION

The V$TRANSACTION lists the active transactions in the system.

Table 9-242 Column information

Column name Data type Description

TRANS_ID NUMBER transaction identifier

SESSION_ID NUMBER session identifier (null if the global transaction is unassociated

TRANS_SLOT_ID NUMBER transaction slot identifier

PHYSICAL_TRANS_ID NUMBER physical transaction identifier

TRANS_STATE VARCHAR(32)
transaction state: the value in (ACTIVE, BLOCK, PREPARE, COMMIT,

ROLLBACK, IDLE, PRECOMMIT)

IS_GLOBAL BOOLEAN indicates whether the transaction is global or not

TRANS_ATTRIBUTE VARCHAR(32)
transaction attribute: the value in (READ_ONLY, UPDATABLE, LOCK

ABLE, UPDATABLE | LOCKABLE)

ISOLATION_LEVEL VARCHAR(32)
transaction isolation level: the value in (READ COMMITTED, SERIALI

ZABLE)

TRANS_VIEW_SCN NUMBER transaction view scn

TCN NUMBER transaction change number

TRANS_SEQ NUMBER transaction sequence number

START_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
transaction start time

600 | Database Information

V$WAIT_EVENT_CLASS_NAME

The V$WAIT_EVENT_CLASS_NAME displays information about Class of wait event.

Table 9-243 Column information

Column name Data type Description

CLASS_ID NUMBER Identifier of the class of the wait event

NAME VARCHAR(64) Name of the class of the wait event

DESCRIPTION VARCHAR(128) Description of the class of the wait event

PERFORMANCE_VIEW_SCHEMA | 601

V$WAIT_EVENT_NAME

The V$WAIT_EVENT_NAME displays information about wait events.

Table 9-244 Column information

Column name Data type Description

CLASS_ID NUMBER Identifier of the wait event

NAME VARCHAR(64) Name of the wait event

DESCRIPTION VARCHAR(128) Description of the wait event

PARAMETER1 NUMBER Description of the first parameter for the wait event

PARAMETER1 NUMBER Description of the second parameter for the wait event

PARAMETER1 NUMBER Description of the third parameter for the wait event

CLASS_ID NUMBER Identifier of the class of the wait event

CLASS_NAME VARCHAR(64) Name of the class of the wait event

602 | Database Information

V$XA_TRANSACTION

The V$XA_TRANSACTION displays information on the currently active XA transactions.

Table 9-245 Column information

Column name Data type Description

XA_TRANS_ID VARCHAR(1024) XA transaction identifier

LOCAL_TRANS_ID NUMBER local transaction identifier

XA_TRANS_STATE VARCHAR(32)
state of the XA transaction: the value in (NOTR, ACTIVE, IDLE, PREP

ARED, ROLLBACK_ONLY, HEURISTIC_COMPLETED)

ASSO_STATE VARCHAR(32)
associate state of the XA transaction: the value in (NOT_ASSOCIAT

ED, ASSOCIATED, ASSOCIATION_SUSPENDED)

START_TIME
TIMESTAMP(2) WITH

OUT TIME ZONE
XA transaction start time

IS_REPREPARABLE BOOLEAN indicates whether the XA transaction is repreparable

Server Property

10.

603

604 | Server Property

10.1 Server Property Information

For more information about SQL syntax to change properties, refer to the followings.

● ALTER SYSTEM SET property_name

● ALTER SESSION SET property_name

For more information about property types, refer to the followings.

● V$PROPERTY

● V$SPROPERTY

The followings describe basic information items of property in this manual.

Item Description

Name Property name

Summary Short description of the property

Data type Data type of the property value

Applicable phase

A startup phase which can be updated with ALTER SYSTEM or ALTER SESSION

● NONE: Applicable phase does not exist. (If it can be updated, but applicable pha

se is NONE, then use SCOPE = FILE option.)

Updatable

Whether property is updatable or not

● If the property value is TRUE, it is updatable.

● If the property value is FALSE, only the read-only is possible.

ALTER SESSION Whether property is updatable or not by using ALTER SESSION SET property_name

ALTER SYSTEM

Whether property is updatable or not by using ALTER SYSTEM SET property_name

● IMMEDIATE: The updated value is immediately reflected in all session after exec

ution.

● DEFERRED: The updated value is reflected only in the session which is connected

after execution. However, it is not reflected in already connected session.

● FALSE: The updated value is not reflected in the session during execution. Howe

ver, the updated value is reflected after restart, (Properties are updatable by usin

g only SCOPE=FILE option.)

● NONE: It is not updatable.

MIN
If the data type is BIGINT, it is the minimum value of property.

If the data type is VARCHAR, the minimum value of property is N/A.

MAX
If the data type is BIGINT, it is the maximum value of property.

If the data type is VARCHAR, the maximum value of property is N/A.

Default value Default value of the property

AGING_INTERVAL | 605

10.2 AGING_INTERVAL

Basic Information

Item Description

Name AGING_INTERVAL

Summary aging interval time(ms)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 100000000

Default value 10

Description

It sets the idle time (second) when an ager thread which deletes the previous version data does not have

a job to process in MVCC based database.

606 | Server Property

10.3 AGING_PLAN_INTERVAL

Basic Information

Item Description

Name AGING_PLAN_INTERVAL

Summary aging plan interval time(s)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 31536000

Default value 0

Description

The SQL plan which is older than AGING_PLAN_INTERVAL becomes the aging target.

ARCHIVELOG_DIR_1 ~ ARCHIVELOG_DIR_10 | 607

10.4 ARCHIVELOG_DIR_1 ~ ARCHIVELOG_DIR_10

Basic Information

Item Description

Name ARCHIVELOG_DIR_1 ~ ARCHIVELOG_DIR_10

Summary archive log directory

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION
FALSE(ARCHIVELOG_DIR_1),

TRUE(ARCHIVELOG_DIR_2 ~ ARCHIVELOG_DIR_10)

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/archive_log

Description

It specifies archiving directory of GOLDILOCKS database's online redo log file. Also, it specifies where to r

ead of archive redo log file at media recovery. The online redo log file creates archive redo log file only in

ARCHIVELOG_DIR_1.

ARCHIVELOG_DIR_1 sets only the system, but ARCHIVELOG_DIR_2 ~ ARCHIVELOG_DIR_10 sets the sessi

on.

608 | Server Property

10.5 ARCHIVELOG_FILE

Basic Information

Item Description

Name ARCHIVELOG_FILE

Summary default archive log file

Data type VARCHAR

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value archive

Description

It sets the prefix of the targeted file name stored in the archive directory when archiving the online redo l

ogfile. The archive logfile's name consists of the prefix defined in ARCHIVELOG_FILE, followed by '_', the

file sequence and the file extension 'log'. For example, the online logfile with a sequence number of 0 is

archived as 'archive_0.log'.

ARCHIVELOG_MODE | 609

10.6 ARCHIVELOG_MODE

Basic Information

Item Description

Name ARCHIVELOG_MODE

Summary archive log mode(0:disable, 1:enable)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value 0

Description

The property is applied at database creation. The archivelog mode can be set to one of the following valu

e.

● 0: NOARCHIVELOG

● 1: ARCHIVELOG

It does not affect archive log mode during operation after database is created. The archive log mode can

be modified by using ALTER DATABASE {ARCHIVELOG | NOARCHIVELOG} in MOUNT phase.

610 | Server Property

10.7 BACKUP_DIR_1 ~ BACKUP_DIR_10

Basic Information

Item Description

Name BACKUP_DIR_1 ~ BACKUP_DIR_10

Summary backup directory

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION
FALSE(BACKUP_DIR_1),

TRUE(BACKUP_DIR_2 ~ BACKUP_DIR_10)

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/backup

Description

A backup file is created when incremental backup is executed. Then it sets a directory of backup file to be

read when restoring files using incremental backup. Incremental backups are created only in the directory

set in BACKUP_DIR_1.

BACKUP_DIR_1 sets only the system, but BACKUP_DIR_2 ~ BACKUP_DIR_10 sets the session.

BLOCK_READ_COUNT | 611

10.8 BLOCK_READ_COUNT

Basic Information

Item Description

Name BLOCK_READ_COUNT

Summary value count for a block read

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 1

MAX 65536

Default value 20

Description

The SQL executes operation by reading row in the unit of BLOCK_READ_COUNT which is a row bundle. B

LOCK_READ_COUNT means the number of rows to be processed at a time when operation is executed. I

t is a basic unit of pipe-lining process of execution nodes which are used in SQL query processing.

If BLOCK_READ_COUNT value is big the processing performance improves, but many memory resources

are used.

The value between 10 and 100 is recommended.

If the value becomes bigger than 100 the resource usage increases proportionately, but the performance

improvement does not increase proportionately.

612 | Server Property

10.9 BULK_IO_PAGE_COUNT

Basic Information

Item Description

Name BULK_IO_PAGE_COUNT

Summary page count for bulk IO operation

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 128

MAX 131072

Default value 3840

Description

It is used when IO READ of the data file occurs during server restart, or when IO WRITE occurs during cre

ating a data file.

The heap memory is allocated as big as BULK_IO_PAGE_COUNT * 8192 when server restarts or data file i

s created. If the session's PRIVATE_STATIC_AREA_SIZE is smaller than the heap memory size, an error of i

nsufficient memory may occur. In this case, extend PRIVATE_STATIC_AREA_SIZE.

CDISPATCHER_HOT_POLICY_INTERVAL | 613

10.10 CDISPATCHER_HOT_POLICY_INTERVAL

Basic Information

Item Description

Name CDISPATCHER_HOT_POLICY_INTERVAL

Summary cdispatcher dequeue interval for busy waiting (micro second)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 86400000000 (1day)

Default value 100000

Description

It is the time of the busy waiting when performing the dequeue in the cdispatcher. It is a micro second un

it. If this value is big, it uses more cpu but the user response time (latency) is decreased.

614 | Server Property

10.11 CDISPATCHER_SOCKET_BUFFER_SIZE

Basic Information

Item Description

Name CDISPATCHER_SOCKET_BUFFER_SIZE

Summary cdispatcher socket buffer(sender, receiver) size

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 64

MAX 100 Mega

Default value 32768

Description

It is the socket buffer(sender, receiver) size of cdispatcher.

CDISPATCHER_SYNC_THREADS | 615

10.12 CDISPATCHER_SYNC_THREADS

Basic Information

Item Description

Name CDISPATCHER_SYNC_THREADS

Summary cdispatcher sync thread count

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 32

Default value 1

Description

It is the thread count of cdispatcher sync.

616 | Server Property

10.13 CDISPATCHER_THREADS

Basic Information

Item Description

Name CDISPATCHER_THREADS

Summary cdispatcher sender, receiver thread count

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 32

Default value 1

Description

It is the thread count of cdispatcher sender and receiver.

CHARACTER_SET | 617

10.14 CHARACTER_SET

Basic Information

Item Description

Name CHARACTER_SET

Summary character set

Data type VARCHAR

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value UTF8

Description

It is a character set of database, and it is applied when database is created.

The property is set to one of the following values.

Character set Description

SQL_ASCII ASCII standards

UTF8 Unicode, 8-bit

UHC Unified Hangul code

GB18030 Chinese government standards

618 | Server Property

10.15 CHAR_LENGTH_UNITS

Basic Information

Item Description

Name CHAR_LENGTH_UNITS

Summary char length units

Data type VARCHAR

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value OCTETS

Description

It is the value of char length units used when defining character string such as CHAR, VARCHAR and omit

ting char length unit as follows.

CREATE TABLE t1

(

id CHAR(10 OCTETS),

name VARCHAR(128 CHARACTERS),

addr VARCHAR(128)

);

● id CHAR(10 OCTETS) means 10 bytes.

● name VARCHAR(128 CHARACTERS) means 128 characters.

● addr VARCHAR(128) means that this value is referenced when char length unit is omitted.

When database is created, the property is set to either OCTETS or CHARACTERS. OCTETS is the number o

f bytes, and CHARACTERS is the number of characters.

CHAR_LENGTH_UNITS | 619

Note

The SQL standard defines CHARACTERS as default value. Other DBMS defines the default value of

char length unit as follows.

● Oracle and DB2 define OCTETS as default value.

● MS-SQL, MySQL, PostgreSQL define CHARACTERS as default value.

620 | Server Property

10.16 CHECK_DEDICATE_CONNECTION_INTERVA

L

Basic Information

Item Description

Name CHECK_DEDICATE_CONNECTION_INTERVAL

Summary check dedicate socket

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000

Default value 1000

Description

It is the interval of checking for when the client forcibly cut the connection in C/S dedicate environment.

The dedicate server(gserver) checks the socket, and it terminates it if it was cut. The default value is 1,000

millisecond (1 second).

CLIENT_MAX_COUNT | 621

10.17 CLIENT_MAX_COUNT

Basic Information

Item Description

Name CLIENT_MAX_COUNT

Summary maximum session count

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 12

MAX 65535

Default value 128

Description

It sets the maximum number of sessions to connect.

622 | Server Property

10.18 CLIENT_NUMA_POLICY

Basic Information

Item Description

Name CLIENT_NUMA_POLICY

Summary client numa policy(0: by modualar, 1: by statistics , 2: by manunal)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 0

MAX 2

Default value 0

Description

It determines the policy to distribute client processes to NUMA nodes. This property is operated when NU

MA property is set to on.

● 0: It determines the NUMA node to be connected by modularizing the session ID.

● 1: It connects to the NUMA node of which is the least connected based on the statistics information.

● 2: C/S client is determined by TCP_CLIENT_NUMA_NODE property, D/A client is determined by DA_C

LIENT_ NUMA_NODE property.

CLOSE_PSM_CHILD_STMTS | 623

10.19 CLOSE_PSM_CHILD_STMTS

Basic Information

Item Description

Name CLOSE_PSM_CHILD_STMTS

Summary close child statements of PSM at the end of each execution

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

It closes the child statement of PSM at the end of each execution.

624 | Server Property

10.20 CLUSTER_ASYNC_COMMIT

Basic Information

Item Description

Name CLUSTER_ASYNC_COMMIT

Summary enable asynchronous commit in cluster system

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value YES

Description

It determines whether to internally process the commit protocol on an async mode in cluster system.

Note

If this property is set to on, it asynchronously commits each node, so the temporary inconsistency

among nodes may occur. On the other hand, if it is set to off, it synchronizes everytime it commits,

so it may reduce the performance. Therefore, it is required to determine the appropriate property

depending on the purpose.

CLUSTER_ASYNC_REPLICATION | 625

10.21 CLUSTER_ASYNC_REPLICATION

Basic Information

Item Description

Name CLUSTER_ASYNC_REPLICATION

Summary enable asynchronous replication

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value YES

Description

It determines whether to internally process the replication on an async mode in cluster system.

Note

If this property is set to on, it asynchronously reflects the data on each node, so the response time

varies upon on which node is connected furing the operation. On the other hand, if it is set to off,

it synchronizes everytime the data is updated, so it may reduce the performance. Therefore, it is re

quired to determine the appropriate property depending on the purpose.

626 | Server Property

10.22 CLUSTER_CM_BUFFER_COUNT

Basic Information

Item Description

Name CLUSTER_CM_BUFFER_COUNT

Summary communication buffer count for cluster

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 256

Default value 4

Description

It is the communication buffer count for cluster.

CLUSTER_CM_BUFFER_SIZE | 627

10.23 CLUSTER_CM_BUFFER_SIZE

Basic Information

Item Description

Name CLUSTER_CM_BUFFER_SIZE

Summary communication buffer size for cluster

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 10 Mega

MAX 32 Giga

Default value 10 Mega

Description

It is the communication buffer size for cluster.

628 | Server Property

10.24 CLUSTER_CM_READ_BUFFER_SIZE

Basic Information

Item Description

Name CLUSTER_CM_READ_BUFFER_SIZE

Summary communication read block size

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 8192

MAX 10485,760

Default value 65536

Description

It is the communication read block size.

CLUSTER_COMMIT_SLAVES | 629

10.25 CLUSTER_COMMIT_SLAVES

Basic Information

Item Description

Name CLUSTER_COMMIT_SLAVES

Summary number of commit slaves

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 8

Default value 1

Description

It is the number of commit slaves.

630 | Server Property

10.26 CLUSTER_COMMIT_STREAM_ISOLATION

Basic Information

Item Description

Name CLUSTER_COMMIT_STREAM_ISOLATION

Summary isolate cluster dispatcher stream for commit protocol

Data type BOOLEAN

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value 0

Description

It determines whether to internally perform the commit process flow in the cluster system separately from

other protocol process. The performance may be improved when seperating the commit process accordin

g to the system environment.

CLUSTER_CONNECTION | 631

10.27 CLUSTER_CONNECTION

Basic Information

Item Description

Name CLUSTER_CONNECTION

Summary connection mode for cluster (socket:0, rdma:1)

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value 0: socket

Description

It is the connection mode for cluster. (socket:0, rdma:1)

632 | Server Property

10.28 CLUSTER_CONNECTION_TIMEOUT_SEC

Basic Information

Item Description

Name CLUSTER_CONNECTION_TIMEOUT_SEC

Summary connection timeout for cluster

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 86400

Default value 5

Description

It is the connection timeout for cluster.

CLUSTER_DATA_SYNC_SERVERS | 633

10.29 CLUSTER_DATA_SYNC_SERVERS

Basic Information

Item Description

Name CLUSTER_DATA_SYNC_SERVERS

Summary count of data synchronization server

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 128

Default value 3

Description

It is the count of data synchronization server.

634 | Server Property

10.30 CLUSTER_DISPATCHER_IN_QUEUE_SIZE

Basic Information

Item Description

Name CLUSTER_DISPATCHER_IN_QUEUE_SIZE

Summary in-queue size for cluster dispatcher

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1024

MAX 32768

Default value 1024

Description

It is the in-queue size for cluster dispatcher.

CLUSTER_DISPATCHER_NUMA_STREAM_MAP | 635

10.31 CLUSTER_DISPATCHER_NUMA_STREAM_M

AP

Basic Information

Item Description

Name CLUSTER_DISPATCHER_NUMA_STREAM_MAP

Summary numa stream map for cluster dispatcher

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value 'x' : no binding

Description

It determines a NUMA node to which the cluster dispatcher is to be connected. This property is operated

when NUMA property is set to on.

Note

If CLUSTER_COMMIT_STREAM_ISOLATION property is set to on, then the 0 stream is set to NUM

A node of a commit stream.

The following is an example of three dispatchers. It connects number 0 stream to number 0 NUMA node,

connects number 1 stream to number 1 NUMA node, and number 2 stream to number 2 NUMA node.

CLUSTER_DISPATCHER_NUMA_STREAM_MAP = '0:1:2'

636 | Server Property

10.32 CLUSTER_DISPATCHER_OUT_QUEUE_SIZE

Basic Information

Item Description

Name CLUSTER_DISPATCHER_OUT_QUEUE_SIZE

Summary out-queue size for cluster dispatcher

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1024

MAX 32768

Default value 1024

Description

It is the out-queue size for cluster dispatcher.

CLUSTER_HEARTBEAT_INTERVAL | 637

10.33 CLUSTER_HEARTBEAT_INTERVAL

Basic Information

Item Description

Name CLUSTER_HEARTBEAT_INTERVAL

Summary interval seconds for health checking of cluster

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 86400

Default value 3

Description

It is the interval seconds for health checking of cluster. 0 means that it is disabled.

638 | Server Property

10.34 CLUSTER_HEARTBEAT_RETRY_COUNT

Basic Information

Item Description

Name CLUSTER_HEARTBEAT_RETRY_COUNT

Summary retry count for health checking of cluster

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 65536

Default value 5

Description

It is the retry count for health checking of cluster.

CLUSTER_IGNORE_INACTIVE_MEMBER | 639

10.35 CLUSTER_IGNORE_INACTIVE_MEMBER

Basic Information

Item Description

Name CLUSTER_IGNORE_INACTIVE_MEMBER

Summary ignore in-active member for cluster

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value NO

Description

It ignores in-active member for cluster.

640 | Server Property

10.36 CLUSTER_MAX_PACKET_SIZE

Basic Information

Item Description

Name CLUSTER_MAX_PACKET_SIZE

Summary maximum packet size for cluster session

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 10 Mega

MAX 32 Giga

Default value 100 Mega

Description

It sets the maximum packet size of which the remote protocol can transfer at a time. If the column size to

be remotely transferred exceeds the property size, then the property size should be set bigger than the co

lumn size.

CLUSTER_MAX_PAYLOAD_SIZE | 641

10.37 CLUSTER_MAX_PAYLOAD_SIZE

Basic Information

Item Description

Name CLUSTER_MAX_PAYLOAD_SIZE

Summary maximum packet payload size for cluster session (byte)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 524288

MAX 33554432

Default value 524288

Description

The cluster packet which is remotely transferred may be delivered in pieces, and this property sets the ma

ximum size of data to be stored in a piece.

642 | Server Property

10.38 CLUSTER_PACKET_ALLOCATION_TIMEOUT

Basic Information

Item Description

Name CLUSTER_PACKET_ALLOCATION_TIMEOUT

Summary a time limit (sec) for how long statemets will wait to allocate packet memory

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 100000000

Default value 3

Description

It sets the maximum time (second) of waiting when allocating memory required for cluster packet config

uration.

CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT | 643

10.39 CLUSTER_PROTOCOL_SESSION_FATAL_POL

ICY_TIMEOUT

Basic Information

Item Description

Name CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT

Summary a time limit of session fatal policy to wait for a response from the cluster protocol

Data type BIGINT

Applicable phase NO_MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 0

Description

It is the maximum time of when waiting for the response after transferring the protocol in cluster. If it do

es not responds within the specified time, then GOLDILOCKS, depending on the protocol, may terminate

the protocol or make the remote cluster member which does not responds to be failover. Specify the tim

e limit by using CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT property to use the policy term

inating the session. However, specify the time limit by using CLUSTER_PROTOCOL_FAILOVER_POLICY_TI

MEOUT property to use the failover policy.

644 | Server Property

10.40 CLUSTER_PROTOCOL_FAILOVER_POLICY_TI

MEOUT

Basic Information

Item Description

Name CLUSTER_PROTOCOL_FAILOVER_POLICY_TIMEOUT

Summary a time limit of failover policy to wait for a response from the cluster protocol

Data type BIGINT

Applicable phase NO_MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 0

Description

It is the maximum time of when waiting for the response after transferring the protocol in cluster. If it do

es not responds within the specified time, then GOLDILOCKS, depending on the protocol, may terminate

the protocol or make the remote cluster member which does not responds to be failover. Specify the tim

e limit by using CLUSTER_PROTOCOL_FAILOVER_POLICY_TIMEOUT property to use the failover policy. H

owever, specify the time limit by using CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT propert

y to use the policy terminating the session.

CLUSTER_SERVER_RESPONSE_QUEUE_SIZE | 645

10.41 CLUSTER_SERVER_RESPONSE_QUEUE_SIZE

Basic Information

Item Description

Name CLUSTER_SERVER_RESPONSE_QUEUE_SIZE

Summary response queue size for cluster server

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 30

MAX 32768

Default value 30

Description

It sets the maximum queue size to get response from the remote server.

646 | Server Property

10.42 CLUSTER_SPLIT_BRAIN_RESOLUTION_POLIC

Y

Basic Information

Item Description

Name CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY

Summary split brain resolution policy for cluster system

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 2

Default value 0

Description

It sets the policy to resolve split-brain situation in the cluster system. If the value is set to 1 or over, it enqu

ires the solution of a locator.

Note

If the query for a locator is timed out, it tries to enquire as many times as CLUSTER_SPLIT_BRAIN_

RETRY_COUNT. If the property value after the retry failure is 1, then it forcibly proceeds the failov

er. If it is 2, then it terminates the fatal.

CLUSTER_SPLIT_BRAIN_RETRY_COUNT | 647

10.43 CLUSTER_SPLIT_BRAIN_RETRY_COUNT

Basic Information

Item Description

Name CLUSTER_SPLIT_BRAIN_RETRY_COUNT

Summary retry count for split brain resolution policy(1 ~ 65536)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 65536

Default value 4

Description

It is used when CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY is set to 1 or over in cluster system. It sets t

he times of retrying to enquire when the query to a locator does not respond.

648 | Server Property

10.44 COMMITTER_HOT_POLICY_INTERVAL

Basic Information

Item Description

Name COMMITTER_HOT_POLICY_INTERVAL

Summary committer deque interval for busy waiting

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 86400000000 (1 day)

Default value 0 (cold policy)

Description

It sets the timezone interval of busy waiting when the commit cserver is dequeing to read the commit pro

tocol message. If it is set to 1,000,000 (1 second), and the time is not passed over 1 second from the last

deque success to another deque retry, then it sets the timeout in deque to 0 and performs the busy waiti

ng.

CONTROL_FILE_0 ~ CONTROL_FILE_7 | 649

10.45 CONTROL_FILE_0 ~ CONTROL_FILE_7

Basic Information

Item Description

Name CONTROL_FILE_0

Summary control file name

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/wal/control_0.ctl

Description

If a control file is corrupted, database can not be used. Therefore, the control file is multiplexed for stabili

ty of database. It specifies the directory and file name of which stores each control file.

650 | Server Property

10.46 CONTROL_FILE_COUNT

Basic Information

Item Description

Name CONTROL_FILE_COUNT

Summary control file count

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 2

MAX 8

Default value 2

Description

If a control file is corruped, database can not be used. The control file is multiplexed for stability of datab

ase. CONTROL_FILE_COUNT specifies the multiplexing number of control files. A control file is multiplexe

d at least 2 up to 8.

CONTROL_FILE_TEMP_NAME | 651

10.47 CONTROL_FILE_TEMP_NAME

Basic Information

Item Description

Name CONTROL_FILE_TEMP_NAME

Summary temporary file name for control file

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/backup/control.tmp

Description

During database operation, a control file is frequently changed, and its temporary copy can be made if ne

cessary. CONTROL_FILE_TEMP_NAME specifies the directory and its file name to temporarily store the co

ntrol file.

652 | Server Property

10.48 COORDINATOR_COMMIT_WRITE_MODE

Basic Information

Item Description

Name COORDINATOR_COMMIT_WRITE_MODE

Summary coordinator commit write mode(0:disable, 1:wait mode)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

It is a commit write mode applied to a coordinator. If TRANSACTION_COMMIT_WRITE_MODE is no wait,

and its property is wait, then the coordinator node is operated as wait, and other nodes are operated as n

o wait.

CSERVERS | 653

10.49 CSERVERS

Basic Information

Item Description

Name CSERVERS

Summary number of cserver processes

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 512

Default value 10

Description

It is a number of cserver process.

654 | Server Property

10.50 DATABASE_ACCESS_MODE

Basic Information

Item Description

Name DATABASE_ACCESS_MODE

Summary database access mode (0: read only, 1: read write)

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 1

Description

When database starts, it sets the access mode.

● 0: It is able to read operation, but unable to insert/ update/ delete operations on database.

● 1: It is able to read/ insert/ update/ delete operations on database.

DATABASE_INSTANCE_NAME | 655

10.51 DATABASE_INSTANCE_NAME

Basic Information

Item Description

Name DATABASE_INSTANCE_NAME

Summary database instance name

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value GOLDILOCKS

Description

It is the database instance name.

656 | Server Property

10.52 DATA_STORE_MODE

Basic Information

Item Description

Name DATA_STORE_MODE

Summary data store mode(cds:1,tds:2)

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 2

Default value 2

Description

It sets the storing method of database.

● 1: CDS mode supports the concurrency for multiple users but it does not guarantee the durability. It d

oes not record logs for all update operations such as insert/ delete/ update data, consequentially a fai

lure can not be recovered.

● 2: TDS mode guarantees the concurrency for multiple users and the durability using logs.

DA_CLIENT_NUMA_NODE | 657

10.53 DA_CLIENT_NUMA_NODE

Basic Information

Item Description

Name DA_CLIENT_NUMA_NODE

Summary numa node for DA clients

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN -1

MAX 63

Default value -1

Description

It sets the NUMA node ID to which the direct access (D/A) session is to be bound. This property is operate

d when NUMA property is set to ON.

658 | Server Property

10.54 DDL_AUTOCOMMIT

Basic Information

Item Description

Name DDL_AUTOCOMMIT

Summary DDL auto commit

Data type BOOL

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It sets whether to autocommit DDL operations which is not autocommitted yet. For example, autocommi

t is not applied to the operations such as creating/altering a table, so if DDL_AUTOCOMMIT is 0, a table c

reation and alteration can be undone by the rollback. On the other hand, if DDL_AUTOCOMMIT is 1, DDL

to which autocommit is not applied is committed immediately.

DDL_LOCK_TIMEOUT | 659

10.55 DDL_LOCK_TIMEOUT

Basic Information

Item Description

Name DDL_LOCK_TIMEOUT

Summary a time limit (sec) for how long DDL statemets will wait

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 0

Description

It means the lock wait time when DDL operations occur to the same object at the same time.

The default value is 0 second, and it does not wait for a lock when the DDL operation occurs.

When operations of altering a table structure simultaneously occur, they wait for the time specified in DD

L_LOCK_TIMEOUT, without waiting for other transactions termination as follows.

• Transaction A

ALTER TABLE t1 ADD COLUMN (new_column NUMBER);

• Transaction B

TRUNCATE TABLE t1;

If the waiting time exceeds DDL_LOCK_TIMEOUT, an error occurs as follows.

gSQL> TRUNCATE TABLE t1;

ERR-HYT00(14026): resource busy or timeout expired

660 | Server Property

10.56 DEFAULT_GLOBAL_SECONDARY_INDEX_CR

EATION

Basic Information

Item Description

Name DEFAULT_GLOBAL_SECONDARY_INDEX_CREATION

Summary specifies whether or not create global secondary index at table creation

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value YES

Description

It sets whether to create the global secondary index when creating a table in cluster system. A non-deter

ministic query for the table which did not created the global secondary index fails. The global secondary i

ndex can be separately created after creating the table when the property is set to NO.

DEFAULT_INDEX_LOGGING | 661

10.57 DEFAULT_INDEX_LOGGING

Basic Information

Item Description

Name DEFAULT_INDEX_LOGGING

Summary default logging flag of indexes

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

If LOGGING property is not explicitly set by a user when an index is created, then it is set to DEFAULT_IND

EX_LOGGING value. If an index is created in LOGGING tablespace, the LOGGING property should be set.

662 | Server Property

10.58 DEFAULT_INDEX_PCTFREE

Basic Information

Item Description

Name DEFAULT_INDEX_PCTFREE

Summary default pctfree value of indexes (%)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 99

Default value 0

Description

If a user does not explicitly specify PCTFREE syntax when creating an index. The PCTFREE is set to DEFAUL

T_INDEX_PCTFREE property value.

DEFAULT_INITRANS | 663

10.59 DEFAULT_INITRANS

Basic Information

Item Description

Name DEFAULT_INITRANS

Summary default initrans value of tables

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 32

Default value 4

Description

If a user does not explicitly set INITRANS syntax when creating a table or an index, then it is set to DEFAU

LT_INITRANS property value.

664 | Server Property

10.60 DEFAULT_MAXTRANS

Basic Information

Item Description

Name DEFAULT_MAXTRANS

Summary default maxtrans value of tables

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 32

Default value 8

Description

If a user does not explicitly set the MAXTRANS syntax when creating a table or an index, then it is set to

DEFAULT_MAXTRANS property value.

DEFAULT_PCTFREE | 665

10.61 DEFAULT_PCTFREE

Basic Information

Item Description

Name DEFAULT_PCTFREE

Summary default pctfree value of tables (%)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 99

Default value 10

Description

If a user does not explicitly set the PCTFREE property when creating a table, it is set to DEFAULT_PCTFREE

property value.

666 | Server Property

10.62 DEFAULT_PCTUSED

Basic Information

Item Description

Name DEFAULT_PCTUSED

Summary default pctused value of tables (%)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 99

Default value 60

Description

If a user does not explicitly set the PCTUSED property when creating a table, it is set to DEFAULT_PCTUSE

D value.

DEFAULT_REMOVAL_BACKUP_FILE | 667

10.63 DEFAULT_REMOVAL_BACKUP_FILE

Basic Information

Item Description

Name DEFAULT_REMOVAL_BACKUP_FILE

Summary default removal flag of incremental backup files

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It specifies whether to delete the backup file when deleting the backup list.

668 | Server Property

10.64 DEFAULT_REMOVAL_OBSOLETE_BACKUP_L

IST

Basic Information

Item Description

Name DEFAULT_REMOVAL_OBSOLETE_BACKUP_LIST

Summary default removal flag of obsolete incremental backup lists

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It specifies whether to delete the previous obsoleted backup list when executing INCREMENTAL BACKUP.

DEFAULT_SHARDING | 669

10.65 DEFAULT_SHARDING

Basic Information

Item Description

Name DEFAULT_SHARDING

Summary default sharding strategy (0: cloned, 1: hash sharding)

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

It sets the default sharding strategy to be used if the sharding strategy is not determined when creating a

table.

The following is an example of executing CREATE TABLE statement.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128)

);

If DEFAULT_SHARDING value is 0 (cloned), the table is created as a cloned table as follows.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128)

)

CLONED

670 | Server Property

AT CLUSTER WIDE

;

If DEFAULT_SHARDING value is 1 (hash sharding), the table is created as a hash-sharded table as follows.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128)

)

SHARDING BY HASH (id)

SHARD COUNT 24

AT CLUSTER WIDE

;

If DEFAULT_SHARDING is 1 (hash sharding) and <table sharding strategy> is not described, then the hash

sharding key is determined based on the following order.

1. If PRIMARY KEY constraint is defined, primary key is used as a sharding key.

• The original message

CREATE TABLE t1 (id INTEGER PRIMARY KEY, name VARCHAR(128));

• Translation

CREATE TABLE t1 (id INTEGER PRIMARY KEY, name VARCHAR(128))

SHARDING BY HASH(id)

SHARD COUNT 24

AT CLUSTER WIDE;

2. If UNIQUE constraint is defined, the firstly described UNIQUE constraint is used as the sharding key.

• The original message

CREATE TABLE t1 (id INTEGER, name VARCHAR(128) UNIQUE);

• Translation

CREATE TABLE t1 (id INTEGER, name VARCHAR(128) UNIQUE)

SHARDING BY HASH(name)

SHARD COUNT 24

AT CLUSTER WIDE;

DEFAULT_SHARDING | 671

3. If key constraint is not defined, the first column except for the following excluded data type is used a

s a sharding key.

○ The excluded data type: LONG VARCHAR, LONG VARBINARY, BOOLEAN

• The original message

CREATE TABLE t1 (is_man BOOLEAN, id INTEGER, name VARCHAR(128));

• Translation

CREATE TABLE t1 (is_man BOOLEAN, id INTEGER, name VARCHAR(128))

SHARDING BY HASH(id)

SHARD COUNT 24

AT CLUSTER WIDE;

672 | Server Property

10.66 DISABLE_DDL_CDC_GIVEUP

Basic Information

Item Description

Name DISABLE_DDL_CDC_GIVEUP

Summary disable DDL which causing CDC give-up

Data type BOOLEAN

Applicable phase OPEN

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM TRUE

MIN 0

MAX 1

Default value NO

Description

It prohibits DDL operation on the table of supplemental log, because it affects CDC's give up.

For more information, refer to Table 44-1 The occurrence of give up and whether to allow DDL statemen

t according to DDL category.

DISABLE_UPDATE_PK_CDC_GIVEUP | 673

10.67 DISABLE_UPDATE_PK_CDC_GIVEUP

Basic Information

Item Description

Name DISABLE_UPDATE_PK_CDC_GIVEUP

Summary disable UPDATE primary key which caused CDC give-up

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It disables UPDATE primary key which caused CDC give up.

674 | Server Property

10.68 DISALLOWED_PROTOCOL_TARGETTYPE

Basic Information

Item Description

Name DISALLOWED_PROTOCOL_TARGETTYPE

Summary disallowed TARGETTYPE protocol

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

It disallows TARGETTYPE protocol.

DISALLOWED_PROTOCOL_TARGETTYPE_WITH_ALL | 675

10.69 DISALLOWED_PROTOCOL_TARGETTYPE_W

ITH_ALL

Basic Information

Item Description

Name DISALLOWED_PROTOCOL_TARGETTYPE_WITH_ALL

Summary disallowed TARGETTYPE_WITH_ALL protocol

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

It disallows TARGETTYPE_WITH_ALL protocol.

676 | Server Property

10.70 DISALLOWED_PROTOCOL_TARGETTYPE_W

ITH_NAME

Basic Information

Item Description

Name DISALLOWED_PROTOCOL_TARGETTYPE_WITH_NAME

Summary disallowed TARGETTYPE_WITH_NAME protocol

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

It disallows TARGETTYPE_WITH_NAME protocol.

DISPATCHER_CM_BUFFER_SIZE | 677

10.71 DISPATCHER_CM_BUFFER_SIZE

Basic Information

Item Description

Name DISPATCHER_CM_BUFFER_SIZE

Summary communication buffer size

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 10485760

MAX 34359738368

Default value 31457280

Description

It is the size of entire communication buffer used in shared mode. It is allocated to and used in Shared Sta

tic Area (SSA).

678 | Server Property

10.72 DISPATCHER_CM_UNIT_SIZE

Basic Information

Item Description

Name DISPATCHER_CM_UNIT_SIZE

Summary communication unit size

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1024

MAX 10485760

Default value 1024

Description

It is the unit size managed by dispatcher in shared mode. If the size is large, the memory is wasted. If it is

small, the performance is degraded. It is set to the maximum communication packet size in the shared m

ode.

DISPATCHER_CONNECTIONS | 679

10.73 DISPATCHER_CONNECTIONS

Basic Information

Item Description

Name DISPATCHER_CONNECTIONS

Summary maximum number of connections for each dispatcher

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 10

MAX 32768

Default value 950

Description

It is the maximum number of connection (client) which a dispatcher can manage in shared mode.

If the system- supported maximum value is smaller than the set value, it is internally set to the system max

imum.

680 | Server Property

10.74 DISPATCHER_HOT_POLICY_INTERVAL

Basic Information

Item Description

Name DISPATCHER_HOT_POLICY_INTERVAL

Summary dispatcher dequeue interval for busy waiting

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 86400000000: 1 day

Default value 100000: 0.1 second

Description

It is the dispatcher dequeue interval for busy waiting. (micro second)

DISPATCHER_LOAD_BALANCING | 681

10.75 DISPATCHER_LOAD_BALANCING

Basic Information

Item Description

Name DISPATCHER_LOAD_BALANCING

Summary load balancing algorithm for shared mode (0: number of clients, 1: round robin)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

It is an algorithm allocating a dispatcher when connecting to a client in the shared mode.

● 0: It is allocated to a dispatcher of which the number of currently attached clients are small.

● 1: It is sequentially allocated to a dispatcher.

682 | Server Property

10.76 DISPATCHER_NUMA_STREAM_MAP

Basic Information

Item Description

Name DISPATCHER_NUMA_STREAM_MAP

Summary numa stream map for dispatcher

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value 'x' : no binding

Description

It determines NUMA node to which dispatchers are to be connected. This property is operated when NU

MA property is set to on.

The following is an example of three dispatchers. It connects number 0 stream to number 0 NUMA node,

connects number 1 stream to number 1 NUMA node, and number 2 stream to number 2 NUMA node.

DISPATCHER_NUMA_STREAM_MAP = '0:1:2'

DISPATCHER_QUEUE_SIZE | 683

10.77 DISPATCHER_QUEUE_SIZE

Basic Information

Item Description

Name DISPATCHER_QUEUE_SIZE

Summary dispatcher queue size

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1024

MAX 32768

Default value 1024

Description

In shared mode, it sets the queue size for the communication between the dispatcher and the shared-ser

ver.

684 | Server Property

10.78 DISPATCHER_REQUEST_MINI_QUEUE_COU

NT

Basic Information

Item Description

Name DISPATCHER_REQUEST_MINI_QUEUE_COUNT

Summary count of mini queue per request queue

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 16

Default value 4

Description

It is the count of mini queue per request queue.

DISPATCHER_RESPONSE_MINI_QUEUE_COUNT | 685

10.79 DISPATCHER_RESPONSE_MINI_QUEUE_CO

UNT

Basic Information

Item Description

Name DISPATCHER_RESPONSE_MINI_QUEUE_COUNT

Summary count of mini queue per response queue

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 16

Default value 4

Description

It is the count of mini queue per response queue.

686 | Server Property

10.80 DISPATCHERS

Basic Information

Item Description

Name DISPATCHERS

Summary number of dispatcher processes

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 256

Default value 2

Description

It sets the number of dispatcher processes when using the shared mode.

It can not reduce the value by using alter system on open phase.

FETCH_FAILOVER | 687

10.81 FETCH_FAILOVER

Basic Information

Item Description

Name FETCH_FAILOVER

Summary enable fetch failover

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value NO

Description

It enables the fetch failover.

688 | Server Property

10.82 GLOBAL_CONNECTION_ALLOW_SESSION_

DEPENDENCY

Basic Information

Item Description

Name GLOBAL_CONNECTION_ALLOW_SESSION_DEPENDENCY

Summary allowed session dependent features in global connection

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM TRUE

MIN 0

MAX 1

Default value NO

Description

It sets whether to support the query execution including the session dependent information in the global

connection.

GLOBAL_JOURNAL_BUFFER_SIZE | 689

10.83 GLOBAL_JOURNAL_BUFFER_SIZE

Basic Information

Item Description

Name GLOBAL_JOURNAL_BUFFER_SIZE

Summary global journal buffer size

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1024

MAX 10 Giga

Default value 1 Mega

Description

It is the size of global journal buffer.

690 | Server Property

10.84 GLOBAL_JOURNAL_BUFFER_TOTAL_MAX_S

IZE

Basic Information

Item Description

Name GLOBAL_JOURNAL_BUFFER_TOTAL_MAX_SIZE

Summary global journal buffer total max size

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1 Mega

MAX 100 Giga

Default value 64 Mega

Description

It is the total max size of global journal buffer.

GLOBAL_PROPERTY_LOCK_TIMEOUT | 691

10.85 GLOBAL_PROPERTY_LOCK_TIMEOUT

Basic Information

Item Description

Name GLOBAL_PROPERTY_LOCK_TIMEOUT

Summary a time limit(second) for how long global property lock statements will wait

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0 (infinite)

MAX 100000000

Default value 0

Description

When changing the global property, it performs the lock to control the concurrency. In this case, the wait

ing time to perform the lock is set.

692 | Server Property

10.86 GLOBAL_TRANSACTION_COMMIT_WRITE_

MODE

Basic Information

Item Description

Name GLOBAL_TRANSACTION_COMMIT_WRITE_MODE

Summary global transaction commit write mode (0: no_wait, 1: wait, 2: disable)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 2

Default value 2

Description

It is a property to change the commit write mode of the global transaction. TRANSACTION_COMMIT_WR

ITE_MODE property is applied to all transactions, but GLOBAL_TRANSACTION_COMMIT_WRITE_MODE p

roperty is applied only to a global transaction. If the property is set to 2, then it follows the TRANSACTIO

N_COMMIT_WRITE_MODE.

● 0: It does not wait.

● 1: It waits.

● 2: It follows the value of TRANSACTION_COMMIT_WRITE_MODE.

GLOBAL_TRANSACTION_ISOLATION_SCOPE | 693

10.87 GLOBAL_TRANSACTION_ISOLATION_SCOPE

Basic Information

Item Description

Name GLOBAL_TRANSACTION_ISOLATION_SCOPE

Summary isolation scope for global transaction(0: system, 1: group)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

It determines whether to process the data with a global transaction or with multiple domain transactions

when the transaction changed the data through two cluster groups.

● 0: It processes with a global transaction.

● 1: It processes with multiple domain transactions.

Note

If this property is set to 1, it commits each cluster group with a separate transaction, so it does not

guarantees the transaction atomicity.

694 | Server Property

10.88 GLOBAL_TRANSACTION_LOG_DIR

Basic Information

Item Description

Name GLOBAL_TRANSACTION_LOG_DIR

Summary default global transaction log directory

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/wal

Description

It is the default directory of global transaction log.

GLOBAL_TRANSACTION_LOG_FILE_SIZE | 695

10.89 GLOBAL_TRANSACTION_LOG_FILE_SIZE

Basic Information

Item Description

Name GLOBAL_TRANSACTION_LOG_FILE_SIZE

Summary global transaction log file size

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 20 Mega

MAX 10 Giga

Default value 100 Mega

Description

It is the file size of global transaction log.

696 | Server Property

10.90 GMASTER_NUMA_NODE

Basic Information

Item Description

Name GMASTER_NUMA_NODE

Summary numa node for gmaster process

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN -1

MAX 63

Default value -1

Description

It sets the ID of NUMA node to be used by gmaster daemon. This property is operated when NUMA prop

erty is set to on.

GMON_AUTOSTART | 697

10.91 GMON_AUTOSTART

Basic Information

Item Description

Name GMON_AUTOSTART

Summary Indicate whether gmon process automatically starts or not (0 | 1)

Data type BOOLEAN

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value 1

Description

It sets whether to start gmon process automatically.

698 | Server Property

10.92 HINT_ERROR

Basic Information

Item Description

Name HINT_ERROR

Summary enable hint error

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

It sets whether to check syntax error and validation error for hint syntax.

IDLE_TIMEOUT | 699

10.93 IDLE_TIMEOUT

Basic Information

Item Description

Name IDLE_TIMEOUT

Summary idle timeout(s)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 0

Description

It sets the maximum IDLE time possible to wait in C/S session. If it exceeds the specified idle time, TIMEO

UT error occurs.

● 0: It means infinite waiting, and TIMEOUT error does not occur.

700 | Server Property

10.94 INDEX_BUILD_PARALLEL_FACTOR

Basic Information

Item Description

Name INDEX_BUILD_PARALLEL_FACTOR

Summary index build parallel factor

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 64

Default value 0

Description

When creating an index, it specifies the number of parallel factor.

● 0: It is specified as the number of the core factor in the system.

INDEX_TREE_MERGE_PARALLEL_FACTOR | 701

10.95 INDEX_TREE_MERGE_PARALLEL_FACTOR

Basic Information

Item Description

Name INDEX_TREE_MERGE_PARALLEL_FACTOR

Summary parallel factor for merging sub-trees

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 64

Default value 0

Description

When creating an index, it specifies the number of parallel factor to merge the sub-tree.

If that value is bigger than INDEX_BUILD_PARALLEL_FACTOR, then INDEX_BUILD_PARALLEL_FACTOR is

used.

● 0: It follows INDEX_BUILD_PARALLEL_FACTOR.

702 | Server Property

10.96 INST_ALLOCATOR_COUNT

Basic Information

Item Description

Name INST_ALLOCATOR_COUNT

Summary memory allocator count for instant tables or indexes

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 3

MAX 128

Default value 3

Description

This property increases the parallel property of operation allocating or deleting an instant block.

INST_TABLE_BLOCK_SIZE | 703

10.97 INST_TABLE_BLOCK_SIZE

Basic Information

Item Description

Name INST_TABLE_BLOCK_SIZE

Summary a block size of instant tables or indexes

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 8192

MAX 1048576

Default value 16384

Description

It determines the size of an instant block. If the anchor area of an instant record is bigger than an instant

block, then the following error occurs.

gSQL> SELECT DISTINCT * FROM T1, T1, T1, T1, T1, T1, T1, T1, T1, T1;

ERR-HY000(14098): maximum record length(16360) exceeds

704 | Server Property

10.98 IN_DOUBT_DECISION

Basic Information

Item Description

Name IN_DOUBT_DECISION

Summary decision for in-doubt transaction

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 2

Default value 2

Description

It determines whether to commit or to rollback the in-doubt transaction of distributed transactions.

● 1: Commit

● 2: Rollback

JOURNAL_TEMP_DIR | 705

10.99 JOURNAL_TEMP_DIR

Basic Information

Item Description

Name JOURNAL_TEMP_DIR

Summary journaling temporary directory

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/journal

Description

It is the temporary directory of journaling.

706 | Server Property

10.100 KEEPALIVE_IDLE_TIME

Basic Information

Item Description

Name KEEPALIVE_IDLE_TIME

Summary tcp keepalive idle time for checking dead client session (sec)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 1

MAX 16383

Default value 300

Description

It means the idle duration between the server and client without tcp packet exchange before sending kee

p alive packet. If there is not tcp packet exchange for seconds (KEEPALIVE_IDLE_TIME), keep alive mecha

nism starts execution to detect the dead connection on the server side.

LOCAL_CLUSTER_MEMBER | 707

10.101 LOCAL_CLUSTER_MEMBER

Basic Information

Item Description

Name LOCAL_CLUSTER_MEMBER

Summary local cluster member name

Data type VARCHAR

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN N/A

MAX N/A

Default value 'G1N1'

Description

It is the local cluster member name.

708 | Server Property

10.102 LOCAL_CLUSTER_MEMBER_HOST

Basic Information

Item Description

Name LOCAL_CLUSTER_MEMBER_HOST

Summary host name of local cluster member

Data type VARCHAR

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN N/A

MAX N/A

Default value '127.0.0.1'

Description

It is host name of local cluster member.

LOCAL_CLUSTER_MEMBER_PORT | 709

10.103 LOCAL_CLUSTER_MEMBER_PORT

Basic Information

Item Description

Name LOCAL_CLUSTER_MEMBER_PORT

Summary listen port of local cluster member

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 1024

MAX 49151

Default value 10101

Description

It is listen port of local cluster member.

710 | Server Property

10.104 LOCAL_JOURNAL_BUFFER_SIZE

Basic Information

Item Description

Name LOCAL_JOURNAL_BUFFER_SIZE

Summary local journal buffer size

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1024

MAX 10737418240 (10 Giga)

Default value 65536

Description

It is the local journal buffer size.

LOCATION_FILE | 711

10.105 LOCATION_FILE

Basic Information

Item Description

Name LOCATION_FILE

Summary location file name

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/wal/location.ctl

Description

It is the location file name.

712 | Server Property

10.106 LOCATOR_QUERY_TIMEOUT

Basic Information

Item Description

Name LOCATOR_QUERY_TIMEOUT

Summary timeout for waiting locator response (sec)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 20

Description

It sets the time (second) waiting for the response after the cluster system enquires of a locator about the

solution of split-brain situation. This property is used only when CLUSTER_SPLIT_BRAIN_RESOLUTION_PO

LICY is set to 1 or more.

LOCK_HASH_TABLE_SIZE | 713

10.107 LOCK_HASH_TABLE_SIZE

Basic Information

Item Description

Name LOCK_HASH_TABLE_SIZE

Summary lock manager hash table size (The number of buckets)

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 2

MAX 1000000

Default value 65519

Description

It specifies the maximum hash table size managed by a lock manager.

714 | Server Property

10.108 LOG_BLOCK_SIZE

Basic Information

Item Description

Name LOG_BLOCK_SIZE

Summary log block size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 512

MAX 4096

Default value 512

Description

It means the minimum size of what log buffer is flushed to the log file of the disk. Its value should be set t

o one of 512, 1024, 2048, 4096.

LOG_BUFFER_SIZE | 715

10.109 LOG_BUFFER_SIZE

Basic Information

Item Description

Name LOG_BUFFER_SIZE

Summary default log buffer size (byte)

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1048576

MAX 10737418240

Default value 10485760

Description

A log buffer is the shared memory space in which the redo logs generated in database by the DML/DDL o

perations are stored. LOG_BUFFER_SIZE is referenced to set the memory size for the log buffer.

716 | Server Property

10.110 LOG_DIR

Basic Information

Item Description

Name LOG_DIR

Summary default log directory

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/wal

Description

The log recorded in the log buffer is flushed to the logfile which exists in a non-volatile storage device to

ensure the database durability. LOG_DIR sets the path to the log file.

LOG_FILE_SIZE | 717

10.111 LOG_FILE_SIZE

Basic Information

Item Description

Name LOG_FILE_SIZE

Summary log file size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 20 Mbytes

MAX 60 Gbytes

Default value 100 Mbytes

Description

It sets the size of the logfile used in database. It is referenced only when creating the database, then log fi

le size can not be updated after then.

718 | Server Property

10.112 LOG_GROUP_COUNT

Basic Information

Item Description

Name LOG_GROUP_COUNT

Summary initial count of log group

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 4

MAX 254

Default value 4

Description

It sets the number of log group used in database. It is referenced only when creating the database, but af

ter that, it does not affect any operations. After creating database, the operation to add or remove a log

group is supported by a separate syntax.

LOG_MIRROR_MODE | 719

10.113 LOG_MIRROR_MODE

Basic Information

Item Description

Name LOG_MIRROR_MODE

Summary LogMirror Mode (1:Enable, 0:Disable)

Data type BOOLEAN

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It is the property to configure the required shared memory when operating LogMirror, the redo log replic

ation tool, at database startup.

It should be enabled to execute the LogMirror.

The size of the shared Memory can be changed using LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE.

720 | Server Property

10.114 LOG_MIRROR_SHARED_MEMORY_STATIC

_SIZE

Basic Information

Item Description

Name LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE

Summary shared memory size for LogMirror (byte)

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 10485760 (10 M)

MAX 1073741824 (1 G)

Default value 104857600 (100 M)

Description

It sets the size of the shared memory used in LogMirror, the redo-log replication tool.

It is applied in the state which LOG_MIRROR_MODE is enabled.

LOG_MIRROR_TIMEOUT | 721

10.115 LOG_MIRROR_TIMEOUT

Basic Information

Item Description

Name LOG_MIRROR_TIMEOUT

Summary logmirror retry timeout (sec)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 0

Description

It is the response waiting time of the LogMirror.

If its value is 0, it waits indefinitely. Otherwise, it waits as long as the value set, then TIMEOUT occurs, an

d it stops LogMirror service. Later, the server is operated normally.

It is applied in the state which LOG_MIRROR_MODE is enabled.

722 | Server Property

10.116 LOG_SYNC_INTERVAL

Basic Information

Item Description

Name LOG_SYNC_INTERVAL

Summary interval for synchronize log (s)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 10000

Default value 3

Description

Log flusher of GOLDILOCKS is a system thread which flushes the log buffer contents to disk logfile. When

log flusher wakes up in the idle phase, it checks if log to flush exists. Then it flushes the log if any.

If the log flusher did not flush within the time set in LOG_SYNC_INTERVAL, it synchronizes the log buffer

and the log file by performing a flush until the last block of the current log buffer.

LOG_SYNC_INTERVAL_MSEC | 723

10.117 LOG_SYNC_INTERVAL_MSEC

Basic Information

Item Description

Name LOG_SYNC_INTERVAL_MSEC

Summary milli-second interval for synchronize log

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 0

Description

It is the millisecond interval for synchronize log.

724 | Server Property

10.118 MAX_GROUP_COUNT

Basic Information

Item Description

Name MAX_GROUP_COUNT

Summary maximum group count

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 0

MAX 8192

Default value 32

Description

It is the maximum group count.

MAX_JOURNAL_FILE_SIZE | 725

10.119 MAX_JOURNAL_FILE_SIZE

Basic Information

Item Description

Name MAX_JOURNAL_FILE_SIZE

Summary maximum journal file size

Data type BIGINT

Applicable phase MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1099511627776 (1 Terabytes)

Default value 0 (no limit)

Description

It sets the maximum size (quota) of the global journaling file which internally stores journaling data when

a journaling occurs in cluster system.

726 | Server Property

10.120 MAX_NODE_COUNT

Basic Information

Item Description

Name MAX_NODE_COUNT

Summary maximum node count

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 1

MAX 8192

Default value 64

Description

It is the maximum node count.

MAXIMUM_CONCURRENT_ACTIVITIES | 727

10.121 MAXIMUM_CONCURRENT_ACTIVITIES

Basic Information

Item Description

Name MAXIMUM_CONCURRENT_ACTIVITIES

Summary maximum number of active statements that the driver can support for a connection

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 1

MAX 65535

Default value 1024

Description

It sets the number of statements which can be executed simultaneously.

728 | Server Property

10.122 MAXIMUM_FLANGE_COUNT

Basic Information

Item Description

Name MAXIMUM_FLANGE_COUNT

Summary maximum flange count in a plan clock

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 128

MAX 65535

Default value 1024

Description

It is the maximum number of flanges which can be expanded in plan clock.

MAXIMUM_FLUSH_LOG_BLOCK_COUNT | 729

10.123 MAXIMUM_FLUSH_LOG_BLOCK_COUNT

Basic Information

Item Description

Name MAXIMUM_FLUSH_LOG_BLOCK_COUNT

Summary maximum number of log block count to be flushing

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1000

MAX 2000000

Default value 100000

Description

When flushing the contents of the log buffer to disk log file, it sets the maximum number of log blocks to

be flushed with a single writing operation.

730 | Server Property

10.124 MAXIMUM_FLUSH_PAGE_COUNT

Basic Information

Item Description

Name MAXIMUM_FLUSH_PAGE_COUNT

Summary maximum number of page count to be flushing

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 8192

Default value 1024

Description

GOLDILOCKS datafiles are flushed to the disk by the checkpoint and certain DDL statements. For flushing

datafiles, it sets the maximum number of data pages to be flushed with a single writing operation.

MAXIMUM_JOURNAL_REPLAY_COUNT | 731

10.125 MAXIMUM_JOURNAL_REPLAY_COUNT

Basic Information

Item Description

Name MAXIMUM_JOURNAL_REPLAY_COUNT

Summary maximum number of replaying journals for rebalance table

Data type BIGINT

Applicable phase NO_MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 2

MAX 1024

Default value 2

Description

The table rebalancing online can be performed together with dml in the cluster environment, and dml rec

ords the updates on the journal log at that moment. The table rebalancing initially applies the journal log

s which occurred during synchronizing tables, then applies journal logs which were accumulated while ap

plying the journal logs. This property sets how may times the journal logs are applied in this way.

732 | Server Property

10.126 MAXIMUM_NAMED_CURSOR_COUNT

Basic Information

Item Description

Name MAXIMUM_NAMED_CURSOR_COUNT

Summary maximum number of named cursor that the driver can support for a connection

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 1

MAX 100000

Default value 128

Description

It is the maximum number of named cursor which can be used within a single session.

A named cursor is created in the following cases.

● When a named cursor is declared using functions like SQLSetCursorName(), SQLGetCursorName()

{

...

SQLSetCursorName(stmt,

"my_cursor",

SQL_NTS);

...

}

● When the DECLARE cursor syntax is used by a function such as SQLExecDirect (), SQLPrepare ()

{

...

SQLExecDirect(stmt,

"DECLARE my_cursor CURSOR FOR SELECT col_name FROM tab_name",

MAXIMUM_NAMED_CURSOR_COUNT | 733

SQL_NTS);

...

}

● When DECLARE cursor FOR UPDATE syntax is used in an embedded SQL

{

...

EXEC SQL DECLARE my_cursor CURSOR FOR SELECT col_name FROM tab_name FOR UPDATE;

...

EXEC SQL OPEN my_cursor;

...

EXEC SQL FETCH my_cursor INTO :data;

EXEC SQL DELETE FROM tab_name WHERE CURRENT OF my_cursor;

...

EXEC SQL CLOSE my_cursor;

}

Note

In an embedded SQL, DECLARE CURSOR syntax without FOR UPDATE as follows does not create

a named cursor on the session.

{

...

EXEC SQL DECLARE my_cursor CURSOR FOR SELECT col_name FROM tab_name;

...

}

734 | Server Property

10.127 MAXIMUM_SESSION_CM_BUFFER_SIZE

Basic Information

Item Description

Name MAXIMUM_SESSION_CM_BUFFER_SIZE

Summary maximum communication bytes per shared mode session

Data type BIGINT

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 1048576

MAX 1073741824

Default value 20971520

Description

It sets the maximum buffer size available in a single session which is connected to shared mode.

For more information, refer to DISPATCHER_CM_BUFFER_SIZE.

MEASURE_CLUSTER_LATENCY | 735

10.128 MEASURE_CLUSTER_LATENCY

Basic Information

Item Description

Name MEASURE_CLUSTER_LATENCY

Summary measure cluster latency

Data type BOOL

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It is the measure cluster latency.

736 | Server Property

10.129 MEMORY_MERGE_RUN_COUNT

Basic Information

Item Description

Name MEMORY_MERGE_RUN_COUNT

Summary merge run count for memory index

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 2

MAX 64

Default value 32

Description

Memory B-tree index of bottom-up approach is created by extracting all keys from a table, sorting them i

n certain block size (MEMORY_SORT_RUN_SIZE) units, merging the sorted blocks, and generating the int

ernal node. MEMORY_MERGE_RUN_COUNT sets the number of the sorted blocks to be merged at a tim

e.

MEMORY_SORT_RUN_SIZE | 737

10.130 MEMORY_SORT_RUN_SIZE

Basic Information

Item Description

Name MEMORY_SORT_RUN_SIZE

Summary sort run size for memory index (byte)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 8192

MAX 32768

Default value 8192

Description

Memory B-tree index of bottom-up approach is created by extracting all keys from a table, sorting them i

n a certain block size (MEMORY_SORT_RUN_SIZE) unit, merging the sorted blocks, and generating the in

ternal node. MEMORY_SORT_RUN_SIZE sets the size of a single block to be sorted.

738 | Server Property

10.131 MINIMUM_UNDO_PAGE_COUNT

Basic Information

Item Description

Name MINIMUM_UNDO_PAGE_COUNT

Summary minimum undo page count

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 16

MAX 1048576

Default value 16

Description

DML uses the undo page to store the previous image. Undo page is consumed by using a single undo seg

ment per DML. If all allocated pages of undo segments are consumed, the page of another undo segmen

t can be used. MINIMUM UNDO PAGE_COUNT is the minimum number of undo page to specify the und

o segment to import page when undo pages are insufficient. If the undo pages are insufficient, the pages

can be imported only from the undo segment having more pages than MINIMUM UNDO PAGE_COUNT.

MIN_SAMPLE_ROW_COUNT | 739

10.132 MIN_SAMPLE_ROW_COUNT

Basic Information

Item Description

Name MIN_SAMPLE_ROW_COUNT

Summary minimum sampling row count for analyze table

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 0

MAX 9223372036854775807 (INT64_MAX)

Default value 100000

Description

It is the minimum number of sampling rows when executing ANALYZE TABLE by using the sampling.

740 | Server Property

10.133 NET_BUFFER_SIZE

Basic Information

Item Description

Name NET_BUFFER_SIZE

Summary TCP network buffer size (byte)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 1024

MAX 1073741824

Default value 32768

Description

It sets the TCP communications buffer size.

In the dedicated mode, it is set to the maximum communication packet size.

In the shared mode, it is set to DISPATCHER_CM_UNIT_SIZE.

NLS_DATE_FORMAT | 741

10.134 NLS_DATE_FORMAT

Basic Information

Item Description

Name NLS_DATE_FORMAT

Summary nls date format

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value YYYY-MM-DD

Description

NLS_DATE_FORMAT specifies the default date format of TO_CHAR and TO_DATE functions.

742 | Server Property

10.135 NLS_TIME_FORMAT

Basic Information

Item Description

Name NLS_TIME_FORMAT

Summary nls time format

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value HH24:MI:SS.FF6

Description

NLS_DATE_FORMAT specifies the default time format of TO_CHAR and TO_DATE functions.

NLS_TIME_WITH_TIME_ZONE_FORMAT | 743

10.136 NLS_TIME_WITH_TIME_ZONE_FORMAT

Basic Information

Item Description

Name NLS_TIME_WITH_TIME_ZONE_FORMAT

Summary nls time with time zone format

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value HH24:MI:SS.FF6 TZH:TZM

Description

NLS_TIME_WITH_TIME_ZONE FORMAT specifies the default time with time zone format of TO_CHAR an

d TO_TIME_WITH_TIME_ZONE functions.

744 | Server Property

10.137 NLS_TIMESTAMP_FORMAT

Basic Information

Item Description

Name NLS_TIMESTAMP_FORMAT

Summary nls timestamp format

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value YYYY-MM-DD HH24:MI:SS.FF6

Description

NLS_TIMESTAMP_FORMAT specifies the default timestamp format of TO_CHAR and TO_TIMESTAMP fun

ctions.

NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT | 745

10.138 NLS_TIMESTAMP_WITH_TIME_ZONE_FOR

MAT

Basic Information

Item Description

Name NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT

Summary nls timestamp with time zone format

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM

Description

NLS_TIMESTAMP_WITH_TIME_ZONE FORMAT specifies the default timestamp with time zone format of

TO_CHAR and TO_TIMESTAMP WITH TIMEZONE functions.

746 | Server Property

10.139 NUMA

Basic Information

Item Description

Name NUMA

Summary enable numa

Data type BOOLEAN

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 0

MAX 1

Default value NO

Description

It enables NUMA.

Note

To use the NUMA property in AIX, the user account should be modified. Execute the following co

mmand as a root user.

chuser "capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE" <username>

<username> is not a root but it is a user account of AIX.

Logout then login again to apply the modifications.

NUMA_MAP | 747

10.140 NUMA_MAP

Basic Information

Item Description

Name NUMA_MAP

Summary numa node map

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value 'x' : no binding

Description

It sets the map to connect cores of the system to NUMA node. This property is operated when NUMA pro

perty is set to on.

The following is an example of the system having four cores.

● Connect core 0 and 1 to number 0 NUMA node, and core 2 and 3 to number 1 NUMA node.

NUMA_MAP = '0:0:1:1' # core

● Connect core 0 and 1 to number 0 NUMA node, and core 2 and 3 to number 1 NUMA node, and cor

e 1 and 3 to number 2 NUMA node.

NUMA_MAP = '0:0,2:1:1,2' # core

748 | Server Property

10.141 OFFLINE_MEMBER_AFTER_FAILOVER

Basic Information

Item Description

Name OFFLINE_MEMBER_AFTER_FAILOVER

Summary Automatically offline member after failover

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value YES

Description

The background process automatically takes the errored member offline after completing the failover cau

sed by the node error.

If it is not possible to take the errored member offline because it is set to NO, then execute the following

syntax before the errored member joins the system again.

gSQL> ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS;

Database altered.

ONLINE_JOURNAL_REPLAY_THRESHOLD | 749

10.142 ONLINE_JOURNAL_REPLAY_THRESHOLD

Basic Information

Item Description

Name ONLINE_JOURNAL_REPLAY_THRESHOLD

Summary threshold bytes for replaying journals without table lock

Data type BIGINT

Applicable phase NO_MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10737418240 (10G)

Default value 1048576 (1M)

Description

The table rebalancing online applies journal logs several times which were recorded by dml occurred duri

ng the performance in the cluster environment. MAXIMUM_JOURNAL_REPLAY_COUNT sets how many ti

mes to apply the journal logs. However, if the amount of journal logs to be applied are small, then it is no

t repeated as many as it is set to be, but instantly set the table the EXCLUSIVE lock, and uses it as the thre

shold value to apply the last journal log.

750 | Server Property

10.143 OS_GROUP_ACCESS

Basic Information

Item Description

Name OS_GROUP_ACCESS

Summary enable access database with OS group permission

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value NO

Description

To connect to DA with another user of the same group, this property should be set to YES. Also, the uma

sk of the system should be modified to 0002.

PACKET_COMPRESSION_THRESHOLD | 751

10.144 PACKET_COMPRESSION_THRESHOLD

Basic Information

Item Description

Name PACKET_COMPRESSION_THRESHOLD

Summary The size limit at which packets are compressed(bytes)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMNEDIATE

MIN 32

MAX 2113929216

Default value 2113929216

Description

If the data size to be sent to the client is bigger than PACKET_COMPRESSION_THRESHOLD, it compresses

the communication data.

752 | Server Property

10.145 PAGE_CHECKSUM_TYPE

Basic Information

Item Description

Name PAGE_CHECKSUM_TYPE

Summary page checksum type (0:LSN, 1:CRC)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

A checksum is used to guarantee the physical consistency for each page of the datafile. GOLDILOCKS sup

ports a page checksum of LSN, CRC scheme.

● 0: LSN

● 1: CRC

PARALLEL_IO_FACTOR | 753

10.146 PARALLEL_IO_FACTOR

Basic Information

Item Information

Name PARALLEL_IO_FACTOR

Summary parallel load factor

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 1

MAX 16

Default value 1

Description

It sets the number of threads for the parallel loading of data file when starting database and the number

of threads for parallel recording of data file at checkpoint.

754 | Server Property

10.147 PARALLEL_IO_GROUP_1 ~ PARALLEL_IO_

GROUP_16

Basic Information

Item Description

Name PARALLEL_IO_GROUP_1

Summary parallel load group 1

Data type VARCHAR

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/db

Description

It sets the group directory for parallel I/O of data file. It sets the number of group as many as PARALLEL_I

O_FACTOR, then parallel I/O is performed in data file unit which belongs to each group.

PARALLEL_LOAD_FACTOR | 755

10.148 PARALLEL_LOAD_FACTOR

Basic Information

Item Description

Name PARALLEL_LOAD_FACTOR

Summary parallel load factor

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 64

Default value 1

Description

When starting database, it sets the number of threads for parallel operation after loading the memory of

a data file.

756 | Server Property

10.149 PENDING_LOG_BUFFER_COUNT

Basic Information

Item Description

Name PENDING_LOG_BUFFER_COUNT

Summary default pending log buffer count

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 32

Default value 4

Description

When multiple transactions are simultaneously running, the pending log buffer is used to reduce the com

petition for the log buffer. PENDING LOG_BUFFER COUNT sets the number of pending log buffer which

can be used simultaneously.

PLAN_CACHE | 757

10.150 PLAN_CACHE

Basic Information

Item Description

Name PLAN_CACHE

Summary caching sql plan

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value YES

Description

It determines whether to use the plan cache.

758 | Server Property

10.151 PLAN_CACHE_SIZE

Basic Information

Item Description

Name PLAN_CACHE_SIZE

Summary sql plan cache size (byte)

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 20971520

MAX 1099511627776

Default value 104857600

Description

It sets the memory size to be used for the plan cache.

PRIVATE_STATIC_AREA_SIZE | 759

10.152 PRIVATE_STATIC_AREA_SIZE

Basic Information

Item Description

Name PRIVATE_STATIC_AREA_SIZE

Summary Shared Static Area Size (byte)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 104857600

MAX 34359738368

Default value 104857600

Description

It specifies the maximum heap memory size to be allocated by the session.

760 | Server Property

10.153 PROCESS_MAX_COUNT

Basic Information

Item Description

Name PROCESS_MAX_COUNT

Summary Process Max Count

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 12

MAX 65535

Default value 128

Description

It specifies the maximum number of processes (threads) available on the system.

Creating system process

• The process is created each time of connection to D/A mode or C/S dedicated mode.

• In C/S shared mode, processes are basic balancer, dispatcher and shared-server. A process is

not created when connecting from client.

QUERY_TIMEOUT | 761

10.154 QUERY_TIMEOUT

Basic Information

Item Description

Name QUERY_TIMEOUT

Summary query timeout (s)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 0

Description

It specifies the maximum time which a command received from the session can be executed. If the execu

tion time exceeds, the TIMEOUT error occurs.

● 0: It means infinite waiting, and TIMEOUT error does not occur.

762 | Server Property

10.155 READABLE_ARCHIVELOG_DIR_COUNT

Basic Information

Item Description

Name READABLE_ARCHIVELOG_DIR_COUNT

Summary readable archive log directory count

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 1

MAX 10

Default value 1

Description

It sets the number of directories in which archive redo logs exist when executing media recovery.

READABLE_BACKUP_DIR_COUNT | 763

10.156 READABLE_BACKUP_DIR_COUNT

Basic Information

Item Description

Name READABLE_BACKUP_DIR_COUNT

Summary readable backup directory count

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 1

MAX 10

Default value 1

Description

It sets the number of directories in which incremental backups exist when restoring files using incrementa

l backups.

764 | Server Property

10.157 REBALANCE_BLOCK_READ_COUNT

Basic Information

Item Description

Name REBALANCE_BLOCK_READ_COUNT

Summary block read count for rebalance

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM DEFERRED

MIN 1

MAX 65536

Default value 1

Description

It is the block read count for rebalance.

RECOMPILE_CHECK_MINIMUM_PAGE_COUNT | 765

10.158 RECOMPILE_CHECK_MINIMUM_PAGE_CO

UNT

Note

It is not supported after 3.1.

Basic Information

Item Description

Name RECOMPILE_CHECK_MINIMUM_PAGE_COUNT

Summary minimum page count for recompile check

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 10000

Default value 64

Description

It sets the minimum page count to check if the plan is recompiled due to the page count modification.

766 | Server Property

10.159 RECOMPILE_PAGE_PERCENT

Note

It is not supported after 3.1.

Basic Information

Item Description

Name RECOMPILE_PAGE_PERCENT

Summary recompile page percent

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1000

Default value 30

Description

It sets the page percentage when recompiles the plan due to the page count modification. If its value is 0,

it does not recompile due to the page count modification.

RECOVERY_LOG_BUFFER_SIZE | 767

10.160 RECOVERY_LOG_BUFFER_SIZE

Basic Information

Item Description

Name RECOVERY_LOG_BUFFER_SIZE

Summary default log buffer size for recovery

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 786432

MAX 32 Mega

Default value 10 Mega

Description

It is the default log buffer size for recovery.

768 | Server Property

10.161 REDO_LOG_COMPRESSION_THRESHOLD

Basic Information

Item Description

Name REDO_LOG_COMPRESSION_THRESHOLD

Summary The size limit at which redo log are compressed(bytes)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 32

MAX 2113929216

Default value 256

Description

If the size of the created REDO LOG is bigger than REDO_LOG_COMPRESSION_THRESHOLD value, it com

presses REDO LOG.

REFINE_RELATION | 769

10.162 REFINE_RELATION

Basic Information

Item Description

Name REFINE_RELATION

Summary refine aged relations

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value YES

Description

If this property is set to NO, then REFINE RELATION process is not preformed when restarting the server.

This property can be used when an error occurs during the REFINE RELATION process. However, segment

s of RELATIONs (tables or indexes) which were dropped but not REFINEd can not be reused. When resolvi

ng the error then setting this property to YES and restarting, it tries to REFINE relations which were not dr

opped.

770 | Server Property

10.163 SESSION_FATAL_BEHAVIOR

Basic Information

Item Description

Name SESSION_FATAL_BEHAVIOR

Summary session fatal behavior

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

When session fatal occurs, it determines whether to terminate only the thread which caused the fatal or t

o terminate the process.

● 0: It terminates only the thread which caused fatal.

● 1: It terminates the process.

If multiple sessions are simultaneously performed in the process, the process is terminated after all se

ssions finish using database.

SESSION_MEMORY_INIT_SIZE | 771

10.164 SESSION_MEMORY_INIT_SIZE

Basic Information

Item Description

Name SESSION_MEMORY_INIT_SIZE

Summary initial memory size for session

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 131072 (128K)

MAX 1073741824 (1G)

Default value 131072 (128K)

Description

It sets the shared memory size to be allocated in advance so that it can be used in the session.

772 | Server Property

10.165 SESSION_MEMORY_SHRINK_THRESHOLD

Basic Information

Item Description

Name SESSION_MEMORY_SHRINK_THRESHOLD

Summary threshold bytes to attempt to shrink session memory allocator (byte)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 131072 (128K)

MAX 1073741824 (1G)

Default value 131072 (128K)

Description

It sets the threshold value to determine whether to return the dynamic shared memory which is not used

by the session to the system when releasing the dynamic shared memory used in the session. In other wo

rds, if the memory chunk which is bigger than the set value among unused memory exists, then it is retur

ned to the system.

SHARED_MEMORY_ADDRESS | 773

10.166 SHARED_MEMORY_ADDRESS

Basic Information

Item Description

Name SHARED_MEMORY_ADDRESS

Summary shared memory address

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value 1610612736

Description

It specifies the address of Shared Static Area (SSA).

774 | Server Property

10.167 SHARED_MEMORY_STATIC_KEY

Basic Information

Item Description

Name SHARED_MEMORY_STATIC_KEY

Summary Shared Memory Static KEY

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value 542353

Description

When running server, it specifies the shared memory key values which are used to allocate Static Shared

Area (SSA) space.

SHARED_MEMORY_STATIC_NAME | 775

10.168 SHARED_MEMORY_STATIC_NAME

Basic Information

Item Description

Name SHARED_MEMORY_STATIC_NAME

Summary Shared Memory Static Name

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value _STATIC

Description

When running server, it specifies the shared memory name which is used to allocate Static Shared Area (S

SA) space.

776 | Server Property

10.169 SHARED_MEMORY_STATIC_SIZE

Basic Information

Item Description

Name SHARED_MEMORY_STATIC_SIZE

Summary Shared Memory Static Size (byte)

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 104857600

MAX 1099511627776

Default value 629145600

Description

It specifies the size of the Shared Static Area (SSA).

SHARED_REQUEST_QUEUE_COUNT | 777

10.170 SHARED_REQUEST_QUEUE_COUNT

Basic Information

Item Description

Name SHARED_REQUEST_QUEUE_COUNT

Summary count of global request queue

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 1

MAX 16

Default value 1

Description

In shared mode, it sets the number of queues of which the dispatcher requests to the shared-server. A qu

eue is used when multiple dispatchers allocate user's requests to the shared-server. Generally, a single qu

eue is used for the load-balance.

However, SHARED_REQUEST_QUEUE_COUNT value is increased because if the number of dispatchers an

d shared-servers increase, then a conflict to the queue causes performance degradation.

If the value becomes bigger, the load-balance can be inefficient and the possibility of deadlock increases.

778 | Server Property

10.171 SHARED_SERVERS

Basic Information

Item Description

Name SHARED_SERVERS

Summary number of shared-server processes

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 2048

Default value 10

Description

It sets the number of shared-server processes on shared mode.

At open phase, the value can not be decreased by using alter system.

SHARED_SESSION | 779

10.172 SHARED_SESSION

Basic Information

Item Description

Name SHARED_SESSION

Summary to enable shared session

Data type BOOL

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value YES

Description

It sets whether to activate shared mode. If the value is set to NO, load-balancer (gbalancer), dispatcher (g

dispatcher), shared-server (gserver) are not executed.

780 | Server Property

10.173 SNAPSHOT_STATEMENT_TIMEOUT

Basic Information

Item Description

Name SNAPSHOT_STATEMENT_TIMEOUT

Summary snapshot statement timeout (s)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 22118400 (1 year)

Default value 22118400 (1 year)

Description

It sets the maximum holding time of the statement required for the snapshot read. TIMEOUT error occurs

for a snapshot statement which exceeds the time.

SQL_HISTORY_SIZE | 781

10.174 SQL_HISTORY_SIZE

Basic Information

Item Description

Name SQL_HISTORY_SIZE

Summary history size for SQLs

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 100000

Default value 0

Description

It is the history size for SQLs.

782 | Server Property

10.175 SQL_HISTORY_TYPE

Basic Information

Item Description

Name SQL_HISTORY_TYPE

Summary history type for SQLs

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 2

Default value 0

Description

It is the history type for SQLs.

● 0: Direct-execute

● 1: Prepare-execute

● 2: All

SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY | 783

10.176 SUPPLEMENTAL_LOG_DATA_PRIMARY_K

EY

Basic Information

Item Description

Name SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY

Summary supplemental log data of primary key columns be logged in redo log files

Data type BOOLEAN

Applicable phase MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It records supplemental log for all changes in the database.

784 | Server Property

10.177 SYSTEM_LOGGER_DIR

Basic Information

Item Description

Name SYSTEM_LOGGER_DIR

Summary system logger directory

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/trc

Description

It sets the disk path on which the trace log message is recorded.

SYSTEM_MEMORY_AUX_TABLESPACE_SIZE | 785

10.178 SYSTEM_MEMORY_AUX_TABLESPACE_SI

ZE

Basic Information

Item Description

Name SYSTEM_MEMORY_AUX_TABLESPACE_SIZE

Summary default system memory auxiliary tablespace size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 32 Mega

MAX 30 Giga

Default value 200 Mega

Description

It determines the size of initial MEM_AUX_TBS tablespace when creating the database.

786 | Server Property

10.179 SYSTEM_MEMORY_DATA_TABLESPACE_S

IZE

Basic Information

Item Description

Name SYSTEM_MEMORY_DATA_TABLESPACE_SIZE

Summary default system memory data tablespace size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 32 Mega

MAX 30 Giga

Default value 200 Mega

Description

It determines the initial tablespace size of MEM_DATA_TBS when creating database.

SYSTEM_MEMORY_DICT_TABLESPACE_SIZE | 787

10.180 SYSTEM_MEMORY_DICT_TABLESPACE_SI

ZE

Basic Information

Item Description

Name SYSTEM_MEMORY_DICT_TABLESPACE_SIZE

Summary default dictionary tablespace size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 256 Mega

MAX 30 Giga

Default value 256 Mega

Description

It determines the initial tablespace size of DICTIONARY_TBS when creating database.

788 | Server Property

10.181 SYSTEM_MEMORY_TEMP_TABLESPACE_S

IZE

Basic Information

Item Description

Name SYSTEM_MEMORY_TEMP_TABLESPACE_SIZE

Summary default system memory temporary tablespace size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 32 Mega

MAX 30 Giga

Default value 200 Mega

Description

It determines the initial tablespace size of MEM_TEMP_TBS when creating database.

SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE | 789

10.182 SYSTEM_MEMORY_UNDO_TABLESPACE_

SIZE

Basic Information

Item Description

Name SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE

Summary default system memory undo tablespace size (byte)

Data type BIGINT

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM NONE

MIN 32 Mega

MAX 30 Giga

Default value 32 Mega

Description

It determines the initial tablespace size of MEM_UNDO_TBS when creating database.

790 | Server Property

10.183 SYSTEM_TABLESPACE_DIR

Basic Information

Item Description

Name SYSTEM_TABLESPACE_DIR

Summary system tablespace directory

Data type VARCHAR

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN N/A

MAX N/A

Default value <GOLDILOCKS_DATA>/db

Description

It sets the path to which the initial system tablespaces are stored when creating database.

SYSTEM_UDS_DIR | 791

10.184 SYSTEM_UDS_DIR

Basic Information

Item Description

Name SYSTEM_UDS_DIR

Summary system unix domain socket directory

Data type VARCHAR

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value '/tmp'

Description

It sets a directory on which the unix domain socket file is created.

Setting the directory for the unix domain socket except for DB system, such asglsnr, is managed by a sepa

rate configuration file.

The maximum setting value is 60 bytes. (The maximum size of the absolute path (directory + file name) f

or the unix domain socket file varies according to OS, but generally it is around 100 bytes.)

792 | Server Property

10.185 TCP_CLIENT_NUMA_NODE

Basic Information

Item Description

Name TCP_CLIENT_NUMA_NODE

Summary numa node for TCP clients

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN -1

MAX 63

Default value -1

Description

It sets the NUMA node ID to which the client server session is bound. This property is operated when NU

MA property is set to on.

TCP_NODELAY | 793

10.186 TCP_NODELAY

Basic Information

Item Description

Name TCP_NODELAY

Summary no delays in buffer flushing within the TCP/IP protocol stack

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 1

Default value YES

Description

It sets TCP_NODELAY option of the socket when transferring the data to a client in C/S method (TCP sock

et).

Set it to NO when fast latency is not required and reducing the network load is needed.

794 | Server Property

10.187 TEMP_SEGMENT_CACHE_SIZE

Basic Information

Item Description

Name TEMP_SEGMENT_CACHE_SIZE

Summary
the number of segments to be cached for global temporary tables and ind

exes in each session

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM DEFERRED

MIN 0

MAX 4294967295

Default value 3

Description

It sets the number of segments to be cached in a session instead of returning them to a tablespace when

dropping a global temporary table or a global temporary index segment. Segments in the segment cache

are reused later in a global temporary table or a global temporary index.

● 0: It does not use a segment cache of a global temporary table or of a global temporary index in a ses

sion.

● 1 ~ 4294967295: It keeps the specific number of segment caches of a global temporary table or a gl

obal temporary index in a session.

TEMP_UNDO_ENABLED | 795

10.188 TEMP_UNDO_ENABLED

Basic Information

Item Description

Name TEMP_UNDO_ENABLED

Summary
enables writing undo records of global temporary tables to the temp table

space

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

It defines the location of logging undo records for a global temporary table.

● 0 (FALSE): It records the undo records in the default undo tablespace of database.

● 1 (TRUE): It records the undo records in the default temporary tablespace of database.

796 | Server Property

10.189 TIMED_STATISTICS

Basic Information

Item Description

Name TIMED_STATISTICS

Summary timed statistics

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 2

Default value 0

Description

It is whether to check the wait event.

To record the statistics related to wait event on v$system_event, v$session_event and v$session_wait tabl

e, set this property.

● 0: It does not record the statistics.

● 1: It records the statistics.

● 2: It records the statistics by using the high precision timer.

TIMEZONE | 797

10.190 TIMEZONE

Basic Information

Item Description

Name TIMEZONE

Summary timezone

Data type VARCHAR

Applicable phase NONE

Updatable FALSE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN N/A

MAX N/A

Default value +09:00

Description

It is a time zone value of database.

It is applied when creating database, and it uses the value of the range from '-14:00' to '+14:00'.

798 | Server Property

10.191 TRACE_ALTER_SYSTEM

Basic Information

Item Description

Name TRACE_ALTER_SYSTEM

Summary write trace messages for ALTER SYSTEM

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It records the SQL statements in trace file (<GOLDILOCKS_DATA>/trc/system.trc) when executing ALTER

SYSTEM syntax.

Set TRACE_ALTER_SYSTEM property to ON to record system changes.

SELECT inquiry, and execution of INSERT, UPDATE, DELETE syntax have nothing to do with TRACE_ALTE

R_SYSTEM property, so they do not affect the performance of TRACE_ALTER_SYSTEM.

TRACE_DDL | 799

10.192 TRACE_DDL

Basic Information

Item Description

Name TRACE_DDL

Summary write trace messages for DDL

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

When executing DDL, it records the executed SQL statements in trace file (<GOLDILOCKS_DATA>/trc/syst

em.trc).

Set TRACE_ALTER_SYSTEM property to ON to record SQL statements execution such as CREATE/DROP/A

LTER table.

TRACE_DDL property affects only to DDL statements. However, it has nothing to do with SELECT inquiry,

and execution of INSERT, UPDATE, DELETE syntax. Therefore, it does not affect the performance.

800 | Server Property

10.193 TRACE_LOG_ID

Basic Information

Item Description

Name TRACE_LOG_ID

Summary trace log ID

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 0

Description

The execution plan for the query, and other related information are recorded in the trace file (opt_p[proc

ess ID_s [session ID].trc) under the trace directory (<GOLDILOCKS_DATA>/trc/) when processing queries.

To record SQL statement for the query, the execution plan and the execution time, refer to the following

flag information.

Table 10-1 Flag information for TRACE_LOG_ID

Information Flag(on) Flag(off)

Whether to output the successful SQL query 100000 0

Whether to output the failed SQL query 10000 0

Whether to output the execution plan 1000 0

Whether to output the execution type (direct/prepare) 100 0

Whether to output the bind value 10 0

Whether to output the execution time per section 1 0

To set it in a form of "output the successful SQL query" + "output the execution plan" + "output the bind

value", set the TRACE_LOG_ID value to 101010.

TRACE_LOG_MSGBUF_SIZE | 801

10.194 TRACE_LOG_MSGBUF_SIZE

Basic Information

Item Description

Name TRACE_LOG_MSGBUF_SIZE

Summary memory buffer size for trace log message

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM FALSE

MIN 8192

MAX 10485760

Default value 8192

Description

It sets the size of the heap memory buffer which is used to configure the log message to be recorded in t

he trace logfile.

802 | Server Property

10.195 TRACE_LOG_TIME_DETAIL

Basic Information

Item Description

Name TRACE_LOG_TIME_DETAIL

Summary detail trace log time

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It sets whether to increase the time accuracy when recording trace log.

If the value is ON, it has an accuracy of 1 us.

If the value is OFF, it has an accuracy of 10 ms.

TRACE_LOGGER | 803

10.196 TRACE_LOGGER

Basic Information

Item Description

Name TRACE_LOGGER

Summary trace log type (1:file, 2:file & remote)

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 2

Default value 1

Description

It sets the target on which the trace log is written.

If it is 1, then it is recorded in a file, and if it is 2, then it is remotely recorded in a file.

When it is remotely written, then it remotely collects trace logs from gtrclogger and records in a file.

804 | Server Property

10.197 TRACE_LOGGER_REMOTE_HOST

Basic Information

Item Description

Name TRACE_LOGGER_REMOTE_HOST

Summary remote host for trace logger

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 255255255255

Default value 127000000001

Description

It sets the host to which the trace log is remotely transferred by setting TRACE_LOGGER to 2.

TRACE_LOGGER_REMOTE_PORT | 805

10.198 TRACE_LOGGER_REMOTE_PORT

Basic Information

Item Description

Name TRACE_LOGGER_REMOTE_PORT

Summary remote port for trace logger

Data type BIGINT

Applicable phase NONE

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1024

MAX 49151

Default value 21470

Description

It sets the port to which the trace log is remotely transferred by setting TRACE_LOGGER to 2.

806 | Server Property

10.199 TRACE_LOGIN

Basic Information

Item Description

Name TRACE_LOGIN

Summary write login trace messages for user

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It records the related access information in trace file (<GOLDILOCKS_DATA>/trc/login.trc) on login.

Set TRACE_LOGIN property to ON to record the related information on login.

TRACE_LONG_RUN_CURSOR | 807

10.200 TRACE_LONG_RUN_CURSOR

Basic Information

Item Description

Name TRACE_LONG_RUN_CURSOR

Summary write trace SQL for cursor life-time over specific time (mili-sec. 0 ~ 10000000)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 0

Description

When cursor life-time is longer than the specified property time, then it records the SQL statement of the

cursor in the trace file (<GOLDILOCKS_DATA>/trc/system.trc).

● Description of value

○ Unit: millisecond

○ Value 0: It does not record information.

○ Recommended value: 20 (millisecond) or longer

○ The value of 20 or longer is recommended because the execution time is measured using the tim

e tic in 10 ms period.

● The following is an example of recording the SQL statement whose cursor life-time is longer than 1 s

econd.

gSQL> ALTER SYSTEM SET TRACE_LONG_RUN_CURSOR = 1000;

● The following is an example of restoring to the default value.

gSQL> ALTER SYSTEM SET TRACE_LONG_RUN_CURSOR TO DEFAULT;

It is used to trace the user program maintaining the cursor for a long time as follows.

808 | Server Property

int main()

{

...

EXEC SQL DECLARE cur1 CURSOR FOR SELECT name FROM t1 WHERE pk = :s_id;

EXEC SQL OPEN cur1

EXEC SQL FETCH cur1 INTO :s_name;

● Due to the user logic, ager fails to clean up resources for a long time.

long_run_user_logic(s_name);

EXEC SQL CLOSE cur1;

...

}

TRACE_LONG_RUN_SQL | 809

10.201 TRACE_LONG_RUN_SQL

Basic Information

Item Description

Name TRACE_LONG_RUN_SQL

Summary write trace for long-run SQL over specific execution time (mili-sec. 0 ~ 10000000)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 0

Description

It records the SQL statement whose execution time is longer than the specified property time in the trace

file (<GOLDILOCKS_DATA>/trc/system.trc).

● Description of value

○ Unit: millisecond

○ Value 0: It does not record information.

○ Recommended value: 20 (millisecond) or longer

○ The value of 20 or longer is recommended because the execution time is measured using the tim

e tic in 10 ms period.

The following is an example of recording the SQL statement whose execution time is longer than 1 secon

d.

gSQL> ALTER SYSTEM SET TRACE_LONG_RUN_SQL = 1000;

The following is an example of restoring to the default value.

gSQL> ALTER SYSTEM SET TRACE_LONG_RUN_SQL TO DEFAULT;

810 | Server Property

10.202 TRACE_XA

Basic Information

Item Description

Name TRACE_XA

Summary logging trace log for xa interfaces

Data type BOOLEAN

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value NO

Description

It specifies whether to output trace messages when using XA interface. Message is output to the 'SYSTE

M_LOGGER_DIR / xa.trc'.

TRANSACTION_ALLOCATION_TIMEOUT | 811

10.203 TRANSACTION_ALLOCATION_TIMEOUT

Basic Information

Item Description

Name TRANSACTION_ALLOCATION_TIMEOUT

Summary a time limit (sec) for allocating transaction slot

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 3

Description

It is the maximum waiting time when allocating transaction slots.

The following error occurs when the waiting time exceeds TRANSACTION_ALLOCATION_TIMEOUT.

gSQL> insert into t1 values(1);

ERR-HYT00(14129): transaction allocation time exceeded

812 | Server Property

10.204 TRANSACTION_COMMIT_WRITE_MODE

Basic Information

Item Description

Name TRANSACTION_COMMIT_WRITE_MODE

Summary transaction commit write mode (0: no_wait, 1: wait)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 1

Default value 0

Description

TRANSACTION_COMMIT_WRITE_MODE specifies whether a log generated by the transaction is flushed t

o the disk log file, when the transaction is committed. If TRANSACTION_COMMIT_WRITE_MODE is '1', t

he log should be flushed to the disk log file at the time of the transaction commit. Otherwise the transact

ion is committed regardless of log flush.

If the system is operated when TRANSACTION_COMMIT_WRITE_MODE is set to '0', the latest data willbe

lost when GOLDILOCKS is abnormally terminated without log flush after COMMIT transaction. It is becau

se the logs are not recorded in this case.

Therefore, if all committed transactions should be remained (stored) in database, the system should be o

perated after setting TRANSACTION_COMMIT_WRITE_MODE to '1'. Or, 'ALTER SYSTEM FLUSH LOGS' st

atement should be explicitly performed at the time of transaction commit in order to flush log after TRAN

SACTION_COMMIT_WRITE_MODE is set to '0'.

● 0: no wait

● 1: wait

TRANSACTION_MAXIMUM_UNDO_PAGE_COUNT | 813

10.205 TRANSACTION_MAXIMUM_UNDO_PAGE_

COUNT

Basic Information

Item Description

Name TRANSACTION_MAXIMUM_UNDO_PAGE_COUNT

Summary The maximum number of undo pages that a transaction can write.

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 1

MAX 838860800

Default value 838860800

Description

It means the maximum number of undo pages which the transaction can record. The minimum value is 1

(8 Kbytes) and the maximum value is 838860800 (100 Gbytes).

814 | Server Property

10.206 TRANSACTION_TABLE_SIZE

Basic Information

Item Description

Name TRANSACTION_TABLE_SIZE

Summary transaction table size

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 64

MAX 10240

Default value 1024

Description

It sets the maximum number of transaction tables that can be executed in the database. These tables are

allocated to ensure the ACID properties of transactions when updating the database. The database shoul

d restart to modify the number of transaction tables, and the number can be modified only to the numbe

r bigger than the previously specified number.

If it is modified to a smaller number, then the restart fails. For example, if the value set as 1,024 is modifie

d to 512, then the restart fails as follows. In this case, modify it to 1,024 or bigger, then the restart succe

eds.

gSQL> ALTER SYSTEM SET TRANSACTION_TABLE_SIZE = 512 SCOPE = FILE;

System altered.

gSQL> \CONNECT sys gliese as sysdba

gSQL> \SHUTDOWN

Shutdown success

● The restart fails.

gSQL> \STARTUP

ERR-HY000(14118): TRANSACTION_TABLE_SIZE property value must be equal to or greater than

TRANSACTION_TABLE_SIZE | 815

'1024'

gSQL> ALTER SYSTEM SET TRANSACTION_TABLE_SIZE = 1024 SCOPE = FILE;

System altered.

gSQL> \SHUTDOWN

Shutdown success

gSQL> \STARTUP

Startup success

816 | Server Property

10.207 TRANSACTION_TIMEOUT

Basic Information

Item Description

Name TRANSACTION_TIMEOUT

Summary transaction timeout (s)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 10000000

Default value 0

Description

It sets the duration of when the transaction is activated. It is used to prevent the side effects of when the

transaction is activated for a long time. If a transaction exceeds the specified time, then gmaster daemon

automatically terminates the session owned by that transaction.

UNDO_RELATION_ALLOCATION_TIMEOUT | 817

10.208 UNDO_RELATION_ALLOCATION_TIMEOUT

Basic Information

Item Description

Name UNDO_RELATION_ALLOCATION_TIMEOUT

Summary a time limit (sec) for allocating undo relation

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION TRUE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 100000000

Default value 3

Description

It is the maximum waiting time when allocating undo relations.

The following error occurs when the waiting time exceeds UNDO_RELATION_ALLOCATION_TIMEOUT.

gSQL> insert into t1 values(1);

ERR-HYT00(14130): undo relation allocation time exceeded

818 | Server Property

10.209 UNDO_RELATION_COUNT

Basic Information

Item Description

Name UNDO_RELATION_COUNT

Summary undo relation count

Data type BIGINT

Applicable phase NO MOUNT or below

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 8

MAX 10240

Default value 128

Description

It sets the number of undo relation to be used in database. Undo relation is allocated for the purpose tha

t the transaction executing DML uses undo segment. The database should restart to modify the number

of undo relations, and the number can be modified only to the number bigger than the previously specifi

ed number.

If it is modified to a smaller number, then the restart fails. For example, if the value set as 128 is modified

to 64, then the restart fails as follows. In this case, modify it to 128 or bigger, then the restart succeeds.

gSQL> ALTER SYSTEM SET UNDO_RELATION_COUNT = 64 SCOPE = FILE;

System altered.

gSQL> \CONNECT sys gliese as sysdba

gSQL> \SHUTDOWN

Shutdown success

● The restart fails.

gSQL> \STARTUP

ERR-HY000(14119): UNDO_RELATION_COUNT property value must be equal to or greater than '128'

gSQL> ALTER SYSTEM SET UNDO_RELATION_COUNT = 128 SCOPE = FILE;

UNDO_RELATION_COUNT | 819

System altered.

gSQL> \SHUTDOWN

Shutdown success

gSQL> \STARTUP

Startup success

820 | Server Property

10.210 UNDO_SHRINK_THRESHOLD

Basic Information

Item Description

Name UNDO_SHRINK_THRESHOLD

Summary threshold bytes to attempt to shrink undo segment (byte)

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 1048576

MAX 107374182400

Default value 10485760

Description

Ager thread periodically (10 seconds) checks the undo segment space. If an undo segment uses too muc

h space, a part of it is returned to the tablespace. The property specifies the size (in bytes) of the space to

be returned at a time.

USE_LARGE_PAGES | 821

10.211 USE_LARGE_PAGES

Basic Information

Item Description

Name USE_LARGE_PAGES

Summary use large pages

Data type BIGINT

Applicable phase NO MOUNT or above

Updatable TRUE

ALTER SESSION FALSE

ALTER SYSTEM IMMEDIATE

MIN 0

MAX 2

Default value 0

Description

It uses HugePage. HugePage should be set in the device beforehand to use USE_LARGE_PAGES.

● 0: It does not use the large page.

● 1: It uses the large page. If it fails to allocate the shared memory, then an error occurs.

● 2: It tries to allocate the shared memory by using the large page. If it fails to allocate the shared mem

ory, then it allocates the memory by using the regular page.

Note

It can be used only in Linux kernel 2.6.32-573 or higher.

SQL Manual

Part III.

823

824 | SQL Manual

11. SQL Elements

11.1 Syntax Elements

Identifiers

Literals

Null Value

Comments

SQL Reserved Words and Keywords

Compatibility for Syntax Elements

11.2 Data Type

Numeric Type

CHARACTER STRING Type

BINARY STRING Type

Date/ Time Type

INTERVAL Type

BOOLEAN Type

ROWID Type

Type Comparison

Type Conversion

Type Combination

Compatibility for Data Type

11.3 Format String

Number Format String

Datetime Format String

11.4 Expressions

Boolean Value Expression

CASE Expression

CAST Specification

Scalar Subquery Expression

Compatibility

11.5 Pseudo Columns

ROWID Pseudo Column

CLUSTER_GROUP_ID Pseudo Column

CLUSTER_MEMBER_ID Pseudo Column

CLUSTER_GROUP_NAME Pseudo Column

CLUSTER_MEMBER_NAME Pseudo Column

Compatibility

11.6 Operators

Arithmetic Operator

Concatenation Operator

. 865

.	 866

.	 866

.	 866

.	 879

.	 880

.	 881

.	 886

.	 887

.	 887

.	 889

.	 890

.	 890

.	 890

.	 891

.	 891

.	 891

.	 898

.	 905

.	 910

.	 914

.	 914

.	 917

.	 928

.	 928

.	 930

.	 932

.	 933

.	 933

.	 935

.	 935

.	 936

.	 937

.	 937

.	 938

.	 939

.	 940

.	 940

.	 941

| 825

Set Operator

Compatibility

11.7 Functions

Single Row Function

Aggregate Function

Compatibility

11.8 Conditions

Condition

Comparison Conditions

Logical Conditions

Null Condition

Compound Conditions

Pattern-matching Conditions

BETWEEN Condition

IN Condition

EXISTS Condition

Compatibility

11.9 Built-in Data Type References

Aliases of Built-in Data Types

BINARY

BINARY VARYING

BINARY LONG VARYING

BOOLEAN

CHARACTER

CHARACTER VARYING

CHARACTER LONG VARYING

DATE

FLOAT

INTERVAL

NATIVE_BIGINT

NATIVE_DOUBLE

NATIVE_INTEGER

NATIVE_REAL

NATIVE_SMALLINT

NUMBER

NUMERIC

ROWID

TIME

TIMESTAMP

.	 941

.	 942

.	 943

.	 943

.	 949

.	 949

.	 951

.	 951

.	 951

.	 955

.	 956

.	 957

.	 957

.	 958

.	 959

.	 960

.	 961

.	 963

.	 963

.	 966

.	 967

.	 968

.	 969

.	 970

.	 971

.	 972

.	 973

.	 974

.	 975

.	 979

.	 980

.	 981

.	 982

.	 983

.	 984

.	 986

.	 987

.	 988

.	 989

826 | SQL Manual

11.10 Built-in Function References

* (MULTIPLICATION)

+ (ADDITION)

+ (POSITIVE)

- (NEGATIVE)

- (SUBTRACTION)

/ (DIVISION)

|| (CONCATENATE)

ABS

ACOS

ADDDATE

ADDTIME

ADD_MONTHS

ASCII

ASIN

ATAN

ATAN2

AVG

BITAND

BITNOT

BITOR

BITXOR

BIT_LENGTH

BYTE_LENGTH

CASE2

CBRT

CEIL

CHAR_LENGTH

CHR

CLOCK_DATE

CLOCK_LOCALTIME

CLOCK_LOCALTIMESTAMP

CLOCK_TIME

CLOCK_TIMESTAMP

COALESCE

CONCAT

CONCATENATE

COS

COT

.	 990

.	 990

.	 992

.	 994

.	 995

.	 996

.	 999

.	 1,001

.	 1,002

.	 1,003

.	 1,004

.	 1,005

.	 1,006

.	 1,007

.	 1,008

.	 1,009

.	 1,010

.	 1,011

.	 1,012

.	 1,013

.	 1,014

.	 1,015

.	 1,016

.	 1,017

.	 1,018

.	 1,020

.	 1,021

.	 1,022

.	 1,023

.	 1,024

.	 1,025

.	 1,026

.	 1,027

.	 1,028

.	 1,029

.	 1,030

.	 1,031

.	 1,032

.	 1,033

| 827

COUNT

COUNT(*)

CURRENT_CATALOG

CURRENT_DATE

CURRENT_SCHEMA

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURRVAL

DATEADD

DATEDIFF

DATE_ADD

DATE_PART

DECODE

DEGREES

DIGEST

DUMP

EXP

EXTRACT

FACTORIAL

FLOOR

FROM_BASE64

GREATEST

HEX

INITCAP

INSTR

LAST_DAY

LAST_IDENTITY_VALUE

LEAST

LENGTH

LENGTHB

LN

LOCALTIME

LOCALTIMESTAMP

LOCAL_GROUP_ID

LOCAL_GROUP_NAME

LOCAL_MEMBER_ID

LOCAL_MEMBER_NAME

LOG

.	 1,034

.	 1,035

.	 1,036

.	 1,037

.	 1,038

.	 1,039

.	 1,040

.	 1,041

.	 1,042

.	 1,043

.	 1,045

.	 1,047

.	 1,048

.	 1,049

.	 1,051

.	 1,052

.	 1,053

.	 1,054

.	 1,055

.	 1,057

.	 1,058

.	 1,059

.	 1,060

.	 1,061

.	 1,062

.	 1,063

.	 1,065

.	 1,066

.	 1,069

.	 1,070

.	 1,071

.	 1,072

.	 1,073

.	 1,074

.	 1,075

.	 1,076

.	 1,077

.	 1,078

.	 1,079

828 | SQL Manual

LOGON_USER

LOWER

LPAD

LTRIM

MAX

MIN

MOD

MONTHS_BETWEEN

NEXT_DAY

NEXTVAL

NULLIF

NVL

NVL2

OCTET_LENGTH

OVERLAY

PI

POSITION

POWER

RADIANS

RANDOM

REPEAT

REPLACE

REVERSE

ROUND(number)

ROUND(date)

ROWID_GRID_BLOCK_ID

ROWID_GRID_BLOCK_SEQ

ROWID_MEMBER_ID

ROWID_OBJECT_ID

ROWID_PAGE_ID

ROWID_ROW_NUMBER

ROWID_SHARD_ID

ROWID_TABLESPACE_ID

ROWNUM

RPAD

RTRIM

SESSION_ID

SESSION_SERIAL

SESSION_USER

.	 1,080

.	 1,081

.	 1,082

.	 1,083

.	 1,084

.	 1,085

.	 1,086

.	 1,087

.	 1,089

.	 1,091

.	 1,092

.	 1,093

.	 1,094

.	 1,095

.	 1,096

.	 1,098

.	 1,099

.	 1,100

.	 1,101

.	 1,102

.	 1,103

.	 1,104

.	 1,105

.	 1,106

.	 1,107

.	 1,109

.	 1,110

.	 1,111

.	 1,112

.	 1,113

.	 1,114

.	 1,115

.	 1,116

.	 1,117

.	 1,121

.	 1,122

.	 1,123

.	 1,124

.	 1,125

| 829

SHARD_GROUP_ID

SHARD_GROUP_NAME

SHARD_ID

SHARD_NAME

SHIFT_LEFT

SHIFT_RIGHT

SIGN

SIN

SPLIT_PART

SQRT

STATEMENT_DATE

STATEMENT_LOCALTIME

STATEMENT_LOCALTIMESTAMP

STATEMENT_TIME

STATEMENT_TIMESTAMP

STATEMENT_VIEW_SCN

STATEMENT_VIEW_SCN_DCN

STATEMENT_VIEW_SCN_GCN

STATEMENT_VIEW_SCN_LCN

STDDEV

STDDEV_POP

STDDEV_SAMP

SUBSTR

SUBSTRB

SUBSTRING

SUM

SYSDATE

SYS_EXTRACT_UTC

SYSTIME

SYSTIMESTAMP

TAN

TO_BASE64

TO_CHAR(datetime)

TO_CHAR(number)

TO_DATE

TO_NATIVE_DOUBLE

TO_NATIVE_REAL

TO_NUMBER

TO_TIME

.	 1,126

.	 1,127

.	 1,128

.	 1,129

.	 1,130

.	 1,131

.	 1,132

.	 1,133

.	 1,134

.	 1,135

.	 1,136

.	 1,137

.	 1,138

.	 1,139

.	 1,140

.	 1,141

.	 1,142

.	 1,143

.	 1,144

.	 1,145

.	 1,147

.	 1,149

.	 1,151

.	 1,152

.	 1,153

.	 1,155

.	 1,156

.	 1,157

.	 1,158

.	 1,159

.	 1,160

.	 1,161

.	 1,162

.	 1,164

.	 1,165

.	 1,166

.	 1,167

.	 1,168

.	 1,169

830 | SQL Manual

TO_TIME_TZ

TO_TIME_WITH_TIME_ZONE

TO_TIMESTAMP

TO_TIMESTAMP_TZ

TO_TIMESTAMP_WITH_TIME_ZONE

TRANSACTION_DATE

TRANSACTION_LOCALTIME

TRANSACTION_LOCALTIMESTAMP

TRANSACTION_TIME

TRANSACTION_TIMESTAMP

TRANSLATE

TRIM

TRUNC(number)

TRUNC(date)

UPPER

UNHEX

UNHEX_TO_CHARSTR

USER_ID

UUID

VAR_POP

VAR_SAMP

VARIANCE

VERSION

WIDTH_BUCKET

12. SQL Languages

12.1 Data Definition Language

DDL Related Statements

Concepts of DDL

DDL and Transaction

12.2 Data Manipulation Language

DML Related Statements

Concepts of DML

Inserting Data

Deleting Data

Updating Data

Manipulating Data Using Cursor

DML Query

12.3 Data Query Language

Query Related Statements

.	 1,170

.	 1,171

.	 1,173

.	 1,175

.	 1,176

.	 1,178

.	 1,179

.	 1,180

.	 1,181

.	 1,182

.	 1,183

.	 1,185

.	 1,187

.	 1,188

.	 1,190

.	 1,191

.	 1,192

.	 1,193

.	 1,194

.	 1,195

.	 1,197

.	 1,199

.	 1,201

.	 1,202

. 1,203

.	 1,204

.	 1,204

.	 1,204

.	 1,205

.	 1,214

.	 1,214

.	 1,214

.	 1,215

.	 1,217

.	 1,217

.	 1,218

.	 1,219

.	 1,222

.	 1,222

| 831

Concepts of Query

Basic Query

SET Operator

Join

Grouping Result Set (group by)

Sorting Result Set (order by)

Subquery

12.4 Control Language

Control Language Related Statements

Transaction Control

Session Control

System Control

12.5 Processing SQL in Cluster

Processing DDL in Cluster

Processing SELECT in Cluster

Processing DML in Cluster

13. SQL Objects

13.1 Database

Database-related Statements

Database Configuration Objects

Built-in Objects

13.2 Profile

Profile-related Statements

Concepts of Profile

13.3 Audit Policy

Audit Policy-related Statement

Examples

Concepts of Audit Policy

13.4 Authorization

Authorization-related Statements

Concepts of User

Creating Objects and Privileges

Privileges

13.5 Schema

Schema-related Statements

Concepts of Schema

User and Schema

Schema Path

PUBLIC Schema

.	 1,222

.	 1,223

.	 1,225

.	 1,226

.	 1,232

.	 1,233

.	 1,234

.	 1,236

.	 1,236

.	 1,236

.	 1,239

.	 1,240

.	 1,241

.	 1,241

.	 1,242

.	 1,277

. 1,289

.	 1,290

.	 1,290

.	 1,291

.	 1,294

.	 1,297

.	 1,297

.	 1,297

.	 1,303

.	 1,303

.	 1,303

.	 1,307

.	 1,331

.	 1,331

.	 1,332

.	 1,333

.	 1,336

.	 1,342

.	 1,342

.	 1,342

.	 1,343

.	 1,345

.	 1,348

832 | SQL Manual

Examples of Using User and Schema

13.6 Tablespace

Tablespace-related Statements

Concepts of Tablespace

13.7 Table

Table-related Statements

Concepts of Table

Global Temporary Table

Table in Cluster

13.8 Index

Index-related Statements

Concepts of Index

Concepts of UNIQUE

13.9 View

View-related Statements

Concepts of View

13.10 Sequence

Sequence-related Statements

Concepts of Sequence

Cluster Sequence

13.11 Synonym

Synonym-related Statements

Concepts of Synonym

13.12 Stored Procedure

Stored Procedure-related Statements

Concepts of Stored Procedure

13.13 Stored Function

Stored Function-related Statements

Concepts of Stored Function

14. Cluster Objects

14.1 Cluster System

Cluster System Related Statements

Concepts of Cluster System

Availability of Cluster System

Expanding Cluster System

14.2 Cluster Group

Cluster Group Related Statements

Concepts of Cluster Group

14.3 Cluster Member

.	 1,350

.	 1,353

.	 1,353

.	 1,353

.	 1,356

.	 1,356

.	 1,357

.	 1,359

.	 1,361

.	 1,362

.	 1,362

.	 1,362

.	 1,364

.	 1,366

.	 1,366

.	 1,366

.	 1,369

.	 1,369

.	 1,369

.	 1,372

.	 1,373

.	 1,373

.	 1,373

.	 1,376

.	 1,376

.	 1,376

.	 1,378

.	 1,378

.	 1,378

. 1,381

.	 1,382

.	 1,382

.	 1,382

.	 1,385

.	 1,386

.	 1,389

.	 1,389

.	 1,389

.	 1,391

| 833

Cluster Member Related Statements

Concepts of Cluster Member

14.4 Cluster Location

Cluster Location Related Statements

Concepts of Cluster Location

14.5 Cluster Table and Shard

Shard Related Statements

Cluster Table Type

Cloned Table

Hash-sharded table

Range-sharded Table

List-sharded Table

Rebalancing Cluster Table

14.6 Global Secondary Index

Global Secondary Index Related Statements

Concepts of Global Secondary Index

15. SQL Tuning

15.1 Overview

15.2 SQL Processing

SQL Parser

Plan Cache Check

SQL Validation

Optimization

Plan Generation

Plan Cache Registration

Execution

15.3 Query Optimizer

Overview

Query Transformations

Access Paths

Join

Cluster

Statistics Information

Adjusting Optimizer

15.4 SQL Execution Plan

Overview

Output

Reading

15.5 SQL Trace Log

.	 1,391

.	 1,391

.	 1,393

.	 1,393

.	 1,393

.	 1,394

.	 1,394

.	 1,394

.	 1,395

.	 1,397

.	 1,399

.	 1,401

.	 1,403

.	 1,410

.	 1,410

.	 1,410

. 1,413

.	 1,414

.	 1,415

.	 1,416

.	 1,416

.	 1,416

.	 1,417

.	 1,417

.	 1,418

.	 1,419

.	 1,421

.	 1,421

.	 1,422

.	 1,428

.	 1,434

.	 1,451

.	 1,454

.	 1,454

.	 1,455

.	 1,455

.	 1,455

.	 1,458

.	 1,494

834 | SQL Manual

Overview

Output

Output Format

Examples

16. SQL References

16.1 ALTER AUDIT POLICY

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.2 ALTER CLUSTER GROUP name ADD MEMBER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.3 ALTER CLUSTER GROUP name OFFLINE MEMBER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.4 ALTER CLUSTER LOCATION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

.	 1,494

.	 1,494

.	 1,495

.	 1,497

. 1,501

.	 1,502

.	 1,502

.	 1,502

.	 1,502

.	 1,503

.	 1,503

.	 1,504

.	 1,504

.	 1,504

.	 1,505

.	 1,505

.	 1,505

.	 1,505

.	 1,505

.	 1,506

.	 1,506

.	 1,507

.	 1,507

.	 1,508

.	 1,508

.	 1,508

.	 1,508

.	 1,508

.	 1,509

.	 1,509

.	 1,509

.	 1,510

.	 1,511

.	 1,511

.	 1,511

.	 1,511

.	 1,511

.	 1,512

.	 1,512

| 835

Compatibility

For More Information

16.5 ALTER DATABASE ADD LOGFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.6 ALTER DATABASE ARCHIVELOG

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.7 ALTER DATABASE BACKUP

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.8 ALTER DATABASE CLEAR AUDIT TRAIL

Function

Syntax

Invocation and Access Rules

Description

Storing Audit Trail

Examples

Compatibility

For More Information

16.9 ALTER DATABASE CLEAR PASSWORD HISTORY

.	 1,512

.	 1,512

.	 1,513

.	 1,513

.	 1,513

.	 1,513

.	 1,513

.	 1,514

.	 1,515

.	 1,515

.	 1,515

.	 1,516

.	 1,516

.	 1,516

.	 1,516

.	 1,516

.	 1,516

.	 1,517

.	 1,517

.	 1,517

.	 1,518

.	 1,518

.	 1,518

.	 1,518

.	 1,519

.	 1,520

.	 1,520

.	 1,521

.	 1,521

.	 1,522

.	 1,522

.	 1,522

.	 1,522

.	 1,522

.	 1,522

.	 1,523

.	 1,523

.	 1,523

.	 1,524

836 | SQL Manual

Function

Syntax

Invocation and Access Rules

Description

Examples

Compatibility

For More Information

16.10 ALTER DATABASE DELETE BACKUP

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.11 ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

Function

Syntax

Invocation and Access Rules

Description

Examples

Compatibility

For More Information

16.12 ALTER DATABASE DROP LOGFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.13 ALTER DATABASE MOVE SHARD

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

.	 1,524

.	 1,524

.	 1,524

.	 1,524

.	 1,525

.	 1,525

.	 1,525

.	 1,526

.	 1,526

.	 1,526

.	 1,526

.	 1,526

.	 1,527

.	 1,527

.	 1,528

.	 1,528

.	 1,529

.	 1,529

.	 1,529

.	 1,529

.	 1,529

.	 1,530

.	 1,530

.	 1,530

.	 1,531

.	 1,531

.	 1,531

.	 1,531

.	 1,531

.	 1,532

.	 1,532

.	 1,532

.	 1,533

.	 1,534

.	 1,534

.	 1,534

.	 1,534

.	 1,534

.	 1,535

| 837

Examples

Compatibility

For More Information

16.14 ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.15 ALTER DATABASE REBALANCE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.16 ALTER DATABASE REBALANCE EXCLUDE CLUSTER GROUP

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.17 ALTER DATABASE RENAME LOGFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

.	 1,536

.	 1,536

.	 1,536

.	 1,537

.	 1,537

.	 1,537

.	 1,537

.	 1,537

.	 1,538

.	 1,538

.	 1,538

.	 1,538

.	 1,539

.	 1,539

.	 1,539

.	 1,539

.	 1,539

.	 1,540

.	 1,540

.	 1,541

.	 1,541

.	 1,542

.	 1,542

.	 1,542

.	 1,542

.	 1,542

.	 1,543

.	 1,543

.	 1,544

.	 1,544

.	 1,545

.	 1,545

.	 1,545

.	 1,545

.	 1,545

.	 1,546

.	 1,546

.	 1,546

.	 1,546

838 | SQL Manual

16.18 ALTER DATABASE RECOVER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.19 ALTER DATABASE REGISTER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.20 ALTER DATABASE RESET LOCAL CLUSTER MEMBER

Function

Syntax

Invocation and Access Rules

Description

Examples

Compatibility

For More Information

16.21 ALTER DATABASE RESTORE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.22 ALTER INDEX

Function

Syntax

Invocation and Access Rules

.	 1,547

.	 1,547

.	 1,547

.	 1,548

.	 1,548

.	 1,550

.	 1,550

.	 1,551

.	 1,551

.	 1,552

.	 1,552

.	 1,552

.	 1,552

.	 1,552

.	 1,553

.	 1,553

.	 1,553

.	 1,553

.	 1,554

.	 1,554

.	 1,554

.	 1,554

.	 1,554

.	 1,555

.	 1,555

.	 1,555

.	 1,556

.	 1,556

.	 1,556

.	 1,556

.	 1,556

.	 1,557

.	 1,557

.	 1,558

.	 1,558

.	 1,559

.	 1,559

.	 1,559

.	 1,559

| 839

Syntax Rules and Parameters

Description

Examples

Compatibility

16.23 ALTER INDEX name AGING

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.24 ALTER INDEX name STORAGE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.25 ALTER INDEX name RENAME TO

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.26 ALTER PROFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Examples

Compatibility

For More Information

.	 1,559

.	 1,560

.	 1,560

.	 1,560

.	 1,561

.	 1,561

.	 1,561

.	 1,561

.	 1,561

.	 1,561

.	 1,562

.	 1,562

.	 1,562

.	 1,564

.	 1,564

.	 1,564

.	 1,564

.	 1,565

.	 1,567

.	 1,567

.	 1,567

.	 1,567

.	 1,568

.	 1,568

.	 1,568

.	 1,568

.	 1,568

.	 1,569

.	 1,569

.	 1,569

.	 1,569

.	 1,570

.	 1,570

.	 1,570

.	 1,570

.	 1,571

.	 1,572

.	 1,573

.	 1,573

840 | SQL Manual

16.27 ALTER SEQUENCE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.28 ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL;

Function

Syntax

Description

Examples

Compatibility

For More Information

16.29 ALTER SESSION SET property_name

Function

Syntax

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.30 ALTER SYSTEM CHECKPOINT

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.31 ALTER SYSTEM CLEANUP PLAN

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

.	 1,574

.	 1,574

.	 1,574

.	 1,575

.	 1,575

.	 1,577

.	 1,578

.	 1,578

.	 1,579

.	 1,580

.	 1,580

.	 1,580

.	 1,580

.	 1,580

.	 1,580

.	 1,581

.	 1,582

.	 1,582

.	 1,582

.	 1,582

.	 1,582

.	 1,583

.	 1,583

.	 1,583

.	 1,584

.	 1,584

.	 1,584

.	 1,584

.	 1,584

.	 1,585

.	 1,585

.	 1,585

.	 1,586

.	 1,586

.	 1,586

.	 1,586

.	 1,586

.	 1,586

.	 1,587

| 841

Compatibility

16.32 ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.33 ALTER SYSTEM JOIN DATABASE

Function

Syntax

Invocation and Access Rules

Description

Examples

Compatibility

For More Information

16.34 ALTER SYSTEM {MOUNT | OPEN} DATABASE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Examples

Compatibility

For More Information

16.35 ALTER SYSTEM [KILL | DISCONNECT] SESSION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.36 ALTER SYSTEM RECONNECT GLOBAL CONNECTION

Function

Syntax

Invocation and Access Rules

Description

Examples

.	 1,587

.	 1,588

.	 1,588

.	 1,588

.	 1,588

.	 1,588

.	 1,589

.	 1,589

.	 1,589

.	 1,590

.	 1,590

.	 1,590

.	 1,590

.	 1,590

.	 1,591

.	 1,591

.	 1,592

.	 1,593

.	 1,593

.	 1,593

.	 1,593

.	 1,593

.	 1,594

.	 1,594

.	 1,595

.	 1,596

.	 1,596

.	 1,596

.	 1,596

.	 1,596

.	 1,597

.	 1,597

.	 1,598

.	 1,599

.	 1,599

.	 1,599

.	 1,599

.	 1,599

.	 1,600

842 | SQL Manual

Compatibility

16.37 ALTER SYSTEM RESET property_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.38 ALTER SYSTEM SET property_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.39 ALTER SYSTEM SWITCH LOGFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.40 ALTER TABLE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.41 ALTER TABLE name ADD COLUMN

Function

Syntax

.	 1,600

.	 1,601

.	 1,601

.	 1,601

.	 1,601

.	 1,601

.	 1,602

.	 1,602

.	 1,603

.	 1,603

.	 1,604

.	 1,604

.	 1,604

.	 1,604

.	 1,604

.	 1,606

.	 1,606

.	 1,606

.	 1,607

.	 1,608

.	 1,608

.	 1,608

.	 1,608

.	 1,608

.	 1,609

.	 1,609

.	 1,609

.	 1,609

.	 1,610

.	 1,610

.	 1,610

.	 1,610

.	 1,611

.	 1,613

.	 1,613

.	 1,613

.	 1,615

.	 1,615

.	 1,615

| 843

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.42 ALTER TABLE name SET UNUSED COLUMN

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.43 ALTER TABLE name ALTER COLUMN

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.44 ALTER TABLE name RENAME COLUMN

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.45 ALTER TABLE name ADD CONSTRAINT

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

.	 1,615

.	 1,616

.	 1,617

.	 1,617

.	 1,618

.	 1,618

.	 1,619

.	 1,619

.	 1,619

.	 1,619

.	 1,619

.	 1,620

.	 1,620

.	 1,621

.	 1,621

.	 1,622

.	 1,622

.	 1,622

.	 1,623

.	 1,623

.	 1,631

.	 1,632

.	 1,633

.	 1,633

.	 1,634

.	 1,634

.	 1,634

.	 1,634

.	 1,634

.	 1,635

.	 1,635

.	 1,635

.	 1,635

.	 1,636

.	 1,636

.	 1,636

.	 1,636

.	 1,637

.	 1,637

844 | SQL Manual

Examples

Compatibility

For More Information

16.46 ALTER TABLE name DROP CONSTRAINT

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.47 ALTER TABLE name ALTER CONSTRAINT

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.48 ALTER TABLE name RENAME CONSTRAINT

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.49 ALTER TABLE name ADD GLOBAL SECONDARY INDEX

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.50 ALTER TABLE name DROP GLOBAL SECONDARY INDEX

.	 1,637

.	 1,638

.	 1,638

.	 1,639

.	 1,639

.	 1,639

.	 1,639

.	 1,640

.	 1,640

.	 1,640

.	 1,641

.	 1,641

.	 1,642

.	 1,642

.	 1,642

.	 1,642

.	 1,643

.	 1,644

.	 1,644

.	 1,644

.	 1,645

.	 1,645

.	 1,645

.	 1,645

.	 1,645

.	 1,646

.	 1,646

.	 1,646

.	 1,647

.	 1,648

.	 1,648

.	 1,648

.	 1,649

.	 1,649

.	 1,652

.	 1,652

.	 1,653

.	 1,653

.	 1,654

| 845

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.51 ALTER TABLE name ALTER GLOBAL SECONDARY INDEX

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.52 ALTER TABLE name MOVE SHARD

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.53 ALTER TABLE name REBALANCE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.54 ALTER TABLE name REBALANCE EXCLUDE CLUSTER GROUP cluster_group_list

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

.	 1,654

.	 1,654

.	 1,654

.	 1,654

.	 1,655

.	 1,655

.	 1,655

.	 1,655

.	 1,656

.	 1,656

.	 1,656

.	 1,656

.	 1,657

.	 1,659

.	 1,659

.	 1,659

.	 1,660

.	 1,661

.	 1,661

.	 1,661

.	 1,661

.	 1,661

.	 1,662

.	 1,662

.	 1,663

.	 1,663

.	 1,664

.	 1,664

.	 1,664

.	 1,664

.	 1,664

.	 1,665

.	 1,665

.	 1,665

.	 1,666

.	 1,666

.	 1,666

.	 1,666

.	 1,666

846 | SQL Manual

Description

Examples

Compatibility

16.55 ALTER TABLE name SPLIT SHARD

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.56 ALTER TABLE name RENAME SHARD

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.57 ALTER TABLE name READ { ONLY | WRITE }

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.58 ALTER TABLE name RENAME TO

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

.	 1,667

.	 1,667

.	 1,668

.	 1,669

.	 1,669

.	 1,669

.	 1,669

.	 1,670

.	 1,671

.	 1,672

.	 1,672

.	 1,672

.	 1,673

.	 1,673

.	 1,673

.	 1,673

.	 1,673

.	 1,674

.	 1,674

.	 1,674

.	 1,675

.	 1,676

.	 1,676

.	 1,676

.	 1,676

.	 1,676

.	 1,677

.	 1,677

.	 1,678

.	 1,678

.	 1,679

.	 1,679

.	 1,679

.	 1,679

.	 1,679

.	 1,680

.	 1,680

.	 1,680

.	 1,680

| 847

16.59 ALTER TABLE name STORAGE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.60 ALTER TABLE name ADD SUPPLEMENTAL LOG

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.61 ALTER TABLE name DROP SUPPLEMENTAL LOG

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.62 ALTER TABLESPACE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.63 ALTER TABLESPACE name RENAME TO

Function

Syntax

Invocation and Access Rules

.	 1,681

.	 1,681

.	 1,681

.	 1,681

.	 1,682

.	 1,682

.	 1,682

.	 1,683

.	 1,683

.	 1,684

.	 1,684

.	 1,684

.	 1,684

.	 1,684

.	 1,685

.	 1,685

.	 1,685

.	 1,685

.	 1,686

.	 1,686

.	 1,686

.	 1,686

.	 1,686

.	 1,687

.	 1,687

.	 1,687

.	 1,688

.	 1,688

.	 1,688

.	 1,688

.	 1,688

.	 1,689

.	 1,689

.	 1,689

.	 1,690

.	 1,691

.	 1,691

.	 1,691

.	 1,691

848 | SQL Manual

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.64 ALTER TABLESPACE name BACKUP

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.65 ALTER TABLESPACE name [ONLINE|OFFLINE]

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.66 ALTER TABLESPACE name ADD [DATAFILE|MEMORY]

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.67 ALTER TABLESPACE name DROP [DATAFILE|MEMORY]

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

.	 1,691

.	 1,692

.	 1,692

.	 1,692

.	 1,692

.	 1,693

.	 1,693

.	 1,693

.	 1,693

.	 1,693

.	 1,695

.	 1,695

.	 1,695

.	 1,695

.	 1,696

.	 1,696

.	 1,696

.	 1,696

.	 1,696

.	 1,697

.	 1,697

.	 1,698

.	 1,698

.	 1,699

.	 1,699

.	 1,699

.	 1,699

.	 1,699

.	 1,701

.	 1,701

.	 1,701

.	 1,701

.	 1,702

.	 1,702

.	 1,702

.	 1,702

.	 1,702

.	 1,703

.	 1,703

| 849

Compatibility

For More Information

16.68 ALTER TABLESPACE name RENAME DATAFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.69 ALTER USER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.70 ALTER VIEW

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.71 ANALYZE SYSTEM

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.72 ANALYZE TABLE

.	 1,703

.	 1,703

.	 1,705

.	 1,705

.	 1,705

.	 1,705

.	 1,705

.	 1,706

.	 1,706

.	 1,706

.	 1,706

.	 1,707

.	 1,707

.	 1,707

.	 1,708

.	 1,708

.	 1,711

.	 1,711

.	 1,712

.	 1,713

.	 1,714

.	 1,714

.	 1,714

.	 1,714

.	 1,714

.	 1,715

.	 1,715

.	 1,716

.	 1,716

.	 1,717

.	 1,717

.	 1,717

.	 1,717

.	 1,717

.	 1,718

.	 1,718

.	 1,718

.	 1,719

.	 1,720

850 | SQL Manual

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.73 AUDIT POLICY

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.74 CLOSE cursor_name

Function

Syntax

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.75 COMMENT ON name IS

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.76 COMMIT

Function

Syntax

Syntax Rules and Parameters

Description

Example

.	 1,720

.	 1,720

.	 1,720

.	 1,721

.	 1,724

.	 1,724

.	 1,726

.	 1,726

.	 1,727

.	 1,727

.	 1,727

.	 1,727

.	 1,727

.	 1,728

.	 1,731

.	 1,732

.	 1,732

.	 1,733

.	 1,733

.	 1,733

.	 1,733

.	 1,733

.	 1,733

.	 1,734

.	 1,734

.	 1,735

.	 1,735

.	 1,735

.	 1,735

.	 1,737

.	 1,738

.	 1,739

.	 1,740

.	 1,741

.	 1,741

.	 1,741

.	 1,741

.	 1,742

.	 1,743

| 851

Compatibility

For More Information

16.77 CREATE AUDIT POLICY

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.78 CREATE CLUSTER GROUP

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.79 CREATE CLUSTER LOCATION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.80 CREATE INDEX

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For more information

16.81 CREATE PROFILE

.	 1,743

.	 1,743

.	 1,744

.	 1,744

.	 1,744

.	 1,744

.	 1,745

.	 1,747

.	 1,749

.	 1,750

.	 1,750

.	 1,751

.	 1,751

.	 1,751

.	 1,751

.	 1,751

.	 1,752

.	 1,753

.	 1,753

.	 1,753

.	 1,754

.	 1,754

.	 1,754

.	 1,754

.	 1,754

.	 1,755

.	 1,755

.	 1,755

.	 1,755

.	 1,756

.	 1,756

.	 1,756

.	 1,757

.	 1,757

.	 1,761

.	 1,762

.	 1,763

.	 1,763

.	 1,764

852 | SQL Manual

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.82 CREATE SCHEMA

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.83 CREATE SEQUENCE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.84 CREATE SYNONYM

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.85 CREATE TABLE

Function

Syntax

Invocation and Access Rules

.	 1,764

.	 1,764

.	 1,764

.	 1,765

.	 1,769

.	 1,773

.	 1,774

.	 1,774

.	 1,775

.	 1,775

.	 1,775

.	 1,775

.	 1,776

.	 1,777

.	 1,778

.	 1,778

.	 1,779

.	 1,780

.	 1,780

.	 1,780

.	 1,781

.	 1,781

.	 1,784

.	 1,784

.	 1,785

.	 1,785

.	 1,786

.	 1,786

.	 1,786

.	 1,786

.	 1,787

.	 1,788

.	 1,788

.	 1,789

.	 1,789

.	 1,790

.	 1,790

.	 1,790

.	 1,795

| 853

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.86 CREATE TABLE AS SELECT

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.87 CREATE GLOBAL TEMPORARY TABLE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.88 CREATE TABLESPACE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.89 CREATE MEMORY DATA TABLESPACE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

.	 1,796

.	 1,816

.	 1,817

.	 1,823

.	 1,824

.	 1,825

.	 1,825

.	 1,825

.	 1,827

.	 1,827

.	 1,828

.	 1,828

.	 1,830

.	 1,831

.	 1,832

.	 1,832

.	 1,832

.	 1,832

.	 1,833

.	 1,833

.	 1,834

.	 1,835

.	 1,836

.	 1,837

.	 1,837

.	 1,837

.	 1,837

.	 1,837

.	 1,838

.	 1,838

.	 1,838

.	 1,838

.	 1,839

.	 1,839

.	 1,839

.	 1,839

.	 1,840

.	 1,841

.	 1,842

854 | SQL Manual

Compatibility

For More Information

16.90 CREATE MEMORY TEMPORARY TABLESPACE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.91 CREATE USER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.92 CREATE VIEW

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.93 DECLARE cursor_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.94 DELETE FROM

.	 1,842

.	 1,842

.	 1,843

.	 1,843

.	 1,843

.	 1,843

.	 1,844

.	 1,845

.	 1,845

.	 1,845

.	 1,846

.	 1,847

.	 1,847

.	 1,847

.	 1,847

.	 1,848

.	 1,850

.	 1,851

.	 1,853

.	 1,853

.	 1,854

.	 1,854

.	 1,854

.	 1,854

.	 1,855

.	 1,856

.	 1,857

.	 1,858

.	 1,858

.	 1,859

.	 1,859

.	 1,859

.	 1,860

.	 1,860

.	 1,864

.	 1,866

.	 1,870

.	 1,870

.	 1,872

| 855

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.95 DELETE FROM name RETURNING

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.96 DELETE FROM name RETURNING .. INTO

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.97 DELETE FROM name WHERE CURRENT OF cursor_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.98 DROP AUDIT POLICY

Function

Syntax

Invocation and Access Rules

.	 1,872

.	 1,872

.	 1,872

.	 1,873

.	 1,874

.	 1,874

.	 1,875

.	 1,875

.	 1,876

.	 1,876

.	 1,876

.	 1,876

.	 1,877

.	 1,878

.	 1,878

.	 1,879

.	 1,879

.	 1,880

.	 1,880

.	 1,880

.	 1,880

.	 1,881

.	 1,882

.	 1,882

.	 1,882

.	 1,883

.	 1,884

.	 1,884

.	 1,884

.	 1,884

.	 1,884

.	 1,885

.	 1,885

.	 1,886

.	 1,886

.	 1,888

.	 1,888

.	 1,888

.	 1,888

856 | SQL Manual

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.99 DROP CLUSTER GROUP

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.100 DROP CLUSTER LOCATION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.101 DROP INDEX

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.102 DROP PROFILE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Example

Compatibility

.	 1,888

.	 1,888

.	 1,889

.	 1,889

.	 1,889

.	 1,890

.	 1,890

.	 1,890

.	 1,890

.	 1,890

.	 1,890

.	 1,891

.	 1,891

.	 1,891

.	 1,892

.	 1,892

.	 1,892

.	 1,892

.	 1,892

.	 1,892

.	 1,893

.	 1,893

.	 1,893

.	 1,894

.	 1,894

.	 1,894

.	 1,894

.	 1,894

.	 1,895

.	 1,895

.	 1,895

.	 1,895

.	 1,896

.	 1,896

.	 1,896

.	 1,896

.	 1,896

.	 1,897

.	 1,897

| 857

For More Information

16.103 DROP SCHEMA

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.104 DROP SEQUENCE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.105 DROP SYNONYM

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.106 DROP TABLE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.107 DROP TABLESPACE

Function

.	 1,897

.	 1,898

.	 1,898

.	 1,898

.	 1,898

.	 1,898

.	 1,899

.	 1,899

.	 1,899

.	 1,900

.	 1,901

.	 1,901

.	 1,901

.	 1,901

.	 1,901

.	 1,902

.	 1,902

.	 1,902

.	 1,902

.	 1,904

.	 1,904

.	 1,904

.	 1,904

.	 1,904

.	 1,905

.	 1,905

.	 1,905

.	 1,906

.	 1,907

.	 1,907

.	 1,907

.	 1,907

.	 1,907

.	 1,908

.	 1,908

.	 1,909

.	 1,910

.	 1,911

.	 1,911

858 | SQL Manual

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.108 DROP USER

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.109 DROP VIEW

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.110 EXECUTE statement_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.111 EXECUTE IMMEDIATE 'sql_string'

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

.	 1,911

.	 1,911

.	 1,911

.	 1,913

.	 1,913

.	 1,913

.	 1,913

.	 1,914

.	 1,914

.	 1,914

.	 1,914

.	 1,914

.	 1,916

.	 1,916

.	 1,917

.	 1,917

.	 1,918

.	 1,918

.	 1,918

.	 1,918

.	 1,918

.	 1,919

.	 1,919

.	 1,919

.	 1,919

.	 1,920

.	 1,920

.	 1,920

.	 1,920

.	 1,920

.	 1,923

.	 1,923

.	 1,923

.	 1,924

.	 1,925

.	 1,925

.	 1,925

.	 1,925

.	 1,925

| 859

Description

Example

Compatibility

For More Information

16.112 FETCH cursor_name

Function

Syntax

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.113 GRANT privileges TO

Function

Syntax

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.114 INSERT INTO

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.115 INSERT INTO name RETURNING

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.116 INSERT INTO name RETURNING .. INTO

.	 1,926

.	 1,926

.	 1,927

.	 1,927

.	 1,928

.	 1,928

.	 1,928

.	 1,928

.	 1,930

.	 1,930

.	 1,933

.	 1,933

.	 1,934

.	 1,934

.	 1,934

.	 1,937

.	 1,943

.	 1,943

.	 1,945

.	 1,945

.	 1,946

.	 1,946

.	 1,946

.	 1,946

.	 1,947

.	 1,948

.	 1,948

.	 1,950

.	 1,950

.	 1,951

.	 1,951

.	 1,951

.	 1,951

.	 1,952

.	 1,953

.	 1,953

.	 1,954

.	 1,954

.	 1,955

860 | SQL Manual

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.117 LOCK TABLE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.118 NOAUDIT POLICY

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.119 OPEN cursor_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.120 PREPARE statement_name

Function

Syntax

Invocation and Access Rules

.	 1,955

.	 1,955

.	 1,955

.	 1,956

.	 1,957

.	 1,957

.	 1,958

.	 1,958

.	 1,959

.	 1,959

.	 1,959

.	 1,959

.	 1,960

.	 1,961

.	 1,961

.	 1,961

.	 1,962

.	 1,963

.	 1,963

.	 1,963

.	 1,963

.	 1,963

.	 1,964

.	 1,967

.	 1,967

.	 1,967

.	 1,969

.	 1,969

.	 1,969

.	 1,969

.	 1,969

.	 1,970

.	 1,971

.	 1,972

.	 1,972

.	 1,973

.	 1,973

.	 1,973

.	 1,973

| 861

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.121 RELEASE SAVEPOINT savepoint_specifier

Function

Syntax

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.122 REVOKE privileges FROM

Function

Syntax

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.123 ROLLBACK

Function

Syntax

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.124 SAVEPOINT savepoint_specifier

Function

Syntax

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.125 SELECT

query expression

.	 1,973

.	 1,976

.	 1,976

.	 1,977

.	 1,977

.	 1,978

.	 1,978

.	 1,978

.	 1,978

.	 1,978

.	 1,978

.	 1,979

.	 1,979

.	 1,980

.	 1,980

.	 1,980

.	 1,980

.	 1,981

.	 1,982

.	 1,983

.	 1,983

.	 1,984

.	 1,984

.	 1,984

.	 1,984

.	 1,985

.	 1,985

.	 1,986

.	 1,987

.	 1,988

.	 1,988

.	 1,988

.	 1,988

.	 1,988

.	 1,989

.	 1,990

.	 1,990

.	 1,991

.	 1,991

862 | SQL Manual

query specification

select list

from clause

joined table

where clause

group by clause

having clause

order by clause

offset limit clause

set operator

subquery

hint clause

16.126 SELECT .. FOR UPDATE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.127 SELECT .. INTO

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

16.128 SELECT .. INTO .. FOR UPDATE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

For More Information

16.129 SET CONSTRAINTS

Function

Syntax

Invocation and Access Rules

.	 1,995

.	 2,000

.	 2,003

.	 2,010

.	 2,016

.	 2,018

.	 2,021

.	 2,023

.	 2,027

.	 2,032

.	 2,038

.	 2,042

.	 2,074

.	 2,074

.	 2,074

.	 2,074

.	 2,075

.	 2,076

.	 2,077

.	 2,078

.	 2,079

.	 2,079

.	 2,079

.	 2,079

.	 2,079

.	 2,080

.	 2,081

.	 2,082

.	 2,082

.	 2,082

.	 2,082

.	 2,083

.	 2,085

.	 2,086

.	 2,087

.	 2,088

.	 2,088

.	 2,088

.	 2,088

| 863

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.130 SET SESSION AUTHORIZATION user_identifier

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.131 SET SESSION CHARACTERISTICS AS transaction_mode

Function

Syntax

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

16.132 SET TIME ZONE

Function

Syntax

Syntax Rules and Parameters

Description

Example

Compatibility

16.133 SET TRANSACTION transaction_mode

Function

Syntax

Syntax Rules and Parameters

Description

Example

Compatibility

For More Information

16.134 TRUNCATE TABLE

Function

Syntax

.	 2,088

.	 2,089

.	 2,096

.	 2,096

.	 2,096

.	 2,098

.	 2,098

.	 2,098

.	 2,098

.	 2,099

.	 2,099

.	 2,099

.	 2,099

.	 2,100

.	 2,100

.	 2,100

.	 2,100

.	 2,101

.	 2,101

.	 2,101

.	 2,101

.	 2,102

.	 2,102

.	 2,102

.	 2,102

.	 2,102

.	 2,103

.	 2,103

.	 2,104

.	 2,104

.	 2,104

.	 2,104

.	 2,105

.	 2,105

.	 2,105

.	 2,105

.	 2,106

.	 2,106

.	 2,106

864 | SQL Manual

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.135 UPDATE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.136 UPDATE name RETURNING

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

16.137 UPDATE name RETURNING .. INTO

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Example

Compatibility

16.138 UPDATE name WHERE CURRENT OF cursor_name

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

.	 2,106

.	 2,106

.	 2,107

.	 2,107

.	 2,108

.	 2,109

.	 2,109

.	 2,109

.	 2,109

.	 2,110

.	 2,111

.	 2,112

.	 2,113

.	 2,114

.	 2,114

.	 2,114

.	 2,115

.	 2,115

.	 2,116

.	 2,117

.	 2,117

.	 2,118

.	 2,118

.	 2,118

.	 2,119

.	 2,119

.	 2,120

.	 2,120

.	 2,121

.	 2,122

.	 2,122

.	 2,122

.	 2,122

.	 2,122

.	 2,123

.	 2,123

.	 2,125

.	 2,125

SQL Elements

11.

865

866 | SQL Elements

11.1 Syntax Elements

Identifiers

Identifier is divided into an ordinary identifier and a delimited identifier.

An ordinary identifier consists of letters or a combination of letters and numbers, and it is used by internal

ly substituting all characters to uppercase letters. Therefore, an ordinary identifier is not case-sensitive.

The following is an example of an ordinary identifier.

GOLDILOCKS

GoldiLocks

A delimited identifier consists of letters or a combination of letters and numbers enclosed in double quot

es ("). All the characters are used as internally described. Therefore, a delimited identifier is case-sensitive.

The following is an example of a delimited identifier.

"GOLDILOCKS"

"GoldiLocks"

Literals

Literals mean representation of non-null value.

Text Literals

Text literals mean representation of strings and binary strings.

Use single quote (') at the beginning and end of a string to write string of text literals.

Not only the double quotes (") string but also all strings except for the single quote (') string can be writte

n within a single quote (').

Use a single quote twice without white spaces in between to write a single quote (') in a string.

A maximum of 4000 characters can be written in a string.

The followings are examples of text literals for a string.

Syntax Elements | 867

'GOLDILOCKS'

'Sunje''s DBMS'

A binary string of text literals is a string of hexadecimal numbers which starts with x'(X') and ends with '.

Only the characters corresponding to 0 ~ 9, A (a) ~ F (f) can be written in each position of a hexadecimal

string. The length of a hexadecimal string should always be an even number because its two digits mean

one byte. A maximum of 4,000 characters can be written in a binary string.

The followings are examples of text literals for a binary string.

x'001f'

X'FF0A'

x'aF37BBc013'

Numeric Literals

Numeric literals mean literals of numeric type, and integers or the number with decimal point can be writ

ten. The syntax for numeric literals is as follows.

[+ | -] <digits> [. <digits>] [E | e [+ | -] <digits>] [f | F | d | D]

● The first +/- means a positive or negative value of the entire number, and it can be omitted. If omitte

d, the default value is a positive value.

● In <digits>, numbers from 0 to 9 can be listed without white space, the number with decimal point ca

n be written by using decimal point (.).

● An exponent form can be written after the first <digits>, and E or e is written, and it stands for expon

ent. Then +/- is written according to exponent sign, and <digits> is written. +/- of exponent can be o

mitted. If omitted, the default value is a positive value.

● Lastly, character such as f, F, d, D can be written after numbers. It means that it is a number of BINAR

Y_FLOAT, BINARY_DOUBLE. If the corresponding character is omitted, the number is considered as N

UMBER type.

The followings are examples of numeric literals.

20

+123.45

0.03

+1.23E-02

-1.5

10f

+123.45F

1.2E-3F

-22d

868 | SQL Elements

123.45D

-1.23E+05D

Datetime Literals

Datetime literals are representation of date/time type.

Datetime value is specified using string literal, or by converting character or numeric value to datetime val

ue using TO_*function (TO_DATE, etc).

Datetime data types are DATE, TIME, TIME WITH TIME ZONE, TIMESTAMP, TIMESTAMP WITH TIME ZON

E.

Date Literals

Date literals are written in a form of DATE'string literal' or TO_DATE(string_literal [, format]).

● DATE'string literal'

○ The format of date type is ' SYYYY-MM-DD'.

○ DATE'2002-07-15'

● TO_DATE(string_literal [, format])

○ If the format is not specified, the format of date type is NLS_DATE_FORMAT by default.

○ If the format is specified, the specified format is applied.

● The date type includes year, month, day, hour, minute, second (except for fractional seconds).

● If the date is omitted, the default value is the first day of the current month.

● If the hour, minute, second are omitted, the default value is midnight.

○ HH24 format: '00:00:00'

○ HH12 format: '12:00:00'

● To set the hour, minute, second to the default value (midnight) when the date value includes hour,

minute, second, then use the TRUNC(date) function.

● For example, in TRUNC(SYSDATE), SYSDATE includes the values of the year, month, day, hour, minut

e, second.

● To compare only the values of the year, month, day among date values, then set the values of the ho

ur, minute, second are set to midnight using the TRUNC function.

For more information, refer to TO_DATE, Datetime Format String, NLS_DATE_FORMAT.

● The following is an example of date literals.

DATE'2002-07-15'

● The following is an example of when the format is not specified, so NLS_DATE_FORMAT is 'YYYY-M

M-DD'.

Syntax Elements | 869

TO_DATE('2002-07-15')

● The followings are examples of when the format is specified.

TO_DATE('15-JUL-02', 'DD-MON-RR')

TO_DATE('2002-07-15 00:00:00', 'YYYY-MM-DD HH24:MI:SS')

TO_DATE('2002-07-15 13:25:30', 'YYYY-MM-DD HH24:MI:SS')

● The following is an example of when the date is omitted. (It is set to the first day of the current mont

h).

gSQL> SELECT TO_DATE('2000-07', 'YYYY-MM') FROM DUAL;

TO_DATE('2000-07', 'YYYY-MM')

2000-07-01

● The following is an example of when the hour, minute, second are omitted. (It is set to the midnight).

gSQL> SELECT

TO_CHAR(DATE'2002-07-15', 'YYYY-MM-DD HH24:MI:SS') AS RESULT

FROM DUAL;

RESULT

2002-07-15 00:00:00

● The following is an example of setting the hour, minute, second of DATE value (SYSDATE) to the def

ault value (midnight).

gSQL> SELECT

TO_CHAR(SYSDATE,

'YYYY-MM-DD HH24:MI:SS') AS RESULT_SYSDATE,

TO_CHAR(TRUNC(SYSDATE),

'YYYY-MM-DD HH24:MI:SS') AS RESULT_TRUNC_SYSDATE

FROM DUAL;

RESULT_SYSDATE RESULT_TRUNC_SYSDATE

------------------- --------------------

2014-08-19 10:06:49 2014-08-19 00:00:00

● The following is an example of comparing only the values of the year, month, day among date values.

gSQL> SELECT

TO_DATE('2002-08-12') =

870 | SQL Elements

TRUNC(TO_DATE('2002-08-12 23:59:59', 'YYYY-MM-DD HH24:MI:SS'))

AS RESULT FROM DUAL;

RESULT

TRUE

Time Literals

Time literals are written in a form of TIME'string literal' or TO_TIME(string_literal [, format]).

● TIME'string literal'

○ The format of time type is 'HH24:MI:SS[.[FF6]]'.

○ TIME'15:30:59.999999'

● TO_TIME(string_literal [, format])

○ If the format is not specified, the format of time type is NLS_TIME_FORMAT by default.

○ If the format is specified, the specified format is applied.

The time type includes hour, minute, second (fractional seconds).

Fractional seconds can be specified to maximum six digits numbers format.

For more information, refer to TO_TIME, Datetime Format String, NLS_TIME_FORMAT.

● The following is an example of time literals.

TIME'15:30:59.999999'

● The following is an example of when the format is not specified, so NLS_TIME_FORMAT is 'HH24:MI:

SS.FF6'.

TO_TIME('15:30:59.999999')

● The following is an example of when the format is specified.

TO_TIME('09.45.03.546873 AM', 'HH12.MI.SS.FF6 AM')

TO_TIME('09:45:03', 'HH12:MI:SS')

Time with Time Zone Literals

Time with time zone literals is written in a form of TIME'string literal', TIME WITH TIME ZONE'string literal'

, TO_TIME_WITH_TIME_ZONE(string_literal [, format]), or TO_TIME_TZ(string_literal [, format]).

● TIME'string literal' or TIME WITH TIME ZONE'string literal'

○ The format of time with time zone type is 'HH24:MI:SS[.[FF6]] TZH:TZM'.

Syntax Elements | 871

○ TIME'15:30:59.999999 +09:00'

○ TIME WITH TIME ZONE'15:30:59.999999 +09:00'

● TO_TIME_WITH_TIME_ZONE(string_literal [, format])

○ If the format is not specified, the format of time with time zone type is NLS_TIME_WITH_TIME_Z

ONE_FORMAT by default.

○ If the format is specified, the specified format is applied.

Time with time zone type includes hour, minute, second (fractional seconds), and time zone offset (time

zone hour, time zone minute).

Fractional seconds can be specified to maximum six digits numbers format.

For more information, refer to TO_TIME_WITH_TIME_ZONE, Datetime Format String, NLS_TIME_WITH_TI

ME_ZONE_FORMAT.

● The followings are examples of time with time zone literals.

TIME'15:30:59.999999 +09:00'

TIME WITH TIME ZONE'15:30:59.999999 +09:00'

● The following is an example of when the format is not specified, so NLS_TIME_WITH_TIME_ZONE_F

ORMAT is 'HH24:MI:SS.FF6 TZH:TZM'.

TO_TIME_WITH_TIME_ZONE('15:30:59.999999 +09:00')

TO_TIME_TZ('15:30:59.999999 +09:00')

● The following is an example of when the format is specified.

TO_TIME_WITH_TIME_ZONE('09.45.03.546873 +09:00 AM',

'HH12.MI.SS.FF6 TZH:TZM AM')

Timestamp Literals

Timestamp literals are written in a form of TIMESTAMP'string literal' or TO_TIMESTAMP(string_literal [, f

ormat]).

● TIMESTAMP'string literal'

○ The format of timestamp type is 'SYYYY-MM-DD HH24:MI:SS[.[FF6]]'.

○ TIMESTAMP'2002-07-15 15:39:59.999999'

● TO_TIMESTAMP(string_literal [, format])

○ If the format is not specified, the format of timestamp type is NLS_TIMESTAMP_FORMAT by defa

ult.

○ If the format is specified, the specified format is applied.

872 | SQL Elements

Timestamp type includes year, month, day, hour, minute, second (fractional seconds).

Fractional seconds can be specified to maximum six digits numbers format.

For more information, refer to TO_TIMESTAMP, Datetime Format String, NLS_TIMESTAMP_FORMAT.

● The following is an example of timestamp literals.

TIMESTAMP'2002-07-15 15:39:59.999999'

● The following is an example of when the format is not specified, so NLS_TIMESTAMP_FORMAT is 'Y

YYY-MM-DD HH24:MI:SS.FF6'.

TO_TIMESTAMP('2002-07-15 15:39:59.999999')

● The following is an example of when the format is specified.

TO_TIMESTAMP('15-JUL-02 11.06.30.123456 AM',

'DD-MON-RR HH12.MI.SS.FF6 AM')

Timestamp with Time Zone Literals

Timestamp with time zone literals is written in a form of TIMESTAMP'string literal', TIMESTAMP WITH TI

ME ZONE'string literal', TO_TIMESTAMP_WITH_TIME_ZONE(string_literal [, formt]), or TO_TIMESTAMP_

TZ(string_literal [, format]).

● TIMESTAMP'string literal' or TIMESTAMP WITH TIME ZONE'string literal'

○ The format of timestamp with time zone type is 'SYYYY-MM-DD HH24:MI:SS[.[FF6]] TZH:TZM'.

○ TIMESTAMP'2002-07-15 15:39:59.999999 +09:00'

○ TIMESTAMP WITH TIME ZONE'2002-07-15 15:39:59.999999 +09:00'

● TO_TIMESTAMP_WITH_TIME_ZONE(string_literal [, formt])

○ If the format is not specified, the format of timestamp with time zone type is NLS_TIMESTAMP_

WITH_TIME_ZONE_FORMAT by default.

○ If the format is specified, the specified format is applied.

Timestamp with time zone type includes year, month, day, hour, minute, second (fractional seconds), tim

e zone offset (time zone hour, time zone minute).

Fractional seconds can be specified to maximum six digits numbers format.

For more information, refer to TO_TIMESTAMP_WITH_TIME_ZONE, Datetime Format String , NLS_TIMES

TAMP_WITH_TIME_ZONE_FORMAT.

● The following is an example of timestamp with time zone literals.

Syntax Elements | 873

TIMESTAMP'2002-07-15 15:39:59.999999 +09:00'

TIMESTAMP WITH TIME ZONE'2002-07-15 15:39:59.999999 +09:00'

● The following is an example of when the format is not specified, so NLS_TIMESTAMP_WITH_TIME_Z

ONE_FORMAT is 'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM'.

TO_TIMESTAMP_WITH_TIME_ZONE('2002-07-15 15:39:59.999999 +09:00')

TO_TIMESTAMP_TZ('2002-07-15 15:39:59.999999 +09:00')

● The following is an example of when the format is specified.

TO_TIMESTAMP_WITH_TIME_ZONE('15-JUL-02 11.06.30.123456 +09:00 AM',

'DD-MON-RR HH12.MI.SS.FF6 TZH:TZM AM')

TO_TIMESTAMP_TZ('15-JUL-02 11.06.30.123456 +09:00 AM',

'DD-MON-RR HH12.MI.SS.FF6 TZH:TZM AM')

Interval Literals

The interval literals specify the time interval.

Intervals are classified and expressed as follows.

● Year-month INTERVAL values

○ It includes YEAR and MONTH.

○ Display string expression: 'year-month'

● Day-time INTERVAL values

○ It includes DAY, HOUR, MINUTE, SECOND (fractional seconds).

○ Display string expression: 'day hour:minute:second.fractional_seconds'

● The interval value's sign is specified only once at the beginning of the string representation.

e.g. INTERVAL'+3 11:22:33.999999'DAY TO SECOND (O)

INTERVAL'-3 +11:22:33.999999'DAY TO SECOND (X)

The followings are the list of interval types.

● INTERVAL YEAR (leading precision)

● INTERVAL MONTH (leading precision)

● INTERVAL YEAR (leading precision) TO MONTH

● INTERVAL DAY (leading precision)

● INTERVAL HOUR (leading precision)

● INTERVAL MINUTE (leading precision)

● INTERVAL SECOND (leading precision[, fractional seconds precision])

● INTERVAL DAY (leading precision) TO HOUR

874 | SQL Elements

● INTERVAL DAY (leading precision) TO MINUTE

● INTERVAL DAY (leading precision) TO SECOND (fractional seconds precision)

● INTERVAL HOUR (leading precision) TO MINUTE

● INTERVAL HOUR (leading precision) TO SECOND (fractional seconds precision)

● INTERVAL MINUTE (leading precision) TO SECOND (fractional seconds precision)

Leading precision

• It is the digit number of the field, it can be specified from 2 to 6. If it is not specified, the default

value is set to 2.

• If the leading field value exceeds the leading precision, then an error is returned.

Fractional seconds precision

• It is the digit number of fractional seconds, and it can be specified from 0 to 6. If it is not specified,

the default value is set to 6.

• If the fractional second field value exceeds the fractional seconds precision, then it is rounded off.

For more information, refer to INTERVAL, Precisions and value range of the second or later field in INTER

VAL * TO * .

Examples of Using Interval Literals.

The followings are examples of using interval literals.

Interval YEAR

The followings are examples of using interval YEAR literals.

Example Description Display string

INTERVAL'1'YEAR

INTERVAL'01-00'YEAR
1 year +01-00

INTERVAL'100'YEAR It exceeds the leading precision 2, so it returns the error. -

INTERVAL'100'YEAR(3) 100 year +100-00

INTERVAL'+999999'YEAR(6) 999999 year +999999-00

INTERVAL'-999999'YEAR(6) -(999999 year) -999999-00

Interval MONTH

The followings are examples of using interval MONTH literals.

Example Description Display string

INTERVAL'1'MONTH

INTERVAL'00-01'MONTH
1 month +00-01

INTERVAL'100'MONTH It exceeds the leading precision 2, so it returns the error. -

Syntax Elements | 875

INTERVAL'100'MONTH(3) 8 year 4 month +008-04

INTERVAL'+999999'MONTH(6) 83333 year 3 month +083333-03

INTERVAL'-999999'MONTH(6) -(83333 year 3 month) -083333-03

Example Description Display string

Interval YEAR TO MONTH

The followings are examples of using interval YEAR TO MONTH literals.

Example Description Display string

INTERVAL'1-06'YEAR TO MONTH 1 year 6 month +01-06

INTERVAL'1-12'YEAR TO MONTH The month value exceeded 11, so it returns the error. -

INTERVAL'100-11'YEAR TO MONTH
It exceeds the leading precision 2, so it returns the er

ror.
-

INTERVAL'100-11'YEAR(3) TO MONTH 100 year 11 month +100-11

INTERVAL'+999999-11'YEAR(6) TO MO

NTH
999999 year 11 month +999999-11

INTERVAL'-999999-11'YEAR(6) TO MO

NTH
-(999999 year 11 month) -999999-11

Interval DAY

The followings are examples of using interval DAY literals.

Example Description Display string

INTERVAL'1'DAY

INTERVAL'01 00:00:00'DAY
1 day +01 00:00:00

INTERVAL'100'DAY It exceeds the leading precision 2, so it returns the error. -

INTERVAL'100'DAY(3) 100 day +100 00:00:00

INTERVAL'+999999'DAY(6) 999999 day +999999 00:00:00

INTERVAL'-999999'DAY(6) -(999999 day) -999999 00:00:00

Interval HOUR

The followings are examples of using interval HOUR literals.

Example Description Display string

INTERVAL'1'HOUR

INTERVAL'00 01:00:00'HOUR
1 hour +00 01:00:00

INTERVAL'1000'HOUR(3) It exceeds the leading precision 3, so it returns the error -

INTERVAL'1000'HOUR(4) 41 day 16 hour +0041 16:00:00

INTERVAL'+999999'HOUR(6) 41666 day 15 hour +041666 15:00:00

INTERVAL'-999999'HOUR(6) -(41666 day 15 hour) -041666 15:00:00

876 | SQL Elements

Interval MINUTE

The following are examples of using interval MINUTE literals.

Example Description Display string

INTERVAL'1'MINUTE

INTERVAL'00 00:01:00'MINUTE
1 minute +00 00:01:00

INTERVAL'12345'MINUTE(4) It exceeds the leading precision 4, so it returns the error -

INTERVAL'12345'MINUTE(5) 8 day 13 hour 45 minute +00008 13:45:00

INTERVAL'+999999'MINUTE(6) 694 day 10 hour 39 minute +000694 10:39:00

INTERVAL'-999999'MINUTE(6) -(694 day 10 hour 39 minute) -000694 10:39:00

Interval SECOND

The followings are examples of using interval SECOND literals.

Example Description Display string

INTERVAL'1'SECOND

INTERVAL'00 00:00:01.000000'SECOND
1 second +00 00:00:01.000000

INTERVAL'100'SECOND
It exceeds the leading precision 2,

so it returns the error.
-

INTERVAL'99.9999999'SECOND

INTERVAL'99.9999999'SECOND(2,6)

The fractional seconds are round

ed off to become 100 second, th

en it exceeds the leading precisio

n 2, so it returns the error.

-

INTERVAL'99.9999999'SECOND(3) 1 minute 40 second +000 00:01:40.000000

INTERVAL'29.506167'SECOND(2, 2) 29.51 second +00 00:00:29.51

INTERVAL'999999.999999'SECOND(6,6)
11day 13 hour 46 minute 39.99

9999 second
+000011 13:46:39.999999

INTERVAL'-999999.999999'SECOND(6,6)
-(11day 13 hour 46 minute 39.9

99999 second)
-000011 13:46:39.999999

Interval DAY TO HOUR

The followings are examples of using interval DAY TO HOUR literals.

Example Description Display string

INTERVAL'1 23'DAY TO HOUR

INTERVAL'01 23:00:00'DAY TO HOUR
1 day 23 hour +01 23:00:00

INTERVAL'1 24'DAY TO HOUR
The hour value exceeds 23 (in

valid), so it returns the error.
-

INTERVAL'100 23'DAY TO HOUR
It exceeds the leading precisio

n 2, so it returns the error.
-

INTERVAL'100 23'DAY(3) TO HOUR 100 day 23 hour +100 23:00:00

Syntax Elements | 877

INTERVAL'+999999 23'DAY(6) TO HOUR 999999 day 23 hour +999999 23:00:00

INTERVAL'-999999 23'DAY(6) TO HOUR -(999999 day 23 hour) -999999 23:00:00

INTERVAL'-999999 +23'DAY(6) TO HOUR Invalid sign error -

Example Description Display string

Interval DAY TO MINUTE

The followings are examples of using interval DAY TO MINUTE literals.

Example Description Display string

INTERVAL'1 23:59'DAY TO MINUTE

INTERVAL'01 23:59:00'DAY TO MINUTE
1 day 23 hour 59 second +01 23:59:00

INTERVAL'1 24:59'DAY TO MINUTE
The hour value exceeds 23 (in

valid), so it returns the error.
-

INTERVAL'1 23:60'DAY TO MINUTE

The minute value exceeds 59

(invalid), so it returns the erro

r.

-

INTERVAL'100 23:59'DAY TO MINUTE
It exceeds the leading precisio

n 2, so it returns the error.
-

INTERVAL'100 23:59'DAY(3) TO MINUTE 100 day 23 hour 59 minute +100 23:59:00

INTERVAL'+999999 23:59'DAY(6) TO MINUTE
999999 day 23 hour 59 minut

e
+999999 23:59:00

INTERVAL'-999999 23:59'DAY(6) TO MINUTE
-(999999 day 23 hour 59 min

ute)
-999999 23:59:00

Interval DAY TO SECOND

The followings are examples of using interval DAY TO SECOND literals.

Example Description display string

INTERVAL '1 23:59:59.999999'DAY TO SECOND
1 day 23 hour 59 minute 59.9

99999 second
+01 23:59:59.999999

INTERVAL '1 24:59:59.999999'DAY TO SECOND
The hour value exceeds 23, so

it returns the error.
-

INTERVAL '1 23:60:59.999999'DAY TO SECOND
The minute value exceeds 59,

so it returns the error.
-

INTERVAL '1 23:59:60.999999'DAY TO SECOND
The second value exceeds 60,

so it returns the error.
-

INTERVAL '99 23:59:59.9999999'DAY TO SECON

D

The fractional seconds are rou

nded off to become 100 day,

then it exceeds the leading pr

ecision 2, so it returns the err

or.

-

878 | SQL Elements

INTERVAL '99 23:59:59.9999999'DAY(3) TO SEC

OND
100 day +100 00:00:00.000000

INTERVAL '1 11:22:33.567890'DAY(2) TO SECON

D(2)

1 day 11 hour 22 minute 33.5

7 second
+01 11:22:33.57

INTERVAL '+999999 23:59:59.999999'DAY(6) TO

SECOND(6)

999999 day 23 hour 59 minut

e 59.999999 hour
+999999 23:59:59.999999

INTERVAL '-999999 23:59:59.999999'DAY(6) TO

SECOND(6)

-(999999 day 23 hour 59 min

ute 59.999999 hour)
-999999 23:59:59.999999

Example Description display string

Interval HOUR TO MINUTE

The followings are examples of using interval HOUR TO MINUTE literals.

Example Description Display string

INTERVAL'23:59'HOUR TO MINUTE

INTERVAL'00 23:59:00'HOUR TO MINUTE
23 hour 59 minute +00 23:59:00

INTERVAL'23:60'HOUR TO MINUTE
The minute value exceeds 59,

so it returns the error.
-

INTERVAL'100:59'HOUR TO MINUTE
It exceeds the leading precisio

n 2, so it returns the error.
-

INTERVAL'100:59'HOUR(3) TO MINUTE 4 day 4 hour 59 minute +004 04:59:00

INTERVAL'+999999:59'HOUR(6) TO MINUTE 41666 day 15 hour 59 minute +041666 15:59:00

INTERVAL'-999999:59'HOUR(6) TO MINUTE
-(41666 day 15 hour 59 minu

te)
-041666 15:59:00

Interval HOUR TO SECOND

The followings are examples of using interval HOUR TO SECOND literals.

Example Description Display string

INTERVAL '23:59:59.999999'HOUR TO SECOND

INTERVAL '00 23:59:59.999999'HOUR TO SECON

D

23 hour 59 minute 59.99999

9 second
+00 23:59:59.999999

INTERVAL '23:60:59.999999'HOUR TO SECOND
The minute value exceeds 59,

so it returns the error.
-

INTERVAL '23:59:60.999999'HOUR TO SECOND
The second value exceeds 59,

so it returns the error.
-

INTERVAL '99:59:59.9999999'HOUR TO SECOND

The fractional seconds are rou

nded off to become 100 hour,

then it exceeds the leading pr

ecision 2, so it returns the err

or.

-

Syntax Elements | 879

INTERVAL '99:59:59.9999999'HOUR(3) TO SECO

ND
4 day 4 hour +004 04:00:00.000000

INTERVAL '11:22:29.569'HOUR(3) TO SECOND(1)
11 hour 22 minute 29.6 seco

nd
+000 11:22:29.6

INTERVAL '+999999:59:59.999999'HOUR(6) TO S

ECOND(6)

41666 day 15 hour 59 minute

59.999999 second
+041666 15:59:59.999999

INTERVAL '-999999:59:59.999999'HOUR(6) TO S

ECOND(6)

-(41666 day 15 hour 59 minu

te 59.999999 second)
-041666 15:59:59.999999

Example Description Display string

Interval MINUTE TO SECOND

The followings are examples of using interval MINUTE TO SECOND literals.

Example Description Display string

INTERVAL '15:23.123456'MINUTE TO SECOND

INTERVAL '00 00:15:23.123456'MINUTE TO SECO

ND

15 minute 23.123456 second +00 00:15:23.123456

INTERVAL '15:60.123456'MINUTE TO SECOND
The second value exceeds 59,

so it returns the error.
-

INTERVAL '99:59.999999'MINUTE TO SECOND(2)

The fractional seconds are rou

nded off to become 100 minu

te, then it exceeds the leading

precision 2, so it returns the e

rror.

-

INTERVAL '99:59.999999'MINUTE(3) TO SECOND

(2)
1 hour 40 minute +000 01:40:00.00

INTERVAL '+999999:59.999999'MINUTE(6) TO SE

COND(6)

694 day 10 hour 39 minute 5

9.999999 second
+000694 10:39:59.999999

INTERVAL '-999999:59.999999'MINUTE(6) TO SE

COND(6)

-(694 day 10 hour 39 minute

59.999999 second)
-000694 10:39:59.999999

Null Value

Null value is an unknown value or an undefined value. NULL value can be a value of any data type. The u

nknown value of the boolean type is represented as null value.

Null value is defined as a keyword and it is not case-sensitive.

The following is an example of null value representation.

880 | SQL Elements

NULL

Null

Comments

Single Line Comment

A single line comment is a comment which starts with -- or //. The single line comment processes a com

ment from the behind of the comment's symbol to the end of the line.

The following is an example of using a single line comment.

gSQL> SELECT I1, -- I2, I3,

2 I4, I5

3 FROM T1;

I1 I4 I5

--------- --------- ---------

column i1 column i4 column i5

1 row selected.

gSQL> SELECT I1, // I2, I3,

2 I4, I5

3 FROM T1;

I1 I4 I5

--------- --------- ---------

column i1 column i4 column i5

1 row selected.

Multiple Line Comment

A multiple line comment is a comment which starts with /* and ends with */. Multiple line comments spe

cify a comment from /* to */, and it can use multiple lines to represent comments.

The following is an example of using multiple line comment.

gSQL> SELECT I1, I2, I3, I4, I5

2 /* Output

3 all columns of TABLE T1 */

4 FROM T1;

I1 I2 I3 I4 I5

--------- --------- --------- --------- ---------

column i1 column i2 column i3 column i4 column i5

Syntax Elements | 881

1 row selected.

Hint Comment

A hint comment is a comment which starts with /*+ and ends with */. Hint comment is similar to multipl

e line comment, but the difference is that the hint comment has + at the beginning.

Do not use a space between * and +. If so, it will be treated as multiple line comment.

Unlike other comments, a hint comment is specified to be used only at the location which is right after th

e SELECT keyword. The processing method which a user specified to GOLDILOCKS optimizer is described

in the hint comment. For more information, refer to hint clause.

The following is an example of using hint comment.

gSQL> SELECT /*+ FULL(T1) */ * FROM T1;

I1 I2 I3 I4 I5

--------- --------- --------- --------- ---------

column i1 column i2 column i3 column i4 column i5

1 row selected.

SQL Reserved Words and Keywords

SQL Reserved Words

GOLDILOCKS supports reserved words which are specified as SQL reserved words. The SQL reserved word

s can not be used without quotation marks other than specified location. However, it is not recommende

d to use SQL reserved words with quotation marks.

The followings are SQL reserved words of GOLDILOCKS. * marked SQL reserved words are supported by t

he SQL standard.

For more information about the list, refer to V$RESERVED_WORDS.

ABSOLUTE

ACCESS

ALL *

ALLOCATE *

ALTER *

AND *

ANY *

ARE *

AS *

882 | SQL Elements

ASYMMETRIC *

AT *

AUTHORIZATION *

BEGIN *

BETWEEN *

BOTH *

BY *

CALL *

CASE *

CHECK *

CLOSE *

COLUMN *

COMMENT

COMMIT *

CONNECT *

CONSTRAINT *

CREATE *

CROSS *

CURRENT *

CURRENT_CATALOG *

CURRENT_DATE *

CURRENT_DEFAULT_TRANSFORM_GROUP *

CURRENT_PATH *

CURRENT_ROLE *

CURRENT_ROW *

CURRENT_SCHEMA *

CURRENT_TIME *

CURRENT_TIMESTAMP *

CURRENT_TRANSFORM_GROUP_FOR_TYPE *

CURRENT_USER *

DATABASE

DEALLOCATE *

DECLARE *

DEFAULT *

DELETE *

DEREF *

DESCRIBE *

DETERMINISTIC *

DISCONNECT *

DISTINCT *

DROP *

Syntax Elements | 883

ELSE *

END *

END_EXEC *

ESCAPE *

EXCEPT *

EXEC *

EXECUTE *

EXISTS *

FALSE *

FETCH *

FILTER *

FIRST

FOR *

FOREIGN *

FREE *

FROM *

FULL *

FUNCTION *

GET *

GLOBAL *

GRANT *

GROUP *

HAVING *

HOLD *

IDENTIFIED

IF

IMMEDIATE

IN *

INDICATOR *

INNER *

INOUT *

INSERT *

INTERSECT *

INTO *

IS *

JOIN *

LAST

LEADING *

LEFT *

LIKE *

LIMIT

884 | SQL Elements

LOCAL *

LOCALTIME *

LOCALTIMESTAMP *

MATCH *

MEMBER *

MERGE *

MINUS

NATURAL *

NEW *

NEXT

NOT *

NULL *

OF *

OFFSET *

OLD *

ON *

OPEN *

OR *

ORDER *

OUT *

PREPARE *

PRIMARY *

PRIOR

PROCEDURE *

PROFILE

REF *

REFERENCES *

RELATIVE

RELEASE *

RENAME

RETURN *

RETURNING

RETURNS *

REVOKE *

RIGHT *

ROLLBACK *

ROW *

ROWID

ROWS *

ROW_NUMBER *

SAVEPOINT *

Syntax Elements | 885

SELECT *

SESSION_USER *

SET *

SOME *

SQL *

SQLEXCEPTION *

SQLSTATE *

SQLWARNING *

START *

SYMMETRIC *

SYNONYM

SYSDATE

SYSTEM *

SYSTEM_USER *

SYSTIME

SYSTIMESTAMP

TABLE *

THEN *

TO *

TRAILING *

TRIGGER *

TRUE *

TRUNCATE *

UNION *

UNIQUE *

UNKNOWN *

UPDATE *

UPPER *

USER *

USING *

VALUES *

VIEW

WHEN *

WHENEVER *

WHERE *

WINDOW *

WITH *

WITHOUT *

886 | SQL Elements

SQL Keywords

GOLDILOCKS SQL keywords are not reserved words. However, they are keywords which are internally use

d by GOLDILOCKS. Therefore, it is not recommended to use GOLDILOCKS SQL keywords because it can d

ecrease the readability of the results.

GOLDILOCKS SQL keywords list can be viewed through V$KEYWORDS.

Compatibility for Syntax Elements

The SQL standard compatibility for syntax element is as follows.

Table 11-1 SQL standard compatibility for syntax element

Feature ID Description Availability

E021-03 Character literals O

E131 Null value support (nulls in lieu of values) O

E161 SQL comments using leading double minus O

F051-01 DATE data type (including support of DATE literal) O

F051-02
TIME data type (including support of TIME literal) with fractional seconds pr

ecision of at least 0
O

F051-03
TIMESTAMP data type (including support of TIMESTAMP literal) with fractio

nal seconds precision of at least 0 and 6
O

F271 Compound character literals X

F383 Set column not null clause O

F391 Long identifiers X

F392 Unicode escapes in identifiers X

F393 Unicode escapes in literals X

T023 Compound binary literals X

T024 Spaces in binary literals X

T101 Enhanced nullability determination X

T351 Bracketed comments X

T591 UNIQUE constraints of possibly null columns O

X041 Basic table mapping: null absent X

X042 Basic table mapping: null as nil X

X051 Advanced table mapping: null absent X

X052 Advanced table mapping: null as nil X

X170 XML null handling options X

X400 Name and identifier mapping X

Data Type | 887

11.2 Data Type

Numeric Type

Numeric data types are classified according to the storage method and the fractional part representation.

● Classification by the storage method

○ Decimal numeric type

■ It stores decimal numbers in 100 digits basis.

■ Types: NUMBER, NUMERIC, FLOAT

○ Binary numeric type

■ It stores numbers of C language as it is.

■ Types: NATIVE_INTEGER, NATIVE_DOUBLE

● Classification by fractional part representation

○ Fixed point data type (exact numeric)

■ It is a numeric type whose scale is fixed.

■ Types: NUMERIC(precision, scale), NATIVE_INTEGER

○ Floating point data type (approximate numeric)

■ It is a numeric type whose scale is not fixed.

■ Types: FLOAT(precision), NATIVE_DOUBLE

Decimal Numeric Type

This type's precision and scale are based on decimal number. The precision indicates accuracy of the valid

digits, and the scale indicates the range of fraction.

Decimal Fixed Point Number Type

The decimal fixed point number type is defined in SQL.

Table 11-2 Decimal fixed point number type

Type Decimal precision Decimal scale Refer to

NUMBER(p) p 0 NUMBER

NUMBER(p, s) p s NUMBER

NUMERIC(p) p 0 NUMERIC

NUMERIC(p, s) p s NUMERIC

DECIMAL(p) p 0 NUMERIC type alias

DECIMAL(p, s) p s NUMERIC type alias

888 | SQL Elements

DEC(p) p 0 NUMERIC type alias

DEC(p, s) p s NUMERIC type alias

SMALLINT 5 0 NUMERIC type alias

INTEGER 10 0 NUMERIC type alias

BIGINT 19 0 NUMERIC type alias

INT2 5 0 NUMERIC type alias

INT4 10 0 NUMERIC type alias

INT8 19 0 NUMERIC type alias

Type Decimal precision Decimal scale Refer to

Decimal Floating Point Number Type

The decimal floating point number type is defined in SQL.

Table 11-3 Decimal floating point number type

Type Decimal precision Decimal scale Refer to

NUMBER 38 N/A NUMBER

FLOAT(p) ceil(log
10

2
p
) N/A FLOAT

REAL ceil(log
10

2
24

) = 8 N/A FLOAT type alias

DOUBLE ceil(log
10

2
53

) = 16 N/A FLOAT type alias

FLOAT4 ceil(log
10

2
24

) = 8 N/A FLOAT type alias

FLOAT8 ceil(log
10

2
53

) = 16 N/A FLOAT type alias

Binary Number Type

This type's precision and scale are based on binary number. The precision indicates accuracy of the valid d

igits, and the scale indicates the range of fraction.

Binary Fixed Point Number Type

The binary fixed point number type refers to the signed integer data type of C language.

1 bit is used to represent the sign bit, and other bits are used to represent the precision, but not any bit is

used to represent the scale.

Table 11-4 Binary fixed point number type

Type Binary precision Binary scale Refer to

NATIVE_SMALLINT 15 0 NATIVE_SMALLINT

NATIVE_INTEGER 31 0 NATIVE_INTEGER

NATIVE_BIGINT 63 0 NATIVE_BIGINT

Data Type | 889

Binary Floating Point Number Type

The binary floating point type refers to the float and double data type in C language.

1 bit is used to represent the sign bit, and other bits are used to represent the precision and scale.

Table 11-5 Binary floating point number type

Type Binary precision Binary scale Refer to

NATIVE_REAL 23 8 NATIVE_REAL

NATIVE_DOUBLE 52 11 NATIVE_DOUBLE

Note

The precision and scale of binary floating point type is subject to change depending on the influen

ce of the compiler and OS.

CHARACTER STRING Type

CHARACTER STRING data types are classified according to whether it is a variable length string and the m

aximum length of string.

● Classification by whether a variable length string exists

○ Fixed length string

■ Refer to CHARACTER.

○ Variable length string

■ Refer to CHARACTER VARYING, CHARACTER LONG VARYING.

● Classification by the maximum length of a string

○ 2000 [characters or bytes]

■ Refer to CHARACTER.

○ 4000 [characters or bytes]

■ Refer to CHARACTER VARYING.

○ 100 megabytes

■ Refer to CHARACTER LONG VARYING.

890 | SQL Elements

BINARY STRING Type

BINARY STRING data types are classified according to whether it is a variable length binary string and the

maximum length of binary string.

● Classification by whether it is a variable length binary string

○ Fixed length binary string

■ Refer to BINARY.

○ Variable length binary string

■ Refer to BINARY VARYING, BINARY LONG VARYING.

● Classification by the maximum length of binary string

○ 2000

■ Refer to BINARY.

○ 4000

■ Refer to BINARY VARYING.

○ 100 Mega Bytes

■ Refer to BINARY LONG VARYING.

Date/ Time Type

Date/ time data type specifies the year, month, day, hour, minute, second, time zone offset in accordanc

e with their representation method.

Date/ time data type has DATE, TIME, TIMESTAMP types.

INTERVAL Type

INTERVAL data type specifies the time interval.

It specifies the time interval of the year, month, day, hour, minute, second in accordance with their repres

entation method.

INTERVAL data types are classified to the YEAR TO MONTH family type and the DAY TO SECOND family t

ype, according to the range of value representation.

Data Type | 891

BOOLEAN Type

The BOOLEAN data type stores values of TRUE, FALSE, UNKNOWN. UNKNOWN value is represented as a

null value. All expressions used as conditions return the BOOLEAN value and the column or the value defi

ned as a BOOLEAN data type can be used as a condition.

For more information, refer to BOOLEAN.

ROWID Type

All records stored in the database have unique location information. The record identifier (ROWID) is use

d to distinguish each record.

ROWID data type is used to store and manage the record identifier (ROWID).

Record identifier (ROWID) is obtained by the query using the ROWID pseudo column.

For more information, refer to ROWID.

Type Comparison

Comparing two types is executed on the basis of one representative type. If the comparison target type is

different from the representative type, then the comparison can go through a type conversion.

The representative types for type comparison defines the representative type for comparing two types.

The following table describes target type conversion for comparison per each representative type.

● Type conversion for the VC comparison

● Type conversion for the LC comparison

● Type conversion for the VB comparison

● Type conversion for the LB comparison

● Type conversion for the NB comparison

● Type conversion for the ND comparison

● Type conversion for the NU comparison

● Type conversion for the DA comparison

● Type conversion for the TI comparison

● Type conversion for the TZ comparison

● Type conversion for the TS comparison

● Type conversion for the SZ comparison

892 | SQL Elements

● Type conversion for the YM comparison

● Type conversion for the DS comparison

● Type conversion for the BO comparison

● Type conversion for the RI comparison

Tip

The followings are abbreviations which are used for the type comparison.

● "VC": CHARACTER VARYING

● "LC": CHARACTER LONG VARYING

● "VB": BINARY VARYING

● "LB": BINARY LONG VARYING

● "NB": NATIVE_BIGINT

● "ND": NATIVE_DOUBLE

● "NU": NUMBER

● "DA": DATE

● "TI": TIME

● "TZ": TIME WITH TIMEZONE

● "TS": TIMESTAMP

● "SZ": TIMESTAMP WITH TIMEZONE

● "YM": INTERVAL YEAR TO MONTH

● "DS": INTERVAL DAY TO SECOND

● "BO": BOOLEAN

● "RI": ROWID

Note

In the type comparison table, the built-in data types are represented by an abbreviated word enclo

sed in double quotes ("").

● "CHAR": CHARACTER

● "VARCHAR": CHARACTER VARYING

● "LONG VARCHAR": CHARACTER LONG VARYING

● "VARBINARY": BINARY VARYING

● "LONG VARBINARY": BINARY LONG VARYING

● "TIME_TZ": TIME WITH TIMEZONE

● "TIMESTAMP_TZ": TIMESTAMP WITH TIMEZONE

Data Type | 893

● "INTERVAL_YM": INTERVAL YEAR TO MONTH

● "INTERVAL_DS": INTERVAL DAY TO SECOND

Table 11-6 The representative types for type comparison

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

CHAR VC VC LC NU NU NU NU ND NU NU NU DA TI TZ TS SZ YM DS BO RI

VARC

HAR
VC VC LC NU NU NU NU ND NU NU NU DA TI

TZ TS SZ YM DS BO RI

LONG

VARC

HAR

LC LC LC NU NU NU NU ND NU NU NU DA TI

TZ TS SZ YM DS BO RI

BINAR

Y
VB VB LB

VARBI

NARY
VB VB LB

LONG

VARBI

NARY

LB LB LB

NATIV

E_SM

ALLINT

NU NU NU NB NB NB ND ND NU NU NU

YM DS

NATIV

E_INTE

GER

NU NU NU NB NB NB ND ND NU NU NU

YM DS

NATIV

E_BIGI

NT

NU NU NU NB NB NB ND ND NU NU NU

YM DS

NATIV

894 | SQL Elements

E_REA

L

NU NU NU ND ND ND ND ND NU NU NU

NATIV

E_DO

UBLE

ND ND ND ND ND ND ND ND ND ND ND

NUMB

ER
NU NU NU NU NU NU NU ND NU NU NU

YM DS

NUME

RIC
NU NU NU NU NU NU NU ND NU NU NU

YM DS

FLOAT NU NU NU NU NU NU NU ND NU NU NU YM DS

DATE DA DA DA DA TS SZ

TIME TI TI TI TI TZ

TIME_

TZ
TZ TZ TZ TZ TZ

TIMES

TAMP
TS TS TS TS TS

SZ

TIMES

TAMP

_TZ

SZ SZ SZ SZ SZ

SZ

INTER

VAL_Y

M

YM YM YM YM YM YM YM YM YM

YM

INTER

VAL_D

S

DS DS DS DS DS DS DS DS DS

DS

BOOLE

AN
BO BO BO

BO

ROWI

D
RI RI RI

RI

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

Data Type | 895

Table 11-7 Type conversion for the VC comparison

Source type Converted type

CHAR CHAR (no conversion)

VARCHAR VARCHAR (no conversion)

Table 11-8 Type conversion for the LC comparison

Source type Converted type

CHAR CHAR (no conversion)

VARCHAR VARCHAR (no conversion)

LONG VARCHAR LONG VARCHAR (no conversion)

Table 11-9 Type conversion for the VB comparison

Source type Converted type

BINARY BINARY (no conversion)

VARBINARY VARBINARY (no conversion)

Table 11-10 Type conversion for the LB comparison

Source type Converted type

BINARY BINARY (no conversion)

VARBINARY VARBINARY (no conversion)

LONG VARBINARY LONG VARBINARY (no conversion)

Table 11-11 Type conversion for the NB comparison

Source type Converted type

CHAR NATIVE_BIGINT

VARCHAR NATIVE_BIGINT

LONG VARCHAR NATIVE_BIGINT

NATIVE_SMALLINT NATIVE_SMALLINT (no conversion)

NATIVE_INTEGER NATIVE_INTEGER (no conversion)

NATIVE_BIGINT NATIVE_BIGINT (no conversion)

Table 11-12 Type conversion for the ND comparison

Source type Converted type

CHAR NATIVE_DOUBLE

VARCHAR NATIVE_DOUBLE

LONG VARCHAR NATIVE_DOUBLE

NATIVE_SMALLINT NATIVE_SMALLINT (no conversion)

NATIVE_INTEGER NATIVE_INTEGER (no conversion)

NATIVE_BIGINT NATIVE_BIGINT (no conversion)

896 | SQL Elements

NATIVE_REAL NATIVE_REAL (no conversion)

NATIVE_DOUBLE NATIVE_DOUBLE (no conversion)

NUMBER NUMBER (no conversion)

NUMERIC NUMERIC (no conversion)

FLOAT FLOAT (no conversion)

Source type Converted type

Table 11-13 Type conversion for the NU comparison

Source type Converted type

CHAR NUMBER

VARCHAR NUMBER

LONG VARCHAR NUMBER

NATIVE_SMALLINT NATIVE_SMALLINT (no conversion)

NATIVE_INTEGER NATIVE_INTEGER (no conversion)

NATIVE_BIGINT NATIVE_BIGINT (no conversion)

NATIVE_REAL NATIVE_REAL (no conversion)

NATIVE_DOUBLE NATIVE_DOUBLE (no conversion)

NUMBER NUMBER (no conversion)

NUMERIC NUMERIC (no conversion)

FLOAT FLOAT (no conversion)

Table 11-14 Type conversion for the DA comparison

Source type Converted type

CHAR DATE

VARCHAR DATE

LONG VARCHAR DATE

DATE DATE (no conversion)

Table 11-15 Type conversion for the TI comparison

Source type Converted type

CHAR TIME

VARCHAR TIME

LONG VARCHAR TIME

TIME TIME (no conversion)

Table 11-16 Type conversion for the TZ comparison

Source type Converted type

CHAR TIME_TZ

VARCHAR TIME_TZ

LONG VARCHAR TIME_TZ

Data Type | 897

TIME TIME_TZ

TIME_TZ TIME_TZ (no conversion)

Source type Converted type

Table 11-17 Type conversion for the TS comparison

Source type Converted type

CHAR TIMESTAMP

VARCHAR TIMESTAMP

LONG VARCHAR TIMESTAMP

DATE DATE (no conversion)

TIMESTAMP TIMESTAMP (no conversion)

Table 11-18 Type conversion for the SZ comparison

Source type Converted type

CHAR TIMESTAMP_TZ

VARCHAR TIMESTAMP_TZ

LONG VARCHAR TIMESTAMP_TZ

DATE TIMESTAMP_TZ

TIMESTAMP TIMESTAMP_TZ

TIMESTAMP_TZ TIMESTAMP_TZ (no conversion)

Table 11-19 Type conversion for the YM comparison

Source type Converted type

CHAR INTERVAL_YM

VARCHAR INTERVAL_YM

LONG VARCHAR INTERVAL_YM

NATIVE_SMALLINT INTERVAL_YM

NATIVE_INTEGER INTERVAL_YM

NATIVE_BIGINT INTERVAL_YM

NUMBER INTERVAL_YM

NUMERIC INTERVAL_YM

FLOAT INTERVAL_YM

INTERVAL_YM INTERVAL_YM (no conversion)

Table 11-20 Type conversion for the DS comparison

Source type Converted type

CHAR INTERVAL_DS

VARCHAR INTERVAL_DS

LONG VARCHAR INTERVAL_DS

NATIVE_SMALLINT INTERVAL_DS

898 | SQL Elements

NATIVE_INTEGER INTERVAL_DS

NATIVE_BIGINT INTERVAL_DS

NUMBER INTERVAL_DS

NUMERIC INTERVAL_DS

FLOAT INTERVAL_DS

INTERVAL_DS INTERVAL_DS (no conversion)

Source type Converted type

Table 11-21 Type conversion for the BO comparison

Source type Converted type

CHAR BOOLEAN

VARCHAR BOOLEAN

LONG VARCHAR BOOLEAN

BOOLEAN BOOLEAN (no conversion)

Table 11-22 Type conversion for the RI comparison

Source type Converted type

CHAR ROWID

VARCHAR ROWID

LONG VARCHAR ROWID

ROWID ROWID (no conversion)

Type Conversion

Type conversions are classified into implicit type conversion and explicit type conversion.

● Implicit type conversion occurs in an expression, an operator, a function, a condition, for select, insert,

delete, update.

● Explicit type conversion occurs through the CAST operator.

Table 11-23 The availability of type conversion describes the availability of data type conversion from a ty

pe to another type.

Note

In the type conversion table, the built-in data types are represented by an abbreviated string enclo

sed in double quotes ("").

Data Type | 899

● "CHAR": CHARACTER

● "VARCHAR": CHARACTER VARYING

● "LONG VARCHAR": CHARACTER LONG VARYING

● "VARBINARY": BINARY VARYING

● "LONG VARBINARY": BINARY LONG VARYING

● "TIME_TZ": TIME WITH TIMEZONE

● "TIMESTAMP_TZ": TIMESTAMP WITH TIMEZONE

● "INTERVAL_YM": INTERVAL YEAR TO MONTH

● "INTERVAL_DS": INTERVAL DAY TO SECOND

Table 11-23 The availability of type conversion

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

CHAR O

VARC

HAR
O O O O O O O O O O O O O O O O O O O O

LONG

VARC

HAR

O O O O O O O O O O O O O O O O O O O O

BINAR

Y
O O O

VARBI

NARY
O O O

LONG

VARBI

NARY

O O O

NATIV

E_SM

ALLINT

O O O O O O O O O O O O O

900 | SQL Elements

NATIV

E_INTE

GER

O O O O O O O O O O O O O

NATIV

E_BIGI

NT

O O O O O O O O O O O O O

NATIV

E_REA

L

O O O O O O O O O O O

NATIV

E_DO

UBLE

O O O O O O O O O O O

NUMB

ER
O O O O O O O O O O O O O

NUME

RIC
O O O O O O O O O O O O O

FLOAT O O O O O O O O O O O O O

DATE O O O O O O

TIME O O O O O

TIME_

TZ
O O O O O

TIMES

TAMP
O O O O O O O

TIMES

TAMP

_TZ

O O O O O O O O

INTER

VAL_Y

M

O O O O O O O O O O

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

Data Type | 901

INTER

VAL_D

S

O O O O O O O O O O

BOOLE

AN
O O O O

ROWI

D
O O O O

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

● Conversion to CHARACTER type

○ When the source type is CHARACTER type:

■ If the source type precision is bigger than the CHARACTER type precision, then an error occu

rs.

■ If the source type precision is equal to the CHARACTER type precision, then the string is not c

hanged.

■ If the source type precision is smaller than the CHARACTER type precision, then space charac

ters are added to the string as many as the precision difference.

○ When the source type is CHARACTER VARYING type or CHARACTER LONG VARYING type:

■ If the source type string length is bigger than the CHARACTER type precision, then an error o

ccurs.

■ If the source type string length is equal to the CHARACTER type precision, then the string is n

ot changed.

■ If the source type string length is smaller than the CHARACTER type precision, then space ch

aracters are added to the string as many as precision difference.

○ When the source type is numeric type, date/time type, INTERVAL type, BOOLEAN type or ROWID

type:

■ If the converted string length of the source type is bigger than the CHARACTER type precisio

n, then an error occurs.

■ If the converted string length of the source type is equal to the CHARACTER type precision, t

he string is not changed.

902 | SQL Elements

■ If the converted string length of the source type is smaller than the CHARACTER type precisio

n, then space characters are added to the string as many as precision difference.

● Conversion to CHARACTER VARYING type

○ When the source type is CHARACTER type:

■ If the source type precision is bigger than the CHARACTER VARYING type precision, then an

error occurs.

■ If the source type precision is equal or smaller than the CHARACTER VARYING type precision,

then the string is not changed.

○ When the source type is CHARACTER VARYING type or CHARACTER LONG VARYING type:

■ If the source type string length is bigger than the CHARACTER VARYING type precision, then

an error occurs.

■ If the source type string length is equal or smaller than the CHARACTER VARYING type precis

ion, then the string is not changed.

○ When the source type is numeric type, date/time type, INTERVAL type, BOOLEAN type or ROWID

type:

■ If the converted string length of the source type is bigger than the CHARACTER VARYING typ

e precision, then an error occurs.

■ If the converted string length of the source type is equal or smaller than the CHARACTER VA

RYING type precision, then the string is not changed.

● Conversion to CHARACTER LONG VARYING type

○ When the source type is CHARACTER STRING type:

■ The source type string is not changed.

○ When the source type is numeric type, date/time type, INTERVAL type, BOOLEAN type or ROWID

type:

■ The converted string of the source type is not changed.

● Conversion to BINARY type

○ When the source type is BINARY type:

■ If the source type precision is bigger than the BINARY type precision, then an error occurs.

■ If the source type precision is equal to the BINARY type precision, then the binary string is not

changed.

■ If the source type precision is smaller than the BINARY type precision, the X'00' characters ar

e added to the binary string as many as the precision difference.

○ When the source type is BINARY VARYING type or BINARY LONG VARYING type:

■ If the source type binary string length is bigger than the BINARY type precision, then an error

occurs.

■ If the source type binary string length is equal to the BINARY type precision, then the binary s

tring is not changed.

■ If the source type binary string length is smaller than the BINARY type precision, the X'00' ch

aracters are added to a binary string as many as precision difference.

● Conversion to BINARY VARYING type

Data Type | 903

○ When the source type is BINARY type:

■ If the source type precision is bigger than the BINARY VARYING type precision, then an error

occurs.

■ If the source type precision is equal or smaller than the BINARY VARYING type precision, the

n the binary string is not changed.

○ When the source type is BINARY VARYING type, BINARY LONG VARYING type:

■ If the source type binary string length is bigger than the BINARY VARYING type precision, the

n an error occurs.

■ If the source type binary string length is equal or smaller than the BINARY VARYING type pre

cision, the binary string is not changed.

● Conversion to BINARY LONG VARYING type

○ If the source type is BINARY STRING type, the source type binary string is not changed.

● Conversion to numeric type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the numeric format, then an error occurs.

■ An overflow or rounding can occur due to the precision and scale which is defined in the con

verted type.

○ When the source type is numeric type:

■ An overflow or rounding can occur due to the precision and scale which is defined in the con

verted type.

○ When the source type is INTERVAL type:

■ It can be converted to the numeric type only when the source type is the single field (YEAR,

MONTH, DAY, HOUR, MINUTE, SECOND).

■ An overflow or rounding can occur due to the precision and scale which is defined in the con

verted type.

● Conversion to DATE type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the DATE type format, then an error occurs.

■ An overflow can occur due to a value range which is defined in the converted type.

○ When the source type is DATE type or TIMESTAMP type:

■ The error does not occur.

○ When the source type is TIMESTAMP WITH TIME ZONE type:

■ It is converted to the DATE type value upon consideration of the time zone offset.

● Conversion to TIME type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the TIME type format, then an error occurs.

■ A rounding can occur due to a value range which is defined in the converted type.

○ When the source type is TIME type or TIMESTAMP type:

■ The error does not occur.

904 | SQL Elements

○ When the source type is TIME WITH TIME ZONE type or TIMESTAMP WITH TIME ZONE type:

■ It is converted to the value of TIME type upon consideration of the time zone offset.

● Conversion to TIME WITH TIME ZONE type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the TIME WITH TIME ZONE type format, then an error occ

urs.

■ A rounding can occur due to a value range which is defined in the converted type.

○ When the source type is TIME type, TIME WITH TIME ZONE type or TIMESTAMP WITH TIME ZON

E type:

■ It is converted to the value of TIME WITH TIME ZONE type upon consideration of the time zo

ne offset.

● Conversion to TIMESTAMP type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the TIMESTAMP type format, then an error occurs.

■ An overflow or rounding can occur due to a value range which is defined in the converted ty

pe.

○ When the source type is DATE type or TIMESTAMP type:

■ The error does not occur.

○ When the source type is TIMESTAMP WITH TIME ZONE type:

■ It is converted to the TIMESTAMP type value upon consideration of the time zone offset.

● Conversion to TIMESTAMP WITH TIME ZONE type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the TIMESTAMP WITH TIME ZONE type format, then an err

or occurs.

■ An overflow or rounding can occur due to a value range which is defined in the converted ty

pe.

○ When the source type is DATE type, TIMESTAMP type or TIMESTAMP WITH TIME ZONE type:

■ It is converted to the value of TIMESTAMP WITH TIME ZONE type upon consideration of the t

ime zone offset.

● Conversion to INTERVAL YEAR TO MONTH family type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the year-month interval literal format, then an error occurs.

■ For more information, refer to Interval Literals.

■ An overflow can occur due to a precision which is defined in the converted type.

○ When the source type is NATIVE_SMALLINT, NATIVE_INTEGER, NATIVE_BIGINT, NUMBER, NUM

ERIC or FLOAT type:

■ The converted type should be a single field (YEAR, MONTH).

■ An overflow can occur due to a precision which is defined in the converted type.

○ When the source type is INTERVAL YEAR TO MONTH family type:

Data Type | 905

■ An overflow can occur due to a precision which is defined in the converted type.

● Conversion to INTERVAL DAY TO SECOND family type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the day-time interval literal format, then an error occurs.

■ For more information, refer to Interval Literals.

■ An overflow or rounding can occur due to the precision which is defined in the converted typ

e.

○ When the source type is NATIVE_SMALLINT, NATIVE_INTEGER, NATIVE_BIGINT, NUMBER, NUM

ERIC, or FLOAT type:

■ The converted type should be a single field (DAY, HOUR, MINUTE, SECOND)

■ An overflow or rounding can occur due to the precision which is defined in the converted typ

e.

○ When the source type is INTERVAL DAY TO SECOND family type:

■ An overflow or rounding can occur due to the precision which is defined in the converted typ

e.

● Conversion to BOOLEAN type

○ When the source type is CHARACTER STRING type:

■ The conversion is available when the string is "TRUE" or "FALSE", and it is case-insensitive. (It

is convertible even when the string includes a space before and after it.)

○ When the source type is BOOLEAN type:

■ The error does not occur.

● Conversion to ROWID type

○ When the source type is CHARACTER STRING type:

■ If the string does not comply with the ROWID type format, then an error occurs.

○ When the source type is ROWID type:

■ The error does not occur.

Type Combination

When Type Combination Is Required

A CASE operator and a set operator have many expressions as a result of operation.

Each expression can have different types each other as follows. In this case, the result type should be dete

rmined.

● The following describes an execution result of a CASE operator.

906 | SQL Elements

SELECT CASE expr WHEN expr THEN char(3)

WHEN expr THEN char(5)

ELSE char(1)

END

FROM t1;

● The following describes an execution result of a set operator.

SELECT float_column

FROM t1

UNION ALL

SELECT number_precision_column

FROM t2

UNION ALL

SELECT native_integer_column

FROM t3;

A rule is applied to determine the result type according to the type combination. The following is an exa

mple of applying the rule.

● Result type combination rule

○ set operator

○ CASE operator

■ CASE Expression

■ COALESCE

■ NULLIF

Result Type Combination Rule

Each expression's data type should be the same family type which is available to combine.

● Examples of applying result type combination rule

○ set operator

○ CASE operator

■ CASE Expression

■ COALESCE

■ NULLIF

The result types determined by result type combination rule are described in the following table.

Data Type | 907

Tip

The following abbreviations are used to describe the result type combination rule.

● "VC": CHARACTER VARYING

● "LC": CHARACTER LONG VARYING

● "VB": BINARY VARYING

● "LB": BINARY LONG VARYING

● "NS": NATIVE_SMALLINT

● "NI": NATIVE_INTEGER

● "NB": NATIVE_BIGINT

● "NR": NATIVE_REAL

● "ND": NATIVE_DOUBLE

● "FL": FLOAT

● "NU": NUMBER

● "DA": DATE

● "TI": TIME

● "TZ": TIME WITH TIMEZONE

● "TS": TIMESTAMP

● "SZ": TIMESTAMP WITH TIMEZONE

● "YM": INTERVAL YEAR TO MONTH

● "DS": INTERVAL DAY TO SECOND

● "BO": BOOLEAN

● "RI": ROWID

Note

In result type combination table, the built-in data types are represented by an abbreviated word e

nclosed in double quotes ("").

● "CHAR": CHARACTER

● "VARCHAR": CHARACTER VARYING

● "LONG VARCHAR": CHARACTER LONG VARYING

● "BINARY": BINARY

● "VARBINARY": BINARY VARYING

● "LONG VARBINARY": BINARY LONG VARYING

● "TIME_TZ": TIME WITH TIMEZONE

● "TIMESTAMP_TZ": TIMESTAMP WITH TIMEZONE

● "INTERVAL_YM": INTERVAL YEAR TO MONTH

908 | SQL Elements

● "INTERVAL_DS": INTERVAL DAY TO SECOND

Table 11-24 The result type determined by result type combination rule

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

CHAR VC VC

VARC

HAR

VC
VC

LONG

VARC

HAR

LC

BINAR

Y
VB VB

VARBI

NARY
VB VB

LONG

VARBI

NARY

LB

NATIV

E_SMA

LLINT

NS NI NB ND ND NU NU NU

NATIV

E_INTE

GER

NI NI NB ND ND NU NU NU

NATIV

E_BIGI

NT

NB NB NB ND ND NU NU NU

NATIV

E_REA ND ND ND NR ND ND ND ND

Data Type | 909

L

NATIV

E_DOU

BLE

ND ND ND ND ND ND ND ND

NUMB

ER
NU NU NU ND ND NU NU NU

NUME

RIC
NU NU NU ND ND NU NU NU

FLOAT NU NU NU ND ND NU NU FL

DATE DA TS SZ

TIME TI TZ

TIME_

TZ
TZ TZ

TIMES

TAMP
TS TS SZ

TIMES

TAMP_

TZ

SZ SZ SZ

INTERV

AL_Y

M

YM

INTERV

AL_DS
DS

BOOLE

AN
BO

ROWI

D
RI

Data

type

C

H

A

R

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

B

I

N

A

R

Y

V

A

R

B

I

N

A

R

Y

L

O

N

G

V

A

R

B

I

N

A

R

Y

N

A

T

I

V

E

S

M

A

L

L

I

N

T

N

A

T

I

V

E

I

N

T

E

G

E

R

N

A

T

I

V

E

B

I

G

I

N

T

N

A

T

I

V

E

R

E

A

L

N

A

T

I

V

E

D

O

U

B

L

E

N

U

M

B

E

R

N

U

M

E

R

I

C

F

L

O

A

T

D

A

T

E

T

I

M

E

T

I

M

E

T

Z

T

I

M

E

S

T

A

M

P

T

I

M

E

S

T

A

T

M

P

T

Z

I

N

T

E

R

V

A

L

Y

M

I

N

T

E

R

V

A

L

D

S

B

O

O

L

E

A

N

R

O

W

I

D

910 | SQL Elements

● The result type of when all is CHAR type

○ If the lengths are different, then it is VARCHAR type.

○ If the lengths are equal, then it is CHAR type.

● The result type of when all is BINARY type

○ If the lengths are different, then it is VARBINARY type.

○ If the lengths are equal, then it is BINARY type.

● The result type of INTERVAL YEAR TO MONTH type

○ If YEAR type and MONTH type are mixed, then it is INTERVAL YEAR TO MONTH type.

○ If there is only YEAR type, then it is INTERVAL YEAR type.

○ If there is only MONTH type, then it is INTERVAL MONTH type.

● The result type of INTERVAL DAY TO SECOND type

○ The start field is the biggest range field of each target expression.

○ The end field is the smallest range field of each target expression.

○ e.g. {INTERVAL DAY, INTERVAL HOUR} => INTERVAL DAY TO HOUR

● The precision, scale of the result type

○ CHARACTER STRING type

■ The maximum character length of the target expression

○ BINARY STRING type

■ The maximum character length of the target expression

○ NUMERIC type

■ It specifies an acceptable maximum range of the type's value.

○ TIME/TIMESTAMP type

■ The maximum fractional seconds precision of the target expression

○ INTERVAL YEAR TO MONTH

■ The maximum leading precision of the target expression

○ INTERVAL DAY TO SECOND

■ Leading precision is the maximum leading precision of the start field

■ Fractional seconds precision is the maximum fractional seconds precision.

● For more information, refer to Type Comparison.

Compatibility for Data Type

The SQL standard compatibility for data type is as follows.

Table 11-25 SQL standard compatibility for data type

Feature ID Description Availability

B033 Untyped SQL-invoked function arguments X

E011-01 INTEGER and SMALLINT data types O

E011-02 REAL, DOUBLE PRECISION, and FLOAT data types O

Data Type | 911

E011-03 DECIMAL and NUMERIC data types X

E011-04 Arithmetic operators O

E011-05 Numeric comparison O

E011-06 Implicit casting among the numeric data types O

E021-01 CHARACTER data type O

E021-02 CHARACTER VARYING data type O

E021-03 Character literals O

E021-04 CHARACTER_LENGTH function O

E021-05 OCTET_LENGTH function O

E021-06 SUBSTRING function O

E021-07 Character concatenation O

E021-08 UPPER and LOWER functions O

E021-09 TRIM function O

E021-10
Implicit casting among the fixed-length and variable-length character string

types
O

E021-11 POSITION function O

E021-12 Character comparison O

E071-05
Columns combined via table operators need not have exactly the same data

type
O

F051-01 DATE data type (including support of DATE literal) O

F051-02
TIME data type (including support of TIME literal) with fractional seconds pr

ecision of at least 0
O

F051-03
TIMESTAMP data type (including support of TIMESTAMP literal) with fractio

nal seconds precision of at least 0 and 6
O

F051-04 Comparison predicate on DATE, TIME, and TIMESTAMP data types X

F051-05 Explicit CAST between datetime types and character string types O

F054 TIMESTAMP in DATE type precedence list X

F382 Alter column data type O

F611 Indicator data types X

F741 Referential MATCH types X

J521 JDBC data types X

J622 external Java types X

S011-01 USER_DEFINED_TYPES view X

S023 Basic structured types X

S024 Enhanced structured types X

S025 Final structured types X

S026 Self-referencing structured types X

S041 Basic reference types X

S043 Enhanced reference types X

S051 Create table of type X

Feature ID Description Availability

912 | SQL Elements

S071 SQL paths in function and type name resolution X

S091-01 Arrays of built-in data types X

S091-02 Arrays of distinct types X

S092 Arrays of user-defined types X

S094 Arrays of reference types X

S161 Subtype treatment X

S162 Subtype treatment for references X

S201-02 Array as result type of functions X

S231 Structured type locators X

S261 Specific type method X

S272 Multisets of user-defined types X

S274 Multisets of reference types X

S281 Nested collection types X

S401 Distinct types based on array types X

S402 Distinct types based on distinct types X

T021 BINARY and VARBINARY data types O

T022 Advanced support for BINARY and VARBINARY data types O

T031 BOOLEAN data type O

T041 Basic LOB data type support X

T042 Extended LOB data type support X

T051 Row types X

T071 BIGINT data type O

T201 Comparable data types for referential constraints X

T322 Declared data type attributes X

X010 XML type X

X011 Arrays of XML type X

X012 XMultisets of XML type X

X013 Distinct types of XML type X

X014 Attributes of XML type X

X015 Fields of XML type X

X181 XML(DOCUMENT(UNTYPED)) type X

X182 XML(DOCUMENT(ANY)) type X

X190 XML(SEQUENCE) type X

X191 XML(DOCUMENT(XMLSCHEMA)) type X

X192 XML(CONTENT(XMLSCHEMA)) type X

X231 XML(CONTENT(UNTYPED)) type X

X232 XML(CONTENT(ANY)) type X

X251 Persistent XML values of XML(DOCUMENT(UNTYPED)) type X

X252 Persistent XML values of XML(DOCUMENT(ANY)) type X

X253 Persistent XML values of XML(CONTENT(UNTYPED)) type X

Feature ID Description Availability

Data Type | 913

X254 Persistent XML values of XML(CONTENT(ANY)) type X

X255 Persistent XML values of XML(SEQUENCE) type X

X256 Persistent XML values of XML(DOCUMENT(XMLSCHEMA)) type X

X257 Persistent XML values of XML(CONTENT(XMLSCHEMA)) type X

X260 XML type: ELEMENT clause X

X261 XML type: NAMESPACE without ELEMENT clause X

X263 XML type: NO NAMESPACE with ELEMENT clause X

X264 XML type: schema location X

X410 Alter column data type: XML type X

Feature ID Description Availability

914 | SQL Elements

11.3 Format String

Format string defines the format which is used when a numeric type or date/time type is converted to a c

haracter string or when a character string is converted to a numeric types or date/time type.

● When a numeric type or date/time type is converted to a character string type, the representation for

mat of the string is as follows.

○ Refer to TO_CHAR(number), TO_CHAR(datetime).

○ Numeric type: TO_CHAR(1234.56, 'S9,999.99') → '+1,234.56'

○ Date/time type: TO_CHAR(SYSDATE, 'YYYY-MM-DD') → '2012-07-15'

● When a character string is converted to the numeric type or date/time type, the representation forma

t of the string is as follows.

○ Refer to TO_NUMBER, TO_NATIVE_REAL, TO_NATIVE_DOUBLE.

○ Refer to TO_DATE.

○ Refer to TO_TIMESTAMP, TO_TIMESTAMP_WITH_TIME_ZONE.

○ Refer to TO_TIME, TO_TIME_WITH_TIME_ZONE .

○ Numeric type: TO_NUMBER('+1,234.56', 'S9,999.99') → NUMBER TYPE

○ Date/time type: TO_DATE('2012-07-15', 'YYYY-MM-DD') → DATE TYPE

Format strings are classified according to the type.

• Numeric data type: Refer to Number Format String.

• Date/time type: Refer to Datetime Format String.

Number Format String

Number format string defines the format which is used when a numeric type is converted to a character s

tring type, or when a character string type is converted to a numeric type.

Number format string is used as an argument of the functions such as TO_CHAR(number), TO_NUMBE

R, TO_NATIVE_REAL, TO_NATIVE_DOUBLE.

Number format string can specify multiple format elements according to the desired format.

All number format elements are rounded off to fit the format.

If the number of digits before the decimal point of the value to be converted is bigger than the number o

f digits specified in the format string, then they are replaced with '#' character.

If the format element representing the sign of MI, S, PR is not specified, a negative number returns - sign

and a positive number returns a white space to the front of the number.

Format String | 915

Table 11-26 Number format elements

Format

element
Example Description

, (comma) 9,999

It returns a comma to the specified position.

Multiple commas can be specified.

Format string can not begin with a comma, and it can not come after the d

ecimal point (.).

. (period) 99.99
It returns a decimal point(.) to the specified position.

The decimal point in the format string can be specified only once.

$ $9999 It returns the $ sign to the front of the number.

0
0999

9990

It returns zero(0) to the front of or to the end of the number.

If the number of digits of the value to be converted is smaller than the num

ber of digits to the zero position of the format string, then the gap is filled

with zero(0)s and is returned.

9 9999

It returns a white space and numbers according to the sign and the number

of specified 9.

If the number of digits of the value to be converted is smaller than the num

ber of the specified 9, then the gap is filled with white spaces and is returne

d.

For a positive number, a white space is returned to the front of the number.

For a negative number, '-' symbol is returned to the front of the number.

If the value before the format string's decimal point is 0, then 0 is returned

as a white space.

e.g. TO_CHAR(0.123, '9.999') → .123

e.g. TO_CHAR(0, '9') → 0

B B9999 If the value is zero, it returns a white space.

EEEE 9.9EEEE

It returns in exponential notation.

It can be at the end of format string or it can be in front of S, MI, PR.

It can not be specified together with a comma (,).

MI 9999MI

For a positive number, a white space is returned to the end of the number.

For a negative number, '-' symbol is returned to the end of the number.

It can be specified only at the end of format string and it can not be specifie

d together with S, PR.

PR 9999PR

For a positive number, white spaces are returned to the beginning and end

of the number.

For a negative number, it returns the number into the inside of angle bracke

ts. <number>

It can be specified only at the end of format string, and it can not be specifi

ed together with S, MI.

RN

rn

RN

rn

Roman numerals are converted to uppercase and returned. (RN)

Roman numerals are converted to lowercase and returned. (rn)

Only the numbers between 1 ~ 3999 are returned.

It can be specified together only with FM format element, but it can not be

specified with any other format elements.

916 | SQL Elements

It can not be used in TO_NUMBER function.

S
S9999

9999S

For a positive number, '+' symbol is returned to the front of the number. Fo

r a negative number, '-' symbol is returned to the front of the number.(S99

99

For a positive number, '+' symbol is returned to the end of the number. For

a negative number, '-' symbol is returned to the end of the number.(9999S)

It can be specified only at the beginning of format string or at the end of for

mat string.

It can not be specified together with MI, PR.

V 999V99

10
n
(n: the digit number of 9 after V format element) multiplied by the valu

e is returned.

It can not specified together with the decimal point (.).

It can not be used in TO_NUMBER function.

X
XXXX

xxxx

It returns the white space and hexadecimal number according to the digit n

umber of the specified X.

It converts an integer value to the hexadecimal number, and returns it. (A n

on-integer value is rounded off to make it to an integer value)

XXX returns hexadecimal uppercase letters and xxxx returns hexadecimal lo

wercase letters.

If the number of the converted hexadecimal digit is smaller than the numbe

r of the specified X, then the gap is filled with white spaces and is returned.

Only 0 and positive integers are processed, and negative numbers are replac

ed with '#'.

It can be specified together only with format element 0 and FM, but it can n

ot be specified with any other format elements.

FM FM

It removes the front and end white spaces, and returns left aligned effect.

It removes the front and end white spaces of the number.

It removes zero(0)s under the decimal point which are added by 9 format el

ement.

Format

element
Example Description

Followings are examples of using number format string.

TO_CHAR(12345, '99,999') : ' 12,345'

TO_CHAR(123456789, '999,999,999') : ' 123,456,789'

TO_CHAR(12.345, '99.999') : ' 12.345'

TO_CHAR(1234.56, '$9,999.99') : ' $1,234.56'

TO_CHAR(123, '099999') : ' 000123'

TO_CHAR(0.2, '0.9') : ' 0.2'

TO_CHAR(123.45, '999999.99') : ' 123.45'

TO_CHAR(-123.45, '999999.99') : ' -123.45'

TO_CHAR(123.45, 'FM999999.99') : '123.45'

Format String | 917

TO_CHAR(-123.45, 'FM999999.99') : '-123.45'

TO_CHAR(12345.67, '999.99') : '#######'

TO_CHAR(123.100567, '999.999') : ' 123.101'

TO_CHAR(0.2, '90.99') : ' 0.20'

TO_CHAR(0.2, '99.99') : ' .20'

TO_CHAR(0, '90.99') : ' 0.00'

TO_CHAR(0, 'B90.99') : ' '

TO_CHAR(123.45, '9.9EEEE') : ' 1.2E+02'

TO_CHAR(123.45, '999.99MI') : '123.45 '

TO_CHAR(-123.45, '999.99MI') : '123.45-'

TO_CHAR(123.45, '999.99PR') : ' 123.45 '

TO_CHAR(-123.45, '999.99PR') : '<123.45>'

TO_CHAR(123, 'RN') : ' CXXIII'

TO_CHAR(123, 'rn') : ' cxxiii'

TO_CHAR(123, 'FMRN') : 'CXXIII'

TO_CHAR(4000, 'RN') : '###############'

TO_CHAR(123.45, 'S999.99') : '+123.45'

TO_CHAR(-123.45, 'S999.99') : '-123.45'

TO_CHAR(123.45, '999.99S') : '123.45+'

TO_CHAR(-123.45, '999.99S') : '123.45-'

TO_CHAR(123.45, '999V999') : ' 123450'

TO_CHAR(123, 'XX') : ' 7B'

TO_CHAR(123, 'xx') : ' 7b'

TO_CHAR(45678, 'XXXXXXX') : ' B26E'

TO_CHAR(45678, 'FMXXXXXXX') : 'B26E'

TO_CHAR(123.45, '99,999.999999') : ' 123.450000'

TO_CHAR(123.45, 'FM99,999.999999') : '123.45'

Datetime Format String

Datetime format string defines the format which is used when a date/time type is converted to a characte

r string type, or when a character string type is converted to a date/time type.

Datetime format string is used as an argument of the functions such as TO_CHAR(datetime), TO_DATE,

TO_TIMESTAMP, TO_TIMESTAMP_WITH_TIME_ZONE, TO_TIME, TO_TIME_WITH_TIME_ZONE.

For datetime format string, if the format string is not specified, then the default value is used. The default

value of each type is specified in the session property (NLS _ * _ FORMAT).

● DATE: Refer to NLS_DATE_FORMAT.

918 | SQL Elements

● TIMESTAMP: Refer to NLS_TIMESTAMP_FORMAT.

● TIMESTAMP WITH TIME ZONE: Refer to NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT.

● TIME: Refer to NLS_TIME_FORMAT.

● TIME WITH TIME ZONE: Refer to NLS_TIME_WITH_TIME_ZONE_FORMAT.

NLS * _FORMAT values can be changed by using ALTER SESSION SET property_name.

In datetime format string, multiple format elements can be specified upon the desired representation.

Table 11-27 Datetime format elements

Format

element

Whether to use T

O_*

datetime

Description

-

/

,

.

;

:

"text"

Special character

s

Y It returns the format element character to the specified location.

AD

A.D.
Y AD with or without periods.

AM

A.M.
Y AM with or without periods.

BC

B.C.
Y BC with or without periods.

CC N

Century

If the last two digits of the four digits year is 01~ 99, the value which is add

ed by one to the first two digits is returned. (e.g. If the year is 2005, 21 is re

turned.)

If the last two digits of the four digits year is 00, the first two digits value is r

eturned. (e.g. If the year is 2000, 20 is returned.)

D Y
It returns the sequence of the day in a week. (1 ~ 7)

Sunday is 1, saturday is 7, and so on.

DAY

Day

day

Y

It returns the day of the week. (e.g. SUNDAY)

● DAY: The day which is all in uppercase is returned.

● Day: The day whose first character is uppercase and others are lowerca

se is returned.

● day: The day which is all in lowercase is returned.

DD Y It returns the sequence of the day in a month. (1 ~ 31)

DDD Y It returns the sequence of the day in a year. (1 ~ 366)

It returns the abbreviated word for the day of the week. (e.g. SUN)

Format String | 919

DY

Dy

dy

Y ● DY: The day which is all in uppercase is returned.

● Dy: The day whose first character is uppercase and others are lowercas

e is returned.

● dy: The day which is all in lowercase is returned.

FF[1..6] Y

It returns fractional seconds as many as the number of the specified digits (1

-6) after FF.

If the number is not specified, the default value is 6. (FF is equal to FF6.)

If the number of fractional seconds digit is bigger than the number specified

after FF, then it is rounded down.

If the number of fractional seconds digit is smaller than the number specifie

d after FF, then zero(0) is added according to the specified number.

It can not be used in DATE type.

HH

HH12
Y The hour (1 ~ 12)

HH24 Y The hour (0 ~ 23)

IW N

The week containing the first thursday of the year designated as the calenda

r week by ISO 8601 standards (1 ~ 52 weeks or 1 ~ 53 weeks) becomes the

first week.

● The calendar week starts from monday.

● The first calendar week includes January 4th.

● The first calendar week may includes December 29th, 30th, and 31st.

● The last calendar week may include January 1st, 2nd, and 3rd.

IYYY N
The 4 digits year embracing the calendar week defined by ISO 8601 standar

ds.

IYY

IY

I
N

The 3 digits year embracing the calendar week defined by ISO 8601 standar

ds.

The 2 digits year embracing the calendar week defined by ISO 8601 standar

ds.

The single digit year embracing the calendar week defined by ISO 8601 stan

dards.

J Y Julian day: The number of days since BC 4714-11-24

MI Y Minute (0 ~ 59)

MM Y Month (01 ~ 12), January(01)~December(12)

MON

Mon

mon

Y

The abbreviated word for the month. (e.g. JAN)

● MON: The month which is all in uppercase is returned.

● Mon: The month whose first character is uppercase and others are low

ercase is returned.

● mon: The month which is all in lowercase is returned.

MONTH

The month name (e.g. JANUARY)

● MONTH: All uppercase month name is returned.

Format

element

Whether to use T

O_*

datetime

Description

920 | SQL Elements

Month

month

Y ● Month: The month name that only the first letter is uppercase and oth

ers are lowercase is returned.

● month: The month of which is all in lowercase is returned.

PM

P.M.
Y PM with or without periods.

Q N
The quarter of the year (1 ~ 4)

January to March is 1 and October to December is 4.

RM

Rm

rm

Y

It returns the roman numeral month. (e.g. I)

● RM: The month which is all in uppercase is returned.

● Rm: The month whose first character is uppercase and others are lowe

rcase is returned.

● rm: The month which is all in lowercase is returned.

RR Y

Adjusted two digit year

The two digit year represented by RR can be converted to four digit year as f

ollows.

● When the two digit year represented by RR is 00~49:

○ If the last two digits of the current year is 00~50,

■ the four digit year is represented using the first two digits of t

he current year and the two digits which is represented by RR.

○ If the last two digits of the current year is 51~99,

■ the four digit year is represented using "the first two digits of

the current year+1" and the two digits which is represented b

y RR.

● When the two digit year represented by RR is 50~99:

○ If the last two digits of the current year is 00~50,

■ the four digit year is represented using "the first two digit of t

he current year - 1" and the two digits which is represented b

y RR.

○ If the last two digit of the current year is 51~99,

■ the four digit year is expressed using the first two digit of the

current year and the two digits which is represented by RR.

RRRR Y

Adjusted four digit year

Two digit or four digit can be input.

Two digit input is processed in the same way as RR.

SS Y Second (0 ~ 59)

SSSSS Y Seconds since last midnight (0 ~ 86399)

TZH Y

Time Zone Hour

It can not be used in DATE, TIMESTAMP, TIME types. It is available in TIMES

TAMP WITH TIME ZONE, TIME WITH TIME ZONE types.

Time Zone Minute

Format

element

Whether to use T

O_*

datetime

Description

Format String | 921

TZM Y It can not be used in DATE, TIMESTAMP, TIME types. It can be used only in

TIMESTAMP WITH TIME ZONE, TIME WITH TIME ZONE types.

WW N

The sequence of the week in a year. (1~ 53)

The first week 1 starts on the first day of the year and continues to the seve

nth day of the year.

W N

The sequence of the week in a month. (1 ~ 5)

The first week 1 starts on the first day of the month and ends on the sevent

h day.

Y,YYY Y It returns the year with comma in the Y,YYY form.

YYYY

SYYYY
Y

Four digit year.

If it is BC, SYYYY returns '-' signal.

YYY

YY

Y

Y

● YYY: The last three digit year of the current year

● YY: The last two digit year of the current year

● Y: The last one digit year of the current year

Format

element

Whether to use T

O_*

datetime

Description

The followings are examples of using datetime format string.

* - / , . ; : "text" Special character

• TO_CHAR(TO_DATE('2012-07-15 03:30:30', 'YYYY-MM-DD HH12:MI:SS'),

'YYYY/MM/DD HH12:MI:SS')

==> '2012/07/15 03:30:30'

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'),

'YYYY"year" DDD"th day"')

==> '2012year 197th day'

* AD

• TO_CHAR(TO_DATE('2012-07-15 AD', 'YYYY-MM-DD AD'), 'YYYY AD')

==> '2012 AD'

• TO_CHAR(TO_DATE('0001-01-01 BC', 'YYYY-MM-DD AD'), 'YYYY AD')

==> '0001 BC'

* BC

• TO_CHAR(TO_DATE('0001-01-01 BC', 'YYYY-MM-DD BC'), 'YYYY BC')

==> '0001 BC'

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'YYYY BC')

==> '2012 AD'

* AM

• TO_CHAR(TO_DATE('2012-07-15 03:30:30 AM',

'YYYY-MM-DD HH12:MI:SS AM'),

922 | SQL Elements

'HH12:MI:SS AM')

==> '03:30:30 AM'

• TO_CHAR(TO_DATE('2012-07-15 21:30:30', 'YYYY-MM-DD HH24:MI:SS'),

'HH12:MI:SS AM')

==> '09:30:30 PM'

* PM

• TO_CHAR(TO_DATE('2012-07-15 03:30:30',

'YYYY-MM-DD HH24:MI:SS'),

'HH12:MI:SS PM')

==> '03:30:30 AM'

• TO_CHAR(TO_DATE('2012-07-15 09:30:30 PM',

'YYYY-MM-DD HH12:MI:SS PM'),

'HH12:MI:SS PM')

==> '09:30:30 PM'

* CC

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'CC')

==> '21'

* D

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'D')

==> '1'

* DD

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'DD')

==> '15'

* DDD

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'DDD')

==> '197'

* DAY

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'DAY')

==> 'SUNDAY '

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'Day')

==> 'Sunday '

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'day')

==> 'sunday '

* DY

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'DY')

==> 'SUN'

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'Dy')

==> 'Sun'

Format String | 923

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'dy')

==> 'sun'

* FF[1 ... 6]

• TO_CHAR(TO_TIMESTAMP('2012-07-15 03:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'FF')

==> '123456'

• TO_CHAR(TO_TIMESTAMP('2012-07-15 03:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'FF5')

==> '12345'

• TO_CHAR(TO_TIMESTAMP('2012-07-15 03:30:45.9',

'YYYY-MM-DD HH24:MI.SS.FF1') ,

'FF6')

==> '900000'

* HH HH12 HH24

• TO_CHAR(TO_TIMESTAMP('2012-07-15 03:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'HH12')

==> '03'

• TO_CHAR(TO_TIMESTAMP('2012-07-15 23:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'HH12')

==> '11'

• TO_CHAR(TO_TIMESTAMP('2012-07-15 23:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'HH24')

==> '23'

* IW

• TO_CHAR(DATE'2016-01-01', 'IW')

==> 53

• TO_CHAR(DATE'2014-12-30', 'IW')

==> 01

* IYYY

• TO_CHAR(DATE'2016-01-01', 'IYYY')

==> 2015

• TO_CHAR(DATE'2014-12-30', 'IYYY')

924 | SQL Elements

==> 2015

* IYY

• TO_CHAR(DATE'2016-01-01', 'IYY')

==> 015

* IY

• TO_CHAR(DATE'2016-01-01', 'IY')

==> 15

* I

• TO_CHAR(DATE'2016-01-01', 'I')

==> 5

* J

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'J')

==> '2456124'

• TO_CHAR(TO_DATE('2456124', 'J'), 'YYYY-MM-DD')

==> '2012-07-15'

* MI

• TO_CHAR(TO_TIMESTAMP('2012-07-15 23:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'MI')

==> '30'

* MM

• TO_CHAR(TO_TIMESTAMP('2012-07-15 23:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'MM')

==> '07'

* MON

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'MON')

==> 'JUL'

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'Mon')

==> 'Jul'

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'mon')

==> 'jul'

* MONTH

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'MONTH')

==> 'JULY '

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'Month')

==> 'July '

Format String | 925

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'month')

==> 'july '

* Q

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'Q')

==> '3'

* RM

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'RM')

==> 'VII '

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'Rm')

==> 'Vii '

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'rm')

==> 'vii '

* RR, RRRR (The current year is 2014.)

• TO_CHAR(TO_DATE('49-07-15', 'RR-MM-DD'), 'RRRR')

==> '2049'

• TO_CHAR(TO_DATE('49-07-15', 'RR-MM-DD'), 'YYYY')

==> '2049'

• TO_CHAR(TO_DATE('50-07-15', 'RR-MM-DD'), 'RRRR')

==> '1950'

• TO_CHAR(TO_DATE('50-07-15', 'RR-MM-DD'), 'YYYY')

==> '1950'

• TO_CHAR(TO_DATE('50-07-15', 'YY-MM-DD'), 'RRRR')

==> '2050'

• TO_CHAR(TO_DATE('49-07-15', 'RRRR-MM-DD'), 'YYYY')

==> '2049'

• TO_CHAR(TO_DATE('50-07-15', 'RRRR-MM-DD'), 'YYYY')

==> '1950'

* RR, RRRR (The current year is 2051.)

• TO_CHAR(TO_DATE('49-07-15', 'RR-MM-DD'), 'RRRR')

==> '2149'

• TO_CHAR(TO_DATE('49-07-15', 'RR-MM-DD'), 'YYYY')

==> '2149'

• TO_CHAR(TO_DATE('50-07-15', 'RR-MM-DD'), 'RRRR')

==> '2050'

• TO_CHAR(TO_DATE('50-07-15', 'RR-MM-DD'), 'YYYY')

==> '2050'

• TO_CHAR(TO_DATE('50-07-15', 'YY-MM-DD'), 'RRRR')

==> '2050'

926 | SQL Elements

• TO_CHAR(TO_DATE('49-07-15', 'RRRR-MM-DD'), 'YYYY')

==> '2149'

• TO_CHAR(TO_DATE('50-07-15', 'RRRR-MM-DD'), 'YYYY')

==> '2050'

* SS

• TO_CHAR(TO_TIMESTAMP('2012-07-15 23:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'SS')

==> '45'

* SSSSS

• TO_CHAR(TO_TIMESTAMP('2012-07-15 23:30:45.123456',

'YYYY-MM-DD HH24:MI:SS.FF6'),

'SSSSS')

==> '84645'

* TZH

• TO_CHAR(TO_TIMESTAMP_TZ('2012-07-15 23:30:45.123456 +09:00',

'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM'),

'TZH')

==> '+09'

* TZM

• TO_CHAR(TO_TIMESTAMP_TZ('2012-07-15 23:30:45.123456 +09:00',

'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM'),

'TZM')

==> '00'

• TO_CHAR(TO_TIMESTAMP_TZ('2012-07-15 23:30:45.123456 +09:00',

'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM'),

'TZH:TZM')

==> '+09:00'

* WW

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'WW')

==> '29'

* W

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'W')

==> '3'

* Y,YYY

• TO_CHAR(TO_DATE('2,012-07-15', 'Y,YYY-MM-DD'), 'Y,YYY')

==> '2,012'

Format String | 927

* YYYY

• TO_CHAR(TO_DATE('2012-07-15', 'YYYY-MM-DD'), 'YYYY')

==> '2012'

* SYYYY

• TO_CHAR(TO_DATE('-0001-01-01', 'SYYYY-MM-DD'), 'SYYYY')

==> '-0001'

* YYY

• TO_CHAR(TO_DATE('012-07-15', 'YYY-MM-DD'), 'YYY')

==> '012'

• TO_CHAR(TO_DATE('012-07-15', 'YYY-MM-DD'), 'YYYY')

==> '2012' ((Current year / 1000) is 2)

* YY

• TO_CHAR(TO_DATE('12-07-15', 'YY-MM-DD'), 'YY')

==> '12'

• TO_CHAR(TO_DATE('12-07-15', 'YY-MM-DD'), 'YYYY')

==> '2012' ((Current year / 100) is 20)

==> '2112' ((Current year / 100) is 21)

* Y

• TO_CHAR(TO_DATE('2-07-15', 'Y-MM-DD'), 'Y')

==> '2'

• TO_CHAR(TO_DATE('12-07-15', 'YY-MM-DD'), 'YYYY')

==> '2012' ((Current year / 10 years) is 201)

==> '2052' ((Current year / 10 years) is 205)

928 | SQL Elements

11.4 Expressions

Expression is a combination of value, operator and function for getting data values.

The following is the position of the SQL commands in which expression can be used.

• Target clause in SELECT

• GROUP BY clause in SELECT

• ORDER BY clause in SELECT

• WHERE clause and HAVING clause in SELECT

• INSERT VALUES clause

• UPDATE SET clause

• RETURN clause in INSERT, DELETE, UPDATE

Expression types are various as follows.

• Simple expression

• Compound expresssion

• Boolean value expression

• Case expression

• Datetime expression

• Scalar subquery expression

• Sequence manipulation expression

Simple expressions are column, pseudo columns, literals, and null value.

Compound expressions are combination of multiple expressions.

For more information, refer to the followings.

• Null Value

• Literals

• Pseudo Columns

• Operators

• Functions

Boolean Value Expression

Syntax

<boolean value expression> ::=

<boolean term>

| <boolean value expression> OR <boolean term>

Expressions | 929

<boolean term> ::=

<boolean factor>

| <boolean term> AND <boolean factor>

<boolean factor> ::=

[NOT] <boolean test>

<boolean test> ::=

<boolean primary> [IS [NOT] <truth value>]

<truth value> ::=

TRUE

| FALSE

| UNKNOWN

<boolean primary> ::=

<column>

<condition>

| <boolean predicand>

<boolean predicand> ::=

<parenthesized boolean value expression>

| <nonparenthesized value expression primary>

<parenthesized boolean value expression> ::=

<left paren> <boolean value expression> <right paren>

Description

<boolean value expression> describes a boolean value. <boolean primary> with boolean value are <colum

n>, <condition>, and <boolean predicand>. <column> should be declared as BOOLEAN type, and it is allo

wed to return a boolean value using CAST.

<boolean value expression> can use logical operators such as AND, OR, NOT, and the dedicated operator

s of boolean value such as IS, IS NOT are also supported.

IS operator and IS NOT operator which are described in <boolean test> determine whether the boolean v

alue described in <boolean primary> matches with one of the <truth value> (TRUE, FALSE, UNKNOWN).

For more information, refer to Conditions.

Example

gSQL> SELECT * FROM T1 WHERE CAST('TRUE' AS BOOLEAN);

I1

TRUE

930 | SQL Elements

FALSE

null

3 rows selected.

gSQL> SELECT * FROM T1 WHERE I1;

I1

TRUE

1 row selected.

gSQL> SELECT * FROM T1 WHERE I1 IS TRUE;

I1

TRUE

1 row selected.

gSQL> SELECT * FROM T1 WHERE I1 IS NOT FALSE;

I1

TRUE

null

2 rows selected.

gSQL> SELECT * FROM T1 WHERE I1 IS UNKNOWN;

I1

null

1 row selected.

CASE Expression

Syntax

<case expression> ::=

<simple case>

| <searched case>

<simple case> ::=

CASE expr WHEN comparison_expr THEN result

[WHEN comparison_expr THEN result ...]

[ELSE result]

END

<searched case> ::=

CASE WHEN condition THEN result

Expressions | 931

[WHEN condition THEN result ...]

[ELSE result]

END

Description

WHEN ... THEN clause is evaluated in the order of which is described in the CASE statement.

If a comparison result is FALSE, the subsequent WHEN ... THEN clauses are evaluated until TRUE comes u

p.

If a comparison result is TRUE, the result is returned, and the evaluation is not executed any more.

• Simple case

The comparison_expr of CASE expr and WHEN ... THEN clause is evaluated as the equal operation.

(expr = comparison_expr).

• Searched case

The condition of WHEN ... THEN clause is evaluated.

If all evaluation results of the WHEN clause are FALSE, then result of ELSE clause is returned.

If ELSE clause is omitted, NULL is returned as a result.

If there are multiple types of THEN or ELSE clause results, the result type is determined by Result Type Co

mbination Rule.

For more information, refer to the followings.

• COALESCE

• NULLIF

Example

● Simple case

gSQL> SELECT I1,

CASE I1 WHEN 1 THEN 'ONE'

WHEN 2 THEN 'TWO'

ELSE 'NUMBER'

END AS CASE_RESULT1,

CASE I1 WHEN 1 THEN 'ONE'

WHEN 2 THEN 'TWO'

END AS CASE_RESULT2

FROM T1;

I1 CASE_RESULT1 CASE_RESULT2

932 | SQL Elements

-- ------------ -----------

1 ONE ONE

2 TWO TWO

3 NUMBER null

3 rows selected.

● Searched case

gSQL> SELECT I1,

CASE WHEN I1 = 1 THEN 'ONE'

WHEN I1 = 2 THEN 'TWO'

ELSE 'NUMBER'

END AS CASE_RESULT1,

CASE WHEN I1 = 1 THEN 'ONE'

WHEN I1 = 2 THEN 'TWO'

END AS CASE_RESULT2

FROM T1;

I1 CASE_RESULT1 CASE_RESULT2

-- ------------ ------------

1 ONE ONE

2 TWO TWO

3 NUMBER null

3 rows selected.

CAST Specification

Syntax

CAST(expression AS data_type)

Description

CAST converts the expression data type to the data type of the specified data_type.

Example

gSQL> SELECT CAST('1-2' AS INTERVAL YEAR TO MONTH) AS RESULT FROM DUAL;

RESULT

Expressions | 933

+01-02

1 row selected.

Scalar Subquery Expression

Scalar subquery expression is a subquery which returns a single row with one column as a result. The scal

ar subquery expression result is the values described in select list of the subquery.

If the subquery does not return any row, then the result value is NULL, and if it returns two or more rows,

then an error occurs.

Scalar subquery expression can be described on most position which describes expression. The subquery s

hould be enclosed in parentheses. Even when scalar subquery expression is used as a function argument

and the scalar subquery expression is enclosed in parentheses, other parentheses for the subquery is requ

ired regardless of the function parentheses. Otherwise, an error occurs

The following is an example of using scalar subquery expression.

gSQL> select * from dual where dummy = (select * from dual);

DUMMY

X

1 row selected.

gSQL> select sum(select 1 from dual) from dual;

ERR-42000(40000): syntax error

select sum(select 1 from dual) from dual

...........^ ^

Error at line 1

gSQL> select sum((select 1 from dual)) from dual;

SUM((SELECT 1 FROM DUAL))

1

1 row selected.

Compatibility

The SQL standard compatibility for expression is as follows.

934 | SQL Elements

Table 11-28 SQL standard compatibility for expression

Feature ID Description Availability

E121-03 Value expressions in ORDER BY clause O

F051-05
Basic date and time Explicit CAST between datetime types and character stri

ng types
O

F201 CAST function O

F261-01 Simple CASE O

F261-02 Searched CASE O

F261-03 NULLIF O

F261-04 COALESCE O

F263 Comma-separated predicates in simple CASE expression X

F301 CORRESPONDING in query expressions X

F385 Drop column generation expression clause X

F561 Full value expressions X

F846 Octet support in regular expression operators X

F847 Nonconstant regular expressions X

F850 Top-level <order by clause> in <query expression> O

F855 Nested <order by clause> in <query expression> O

F856 Nested <fetch first clause> in <query expression> O

F857 Top-level <fetch first clause> in <query expression> O

F861 Top-level <result offset clause> in <query expression> O

F863 Nested <result offset clause> in <query expression> O

S091-03 Arrays expressions X

S111 ONLY in query expressions X

T121 WITH (excluding RECURSIVE) in query expression X

T581 Regular expression substring function X

Pseudo Columns | 935

11.5 Pseudo Columns

Pseudo column is not only similar to function, but also it is similar to table column because it can return di

fferent value in row unit every time the pseudo column is executed.

Table 11-29 Supported pseudo column

Name Description Remarks

CURRVAL
It is a pseudo column which is related to a sequenc

e.
CURRVAL

NEXTVAL
It is a pseudo column which is related to a sequenc

e.
NEXTVAL

ROWNUM It is the row number which satisfies the condition. ROWNUM

ROWID It returns the record identifier in database. ROWID Pseudo Column

CLUSTER_GROUP_ID It returns the group identifier in database.
CLUSTER_GROUP_ID Pseudo Colum

n

CLUSTER_MEMBER_ID
It returns the member identifier in which the recor

d is stored.

CLUSTER_MEMBER_ID Pseudo Colu

mn

CLUSTER_GROUP_NA

ME

It returns the group name in which the record is st

ored.

CLUSTER_GROUP_NAME Pseudo C

olumn

CLUSTER_MEMBER_N

AME

It returns the member name in which the record is

stored.

CLUSTER_MEMBER_NAME Pseudo

Column

ROWID Pseudo Column

ROWID pseudo column is a record identifier, and it returns the identification information of each databas

e record.

ROWID has the following information to identify the location within the database depending on the syste

m.

Standalone system

• OBJECT_ID

• TABLESPACE_ID

• PAGE_ID

• OFFSET in PAGE

Cluster system

• GRID_BLOCK_SEQUENCE

• GRID_BLOCK_ID

936 | SQL Elements

• MEMBER_ID

• SHARD_ID

The information stored inside in base 64 encoding is converted into the value such as A-Z, a-z, 0-9, +, / th

en output when querying ROWID.

Each information to identify the address within database stored in ROWID can be obtained using the RO

WID-related functions.

The address of the deleted record can be newly reassigned to the record to be inserted.

ROWID pseudo column can be used only in SELECT operation, but it can not be used in INSERT, UPDATE,

DELETE operations.

For more information, refer to ROWID, ROWID-related Functions.

The following is an example of querying ROWID pseudo column.

gSQL> SELECT ROWID FROM T1;

ROWID

AAAAAAAAFpEAACAAAEAkAAA

AAAAAAAAFpEAACAAAEAkAAB

AAAAAAAAFpEAACAAAEAkAAC

AAAAAAAAFpEAACAAAEAkAAD

AAAAAAAAFpEAACAAAEAkAAE

5 rows selected.

CLUSTER_GROUP_ID Pseudo Column

CLUSTER_GROUP_ID pseudo column returns the group identifier of a server in which the record is stored.

CLUSTER_GROUP_ID pseudo column can perform the SELECT, but it can not perform the INSERT, UPDAT

E, or DELETE.

Note

This information in valid in the cluster system.

The following is an example of retrieving CLUSTER_GROUP_ID pseudo column.

Pseudo Columns | 937

gSQL> SELECT T1.C1, T1.CLUSTER_GROUP_ID FROM T1;

C1 T1.CLUSTER_GROUP_ID

-- -------------------

A 1

B 2

C 3

3 rows selected.

CLUSTER_MEMBER_ID Pseudo Column

CLUSTER_MEMBER_ID pseudo column returns the member identifier of a server in which the record is st

ored.

CLUSTER_MEMBER_ID pseudo column can perform the SELECT, but it can not perform the INSERT, UPD

ATE, or DELETE.

Note

This information in valid in the cluster system.

The following is an example of retrieving CLUSTER_MEMBER_ID pseudo column.

gSQL> SELECT T1.C1, T1.CLUSTER_MEMBER_ID FROM T1;

C1 T1.CLUSTER_MEMBER_ID

-- --------------------

A 1

B 3

C 5

3 rows selected.

CLUSTER_GROUP_NAME Pseudo Column

CLUSTER_GROUP_NAME pseudo column returns the group name of a server in which the record is store

d.

CLUSTER_GROUP_NAME pseudo column can perform the SELECT, but it can not perform the INSERT, UP

DATE, or DELETE.

938 | SQL Elements

Note

This information in valid in the cluster system.

The following is an example of retrieving CLUSTER_GROUP_NAME pseudo column.

gSQL> SELECT T1.C1, T1.CLUSTER_GROUP_NAME FROM T1;

C1 T1.CLUSTER_GROUP_NAME

-- ---------------------

A G1

B G2

C G3

3 rows selected.

CLUSTER_MEMBER_NAME Pseudo Column

CLUSTER_MEMBER_NAME pseudo column returns the member name of a server in which the record is st

ored.

CLUSTER_MEMBER_NAME pseudo column can perform the SELECT, but it can not perform the INSERT,

UPDATE, or DELETE.

Note

This information in valid in the cluster system.

The following is an example of retrieving CLUSTER_MEMBER_NAME pseudo column.

gSQL> SELECT T1.C1, T1.CLUSTER_MEMBER_NAME FROM T1;

C1 T1.CLUSTER_MEMBER_NAME

-- ----------------------

A G1N1

B G2N1

C G3N1

3 rows selected.

Pseudo Columns | 939

Compatibility

The SQL standard compatibility for pseudo column is as follows.

Table 11-30 SQL standard compatibility for pseudo column

Feature ID Description Availability

T176 Sequence generator support O

T177 Sequence generator support: simple restart option O

940 | SQL Elements

11.6 Operators

An operator is represented by one or more specific symbols or keywords, and it performs an operation usi

ng one or more arguments.

The operator types are various as follows.

• Arithmetic operator

• Concatenation operator

• Set operator

Arithmetic Operator

Syntax

<arithmetic operator> ::=

<value term>

| <expression> + <value term>

| <expression> - <value term>

<value term> ::=

<value factor>

| <value term> * <value factor>

| <value term> / <value factor>

<value factor> ::=

<expression>

| + <expression>

| - <expression>

Description

An arithmetic operator performs an arithmetic operation of the numeric types, date/time types or interval

types.

The arithmetic operator precedence is as follows.

1. + (POSITIVE), - (NEGATIVE)

2. * (MULTIPLICATION), / (DIVISION)

3. + (ADDITION), - (SUBTRACTION)

Operators | 941

Concatenation Operator

Syntax

<concatenation operator> ::=

<expression> || <expression>

Description

A concatenation operator returns strings which connect between values of CHARACTER STRING type or

BINARY STRING type.

For more information, refer to || (CONCATENATE), CONCATENATE.

Set Operator

Syntax

<set operator> ::=

<set operator term>

| <subquery> UNION [ALL | DISTINCT] <set operator term>

| <subquery> EXCEPT [ALL | DISTINCT] <set operator term>

| <subquery> MINUS [ALL | DISTINCT] <set operator term>

<set operator term> ::=

<subquery>

| <subquery> INTERSECT [ALL | DISTINCT] <set operator term>

Description

A set operator performs a set operation of the subquery results.

For more information, refer to set operator.

INTERSECT ALL/DISTINCT has a higher precedence than other set operators.

Table 11-31 Set operators

Operator Description

UNION ALL It is the union which does not exclude duplicated rows of the subquery result.

UNION DISTINCT It is the union which excludes duplicated rows of the subquery result.

EXCEPT ALL It is the difference set which does not exclude duplicated rows of the subquery result.

942 | SQL Elements

EXCEPT DISTINCT It is the difference set which excludes duplicated rows of the subquery result.

MINUS ALL It is as same as EXCEPT ALL.

MINUS DISTINCT It is as same as EXCEPT DISTINCT.

INTERSECT ALL It is the intersection which does not exclude duplicated rows of the subquery result.

INTERSECT DISTINCT It is the intersection which excludes duplicated rows of the subquery result.

Operator Description

Compatibility

The SQL standard compatibility for operator is as follows.

Table 11-32 SQL standard compatibility for operator

Feature ID Description Availability

E011-04 Arithmetic operators O

E021-07 Character concatenation O

E071-01 UNION DISTINCT table operator O

E071-02 UNION ALL table operator O

E071-03 EXCEPT DISTINCT table operator O

E071-05
Columns combined via table operators need not have exactly the same data

type
O

E071-06 Table operators in subqueries O

F041-08 All comparison operators are supported (rather than just =) O

F302-01 INTERSECT DISTINCT table operator O

F302-02 INTERSECT ALL table operator O

F304 EXCEPT ALL table operator O

F846 Octet support in regular expression operators X

J571 NEW operator X

Functions | 943

11.7 Functions

Functions and operators are similar in features. However, to represent arguments, functions use parenthe

ses after its name. A function can have zero or more arguments.

The function has two types as follows.

• Single row function

• Aggregate function

Single Row Function

Single row function creates a single result row for each row in the table or view.

The single row functions are as follows.

● Numeric function

● Character string function returning character values

● Character string function returning number values

● Datetime function

● General comparison function

● Conversion function

● Conditional function

● NULL-related function

● ROWID-related function

● Encryption function

● System information function

Numeric Functions

A numeric value is input in numeric function, and the numeric function returns a numeric result.

For more information about the numeric function types, refer to the followings.

● ABS

● ACOS

● ASIN

● ATAN

● ATAN2

● BITAND

944 | SQL Elements

● BITNOT

● BITOR

● BITXOR

● CBRT

● CEIL

● COS

● COT

● DEGREES

● EXP

● FACTORIAL

● FLOOR

● LN

● LOG

● MOD

● PI

● POWER

● RADIANS

● RANDOM

● ROUND(number)

● SHARD_ID

● SHIFT_LEFT

● SHIFT_RIGHT

● SIGN

● SIN

● SQRT

● TAN

● TRUNC(number)

● WIDTH_BUCKET

Character String Functions Returning Character Values

A character string type value is input in character string functions returning character values, and the func

tion returns the result of character string type.

For more information about character string functions returning character values types, refer to the follo

wings.

● CHR

● CONCAT

● CONCATENATE

● INITCAP

● LOWER

Functions | 945

● LPAD

● LTRIM

● OVERLAY

● REPEAT

● REPLACE

● REVERSE

● RPAD

● RTRIM

● SPLIT_PART

● SUBSTR

● SUBSTRB

● TRANSLATE

● TRIM

● UPPER

Character String Functions Returning Number Values

A character string type value is input in character string functions returning number values the value, and

the function returns the result of number type.

For more information about character string functions returning number values types, refer to the followi

ngs.

● ASCII

● BIT_LENGTH

● BYTE_LENGTH

● CHAR_LENGTH

● INSTR

● LENGTH

● LENGTHB

● OCTET_LENGTH

● POSITION

Datetime Functions

The value of date/time/timestamp/interval type is input in datetime function, and the function returns the

result of date/time/timestamp/interval type.

For more information about datetime functions types, refer to the followings.

● ADDDATE

● ADDTIME

946 | SQL Elements

● ADD_MONTHS

● DATEADD

● DATEDIFF

● DATE_ADD

● DATE_PART

● EXTRACT

● LAST_DAY

● MONTHS_BETWEEN

General Comparison Functions

General comparison function returns a minimum value or a maximum value for the value set.

For more information about general comparison function types, refer to the followings.

● GREATEST

● LEAST

Conversion Functions

Conversion function sets the value of a particular data type.

For more information about conversion function types, refer to the followings.

● TO_CHAR(datetime)

● TO_CHAR(number)

● TO_DATE

● TO_NATIVE_DOUBLE

● TO_NATIVE_REAL

● TO_NUMBER

● TO_TIME

● TO_TIME_TZ

● TO_TIME_WITH_TIME_ZONE

● TO_TIMESTAMP

● TO_TIMESTAMP_TZ

● TO_TIMESTAMP_WITH_TIME_ZONE

Conditional Functions

Conditional function returns a result of specific value depending on a condition.

For more information about conditional function types, refer to the followings.

Functions | 947

● CASE2

● DECODE

NULL-related Functions

NULL-related function returns a result of specific value depending on whether the input value is a NULL v

alue.

For more information about null-related function types, refer to the followings.

● COALESCE

● NULLIF

● NVL

● NVL2

ROWID-related Functions

ROWID-related function is used to obtain information about the ROWID.

For more information about ROWID-related function types, refer to the followings.

● Valid functions in standalone

○ ROWID_OBJECT_ID

○ ROWID_TABLESPACE_ID

○ ROWID_PAGE_ID

○ ROWID_ROW_NUMBER

● Valid functions in cluster

○ ROWID_GRID_BLOCK_ID

○ ROWID_GRID_BLOCK_SEQ

○ ROWID_MEMBER_ID

○ ROWID_SHARD_ID

Encryption Functions

encryption function encrypts, decrypts, or hashes the given plain text by using the specific algorithm, the

n returns the result.

For more information about the encryption function, refer to DIGEST.

948 | SQL Elements

System Information Functions

System information function is used to obtain information about sessions and the system.

For more information about system information function type, refer to the followings.

● CLOCK_DATE

● CLOCK_LOCALTIME

● CLOCK_LOCALTIMESTAMP

● CURRENT_CATALOG

● CURRENT_DATE

● CURRENT_SCHEMA

● CURRENT_TIME

● CURRENT_TIMESTAMP

● CURRENT_USER

● LAST_IDENTITY_VALUE

● LOCALTIME

● LOCALTIMESTAMP

● LOGON_USER

● SESSION_ID

● SESSION_SERIAL

● SESSION_USER

● STATEMENT_DATE

● STATEMENT_LOCALTIME

● STATEMENT_LOCALTIMESTAMP

● STATEMENT_TIME

● STATEMENT_TIMESTAMP

● STATEMENT_VIEW_SCN

● SYSDATE

● SYSTIME

● SYSTIMESTAMP

● TRANSACTION_DATE

● TRANSACTION_LOCALTIME

● TRANSACTION_LOCALTIMESTAMP

● TRANSACTION_TIME

● TRANSACTION_TIMESTAMP

● USER_ID

● VERSION

Functions | 949

Aggregate Function

Aggregate function creates a single result row for multiple rows.

For more information about aggregate function types, refer to the followings.

● COUNT

● COUNT(*)

● SUM

● AVG

● MIN

● MAX

● STDDEV

● STDDEV_POP

● STDDEV_SAMP

● VAR_POP

● VAR_SAMP

● VARIANCE

Compatibility

The SQL standard compatibility for function is as follows.

Table 11-33 SQL standard compatibility for function

Feature ID Description Availability

B033 Untyped SQL-invoked function arguments X

E021-04 CHARACTER_LENGTH function O

E021-05 OCTET_LENGTH function O

E021-06 SUBSTRING function O

E021-08 UPPER and LOWER functions O

E021-09 TRIM function O

E021-11 POSITION function O

E091-01 AVG O

E091-02 COUNT O

E091-03 MAX O

E091-04 MIN O

E091-05 SUM O

E091-06 ALL quantifier O

E091-07 DISTINCT quantifier O

950 | SQL Elements

F131-03 Set functions supported in queries with grouped views O

F201 CAST function O

F441 Extended set function support X

F442 Mixed column references in set functions X

F801 Full set function X

F842 OCCURRENCES_REGEX function X

F843 POSITION_REGEX function X

S071 SQL paths in function and type name resolution X

S201-02 Array as result type of functions X

S211 User-defined cast functions X

S241 Transform functions X

T041-03
POSITION, LENGTH, LOWER, TRIM, UPPER, and SUBSTRING functions for L

OB data types
X

T312 OVERLAY function O

T321-01 User-defined functions with no overloading X

T326 Table functions X

T341 Overloading of SQL-invoked functions and SQL-invoked procedures X

T433 Multiargument GROUPING function X

T441 ABS and MOD functions O

T571 Array-returning external SQL-invoked functions X

T572 Multiset-returning external SQL-invoked functions X

T581 Regular expression substring function X

T614 NTILE function X

T615 LEAD and LAG functions X

T616 Null treatment option for LEAD and LAG functions X

T617 FIRST_VALUE and LAST_VALUE functions X

T618 NTH_VALUE function X

T619 Nested window functions X

T621 Enhanced numeric functions O

Feature ID Description Availability

Conditions | 951

11.8 Conditions

Condition

Condition is an expression which is evaluated as TRUE, FALSE, UNKNOWN.

Condition can be used in the following SQL statements.

• WHERE clauses in DELETE, UPDATE statements

• WHERE and HAVING clauses in SELECT statement

• Where the BOOLEAN TYPE can be used

The condition types are as follows.

• Comparison condition

• Logical condition

• Null condition

• Compound condition

• Pattern-matching condition

• Between condition

• In condition

• Exists condition

Table 11-34 Condition precedence

Precedence Condition type

1 Operators in condition clauses

2 =, !=, <, >, <=, >=

3

IS [NOT] NULL,

[NOT] BETWEEN,

[NOT] IN,

LIKE, EXISTS

4 NOT

5 AND

6 OR

Comparison Conditions

It compares both conditional expressions, and returns the boolean type of TRUE, FALSE, UNKNOWN valu

es.

952 | SQL Elements

Table 11-35 Comparison conditions

Condition Description

= It checks if both conditions are equal.

!=, <> It checks if both conditions are not equal.

> It compares which one of both conditions is bigger.

< It compares which one of both conditions is smaller.

>= It compares which one of both conditions is bigger or equal.

<= It compares which one of both conditions is smaller or equal.

ANY, SOME

If there is a condition whose left expr satisfies at least one of right expr_list (or subque

ry results), then it returns TRUE.

If there is not right subquery result, then it returns FALSE.

ALL

If there is a condition whose left expr satisfies all right expr_list (or subquery results), t

hen it returns TRUE.

If there is not right subquery result, then it returns TRUE.

For more information, refer to Type Comparison.

< Simple Comparison Conditions >

Syntax

<simple_comparison_condition> ::=

<expr> <comparison_operator> <expr>

| <expr> <comparison_operator> (<subquery>)

| (<subquery>) <comparison_operator> <expr>

| (<subquery>) <comparison_operator> (<subquery>)

| (<expr_list>) <comparison_operator> (<expr_list>)

| (<expr_list>) <comparison_operator> (<subquery>)

| (<subquery>) <comparison_operator> (<expr_list>)

| (<subquery>) <comparison_operator> (<subquery>)

<comparison_operator> ::=

< = >

| < != >

| < < >

| < > >

| < <= >

| < >= >

<expr_list> ::=

<expr>

| <expr>, ... , <expr>

| (<expr>)

Conditions | 953

| (<expr> , ... , <expr>)

For more information, refer to Scalar Subquery Expression.

Description

If the expr list or subquery comes to both left and right of comparison_operator, then the number of expr

or subquery target to be compared should be same.

If there is a subquery, the number of result records should be one.

Example

Table 11-36 Example of simple comparison conditions

Conditional expression Result

'abc' = 'abc' TRUE

'abc' != 'abc' FALSE

'abc' < 'abc' FALSE

'abc' <= 'abc' TRUE

'abc' > 'abc' FALSE

'abc' >= 'abc' TRUE

(1, 2, 3) = (1, 2, 3) TRUE

(1, 2, 3) = (1, 2, 4) FALSE

(1, 2, 3) != (4, 5, 6) TRUE

(1, 2, 3) != (1, 2, 3) FALSE

(1, 2, 3) < (1, 2, 4) TRUE

(1, 2, 3) < (1, 2, 3) FALSE

(1, 2, 3) <= (1, 2, 4) TRUE

(1, 2, 3) <= (1, 2, 2) FALSE

(1, 2, 3) > (1, 2, 2) TRUE

(1, 2, 3) > (1, 2, 4) FALSE

(1, 2, 3) >= (1, 2, 2) TRUE

(1, 2, 3) >= (1, 2, 4) FALSE

<Group Comparison Conditions>

Syntax

<group_comparison_condition> ::=

<expr> <comparison_operator> <quantifier> (<expr_list>)

| <expr> <comparison_operator> <quantifier> (<subquery>)

| (<expr_list>) <comparison_operator> <quantifier> (<expr_list_list>)

954 | SQL Elements

| (<expr_list>) <comparison_operator> <quantifier> (<subquery>)

| (<subquery>) <comparison_operator> <quantifier> (<expr_list>)

| (<subquery>) <comparison_operator> <quantifier> (<expr_list_list>)

| (<subquery>) <comparison_operator> <quantifier> (<subquery>)

<comparison_operator> ::=

< = >

| < != >

| < < >

| < > >

| < <= >

| < >= >

<quantifier> ::=

ALL

| ANY

| SOME

<expr_list> ::=

<expr>

| <expr>, ... , <expr>

| (<expr>)

| (<expr> , ... , <expr>)

<expr_list_list> ::=

<expr_list>

| <expr_list>, ... , <expr_list>

For more information, refer to Scalar Subquery Expression.

Description

If the expr list or subquery comes to both left and right of comparison_operator, then the number of expr

or subquery target to be compared should be same.

If a subquery comes to the left of comparison_operator, the number of result records should be one.

If a subquery comes to the right of comparison_operator, the number of result records can be multiple.

Example

Table 11-37 Example of group comparison conditions

Conditional expression Result

1 =any (1, 2, 3, 4, 5) TRUE

1 =any (1, 2, null, 4, 5) TRUE

1 =any (2, null, 4, 5) NULL

1 =any (100, 2, 3, 4, 5) FALSE

1 =all (1, +1, 1E+0) TRUE

Conditions | 955

1 =all (1, +1, 1E+0, null) NULL

1 =all (1, 2, 3, 4, 5) FALSE

(1, 2) =any ((0, 1), (1, 2), (3, 4)) TRUE

(1, 2) =any ((0, 1), (1, 2), (null, null)) TRUE

(1, 2) =any ((0, 1), (2, 3), (3, 4)) FALSE

(1, 2) =all ((1, 2), (+1, +2), (1E+0, 2E+0)) TRUE

(1, 2) =all ((1, 2), (+1, +2), (null, null)) NULL

(1, 2) =all ((0, 1), (2, 3), (3, 4)) FALSE

When the result record of comparison_operator's right subquery is 0

('X') =any (select dummy from dual where dummy = 'Y') FALSE

('X') =all (select dummy from dual where dummy = 'Y') TRUE

Conditional expression Result

Logical Conditions

Logical conditions are such as AND, OR, NOT.

AND

Syntax

<boolean value expression> AND <boolean value expression>

Description

Table 11-38 Truth table of AND boolean operator

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

OR

Syntax

<boolean value expression> OR <boolean value expression>

956 | SQL Elements

Description

Table 11-39 Truth table of OR boolean operator

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

NOT

Syntax

NOT <boolean value expression>

Description

Table 11-40 Truth table of NOT boolean operator

expr NOT

True False

False True

Unknown Unknown

Null Condition

Syntax

<expr> IS [NOT] NULL

Description

It checks whether the result value of expr is NULL.

Table 11-41 Result table of IS NULL condition

expr IS NULL IS NOT NULL

NULL True False

NOT NULL False True

Conditions | 957

Compound Conditions

It is a conditional expression in which multiple conditions are combined.

compound_condition ::=

(condition)

| NOT condition

| condition < AND | OR > condition

Pattern-matching Conditions

Like Condition

Syntax

like_condition ::=

string [NOT] LIKE pattern [ESCAPE escape_character]

Description

It checks if a string matches the specified pattern.

Arguments such as string, pattern, escape_character can be of a character type such as CHARACTER, CH

ARACTER VARYING, CHARACTER LONG VARYING, or of the type which is available to be converted to a

character type.

If string, pattern, escape_character are NULL, it returns NULL.

If escape_character is omitted, there is not a default value.

If escape_character is specified, the escape_character should be one character.

If pattern does not include '_' nor '%', it is processed in the same way as equal operation(string = patter

n).

If pattern includes '_' or '%', the string checks if it matches as follows.

• '_': If it corresponds to one arbitrary character.

• '%': If it corresponds to the arbitrary character string which has zero or more characters.

Use ESCAPE syntax to compare '_' or '%' included in the pattern with characters.

Specify escape_character, and describe the specified escape_character before the pattern's '_' or '%'.

958 | SQL Elements

Example

gSQL> SELECT 'hello%' LIKE 'h%o!%' ESCAPE '!' AS RESULT FROM DUAL;

RESULT

TRUE

• 'represent' LIKE 'represent' => TRUE

• 'represent' LIKE ' represent ' => FALSE

• 'represent' LIKE 'REPRESENT' => FALSE

• 'represent' LIKE 'r_pr_s_nt' => TRUE

• 'represent' LIKE 're%t' => TRUE

• 'represent' LIKE 'rep' => FALSE

• 'summer_vacation' LIKE 'summer_vacation' ESCAPE '\' => TRUE

• NULL LIKE 'summer_vacation' ESCAPE '\' => NULL

• 'summer_vacation' LIKE NULL ESCAPE '\' => NULL

• 'summer_vacation' LIKE 'summer_vacation' ESCAPE NULL => NULL

BETWEEN Condition

Syntax

<between condition> ::=

<expr1> [NOT] BETWEEN [ASYMMETRIC | SYMMETRIC] <expr2> AND <expr3>

Description

It checks whether expr1 is within the range between expr2 and expr3.

If ASYMMETRIC or SYMMETRIC is omitted, the default is ASYMMETRIC.

If data types among expr1, expr2, expr3 are different, they are converted.

For more information, refer to Type Comparison, Type Conversion.

Table 11-42 Equivalence of between conditions

A B

X BETWEEN ASYMMETRIC Y AND Z X BETWEEN Y AND Z

X BETWEEN Y AND Z X >= Y AND X <= Z

X NOT BETWEEN Y AND Z NOT(X BETWEEN Y AND Z)

X BETWEEN SYMMETRIC Y AND Z ((X BETWEEN Y AND Z) OR (X BETWEEN Z AND Y)

X NOT BETWEEN SYMMETRIC Y AND Z NOT(X BETWEEN SYMMETRIC Y AND Z)

Conditions | 959

Example

Table 11-43 Example of between condition

Conditional expression Result

BETWEEN [ASYMMETRIC]

3 BETWEEN 1 AND 5 TRUE

NULL BETWEEN 1 AND 5

3 BETWEEN NULL AND 5

3 BETWEEN 1 AND NULL

NULL

3 BETWEEN 5 AND 1 FALSE

BETWEEN SYMMETRIC

3 BETWEEN SYMMETRIC 1 AND 5 TRUE

NULL BETWEEN SYMMETRIC 1 AND 5

3 BETWEEN SYMMETRIC NULL AND 5

3 BETWEEN SYMMETRIC 1 AND NULL

NULL

3 BETWEEN SYMMETRIC 5 AND 1 TRUE

IN Condition

Syntax

<in_condition> ::=

<expr> [NOT] IN (<expr_list>)

| <expr> [NOT] IN (<subquery>)

| (<expr_list>) [NOT] IN (<expr_list_list>)

| (<expr_list>) [NOT] IN (<subquery>)

| (<subquery>) [NOT] IN (<expr_list>)

| (<subquery>) [NOT] IN (<expr_list_list>)

| (<subquery>) [NOT] IN (<subquery>)

<expr_list> ::=

<expr>

| <expr>, ... , <expr>

| (<expr>)

| (<expr> , ... , <expr>)

<expr_list_list> ::=

<expr_list>

| <expr_list>, ... , <expr_list>

960 | SQL Elements

Description

In condition returns the same result as = ANY.

NOT IN condition returns the same result as !=ALL.

For more information, refer to Comparison Conditions.

Example

Table 11-44 Example of IN condition

Conditional expression Result

1 IN (1, 2, 3, 4, 5) TRUE

1 IN (1, 2, null, 4, 5) TRUE

1 IN (2, null, 4, 5) NULL

1 IN (100, 2, 3, 4, 5) FALSE

NULL IN (1, 2, 3) NULL

1 NOT IN (2, 3, 4, 5) TRUE

1 NOT IN (2, null, 4, 5) NULL

1 NOT IN (1, 2, null, 4, 5) FALSE

1 NOT IN (100, 2, 3, 4, 5) TRUE

NULL NOT IN (1, 2, 3) NULL

EXISTS Condition

Syntax

exists_conditions ::=

EXISTS (subquery)

Description

It checks whether the result record of subquery exists.

If the result record of subquery exists, it returns TRUE. Otherwise, it returns FALSE.

Conditions | 961

Example

gSQL> SELECT * FROM DUAL WHERE EXISTS (SELECT * FROM DUAL);

DUMMY

X

1 row selected.

gSQL> SELECT * FROM DUAL

WHERE EXISTS (SELECT * FROM DUAL WHERE DUMMY = 'Y');

no rows selected.

Compatibility

The SQL standard compatibility for condition is as follows.

Table 11-45 SQL standard compatibility for condition

Feature ID Description Availability

E061-01 Comparison predicate O

E061-02 BETWEEN predicate O

E061-03 IN predicate with list of values O

E061-04 LIKE predicate O

E061-05 LIKE predicate: ESCAPE clause O

E061-06 NULL predicate O

E061-07 Quantified comparison predicate O

E061-08 EXISTS predicate O

E061-09 Subqueries in comparison predicate O

E061-11 Subqueries in IN predicate O

E061-12 Subqueries in quantified comparison predicate O

E061-13 Correlated subqueries O

E061-14 Search condition O

F051-04 Comparison predicate on DATE, TIME, and TIMESTAMP data types X

F053 OVERLAPS predicate X

F263 Comma-separated predicates in simple CASE expression X

F291 UNIQUE predicate X

F481 Expanded NULL predicate O

F841 LIKE_REGEX predicate X

P008 Comma-separated predicates in a CASE statement Extended CASE X

S151 Type predicate X

T141 SIMILAR predicate X

962 | SQL Elements

T151 DISTINCT predicate X

T152 DISTINCT predicate with negation X

T461 Symmetric BETWEEN predicate O

T501 Enhanced EXISTS predicate X

T631 IN predicate with one list element X

X090 XML document predicate X

X091 XML content predicate X

X141 IS VALID predicate: data-driven case X

X142 IS VALID predicate: ACCORDING TO clause X

X143 IS VALID predicate: ELEMENT clause X

X144 IS VALID predicate: schema location X

X145 IS VALID predicate outside check constraints X

X151 IS VALID predicate with DOCUMENT option X

X152 IS VALID predicate with CONTENT option X

X153 IS VALID predicate with SEQUENCE option X

X155 IS VALID predicate: NAMESPACE without ELEMENT clause X

X157 IS VALID predicate: NO NAMESPACE with ELEMENT clause X

Feature ID Description Availability

Built-in Data Type References | 963

11.9 Built-in Data Type References

Aliases of Built-in Data Types

● BIGINT

○ It is as same as NUMBER(19,0).

○ Refer to NUMBER

● BINARY

○ Refer to BINARY

● BINARY VARYING

○ Refer to BINARY VARYING

● BINARY LONG VARYING

○ Refer to BINARY LONG VARYING

● BOOLEAN

○ Refer to BOOLEAN

● CHAR

○ It is as same as CHARACTER.

○ Refer to CHARACTER

● CHARACTER

○ Refer to CHARACTER

● CHARACTER VARYING

○ Refer to CHARACTER VARYING

● CHARACTER LONG VARYING

○ Refer to CHARACTER LONG VARYING

● DATE

○ Refer to DATE

● DEC

○ It is as same as NUMERIC.

○ Refer to NUMERIC

● DECIMAL

○ It is as same as NUMERIC.

○ Refer to NUMERIC

● DOUBLE

○ It is as same as FLOAT(53).

○ Refer to FLOAT

● DOUBLE PRECISION

○ It is as same as FLOAT(53).

○ Refer to FLOAT

● FLOAT

964 | SQL Elements

○ Refer to FLOAT

● FLOAT4

○ It is as same as FLOAT(24).

○ Refer to FLOAT

● FLOAT8

○ It is as same as FLOAT(53).

○ Refer to FLOAT

● INT

○ It is as same as NUMBER(10,0).

○ Refer to NUMBER

● INT2

○ It is as same as NUMBER(5,0).

○ Refer to NUMBER

● INT4

○ It is as same as NUMBER(10,0).

○ Refer to NUMBER

● INT8

○ It is as same as NUMBER(19,0).

○ Refer to NUMBER

● INTEGER

○ It is as same as NUMBER(10,0).

○ Refer to NUMBER

● INTERVAL

○ Refer to INTERVAL

● LONG BINARY VARYING

○ It is as same as BINARY LONG VARYING.

○ Refer to BINARY LONG VARYING

● LONG CHAR VARYING

○ It is as same as CHARACTER LONG VARYING.

○ Refer to CHARACTER LONG VARYING

● LONG CHARACTER VARYING

○ It is as same as CHARACTER LONG VARYING.

○ Refer to CHARACTER LONG VARYING

● LONG VARCHAR

○ It is as same as CHARACTER LONG VARYING.

○ Refer to CHARACTER LONG VARYING

● NATIVE_BIGINT

○ Refer to NATIVE_BIGINT

● NATIVE_DOUBLE

○ Refer to NATIVE_DOUBLE

● NATIVE_INTEGER

Built-in Data Type References | 965

○ Refer to NATIVE_INTEGER

● NATIVE_REAL

○ Refer to NATIVE_REAL

● NATIVE_SMALLINT

○ Refer to NATIVE_SMALLINT

● NUMBER

○ Refer to NUMBER

● NUMERIC

○ Refer to NUMERIC

● ROWID

○ Refer to ROWID

● SMALLINT

○ It is as same as NUMBER(5,0).

○ Refer to NUMBER

● TIME

○ Refer to TIME

● TIMESTAMP

○ Refer to TIMESTAMP

● VARBINARY

○ It is as same as BINARY VARYING.

○ Refer to BINARY VARYING

● VARCHAR

○ It is as same as CHARACTER VARYING.

○ Refer to CHARACTER VARYING

● VARCHAR2

○ It is as same as CHARACTER VARYING.

○ Refer to CHARACTER VARYING

966 | SQL Elements

BINARY

Syntax

BINARY [(length)]

Syntax Rules and Parameters

● length: It is the binary string length.

○ Range: 1 ~ 2000

○ Default value: 1

Description

A fixed-length binary string is stored.

If the binary string length to be stored is shorter than the specified length, X'00 ' is stored in the remaini

ng part.

• Storage size: Bytes of the length value

For More Information

Refer to the followings.

● BINARY VARYING

● BINARY LONG VARYING

Built-in Data Type References | 967

BINARY VARYING

Syntax

BINARY VARYING (length)

Syntax Rules and Parameters

● length: It is the maximum length of binary string.

○ Range: 1 ~ 4000

Description

The variable-length binary string is stored.

• Storage size: Bytes of the binary string to be stored

• Alias names: VARBINARY

For More Information

Refer to the followings.

● BINARY

● BINARY LONG VARYING

968 | SQL Elements

BINARY LONG VARYING

Syntax

BINARY LONG VARYING

Description

The value of the long variable binary string is stored.

• Maximum storage size: 100 megabytes

• Storage size: Bytes of the binary string to be stored

• Alias names: LONG BINARY VARYING, LONG VARBINARY

It can not be used as a column of the key, so there are limitations as follows.

• It can not be used as a key column of an index.

• It can not be used as the expression of ORDER BY clause.

• It can not be used as the expression of GROUP BY clause.

• It can not be used as the expression of DISTINCT clause.

• It can not be used as the expression of UNION, INTERSECT, EXCEPT clauses.

For More Information

Refer to the followings.

● BINARY

● BINARY VARYING

Built-in Data Type References | 969

BOOLEAN

Syntax

BOOLEAN

Description

TRUE or FALSE is stored.

• Storage size: 1 byte.

970 | SQL Elements

CHARACTER

Syntax

CHARACTER [(length [CHARACTERS | OCTETS | CHAR | BYTE])]

Syntax Rules and Parameters

● length: It is the string length.

○ Range: 1 ~ 2000

○ Default value: 1

● [CHARACTERS | OCTETS | CHAR | BYTE]: It is unit of length.

○ CHARACTERS

■ The number of characters

■ CHAR is as same as CHARACTERS.

○ OCTETS

■ The number of bytes

■ BYTE is as same as OCTETS.

○ If omitted, the default is the property value of CHAR_LENGTH_UNITS which is set when creating

database.

Description

A fixed-length string is stored.

If the length of the string to be stored is shorter than the specified length, white spaces are stored in the r

emaining part.

● Storage size: Bytes of the length value

● Alias names: CHAR

For More Information

Refer to the followings.

● CHARACTER VARYING

● CHARACTER LONG VARYING

Built-in Data Type References | 971

CHARACTER VARYING

Syntax

CHARACTER VARYING (length [CHARACTERS | OCTETS | CHAR | BYTE])

Syntax Rules and Parameters

● length: It is the string length.

○ Range: 1 ~ 4000

● [CHARACTERS | OCTETS | CHAR | BYTE]: It is unit of length.

○ CHARACTERS

■ The number of characters

■ CHAR is as same as CHARACTERS.

○ OCTETS

■ The number of bytes

■ BYTE is as same as OCTETS.

○ If omitted, the default is the property value of CHAR_LENGTH_UNITS which is set when creating

database.

Description

The variable-length string is stored.

• Storage size: Bytes of the string to be stored

• Alias names: VARCHAR, VARCHAR2

For More Information

Refer to the followings.

● CHARACTER

● CHARACTER LONG VARYING

972 | SQL Elements

CHARACTER LONG VARYING

Syntax

CHARACTER LONG VARYING

Description

The value of the long variable-length string is stored.

• Maximum storage size: 100 megabytes

• Storage size: Bytes of the string to be stored

• Alias names: LONG CHARACTER VARYING, LONG CHAR VARYING, LONG VARCHAR

It can not be used as a column of the key, so there are limitations as follows.

• It can not be used as a key column of an index.

• It can not be used as the expression of ORDER BY clause.

• It can not be used as the expression of GROUP BY clause.

• It can not be used as the expression of DISTINCT clause.

• It can not be used as the expression of UNION, INTERSECT, EXCEPT clauses.

For More Information

Refer to the followings.

● CHARACTER

● CHARACTER VARYING

Built-in Data Type References | 973

DATE

Syntax

DATE

Description

It is the date type including YEAR, MONTH, DAY, HOUR, MINUTE and SECOND (excluding fractional seco

nds).

● Value range: Date value between '4714-11-24 BC' and '9999-12-31 AD'

● Storage size: 8 bytes

For More Information

Refer to the followings.

● Date Literals

● TIME

● TIMESTAMP.

974 | SQL Elements

FLOAT

Syntax

FLOAT[(precision)]

Syntax Rules and Parameters

● precision: It is the binary precision of significant digits.

○ Precision range: 1 ~ 126

○ Default value: 126

Description

The floating point value with a binary precision is stored.

● Exponential range: 1E-130 ~ 1E+125

● Storage size: (number of digits in integer part + 1) / 2 + (number of digits in fractional part + 1) / 2 +

1 (exponent, sign)

It has a binary precision value unlike NUMBER, NUMERIC types.

● Alias names: REAL = FLOAT(24), DOUBLE = FLOAT(53), DOUBLE PRECISION = FLOAT(53), FLOAT4 =

FLOAT(24), FLOAT8 = FLOAT(53).

For More Information

Refer to the followings.

● NUMBER

● NUMERIC

Built-in Data Type References | 975

INTERVAL

Syntax

<interval_type> ::=

INTERVAL YEAR [(leading_precision)]

| INTERVAL MONTH [(leading_precision)]

| INTERVAL DAY [(leading_precision)]

| INTERVAL HOUR [(leading_precision)]

| INTERVAL MINUTE [(leading_precision)]

| INTERVAL SECOND [(leading_precision [, fractional_seconds_precision])]

| INTERVAL YEAR [(leading_precision)] TO MONTH

| INTERVAL DAY [(leading_precision)] TO HOUR

| INTERVAL DAY [(leading_precision)] TO MINUTE

| INTERVAL DAY [(leading_precision)] TO SECOND [(fractional_seconds_precision)]

| INTERVAL HOUR [(leading_precision)] TO MINUTE

| INTERVAL HOUR [(leading_precision)] TO SECOND [(fractional_seconds_precision)]

| INTERVAL MINUTE [(leading_precision)] TO SECOND [(fractional_seconds_precision)]

Syntax Rules and Parameters

● INTERVAL YEAR [(leading_precision)]: A period of YEAR is stored.

○ leading_precision

■ The number of digits in YEAR

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL MONTH [(leading_precision)]: A period of MONTH is stored.

○ leading_precision

■ The number of digits in MONTH

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL YEAR [(leading_precision)] TO MONTH: A period of YEAR and MONTH is stored.

○ leading_precision

■ The number of digits in YEAR

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL DAY [(leading_precision)]: A period of DAY is stored.

976 | SQL Elements

○ leading_precision

■ The number of digits in DAY

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL HOUR [(leading_precision)]: A period of HOUR is stored.

○ leading_precision

■ The number of digits in HOUR

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL MINUTE [(leading_precision)]: A period of MINUTE is stored.

○ leading_precision

■ The number of digits in MINUTE

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL SECOND [(leading_precision [, fractional_seconds_precision])]: A period of SECOND is

stored.

○ leading_precision

■ The number of digits in SECOND

■ Value range: 2 ~ 6

■ Default value: 2

○ fractional_seconds_precision

■ The number of digits in fractional seconds

■ Value range: 0 ~ 6

■ Default value: 6

● INTERVAL DAY [(leading_precision)] TO HOUR: A period of DAY and HOUR is stored.

○ leading_precision

■ The number of digits in DAY

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL DAY [(leading_precision)] TO MINUTE: A period of DAY, HOUR, and MINUTE is stored.

○ leading_precision

■ The number of digits in DAY

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL DAY [(leading_precision)] TO SECOND [(fractional_seconds_precision)]: A period of D

AY, HOUR, MINUTE, and SECOND is stored.

○ leading_precision

Built-in Data Type References | 977

■ The number of digits in DAY

■ Value range: 2 ~ 6

■ Default value: 2

○ fractional_seconds_precision

■ The number of digits in fractional seconds

■ Value range: 0 ~ 6

■ Default value: 6

● INTERVAL HOUR [(leading_precision)] TO MINUTE: A period of HOUR and MINUTE is stored.

○ leading_precision

■ The number of digits in HOUR

■ Value range: 2 ~ 6

■ Default value: 2

● INTERVAL HOUR [(leading_precision)] TO SECOND [(fractional_seconds_precision)]: A period of

HOUR, MINUTE and SECOND is stored.

○ leading_precision

■ The number of digits in HOUR

■ Value range: 2 ~ 6

■ Default value: 2

○ fractional_seconds_precision

■ The number of digits in fractional seconds

■ Value range: 0 ~ 6

■ Default value: 6

● INTERVAL MINUTE [(leading_precision)] TO SECOND [(fractional_seconds_precision)]: A period

of MINUTE and SECOND is stored.

○ leading_precision

■ The number of digits in MINUTE

■ Value range: 2 ~ 6

■ Default value: 2

○ fractional_seconds_precision

■ The number of digits in fractional seconds

■ Value range: 0 ~ 6

■ Default value: 6

Description

INTERVAL types are classified into YEAR TO MONTH family type and DAY TO SECOND family type depen

ding on the range of value representation as follows.

● YEAR TO MONTH family type: Its storage size is 8 bytes.

978 | SQL Elements

○ INTERVAL YEAR

○ INTERVAL MONTH

○ INTERVAL YEAR TO MONTH

● DAY TO SECOND family type: Its storage size is 16 bytes.

○ INTERVAL DAY

○ INTERVAL HOUR

○ INTERVAL MINUTE

○ INTERVAL SECOND

○ INTERVAL DAY TO HOUR

○ INTERVAL DAY TO MINUTE

○ INTERVAL DAY TO SECOND

○ INTERVAL HOUR TO MINUTE

○ INTERVAL HOUR TO SECOND

○ INTERVAL MINUTE TO SECOND

If the number which is bigger than number of the specified digits is in the field to which the leading_prec

ision is specified, then an error is returned.

If the number which is bigger than number of the specified digits is in the field to which the fractional_se

conds_precision is specified, it is rounded off.

Table 11-46 Precisions and value range of the second or later field in INTERVAL * TO *

Field Precision Value range

MONTH 2 0 ~ 11

HOUR 2 0 ~ 23

MINUTE 2 0 ~ 59

SECOND (interger part) 2 0 ~ 59

For More Information

Refer to Interval Literals.

Built-in Data Type References | 979

NATIVE_BIGINT

Syntax

NATIVE_BIGINT

Description

Signed 8-byte integer is stored.

It is as same as long long data type of C language (8 bytes integer).

● Value range: -9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807

● Storage size: 8 bytes

980 | SQL Elements

NATIVE_DOUBLE

Syntax

NATIVE_DOUBLE

Description

Double precision floating-point number (8 bytes) is stored.

It is as same as double data type of C language.

● Exponential range: 1E-307 ~ 1E+308

● Storage size: 8 bytes

Built-in Data Type References | 981

NATIVE_INTEGER

Syntax

NATIVE_INTEGER

Description

Signed 4 byte integer is stored.

It is as same as integer data type of C language (4 bytes).

● Value range: -2,147,483,648 ~ +2,147,483,647

● Storage size: 4 bytes

982 | SQL Elements

NATIVE_REAL

Syntax

NATIVE_REAL

Description

Single precision floating-point number (4 bytes) is stored.

It is as same as float data type of C language.

● Exponential range: 1E-37 ~ 1E+37

● Storage size: 4 bytes

Built-in Data Type References | 983

NATIVE_SMALLINT

Syntax

NATIVE_SMALLINT

Description

Signed 2 byte integer is stored.

It is as same as short data type of C language.

● Value range: -32,768 ~ 32,767

● Storage size: 2 bytes

984 | SQL Elements

NUMBER

Syntax

NUMBER [(precision [, scale])]

Syntax Rules and Parameters

● NUMBER: A floating point number without a precision and scale is stored.

○ The range of significant digits: 38

○ Exponential range: 1E-130 ~ 1E+125

○ It is as same as FLOAT (126).

● NUMBER(precision): The integer with significant digits of precision is stored.

○ Precision range: 1 ~ 38

○ The scale value: 0

○ It has a decimal precision value unlike FLOAT type.

○ It is as same as NUMBER(precision, 0), NUMERIC(precision, 0).

● NUMBER(precision, scale): A fixed point number with precision and scale is stored.

○ Precision range: 1 ~ 38

○ Scale range: -84 ~ 127

○ It has a decimal precision value unlike FLOAT type.

○ It is as same as NUMERIC (precision,scale).

○ Alias names: SMALLINT = NUMBER(5,0), INTEGER = NUMBER(10,0), BIGINT = NUMBER(19,0), I

NT2 = NUMBER(5,0), INT4 = NUMBER(10,0), INT8 = NUMBER(19,0)

Description

NUMBER type is similar to NUMERIC type, but if both the precision and scale are omitted, NUMBER type s

tores the floating point number whose precision and scale are not specified.

● NUMBER without precision, scale: Floating-point number

● NUMERIC without precision, scale: The fixed point number of NUMERIC(38, 0)

● Storage size: (number of digits in integer part + 1) / 2 + (number of digits in fractional part + 1) / 2 +

1(exponent, sign)

Built-in Data Type References | 985

For More Information

Refer to the followings.

● FLOAT

● NUMERIC

986 | SQL Elements

NUMERIC

Syntax

NUMERIC [(precision [, scale])]

Syntax Rules and Parameters

● precision: It is the decimal precision of significant digits.

○ precision range: 1 ~ 38

○ Default value: 38

● scale: It is the decimal point range.

○ scale range: -84 ~ 127

○ Default value: 0

Description

A fixed point number with precision and scale is stored.

If the precision and scale are omitted, it means as follows.

● NUMERIC = NUMERIC(38,0)

● NUMERIC(p) = NUMERIC(p,0)

NUMBER type is similar to NUMERIC type, but if both the precision and scale are omitted, NUMBER type s

tores the floating-point number whose precision and scale is not specified.

● NUMBER without precision, scale: Floating point number

● NUMERIC without precision, scale: Fixed point number of NUMERIC(38,0)

● Storage size: (number of digits in integer part + 1) / 2 + (number of digits in fractional part + 1) / 2 +

1(exponent, sign)

For More Information

Refer to the followings.

● FLOAT

● NUMBER

Built-in Data Type References | 987

ROWID

Syntax

ROWID

Description

A record identifier (ROWID) is stored.

A record identifier (ROWID) is the identification information of each record in database.

When querying the ROWID pseudo column, each record identifier (ROWID) is obtained. This ROWID pseu

do column has the ROWID data type information.

ROWID type consists of the followings in a standalone system.

• OBJECT_ID

• TABLESPACE_ID

• PAGE_ID

• OFFSET within PAGE

ROWID type consists of the followings in a cluster system.

• GRID_BLOCK_SEQUENCE

• GRID_BLOCK_ID

• MEMBER_ID

• SHARD_ID

ROWID is stored in the base 64 value, which can include A ~ Z, a ~ z, 0 ~ 9, +, /.

Each component information of ROWID is obtained using ROWID-related functions.

• Storage size: 16 bytes

For More Information

Refer to the followings.

● ROWID Pseudo Column

● ROWID-related Functions

988 | SQL Elements

TIME

Syntax

TIME [(fractional_seconds_precision)] [WITH TIME ZONE | WITHOUT TIME ZONE]

Syntax Rules and Parameters

● fractional_seconds_precision: It is the number of significant digits in fractional seconds.

○ fractional_seconds_precision range: 0 ~ 6

○ Default value: 6

● [WITH TIME ZONE | WITHOUT TIME ZONE]: It specifies whether to store TIME ZONE value.

○ WITH TIME ZONE: The time which includes time zone

○ WITHOUT TIME ZONE: The time which does not include time zone

○ Default value: WITHOUT TIME ZONE

Description

The time which includes HOUR, MINUTE and SECOND is stored.

● Storage size

○ TIME WITHOUT TIME ZONE: 8 bytes

○ TIME WITH TIME ZONE: 12 bytes

For More Information

Refer to the followings.

● Time Literals

● Time with Time Zone Literals

● DATE

● TIMESTAMP.

Built-in Data Type References | 989

TIMESTAMP

Syntax

TIMESTAMP [(fractional_seconds_precision)] [WITH TIME ZONE | WITHOUT TIME ZONE]

Syntax Rules and Parameters

● fractional_seconds_precision: It is the number of significant digits in the fractional seconds.

○ fractional_seconds_precision range: 0 ~ 6

○ Default value: 6

● [WITH TIME ZONE | WITHOUT TIME ZONE]: It specifies whether to store TIME ZONE value.

○ WITH TIME ZONE: The time which includes time zone.

○ WITHOUT TIME ZONE: The time which does not include time zone.

○ Default value: WITHOUT TIME ZONE

Description

The time which includes YEAR, MONTH, DATE, HOUR, MINUTE and SECOND is stored.

● Storage size

○ TIMESTAMP WITHOUT TIME ZONE: 8 bytes

○ TIMESTAMP WITH TIME ZONE: 12 bytes

For More Information

Refer to the followings.

● Timestamp Literals

● Timestamp with Time Zone Literals

● DATE

● TIME

990 | SQL Elements

11.10 Built-in Function References

* (MULTIPLICATION)

Syntax

expr1 * expr2

Description

It returns the multiplication result of expr1 and expr2.

The multiplication types and result types are as follows.

For more information, refer to Type Conversion.

Table 11-47 Numeric * operation

expr1 (expr2) expr2 (expr1) Result type

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_BIGINT

NUMBER NUMBER NUMBER

NATIVE DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Table 11-48 INTERVAL * operation

expr1 (expr2) expr2 (expr1) Result type

INTERVAL YEAR TO MONTH Numeric type
INTERVAL YEAR TO MONTH

(The result type is the interval type.)

INTERVAL DAY TO SECOND Numeric type
INTERVAL DAY TO SECOND

(The result type is the interval type.)

Refer to INTERVAL type details which is included in INTERVAL type written in the following table.

Table 11-49 INTERVAL type details which is included in INTERVAL type written in the following table

INTERVAL YEAR TO MONTH INTERVAL DAY TO SECOND

● INTERVAL DAY

● INTERVAL HOUR

Built-in Function References | 991

● INTERVAL YEAR

● INTERVAL MONTH

● INTERVAL YEAR TO MONTH

● INTERVAL MINUTE

● INTERVAL SECOND

● INTERVAL DAY TO HOUR

● INTERVAL DAY TO MINUTE

● INTERVAL DAY TO SECOND

● INTERVAL HOUR TO MINUTE

● INTERVAL HOUR TO SECOND

● INTERVAL MINUTE TO SECOND

INTERVAL YEAR TO MONTH INTERVAL DAY TO SECOND

Example

gSQL> SELECT INTERVAL'1-2'YEAR TO MONTH * 2 AS RESULT FROM DUAL;

RESULT

+000002-04

1 row selected.

gSQL> SELECT INTERVAL'1 01:02:03.400000'DAY TO SECOND * 2 AS RESULT

FROM DUAL;

RESULT

+000002 02:04:06.800000

1 row selected.

992 | SQL Elements

+ (ADDITION)

Syntax

expr1 + expr2

Description

It returns the addition result of expr1 and expr2.

The addition types and result types are as follows.

For more information, refer to Type Conversion.

Table 11-50 Numeric + operation

expr1 (expr2) expr2 (expr1) Result type

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_BIGINT

NUMBER NUMBER NUMBER

NATIVE DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Table 11-51 (DATETIME/INTERVAL) + operation

expr1 (expr2) expr2 (expr1) Result type

DATE NUMERIC DATE

DATE INTERVAL YEAR TO MONTH DATE

DATE INTERVAL DAY DATE

DATE INTERVAL DAY TO SECOND TIMESTAMP

TIME NUMERIC TIME

TIME INTERVAL YEAR TO MONTH TIME

TIME INTERVAL DAY TO SECOND TIME

TIME WITH TIME ZONE NUMERIC TIME WITH TIME ZONE

TIME WITH TIME ZONE INTERVAL YEAR TO MONTH TIME WITH TIME ZONE

TIME WITH TIME ZONE INTERVAL DAY TO SECOND TIME WITH TIME ZONE

TIMESTAMP NUMERIC TIMESTAMP

TIMESTAMP INTERVAL YEAR TO MONTH TIMESTAMP

TIMESTAMP INTERVAL DAY TO SECOND TIMESTAMP

TIMESTAMP WITH TIME ZONE NUMERIC TIMESTAMP WITH TIME ZONE

Built-in Function References | 993

TIMESTAMP WITH TIME ZONE INTERVAL YEAR TO MONTH TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE INTERVAL DAY TO SECOND TIMESTAMP WITH TIME ZONE

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH

(The result type includes all the interv

al range of expr1 and expr2.)

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND

(The result type includes all the interv

al range of expr1 and expr2.)

Refer to INTERVAL type details which is included in INTERVAL type written in the following table.

expr1 (expr2) expr2 (expr1) Result type

Example

gSQL> SELECT TO_DATE('2012-05-05', 'YYYY-MM-DD') + 5 AS RESULT FROM DUAL;

RESULT

2012-05-10

1 row selected.

gSQL> SELECT

TO_DATE('2012-05-05', 'YYYY-MM-DD') + INTERVAL'01-01'YEAR TO MONTH

AS RESULT

FROM DUAL;

RESULT

2013-06-05

1 row selected.

gSQL> SELECT

INTERVAL'01-01'YEAR TO MONTH + INTERVAL'02-10'YEAR TO MONTH

AS RESULT

FROM DUAL;

RESULT

+000003-11

1 row selected.

994 | SQL Elements

+ (POSITIVE)

Syntax

+ expr

Description

The + sign is displayed in expr.

Example

gSQL> SELECT +3 AS RESULT1, +(-3) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

3 -3

1 row selected.

Built-in Function References | 995

- (NEGATIVE)

Syntax

- expr

Description

The - sign is displayed in expr.

Example

gSQL> SELECT -3 AS RESULT1, -(-3) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

-3 3

1 row selected.

996 | SQL Elements

- (SUBTRACTION)

Syntax

expr1 - expr2

Description

It returns the subtraction result of expr1 and expr2.

The subtraction types and result types are as follows.

For more information, refer to Type Conversion.

Table 11-52 Numeric - operation

expr1 expr2 Result type

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_BIGINT

NUMBER NUMBER NUMBER

NATIVE DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Table 11-53 (DATETIME/INTERVAL) - operation

expr1 expr2 Result type

DATE DATE NUMBER

DATE Numeric type DATE

DATE INTERVAL YEAR TO MONTH DATE

DATE INTERVAL DAY DATE

DATE INTERVAL DAY TO SECOND TIMESTAMP

TIME TIME INTERVAL DAY TO SECOND

TIME Numeric type TIME

TIME INTERVAL YEAR TO MONTH TIME

TIME INTERVAL DAY TO SECOND TIME

TIME WITH TIME ZONE Numeric type TIME WITH TIME ZONE

TIME WITH TIME ZONE INTERVAL YEAR TO MONTH TIME WITH TIME ZONE

TIME WITH TIME ZONE INTERVAL DAY TO SECOND TIME WITH TIME ZONE

TIMESTAMP TIMESTAMP INTERVAL DAY TO SECOND

TIMESTAMP Numeric type TIMESTAMP

Built-in Function References | 997

TIMESTAMP INTERVAL YEAR TO MONTH TIMESTAMP

TIMESTAMP INTERVAL DAY TO SECOND TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE INTERVAL DAY TO SECOND

TIMESTAMP WITH TIME ZONE Numeric type TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE INTERVAL YEAR TO MONTH TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE INTERVAL DAY TO SECOND TIMESTAMP WITH TIME ZONE

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH

(The result type includes all the interv

al range of expr1 and expr2.)

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND

(The result type includes all the interv

al range of expr1 and expr2.)

Refer to Table 11-49 INTERVAL type details which is included in INTERVAL type written in the following table.

expr1 expr2 Result type

Example

gSQL> SELECT

TO_DATE('2012-05-05') - TO_DATE('2012-01-01') AS RESULT

FROM DUAL;

RESULT

125

1 row selected.

gSQL> SELECT TO_DATE('2012-05-05') - 3 AS RESULT FROM DUAL;

RESULT

2012-05-02

1 row selected.

gSQL> SELECT

TO_DATE('2012-05-05') - INTERVAL'01-02'YEAR TO MONTH AS RESULT

FROM DUAL;

RESULT

2011-03-05

1 row selected.

gSQL> SELECT

INTERVAL'05-11'YEAR TO MONTH - INTERVAL'02-01'YEAR TO MONTH

AS RESULT

FROM DUAL;

998 | SQL Elements

RESULT

+000003-10

1 row selected.

gSQL> SELECT INTERVAL'15 23:59:59.999999'DAY TO SECOND

- INTERVAL'10 23:59:59.999999'DAY TO SECOND AS RESULT

FROM DUAL;

RESULT

+000005 00:00:00.000000

1 row selected.

Built-in Function References | 999

/ (DIVISION)

Syntax

expr1 / expr2

Description

It returns the division result of expr1 and expr2.

The division types and result types are as follows.

For more information, refer to Type Conversion.

Table 11-54 Numeric / operation

expr1 expr2 Result type

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER NUMBER

NATIVE_DOUBLE NATIVE_DOUBLE NATIVE_DOUBLE

Table 11-55 (DATETIME/INTERVAL) / operation

expr1 expr2 Result type

INTERVAL YEAR TO MONTH Numeric type
INTERVAL YEAR TO MONTH

(The result type is interval type.)

INTERVAL DAY TO SECOND Numeric type
INTERVAL DAY TO SECOND

(The result type is interval type.)

Refer to INTERVAL type details which is included in INTERVAL type written in the following table.

Example

gSQL> SELECT INTERVAL'20-10'YEAR TO MONTH / 2 AS RESULT FROM DUAL;

RESULT

+000010-05

1 row selected.

gSQL> SELECT INTERVAL'02 02:04:06.800000'DAY TO SECOND / 2 AS RESULT

FROM DUAL;

1,000 | SQL Elements

RESULT

+000001 01:02:03.400000

1 row selected.

Built-in Function References | 1,001

|| (CONCATENATE)

Syntax

str1 || str2

Description

CONCATENATE returns the string concatenating str1 and str2.

If either str1 or str2 is NULL, the string except NULL is returned. If both of str1 and str2 are NULL, NULL is

returned.

The argument can be a type which can be converted to either character string type or binary string type.

For more information, refer to Type Conversion.

It is an alias of CONCAT, CONCATENATE.

The result types are as follows.

Table 11-56 The result types of || (CONCATENATE)

Data type CHAR VARCHAR LONG VARCHAR

CHAR CHAR VARCHAR LONG VARCHAR

VARCHAR VARCHAR VARCHAR LONG VARCHAR

LONG VARCHAR LONG VARCHAR LONG VARCHAR LONG VARCHAR

Data type BINARY VARBINARY LONG VARBINARY

BINARY BINARY VARBINARY LONG VARBINARY

VARBINARY VARBINARY VARBINARY LONG VARBINARY

LONG VARBINARY LONG VARBINARY LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT 'DATA' || 'BASE' AS RESULT1,

'DATA' || NULL AS RESULT2,

NULL || NULL AS RESULT3

FROM DUAL;

RESULT1 RESULT2 RESULT3

-------- ------- -------

DATABASE DATA null

1 row selected.

1,002 | SQL Elements

ABS

Syntax

ABS(num)

Description

ABS returns the absolute value of num.

The num argument can be a numeric type or types which can be converted to number.

Example

gSQL> SELECT ABS(-1) AS RESULT1, ABS(1) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

1 1

1 row selected.

Built-in Function References | 1,003

ACOS

Syntax

ACOS(num)

Description

ACOS returns the arc cosine value of num.

The num argument should be in the range of -1 to 1.

It returns the radians value in the range of 0 and pi.

Example

gSQL> SELECT ACOS(1) FROM DUAL;

ACOS(1)

0

1 row selected.

1,004 | SQL Elements

ADDDATE

Syntax

ADDDATE(date, INTERVAL expr unit)

ADDDATE(expr, days)

Description

ADDDATE adds the second argument to the first argument, then returns the result.

If any of the input argument value is NULL, the result is also NULL.

The first argument data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and the second

argument data type can be INTERVAL or numeric.

The result type is as same as (DATETIME/INTERVAL) + operation.

Example

gSQL> SELECT ADDDATE(TO_DATE('2012-12-12', 'YYYY-MM-DD'), 1) AS RESULT

FROM DUAL;

RESULT

2012-12-13

1 row selected.

gSQL> SELECT ADDDATE(TO_DATE('2012-12-12', 'YYYY-MM-DD'),

INTERVAL'01-01'YEAR TO MONTH) AS RESULT

FROM DUAL;

RESULT

2014-01-12

1 row selected.

Built-in Function References | 1,005

ADDTIME

Syntax

ADDTIME(expr1, expr2)

Description

ADDTIME adds expr2 to expr1, then returns the result.

If expr1 or expr2 is NULL, the result is NULL.

expr1 data type can be TIME, TIME WITH TIME ZONE, TIMESTAMP, TIMESTAMP WITH TIME ZONE TYPE,

and expr2 data type can be INTERVAL DAY TO SECOND TYPE.

The result type is as same as (DATETIME/INTERVAL) + operation.

Example

gSQL> SELECT

ADDTIME(TO_TIMESTAMP('2001-05-10 11:22:33',

'YYYY-MM-DD HH24:MI:SS'),

INTERVAL'0 01:02:03.999999'DAY TO SECOND) AS RESULT

FROM DUAL;

RESULT

2001-05-10 12:24:36.999999

1 row selected.

1,006 | SQL Elements

ADD_MONTHS

Syntax

ADD_MONTHS(date, number)

Description

ADD_MONTHS adds as many month as the number to the date, then returns the result.

If any of the input argument is NULL, the result is NULL.

After ADD_MONTHS operation, if the date is bigger than the last day of the month, it is adjusted to the l

ast day of the month.

The data type of date argument can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and the num

ber argument can be a numeric type.

The result type is always DATE regardless of the input argument date type.

Example

gSQL> SELECT

ADD_MONTHS(TO_DATE('2001-07-31', 'YYYY-MM-DD'), 1) AS RESULT1,

ADD_MONTHS(TO_DATE('2001-07-31', 'YYYY-MM-DD'), 2) AS RESULT2

FROM DUAL;

RESULT1 RESULT2

---------- ----------

2001-08-31 2001-09-30

1 row selected.

Built-in Function References | 1,007

ASCII

Syntax

ASCII(char)

Description

It returns the database character set code of the first character of char in decimal form.

The data type of char can be a character type such as CHARACTER, CHARACTER VARYING, CHARACTER

LONG VARYING or can be a type which can be converted to a character type, and the return type is NUM

BER.

Example

gSQL> SELECT ASCII('G') AS RESULT FROM DUAL;

RESULT

71

1 row selected.

1,008 | SQL Elements

ASIN

Syntax

ASIN(num)

Description

ASIN returns the arc sin value of num.

The num argument should be in the range of -1 to 1.

It returns the radians value in the range of -pi/2 and pi/2.

Example

gSQL> SELECT ASIN(0) FROM DUAL;

ASIN(0)

0

1 row selected.

Built-in Function References | 1,009

ATAN

Syntax

ATAN(num)

Description

ATAN returns the arc tangent value of num.

The num value range is not limited. It returns the radians value in the range of -pi/2 and pi/2.

Example

gSQL> SELECT ATAN(1) FROM DUAL;

ATAN(1)

.785398163397448

1 row selected.

1,010 | SQL Elements

ATAN2

Syntax

ATAN2(num1, num2)

Description

ATAN2 returns the arc tangent value of num1 and num2.

The num1 argument value range is not limited. It returns the radians value in the range of -pi and pi.

Example

gSQL> SELECT ATAN2(1, 0) FROM DUAL;

ATAN2(1, 0)

1.5707963267949

1 row selected.

Built-in Function References | 1,011

AVG

Syntax

AVG([ALL | DISTINCT] num)

Description

It is an aggregate function, and it obtains average value of exprs.

If ALL is explicitly specified, aggregation is executed for all values.

If DISTINCT is explicitly specified, aggregation is executed for the values which exclude duplicate values.

If ALL or DISTINCT is not explicitly specified, it is processed in the same way as when ALL is specified.

Example

gSQL> SELECT AVG(c1) FROM t1;

AVG(C1)

2

1 row selected.

1,012 | SQL Elements

BITAND

Syntax

BITAND(num1, num2)

Description

It returns the AND operation result for the bits of num1 and num2.

The input argument data type can be NATIVE_SMALLINT, NATIVE_INTEGER, NATIVE_BIGINT or a data ty

pe which can be converted to NATIVE_BIGINT.

When converting to NATIVE_BIGINT type, the decimal point is truncated.

The result type is NATIVE_BIGINT.

Example

gSQL> SELECT BITAND(5, 3) AS RESULT FROM DUAL;

RESULT

1

1 row selected.

Built-in Function References | 1,013

BITNOT

Syntax

BITNOT(num)

Description

It returns the NOT operation result for the num bit.

The input argument data type can be NATIVE_SMALLINT, NATIVE_INTEGER, NATIVE_BIGINT or a data ty

pe which can be converted to NATIVE_BIGINT.

When converting to NATIVE_BIGINT type, the decimal point is truncated.

The result type is as follows.

• If the input argument is NATIVE_SMALLINT type, its result type is NATIVE_SMALLINT type.

• If the input argument is NATIVE_INTEGER type, its result type is NATIVE_INTEGER type.

• If the input argument is NATIVE_BIGINT type, its result type is NATIVE_BIGINT type.

Example

gSQL> SELECT BITNOT(5) AS RESULT FROM DUAL;

RESULT

-6

1 row selected.

1,014 | SQL Elements

BITOR

Syntax

BITOR(num1, num2)

Description

It returns the OR operation result for the bits of num1 and num2.

The input argument data type can be NATIVE_SMALLINT, NATIVE_INTEGER, NATIVE_BIGINT types or a d

ata type which can be converted to NATIVE_BIGINT type.

When converting to NATIVE_BIGINT type, the decimal point is truncated.

The result type is NATIVE_BIGINT type.

Example

gSQL> SELECT BITOR(5, 3) FROM DUAL;

BITOR(5, 3)

7

1 row selected.

Built-in Function References | 1,015

BITXOR

Syntax

BITXOR(num1, num2)

Description

It returns the XOR operation result for the bits of num1 and num2.

The input argument data type can be NATIVE_SMALLINT, NATIVE_INTEGER, NATIVE_BIGINT or a data ty

pe which can be converted to NATIVE_BIGINT.

When converting to NATIVE_BIGINT type, the decimal point is truncated.

The result type is NATIVE_BIGINT.

Example

gSQL> SELECT BITXOR(5, 3) FROM DUAL;

BITXOR(5, 3)

6

1 row selected.

1,016 | SQL Elements

BIT_LENGTH

Syntax

BIT_LENGTH(str)

Description

BIT_LENGTH returns the number of bits for str.

Example

gSQL> SELECT BIT_LENGTH('LIKE') AS RESULT FROM DUAL;

RESULT

32

1 row selected.

Built-in Function References | 1,017

BYTE_LENGTH

Syntax

BYTE_LENGTH(str)

Description

It is an alias of OCTET_LENGTH.

For more information, refer to OCTET_LENGTH, LENGTHB.

Example

● Multi byte character set (e.g. UTF8): 1 byte character

gSQL> SELECT BYTE_LENGTH('OCTET_LENGTH') AS RESULT_1BYTE_CHARACTERS

FROM DUAL;

RESULT_1BYTE_CHARACTERS

12

1 row selected.

● Multi byte character set (e.g. UTF8): 2 byte character

gSQL> SELECT BYTE_LENGTH('αβ') AS RESULT_2BYTE_CHARACTERS FROM DUAL;

RESULT_2BYTE_CHARACTERS

4

1 row selected.

1,018 | SQL Elements

CASE2

Syntax

CASE2(condition1, result1

[, condition2, result2

, ...

, conditionN, resultN]

[, default])

Description

CASE2 evaluates the condition in the described order.

If the comparison result is FALSE, it continues evaluating until TRUE comes up.

If the comparison result is TRUE, it returns the corresponding result, and does not evaluate any more.

If all the comparison results are FALSE, it returns the default value. If the default is omitted, it returns NUL

L.

The result type is the data type of result1 (the first result).

If the data type of result1 (the first result) is a numeric type and a character type then each data type inclu

des the range of result1, ..., resultN.

If result1 (the first result) is CHAR or NULL, then the result type is VARCHAR.

CASE2 can be expressed by using CASE as follows.

● CASE2(condition1, res1, condition2, res2)

CASE WHEN condition1 THEN res1

WHEN condition2 THEN res2

ELSE NULL

END

● CASE2(condition1, res1, condition2, res2, default)

CASE WHEN condition1 THEN res1

WHEN condition2 THEN res2

ELSE default

END

Built-in Function References | 1,019

Example

gSQL> SELECT I1,

CASE2(I1 = 1, 'ONE', I1 = 2, 'TWO') AS CASE2_RESULT1,

CASE2(I1 = 1, 'ONE', I1 = 2, 'TWO', 'NUMBER') AS CASE2_RESULT2

FROM T1;

I1 CASE2_RESULT1 CASE2_RESULT2

-- ------------- -------------

1 ONE ONE

2 TWO TWO

3 null NUMBER

3 rows selected.

1,020 | SQL Elements

CBRT

Syntax

CBRT(num)

Description

It returns the cube root of num.

If the num argument is NULL, the result is also NULL.

Example

gSQL> SELECT CBRT(27) FROM DUAL;

CBRT(27)

3

1 row selected.

Built-in Function References | 1,021

CEIL

Syntax

CEIL(num)

CEILING(num)

Description

CEIL returns the smallest integer which is equal to or bigger than num.

Example

gSQL> SELECT CEIL(3.5) AS RESULT1, CEIL(-3.5) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

4 -3

1 row selected.

1,022 | SQL Elements

CHAR_LENGTH

Syntax

CHAR_LENGTH(str)

CHARACTER_LENGTH(str)

Description

CHAR_LENGTH returns the number of character for str according to the character set.

The str can be a character type such as CHARACTER, CHARACTER VARYING, CHARACTER LONG VARYIN

G, or it can be a data type which can be converted to character type. The return type is NATIVE_BIGINT.

If the data type of str is CHARACTER, the trailing blanks are included in the calculation.

If str is NULL, it returns NULL.

It is an alias of LENGTH.

Example

Multi byte character set: (e.g. UTF8)

gSQL> SELECT CHAR_LENGTH('αβ-SUMMER') AS RESULT FROM DUAL;

RESULT

9

1 row selected.

Built-in Function References | 1,023

CHR

Syntax

CHR(num)

Description

It returns a character in the database character set code corresponding to num.

An input argument can be a numeric type and the return type is VARCHAR.

Example

gSQL> SELECT CHR(71) FROM DUAL;

CHR(71)

G

1 row selected.

1,024 | SQL Elements

CLOCK_DATE

Syntax

CLOCK_DATE()

Description

Whenever the CLOCK_DATE function is called, the current date (DATE type) value is obtained.

The differences among the functions to obtain the current date are as follows.

• TRANSACTION_DATE(): All date values in the transaction are same.

• STATEMENT_DATE(): All date values in an SQL statement are same.

• CLOCK_DATE(): Whenever the function is called, the current date value is obtained.

Example

Each row can have a different date value.

gSQL> SELECT CLOCK_DATE() FROM t1;

CLOCK_DATE()

2013-12-12

2013-12-12

2013-12-13

3 rows selected.

Built-in Function References | 1,025

CLOCK_LOCALTIME

Syntax

CLOCK_LOCALTIME()

Description

Whenever the CLOCK_LOCALTIME function is called, the current time value without TIME ZONE (TIME W

ITHOUT TIME ZONE type) is obtained.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_LOCALTIME(): All time values in the transaction are same.

• STATEMENT_LOCALTIME(): All time values in an SQL statement are same.

• CLOCK_LOCALTIME(): Whenever the function is called, the current time value is obtained.

Example

Each row can have a different time value.

gSQL> SELECT CLOCK_LOCALTIME() FROM t1;

CLOCK_LOCALTIME()

14:42:05.470757

14:42:05.470759

14:42:05.470759

3 rows selected.

1,026 | SQL Elements

CLOCK_LOCALTIMESTAMP

Syntax

CLOCK_LOCALTIMESTAMP()

Description

Whenever the CLOCK_LOCALTIMESTAMP() function is called, the current TIMESTAMP value without TIM

E ZONE (TIMESTAMP WITHOUT TIME ZONE type) is obtained.

The differences among the functions to obtain the current TIMESTAMP are as follows.

• TRANSACTION_LOCALTIMESTAMP(): All TIMESTAMP values in the transaction are same.

• STATEMENT_LOCALTIMESTAMP(): All TIMESTAMP values in an SQL statement are same.

• CLOCK_LOCALTIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

Each row can have a different timestamp value.

gSQL> SELECT CLOCK_LOCALTIMESTAMP() FROM t1;

CLOCK_LOCALTIMESTAMP()

2013-12-12 14:46:17.309206

2013-12-12 14:46:17.309209

2013-12-12 14:46:17.309209

Built-in Function References | 1,027

CLOCK_TIME

Syntax

CLOCK_TIME()

Description

Whenever the CLOCK_TIME() function is called, the current time value with TIME ZONE (TIME WITH TIME

ZONE type) is obtained.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_TIME(): All time values in the transaction are same.

• STATEMENT_TIME(): All time values in an SQL statement are same.

• CLOCK_TIME(): Whenever the function is called, the current time value is obtained.

Example

Each row can have a different time value.

gSQL> SELECT CLOCK_TIME() FROM t1;

CLOCK_TIME()

14:48:21.052324 +09:00

14:48:21.052326 +09:00

14:48:21.052327 +09:00

3 rows selected.

1,028 | SQL Elements

CLOCK_TIMESTAMP

Syntax

CLOCK_TIMESTAMP()

Description

Whenever CLOCK_TIMESTAMP() function is called, the current TIMESTAMP value with TIME ZONE (TIME

STAMP WITH TIME ZONE type) is obtained.

The differences among the functions to obtain the current TIMESTAMP are as follows.

• TRANSACTION_TIMESTAMP(): All TIMESTAMP values in the transaction are same.

• STATEMENT_TIMESTAMP(): All TIMESTAMP values in an SQL statement are same.

• CLOCK_TIMESTAMP(): Whenever the function is called, the current TIMESTAMP value is obtained.

Example

Each row can have a different timestamp value.

gSQL> SELECT CLOCK_TIMESTAMP() FROM t1;

CLOCK_TIMESTAMP()

2013-12-12 14:49:45.051709 +09:00

2013-12-12 14:49:45.051714 +09:00

2013-12-12 14:49:45.051714 +09:00

3 rows selected.

Built-in Function References | 1,029

COALESCE

Syntax

COALESCE(expr1, ..., exprN)

Description

It returns the first non null expr in the expr list.

If all expr in the expr list are null, it returns null.

In the expr list, there should be two or more expr.

If multiple types are in the expr list, the result type is determined by the Result Type Combination Rule.

COALESCE can be expressed by using CASE as follows.

● COALESCE(expr1, expr2)

CASE WHEN expr1 IS NOT NULL THEN expr1

ELSE expr2

END

● COALESCE(expr1, expr2, ..., exprN)

CASE WHEN expr1 IS NOT NULL THEN expr1

ELSE COALESCE(expr2, ..., exprN)

END

Example

gSQL> SELECT COALESCE(NULL, 1, 2) FROM DUAL;

COALESCE(NULL, 1, 2)

1

1 row selected.

gSQL> SELECT COALESCE(NULL, NULL, NULL) FROM DUAL;

COALESCE(NULL, NULL, NULL)

null

1 row selected.

1,030 | SQL Elements

CONCAT

Syntax

CONCAT(str1, str2, ...)

Description

It is an alias of || (CONCATENATE).

It is an argument of CONCAT function and 2 ~ 254 number of CONCATs can be set.

For more information, refer to || (CONCATENATE), CONCATENATE.

Example

gSQL> SELECT CONCAT('DATA', 'BASE') AS RESULT FROM DUAL;

RESULT

DATABASE

1 row selected.

Built-in Function References | 1,031

CONCATENATE

Syntax

CONCATENATE(str1, str2, ...)

Description

It is an alias of || (CONCATENATE).

It is an argument of CONCATENATE function and 2 ~ 254 number of CONCATENATEs can be set.

For more information, refer to CONCAT, || (CONCATENATE).

Example

gSQL> SELECT CONCATENATE('DATA', 'BASE') AS RESULT FROM DUAL;

RESULT

DATABASE

1 row selected.

1,032 | SQL Elements

COS

Syntax

COS(num)

Description

It returns the COSINE value of num.

If the num argument is NULL, the result is also NULL.

Example

gSQL> SELECT COS(0) FROM DUAL;

COS(0)

1

1 row selected.

Built-in Function References | 1,033

COT

Syntax

COT(num)

Description

It returns the COTANGENT value of num.

If the num argument is NULL, the result is also NULL.

Example

gSQL> SELECT COT(1) FROM DUAL;

COT(1)

.642092615934331

1 row selected.

1,034 | SQL Elements

COUNT

Syntax

COUNT([ALL | DISTINCT] expr)

Description

It is an aggregate function. It returns the number of rows whose expr is not NULL.

If ALL is explicitly specified, aggregation is executed for all values.

If DISTINCT is explicitly specified, aggregation is executed for the values which exclude duplicate values.

If ALL or DISTINCT is not explicitly specified, it is processed in the same way as when ALL is specified.

Example

gSQL> SELECT COUNT(c1) FROM t1;

COUNT(C1)

3

1 row selected.

Built-in Function References | 1,035

COUNT(*)

Syntax

COUNT(*)

Description

It is an aggregate function, and the number of rows is obtained.

It has nothing to do with whether it is NULL or not because an expression is not explicitly specified.

Example

gSQL> SELECT COUNT(*) FROM t1;

COUNT(*)

4

1 row selected.

1,036 | SQL Elements

CURRENT_CATALOG

Syntax

CURRENT_CATALOG [()]

Description

The catalog name (database name) is obtained.

Example

gSQL> SELECT CURRENT_CATALOG FROM dual;

CURRENT_CATALOG

TEST_DB

1 row selected.

Built-in Function References | 1,037

CURRENT_DATE

Syntax

CURRENT_DATE [()]

STATEMENT_DATE()

Description

The current date (DATE type) is obtained.

CURRENT_DATE is an SQL standard function.

The differences among the functions to obtain the current date are as follows.

• TRANSACTION_DATE(): All date values in the transaction are same.

• CURRENT_DATE, STATEMENT_DATE(): All date values in an SQL statement are same.

• CLOCK_DATE(): Whenever the function is called, the current date value is obtained.

Example

gSQL> SELECT CURRENT_DATE FROM t1;

CURRENT_DATE

2013-12-12

2013-12-12

2013-12-12

3 rows selected.

1,038 | SQL Elements

CURRENT_SCHEMA

Syntax

CURRENT_SCHEMA [()]

Description

User's current SCHEMA is obtained.

Example

gSQL> SELECT CURRENT_SCHEMA FROM dual;

CURRENT_SCHEMA

PUBLIC

1 row selected.

Built-in Function References | 1,039

CURRENT_TIME

Syntax

CURRENT_TIME [()]

STATEMENT_TIME()

Description

The current TIME WITH TIME ZONE type value based on the session time is obtained.

CURRENT_TIME is an SQL standard function.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_TIME(): All time values in the transaction are same.

• CURRENT_TIME, STATEMENT_TIME(): All time values in an SQL statement are same.

• CLOCK_TIME(): Whenever the function is called, the current time value is obtained.

Example

All rows have the same value.

gSQL> SELECT CURRENT_TIME FROM t1;

CURRENT_TIME

16:27:10.116396 +09:00

16:27:10.116396 +09:00

16:27:10.116396 +09:00

3 rows selected.

1,040 | SQL Elements

CURRENT_TIMESTAMP

Syntax

CURRENT_TIMESTAMP [()]

STATEMENT_TIMESTAMP()

Description

It obtains the TIMESTAMP WITH TIME ZONE type value based on the session time.

CURRENT_TIMESTAMP is an SQL standard function.

The differences among the functions to obtain the current TIMESTAMP are as follows.

• TRANSACTION_TIMESTAMP(): All TIMESTAMP values in the transaction are same.

• CURRENT_TIMESTAMP, STATEMENT_TIMESTAM(): All TIMESTAMP values in an SQL statement are sa

me.

• CLOCK_TIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

All rows have the same value.

gSQL> SELECT CURRENT_TIMESTAMP FROM t1;

CURRENT_TIMESTAMP

2013-12-12 16:34:55.649632 +09:00

2013-12-12 16:34:55.649632 +09:00

2013-12-12 16:34:55.649632 +09:00

3 rows selected.

Built-in Function References | 1,041

CURRENT_USER

Syntax

CURRENT_USER [()]

Description

It returns the current user.

The user information is managed in three types as follows.

● Logon user: It is a user who performed login, and it is maintained until the connection is closed.

● Session user: It is as same as the first logon user, but it can be changed using the SET SESSION AUTH

ORIZATION statement.

● Current user: It is generally as same as the session user, but it is temporarily changed internally in syst

em to control access when using the PSM, view.

○ The session user and current user is similar to the difference between the unix system's real user

and the effective user.

Example

% gsql sys gliese

gSQL> SET SESSION AUTHORIZATION test;

Session set.

gSQL> SELECT

LOGON_USER() AS result1,

SESSION_USER() AS result2,

CURRENT_USER() AS result3

FROM DUAL;

RESULT1 RESULT2 RESULT3

------- ------- -------

SYS TEST TEST

1 row selected.

1,042 | SQL Elements

CURRVAL

Syntax

seq_name.CURRVAL

CURRVAL(seq_name)

Description

The current value of the sequence object is obtained.

A sequence value should be set with NEXTVAL(seq_name) at least once.

Example

gSQL> SELECT seq.CURRVAL FROM dual;

SEQ.CURRVAL

1

1 row selected.

Built-in Function References | 1,043

DATEADD

Syntax

DATEADD(datepart, number, date)

Description

It adds number to the specified datepart of date, and returns the result.

If the number is decimal point, it is not rounded off.

The date data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME, TIME WITH TIME ZO

NE.

If number or date is NULL, the result is also NULL.

The result type which is as same as the input date argument type is returned.

Table 11-57 Available string format in datepart

datepart Description

YEAR Year

QUARTER Quarter

MONTH Month

DAYOFYEAR Day of year

DAY Day

WEEK Week

WEEKDAY Weekday

HOUR Hour

MINUTE Minute

SECOND Second

MILLISECOND Millisecond

MICROSECOND Microsecond

Example

gSQL> SELECT

DATEADD(YEAR, 1, TO_DATE('2013-05-14', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

1,044 | SQL Elements

2014-05-14

1 row selected.

gSQL> SELECT

DATEADD(MONTH, 13, TO_DATE('2013-05-14', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

2014-06-14

1 row selected.

gSQL> SELECT

DATEADD(DAY, 397, TO_DATE('2013-05-14', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

2014-06-15

1 row selected.

Built-in Function References | 1,045

DATEDIFF

Syntax

DATEDIFF(datepart, startdate, enddate)

Description

It substracts startdate from enddate, then returns the result to the specified datepart.

If the startdate or enddate is NULL, the result is also NULL.

The data type of startdate and enddate can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME.

The result type is NUMBER.

Table 11-58 Available string format in datepart

datepart Description

YEAR Year

QUARTER Quarter

MONTH Month

DAYOFYEAR Day of year

DAY Day

HOUR Hour

MINUTE Minute

SECOND Second

MILLISECOND Millisecond

MICROSECOND Microsecond

Example

gSQL> SELECT

DATEDIFF(YEAR,

TO_DATE('2013-05-14', 'YYYY-MM-DD'),

TO_DATE('2014-06-15', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

1

1 row selected.

1,046 | SQL Elements

gSQL> SELECT

DATEDIFF(MONTH,

TO_DATE('2013-05-14', 'YYYY-MM-DD'),

TO_DATE('2014-06-15', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

13

1 row selected.

gSQL> SELECT

DATEDIFF(DAY,

TO_DATE('2013-05-14', 'YYYY-MM-DD'),

TO_DATE('2014-06-15', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

397

1 row selected.

Built-in Function References | 1,047

DATE_ADD

Syntax

DATE_ADD(date, INTERVAL expr unit)

Description

It is the same function as ADDDATE (date, INTERVAL expr unit).

Example

gSQL> SELECT

DATE_ADD(TO_DATE('2012-01-02', 'YYYY-MM-DD'),

INTERVAL '2-2' YEAR TO MONTH) AS RESULT

FROM DUAL;

RESULT

2014-03-02

1 row selected.

1,048 | SQL Elements

DATE_PART

Syntax

DATE_PART(field, datetime)

Description

The result of DATE_PART is as same as the result of the EXTRACT function. It searches for the specified fi

eld from the input datetime type, and returns it.

The field argument should be text literal, and YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE

_HOUR, TIMEZONE_MINUTE can be specified to text literal.

The datetime argument data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME, TIME

WITH TIME ZONE, INTERVAL.

If field is not in the range of datetime, an error is returned. For DATE type, field should be YEAR, MONTH,

DAY, otherwise an error is returned.

The return type is NUMBER.

For more information, refer to EXTRACT.

Example

gSQL> SELECT

DATE_PART('DAY', TO_DATE('2012-01-02', 'YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

2

1 row selected.

gSQL> SELECT

DATE_PART('YEAR', INTERVAL'9-11'YEAR TO MONTH) AS RESULT

FROM DUAL;

RESULT

9

1 row selected.

Built-in Function References | 1,049

DECODE

Syntax

DECODE(expr, comparison_expr1, result1

[, comparison_expr2, result2

, ...

, comparison_exprN, resultN]

[, default])

Description

It evaluates expr and comparison_expr in the described order in DECODE statement using equal operatio

n.

If the comparison result is FALSE, it continues evaluating until TRUE comes up.

If the comparison result is TRUE, it returns the corresponding result, and does not evaluate any more.

If expr and comparison_expr are equal, or if both expr and comparison_expr are NULL(null = null), it is e

valuated as TRUE, and returns the corresponding result.

If all of the evaluated results are FALSE, it returns default. If the default is omitted, it returns NULL.

● Comparing expr and comparison_expr

All expr, comparison_expr1, ..., comparison_exprN are converted to the data type of comparison_exp

r1 (the first comparison_expr), then they are compared.

If comparison_expr1 (the first comparison_expr) is a character type and a numeric type then it becom

es the type including the range of types described in each expr, comparison_expr1, ..., comparison_e

xprN.

If all types described in expr, comparison_expr1, ..., comparison_exprN are CHAR, then VARCHAR ty

pe comparison is performed.

● Result type

The result type becomes the data type of result1 (the first result).

If the data type of result1 (the first result) is a character type and a numeric type then it becomes the

type including the range of types described in result1, ..., resultN each.

If result1 (the first result) is CHAR or NULL, then the result type is VARCHAR.

DECODE can be expressed by using CASE as follows.

● DECODE(expr, comp_expr1, res1, comp_expr2, res2)

1,050 | SQL Elements

CASE WHEN (expr = comp_expr1) OR (expr IS NULL AND comp_expr1 IS NULL) THEN res1

WHEN (expr = comp_expr2) OR (expr IS NULL AND comp_expr2 IS NULL) THEN res2

ELSE NULL

END

● DECODE(expr, comp_expr1, res1, comp_expr2, res2, default)

CASE WHEN (expr = comp_expr1) OR (expr IS NULL AND comp_expr1 IS NULL) THEN res1

WHEN (expr = comp_expr2) OR (expr IS NULL AND comp_expr2 IS NULL) THEN res2

ELSE default

END

Example

gSQL> SELECT I1,

DECODE(I1, 1, 'ONE',

2, 'TWO',

NULL, 'NULL VALUE',

'DEFAULT VALUE') AS DECODE_RESULT

FROM T1;

I1 DECODE_RESULT

---- -------------

1 ONE

2 TWO

null NULL VALUE

3 DEFAULT VALUE

4 rows selected.

Built-in Function References | 1,051

DEGREES

Syntax

DEGREES(radians)

Description

It converts a degree radians to a value in degrees, and returns the converted value.

Example

gSQL> SELECT DEGREES(PI()) AS RESULT FROM DUAL;

RESULT

180

1 row selected.

1,052 | SQL Elements

DIGEST

Syntax

DIGEST(data, type)

Description

It hashes the data to the given type, and returns the result in VARBINARY type.

An implicit conversion may occur when inputting data type based on the following rules.

• Input the BINARY, VARBINARY type data in VARBINARY type.

• Input LONG VARBINARY type data in LONG VARBINARY type.

• Input LONG VARCHAR type data in LONG VARCHAR type.

• Input all other type of data after implicitly converting it to VARCHAR type.

DIGEST function supports the following hash types.

• The result of 'SHA1' is 20 byte varbinary.

• The result of 'SHA224' is 28 byte varbinary.

• The result of 'SHA256' is 32 byte varbinary.

• The result of 'SHA384' is 48 byte varbinary.

• The result of 'SHA512' is 64 byte varbinary.

Use HEX function to view the result in hexadecimal character because the result is returned in VARBINAR

Y type. In this case, the length becomes double of the original.

Example

gSQL> SELECT HEX(DIGEST('my password', 'SHA256')) AS RESULT FROM DUAL;

RESULT

--

BB14292D91C6D0920A5536BB41F3A50F66351B7B9D94C804DFCE8A96CA1051F2

1 row selected.

Built-in Function References | 1,053

DUMP

Syntax

DUMP(expr)

Description

It returns internal representation information of expr.

Internal representation information is displayed as the data type, byte length and data information.

expr can be any data types, and the return type is CHARACTER VARYING.

Example

gSQL> SELECT DUMP('DUMP') AS RESULT FROM DUAL;

RESULT

Type=CHAR Len=4 : Str=68,85,77,80

1 row selected.

1,054 | SQL Elements

EXP

Syntax

EXP(num)

Description

It returns squared value of e (base of natural logarithm)'s num.

Example

gSQL> SELECT EXP(1) AS RESULT FROM DUAL;

RESULT

2.71828182845905

1 row selected.

Built-in Function References | 1,055

EXTRACT

Syntax

EXTRACT(<field> FROM datetime)

<field> ::=

YEAR

| MONTH

| DAY

| HOUR

| MINUTE

| SECOND

| TIMEZONE_HOUR

| TIMEZONE_MINUTE

Description

It searches for the specified field from an input datetime type, and returns it.

The datetime argument data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME, TIME

WITH TIME ZONE, INTERVAL.

If field is not in the range of datetime, an error is returned.

For DATE type, the field should be YEAR, MONTH, DAY, otherwise an error is returned.

The return type is NUMBER.

Result of EXTRACT is as same as the result of the DATE_PART function.

Example

gSQL> SELECT

EXTRACT(SECOND FROM TO_TIMESTAMP('2012-12-13 01:23:44.5',

'YYYY-MM-DD HH24:MI:SS.FF1'))

AS RESULT

FROM DUAL;

RESULT

44.5

1 row selected.

gSQL> SELECT

1,056 | SQL Elements

EXTRACT(YEAR FROM CAST('2-3' AS INTERVAL YEAR TO MONTH)) AS RESULT

FROM DUAL;

RESULT

2

1 row selected.

Built-in Function References | 1,057

FACTORIAL

Syntax

FACTORIAL(num)

Description

It multiplies the successive natural numbers from 1 to num in order, and returns the result.

Example

gSQL> SELECT FACTORIAL(5) AS RESULT FROM DUAL;

RESULT

120

1 row selected.

1,058 | SQL Elements

FLOOR

Syntax

FLOOR(num)

Description

It returns the biggest integer which is equal to or smaller than num.

Example

gSQL> SELECT FLOOR(42.8) AS RESULT1, FLOOR(-42.8) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

42 -43

1 row selected.

Built-in Function References | 1,059

FROM_BASE64

Syntax

FROM_BASE64(str)

Description

The converted character by base 64 encoding is input to FROM_BASE64, then the decoded binary string i

s returned.

The input argument data type can be a character type such as CHARACTER VARYING, CHARACTER LON

G VARYING, and the result type is a binary character such as BINARY VARYING or BINARY LONG VARYIN

G.

If str is NULL, then the result value is also NULL.

If str includes characters which are not in the range of base64 character, then it returns an error.

A newline, carriage return, tab, and space of str is ignored when decoding.

For more information, refer to TO_BASE64.

Example

gSQL> SELECT FROM_BASE64(TO_BASE64('abc')),

FROM_BASE64(TO_BASE64('abcd'))

FROM DUAL;

FROM_BASE64(TO_BASE64('abc')) FROM_BASE64(TO_BASE64('abcd'))

--------------------------------- ----------------------------------

616263 61626364

1 row selected.

1,060 | SQL Elements

GREATEST

Syntax

GREATEST(expr1 [, expr2, ... exprn])

Description

It returns the largest value among the received expr argument.

If any expr argument is NULL, the result value is NULL.

The result type becomes the data type of expr1 (the first expr).

If the data type of expr1 (the first expr) is a character type and a numeric type then it becomes the type in

cluding the range of expr1, ..., exprN each.

If all of expr1, ..., exprN is described in CHAR type, then all exprs are compared in VARCHAR type and the

result type is VARCHAR.

Example

gSQL> SELECT GREATEST(100, 0, 200, 150, 1) AS RESULT FROM DUAL;

RESULT

200

1 row selected.

Built-in Function References | 1,061

HEX

Syntax

HEX(str)

Description

It returns a str argument in hexadecimal character.

A str argument data type can be a character type such as CHARACTER, CHARACTER VARYING, CHARAC

TER LONG VARYING, a type which can be converted to a character type, or a binary character type such a

s BINARY, BINARY VARYING, BINARY LONG VARYING.

The result type is a character type such as CHARACTER VARYING or CHARACTER LONG VARYING.

If str is NULL, then the result value is also NULL.

If an argument of HEX function is a numeric type, then it returns an error.

To convert a decimal number to a hexadecimal number, use TO_CHAR() function by using 'X' number fo

rmat.

e.g. TO_CHAR(255, 'XX')

For more information, refer to UNHEX.

Example

gSQL> SELECT HEX('abc') FROM DUAL;

HEX('abc')

616263

1 row selected.

1,062 | SQL Elements

INITCAP

Syntax

INITCAP(str)

Description

It converts the first letter in each word of string str into uppercase, and converts all other letters into lowe

rcase, then it returns the result.

str data type can be a character type such as CHARACTER, CHARACTER VARYING, CHARACTER LONG V

ARYING.

Each word in string is classified by white space or characters which are not alphanumeric.

If str is NULL, the result is also NULL.

The return type is as same as str argument datatype.

Example

gSQL> SELECT INITCAP('hi GLIESE') AS RESULT FROM DUAL;

RESULT

Hi Gliese

1 row selected.

Built-in Function References | 1,063

INSTR

Syntax

INSTR(str, substr [, position [, occurrence]])

Description

It search for occurrenceth substr starting from str's position, and returns its location.

The data types of str arguments and substr arguments can be a character type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING, or a binary character type such as BINARY, BINARY VA

RYING, BINARY LONG VARYING.

The position argument and the occurrence argument can be numeric data type.

If position and occurrence are omitted, the default is 1.

The position and occurrence start from 1, and they are calculated in character unit according to character

set (not in byte unit).

The position means the first position to search substr in str, it should not be zero, but an integer value.

• If the position is positive: It compares forwards

(toward the right) from the beginning of str until it finds the position of substr.

• If the position is negative: It compares backwards

(toward the left) from the end of str it finds the position of substr.

• If the position is 0: The result is 0.

The occurrence means the number of repeating the subtr in the str, and it should be a positive integer.

Example

gSQL> SELECT INSTR('INSTR(STR, SUBSTR)', 'SUB') AS RESULT1,

INSTR('INSTR(STR, SUBSTR)', 'SUB', 5) AS RESULT2

FROM DUAL;

RESULT1 RESULT2

------- -------

13 13

1 row selected.

gSQL> SELECT INSTR('INSTR(STR, SUBSTR)', 'STR', 6, 2) AS RESULT1,

INSTR('INSTR(STR, SUBSTR)', 'STR', -6, 2) AS RESULT2

1,064 | SQL Elements

FROM DUAL;

RESULT1 RESULT2

------- -------

16 3

1 row selected.

Built-in Function References | 1,065

LAST_DAY

Syntax

LAST_DAY(date)

Description

It returns the last day of the month which is included in date.

The date argument data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE.

The return type is always DATE regardless of the date argument data type.

Example

gSQL> SELECT

LAST_DAY(TO_DATE('2012-07-10', 'YYYY-MM-DD')) AS RESULT FROM DUAL;

RESULT

2012-07-31

1 row selected.

1,066 | SQL Elements

LAST_IDENTITY_VALUE

Syntax

LAST_IDENTITY_VALUE()

Description

It is the recent value automatically created for an identity column in the current session, and the result typ

e is NATIVE_BIGINT.

If there is not an automatically created value, then it returns null.

This function is similar to @@IDENTITY of MS-SQL and LAST_INSERT_ID() of MySQL. Be cautious when usi

ng it because the last altered table determines the value when performing DML for multiple tables as foll

ows.

gSQL> INSERT INTO t1(name) VALUES ('leekmo');

1 row created.

gSQL> SELECT LAST_IDENTITY_VALUE() FROM dual;

LAST_IDENTITY_VALUE()

12

1 row selected.

gSQL> INSERT INTO t2(name) VALUES ('leekmo');

1 row created.

gSQL> SELECT LAST_IDENTITY_VALUE() FROM dual;

LAST_IDENTITY_VALUE()

2

1 row selected.

To obtain an identity column value created when performing the INSERT, use INSERT INTO name RETURN

ING .. INTO statement as follows.

gSQL> CREATE TABLE t1 (id INTEGER GENERATED BY DEFAULT AS IDENTITY, name VARCHAR(32));

Table created.

gSQL> \var v1 integer

gSQL> INSERT INTO t1(name) VALUES ('leekmo') RETURN id INTO :v1;

V1

--

Built-in Function References | 1,067

1

1 row created.

Example

The following is an example of using LAST_IDENTITY_VALUE() function.

gSQL> CREATE TABLE t1 (id INTEGER GENERATED BY DEFAULT AS IDENTITY,

name VARCHAR(32));

Table created.

gSQL> COMMIT;

Commit complete.

● There is not an identity value created in the current session.

gSQL> SELECT LAST_IDENTITY_VALUE() FROM dual;

LAST_IDENTITY_VALUE()

null

1 row selected.

● Identity value (1) is automatically created.

gSQL> INSERT INTO t1(name) VALUES ('leekmo');

1 row created.

● Result: 1

gSQL> SELECT LAST_IDENTITY_VALUE() FROM dual;

LAST_IDENTITY_VALUE()

1

1 row selected.

● Identity value (2) is automatically created as a default value.

gSQL> UPDATE t1 SET id = DEFAULT;

1 row updated.

● Result: 2

1,068 | SQL Elements

gSQL> SELECT LAST_IDENTITY_VALUE() FROM dual;

LAST_IDENTITY_VALUE()

2

1 row selected.

● The user input value does not automatically create an identity value.

INSERT INTO t1 VALUES (100, 'jhkim');

1 row updated.

● Result: 2

SELECT LAST_IDENTITY_VALUE() FROM dual;

LAST_IDENTITY_VALUE()

2

1 row selected.

Built-in Function References | 1,069

LEAST

Syntax

LEAST(expr1 [, expr2, ... exprn])

Description

It returns the smallest value among received expr arguments.

If any of expr is NULL, the result is NULL.

The result type is determined according to the data type of expr1 (the first expr).

If the data type of expr1 (the first expr) is a character type and a numeric type then it becomes the type in

cluding the range of expr1, ..., exprN each.

If all of expr1, ..., exprN is described in CHAR type, then all exprs are compared in VARCHAR type and the

result type is VARCHAR.

Example

gSQL> SELECT LEAST(100, 0, 200, 150, 1) AS RESULT FROM DUAL;

RESULT

0

1 row selected.

1,070 | SQL Elements

LENGTH

Syntax

LENGTH(str)

Description

It is an alias of CHAR_LENGTH.

Example

Multi byte character set: (e.g.UTF8)

gSQL> SELECT LENGTH('αβ-SUMMER') AS RESULT FROM DUAL;

RESULT

9

1 row selected.

Built-in Function References | 1,071

LENGTHB

Syntax

LENGTHB(str)

Description

It is an alias of OCTET_LENGTH.

For more information, refer to BYTE_LENGTH.

Example

● Multi byte character set (e.g.UTF8): 1 byte character

gSQL> SELECT LENGTHB('OCTET_LENGTH') AS RESULT_1BYTE_CHARACTERS

FROM DUAL;

RESULT_1BYTE_CHARACTERS

12

1 row selected.

● Multi byte character set (e.g.UTF8): 2 byte character

gSQL> SELECT LENGTHB('αβ') AS RESULT_2BYTE_CHARACTERS FROM DUAL;

RESULT_2BYTE_CHARACTERS

4

1 row selected.

1,072 | SQL Elements

LN

Syntax

LN(num)

Description

It returns the natural logarithm value of num.

num should be a value which is bigger than 0.

Example

gSQL> SELECT LN(2.71828182845905) AS RESULT FROM DUAL;

RESULT

1

1 row selected.

Built-in Function References | 1,073

LOCALTIME

Syntax

LOCALTIME [()]

STATEMENT_LOCALTIME()

Description

The current TIME WITHOUT TIME ZONE type value based on the session time is obtained.

LOCALTIME is an SQL standard function.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_LOCALTIME(): All time values in the transaction are same.

• LOCALTIME, STATEMENT_LOCALTIME(): All time values in an SQL statement are same.

• CLOCK_LOCALTIME(): Whenever the function is called, the current time value is obtained.

Example

All rows have the same value.

gSQL> SELECT LOCALTIME FROM t1;

LOCALTIME

16:17:08.592459

16:17:08.592459

16:17:08.592459

3 rows selected.

1,074 | SQL Elements

LOCALTIMESTAMP

Syntax

LOCALTIMESTAMP [()]

STATEMENT_LOCALTIMESTAMP()

Description

The current TIMESTAMP WITHOUT TIME ZONE type value based on the session time is obtained.

LOCALTIMESTAMP is an SQL standard function.

The differences among the functions to obtain the current TIMESTAMP are as follows.

• TRANSACTION_LOCALTIMESTAMP(): All TIMESTAMP values in the transaction are same.

• LOCALTIMESTAMP, STATEMENT_LOCALTIMESTAMP(): All TIMESTAMP values in an SQL statement ar

e same.

• CLOCK_LOCALTIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

All rows have the same value.

gSQL> SELECT LOCALTIMESTAMP FROM t1;

LOCALTIMESTAMP

2013-12-12 16:21:51.790614

2013-12-12 16:21:51.790614

2013-12-12 16:21:51.790614

3 rows selected.

Built-in Function References | 1,075

LOCAL_GROUP_ID

Syntax

LOCAL_GROUP_ID()

Description

It returns a cluster group ID for a server which processes a query from a user.

Note

It is a valid information in a cluster system.

Example

All rows have the same value.

gSQL> SELECT LOCAL_GROUP_ID() FROM DUAL;

LOCAL_GROUP_ID()

1

1 row selected.

1,076 | SQL Elements

LOCAL_GROUP_NAME

Syntax

LOCAL_GROUP_NAME()

Description

It returns a cluster group name for a server which processes a query from a user.

Note

It is a valid information in a cluster system.

Example

All rows have the same value.

gSQL> SELECT LOCAL_GROUP_NAME() FROM DUAL;

LOCAL_GROUP_NAME()

G1

1 row selected.

Built-in Function References | 1,077

LOCAL_MEMBER_ID

Syntax

LOCAL_MEMBER_ID()

Description

It returns a cluster member ID for a server which processes a query from a user.

Note

It is a valid information in a cluster system.

Example

All rows have the same value.

gSQL> SELECT LOCAL_MEMBER_ID() FROM DUAL;

LOCAL_MEMBER_ID()

1

1 row selected.

1,078 | SQL Elements

LOCAL_MEMBER_NAME

Syntax

LOCAL_MEMBER_NAME()

Description

It returns a cluster member name for a server which processes a query from a user.

Note

It is a valid information in a cluster system.

Example

All rows have the same value.

gSQL> SELECT LOCAL_MEMBER_NAME() FROM DUAL;

LOCAL_MEMBER_NAME()

G1N1

1 row selected.

Built-in Function References | 1,079

LOG

Syntax

LOG(num2)

LOG(num1, num2)

Description

It returns the logarithm of num2 in the num1 base.

If num1 is omitted, it returns the logarithm value whose base is 10.

num1 should be a positive number except 1 and 0, and num2 should be a positive number.

Example

gSQL> SELECT LOG(100) AS RESULT1, LOG(4, 16) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

2 2

1 row selected.

1,080 | SQL Elements

LOGON_USER

Syntax

LOGON_USER()

Description

It returns the logged-in user.

The user information is managed in three types as follows.

● Logon user: It is a user who performed login, and it is maintained until the connection is closed.

● Session user: It is as same as the first logon user, but it can be changed using the SET SESSION AUTH

ORIZATION statement.

● Current user: It is generally as same as the session user, but it is temporarily changed internally in syst

em to control access when using the PSM, view.

○ The session user and current user is similar to the difference between the unix system's real user

and the effective user.

Example

% gsql test test

gSQL> SELECT LOGON_USER() AS result FROM DUAL;

RESULT

TEST

1 row selected.

Built-in Function References | 1,081

LOWER

Syntax

LOWER(str)

Description

It returns lowercases of str.

The str argument data type can be a character type such as CHARACTER, CHARACTER VARYING, CHARA

CTER LONG VARYING.

If str is NULL, the result is also NULL.

The return type is the same datatype as the str argument.

Example

gSQL> SELECT LOWER('SPRING') AS RESULT FROM DUAL;

RESULT

spring

1 row selected.

1,082 | SQL Elements

LPAD

Syntax

LPAD(str, length, [, fill])

Description

It adds character string fill to the left side of str until the string length becomes length, then returns the re

sult.

The str argument data type can be character type such as CHARACTER, CHARACTER VARYING, CHARAC

TER LONG VARYING, and a binary character type such as BINARY, BINARY VARYING, BINARY LONG VAR

YING.

The length argument is numeric type.

length means the number of characters, and its maximum range is the maximum precision of the result t

ype.

If fill is omitted, a white space is added.

If str is longer than the length, it cuts the str as long as the length, then returns it.

If any of str, length, fill is NULL, the result is also NULL.

If length is 0 or a negative number, the result is NULL.

The following table describes the result types.

Table 11-59 Result type of LPAD

str type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT LPAD('aa', 5, 'b') AS RESULT FROM DUAL;

RESULT

bbbaa

1 row selected.

Built-in Function References | 1,083

LTRIM

Syntax

LTRIM(trim_source [, trim_character])

Description

It removes the matching characters by comparing from the left side of trim_character in trim_source until

the matching character does not exist. Then it returns the result.

The data type of trim_character and trim_source arguments can be a character type such as CHARACTER,

CHARACTER VARYING, CHARACTER LONG VARYING, and a binary character type such as BINARY, BINA

RY VARYING, BINARY LONG VARYING.

If any of trim_character, trim_source is NULL, the result is NULL.

If trim_character is omitted, a single blank space (' ') is specified by default.

The following table describes the result types.

Table 11-60 Result type of LTRIM

trim_source, trim_character type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT LTRIM('_____LTRIM', '_') AS RESULT FROM DUAL;

RESULT

LTRIM

1 row selected.

1,084 | SQL Elements

MAX

Syntax

MAX([ALL | DISTINCT] expr)

Description

It is an aggregate function and the maximum value among rows' exprs is obtained.

If ALL is explicitly specified, aggregation is executed for all values.

If DISTINCT is explicitly specified, aggregation is executed for the values which exclude duplicate values.

If ALL or DISTINCT is not explicitly specified, it is processed in the same way as when ALL is specified.

MAX function returns the same result without being affected by the ALL and DISTINCT.

Example

gSQL> SELECT MAX(c1) FROM t1;

MAX(C1)

3

1 row selected.

Built-in Function References | 1,085

MIN

Syntax

MIN([ALL | DISTINCT] expr)

Description

It is an aggregate function and the minimum value among rows' exprs is obtained.

If ALL is explicitly specified, aggregation is executed for all values.

If DISTINCT is explicitly specified, aggregation is executed for the values which exclude duplicate values.

If ALL or DISTINCT is not explicitly specified, it is processed in the same way as when ALL is specified.

MIN function returns the same result without being affected by the ALL and DISTINCT.

Example

gSQL> SELECT MIN(c1) FROM t1;

MIN(C1)

1

1 row selected.

1,086 | SQL Elements

MOD

Syntax

MOD(num1, num2)

Description

It divides num1 by num2, and returns the remainder.

The num1 argument and num2 argument can be a numeric data type.

If num2 is 0, an error is returned.

Example

gSQL> SELECT MOD(5, 4) AS RESULT1, MOD(-5, 4) AS RESULT2 FROM DUAL;

RESULT1 RESULT2

------- -------

1 -1

1 row selected.

Built-in Function References | 1,087

MONTHS_BETWEEN

구문

MONTHS_BETWEEN(date1, date2)

Description

MONTHS_BETWEEN returns the number of months of which days between date2 and date1 are divided

by 31.

If date1 or date2 is NULL, then the result is also NULL.

The date1 argument and date2 argument can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE type.

The result type is NUMBER.

Note

If the same date (e.g. 2014-01-15 and 2014-02-15), or the last day of the month (e.g. 2014-08-3

1 and 2014-09-30) is included both in date1 and date2, then it returns the integer result regardle

ss of the agreement of timestamp section (if it exists).

Example

gSQL> SELECT

MONTHS_BETWEEN('2018-01-18', '2018-01-17')

FROM DUAL;

MONTHS_BETWEEN('2018-01-18', '2018-01-17')

--

3.225806451612903E-2

1 row selected.

gSQL> SELECT

MONTHS_BETWEEN('2018-02-17', '2018-01-17')

FROM DUAL;

MONTHS_BETWEEN('2018-02-17', '2018-01-17')

--

1

1 row selected.

1,088 | SQL Elements

gSQL> SELECT

MONTHS_BETWEEN('2018-02-28', '2018-01-31')

FROM DUAL;

MONTHS_BETWEEN('2018-02-28', '2018-01-31')

--

1

1 row selected.

Built-in Function References | 1,089

NEXT_DAY

Syntax

NEXT_DAY(date, day)

Description

It obtains a date of the day (day of week) which comes first after the given date (an argument).

The second day argument can be a string or a number which indicates the day.

• String: SUNDAY ~ SATURDAY or SUN ~ SAT

• Number: 1 (sunday) ~ 7 (saturday)

The return type is always DATE regardless of the input type of the date.

The hour, minute and second of the result value returns the same hour, minute and second of the input a

rgument date.

Example

gSQL> SELECT NEXT_DAY(TO_DATE('2010-05-01', 'YYYY-MM-DD'),

'SUNDAY') AS RESULT1

FROM DUAL;

RESULT1

2010-05-02

gSQL> SELECT NEXT_DAY(TO_DATE('2010-05-01', 'YYYY-MM-DD'),

'SUN') AS RESULT1

FROM DUAL;

RESULT1

2010-05-02

gSQL> SELECT NEXT_DAY(TO_DATE('2010-05-01', 'YYYY-MM-DD'),

1) AS RESULT1

FROM DUAL;

RESULT1

2010-05-02

gSQL> SELECT TO_CHAR(NEXT_DAY(TO_DATE('2010-05-01', 'YYYY-MM-DD'),

1,090 | SQL Elements

'SUNDAY'),

'YYYY-MM-DD HH24:MI:SS') AS RESULT2

FROM DUAL;

RESULT2

2010-05-02 00:00:00

Built-in Function References | 1,091

NEXTVAL

Syntax

seq_name.NEXTVAL

NEXTVAL(seq_name)

NEXT VALUE FOR seq_name

Description

It obtains the next value of the sequence object.

Example

gSQL> CREATE SEQUENCE seq;

Sequence created.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT seq.NEXTVAL FROM dual;

SEQ.NEXTVAL

1

1 row selected.

gSQL> SELECT NEXTVAL(seq) FROM dual;

NEXTVAL(SEQ)

2

1 row selected.

gSQL> SELECT NEXT VALUE FOR seq FROM dual;

NEXT VALUE FOR SEQ

3

1 row selected.

1,092 | SQL Elements

NULLIF

Syntax

NULLIF(expr1, expr2)

Description

If expr1 is equal to expr2, it returns NULL. If it is not equal it returns expr1 which is the first argument.

If the data types of expr1 and expr2 are different, the result type is determined by Result Type Combinati

on Rule.

NULLIF can be expressed by using CASE as follows.

● NULLIF(expr1, expr2)

CASE WHEN expr1 = expr2 THEN NULL

ELSE expr1

END

Example

gSQL> SELECT NULLIF('SUN', 'SUN') AS RESULT1,

NULLIF('SUN', 'MOON') AS RESULT2

FROM DUAL;

RESULT1 RESULT2

------- -------

null SUN

1 row selected.

Built-in Function References | 1,093

NVL

Syntax

NVL(expr1, expr2)

Description

If expr1 is not NULL, then it returns expr1. If expr1 is NULL, it returns expr2.

The result type is determined according to the data type of expr1.

If NULL is described in expr1, then the result type is determined according to the data type of expr2.

If the data type of expr1 is a character type and a numeric type then it becomes the type including the ra

nge of expr1 and expr2 each.

If the data type of both expr1 and expr2 is CHAR type, then the result type is VARCHAR.

Example

gSQL> SELECT I1, NVL(I1, 0) FROM T1;

I1 NVL(I1, 0)

---- ------------

1 1

null 0

2 rows selected.

1,094 | SQL Elements

NVL2

Syntax

NVL2(expr1, expr2, expr3)

Description

If expr1 is not null, then it returns expr2. If expr1 is NULL, it returns expr3.

The result type is determined according to the data type of expr2.

If NULL is described in expr2, then the result type is determined according to the data type of expr3.

If the data type of expr2 is a character type and a numeric type then it becomes the type including the ra

nge of expr2 and expr3 each.

If the data type of both expr2 and expr3 is CHAR type, then the result type is VARCHAR.

Example

gSQL> SELECT I1, NVL2(I1, I1 * 1000, 0) FROM T1;

I1 NVL2(I1, I1 * 1000, 0)

---- ------------------------

1 1000

null 0

2 rows selected.

Built-in Function References | 1,095

OCTET_LENGTH

Syntax

OCTET_LENGTH(str)

BYTE_LENGTH(str)

LENGTHB(str)

Description

It returns the number of bytes in str.

The str argument data type can be a character type such as CHARACTER, CHARACTER VARYING, CHARA

CTER LONG VARYING, or a binary character type such as BINARY, BINARY VARYING, BINARY LONGVAR

YING.

If the str data type is CHARACTER, the white spaces are included in the calculation.

If str is NULL, the result is also NULL.

It is an alias of BYTE_LENGTH and LENGTHB.

Example

● Multi byte character set (e.g. UTF8): 1 byte character

gSQL> SELECT OCTET_LENGTH('OCTET_LENGTH') AS RESULT_1BYTE_CHARACTERS

FROM DUAL;

RESULT_1BYTE_CHARACTERS

12

1 row selected.

● Multi byte character set (e.g. UTF8): 2 byte character

gSQL> SELECT OCTET_LENGTH('αβ') AS RESULT_2BYTE_CHARACTERS FROM DUAL;

RESULT_2BYTE_CHARACTERS

4

1 row selected.

1,096 | SQL Elements

OVERLAY

Syntax

OVERLAY(str1 PLACING str2 FROM start_position [FOR string_length])

Description

It overlays the characters in the range between str1's start_position and string_lenght with str2.

The data types of str1 argument and str2 argument can be a character type such as CHARACTER, CHARA

CTER VARYING, CHARACTER LONG VARYING, or a binary character type such as BINARY, BINARY VARYI

NG, BINARY LONG VARYING

The start_position argument and string_length argument can be numeric data type.

● OVERLAY function has the following result.

○ When FOR is specified.

SUBSTRING(str1 FROM 1 FOR (start_position - 1))

|| str2

|| SUBSTRING(str1 FROM (start_position + string_length)

○ When FOR is omitted.

SUBSTRING(str1 FROM 1 FOR (start_position - 1))

|| str2

|| SUBSTRING(str1 FROM (start_position + CHAR_LENGTH(str2))

For more information, refer to SUBSTRING.

The following table describes the result types.

Table 11-61 Result type of OVERLAY

str1, str2 types Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

Built-in Function References | 1,097

gSQL> SELECT

OVERLAY('RESULT_OF_XXX_FUNC' PLACING 'OVERLAY' FROM 11 FOR 3)

AS RESULT

FROM DUAL;

RESULT

RESULT_OF_OVERLAY_FUNC

1 row selected.

1,098 | SQL Elements

PI

Syntax

PI()

Description

It returns "π" constant.

Example

gSQL> SELECT PI() AS RESULT FROM DUAL;

RESULT

3.141592653589793E+0

1 row selected.

Built-in Function References | 1,099

POSITION

Syntax

POSITION(str1 IN str2)

Description

It searches for the first str1 within str2, then returns its location.

The data type of str1 argument and str2 argument can be a character type such as CHARACTER, CHARA

CTER VARYING, CHARACTER LONG VARYING, or a binary character type such as BINARY, BINARY VARYI

NG, BINARY LONG VARYING.

If str1 can not be found within str2, the return value is 0.

If str1 is found within str2, the position of str1 is returned, and the return value starts from 1.

The returned position value is calculated in character unit (not in byte unit).

If str1 or str2 is NULL, the return value is also NULL.

Example

gSQL> SELECT POSITION('CHAR' IN 'LONG CHAR 2000') AS RESULT FROM DUAL;

RESULT

6

1 row selected.

1,100 | SQL Elements

POWER

Syntax

POWER(num1, num2)

Description

It squares num1 to num2, and returns the result.

The num1 argument and num2 argument can be a numeric data type.

If num1 is a negative number, num2 should be an integer.

If num1 or num2 is NULL, the result is also NULL.

Example

gSQL> SELECT POWER(2, 3) AS RESULT FROM DUAL;

RESULT

8

1 row selected.

Built-in Function References | 1,101

RADIANS

Syntax

RADIANS(degrees)

Description

It returns the radians of degrees.

The degrees argument can be a numeric data type.

Example

gSQL> SELECT RADIANS(180) AS RESULT FROM DUAL;

RESULT

3.14159265358979

1 row selected.

1,102 | SQL Elements

RANDOM

Syntax

RANDOM(min, max)

Description

It returns a random value in the range above min and below max.

The min argument and max argument can be a numeric data type.

Example

gSQL> SELECT RANDOM(1, 100) AS RESULT FROM DUAL;

RESULT

34.1870528003201

1 row selected.

Built-in Function References | 1,103

REPEAT

Syntax

REPEAT(str, num)

Description

The string repeats str as many times as specified in num, and returns the result.

The str argument can be a character type such as CHARACTER, CHARACTER VARYING, CHARACTER LON

G VARYING, or a binary character type such as BINARY, BINARY VARYING, BINARY LONG VARYING.

The num argument can be a numeric data type.

If either str or num is NULL, the result is also NULL.

If num is 0 or a negative number, the result is also NULL.

The following table describes the result types.

Table 11-62 Result type of REPEAT

str type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT REPEAT('ab', 3) AS RESULT FROM DUAL;

RESULT

ababab

1 row selected.

1,104 | SQL Elements

REPLACE

Syntax

REPLACE(str, from, to)

Description

It replaces all from strings in str string with to strings, and returns the result.

The str argument, the from argument, and the to argument can be character data types such as CHARAC

TER, CHARACTER VARYING, CHARACTER LONG VARYING.

If str is NULL, the result is also NULL.

If from is NULL, the str is returned without replacement.

If to value is omitted or NULL, the str value of which from is removed is returned.

The following table describes the result types.

Table 11-63 Result type of REPLACE

str type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

Example

gSQL> SELECT REPLACE('HI GLIESE', 'HI', 'HELLO') AS RESULT FROM DUAL;

RESULT

HELLO GLIESE

1 row selected.

Built-in Function References | 1,105

REVERSE

Syntax

REVERSE(str)

Description

REVERSE returns characters of str in reverse order.

The str argument can be types that are convertible to a character string type or a binary string type.

A character string type is performed in a character unit, and a binary string type can be performed in a by

te unit.

If str is NULL, then it returns NULL.

The following table describes the arguments and result types.

Table 11-64 Argument and result type of REVERSE

str Result type

CHAR CHAR

VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY BINARY

VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT REVERSE('GOLDILOCKS') AS RESULT FROM DUAL;

RESULT

SKCOLIDLOG

1 row selected.

gSQL> SELECT REVERSE('선재소프트 2018') AS RESULT FROM DUAL;

RESULT

8102 트프소재선

1 row selected.

1,106 | SQL Elements

ROUND(number)

Syntax

ROUND(num [, scale])

Description

It rounds off num based on scale, and returns the result.

The num argument and scale argument can be numeric data types.

If scale is omitted, the scale becomes 0 and is executed as if it is ROUND(num, 0).

If scale is a positive number, it is rounded off based on the number of right digit of the decimal point. If s

cale is a negative number, it is rounded off based on the number of left digit of the decimal point.

Example

gSQL> SELECT ROUND(152.4282, 2) AS RESULT FROM DUAL;

RESULT

152.43

1 row selected.

gSQL> SELECT ROUND(152.4282, -2) AS RESULT FROM DUAL;

RESULT

200

1 row selected.

Built-in Function References | 1,107

ROUND(date)

Syntax

ROUND(date [, fmt])

Description

It rounds off the date in the specified fmt unit, and returns the result.

The data type of date argument can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE.

The fmt argument can be a character type such as CHARACTER, CHARACTER VARYING.

The result type is always DATE regardless of the date argument data type.

If fmt is omitted, the default is DAY.

The following table describes the available format strings.

Table 11-65 Available format sting of fmt

String Description

CC, SCC
It is represented in four digit year by rounding off from 51 year.

(e.g. XX01)

YYYY, YEAR, SYYYY, SYEA

R, YYY, YY, Y
It is rounded off from July 1st.

IYYY, IYY, IY, I
It is the year embracing the calendar week defined by ISO 8601 standards, and it is ro

unded off from July 1st.

Q It is rounded off from the 16th day in the second month of the quarter.

MONTH, MON, MM, RM It is rounded off from the 16th day.

WW
A week starts from January 1st of the year, and it is rounded off on wednesday 12 p.

m of WEEK.

IW
It is the calendar week defined by ISO 8601 standards (1 ~ 52 weeks or 1 ~ 53 weeks)

, and it is rounded off on thursday 12 p.m.

W
A week starts from the 1st day of the month, and it is rounded off on wednesday 12

p.m of WEEK.

DDD, DD, J It is rounded off at 12 p.m.

DAY, DY, D It is rounded off on wednesday 12 p.m of WEEK.

HH, HH12, HH24 It is rounded off from 30 minutes.

MI It is rounded off from 30 seconds.

1,108 | SQL Elements

Example

gSQL> SELECT

ROUND(TO_DATE('2051-07-16', 'YYYY-MM-DD'), 'CC') AS RESULT

FROM DUAL;

RESULT

2101-01-01

1 row selected.

gSQL> SELECT

ROUND(TO_DATE('2051-07-16', 'YYYY-MM-DD'), 'YYYY') AS RESULT

FROM DUAL;

RESULT

2052-01-01

1 row selected.

gSQL> SELECT

ROUND(TO_DATE('2051-07-16', 'YYYY-MM-DD'), 'MONTH') AS RESULT

FROM DUAL;

RESULT

2051-08-01

1 row selected.

gSQL> SELECT

ROUND(TO_TIMESTAMP('2001-05-05 15:22:33.999999',

'YYYY-MM-DD HH24:MI:SS.FF6')) AS RESULT

FROM DUAL;

RESULT

2001-05-06

1 row selected.

Built-in Function References | 1,109

ROWID_GRID_BLOCK_ID

Syntax

ROWID_GRID_BLOCK_ID(rowid)

Description

It returns the GRID block ID.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT C1, ROWID_GRID_BLOCK_ID(ROWID) FROM T1;

C1 ROWID_GRID_BLOCK_ID(ROWID)

-- ----------------------------

1 52

2 52

3 52

3 rows selected.

1,110 | SQL Elements

ROWID_GRID_BLOCK_SEQ

Syntax

ROWID_GRID_BLOCK_SEQ(rowid)

Description

It returns the GRID block sequence.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT C1, ROWID_GRID_BLOCK_SEQ(ROWID) FROM T1;

C1 ROWID_GRID_BLOCK_SEQ(ROWID)

-- -----------------------------

1 747465

2 747466

3 747467

3 rows selected.

Built-in Function References | 1,111

ROWID_MEMBER_ID

Syntax

ROWID_MEMBER_ID(rowid)

Description

It returns the member ID.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT C1, ROWID_MEMBER_ID(ROWID) FROM T1;

C1 ROWID_MEMBER_ID(ROWID)

-- ------------------------

1 1

2 1

3 1

3 rows selected.

1,112 | SQL Elements

ROWID_OBJECT_ID

Syntax

ROWID_OBJECT_ID(rowid)

Description

It returns the object ID.

Note

It is an invalid information in a cluster system.

Example

gSQL> SELECT ROWID_OBJECT_ID(t1.ROWID) FROM t1;

ROWID_OBJECT_ID(T1.ROWID)

22012

22012

22012

22012

4 rows selected.

Built-in Function References | 1,113

ROWID_PAGE_ID

Syntax

ROWID_PAGE_ID(rowid)

Description

It returns the page ID.

Note

It is an invalid information in a cluster system.

Example

gSQL> SELECT ROWID_PAGE_ID(t1.ROWID) FROM t1;

ROWID_PAGE_ID(T1.ROWID)

8227

8227

8227

8227

4 rows selected.

1,114 | SQL Elements

ROWID_ROW_NUMBER

Syntax

ROWID_ROW_NUMBER(rowid)

Description

It returns the row number.

Note

It is an invalid information in a cluster system.

Example

gSQL> SELECT ROWID_ROW_NUMBER(t1.ROWID) FROM t1;

ROWID_ROW_NUMBER(T1.ROWID)

0

1

2

3

4 rows selected.

Built-in Function References | 1,115

ROWID_SHARD_ID

Syntax

ROWID_SHARD_ID(rowid)

Description

It returns the shard ID.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT C1, ROWID_SHARD_ID(ROWID) FROM T1;

C1 ROWID_SHARD_ID(ROWID)

-- -----------------------

1 0

2 1

3 2

3 rows selected.

1,116 | SQL Elements

ROWID_TABLESPACE_ID

Syntax

ROWID_TABLESPACE_ID(rowid)

Description

It returns the tablespace ID.

Note

It is an invalid information in a cluster system.

Example

gSQL> SELECT ROWID_TABLESPACE_ID(t1.ROWID) FROM t1;

ROWID_TABLESPACE_ID(T1.ROWID)

2

2

2

2

4 rows selected.

Built-in Function References | 1,117

ROWNUM

Syntax

ROWNUM

Description

It sequentially allocates a number starting from 1 to rows which satisfy the WHERE condition.

It allows using ROWNUM in WHERE clause for the compatibility with Oracle.

However, to restrict the number of the query results, it is recommended to use offset limit clause (the SQ

L standard) as follows.

● (Non standard) Describing the number of the results by using ROWNUM

gSQL> SELECT * FROM t1 WHERE ROWNUM <= 3;

C1

--

A

B

C

3 rows selected.

● (SQL standard) Describing the number of the results by using FETCH statement

gSQL> SELECT * FROM t1 FETCH 3;

C1

--

A

B

C

3 rows selected.

To restrict the range of the query results, it is recommended to use OFFSET, FETCH statement as follows.

● (Non standard) Describing the range of the number of the results by using ROWNUM

gSQL> SELECT c1

FROM (SELECT ROWNUM rn, c1

FROM t1)

1,118 | SQL Elements

WHERE rn BETWEEN 2 AND 3;

C1

--

B

C

2 rows selected.

● (SQL standard) Describing the range of the number of the results by using ROWNUM OFFSET, FETCH

statement

gSQL> SELECT c1 FROM t1 OFFSET 1 FETCH 2;

C1

--

B

C

2 rows selected.

It is not recommended to use ROWNUM in WHERE clause for any other uses than the restriction of the n

umber of the results.

The results for the same query may be different according to the execution method as follows when usin

g the ambiguous condition (WHERE c1 < ROWNUM + 3).

● Creating the data

CREATE TABLE t1 (c1 INTEGER);

CREATE INDEX t1_idx ON t1(c1);

INSERT INTO t1 VALUES (1);

INSERT INTO t1 VALUES (2);

INSERT INTO t1 VALUES (3);

INSERT INTO t1 VALUES (4);

INSERT INTO t1 VALUES (5);

COMMIT;

● In case of Oracle

SQL> SELECT ROWNUM, c1 FROM t1 WHERE c1 < ROWNUM + 3;

ROWNUM C1

---------- ----------

1 1

2 2

SQL> DROP INDEX t1_idx;

Built-in Function References | 1,119

○ The index has been deleted.

SQL> SELECT ROWNUM, c1 FROM t1 WHERE c1 < ROWNUM + 3;

ROWNUM C1

---------- ----------

1 1

2 2

3 3

4 4

5 5

● In case of GOLDILOCKS

gSQL> SELECT ROWNUM, c1 FROM t1 WHERE c1 < ROWNUM + 3;

ROWNUM C1

------ --

1 1

2 2

3 3

4 4

5 5

5 rows selected.

gSQL> DROP INDEX t1_idx;

Index dropped.

gSQL> SELECT ROWNUM, c1 FROM t1 WHERE c1 < ROWNUM + 3;

ROWNUM C1

------ --

1 1

2 2

3 3

4 4

5 5

5 rows selected.

Example

gSQL> SELECT ROWNUM, c1 FROM t1;

ROWNUM C1

------ --

1 A

2 B

1,120 | SQL Elements

3 C

4 D

5 E

5 rows selected.

Built-in Function References | 1,121

RPAD

Syntax

RPAD(str, length, [, fill])

Description

It adds fill string to the right side of str until the string's length becomes length, and it returns the result.

The str argument can be a character type such as CHARACTER, CHARACTER VARYING, CHARACTER LON

GVARYING, or a binary character type such as BINARY, BINARY VARYING, BINARY LONG VARYING.

The length argument can be a numeric type.

length means the number of characters, and its maximum range is the maximum PRECISION of the result

type.

If fill is omitted, a white space is added.

If str is longer than length, it cuts the str as long as the length, then returns it.

If any of str, length, fill is NULL, the result is also NULL.

If length is 0 or a negative number, the result is NULL.

The following table describes the result types.

Table 11-66 Result type of RPAD

str type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT RPAD('aa', 5, 'b') AS RESULT FROM DUAL;

RESULT

aabbb

1 row selected.

1,122 | SQL Elements

RTRIM

Syntax

RTRIM(trim_source [, trim_character])

Description

It removes the matching characters by comparing from the right side of trim_character in trim_source unt

il the matching character does not exist. Then it returns the result.

The data type of trim_character and trim_source arguments can be a character type such as CHARACTER,

CHARACTER VARYING, CHARACTER LONG VARYING or a binary data type such as BINARY, BINARY VAR

YING, BINARY LONG VARYING.

If any of trim_character, trim_source is NULL, the result is NULL.

If trim_character is omitted, a single blank space (' ') is specified by default.

The following table describes the result types.

Table 11-67 Result type of RTRIM

trim_source type, trim_character type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

Example

gSQL> SELECT RTRIM('RTRIM_____', '_') AS RESULT FROM DUAL;

RESULT

RTRIM

1 row selected.

Built-in Function References | 1,123

SESSION_ID

Syntax

SESSION_ID()

Description

It obtains the current session ID.

Example

gSQL> SELECT SESSION_ID() FROM dual;

SESSION_ID()

4

1 row selected.

1,124 | SQL Elements

SESSION_SERIAL

Syntax

SESSION_SERIAL()

Description

It obtains the serial number of current session.

Example

gSQL> SELECT SESSION_SERIAL() FROM dual;

SESSION_SERIAL()

16

1 row selected.

Built-in Function References | 1,125

SESSION_USER

Syntax

SESSION_USER[()]

Description

It returns the session user.

The user information is managed in three types as follows.

● Logon user: It is a user who performed login, and it is maintained until the connection is closed.

● Session user: It is as same as the first logon user, but it can be changed using the SET SESSION AUTH

ORIZATION statement.

● Current user: It is generally as same as the session user, but it is temporarily changed internally in syst

em to control access when using the PSM, View.

○ The session user and current user is similar to the difference between the unix system's real user

and the effective user.

Example

% gsql sys gliese

gSQL> SET SESSION AUTHORIZATION test;

Session set.

gSQL> SELECT LOGON_USER() AS result1, SESSION_USER() AS result2 FROM DUAL;

RESULT1 RESULT2

------- -------

SYS TEST

1 row selected.

1,126 | SQL Elements

SHARD_GROUP_ID

Syntax

SHARD_GROUP_ID(table_name, shard_key_value [, ...])

Description

It returns the group ID managing the shard which stores shard_key_value when the shard strategy is defi

ned in the table_name.

The table_name (an input argument) should be described by an identifier. If an object corresponding to t

he table_name is not a base table, or if the shard strategy is not defined, then an error occurs.

The shard_key_value (an input argument) should be listed in an order of shard key column in the shard st

rategy defined in the table_name. If the number of shard_key_value and the number of shard key column

s is not same, then an error occurs.

The result type is NATIVE_BIGINT.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT T1.C1, SHARD_GROUP_ID(T1, T1.C1) FROM T1;

C1 SHARD_GROUP_ID(T1, T1.C1)

-- ---------------------------

A 1

B 2

C 3

3 rows selected.

gSQL> SELECT SHARD_GROUP_ID(T1, 'B') FROM DUAL;

SHARD_GROUP_ID(T1, 'B')

2

1 row selected.

Built-in Function References | 1,127

SHARD_GROUP_NAME

Syntax

SHARD_GROUP_NAME(table_name, shard_key_value [, ...])

Description

It returns the group NAME managing the shard which stores shard_key_value when the shard strategy is

defined in the table_name.

The table_name (an input argument) should be described by an identifier. If an object corresponding to t

he table_name is not a base table, or if the shard strategy is not defined, then an error occurs.

The shard_key_value (an input argument) should be listed in an order of shard key column in the shard st

rategy defined in the table_name. If the number of shard_key_value and the number of shard key column

s is not same, then an error occurs.

The result type is VARCHAR.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT T1.C1, SHARD_GROUP_NAME(T1, T1.C1) FROM T1;

C1 SHARD_GROUP_NAME(T1, T1.C1)

-- -----------------------------

A G1

B G2

C G3

3 rows selected.

gSQL> SELECT SHARD_GROUP_NAME(T1, 'B') FROM DUAL;

SHARD_GROUP_NAME(T1, 'B')

G2

1 row selected.

1,128 | SQL Elements

SHARD_ID

Syntax

SHARD_ID(table_name, shard_key_value [, ...])

Description

It returns the ID for the shard which stores shard_key_value when the shard strategy is defined in the tabl

e_name.

The table_name (an input argument) should be described by an identifier. If an object corresponding to t

he table_name is not a base table, or if the shard strategy is not defined, then an error occurs.

The shard_key_value (an input argument) should be listed in an order of shard key column in the shard st

rategy defined in the table_name. If the number of shard_key_value and the number of shard key column

s is not same, then an error occurs.

The result type is NATIVE_BIGINT.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT T1.C1, SHARD_ID(T1, T1.C1) FROM T1;

C1 SHARD_ID(T1, T1.C1)

-- ---------------------

A 0

B 1

C 2

3 rows selected.

gSQL> SELECT SHARD_ID(T1, 'B') FROM DUAL;

SHARD_ID(T1, 'B')

1

1 row selected.

Built-in Function References | 1,129

SHARD_NAME

Syntax

SHARD_NAME(table_name, shard_key_value [, ...])

Description

It returns the NAME for the shard which stores shard_key_value when the shard strategy is defined in the

table_name.

The table_name (an input argument) should be described by an identifier. If an object corresponding to t

he table_name is not a base table, or if the shard strategy is not defined, then an error occurs.

The shard_key_value (an input argument) should be listed in an order of shard key column in the shard st

rategy defined in the table_name. If the number of shard_key_value and the number of shard key column

s is not same, then an error occurs.

The result type is VARCHAR.

Note

It is a valid information in a cluster system.

Example

gSQL> SELECT T1.C1, SHARD_NAME(T1, T1.C1) FROM T1;

C1 SHARD_NAME(T1, T1.C1)

-- -----------------------

A S1

B S2

C S3

3 rows selected.

gSQL> SELECT SHARD_NAME(T1, 'B') FROM DUAL;

SHARD_NAME(T1, 'B')

S2

1 row selected.

1,130 | SQL Elements

SHIFT_LEFT

Syntax

SHIFT_LEFT(num, cnt)

Description

It moves num to the left as many as cnt bits, and returns the movement values.

The data type of input num argument and cnt argument can be NATIVE_SMALLINT, NATIVE_INTEGER, N

ATIVE_BIGINT, or the type which can be converted to NATIVE_BIGINT.

When converting to NATIVE_BIGINT type, the decimal point is truncated.

cnt is masked with 6 bit, and it is processed to a value in the range within 6 bit.

The result type is NATIVE_BIGINT.

Example

gSQL> SELECT SHIFT_LEFT(7, 3) AS RESULT FROM DUAL;

RESULT

56

1 row selected.

Built-in Function References | 1,131

SHIFT_RIGHT

Syntax

SHIFT_RIGHT(num, cnt)

Description

It moves num to the right as many as cnt bits, and returns the movement values.

The data type of input num argument and cnt argument can be NATIVE_SMALLINT, NATIVE_INTEGER, N

ATIVE_BIGINT, or the type which can be converted to NATIVE_BIGINT.

When converting to NATIVE_BIGINT type, the decimal point is truncated.

cnt is masked with 6 bit, and it is processed to a value in the range within 6 bit.

The result type is NATIVE_BIGINT.

Example

gSQL> SELECT SHIFT_RIGHT(56, 3) AS RESULT FROM DUAL;

RESULT

7

1 row selected.

1,132 | SQL Elements

SIGN

Syntax

SIGN(num)

Description

It returns the sign of num.

The num argument can be a numeric data type.

The return value is as follows.

• If num < 0, -1 is returned.

• If num = 0, 0 is returned.

• If num > 0, 1 is returned.

Example

gSQL> SELECT SIGN(-10) AS RESULT1,

SIGN(0) AS RESULT2,

SIGN(10) AS RESULT3 FROM DUAL;

RESULT1 RESULT2 RESULT3

------- ------- -------

-1 0 1

1 row selected.

Built-in Function References | 1,133

SIN

Syntax

SIN(num)

Description

It returns the sine value of num.

Example

gSQL> SELECT SIN(0) AS RESULT FROM DUAL;

RESULT

0

1 row selected.

1,134 | SQL Elements

SPLIT_PART

Syntax

SPLIT_PART(string, delimiter, field)

Description

It returns a character string of the field by specifying a character as delimiter within a string.

The data type of string argument and delimiter argument can be a character data type such as CHARACT

ER, CHARACTER VARYING, CHARACTER LONG VARYING.

The field argument can be a numeric data type.

If any of string, delimiter, field is NULL, the result is also NULL.

The value of field should be a numeric value above 1, and if it is 0 or a negative number, an error is return

ed.

The following table describes the result types.

Table 11-68 Result type of SPLIT_PART

string type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

Example

gSQL> SELECT SPLIT_PART('AB;CD;EF;GH', ';', 3) AS RESULT FROM DUAL;

RESULT

EF

1 row selected.

Built-in Function References | 1,135

SQRT

Syntax

SQRT(num)

Description

It returns the square root of num.

The num argument can be a numeric type, and it should not be a negative number, but above 0.

Example

gSQL> SELECT SQRT(9) AS RESULT FROM DUAL;

RESULT

3

1 row selected.

1,136 | SQL Elements

STATEMENT_DATE

Syntax

STATEMENT_DATE()

CURRENT_DATE [()]

Description

The current date(DATE type) value is obtained.

The differences among the functions to obtain the current date are as follows.

• TRANSACTION_DATE(): All date values in the transaction are same.

• STATEMENT_DATE(): All date values in an SQL statement are same.

• CLOCK_DATE(): Whenever the function is called, the current date value is obtained.

Example

gSQL> SELECT STATEMENT_DATE() AS result FROM t1;

RESULT

2013-12-12

2013-12-12

2013-12-12

3 rows selected.

Built-in Function References | 1,137

STATEMENT_LOCALTIME

Syntax

STATEMENT_LOCALTIME()

LOCALTIME [()]

Description

The current TIME WITHOUT TIME ZONE type value based on the session time is obtained.

LOCALTIME is an SQL standard function.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_LOCALTIME(): All time values in the transaction are same.

• TATEMENT_LOCALTIME(): All time values in an SQL statement are same.

• CLOCK_LOCALTIME(): Whenever the function is called, the current time value is obtained.

Example

All rows have the same time value.

gSQL> SELECT STATEMENT_LOCALTIME() AS result FROM t1;

RESULT

16:18:50.775870

16:18:50.775870

16:18:50.775870

3 rows selected.

1,138 | SQL Elements

STATEMENT_LOCALTIMESTAMP

Syntax

STATEMENT_LOCALTIMESTAMP()

LOCALTIMESTAMP [()]

Description

The current TIMESTAMP WITHOUT TIME ZONE type value based on the session time is obtained.

LOCALTIMESTAMP is an SQL standard function.

The differences among the functions to obtain the current timestamp are as follows.

• TRANSACTION_LOCALTIMESTAMP(): All timestamp values in the transaction are same.

• STATEMENT_LOCALTIMESTAMP(): All timestamp values in an SQL statement are same.

• CLOCK_LOCALTIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

All rows have the same value.

gSQL> SELECT STATEMENT_LOCALTIMESTAMP() FROM t1;

STATEMENT_LOCALTIMESTAMP()

2013-12-12 16:23:39.782187

2013-12-12 16:23:39.782187

2013-12-12 16:23:39.782187

3 rows selected.

Built-in Function References | 1,139

STATEMENT_TIME

Syntax

STATEMENT_TIME()

CURRENT_TIME [()]

Description

The current TIME WITH TIME ZONE type value is obtained.

CURRENT_TIME is an SQL standard function.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_TIME(): All time values in the transaction are same.

• STATEMENT_TIME(): All time values in an SQL statement are same.

• CLOCK_TIME(): Whenever the function is called, the current time value is obtained.

Example

All rows have the same time value.

gSQL> SELECT STATEMENT_TIME() AS result FROM t1;

RESULT

16:28:19.268513 +09:00

16:28:19.268513 +09:00

16:28:19.268513 +09:00

3 rows selected.

1,140 | SQL Elements

STATEMENT_TIMESTAMP

Syntax

STATEMENT_TIMESTAMP()

CURRENT_TIMESTAMP [()]

Description

The current TIMESTAMP WITH TIME ZONE type value is obtained.

CURRENT_TIMESTAMP is an SQL standard function.

The differences among the functions to obtain the current timestamp are as follows.

• TRANSACTION_TIMESTAMP(): All timestamp values in the transaction are same.

• STATEMENT_TIMESTAMP(): All timestamp values in an SQL statement are same.

• CLOCK_TIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

All rows have the same value.

gSQL> SELECT STATEMENT_TIMESTAMP() AS result FROM t1;

RESULT

2013-12-12 16:36:11.032957 +09:00

2013-12-12 16:36:11.032957 +09:00

2013-12-12 16:36:11.032957 +09:00

3 rows selected.

Built-in Function References | 1,141

STATEMENT_VIEW_SCN

Syntax

STATEMENT_VIEW_SCN()

Description

It obtains VIEW SCN of the current STATEMENT.

Example

gSQL> SELECT STATEMENT_VIEW_SCN() FROM dual;

STATEMENT_VIEW_SCN()

17697.658.17880

1 row selected.

1,142 | SQL Elements

STATEMENT_VIEW_SCN_DCN

Syntax

STATEMENT_VIEW_SCN_DCN()

Description

It obtains the Domain Change Number (DCN) value of the current STATEMENT's VIEW SCN.

Example

gSQL> SELECT STATEMENT_VIEW_SCN_DCN() FROM dual;

STATEMENT_VIEW_SCN_DCN()

658

1 row selected.

Built-in Function References | 1,143

STATEMENT_VIEW_SCN_GCN

Syntax

STATEMENT_VIEW_SCN_GCN()

Description

It obtains the Global Change Number (GCN) value of the current STATEMENT's VIEW SCN.

Example

gSQL> SELECT STATEMENT_VIEW_SCN_GCN() FROM dual;

STATEMENT_VIEW_SCN_GCN()

17697

1 row selected.

1,144 | SQL Elements

STATEMENT_VIEW_SCN_LCN

Syntax

STATEMENT_VIEW_SCN_LCN()

Description

It obtains the Local Change Number (LCN) value of the current STATEMENT's VIEW SCN.

Example

gSQL> SELECT STATEMENT_VIEW_SCN_LCN() FROM dual;

STATEMENT_VIEW_SCN_LCN()

17880

1 row selected.

Built-in Function References | 1,145

STDDEV

Syntax

STDDEV([ALL | DISTINCT] expr)

Description

It is an aggregation function, and it obtains the standard deviation of an expr set.

If ALL is specified, this function is performed for all values. If DISTINCT is specified, this function is perfor

med for the values of which the duplicates were deleted from. If it is not specified, it is processed as if AL

L is apecified.

If the number of expr sets except for NULL after deleting the duplicates by using DISTINCT is one, then it r

eturns 0 like as VARIANCE.

The following table describes the arguments and result types.

Table 11-69 Argument and result type of STDDEV

expr Result type

NATIVE_INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER

NATIVE_DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

GOLDILOCKS gets the standard deviation as follows.

　• If the number of expr sets is 1, then it returns 0.

　• If the number of expr sets is bigger than 1, It returns the value of STDDEV_SAMP(expr).

Note

The standard deviation is a positive square root of a variance, and it is obtained calculating the sq

uare root of the variance. In other words, the STDDEV function is as same as the square root of V

ARIANCE function.

1,146 | SQL Elements

STDDEV([ALL] expr)

= SQRT(VARIANCE([ALL] expr))

STDDEV(DISTINCT expr)

= SQRT(VARIANCE(DISTINCT expr))

Example

gSQL> SELECT STDDEV(c1) FROM t1;

STDDEV(C1)

11.4978258814438

1 row selected.

gSQL> SELECT STDDEV(ALL c1) FROM t1;

STDDEV(ALL C1)

11.4978258814438

1 row selected.

gSQL> SELECT STDDEV(DISTINCT c1) FROM t1;

STDDEV(DISTINCT C1)

13.2759180473518

1 row selected.

Built-in Function References | 1,147

STDDEV_POP

Syntax

STDDEV_POP(expr)

Description

It is an aggregation function, and it obtains the population standard deviation of an expr set. If the numb

er of expr sets except for NULL is one, then it returns 0.

The following table describes the arguments and result types.

Table 11-70 Argument and result type of STDDEV_POP

expr Result type

NATIVE_INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER

NATIVE_DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Note

The population standard deviation is a positive square root of a population variance, and it is obtai

ned by calculating the square root of the population variance. In other words, the STDDEV_POP f

unction is as same as the square root of VAR_POP function.

STDDEV_POP(expr)

= SQRT(VAR_POP(expr))

Example

gSQL> SELECT STDDEV_POP(c1) FROM t1;

STDDEV_POP(C1)

1,148 | SQL Elements

10.283968105746

1 row selected.

Built-in Function References | 1,149

STDDEV_SAMP

Syntax

STDDEV_SAMP(expr)

Description

It is an aggregation function, and it obtains the sample standard deviation of an expr set. If the number o

f expr sets except for NULL is one, then it returns NULL.

The following table describes the arguments and result types.

Table 11-71 Argument and result type of STDDEV_SAMP

expr Result type

NATIVE_INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER

NATIVE_DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Note

The sample standard deviation is a positive square root of a sample variance, and it is obtained by

calculating the square root of the sample variance. In other words, the STDDEV_SAMP function is

as same as the square root of VAR_SAMP function.

STDDEV_SAMP(expr)

= SQRT(VAR_SAMP(expr))

Example

gSQL> SELECT STDDEV_SAMP(c1) FROM t1;

STDDEV_SAMP(C1)

1,150 | SQL Elements

11.4978258814438

1 row selected.

Built-in Function References | 1,151

SUBSTR

Syntax

SUBSTR(str FROM start_position [FOR string_length])

SUBSTR(str, start_position [, string_length])

Description

It is an alias of SUBSTRING.

Example

● Multi byte character set (e.g. UTF8): 1 byte character

gSQL> SELECT

SUBSTR('DATABASE MANAGEMENT SYSTEM', 10, 10) AS RESULT

FROM DUAL;

RESULT

MANAGEMENT

1 row selected.

● Multi byte character set (e.g. UTF8): 2 bytes or 3 bytes character

gSQL> SELECT SUBSTR('“αβ≠ΑΒ”', 2, 5) AS RESULT FROM DUAL;

RESULT

αβ≠ΑΒ

1 row selected.

1,152 | SQL Elements

SUBSTRB

Syntax

SUBSTRB(str, start_position [, string_length])

Description

It extracts characters which are within string_length range from start_position, and returns the result for s

tr.

This function is as same as SUBSTRING function, except that start_position and string_length of the SUB

STR function are calculated in byte units.

Example

● Multi byte character set (e.g. UTF8): 1 byte character

gSQL> SELECT

SUBSTRB('DATABASE MANAGEMENT SYSTEM', 10, 10) AS RESULT

FROM DUAL;

RESULT

MANAGEMENT

1 row selected.

● Multi byte character set (e.g. UTF8): 2 bytes or 3 bytes character

gSQL> SELECT SUBSTRB('“αβ≠ΑΒ”', 4, 11) AS RESULT FROM DUAL;

RESULT

αβ≠ΑΒ

1 row selected.

Built-in Function References | 1,153

SUBSTRING

Syntax

SUBSTRING(str FROM start_position [FOR string_length])

SUBSTRING(str, start_position [, string_length])

Description

It extracts characters which are within string_length range from start_position, and returns the result for s

tr.

The str argument data type can be a character data type such as CHARACTER, CHARACTER VARYING, C

HARACTER LONG VARYING, or a binary data type such as BINARY, BINARY VARYING, BINARY LONG VA

RYING.

The start_position argument and string_length argument can be a numeric data type.

If any of str, start_position, string_length is NULL, the result is NULL.

The start_position and string_length start from 1, and they are calculated in character unit according to c

haracter set (not in byte unit).

If start_position is 0, the start_position is assigned to 1.

If start_position is a positive number, it searches for the position forwards (towards right) from the begin

ning of str.

If start_ position is a negative number, it searches for the position backwards (towards left) from the end

of str.

If string_length is omitted, characters from the start_position to the last character of str, are returned.

If string_length is 0 or a negative number, the result is NULL.

If start_position > (str length), the result is NULL.

If (str length + start_position) < 0, the result is NULL.

It is an alias of SUBSTR.

For more information, refer to SUBSTRB.

The following table describes the result types.

Table 11-72 Result type of SUBSTRING

str type Result type

CHAR or VARCHAR VARCHAR

1,154 | SQL Elements

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

str type Result type

Example

● Multi byte character set (e.g. UTF8): 1 byte character

gSQL> SELECT

SUBSTRING('DATABASE MANAGEMENT SYSTEM' FROM 10 FOR 10) AS RESULT

FROM DUAL;

RESULT

MANAGEMENT

1 row selected.

● Multi byte character set (e.g. UTF8): 2 bytes or 3 bytes character

gSQL> SELECT SUBSTRING('“αβ≠ΑΒ”' FROM 2 FOR 5) AS RESULT FROM DUAL;

RESULT

αβ≠ΑΒ

1 row selected.

Built-in Function References | 1,155

SUM

Syntax

SUM([ALL | DISTINCT] expr)

Description

It is an aggregate function and the sum of expr value is obtained.

If ALL is explicitly specified, aggregation is executed for all values.

If DISTINCT is explicitly specified, aggregation is executed for the values which exclude duplicate values.

If ALL or DISTINCT is not explicitly specified, it is processed in the same way as when ALL is specified.

Example

gSQL> SELECT SUM(c1) FROM t1;

SUM(C1)

6

1 row selected.

1,156 | SQL Elements

SYSDATE

Syntax

SYSDATE

Description

It obtains the current DATE type value based on the OS time of the database server.

Example

gSQL> SELECT SYSDATE FROM t1;

SYSDATE

2013-12-12

2013-12-12

2013-12-12

3 rows selected.

Built-in Function References | 1,157

SYS_EXTRACT_UTC

Syntax

SYS_EXTRACT_UTC(datetime_with_timezone)

Description

It returns the UTC (Coordinated Universal Time—formerly Greenwich Mean Time) value.

If the timezone is not specified, it is calculated as session time zone.

The data type of an input argument can be time, time with time zone, timestamp, timestamp with time z

one.

The result type is time or timestamp type.

Example

gSQL> SELECT

SYS_EXTRACT_UTC(

TO_TIMESTAMP_TZ('2017-05-25 21:13:32.123456 +09:00',

'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM')

) AS RESULT

FROM DUAL;

RESULT

2017-05-25 12:13:32.123456

1 row selected.

1,158 | SQL Elements

SYSTIME

Syntax

SYSTIME

Description

It obtains the current TIME WITH TIME ZONE type value based on the OS time of the database server.

Example

gSQL> SELECT SYSTIME FROM t1;

SYSTIME

16:30:46.954941 +09:00

16:30:46.954941 +09:00

16:30:46.954941 +09:00

3 rows selected.

Built-in Function References | 1,159

SYSTIMESTAMP

Syntax

SYSTIMESTAMP

Description

It obtains the current TIMESTAMP WITH TIME ZONE type value based on the OS time of the database ser

ver.

Example

gSQL> SELECT SYSTIMESTAMP FROM t1;

SYSTIMESTAMP

2013-12-12 16:37:34.432241 +09:00

2013-12-12 16:37:34.432241 +09:00

2013-12-12 16:37:34.432241 +09:00

3 rows selected.

1,160 | SQL Elements

TAN

Syntax

TAN(num)

Description

It returns the tangent value of num in radians unit.

Example

gSQL> SELECT TAN(1) AS RESULT FROM DUAL;

RESULT

1.5574077246549

1 row selected.

Built-in Function References | 1,161

TO_BASE64

Syntax

TO_BASE64(str)

Description

It converts str by using base64 encoding, and returns the converted character.

str argument can be a character type such as CHARACTER, CHARACTER VARYING, CHARACTER LONG V

ARYING, a type which can be converted to a character type, or a binary character type such as BINARY, BI

NARY VARYING, BINARY LONG VARYING.

The result type is a character such as CHARACTER VARYING or CHARACTER LONG VARYING.

If str is NULL, the result value is also NULL.

Base64 encoding represents 8 bit binary data in 64 characters consisting of ascii areas.

64 characters consist of A~Z, a~z, 0~9, +, /.

6 bit is represented as a character, and three characters (24 bits) are represented with 4 characters as a u

nit.

If the encoded characters can not fill 4 characters, then others are filled with '='.

If encoded characters are over 76, then a newline is added and they are divided into multiple lines.

Use FROM_BASE64() function to decode the base64 encoded character.

The newline, carriage return, tab, space are ignored when decoding base64.

For more information, refer to FROM_BASE64.

Example

gSQL> SELECT TO_BASE64('abc'), TO_BASE64('abcd') FROM DUAL;

TO_BASE64('abc') TO_BASE64('abcd')

------------------ -------------------

YWJj YWJjZA==

1 row selected.

1,162 | SQL Elements

TO_CHAR(datetime)

Syntax

TO_CHAR(datetime [, fmt])

Description

It converts datetime to a string in the specified fmt format, and returns the result.

The datetime argument data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIME, TIME

WITH TIME ZONE, INTERVAL.

The fmt argument data type can be a character data type such as CHARACTER, CHARACTER VARYING.

If fmt is omitted, it follows the default format.

• DATE: Refer to NLS_DATE_FORMAT.

• TIMESTAMP: Refer to NLS_TIMESTAMP_FORMAT.

• TIMESTAMP WITH TIME ZONE: Refer to NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT.

• TIME: Refer to NLS_TIME_FORMAT.

• TIME WITH TIME ZONE: Refer to NLS_TIME_WITH_TIME_ZONE_FORMAT.

If the data type of the datetime argument is INTERVAL, it is converted to a string then returned regardless

of fmt.

For more information about the string which can be specified in fmt, refer to Datetime Format String.

The result type is CHARACTER VARYING.

Example

The following is an example of when fmt is omitted, and NLS_DATE_FORMAT = 'YYYY-MM-DD'.

gSQL> SELECT

TO_CHAR(TO_DATE('2012-03-15','YYYY-MM-DD')) AS RESULT

FROM DUAL;

RESULT

2012-03-15

1 row selected.

The following is an example of when fmt is specified.

Built-in Function References | 1,163

gSQL> SELECT

TO_CHAR(TO_DATE('2012-03-15','YYYY-MM-DD'), 'DD-MON-YY') AS RESULT

FROM DUAL;

RESULT

15-MAR-12

1 row selected.

1,164 | SQL Elements

TO_CHAR(number)

Syntax

TO_CHAR(number [, fmt])

Description

It converts the number to a string in the specified fmt format, and returns the result.

The number argument can be a numeric data type.

The fmt argument data type can be a character data type such as CHARACTER, CHARACTER VARYING.

If fmt is omitted, all significant digits are converted to the string and returned.

For more information about the string which can be specified in fmt, refer to Number Format String.

The result type is CHARACTER VARYING.

Example

gSQL> SELECT TO_CHAR(12500000) AS RESULT FROM DUAL;

RESULT

12500000

1 row selected.

gSQL> SELECT TO_CHAR(12500000, 'S999,999,999') AS RESULT FROM DUAL;

RESULT

+12,500,000

1 row selected.

Built-in Function References | 1,165

TO_DATE

Syntax

TO_DATE(str [, fmt])

Description

It converts the str string in the specified fmt format to DATE type, and returns the result.

The str argument and fmt argument data type can be a character data type such as CHARACTER, CHARA

CTER VARYING, CHARACTER LONG VARYING.

If fmt is omitted, the default format is NLS_DATE_FORMAT, and in this case str should be the default for

mat string.

For more information about the string which can be specified in fmt, refer to Datetime Format String.

For more information, refer to NLS_DATE_FORMAT.

The result type is DATE.

Example

The following is an example of when fmt is omitted, and NLS_DATE_FORMAT = 'YYYY-MM-DD'.

gSQL> SELECT TO_DATE('2009-07-29') AS RESULT FROM DUAL;

RESULT

2009-07-29

1 row selected.

The following is an example of when fmt is specified.

gSQL> SELECT TO_DATE('29-JUL-09', 'DD-MON-YY') AS RESULT FROM DUAL;

RESULT

2009-07-29

1 row selected.

1,166 | SQL Elements

TO_NATIVE_DOUBLE

Syntax

TO_NATIVE_DOUBLE(str [, fmt])

Description

It converts the str string in the specified fmt format to NATIVE_DOUBLE type, and returns the result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If any of str, fmt is NULL, the result is also NULL.

For more information about the string which can be specified in fmt, refer to Number Format String.

The result type is NATIVE_DOUBLE.

Example

gSQL> SELECT TO_NATIVE_DOUBLE('123.45') AS RESULT1,

TO_NATIVE_DOUBLE('+123.45', 'S999.99') AS RESULT2

FROM DUAL;

RESULT1 RESULT2

------- -------

123.45 123.45

1 row selected.

Built-in Function References | 1,167

TO_NATIVE_REAL

Syntax

TO_NATIVE_REAL(str [, fmt])

Description

It converts the str string in the specified fmt format to NATIVE_REAL type, and returns the result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If any of str, fmt is NULL, the result is also NULL.

For more information about the string which can be specified in fmt, refer to Number Format String.

The result type is NATIVE_REAL.

Example

gSQL> SELECT TO_NATIVE_REAL('123.45') AS RESULT1,

TO_NATIVE_REAL('+123.45', 'S999.99') AS RESULT2

FROM DUAL;

RESULT1 RESULT2

------- -------

123.45 123.45

1,168 | SQL Elements

TO_NUMBER

Syntax

TO_NUMBER(str [, fmt])

Description

It converts the str string in the specified fmt format to NUMBER type, and returns the result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If any of str, fmt is NULL, the result is also NULL.

For more information about the string which can be specified in fmt, refer to Number Format String.

The result type is NUMBER.

Example

gSQL> SELECT TO_NUMBER('123.45') AS RESULT1,

TO_NUMBER('+123.45', 'S999.99') AS RESULT2

FROM DUAL;

RESULT1 RESULT2

------- -------

123.45 123.45

1 row selected.

Built-in Function References | 1,169

TO_TIME

Syntax

TO_TIME(str [, fmt])

Description

It converts the str string in the specified fmt format to TIME type, and returns the result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If fmt is omitted, the default format is NLS_TIME_FORMAT, and in this case str should be the default for

mat string.

For more information about the string which can be specified in fmt, refer to Datetime Format String.

For more information, refer to NLS_TIME_FORMAT.

The result type is TIME.

Example

The following is an example of when fmt is omitted, and NLS_TIME_FORMAT = 'HH24:MI:SS.FF6'.

gSQL> SELECT TO_TIME('11:22:33.999999') AS RESULT FROM DUAL;

RESULT

11:22:33.999999

1 row selected.

The following is an example of when fmt is specified.

gSQL> SELECT

TO_TIME('112233.999999/P.M.', 'HH12MISS.FF6/P.M.') AS RESULT

FROM DUAL;

RESULT

23:22:33.999999

1 row selected.

1,170 | SQL Elements

TO_TIME_TZ

Syntax

TO_TIME_TZ(str [, fmt])

Description

It is an alias of TO_TIME_WITH_TIME_ZONE.

For more information, refer to NLS_TIME_WITH_TIME_ZONE_FORMAT.

Example

The following is an example of when fmt is omitted, and NLS_TIME_WITH_TIME_ZONE_FORMAT = 'HH2

4:MI:SS.FF6 TZH:TZM'.

gSQL> SELECT TO_TIME_TZ('11:22:33.999999 +09:00') AS RESULT FROM DUAL;

RESULT

11:22:33.999999 +09:00

1 row selected.

The following is an example of when fmt is specified.

gSQL> SELECT TO_TIME_TZ('11:22:33.999999 +09:00 PM',

'HH12:MI:SS.FF6 TZH:TZM PM') AS RESULT

FROM DUAL;

RESULT

23:22:33.999999 +09:00

1 row selected.

Built-in Function References | 1,171

TO_TIME_WITH_TIME_ZONE

Syntax

TO_TIME_WITH_TIME_ZONE(str [, fmt])

TO_TIME_TZ(str [, fmt])

Description

It converts the str string in the specified fmt format to TIME WITH TIME ZONE type, and returns the result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If fmt is omitted, the default format is NLS_TIME_WITH_TIME_ZONE_FORMAT, and in this case str should

be the default format string.

For more information about the string which can be specified in fmt, refer to Datetime Format String

For more information, refer to NLS_TIME_WITH_TIME_ZONE_FORMAT.

It is an alias of TO_TIME_TZ.

The result type is TIME WITH TIME ZONE.

Example

The following is an example of when fmt is omitted, and NLS_TIME_WITH_TIME_ZONE_FORMAT = 'HH2

4:MI:SS.FF6 TZH:TZM'.

gSQL> SELECT

TO_TIME_WITH_TIME_ZONE('11:22:33.999999 +09:00') AS RESULT

FROM DUAL;

RESULT

11:22:33.999999 +09:00

1 row selected.

The following is an example of when fmt is specified.

gSQL> SELECT

TO_TIME_WITH_TIME_ZONE('11:22:33.999999 +09:00 PM',

'HH12:MI:SS.FF6 TZH:TZM PM')

1,172 | SQL Elements

AS RESULT

FROM DUAL;

RESULT

23:22:33.999999 +09:00

1 row selected.

Built-in Function References | 1,173

TO_TIMESTAMP

Syntax

TO_TIMESTAMP(str [, fmt])

Description

It converts the str string in the specified fmt format to TIMESTAMP type, and returns the result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If fmt is omitted, the default format is NLS_TIMESTAMP_FORMAT, and in this case str should be the defa

ult format string.

For more information about the string which can be specified in fmt, refer to Datetime Format String.

For more information, refer to NLS_TIMESTAMP_FORMAT.

The result type is TIMESTAMP.

Example

The following is an example of when fmt is omitted, and NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD H

H24:MI:SS.FF6'.

gSQL> SELECT

TO_TIMESTAMP('2009-07-29 11:22:33.999999') AS RESULT

FROM DUAL;

RESULT

2009-07-29 11:22:33.999999

1 row selected.

The following is an example of when fmt is specified.

gSQL> SELECT

TO_TIMESTAMP('090729 112233999999 PM', 'YYMMDD HH12MISSFF6 PM')

AS RESULT

FROM DUAL;

RESULT

1,174 | SQL Elements

2009-07-29 23:22:33.999999

1 row selected.

Built-in Function References | 1,175

TO_TIMESTAMP_TZ

Syntax

TO_TIMESTAMP_TZ(str [, fmt])

Description

It is an alias of TO_TIMESTAMP_WITH_TIME_ZONE.

For more information, refer to NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT.

Example

The following is an example of when fmt is omitted, and NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT

= 'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM'.

gSQL> SELECT

TO_TIMESTAMP_TZ('2009-07-29 11:22:33.999999 +09:00') AS RESULT

FROM DUAL;

RESULT

2009-07-29 11:22:33.999999 +09:00

1 row selected.

The following is an example of when fmt is specified.

gSQL> SELECT

TO_TIMESTAMP_TZ('29-JUL-09 11:22:33.999999 +09:00',

'DD-MON-RR HH12:MI:SS.FF6 TZH:TZM') AS RESULT

FROM DUAL;

RESULT

2009-07-29 11:22:33.999999 +09:00

1 row selected.

1,176 | SQL Elements

TO_TIMESTAMP_WITH_TIME_ZONE

Syntax

TO_TIMESTAMP_WITH_TIME_ZONE(str [, fmt])

TO_TIMESTAMP_TZ(str [, fmt])

Description

It converts the str string in the specified fmt format to TIMESTAMP WITH TIME ZONE type, and returns th

e result.

The data type of str argument and fmt argument can be a character data type such as CHARACTER, CHA

RACTER VARYING, CHARACTER LONG VARYING.

If fmt is omitted, the default format is NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT, and in this case str

should be the default format string.

For more information about the string which can be specified in fmt, refer to Datetime Format String.

For more information, refer to NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT.

It is an alias of TO_TIMESTAMP_TZ.

The result type is TIMESTAMP WITH TIME ZONE .

Example

The following is an example of when fmt is omitted, and NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT

= 'YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM'.

gSQL> SELECT

TO_TIMESTAMP_WITH_TIME_ZONE('2009-07-29 11:22:33.999999 +09:00')

AS RESULT

FROM DUAL;

RESULT

2009-07-29 11:22:33.999999 +09:00

1 row selected.

The following is an example of when fmt is specified.

Built-in Function References | 1,177

gSQL> SELECT

TO_TIMESTAMP_WITH_TIME_ZONE('29-JUL-09 11:22:33.999999 +09:00',

'DD-MON-RR HH12:MI:SS.FF6 TZH:TZM')

AS RESULT

FROM DUAL;

RESULT

2009-07-29 11:22:33.999999 +09:00

1 row selected.

1,178 | SQL Elements

TRANSACTION_DATE

Syntax

TRANSACTION_DATE()

Description

It obtains the current date (DATE type) value based on the session time.

The differences among the functions to obtain the current date are as follows.

• TRANSACTION_DATE(): All date values in the transaction are same.

• STATEMENT_DATE(): All date values in an SQL statement are same.

• CLOCK_DATE(): Whenever the function is called, the current date value is obtained.

Example

All date values are always same within a single transaction.

gSQL> SELECT TRANSACTION_DATE() FROM dual;

TRANSACTION_DATE()

2013-12-12

1 row selected.

gSQL> SELECT TRANSACTION_DATE() FROM dual;

TRANSACTION_DATE()

2013-12-12

1 row selected.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT TRANSACTION_DATE() FROM dual;

TRANSACTION_DATE()

2013-12-13

1 row selected.

Built-in Function References | 1,179

TRANSACTION_LOCALTIME

Syntax

TRANSACTION_LOCALTIME()

Description

It obtains the current TIME WITHOUT TIME ZONE type value based on the session time.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_LOCALTIME(): All time values in the transaction are same.

• STATEMENT_LOCALTIME(): All time values in an SQL statement are same.

• CLOCK_LOCALTIME(): Whenever the function is called, the current time value is obtained.

Example

All time values are always same within a single transaction.

gSQL> SELECT TRANSACTION_LOCALTIME() FROM dual;

TRANSACTION_LOCALTIME()

16:43:24.391834

1 row selected.

gSQL> SELECT TRANSACTION_LOCALTIME() FROM dual;

TRANSACTION_LOCALTIME()

16:43:24.391834

1 row selected.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT TRANSACTION_LOCALTIME() FROM dual;

TRANSACTION_LOCALTIME()

16:43:32.651833

1 row selected.

1,180 | SQL Elements

TRANSACTION_LOCALTIMESTAMP

Syntax

TRANSACTION_LOCALTIMESTAMP()

Description

It obtains the current TIMESTAMP WITHOUT TIME ZONE type value based on the session time.

The differences among the functions to obtain the current timestamp are as follows.

• TRANSACTION_LOCALTIMESTAMP(): All timestamp values in the transaction are same.

• STATEMENT_LOCALTIMESTAMP(): All timestamp values in an SQL statement are same.

• CLOCK_LOCALTIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

All timestamp values are always same within a single transaction.

gSQL> SELECT TRANSACTION_LOCALTIMESTAMP() FROM dual;

TRANSACTION_LOCALTIMESTAMP()

2013-12-12 16:43:32.651833

1 row selected.

gSQL> SELECT TRANSACTION_LOCALTIMESTAMP() FROM dual;

TRANSACTION_LOCALTIMESTAMP()

2013-12-12 16:43:32.651833

1 row selected.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT TRANSACTION_LOCALTIMESTAMP() FROM dual;

TRANSACTION_LOCALTIMESTAMP()

2013-12-12 16:46:07.831834

1 row selected.

Built-in Function References | 1,181

TRANSACTION_TIME

Syntax

TRANSACTION_TIME()

Description

It obtains the current TIME WITH TIME ZONE type value based on the session time.

The differences among the functions to obtain the current time are as follows.

• TRANSACTION_TIME(): All time values in the transaction are same.

• STATEMENT_TIME(): All time values in an SQL statement are same.

• CLOCK_TIME(): Whenever the function is called, the current time value is obtained.

Example

All time values are always same within a single transaction.

gSQL> SELECT TRANSACTION_TIME() FROM dual;

TRANSACTION_TIME()

16:46:07.831834 +09:00

1 row selected.

gSQL> SELECT TRANSACTION_TIME() FROM dual;

TRANSACTION_TIME()

16:46:07.831834 +09:00

1 row selected.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT TRANSACTION_TIME() FROM dual;

TRANSACTION_TIME()

16:48:00.691827 +09:00

1 row selected.

1,182 | SQL Elements

TRANSACTION_TIMESTAMP

Syntax

TRANSACTION_TIMESTAMP()

Description

It obtains the current TIMESTAMP WITH TIME ZONE type value based on the session time.

The differences among the functions to obtain the current timestamp are as follows.

• TRANSACTION_TIMESTAMP(): All timestamp values in the transaction are same.

• STATEMENT_TIMESTAMP(): All timestamp values in an SQL statement are same.

• CLOCK_TIMESTAMP(): Whenever the function is called, the current timestamp value is obtained.

Example

All timestamp values are always same within a single transaction.

gSQL> SELECT TRANSACTION_TIMESTAMP() FROM dual;

TRANSACTION_TIMESTAMP()

2013-12-12 16:48:00.691827 +09:00

1 row selected.

gSQL> SELECT TRANSACTION_TIMESTAMP() FROM dual;

TRANSACTION_TIMESTAMP()

2013-12-12 16:48:00.691827 +09:00

1 row selected.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT TRANSACTION_TIMESTAMP() FROM dual;

TRANSACTION_TIMESTAMP()

2013-12-12 16:49:26.291827 +09:00

1 row selected.

Built-in Function References | 1,183

TRANSLATE

Syntax

TRANSLATE(string, from, to)

Description

It converts all characters which are same as the characters in from to its corresponding characters in to. T

hen it returns the result.

The data type of the string argument, the from argument, and the to argument can be a data type such a

s CHARACTER, CHARACTER VARYING, CHARACTER LONG VARYING.

If any of string, from, to is NULL, the result is also NULL.

Characters in string which are not same as characters in from, are not replaced.

Characters in string which are same as characters in from, are replaced to its corresponding characters in

to.

If the number of characters in from is bigger than the number of characters in to, the characters in from

which does not correspond to the characters in to, are removed, and returned.

If the same characters are repeated multiple times in from, they are replaced with the first mapped chara

cter.

The following table describes the result types.

Table 11-73 Result type of TRANSLATE

string type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

Example

gSQL> SELECT TRANSLATE('12345', '15', 'FL') AS RESULT FROM DUAL;

RESULT

F234L

1 row selected.

gSQL> SELECT TRANSLATE('ABC12345', 'ABC12345', 'XYZ') AS RESULT FROM DUAL;

RESULT

1,184 | SQL Elements

XYZ

1 row selected.

gSQL> SELECT TRANSLATE('ABC12345ABC', 'ABCABCABC', 'XYZ^&*xyz') AS RESULT

FROM DUAL;

RESULT

XYZ12345XYZ

1 row selected.

Built-in Function References | 1,185

TRIM

Syntax

TRIM([[LEADING | TRAILING | BOTH] [trim_character] FROM] trim_source)

Description

It removes the matching characters by comparing trim_character in trim_source from the LEADING, TRAIL

ING, BOTH direction until the matching character does not exist. Then it returns the result.

The trim_character argument and trim_source argument can be a character data type such as CHARACTE

R, CHARACTER VARYING, CHARACTER LONG VARYING or a binary character data type such as BINARY,

BINARY VARYING, BINARY LONG VARYING.

If any of trim_character, trim_source is NULL, the result is NULL.

● [LEADING | TRAILING | BOTH]

○ LEADING: Removes trim_character from the beginning of trim_source.

○ TRAILING: Removes trim_character from the back of trim_source.

○ BOTH: Removes trim_character from the both direction (the beginning, the back) of trim_source.

● trim_character should be a single character.

● If trim_character is omitted, single blank space (' ') is specified by default.

● When FROM is specified

○ [LEADING | TRAILING | BOTH], trim_character or [LEADING | TRAILING | BOTH] trim_character

should be specified.

■ e.g. TRIM(LEADING FROM ' abc') , TRIM('x' FROM 'xabc') , TRIM(LEADING 'x' FROM 'xab

c')

○ If [LEADING | TRAILING | BOTH] is omitted, BOTH is specified by default.

● When FROM is omitted.

○ It is TRIM(trim_source), it is executed in the same way as TRIM(BOTH ' ' FROM trim_source).

The following table describes the result types.

Table 11-74 Result type of TRIM

trim_character, trim_source type Result type

CHAR or VARCHAR VARCHAR

LONG VARCHAR LONG VARCHAR

BINARY or VARBINARY VARBINARY

LONG VARBINARY LONG VARBINARY

1,186 | SQL Elements

Example

gSQL> SELECT TRIM(LEADING '_' FROM '___TRIM FUNCTION___') AS RESULT

FROM DUAL;

RESULT

TRIM FUNCTION___

1 row selected.

gSQL> SELECT TRIM(TRAILING '_' FROM '___TRIM FUNCTION___') AS RESULT

FROM DUAL;

RESULT

___TRIM FUNCTION

1 row selected.

gSQL> SELECT TRIM(BOTH '_' FROM '___TRIM FUNCTION___') AS RESULT

FROM DUAL;

RESULT

TRIM FUNCTION

1 row selected.

Built-in Function References | 1,187

TRUNC(number)

Syntax

TRUNC(num [, scale])

Description

It truncates the num based on scale, then returns the result.

The num argument and scale argument can be a numeric type.

If scale is omitted, the scale becomes 0, and it is executed as same as TRUNC(num, 0).

If scale is a positive number, it is truncated based on the number of right digit of the decimal point.

If scale is a negative number, it is truncated off based on the number of left digit of the decimal point.

Example

gSQL> SELECT TRUNC(142.4282, 2) AS RESULT FROM DUAL;

RESULT

142.42

1 row selected.

gSQL> SELECT TRUNC(142.4282, -2) AS RESULT FROM DUAL;

RESULT

100

1 row selected.

1,188 | SQL Elements

TRUNC(date)

Syntax

TRUNC(date [, fmt])

Description

It truncates the date in a specified fmt unit, and returns the result.

The date argument data type can be DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE.

The fmt argument data type can be a character data type such as CHARACTER, CHARACTER VARYING.

The result type is always DATE regardless of the input date type.

If fmt is omitted, the default is DAY, and the available format string is described in the following table.

Table 11-75 Available format string in fmt

Format string Description

CC, SCC Century

YYYY, YEAR, SYYYY, SYE

AR, YYY, YY, Y
Year

IYYY, IYY, IY, I The year embracing the calendar week defined by ISO 8601 standards

Q Quarter

MONTH, MON, MM, RM Month

WW The week whose first week starts from January 1st of the year

IW
The week containing the first thursday of the year designated as the calendar week by

ISO 8601 standards (1 ~ 52 weeks or 1 ~ 53 weeks) becomes the first week.

W The week whose first week starts from the first day of the month

DDD, DD, J Day

DAY, DY, D Day of the week

HH, HH12, HH24 Hour

MI Minute

Example

gSQL> SELECT

TRUNC(TO_DATE('2051-07-16', 'YYYY-MM-DD'), 'CC') AS RESULT

FROM DUAL;

RESULT

Built-in Function References | 1,189

2001-01-01

1 row selected.

gSQL> SELECT

TRUNC(TO_DATE('2051-07-16', 'YYYY-MM-DD'), 'YYYY') AS RESULT

FROM DUAL;

RESULT

2051-01-01

1 row selected.

gSQL> SELECT

TRUNC(TO_DATE('2051-07-16', 'YYYY-MM-DD'), 'MONTH') AS RESULT

FROM DUAL;

RESULT

2051-07-01

1 row selected.

gSQL> SELECT

TRUNC(TO_TIMESTAMP('2001-05-05 11:22:33.999999',

'YYYY-MM-DD HH24:MI:SS.FF6')) AS RESULT

FROM DUAL;

RESULT

2001-05-05

1 row selected.

1,190 | SQL Elements

UPPER

Syntax

UPPER(str)

Description

It returns the uppercase characters of str.

The str argument can be a character data type such as CHARACTER, CHARACTER VARYING, CHARACTE

R LONG VARYING.

If str is NULL, the result is NULL.

The return type is as same as the str argument type.

Example

gSQL> SELECT UPPER('spring') AS RESULT FROM DUAL;

RESULT

SPRING

1 row selected.

Built-in Function References | 1,191

UNHEX

Syntax

UNHEX(str)

Description

str argument is a hexadecimal character and this function represents it as each byte and returns it as a bin

ary string.

The input argument can be a character type such as CHARACTER VARYING, CHARACTER LONG VARYIN

G. The result type is a binary character type such as BINARY VARYING or BINARY LONG VARYING.

If str is NULL, then the result value is also NULL.

If str includes a character which does not belong to the hexadecimal range, then it returns an error.

For more information, refer to HEX.

Example

gSQL> SELECT UNHEX(HEX('abc')) FROM DUAL;

UNHEX(HEX('abc'))

616263

1 row selected.

1,192 | SQL Elements

UNHEX_TO_CHARSTR

Syntax

UNHEX_TO_CHARSTR(str)

Description

str argument is a hexadecimal character and this function represents it as each byte and returns it as a ch

aracter string.

The input argument can be a character type such as CHARACTER VARYING, CHARACTER LONG VARYIN

G. The result type is a character type such as CHARACTER VARYING, CHARACTER LONG VARYING.

If str is NULL, then the result value is also NULL.

If str includes a character which does not belong to the hexadecimal range, then it returns an error.

When returning it as a character string, it applies the currently applicable character set and returns the res

ult value because the str argument is a hexadecimal character of an unknown data.

If it is not included in the currently applicable character set, then it returns an error.

For more information, refer to HEX, UNHEX.

Example

gSQL> SELECT UNHEX_TO_CHARSTR('616263') FROM DUAL;

UNHEX_TO_CHARSTR('616263')

abc

1 row selected.

gSQL> SELECT UNHEX_TO_CHARSTR(HEX('abc')) FROM DUAL;

UNHEX_TO_CHARSTR(HEX('abc'))

abc

1 row selected.

Built-in Function References | 1,193

USER_ID

Syntax

USER_ID ()

Description

It obtains the current user's number ID.

Note

In cluster system, the value may vary depending on the connected server.

It is recommended to use CURRENT_USER function obtaining the current username.

Example

% gsql test test

gSQL> SELECT USER_ID() FROM dual;

USER_ID()

6

1 row selected.

1,194 | SQL Elements

UUID

Syntax

UUID()

Description

It creates the universal unique identifier, then returns it.

The return type is VARBINARY type, and it internally consists of 16 bytes.

Example

gSQL> SELECT HEX(UUID()) FROM DUAL;

HEX(UUID())

E6F0A5C2387511E8B95259E479C2FD50

1 row selected.

Built-in Function References | 1,195

VAR_POP

Syntax

VAR_POP(expr)

Description

It is an aggregation function, and it obtains the population variance of an expr set. If the number of expr

sets except for NULL is one, then it returns 0.

The following table describes the arguments and result types.

Table 11-76 Argument and result type of VAR_POP

expr Result type

NATIVE_INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER

NATIVE_DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Note

The population variance is a variance of the population (entire) group, and it is the average of the

square value of deviation. In other words, it is calculated by extracting the population average (th

e entire average) from each value of the data, and squaring each value, then adding them togeth

er and dividing them by the number of datas in the population group.

This value is used to figure out how far each value is from the average value.

For more information, refer to STDDEV_POP.

1,196 | SQL Elements

Example

gSQL> SELECT VAR_POP(c1) FROM t1;

VAR_POP(C1)

105.76

1 row selected.

Built-in Function References | 1,197

VAR_SAMP

Syntax

VAR_SAMP(expr)

Description

It is an aggregation function, and it obtains the sample variance of an expr set. If the number of expr sets

except for NULL is one, then it returns NULL.

The following table describes the arguments and result types.

Table 11-77 Argument and result type of VAR_SAMP

expr Result type

NATIVE_INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER

NATIVE_DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Note

Unlike the population variance dealing with the population (entire) group, the sample variance de

als with the average and deviation of extracted samples. In other words, it is calculated by extracti

ng the sample average from each value of the data, and squaring each value, then adding them t

ogether and dividing them by the number of datas in the population group minus 1.

This value is used to figure out the variance of the population group.

For more information, refer to STDDEV_SAMP.

1,198 | SQL Elements

Example

gSQL> SELECT VAR_SAMP(c1) FROM t1;

VAR_SAMP(C1)

132.2

1 row selected.

Built-in Function References | 1,199

VARIANCE

Syntax

VARIANCE([ALL | DISTINCT] expr)

Description

It is an aggregation function, and it obtains the variance of an expr set.

If ALL is specified, this function is performed for all values. If DISTINCT is specified, this function is perfor

med for the values of which the duplicates were deleted from. If it is not specified, it is processed as if AL

L is apecified.

If the number of expr sets except for NULL after deleting the duplicates by using DISTINCT is one, then it r

eturns 0.

The following table describes the arguments and result types.

Table 11-78 Argument and result type of VARIANCE

expr Result type

NATIVE_INTEGER family

● NATIVE_SMALLINT

● NATIVE_INTEGER

● NATIVE_BIGINT

NATIVE_DOUBLE

NUMBER NUMBER

NATIVE_DOUBLE family

● NATIVE_REAL

● NATIVE_DOUBLE

NATIVE_DOUBLE

Note

GOLDILOCKS gets the variance as follows.

• If the number of expr sets is 1, then it returns 0.

• If the number of expr sets is bigger than 1, It returns the value of STDDEV_SAMP (expr).

For more information, refer to STDDEV.

1,200 | SQL Elements

Example

gSQL> SELECT VARIANCE(c1) FROM t1;

VARIANCE(C1)

132.2

1 row selected.

gSQL> SELECT VARIANCE(ALL c1) FROM t1;

VARIANCE(ALL C1)

132.2

1 row selected.

gSQL> SELECT VARIANCE(DISTINCT c1) FROM t1;

VARIANCE(DISTINCT C1)

176.25

1 row selected.

Built-in Function References | 1,201

VERSION

Syntax

VERSION()

Description

It obtains the product's version string.

Example

gSQL> SELECT VERSION() FROM dual;

VERSION()

Release Name.X.X.X revision(XXXXX)

1 row selected.

1,202 | SQL Elements

WIDTH_BUCKET

Syntax

WIDTH_BUCKET(num, min, max, cnt)

Description

It creates a section of the same width as cnt within a range between specified min and max, and it return

s the section location in which the num is located.

The data type of num argument, min argument, max argument and cnt argument can be a numeric data

type.

min, max means the range for the section. If the min value is equal to the max value, an error is returned.

cnt means the number of sections. The cnt value should be a positive number. If the cnt value is 0 or a ne

gative number, an error is returned.

The section's location is numbered from one.

If any of num, min, max, cnt is NULL, the result is also NULL.

Example

gSQL> SELECT WIDTH_BUCKET(5, 1, 20, 5) AS RESULT FROM DUAL;

RESULT

2

1 row selected.

SQL Languages

12.

1,203

Structured Query Languages (SQL) are classified as follows.

● Data Definition Language

● Data Manipulation Language

● Data Query Language

● Control Language

1,204 | SQL Languages

12.1 Data Definition Language

DDL Related Statements

For more information, refer to the followings.

● Non-schema object DDL

○ Database Related Statements

○ Profile Related Statements

○ Audit Policy Related Statement

○ Authorization Related Statements

○ Schema Related Statements

○ Tablespace Related Statements

● SQL schema object DDL

○ Table Related Statements

○ Index Related Statements

○ View Related Statements

○ Sequence Related Statements

○ Synonym Related Statements

● Cluster object DDL

○ Cluster System Related Statements

○ Cluster Group Related Statements

○ Cluster Member Related Statements

○ Cluster Location Related Statements

○ Global Secondary Index Related Statements

Concepts of DDL

Data Definition Language (DDL) is an SQL language which creates, drops and alters SQL objects.

SQL objects of a database are listed in the following table. For more information, refer to the links in the f

ollowing table.

Table 12-1 SQL objects types

Object type Object Description Refer to

It is an object which defines a password man

http://222.108.147.73:1975/r/document/view/*c2920f04ed145130
http://222.108.147.73:1975/r/document/view/*a69602e4358185a6
http://222.108.147.73:1975/r/document/view/*88761bbe7b3643f3
http://222.108.147.73:1975/r/document/view/*59cb0d20b8dc8fb8
http://222.108.147.73:1975/r/document/view/*8323ac60075a1d62

Data Definition Language | 1,205

Non-schema

object

Profile agement policy. Profile

Audit policy
It is an object which defines the SQL audit p

olicy.
Audit Policy

User
It is a user object which consists of a set of p

rivileges.
Authorization

Schema
It is a logical position including SQL schema

objects such as tables.
Schema

Tablespace
It is a physical storage of objects such as tabl

es, indexes, etc.
Tablespace

Public synonym It is a public synonym. Public Synonym

SQL schema

object

Table
It is a physical relation where the data is stor

ed.
Table

View
It is a logical relation which consists of querie

s.
View

Index
It is an index object to improve query perfor

mance.
Index

Sequence
It is an object which generate sequence num

ber.
Sequence

Synonym
It is an object which declares an alias for an

object.
Synonym

Stored procedure It is a user defined procedure object. Stored Procedure

Stored function It is a user defined function object. Stored Function

Cluster

object

Cluster group It is a cluster member set. Cluster Group

Cluster member
It is a data server which configures a cluster s

ystem.
Cluster Member

Cluster location It is a location object of a cluster member. Cluster Location

Shard
It is a set of rows which horizontally divides a

cluster table.
Cluster Table and Shard

Global secondary

index

It is an index for the row identifier of a cluste

r.
Global Secondary Index

Object type Object Description Refer to

DDL and Transaction

A transaction of GOLDILOCKS includes not only DML statements such as INSERT, DELETE, UPDATE data,

but also DDL statement such as CREATE, DROP, ALTER objects. Many DBMS performs implicit transaction

s of DDL. On the other hand, GOLDILOCKS includes a DDL statement in the transaction, and it guarantee

s the atomicity and consistency of transaction.

This feature is useful when a user needs to atomically perform batch DDL such as database migration ort

ool installation, or to recover a mistake through ROLLBACK when statement such as DROP TABLE or TRU

1,206 | SQL Languages

NCATE TABLE is executed by user mistake.

If the property of DDL statement is auto-commit, then it automatically commits when executing the state

ment. On the other hand, if it is not auto-commit, then it can rollback the transaction even after the state

ment was executed. Whether the DDL is auto-commit or not is queried by using V$SQL_COMMAND vie

w as follows.

gSQL>

SELECT command, auto_commit

FROM V$SQL_COMMAND

WHERE is_ddl = 'YES';

COMMAND AUTO_COMMIT

--- -----------

ALTER AUDIT POLICY YES

ALTER CLUSTER GROUP .. ADD CLUSTER MEMBER YES

ALTER CLUSTER GROUP .. OFFLINE CLUSTER MEMBER YES

ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS YES

ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS YES

ALTER DATABASE RESET LOCAL CLUSTER MEMBER YES

ALTER DATABASE ADD LOGFILE GROUP YES

ALTER DATABASE ADD LOGFILE MEMBER YES

ALTER DATABASE DROP LOGFILE GROUP YES

ALTER DATABASE DROP LOGFILE MEMBER YES

ALTER DATABASE RENAME LOGFILE YES

ALTER DATABASE ARCHIVELOG YES

ALTER DATABASE NOARCHIVELOG YES

ALTER DATABASE CLEAR PASSWORD HISTORY NO

ALTER FUNCTION NO

ALTER INDEX AGING NO

ALTER INDEX .. STORAGE NO

ALTER INDEX .. RENAME NO

ALTER PROCEDURE NO

ALTER PROFILE YES

ALTER SEQUENCE YES

ALTER SYSTEM SWITCH LOGFILE YES

ALTER TABLE .. ADD COLUMN NO

ALTER TABLE .. SET UNUSED COLUMN NO

ALTER TABLE .. ALTER COLUMN .. SET DEFAULT NO

ALTER TABLE .. ALTER COLUMN .. DROP DEFAULT NO

ALTER TABLE .. ALTER COLUMN .. SET NOT NULL NO

ALTER TABLE .. ALTER COLUMN .. DROP NOT NULL NO

ALTER TABLE .. ALTER COLUMN .. SET DATA TYPE YES

Data Definition Language | 1,207

ALTER TABLE .. ALTER COLUMN .. AS IDENTITY NO

ALTER TABLE .. ALTER COLUMN .. DROP IDENTITY NO

ALTER TABLE .. RENAME COLUMN NO

ALTER TABLE .. STORAGE NO

ALTER TABLE .. ADD CONSTRAINT NO

ALTER TABLE .. ALTER CONSTRAINT NO

ALTER TABLE .. DROP CONSTRAINT NO

ALTER TABLE .. RENAME CONSTRAINT NO

ALTER TABLE .. RENAME TO .. NO

ALTER TABLE .. REBALANCE .. YES

ALTER TABLE .. MOVE SHARD .. TO CLUSTER GROUP .. YES

ALTER TABLE .. SPLIT SHARD .. INTO .. AT CLUSTER GROUP .. YES

ALTER TABLE .. RENAME SHARD .. TO .. NO

ALTER TABLE .. ADD SUPPLEMENTAL LOG NO

ALTER TABLE .. ADD GLOBAL SECONDARY INDEX NO

ALTER TABLE .. ALTER GLOBAL SECONDARY INDEX NO

ALTER TABLE .. ALTER GLOBAL SECONDARY INDEX AGING NO

ALTER TABLE .. DROP GLOBAL SECONDARY INDEX NO

ALTER TABLE .. DROP SUPPLEMENTAL LOG NO

ALTER TABLE .. READ ONLY YES

ALTER TABLE .. READ WRITE YES

ALTER TABLESPACE .. ADD YES

ALTER TABLESPACE .. DROP YES

ALTER TABLESPACE .. ONLINE YES

ALTER TABLESPACE .. OFFLINE YES

ALTER TABLESPACE .. RENAME TO YES

ALTER TABLESPACE .. RENAME { DATAFILE | MEMORY } YES

ALTER USER YES

ALTER USER .. IDENTIFIED BY YES

ALTER VIEW NO

ANALYZE SYSTEM COMPUTE STATISTICS NO

ANALYZE SYSTEM DELETE STATISTICS NO

ANALYZE TABLE .. [COMPUTE|ESTIMATE] STATISTICS YES

ANALYZE TABLE .. DELETE STATISTICS NO

AUDIT POLICY YES

COMMENT ON .. IS NO

CREATE AUDIT POLICY YES

CREATE CLUSTER GROUP YES

CREATE FUNCTION NO

CREATE INDEX NO

CREATE PROCEDURE NO

1,208 | SQL Languages

CREATE PROFILE YES

CREATE SCHEMA YES

CREATE SEQUENCE YES

CREATE SYNONYM NO

CREATE TABLE NO

CREATE TABLE ... AS SELECT NO

CREATE TABLESPACE YES

CREATE USER YES

CREATE VIEW NO

DROP AUDIT POLICY YES

DROP CLUSTER GROUP YES

DROP FUNCTION NO

DROP INDEX NO

DROP PROCEDURE NO

DROP PROFILE YES

DROP SCHEMA YES

DROP SEQUENCE YES

DROP SYNONYM NO

DROP TABLE NO

DROP TABLESPACE YES

DROP USER YES

DROP VIEW NO

GRANT .. ON DATABASE NO

GRANT .. ON TABLESPACE NO

GRANT .. ON SCHEMA NO

GRANT .. ON TABLE NO

GRANT USAGE ON .. NO

GRANT .. ON PROCEDURE NO

NOAUDIT POLICY YES

REVOKE .. ON DATABASE NO

REVOKE .. ON TABLESPACE NO

REVOKE .. ON SCHEMA NO

REVOKE .. ON TABLE NO

REVOKE USAGE ON .. NO

REVOKE .. ON PROCEDURE NO

TRUNCATE TABLE NO

106 rows selected.

The followings are examples of COMMIT and ROLLBACK when table-related DDL statements are included

in the transactions, and examples of its effects on other transactions. The example shows that the transac

tion including DDL guarantees the transaction atomicity. In addition, it ensures the reading consistency of

Data Definition Language | 1,209

the transaction, which is not affected by other transactions before transaction's commitment or when th

e transaction is rolled back.

Creating Object and Transaction

● Before committing or rolling back a transaction of creating table

When a table is created, and transaction is not committed, the table data can be manipulated on the DDL

transaction as follows. However, other transactions are not allowed to enquire the table until the creating

table transaction is committed. CREATE TABLE statement, like as INSERT statement, can not be queried b

y any other transaction until the transaction is committed.

○ Transaction A: Table t1 is created but the transaction is not committed.

gSQL> CREATE TABLE t1 (id INTEGER, name VARCHAR(128));

Table created.

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

As above, if table t1 is created on the transaction A and the transaction is not yet committed, the transact

ion B in another session can not enquire the table t1 and can not create the table named as t1.

○ Transaction B: Table t1 can not be enquired until committing the transaction A.

gSQL> SELECT * FROM t1;

ERR-42000(16040): table or view does not exist :

SELECT * FROM t1

*

ERROR at line 1:

○ Table t1 can not be created until the transaction A is rolled back.

gSQL> CREATE TABLE t1 (emp_no INTEGER);

ERR-HYT00(14026): resource busy or timeout expired

● After committing a transaction of creating table

1,210 | SQL Languages

If the transaction A is committed, table t1 can be enquired by the transaction B and CREATE TABLE state

ment returns a validation error to notify that the table t1 exists as follows.

○ Transaction B: After committing the transaction A, the table can be enquired as follows.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

○ After the transaction A is committed, a validation error is returned.

gSQL> CREATE TABLE t1 (emp_no INTEGER);

ERR-42000(16005): name 'PUBLIC.T1' is already used by an existing object :

CREATE TABLE t1 (emp_no INTEGER)

*

ERROR at line 1:

● After rolling back a transaction of creating table

If the transaction A is rolled back, creating table t1 is also rolled back, and table t1 can be created by the t

ransaction B.

○ Transaction B: The transaction A is rolled back and its state becomes as same as before creating t

able t1.

gSQL> SELECT * FROM t1;

ERR-42000(16040): table or view does not exist :

SELECT * FROM t1

*

ERROR at line 1:

○ The transaction A is rolled back and it can create the table t1.

gSQL> CREATE TABLE t1 (emp_no INTEGER);

Table created.

Dropping Object and Transaction

● Before committing or rolling back a transaction of dropping table

Data Definition Language | 1,211

When a table is dropped, and transaction is not committed, other transactions can enquire the dropped t

able until the DROP TABLE transaction is committed. DROP TABLE statement, like as DELETE statement, r

etrieves the state of before deleting the table when other transaction enquires it until the transaction is c

ommitted.

The following example describes the state which the transaction A drops the table t1, then it creates new

table t1, and the transaction is not committed.

○ Transaction A: There is a row having two columns in the table t1 before dropping the table.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

○ Dropping the existing table t1

gSQL> DROP TABLE t1;

Table dropped.

○ Creating the new table t1

gSQL> CREATE TABLE t1 (addr VARCHAR(128));

Table created.

○ Creating a new row in the newly created table t1

gSQL> INSERT INTO t1 VALUES ('Seoul, Korea');

1 row created.

gSQL> SELECT * FROM t1;

ADDR

Seoul, Korea

1 row selected.

If the transaction B enquires when the transaction A is not committed, the information which is before th

e transaction A is executed is obtained as follows. DROP TABLE statement, like as DELETE statement, doe

s not affect any other transaction until the transaction is committed.

○ Transaction B: The transaction B retrieves the table which is before the execution of the transacti

on A.

1,212 | SQL Languages

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

● After committing a transaction of dropping table

If the transaction A is committed, then the transaction B enquires the newly created table t1 as follows.

○ Transaction B: After committing the transaction A, the transaction B enquires the newly created t

able t1.

gSQL> SELECT * FROM t1;

ADDR

Seoul, Korea

1 row selected.

● After rolling back a transaction of dropping table

If the transaction A is rolled back, the transaction B enquires the table t1 which is before the execution of

the transaction A as follows. Namely, if the transaction A is rolled back, the rollback transaction does not

affect the data of which the transaction B enquires.

○ Transaction B: If the transaction A is rolled back, the transaction B enquires the information whic

h is before the execution of the transaction A.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

Altering Object and Transaction

ALTER TABLE statement is used to alter the table structure. ALTER TABLE statement also ensures atomicit

y and consistency of the transaction like as CREATING TABLE or DROPPING TABLE statements. Before co

mmitting a transaction in which a column is added to a table, other transactions retrieve the information

of the existing table as follows. Namely, ALTER TABLE statement, like as UPDATE statement, retrieves inf

ormation which is before DDL transaction in other transaction until the transaction is committed.

● Transaction A: It adds a new UPDATE_TIME column.

Data Definition Language | 1,213

gSQL> ALTER TABLE t1 ADD COLUMN (update_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

Table altered.

● The table t1 including the added column is retrieved.

gSQL> select * from t1;

ID NAME UPDATE_TIME

-- ------ --------------------------

1 leekmo 2014-07-10 12:50:33.540495

1 row selected.

If the transaction B is executed before committing the transaction A as follows, then the table t1 which is

before adding a column is retrieved.

● Transaction B: The added column UPDATE_TIME is not retrieve, because the transaction A is not com

mitted.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

1,214 | SQL Languages

12.2 Data Manipulation Language

DML Related Statements

For more information, refer to the followings.

● INSERT related statements

○ INSERT INTO

○ INSERT INTO name RETURNING

○ INSERT INTO name RETURNING .. INTO

● UPDATE related statements

○ UPDATE

○ UPDATE name RETURNING

○ UPDATE name RETURNING .. INTO

○ UPDATE name WHERE CURRENT OF cursor_name

● DELETE related statements

○ DELETE FROM

○ DELETE FROM name RETURNING

○ DELETE FROM name RETURNING .. INTO

○ DELETE FROM name WHERE CURRENT OF cursor_name

● SELECT related statements: SELECT .. INTO

● Dynamic SQL related statements

○ EXECUTE IMMEDIATE 'sql_string'

○ PREPARE statement_name

○ EXECUTE statement_name

Concepts of DML

Data Manipulation Language (DML) is an SQL language which manipulates and enquires data in existing

tables such as INSERT, DELETE, UPDATE.

This chapter describes only DML statements which change data. For more information about queries, refe

r to Data Query Language.

Data Manipulation Language | 1,215

The DDL statements change the SQL object structure, but DML statements manipulate the objects conten

ts. For example, ALTER TABLE statement alters the table structure, but INSERT statement adds one or mo

re rows in the table.

DML statements such as inserting, deleting, updating data in table are classified as follows.

Table 12-2 Data manipulation statements

Category Statements Description

INSERT

INSERT .. VALUES It adds a single row to the table.

INSERT .. SELECT It adds the query results to the table.

INSERT .. RETURN .. INTO It sets the value of the added row as a variable.

INSERT .. RETURN It retrieves the added row as the query result.

DELETE

DELETE .. WHERE It deletes the row which satisfies the condition.

DELETE .. WHERE CURRENT OF It deletes the row which is at the cursor's position.

DELETE .. RETURN .. INTO It sets the value of the removed row as a variable.

DELETE .. RETURN It retrieves the removed row as the query result.

UPDATE

UPDATE .. WHERE It updates the row which satisfies the condition.

UPDATE .. WHERE CURRENT OF It updates the row which is at the cursor's position.

UPDATE .. RETURN .. INTO It sets the value of the updated row as a variable.

UPDATE .. RETURN It retrieves the updated row as the query result.

Inserting Data

It adds data in a row unit when adding data to a table. The INSERT statement cad add one or more rows

to a table. Even when the data in some columns are omitted, all rows are added with completed columns

to the table.

The following is an example of a table.

CREATE TABLE t1

(

id NUMBER(10,0),

name VARCHAR(128),

addr VARCHAR(1024) DEFAULT 'n/a'

);

The most basic way to add a row is as follows.

INSERT INTO t1 VALUES (1, 'leekmo', 'Seoul, Korea');

1,216 | SQL Languages

The values listed in the VALUES clause are inserted in accordance with the sequence of the listed column

when the table is created.

However, the example above can cause an unexpected failure when inserting or deleting columns, so it is

recommended to explicitly specify the column name as follows.

INSERT INTO t1 (id, name, addr) VALUES (1, 'leekmo', 'Seoul, Korea');

INSERT INTO t1 (name, addr, id) VALUES ('leekmo', 'Seoul, Korea', 1);

The two INSERT statements above are listed in different order from the columns, but the added row of th

e table t1 has the same data.

If the table does not list all the columns, unspecified column is set to the default value to complete the ro

w. The addr column which was not used in the statement stores the default value (n/a) which was specifi

ed when creating table as follows.

INSERT INTO t1 (id, name) VALUES (1, 'leekmo');

INSERT INTO t1 (id, name) SELECT id, name FROM emp;

Use DEFAULT to explicitly specify the default value for the column as follows.

INSERT INTO t1 (id, name, addr) VALUES (1, 'leekmo', DEFAULT);

Use either of the following two statements to set all the columns to the default value.

INSERT INTO t1 (id, name, addr) VALUES (DEFAULT, DEFAULT, DEFAULT);

INSERT INTO t1 DEFAULT VALUES;

Use a single INSERT statement to add multiple rows. The following is an example of adding three new ro

ws using a single INSERT statement.

INSERT INTO t1 (id, name, addr) VALUES

(1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim', 'Seoul, Korea'),

(3, 'xcom', 'Inchon, Korea');

Use the SELECT query results to add multiple rows. The following is an example of adding rows to the tab

le t1 by retrieving employees who joined the company more than three years ago.

INSERT INTO t1 (id, name, addr)

SELECT id, name, addr

FROM emp

WHERE DATEDIFF(YEAR, SYSDATE, join_date) >= 3;

Data Manipulation Language | 1,217

Deleting Data

DELETE statement deletes data from the table in a row unit like when inserting data. Rows can be delete

d by using WHERE condition or by using row's ID(ROWID).

The following is an example of deleting rows which satisfy WHERE condition.

DELETE FROM t1 WHERE id = 1;

The following is an example of deleting the row using ROWID.

gSQL> SELECT rowid FROM t1 WHERE id = 1;

ROWID

AAAAAAAAFNHAACAAAAAiAAA

1 row selected.

gSQL> DELETE FROM t1 WHERE ROWID = 'AAAAAAAAFNHAACAAAAAiAAA';

1 row deleted.

DELETE statement without a WHERE clause deletes the entire row in a table. DELETE statement without

a WHERE clause is similar to TRUNCATE TABLE statement in terms of deleting entire row, but it is recom

mended to use the TRUNCATE TABLE statement.

DELETE FROM t1;

TRUNCATE TABLE t1;

Updating Data

Update data by using UPDATE statement. One or more rows and columns can be updated. Other column

s which is not specified in the UPDATE statement is not affected.

The following is an example of updating a column in rows which satisfy the condition.

UPDATE t1 SET page_view = page_view + 1 WHERE id = 1;

The followings are examples of updating multiple columns, and the two UPDATE statements mean the sa

me.

UPDATE t1 SET page_view = page_view + 1, status = 'F' WHERE id = 1;

UPDATE t1 SET (page_view, status) = (page_view + 1, 'F') WHERE id = 1;

1,218 | SQL Languages

Use DEFAULT as follows to set the column value to a default value.

UPDATE t1 SET addr = DEFAULT WHERE id = 1;

Manipulating Data Using Cursor

Cursor is a session object to execute queries and to manipulate the query result. Use cursor to update or

delete the query result set.

The following is an example of declaring updatable cursor, and updating or deleting the row at the positi

on of the current cursor using the updatable cursor.

gSQL> DECLARE cur1 CURSOR FOR SELECT id, data FROM t1 FOR UPDATE;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> DELETE FROM t1 WHERE CURRENT OF cur1;

1 row deleted.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> UPDATE t1 SET id = id + :v_id WHERE CURRENT OF cur1;

1 row updated.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT * FROM t1 ORDER BY 1;

Data Manipulation Language | 1,219

ID DATA

-- ------

1 data_1

6 data_3

2 rows selected.

The examples above describe the followings.

Use DECLARE cursor_name to declare FOR UPDATE cursor, and use OPEN cursor_name to open the curs

or.

Use FETCH cursor_name to move the cursor to the specified position.

Use DELETE FROM name WHERE CURRENT OF cursor_name to delete the row in the specified position.

Use UPDATE name WHERE CURRENT OF cursor_name to update the row in the specified position.

FOR UPDATE cursor is closed using CLOSE cursor_name, or it is closed when committing transaction.

DML Query

When executing DML statements changing the data, use RETURNING clause to retrieve the changed data.

The RETURNING clause of DML statements, like as SELECT, can retrieve data, so the execution of the DM

L statement and the SELECT statement can be replaced with the DML query.

The following is an example of using INSERT INTO name RETURNING syntax to insert data and retrieve th

e result. The join_date value which was input by using SYSDATE function can be retrieved by asingle DML

query.

gSQL> INSERT INTO t1 (id, join_date) VALUES (1, SYSDATE) RETURNING id, join_date;

ID JOIN_DATE

-- ----------

1 2014-07-18

1 row created.

The following is an example of using DELETE FROM name RETURNING syntax to delete data and retrieve

the result. The result data can be manipulated by using operation in RETURNING clause.

gSQL> DELETE FROM t1 RETURNING (id || ': ' || join_date) AS id_and_join_date;

ID_AND_JOIN_DATE

1: 2014-07-18

1 row deleted.

The following is an example of using UPDATE name RETURNING syntax to update rows and retrieve the

1,220 | SQL Languages

updated values. The value which is before updating can be retrieved by using OLD clause.

● It updates the row and retrieves the updated value.

gSQL> UPDATE t1 SET page_view = page_view + 1 WHERE id = 1 RETURNING page_view;

PAGE_VIEW

102

1 row updated.

● It updates the row and retrieves the value which is before the updating.

gSQL> UPDATE t1 SET page_view = page_view + 1 WHERE id = 1 RETURNING OLD page_view;

PAGE_VIEW

102

1 row updated.

RETURNING clause of DML statements, like as SELECT query, can retrieve multiple query results. However,

if the DML is executed only for a single row, then the host variable can be obtained by using RETURNING

INTO clause. In this case, the number of changed rows should be one or less, like SELECT .. INTO clause .

The following is an example of setting the value to the host variable using RETURNING .. INTO clause of e

ach DML statement.

● It declares the host variable.

gSQL> \var v_id INTEGER

gSQL> \var v_page_view BIGINT

gSQL> \var v_date DATE

● After inserting the row, a value is set to the host variable.

gSQL> INSERT INTO t1 (id, join_date) VALUES (1, SYSDATE) RETURNING join_date INTO :v_date;

V_DATE

2014-07-18 16:57:11.000000

1 row created.

● After updating the row, a value is set to the host variable.

gSQL> UPDATE t1 SET page_view = page_view + 1 WHERE id = 1 RETURN page_view INTO :v_page_view;

V_PAGE_VIEW

Data Manipulation Language | 1,221

101

1 row updated.

● After deleting the row, a value is set to the host variable.

gSQL> DELETE FROM t1 WHERE id = 1 RETURN id, page_view INTO :v_id, :v_page_view;

V_ID V_PAGE_VIEW

---- -----------

1 101

1 row deleted.

For more information about DML query, refer to the followings.

● INSERT INTO name RETURNING

● INSERT INTO name RETURNING .. INTO

● DELETE FROM name RETURNING

● DELETE FROM name RETURNING .. INTO

● UPDATE name RETURNING

● UPDATE name RETURNING .. INTO

1,222 | SQL Languages

12.3 Data Query Language

Query Related Statements

For more information, refer to the followings.

● SELECT query related statements

○ SELECT

○ SELECT .. FOR UPDATE

● DML query related statements

○ INSERT INTO name RETURNING

○ UPDATE name RETURNING

○ DELETE FROM name RETURNING

● Cursor related statements

○ DECLARE cursor_name

○ OPEN cursor_name

○ FETCH cursor_name

○ CLOSE cursor_name

○ DELETE FROM name WHERE CURRENT OF cursor_name

○ UPDATE name WHERE CURRENT OF cursor_name

Concepts of Query

Query means a series of operations to retrieve data for one or more of the table or view. By using the que

ry, a user can get the result data which satisfies the specific condition in the desired form from the stored

data.

Query is a SELECT statement which is at the top in the entire SQL statement separated by ';'. Top-level SE

LECT statement can include another SELECT statement in it. In this case, the subordinate SELECT stateme

nt is called as a subquery.

In GOLDILOCKS, query is divided into SELECT query, DML query, and cursor. SELECT query returns the res

ult by using the SELECT statement. DML query returns the result by using the RETURNING phrase in INSE

RT, DELETE, UPDATE statements. Cursor temporarily saves the result sets when it is enquired once, and ra

ndomly accesses to a row of the saved result set, then brings the result.

A user can get the results at once by using SELECT query and DML query. On the other hand, by using th

Data Query Language | 1,223

e cursor, SELECT statement specified with DECLARE cursor is executed in OPEN cursor, and then it holds t

he result set until CLOSE cursor is called. Then it repeatedly brings the result by randomly accessing a row

of the result set using FETCH cursor.

This chapter describes SELECT query, DML query and cursor.

Basic Query

The basic form of a query is SELECT <select list> FROM <table expression>. <select list> which is between

SELECT and FROM keywords, specifies one or more columns or expressions to be included in rows which

are the result for the table or view described in <table expression>.

SELECT n_name

, INITCAP(n_name)

FROM nation

WHERE n_regionkey = 1;

N_NAME INITCAP(N_NAME)

------------------------- -------------------------

ARGENTINA Argentina

BRAZIL Brazil

CANADA Canada

PERU Peru

UNITED STATES United States

5 rows selected.

One or more tables or views can be described in <table expression>, and same column can be included in

two tables or views. In this case, the name of table or view should be specified together when describing

that column in <select list>. When describing a table or a column, it is recommended to clearly describe t

he schema names and table names, etc.

● A wrong example

SELECT n_name

FROM nation AS n

, v_nation AS v

WHERE n.n_nationkey = v.n_nationkey

AND v.n_regionkey = 1;

ERR-42000(16142): column ambiguously defined :

SELECT n_name

*

1,224 | SQL Languages

ERROR at line 1:

● A correct example

SELECT n.n_name

FROM nation AS n

, v_nation AS v

WHERE n.n_nationkey = v.n_nationkey

AND v.n_regionkey = 1;

N_NAME

ARGENTINA

BRAZIL

CANADA

PERU

UNITED STATES

5 rows selected.

<select list> supports the alias name. It changes output column names in each columns which are separat

ed by comma (,). Alias name can be used only in the <order by clause>, and it can not to be used in other

phrases.

SELECT p_type

, p_retailprice * 0.9 AS discount_price

FROM part

ORDER BY discount_price

FETCH 5;

2 3 4 5

P_TYPE DISCOUNT_PRICE

---------------------- --------------

PROMO BURNISHED COPPER 810.9

ECONOMY BRUSHED NICKEL 810.9

LARGE BRUSHED BRASS 811.8

LARGE BRUSHED NICKEL 811.8

PROMO ANODIZED STEEL 811.8

5 rows selected.

In addition to <select list>, <hint clause> and <set quantifier> can also be used between SELECT and FRO

M keywords. <hint clause> allows a user to directly adjust the query execution plan. For more information,

refer to hint clause. <set quantifier> removes the duplicate data of the row which is returned as the result.

For more information, refer to query specification.

Data Query Language | 1,225

● An example of using hint

SELECT

/*+ INDEX(part) */

p_type

, p_retailprice

FROM part

WHERE p_partkey = 100;

P_TYPE P_RETAILPRICE

-------------------- -------------

ECONOMY ANODIZED TIN 1000.1

1 row selected.

● An example of using <set quantifier>

SELECT DISTINCT

o_orderpriority

FROM orders;

O_ORDERPRIORITY

5-LOW

2-HIGH

3-MEDIUM

1-URGENT

4-NOT SPECIFIED

5 rows selected.

SET Operator

SET operators combine the result set of two or more queries into a single result set. SET operators are UN

ION, EXCEPT, INTERSECT, and MINUS. MINUS operates as same as EXCEPT. Each SET operator has additi

onal options such as ALL and DISTINCT. If the option is omitted, DISTINCT is used by default.

When using the SET operators to describe two or more queries, generally the queries are processed sequ

entially from the left. When parentheses are used to explicitly specify the processing order of the queries,

then those queries are processed first.

SELECT n_name

FROM nation

WHERE n_nationkey < 10

1,226 | SQL Languages

INTERSECT

(SELECT n_name

FROM nation

WHERE n_regionkey = 1

UNION ALL

SELECT n_name

FROM nation

WHERE n_regionkey = 2);

N_NAME

BRAZIL

ARGENTINA

INDONESIA

INDIA

CANADA

5 rows selected.

Each query of the SET operators should have the same number of the target, and the target at the same

positions of each query should have a data type which belongs to the same group.

<order by clause> of SET operator sorts the final result set. Each query of SET operators can have its own

<order by clause> to sort themselves.

For more information about SET operators, refer to set operator.

Join

Join is a query that combines rows from more than one table or view in <from clause>. If there is not a joi

n condition, the result is obtained by combining each result row of the left table or view with each result

row of the right table or view.

If tables or views have a column name in common when joining two or more tables or views in <from cla

use>, a user should distinguish these columns by using the table or view name in <select list>, <where cla

use>. Otherwise, a validation error occurs.

Join queries either contain the join condition or do not contain the join condition. Join condition is for co

mparing columns from two different tables or views. If the join condition is not specified, each row of a t

able or view is combined with each row of another table or view, and the combined row is returned. If th

e join condition is specified, rows from each table or view which satisfies the join condition, are returned i

n the combined form.

Equi-join is a join whose join condition contains an equality operator(=). Equi-join condition is an importa

Data Query Language | 1,227

nt factor in optimizing the join operation by the optimizer.

Self-join is a join operation which has only the same tables in <from clause>. To describe column in <selec

t list>, the alias name in each table is described and table alias in column is used.

CROSS JOIN

CROSS JOIN is a join operation whose join condition does not exist, and it is also called as Cartesian Prod

uct. CROSS JOIN combines each row of one table or view with each row of the other, and the combined

row is returned as a result.

SELECT a.r_name

, b.r_name

FROM region AS a

, region AS b

FETCH 5;

R_NAME R_NAME

------------------------- -------------------------

AFRICA AFRICA

AFRICA AMERICA

AFRICA ASIA

AFRICA EUROPE

AFRICA MIDDLE EAST

5 rows selected.

INNER JOIN

INNER JOIN returns the rows which satisfy the join condition for two or more tables or views. INNER JOIN

is when inner join is explicitly specified in <from clause>. Or, when tables or views are listed with comma

(,) in <from clause> and its join condition is specified in <where clause>.

If there are explicit inner join in <from clause>, and the join condition in <where clause>, then they are pr

ocessed as one inner join condition.

● An example of using an INNER JOIN statement

SELECT n_name

FROM region INNER JOIN nation ON r_regionkey = n_regionkey

WHERE r_name = 'AFRICA';

N_NAME

ALGERIA

1,228 | SQL Languages

ETHIOPIA

KENYA

MOROCCO

MOZAMBIQUE

5 rows selected.

● An example of a list using a comma (,)

SELECT n_name

FROM region

, nation

WHERE r_regionkey = n_regionkey

AND r_name = 'AFRICA';

N_NAME

ALGERIA

ETHIOPIA

KENYA

MOROCCO

MOZAMBIQUE

5 rows selected.

OUTER JOIN

OUTER JOIN returns all rows which satisfy the join condition for two or more tables or views. It also retur

ns rows which do not satisfy the join condition for one or both side of table or view depending on the dir

ection of OUTER JOIN.

OUTER JOIN can be classified as LEFT OUTER JOIN , RIGHT OUTER JOIN, FULL OUTER JOIN. All three OUT

ER JOIN return rows which satisfy the join condition, but they are distinguished by the additional results.

LEFT OUTER JOIN returns all rows of the left table which do not satisfy the join condition by filling NULL f

or all of its right rows. RIGHT OUTER JOIN returns all rows of the right table which do not satisfy the join

condition by filling NULL for all of its left rows. FULL OUTER JOIN returns all additional return results of LE

FT OUTER JOIN and RIGHT OUTER JOIN.

SELECT r_name

, n_name

FROM region LEFT OUTER JOIN nation

ON r_regionkey = n_regionkey AND r_name = 'AFRICA';

R_NAME N_NAME

------------------------- -------------------------

Data Query Language | 1,229

AFRICA ALGERIA

AFRICA ETHIOPIA

AFRICA KENYA

AFRICA MOROCCO

AFRICA MOZAMBIQUE

AMERICA null

ASIA null

EUROPE null

MIDDLE EAST null

9 rows selected.

GOLDILOCKS supports the outer join operator(+) for compatibility with Oracle, and which is not supporte

d in the SQL standard. The outer join operator(+) lists tables by using a comma(,) in <from clause> and it

adds a (+) to a node column which is operated as the outer node in the join condition of <where clause>.

When using the outer join operator (+), the sign(+) should be specified on the right side of the column as

follows.

select * from t1, t2 where t1.i1 = t2.i1(+);

The syntax rules of the outer join operator (+) are as follows.

● <Join outer operator> can be used only for <where clause>.

● <Join outer operator> can be used only for <column reference> of <table reference> which is a target

of <joined table>.

● <value expression> including <join outer operator>, can not be combined with other conditions whic

h use <OR logical operator>.

● <column reference> including <join outer operator> can not be used as the argument of IN function.

● A <table reference> can not be used as null generated table of many outer joins (constraints on the o

uter join)

● When executing the outer join of two or more tables, they are listed according to the left outer join s

equence, and executes the outer join from the very left of them.

● When executing outer join between two or more tables and multiple tables are combined into a tabl

e by the outer join, then the outer join is executed according to the sequence of calculation by an opt

imizer.

Even when the outer join operator (+) is specified, it is ignored in the following cases.

● <join outer operator> can be used for <value expression> which can be used as the join condition bet

ween the two tables, if it can not be used as the join condition, then it is ignored and an error or war

ning does not occur.

● <join outer operator> which is specified in <column reference> of the outer query is ignored, and an

error or warning does not occur.

● If two <table reference> are outer joined using <join outer operator>, then <join outer operator> sho

1,230 | SQL Languages

uld be specified in all <column reference> which belong to null generated tables. Otherwise, join of t

wo <table reference> is processed as an inner join, an error or warning does not occur.

Differences between Oracle and GOLDILOCKS for the outer join operator (+) are as follows.

● Quantified comparison (in, = any, = all = row, etc.)

○ GOLDILOCKS: It processes the operation as a validation error.

○ Oracle: The and/or operation is applied, and performs the validation check.

● Or sub-clause in an and clause

○ GOLDILOCKS: Validation is applied on the columns of an or sub-clause.

○ Oracle: Validation is ignored on the columns of an or sub-clause.

● When the condition clause includes a subquery

○ GOLDILOCKS: The outer join is applied and the condition is processed as a join condition.

○ Oracle: The outer join is applied but the condition is processed as a where filter.

Note

GOLDILOCKS supports the outer join operator (+) for compatibility with Oracle. It is recommende

d to specify OUTER JOIN in <from clause>. (Oracle also recommends to specify OUTER JOIN in <fro

m clause>.)

NATURAL JOIN

NATURAL JOIN uses the join condition of an equality operator(=) for columns of same name when joinin

g two or more tables or views. It is as same as INNER JOIN except that NATURLAL JOIN has the implicit joi

n condition for columns of the same name.

SELECT r_name

FROM region a NATURAL JOIN region b;

R_NAME

AFRICA

AMERICA

ASIA

EUROPE

MIDDLE EAST

5 rows selected.

Data Query Language | 1,231

SEMI JOIN

SEMI JOIN returns the corresponding left rows if there exist right rows which satisfy the join condition. U

nlike other join operations to return the rows which combine the left and right rows, SEMI JOIN returns o

nly the left rows as the result.

● An example of using the semi join

SELECT r_name

FROM region

WHERE r_regionkey IN (SELECT n_regionkey

FROM nation

WHERE n_nationkey < 5);

R_NAME

AFRICA

AMERICA

MIDDLE EAST

3 rows selected.

ANTI-SEMI JOIN

ANTI-SEMI JOIN returns the corresponding left rows if there does not exist any right rows which satisfy th

e join condition. It returns only the left rows as the result like as SEMI JOIN.

● An example of using the anti-semi join

SELECT r_name

FROM region

WHERE r_regionkey NOT IN (SELECT n_regionkey

FROM nation

WHERE n_nationkey < 5);

R_NAME

ASIA

EUROPE

2 rows selected.

For more information about the join operation, refer to joined table.

1,232 | SQL Languages

Grouping Result Set (group by)

<group by clause> is used in order to group the rows which have the same column into one. <group by cl

ause> lists and delimiters columns by using the comma (,), and GOLDILOCKS supports the group operatio

n based on it.

SELECT

o_orderpriority

, MIN(o_totalprice) AS min_price

, MAX(o_totalprice) AS max_price

FROM orders

GROUP BY

o_orderpriority;

O_ORDERPRIORITY MIN_PRICE MAX_PRICE

--------------- --------- ---------

5-LOW 857.71 530604.44

2-HIGH 896.8 522720.61

3-MEDIUM 875.52 508668.52

1-URGENT 866.9 544089.09

4-NOT SPECIFIED 884.82 555285.16

5 rows selected.

If <group by clause> is specified, only the columns and the aggregate functions described in <group by cla

use> can be included in <select list>.

If only constants or parentheses instead of columns are specified in <group by clause>, it is assumed to be

empty grouping set which includes the imaginary columns of the same value in each row. Then, the grou

ping in column base is performed. It is same when specifying <having clause> without <group by clause>.

<having clause> can be used to get the specified rows from grouped results by <group by clause>. <havin

g clause> describes the conditions for each group, and it can describes the condition using the aggregate

operation.

SELECT

o_orderpriority

, MIN(o_totalprice) AS min_price

, MAX(o_totalprice) AS max_price

FROM orders

GROUP BY

o_orderpriority

HAVING

Data Query Language | 1,233

MIN(o_totalprice) < 870;

O_ORDERPRIORITY MIN_PRICE MAX_PRICE

--------------- --------- ---------

5-LOW 857.71 530604.44

1-URGENT 866.9 544089.09

2 rows selected.

For more information about the grouping, refer to group by clause.

Sorting Result Set (order by)

<Order by clause> sorts the result set based on the specific columns. <order by clause> can sort based on

all types of column except the LONG type.

When a positive integer value is in <order by clause>, it means the column which is located in the corresp

onding to an integer value for the targets in the <select list>. The range of positive integer value which ca

n be described in <order by clause> is from 1 and to the number of the targets in <select list>.

SELECT

o_orderpriority

, MIN(o_totalprice) AS min_price

, MAX(o_totalprice) AS max_price

FROM orders

GROUP BY

o_orderpriority

ORDER BY 1;

O_ORDERPRIORITY MIN_PRICE MAX_PRICE

--------------- --------- ---------

1-URGENT 866.9 544089.09

2-HIGH 896.8 522720.61

3-MEDIUM 875.52 508668.52

4-NOT SPECIFIED 884.82 555285.16

5-LOW 857.71 530604.44

5 rows selected.

If the column data type in <order by clause> is numeric, it is sorted by numeric comparison. If the column

data type is a character type, it is sorted by character comparison.

Each column in <order by clause> can be described by using the sorting direction option such as ASC, DE

SC. If it is omitted, it is regarded as ASC.

1,234 | SQL Languages

For more information about sorting, refer to order by clause.

Subquery

Subquery supports a multi-level search request. The multi-level search request means that the result of th

e current query depends on the result of the subquery.

For example, the query to get people who are older than the average age of the people in a specific grou

p is written in multi-step. The first query is to obtain the average age of people in a specific group, then t

he second query is to retrieve the number of people who are older than the average using the first query.

SELECT e_name

FROM emp

WHERE e_age > (SELECT AVG(e_age)

FROM emp

WHERE e_dept = 'RND');

A subquery can be used in <from clause>, <where clause>. The subquery in <from clause> is "inline view"

and the subquery in <where clause> is "nested subquery".

The column name of a table or view in nested subquery can be same as the column name of a table or vi

ew in the query including the nested subquery when using the nested subquery. If only the column name

exists in <select list> of the nested subquery, then it refer to the column of the table or view in the nested

subquery. If the column name in <select list> of the nested subquery does not exist in the nested subquer

y's table or view, then it refers to the column name of the table or view in the query which includes the n

ested subquery, if exists.

SELECT r_name

FROM region

WHERE EXISTS (SELECT *

FROM nation

WHERE n_nationkey < 5 /* nation.n_nationkey */

AND n_regionkey = r_regionkey) /* nation.n_regionkey = region.r_regionkey

*/

;

The optimizer unnests the nested subquery of <where clause> in the query which includes the nested su

bquery. Then it processes it as SEMI JOIN or ANTI-SEMI JOIN operation.

This is an optimization of the nested subquery, and the optimizer determines it by calculating the cost of

unnesting if the subquery exists in IN, NOT IN, EXISTS, NOT EXISTS, quantify operator.

If a user wants to forcibly unnest the nested subquery, the user can use <hint clause> of nested subquery.

Data Query Language | 1,235

For more information about unnesting the nested subquery, refer to hint clause.

SELECT r_name

FROM region

WHERE r_regionkey IN (SELECT /*+ UNNEST */

n_regionkey

FROM nation

WHERE n_nationkey < 5);

For more information about subquery, refer to subquery.

1,236 | SQL Languages

12.4 Control Language

Control Language Related Statements

Transaction control related statements: Refer to the followings.

• COMMIT

• ROLLBACK

• LOCK TABLE

• SAVEPOINT savepoint_specifier

• RELEASE SAVEPOINT savepoint_specifier

Session control related statements: Refer to the followings.

• ALTER SESSION SET property_name

• SET SESSION AUTHORIZATION user_identifier

• SET SESSION CHARACTERISTICS AS transaction_mode

• SET TIME ZONE

• SET TRANSACTION transaction_mode

System control related statements: Refer to the followings.

• ALTER SYSTEM CHECKPOINT

• ALTER SYSTEM {MOUNT | OPEN} DATABASE

• ALTER SYSTEM [KILL | DISCONNECT] SESSION

• ALTER SYSTEM SET property_name

• ALTER SYSTEM RESET property_name

• ALTER SYSTEM SWITCH LOGFILE

Transaction Control

Transaction control statements are used to manage the changes caused by executing DML or DDL statem

ents in the transactions. Transaction control statements can be committed to keep the changes permane

ntly, or rolled back to undo the changes.

Transaction control statements are classified as follows.

Table 12-3 Transaction control statements

Statement Description Refer to

COMMIT It terminates the transaction normally. COMMIT

ROLLBACK It undoes the transaction. ROLLBACK

Control Language | 1,237

SAVEPOINT It creates the savepoint.
SAVEPOINT savepoint_spe

cifier

RELEASE SAVEPOINT It removes the savepoint.
RELEASE SAVEPOINT save

point_specifier

LOCK TABLE It sets the table-level lock. LOCK TABLE

SET TRANSACTION
It controls the transaction properties.

(Read/write, isolation level)

SET TRANSACTION transac

tion_mode

SET CONSTRAINTS It controls the checkpoint of the deferrable constraints. SET CONSTRAINTS

Statement Description Refer to

A transaction is automatically created when the DML statements or DDL statements are executed for the

first time. DML statements change the data and DDL statements change the SQL objects. However, the S

ELECT statements or the control statement do not generate a transaction.

The transaction rollbacks are classified as total rollback and partial rollback. The partial rollback is execute

d either in an explicit method or an implicit method. The total rollback is executed by ROLLBACK stateme

nt, and it undoes any changes performed by DML, DDL within the transaction.

The explicit partial rollback is a method which a user executes ROLLBACK statement using the savepoint a

s follows.

The following example describes that savepoints sp1, sp2 are declared, and then the partial rollback is ex

plicitly executed.

gSQL> CREATE TABLE t1 (id INTEGER, name VARCHAR(128));

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

gSQL> SAVEPOINT sp1;

Savepoint created.

gSQL> INSERT INTO t1 VALUES (2, 'mkkim');

1 row created.

gSQL> SAVEPOINT sp2;

Savepoint created.

gSQL> INSERT INTO t1 VALUES (3, 'xcom');

1 row created.

gSQL> ROLLBACK TO SAVEPOINT sp2;

Rollback complete.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1,238 | SQL Languages

1 leekmo

2 mkkim

2 rows selected.

gSQL> ROLLBACK TO SAVEPOINT sp1;

Rollback complete.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

gSQL> ROLLBACK WORK;

Rollback complete.

gSQL> SELECT * FROM t1;

no rows selected.

The implicit partial rollback is undoing only the changes of the corresponding statement when an error oc

curs while executing the statement.

The following example describes the implicit partial rollback.

If a unique constraint is violated, only the INSERT statement is rolled back and the previous changes of th

e transaction are retained.

gSQL> ALTER TABLE t1 ADD CONSTRAINT t1_uk UNIQUE(id);

Table altered.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO t1 VALUES (4, 'egonspace');

1 row created.

gSQL> INSERT INTO t1 VALUES (1, 'jhkim');

ERR-40002(16057): unique constraint (PUBLIC.T1_UK) violated

gSQL> SELECT * FROM t1;

ID NAME

-- ---------

1 leekmo

2 mkkim

3 xcom

4 egonspace

4 rows selected.

Control Language | 1,239

Session Control

Session is a logical object to manage the user's state information who accesses the database. Session con

trol statement changes the session properties.

Session control statements are classified as follows.

Table 12-4 Session control statements

Statement Description Refer to

SET SESSION CHARA

CTERISTICS

It controls the transaction properties in the s

ession.

SET SESSION CHARACTERISTICS AS transacti

on_mode

SET TIME ZONE It alters the time zone of the session. SET TIME ZONE

SET SESSION AUTHO

RIZATION
It alters the user of the session.

SET SESSION AUTHORIZATION user_identifie

r

ALTER SESSION SET It alters the session property. ALTER SESSION SET property_name

SET TRANSACTION statement is the transaction controlling statement and SET SESSION CHARACTERISTI

CS statement is session controlling statement. Both SET TRANSACTION statement and SET SESSION CHA

RACTERISTICS statement control the transaction properties.

The difference between SET TRANSACTION statement and SET SESSION CHARACTERISTICS statement is

that SET TRANSACTION statement is applied only to a transaction which will be executed next. On the ot

her hand, SET SESSION CHARACTERISTICS statement is applied for all transactions which occur in the ses

sion afterwards.

The following is a result of CURRENT_TIMESTAMP statement which obtains the current date and time aft

er changing the time zone by using SET TIME ZONE statement.

gSQL> SELECT CURRENT_TIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP

2014-07-21 11:42:49.828276 +09:00

1 row selected.

gSQL> SET TIME ZONE '+00:00';

Session set.

gSQL> SELECT CURRENT_TIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP

2014-07-21 02:43:03.437940 +00:00

1 row selected.

1,240 | SQL Languages

System Control

System control statements manage the database system, and they are classified as follows.

Table 12-5 System control statements

Statement Description Refer to

ALTER SYSTEM {OPEN|MOUNT} DAT

ABASE
It starts up the database.

ALTER SYSTEM {MOUNT | OPEN} DAT

ABASE

ALTER SYSTEM CHECKPOINT It performs the checkpoint. ALTER SYSTEM CHECKPOINT

ALTER SYSTEM KILL SESSION
It forcibly terminates the specific s

ession.

ALTER SYSTEM [KILL | DISCONNECT] S

ESSION

ALTER SYSTEM SWITCH LOGFILE It switches the log file. ALTER SYSTEM SWITCH LOGFILE

ALTER SYSTEM SET It sets the system properties. ALTER SYSTEM SET property_name

ALTER SYSTEM RESET It removes the system properties. ALTER SYSTEM RESET property_name

The following is an example of enquiring sessions connected to the database, and terminating the specifi

c session.

gSQL> SELECT USER_NAME, SESSION_ID, SERIAL_NO, SESSION_STATUS, PROGRAM_NAME FROM V$SESSION

WHERE USER_NAME = 'TEST';

USER_NAME SESSION_ID SERIAL_NO SESSION_STATUS PROGRAM_NAME

--------- ---------- --------- -------------- ------------

TEST 62 49 CONNECTED gsql

TEST 65 109 CONNECTED gsqlnet

TEST 66 130 CONNECTED gsql

3 rows selected.

gSQL> ALTER SYSTEM DISCONNECT SESSION 65, 109;

System altered.

Processing SQL in Cluster | 1,241

12.5 Processing SQL in Cluster

This chapter describes how to process various SQL statements in a cluster environment.

Processing DDL in Cluster

DDL Processing Procedure in Cluster

GOLDILOCKS cluster does not have a separate meta server, and a user can perform DDL in any cluster me

mber configuring the cluster system.

DDL is executed following the procedure below in a cluster environment.

Figure 1 Processing DDL in cluster

1,242 | SQL Languages

DDL is performed through two phases, which are a lock phase and and execution phase. On the lock pha

se, a lock which is required for performing DDL is acquired and DDL is sequentially performed on every cl

uster member. On the execute phase, DDL is simultaneously performed for every cluster member.

DDL is completed when DDL is successfully performed on every cluster members. If DDL fails on a specific

cluster member, then DDL operations on every cluster members are cancelled. DDL can not be performed

if an error occurred in any cluster member. All cluster member synchronize meta information for objects t

hrough this process.

Simultaneous DDL Execution

The cluster object DDL which changes the cluster system configuration and the SQL object DDL can not b

e simultaneously performed. The availability of simultaneously performing the cluster object DDL and the

SQL object DDL are as follows.

Table 12-6 Availability of simultaneously performing DDL

DDL Cluster object DDL SQL object DDL

Cluster object DDL X X

SQL object DDL X O

The following DDL can not be simultaneously performed as given above.

● Cluster object DDL and cluster object DDL

○ (X) CREATE CLUSTER GROUP g2 CLUSTER MEMBER g2n1 HOST '192.168.0.21' PORT 10210;

○ (X) ALTER CLUSTER GROUP g1 ADD CLUSTER MEMBER g1n2 HOST '192.168.0.12' PORT 10120;

● Cluster object DDL and SQL object DDL

○ (X) CREATE CLUSTER GROUP g2 CLUSTER MEMBER g2n1 HOST '192.168.0.21' PORT 10210;

○ (X) CREATE TABLE t1 (c1 INTEGER);

● SQL object DDL and SQL object DDL

○ (O) CREATE TABLE t1 (c1 INTEGER);

○ (O) CREATE TABLE t2 (a1 INTEGER);

Processing SELECT in Cluster

Processing Query in Cluster

Generally, a query processing of the cluster is similar to that of the stand alone. However, when the data

exist on both a local server and a remote server, it is different that the cluster requests the query processi

ng to a remote server and receives the result from it.

There are a sharded table and a cloned table (Refer to Cluster Table and Shard) in a cluster environment,

Processing SQL in Cluster | 1,243

and each table data is stored in a local server and a remote server. The sharded table data is dividedly stor

ed in a group, and its duplicated data is stored in members of the same group. The data is duplicated and

stored in every group and member of a cloned table.

The following figure describes a 3 x 2 GOLDILOCKS cluster and tables stored in that cluster.

Figure 2 3 x 2 cluster configuration and tables

The following DDL creates the tables given above.

CREATE TABLE part

(

p_partkey INTEGER

, p_name VARCHAR(55)

, p_brand CHAR(10)

, p_type VARCHAR(25)

, p_size INTEGER

, p_retailprice NUMERIC(12,2)

, CONSTRAINT part_pk PRIMARY KEY(p_partkey) INDEX part_pk_index

)

SHARDING BY HASH(p_partkey)

SHARD COUNT 3;

CREATE TABLE partsupp

(

ps_partkey INTEGER

, ps_suppkey INTEGER

, ps_availqty INTEGER

, ps_supplycost NUMERIC(12,2)

, CONSTRAINT partsupp_pk PRIMARY KEY(ps_partkey, ps_suppkey) INDEX partsupp_pk_index

)

SHARDING BY HASH(ps_partkey)

SHARD COUNT 3;

1,244 | SQL Languages

CREATE TABLE supplier

(

s_suppkey INTEGER

, s_name CHAR(25)

, s_nationkey INTEGER

, s_phone CHAR(15)

, CONSTRAINT supplier_pk PRIMARY KEY(s_suppkey) INDEX supplier_pk_index

) CLONED;

CREATE TABLE nation

(

n_nationkey INTEGER

, n_name CHAR(25)

) CLONED;

In the figure above, the part table and the partsupp table is a sharded table, and their data are dividedly s

tored per a group. The supplier table is a cloned table and its data is duplicated and stored in every node.

GOLDILOCKS in a cluster environment processes a query depending on the table type and the location of

search target data. The query processing in the cluster is divided into a query processing at a single table

and a processing at two or more tables.

Query Process in a Single Table

The query processing in a single table is divided into a processing in a sharded table and a processing in a

cloned table. A processing in a sharded table is dividedly stored in n groups, so it requests a query to both

a local server and a remote server, and collects results to make a result set. GOLDILOCKS uses an access n

ode called as cluster access to request a query to a remote server and receive a result. The cluster access si

multaneously requests a query to both a local server and a remote server, and collects results in parallel to

make a result set.

The following is an example of processing a query at a part table which is a sharded table.

gSQL> \explain plan

SELECT p_name, p_brand, p_type, cluster_group_id

FROM part;

P_NAME P_BRAND P_TYPE CLUSTER_GROUP_ID

------ ---------- ------ ----------------

Part#3 Brand#2 STEEL 1

Part#2 Brand#1 NICKEL 2

Part#5 Brand#3 STEEL 2

Part#1 Brand#1 COPPER 3

Part#4 Brand#3 NICKEL 3

5 rows selected.

Processing SQL in Cluster | 1,245

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | CLUSTER ACCESS ("PART") [HASH SHARDING] | 5 |

| 2 | TABLE ACCESS ("PART") [HASH SHARDING] | 1 |

===

1 - SQL : SELECT /*+ FULL("_A1") */

"_A1"."P_NAME","_A1"."P_BRAND","_A1"."P_TYPE","_A1".CLUSTER_GROUP_ID FROM

"PUBLIC"."PART"@LOCAL "_A1"

2 - READ COLUMNS : P_NAME, P_BRAND, P_TYPE

<<< end print plan

GOLDILOCKS specifies Cluster Domain for a sharded table, or specifies a shard with an equi condition of

a shard key. When using a cluster domain, the search target is only the data in a specified domain. In this

case, only the nodes belonging to the specified domain are accessible. If the cluster domain only needs to

access a local server by using it, then a cluster access does not occur.

The following is an example of processing a query when allowing to access only to a local server by using

the cluster domain.

gSQL> \explain plan

SELECT p_name, p_brand, p_type, cluster_group_id

FROM part@g1;

P_NAME P_BRAND P_TYPE CLUSTER_GROUP_ID

------ ---------- ------ ----------------

Part#3 Brand#2 STEEL 1

1 row selected.

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | TABLE ACCESS ("PART"@"G1") [HASH SHARDING] |

1 |

1,246 | SQL Languages

==

====

1 - READ COLUMNS : P_NAME, P_BRAND, P_TYPE

<<< end print plan

Using an equi condition of a shard key indicates a specific shard of a table, and the query is transferred o

nly to the domain in which the data of the corresponding shard key is located. When indicating a shard w

hose equi condition of a shard key is in a local server, differently from when specifying a cluster domain, a

cluster access occurs, but it accesses only to a local server at an actual execution.

The following is an example of processing a query by using an equi condition.

gSQL> \explain plan

SELECT p_name, p_brand, p_type, cluster_group_id

FROM part

WHERE p_partkey = 3;

P_NAME P_BRAND P_TYPE CLUSTER_GROUP_ID

------ ---------- ------ ----------------

Part#3 Brand#2 STEEL 1

1 row selected.

>>> start print plan

< Execution Plan >

==

===

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("PART") [HASH SHARDING] |

1 |

| 2 | INDEX ACCESS ("PART", "PART_PK_INDEX") [HASH SHARDING] | 1)

1 |

==

===

1 - SQL : SELECT /*+ INDEX_ASC("_A1", "PART_PK_INDEX") */

"_A1"."P_PARTKEY","_A1"."P_NAME","_A1"."P_BRAND","_A1"."P_TYPE","_A1".CLUSTER_GROUP_ID FROM

"PUBLIC"."PART"@LOCAL "_A1" WHERE "_A1"."P_PARTKEY" = ?

BIND PARAMS : {0} IN

REFERENCE SHARD KEY VALUE : (3)

2 - READ INDEX COLUMNS : P_PARTKEY

Processing SQL in Cluster | 1,247

READ TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

MIN RANGE : P_PARTKEY = 3

MAX RANGE : P_PARTKEY = 3

<<< end print plan

When processing a query for a cloned table in a cloned table, it is available in most of local servers becaus

e every node has a duplicated data unlike a sharded table. However, if a new group or a member is adde

d, there is not any data for a cloned table in that group or that member. Therefore, the data should be re

trieved from a remote server, then a cluster access occurs.

The following is an example of processing a query for a supplier, which is a cloned table.

gSQL> \explain plan

SELECT s_name, s_nation

FROM supplier;

S_NAME S_NATION

------------------------- -------------

Supplier#1 FRANCE

Supplier#2 KOREA

Supplier#3 GERMANY

Supplier#4 UNITED STATES

Supplier#5 CANADA

5 rows selected.

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | TABLE ACCESS ("SUPPLIER") [CLONED] |

5 |

==

====

1 - READ COLUMNS : S_NAME, S_NATION

<<< end print plan

1,248 | SQL Languages

Processing the Join Query

Whether to process a query for two or more tables in a cluster depends on the sharding type of the those

tables. If the join condition for those tables are equi-join condition for a shard key, then GOLDILOCK proc

esses that join in a local server and a remote server in parallel by using a join node of a cluster join.

A parallel processing for a join is available when data for a join processing is logically located in the same

position. The combinations are a sharded table and a sharded table, a sharded table and a cloned table, a

cloned table and a cloned table.

If the sharding strategy of a sharded table and a sharded table is same, and there is an equi condition for

a shard key, then a parallel processing is available. It is because it is an equi-join with a same shard of wh

en the shard arrangement is same.

In the figure above, it is assumed that a shard key of a part table is p_partkey, and a shard key of a partsu

pp is ps_partkey, and the following is an example of processing a query with an equi condition for a shar

d key of two tables.

gSQL> \explain plan

SELECT p_name, ps_availqty

FROM part, partsupp

WHERE p_partkey = ps_partkey;

P_NAME PS_AVAILQTY

------ -----------

Part#3 8895

Part#3 4969

Part#2 3956

Part#2 4069

Part#5 4651

Part#5 4093

Part#1 3325

Part#1 8076

Part#4 8539

Part#4 3025

10 rows selected.

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

Processing SQL in Cluster | 1,249

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

10 |

| 2 | HASH JOIN (INNER JOIN) |

2 |

| 3 | TABLE ACCESS ("PARTSUPP") [HASH SHARDING] |

2 |

| 4 | HASH JOIN INSTANT ACCESS |

2 |

| 5 | TABLE ACCESS ("PART") [HASH SHARDING] |

1 |

==

====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_HASH("_A1") FULL("_A2")

USE_HASH("_A2") */ "_A2"."P_NAME","_A1"."PS_AVAILQTY" FROM "PUBLIC"."PARTSUPP"@LOCAL "_A1"

INNER JOIN "PUBLIC"."PART"@LOCAL "_A2" ON "_A2"."P_PARTKEY" = "_A1"."PS_PARTKEY"

2 - JOINED COLUMNS : PART.P_NAME, PARTSUPP.PS_AVAILQTY

3 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

4 - INDEX COLUMNS : P_PARTKEY

TABLE COLUMNS : P_NAME

READ COLUMNS : P_PARTKEY, P_NAME

HASH FILTER : P_PARTKEY = {PS_PARTKEY}

5 - READ COLUMNS : P_PARTKEY, P_NAME

<<< end print plan

In case when it is a sharded table and a cloned table, a parallel processing without any condition is availa

ble if a cloned table is also in the group in which a sharded table is. The following is an example of proces

sing partsupp (a sharded table) and supplier (a cloned table) in parallel.

gSQL> \explain plan

SELECT s_name, ps_availqty

FROM supplier, partsupp

WHERE s_suppkey = ps_suppkey;

S_NAME PS_AVAILQTY

------------------------- -----------

Supplier#1 8895

Supplier#4 4969

Supplier#5 3956

Supplier#2 4069

Supplier#1 4651

1,250 | SQL Languages

Supplier#4 4093

Supplier#3 3325

Supplier#2 8076

Supplier#3 8539

Supplier#5 3025

10 rows selected.

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

10 |

| 2 | HASH JOIN (INNER JOIN) |

2 |

| 3 | TABLE ACCESS ("PARTSUPP") [HASH SHARDING] |

2 |

| 4 | HASH JOIN INSTANT ACCESS |

2 |

| 5 | TABLE ACCESS ("SUPPLIER") [CLONED] |

5 |

==

====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_HASH("_A1") FULL("_A2")

USE_HASH("_A2") */ "_A2"."S_NAME","_A1"."PS_AVAILQTY" FROM "PUBLIC"."PARTSUPP"@LOCAL "_A1"

INNER JOIN "PUBLIC"."SUPPLIER"@LOCAL "_A2" ON "_A2"."S_SUPPKEY" = "_A1"."PS_SUPPKEY"

2 - JOINED COLUMNS : SUPPLIER.S_NAME, PARTSUPP.PS_AVAILQTY

3 - READ COLUMNS : PS_SUPPKEY, PS_AVAILQTY

4 - INDEX COLUMNS : S_SUPPKEY

TABLE COLUMNS : S_NAME

READ COLUMNS : S_SUPPKEY, S_NAME

HASH FILTER : S_SUPPKEY = {PS_SUPPKEY}

5 - READ COLUMNS : S_SUPPKEY, S_NAME

<<< end print plan

In case when it is a cloned table and a cloned table, and if at least one node has both tables in it, then a p

Processing SQL in Cluster | 1,251

arallel processing is available. If it is in a local server, then the cluster join is not used because accessing a r

emote server is not required.

The following is an example of processing a query when 2 cloned tables (supplier, nation) are in a local se

rver.

gSQL> \explain plan

SELECT s_name, n_name

FROM supplier, nation

WHERE s_nationkey = n_nationkey;

S_NAME N_NAME

------------------------- -------------------------

Supplier#2 KOREA

Supplier#1 FRANCE

Supplier#3 GERMANY

Supplier#4 UNITED STATES

Supplier#5 CANADA

5 rows selected.

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | HASH JOIN (INNER JOIN) |

5 |

| 2 | TABLE ACCESS ("NATION") [CLONED] |

5 |

| 3 | HASH JOIN INSTANT ACCESS |

5 |

| 4 | TABLE ACCESS ("SUPPLIER") [CLONED] |

5 |

==

====

1 - JOINED COLUMNS : SUPPLIER.S_NAME, NATION.N_NAME

2 - READ COLUMNS : N_NATIONKEY, N_NAME

3 - INDEX COLUMNS : S_NATIONKEY

TABLE COLUMNS : S_NAME

1,252 | SQL Languages

READ COLUMNS : S_NATIONKEY, S_NAME

HASH FILTER : S_NATIONKEY = {N_NATIONKEY}

4 - READ COLUMNS : S_NAME, S_NATIONKEY

<<< end print plan

Cluster Domain

Cluster domain collects data from limited servers in a cluster environment. For example, to retrieve emplo

yees of a specific range in a sharded table configured per a salary interval, enquire it as follows by setting

the corresponding cluster group as a cluster domain.

● Configure a sharded table per salary interval

gSQL> CREATE TABLE t1(name VARCHAR(128), salary INTEGER)

SHARDING BY RANGE(salary)

SHARD s1 VALUES LESS THAN (200) AT CLUSTER GROUP G1,

SHARD s2 VALUES LESS THAN (400) AT CLUSTER GROUP G2,

SHARD s3 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP G3;

Table created.

gSQL> INSERT INTO t1 VALUES ('A', 500);

1 row created.

gSQL> INSERT INTO t1 VALUES ('B', 100);

1 row created.

gSQL> INSERT INTO t1 VALUES ('C', 300);

1 row created.

● Retrieve employees in a specific salary range

gSQL> SELECT name, salary FROM t1@G2;

NAME SALARY

---- ------

C 300

1 row selected.

Cluster domain is defined by targeting each table or view which is described in from clause, and by referr

ing to . One of the followings can be selected.

● A cluster member performing a user query

● A cluster member performing a user query for an offline table

● All cluster groups

● A single cluster group

● A single cluster member

Processing SQL in Cluster | 1,253

When a cluster member is selected as the cluster domain, it accesses to the server and collects the data. If

the server does not have a data distribution for the table, then there is not any search result.

"@LOCAL_OFFLINE" cluster domain is supported to retrieve the offline table data on the server accessed

by a user. If the table is online, then an error occurs.

When a cluster group is selected as the cluster domain, it accesses to a server which has a data distributio

n for the table and is able to communicate with, then collects the data. If there is not any accessible serve

r, then there is not any search result.

When all cluster groups are selected as the cluster domain, then it collects the data from each cluster gro

up, and transfers the result to a user.

The cluster domain can not be used to determine the target for the data update. In other words, <cluster

domain> can not be applied to the table which is a DML target.

The cluster domain for the table which is a DML target causes a syntax error as follows.

gSQL> INSERT INTO T1@LOCAL VALUES (1);

ERR-42000(16062): syntax error :

INSERT INTO T1@LOCAL VALUES (1)

*

ERROR at line 1:

gSQL> UPDATE T1@GLOBAL SET I1 = 1;

ERR-42000(40000): syntax error:

UPDATE T1@GLOBAL SET I1 = 1

..........^ ^

Error at line 1

gSQL> DELETE FROM T1@G1;

ERR-42000(40000): syntax error:

DELETE FROM T1@G1

...............^^

Error at line 1

The cluster domain for the table which is an alteration target of SELECT FOR UPDATE causes a syntax err

or as follows.

● The cluster domain for the target of data collection

gSQL> SELECT I1 FROM T1@LOCAL;

I1

--

1

1 row selected.

1,254 | SQL Languages

● The cluster domain for the target of data update

gSQL> SELECT I1 FROM T1@LOCAL FOR UPDATE;

ERR-42000(16062): syntax error :

SELECT I1 FROM T1@LOCAL FOR UPDATE

*

ERROR at line 1:

Generated Query

The generated query is generated to refer to or to update the data in another server when processing a q

uery given by a user.

SELECT c1 FROM t1;

When the query is given by a user as above, then the server to which the query is given generates a gener

ated query to collect the t1 data from all related cluster groups as follows.

SELECT c1 FROM t1@LOCAL;

The following constructed table is used to describe a generated query.

CREATE TABLE t_shard_1(shard_key INTEGER, c1 INTEGER)

SHARDING BY RANGE(shard_key)

SHARD s1 VALUES LESS THAN (200) AT CLUSTER GROUP G1,

SHARD s2 VALUES LESS THAN (400) AT CLUSTER GROUP G2,

SHARD s3 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP G3;

CREATE TABLE t_shard_2(shard_key INTEGER, c1 INTEGER)

SHARDING BY RANGE(shard_key)

SHARD s1 VALUES LESS THAN (300) AT CLUSTER GROUP G1,

SHARD s2 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP G3;

CREATE TABLE t_clone_1(c1 INTEGER) CLONED AT CLUSTER WIDE;

CREATE TABLE t_clone_2(c1 INTEGER) CLONED AT CLUSTER GROUP G2, G3;

Configuring Generated Query

The generated query reconfigures a query based on the plan node information. The following plan nodes

can be configured as a generated query.

● Access node

○ Table access

○ Index access

Processing SQL in Cluster | 1,255

○ Rowid access

● Join node

○ Nested loops join

○ Hash join

○ Merge join (It is not currently supported.)

● Configuring a generated query for an access node

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 2 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */ NULL FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

2 - READ COLUMNS : NOTHING

<<< end print plan

● Configuring a generated query for a join node

gSQL> \EXPLAIN PLAN ONLY

SELECT * FROM t_shard_1, t_clone_1 WHERE t_shard_1.shard_key = t_clone_1.c1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

1,256 | SQL Languages

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

0 |

| 2 | HASH JOIN (INNER JOIN) |

0 |

| 3 | TABLE ACCESS ("T_CLONE_1") [CLONED] |

0 |

| 4 | HASH JOIN INSTANT ACCESS |

0 |

| 5 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_HASH("_A1") FULL("_A2")

USE_HASH("_A2") */ "_A2"."SHARD_KEY","_A2"."C1","_A1"."C1" FROM "PUBLIC"."T_CLONE_1"@LOCAL

"_A1" INNER JOIN "PUBLIC"."T_SHARD_1"@LOCAL "_A2" ON "_A2"."SHARD_KEY" = "_A1"."C1"

2 - JOINED COLUMNS : T_SHARD_1.SHARD_KEY, T_SHARD_1.C1, T_CLONE_1.C1

3 - READ COLUMNS : C1

4 - INDEX COLUMNS : SHARD_KEY

TABLE COLUMNS : C1

READ COLUMNS : SHARD_KEY, C1

HASH FILTER : SHARD_KEY = {C1}

5 - READ COLUMNS : SHARD_KEY, C1

<<< end print plan

The generated query is configured based on the most appropriate plan among the available plan nodes b

y considering the cost.

When joining two tables as above, the generated query can be generated based on an access node for t_

shard_1 and t_clone_1. Or, the generated query can be generated based on a join mode for two tables.

In the former case, the generated query based on two access nodes should be performed to process SELE

CT. In the latter case, the generated query based on a join node should be performed. An optimizer will s

elect the latter execution plan in an environment whose communication cost is more expensive than the r

ecord navigation time.

When a user requests the data update such as Processing DML in Cluster, then the generated query inclu

ding the data update feature is generated

The following Constraints of Generated Query Configuration determines the range of the contents for c

onfiguring the generated query, or determines it is impossible to configure the generated query.

Processing SQL in Cluster | 1,257

Constraints of Generated Query Configuration

The generated query configuration is constrained in the following cases.

● Grouping

● Ordering

● Offset & limit

● Using Non-deterministic Expression

● Joining Shard Tables Whose Sharding Strategies Are Different Each Other

● Joining Shard Tables without Equi-join Condition for shard_key

● When Unable to Unnest Subquery

● When Including a Subquery with Different Sharding Strategy

Grouping

Note

The grouping information is not configured with a generated query.

● The generated query does not include the grouping information.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 GROUP BY shard_key;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | GROUP HASH INSTANT ACCESS |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

1,258 | SQL Languages

====

1 - GROUPING COLUMNS : SHARD_KEY

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1"

3 - READ COLUMNS : SHARD_KEY

<<< end print plan

● The generated query does not include the grouping information.

gSQL> \EXPLAIN PLAN ONLY

SELECT DISTINCT c1 FROM t_shard_1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | GROUP HASH INSTANT ACCESS |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - GROUPING COLUMNS : C1

READ COLUMNS : C1

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

3 - READ COLUMNS : C1

<<< end print plan

Ordering

Note

The ordering information is not configured with a generated query.

Processing SQL in Cluster | 1,259

● The generated query does not include the ordering information.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 ORDER BY c1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | SORT INSTANT ACCESS |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SORT KEY : "T_SHARD_1.C1 ASC NULLS LAST"

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

3 - READ COLUMNS : C1

<<< end print plan

Offset & limit

Note

The information about offset limit clause is not configured with a generated query.

● The generated query does not include the offset information.

gSQL> \EXPLAIN PLAN ONLY

SELECT c1 FROM t_shard_1 OFFSET 1;

>>> start print plan

< Execution Plan >

==

1,260 | SQL Languages

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 2 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

2 - READ COLUMNS : C1

<<< end print plan

● The generated query does not include the limit information.

gSQL> \EXPLAIN PLAN ONLY

SELECT c1 FROM t_shard_1 LIMIT 1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 2 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

2 - READ COLUMNS : C1

<<< end print plan

Processing SQL in Cluster | 1,261

Using Non-deterministic Expression

Note

When using the non-deterministic expression, if non-deterministic expression can not be made int

o a constant, then it is not included in the generated query.

● The generated query does not include a sequence related expression.

gSQL> \EXPLAIN PLAN ONLY

SELECT seq.nextval FROM t_shard_1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 2 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */ NULL FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

2 - READ COLUMNS : NOTHING

<<< end print plan

● The non-deterministic expression is made into a constant by a FILTER node.

● The generated query includes the non-deterministic expression.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key = random(1, 100);

>>> start print plan

< Execution Plan >

==

====

1,262 | SQL Languages

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | FILTER |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - READ COLUMNS : NOTHING

NODE EXPR : RANDOM(1,100)

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1" WHERE "_A1"."SHARD_KEY" = ?

BIND PARAMS : {0} IN

3 - READ COLUMNS : SHARD_KEY

PHYSICAL FILTER : SHARD_KEY = ?

<<< end print plan

● The non-deterministic expression can not be made into a constant.

● The generated query does not include the non-deterministic expression.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key = random(c1, 100);

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | FILTER |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

Processing SQL in Cluster | 1,263

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - READ COLUMNS : NOTHING

FILTER : T_SHARD_1.SHARD_KEY = RANDOM(T_SHARD_1.C1,100)

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY","_A1"."C1" FROM

"PUBLIC"."T_SHARD_1"@LOCAL "_A1"

3 - READ COLUMNS : SHARD_KEY, C1

<<< end print plan

Joining Shard Tables Whose Sharding Strategies Are Different Each Other

Note

The generated query can not be generated for shard tables whose sharding strategies are differen

t each other.

● The generated query for the join can not be configured.

● The generated query related to an access is generated on the cluster access node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1, t_shard_2 WHERE t_shard_1.shard_key = t_shard_2.shard_key;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | HASH JOIN (INNER JOIN) |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

1,264 | SQL Languages

0 |

| 4 | HASH JOIN INSTANT ACCESS |

0 |

| 5 | CLUSTER ACCESS ("T_SHARD_2") [RANGE SHARDING] |

0 |

| 6 | TABLE ACCESS ("T_SHARD_2") [RANGE SHARDING] |

0 |

==

====

1 - JOINED COLUMNS : NOTHING

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1"

3 - READ COLUMNS : SHARD_KEY

4 - INDEX COLUMNS : SHARD_KEY

READ COLUMNS : SHARD_KEY

HASH FILTER : {SHARD_KEY} = SHARD_KEY

5 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_2"@LOCAL

"_A1"

6 - READ COLUMNS : SHARD_KEY

<<< end print plan

Joining Shard Tables without Equi-join Condition for shard_key

Note

The generated query can not be generated for the shard table join without a equi-join condition f

or a shard_key.

● The generated query for the join can not be configured.

● The generated query related to an access is generated on the cluster access node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1, t_shard_1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

Processing SQL in Cluster | 1,265

--

| 0 | SELECT STATEMENT |

|

| 1 | NESTED LOOP JOIN (INNER JOIN) |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 4 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 5 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - JOINED COLUMNS : NOTHING

2 - SQL : SELECT /*+ FULL("_A1") */ NULL FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

3 - READ COLUMNS : NOTHING

4 - SQL : SELECT /*+ FULL("_A1") */ NULL FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

5 - READ COLUMNS : NOTHING

<<< end print plan

● The generated query for the join can not be configured.

● The generated query related to an access is generated on the cluster access node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 A, t_shard_1 B WHERE A.c1 = B.c1;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | HASH JOIN (INNER JOIN) |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

1,266 | SQL Languages

0 |

| 3 | TABLE ACCESS ("T_SHARD_1" AS A) [RANGE SHARDING] |

0 |

| 4 | HASH JOIN INSTANT ACCESS |

0 |

| 5 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 6 | TABLE ACCESS ("T_SHARD_1" AS B) [RANGE SHARDING] |

0 |

==

====

1 - JOINED COLUMNS : NOTHING

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

3 - READ COLUMNS : C1

4 - INDEX COLUMNS : C1

READ COLUMNS : C1

HASH FILTER : {C1} = C1

5 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

6 - READ COLUMNS : C1

<<< end print plan

● The generated query for the join can be configured.

● The generated query related to a join is generated on the cluster join node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 A, t_shard_1 B WHERE A.shard_key = B.shard_key;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

0 |

| 2 | HASH JOIN (INNER JOIN) |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1" AS A) [RANGE SHARDING] |

Processing SQL in Cluster | 1,267

0 |

| 4 | HASH JOIN INSTANT ACCESS |

0 |

| 5 | TABLE ACCESS ("T_SHARD_1" AS B) [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_HASH("_A1") FULL("_A2")

USE_HASH("_A2") */ NULL FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1" INNER JOIN

"PUBLIC"."T_SHARD_1"@LOCAL "_A2" ON "_A1"."SHARD_KEY" = "_A2"."SHARD_KEY"

2 - JOINED COLUMNS : NOTHING

3 - READ COLUMNS : SHARD_KEY

4 - INDEX COLUMNS : SHARD_KEY

READ COLUMNS : SHARD_KEY

HASH FILTER : {SHARD_KEY} = SHARD_KEY

5 - READ COLUMNS : SHARD_KEY

<<< end print plan

When Unable to Unnest Subquery

Note

A subquery which can be made into a constant is included in the generated query in a bind param

eter form.

A subquery which can not be made into a constant is not included in the generated query.

For more information about unnesting a subquery, refer to Subquery.

● The generated query for the join can not be configured.

● The generated query related to an access is generated on the cluster access node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key IN (SELECT /*+ NO_QUERY_TRANSFORMATION */ shard_key

FROM t_shard_1);

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

1,268 | SQL Languages

--

| 0 | SELECT STATEMENT |

|

| 1 | FILTER |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 4 | SUB QUERY LIST |

0 |

| 5 | SUB QUERY FUNCTION (MATERIALIZED) |

0 |

| 6 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 7 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - READ COLUMNS : NOTHING

SUBQUERY FILTER : (T_SHARD_1.SHARD_KEY) IN (T_SHARD_1.SHARD_KEY)

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1"

3 - READ COLUMNS : SHARD_KEY

5 - FUNCTION : (SHARD_KEY) IN (SHARD_KEY)

6 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1"

7 - READ COLUMNS : SHARD_KEY

<<< end print plan

● The generated query can not include a subquery.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key = (SELECT t_shard_1.c1 FROM dual);

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

Processing SQL in Cluster | 1,269

--

| 0 | SELECT STATEMENT |

|

| 1 | FILTER |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 4 | SUB QUERY LIST |

0 |

| 5 | TABLE ACCESS ("DUAL") [CLONED] |

0 |

==

====

1 - READ COLUMNS : NOTHING

SUBQUERY FILTER : T_SHARD_1.SHARD_KEY = {C1}

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY","_A1"."C1" FROM

"PUBLIC"."T_SHARD_1"@LOCAL "_A1"

3 - READ COLUMNS : SHARD_KEY, C1

4 - READ COLUMNS : {C1}

5 - READ COLUMNS : NOTHING

<<< end print plan

● The generated query includes a subquery.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key = (SELECT 1 FROM dual);

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

1,270 | SQL Languages

| 2 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | SUB QUERY LIST |

0 |

| 4 | TABLE ACCESS ("DUAL") [CLONED] |

0 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1" WHERE "_A1"."SHARD_KEY" = ?

BIND PARAMS : {0} IN

2 - READ COLUMNS : SHARD_KEY

PHYSICAL FILTER : SHARD_KEY = 1

3 - READ COLUMNS : 1

4 - READ COLUMNS : NOTHING

<<< end print plan

When Including a Subquery with Different Sharding Strategy

Note

It is a similar situation with when joining shard tables whose sharding strategies are different each

other, and it can not configure the generated query by using the join in a form of the unnested su

bquery.

For more information about unnesting a subquery, refer to Subquery.

● The generated query for the join can not be configured.

● The generated query related to an access is generated on the cluster access node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key IN (SELECT shard_key FROM t_shard_2);

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

Processing SQL in Cluster | 1,271

| 0 | SELECT STATEMENT |

|

| 1 | HASH JOIN (LEFT SEMI) |

0 |

| 2 | CLUSTER ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 4 | HASH JOIN INSTANT ACCESS (UNIQUE) |

0 |

| 5 | CLUSTER ACCESS ("T_SHARD_2") [RANGE SHARDING] |

0 |

| 6 | TABLE ACCESS ("T_SHARD_2") [RANGE SHARDING] |

0 |

==

====

1 - JOINED COLUMNS : NOTHING

2 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_1"@LOCAL

"_A1"

3 - READ COLUMNS : SHARD_KEY

4 - INDEX COLUMNS : SHARD_KEY

HASH FILTER : {SHARD_KEY} = SHARD_KEY

5 - SQL : SELECT /*+ FULL("_A1") */ "_A1"."SHARD_KEY" FROM "PUBLIC"."T_SHARD_2"@LOCAL

"_A1"

6 - READ COLUMNS : SHARD_KEY

<<< end print plan

● The generated query for the join can be configured.

● The generated query related to a join is generated on the cluster join node.

gSQL> \EXPLAIN PLAN ONLY

SELECT 1 FROM t_shard_1 WHERE shard_key IN (SELECT shard_key FROM t_shard_1);

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

1,272 | SQL Languages

|

| 1 | CLUSTER JOIN |

0 |

| 2 | HASH JOIN (LEFT SEMI) |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 4 | HASH JOIN INSTANT ACCESS (UNIQUE) |

0 |

| 5 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */ NULL FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1" WHERE

EXISTS(SELECT /*+ HASH_SJ FULL("_A2") */ TRUE FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A2" WHERE

"_A1"."SHARD_KEY" = "_A2"."SHARD_KEY")

2 - JOINED COLUMNS : NOTHING

3 - READ COLUMNS : SHARD_KEY

4 - INDEX COLUMNS : SHARD_KEY

HASH FILTER : {SHARD_KEY} = SHARD_KEY

5 - READ COLUMNS : SHARD_KEY

<<< end print plan

Selecting a Target Server for Performing Generated Query

It analyzes the following information and selects a target to perform the generated query.

● The table replication arrangement policy

● Cluster Domain

● The condition to retrieve a sharding key

It analyzes the information above of tables included in the generated query, then selects their common se

rver as a server for performing the generated query.

The following is a summary of the table replication arrangement policy defined to describe Generated Qu

ery.

t_shard_1 (shard table) : at cluster group G1, G2, G3

t_shard_2 (shard table) : at cluster group G1, G3

t_clone_1 (cloned table) : at cluster group G1, G2, G3 (cluster wide)

t_clone_2 (cloned table) : at cluster group G2, G3

The following is an example of selecting a target server for performing according to the table replication

Processing SQL in Cluster | 1,273

arrangement policy.

● The target server for performing: All servers in G1, G3

gSQL> SELECT c1 FROM t_shard_2;

● The target server for performing: All servers in G1, G2, G3

gSQL> SELECT c1 FROM t_clone_1;

● The target server for performing: All servers in G1, G3 (The common cluster group)

gSQL> SELECT c1 FROM t_shard_2, t_clone_1;

The following is an example of selecting the target server for performing according to description of the c

luster domain.

● The target server for performing: All servers in G1, G2, G3

gSQL> SELECT c1 FROM t_shard_1@GLOBAL;

● The target server for performing: The server which received a request form a user

gSQL> SELECT c1 FROM t_shard_1@LOCAL;

● The target server for performing: All servers in G2

gSQL> SELECT c1 FROM t_shard_1@G2;

● The target server for performing: G3N1 server

gSQL> SELECT c1 FROM t_shard_1@G3N1;

● The target server for performing: There is not a target server.

gSQL> SELECT c1 FROM t_shard_1@G4;

The following is an example of selecting the target server for performing according to the retrieving cond

ition for a sharding key.

● The target server for performing: All servers in G1, G2, G3

1,274 | SQL Languages

gSQL> SELECT c1 FROM t_shard_1;

● The target server for performing: All servers in G1, G2, G3

gSQL> SELECT c1 FROM t_shard_1 WHERE c1 = 1;

● The target server for performing: All servers in G3

gSQL> SELECT c1 FROM t_shard_1 WHERE shard_key = 500;

● The target server for performing: There is not a target server.

gSQL> SELECT c1 FROM t_shard_1 WHERE shard_key = 100 AND shard_key = 500;

Selecting the target server for performing the generated query on a query processing phase may vary dep

ending on whether the data is updated when performing the generated query.

Selecting Target Server for Generated Query Updating the Data

When performing the generated query to update the data, the performing target cluster group is analyze

d by the table replication arrangement policy and the condition for retrieving a sharding key. All servers in

the performing target cluster group is selected as targets for performing generated query.

Cluster Domain can not be specified in a user query updating the data.

When performing the generated query to update the data, the performing target is divided into a master

server and a slave server. For more information, refer to Data Update Using Generated Query.

The following is an example of selecting the performing target server.

● Generated query performing target server: All servers in G2

● t_shard_1: All servers in G2

● The table replication arrangement policy: All servers in G1, G2, G3

● The condition for retrieving a sharding key: All servers in G2

● t_clone_1: All servers in G1, G2, G3

● The table replication arrangement policy: All servers in G1, G2, G3

gSQL> \EXPLAIN PLAN ONLY

SELECT * FROM t_shard_1, t_clone_1 WHERE t_shard_1.shard_key = 300 FOR UPDATE;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

Processing SQL in Cluster | 1,275

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

0 |

| 2 | NESTED LOOP JOIN (INNER JOIN) |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1") [RANGE SHARDING] |

0 |

| 4 | TABLE ACCESS ("T_CLONE_1") [CLONED] |

0 |

==

====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_NL("_A1") FULL("_A2")

USE_NL("_A2") */ "_A1"."SHARD_KEY","_A1"."C1","_A2"."C1","_A1".ROWID,"_A2".ROWID FROM

"PUBLIC"."T_SHARD_1"@LOCAL "_A1" INNER JOIN "PUBLIC"."T_CLONE_1"@LOCAL "_A2" ON

"_A1"."SHARD_KEY" = ?

BIND PARAMS : {0} IN

REFERENCE SHARD KEY VALUE (T_SHARD_1) : (300)

2 - JOINED COLUMNS : T_SHARD_1.SHARD_KEY, T_SHARD_1.C1, T_CLONE_1.C1

3 - READ COLUMNS : SHARD_KEY, C1

PHYSICAL FILTER : SHARD_KEY = 300

4 - READ COLUMNS : C1

<<< end print plan

Selecting Target Server for Generated Query Retrieving the Data

When performing the generated query to retrieve the data, it retrieves the common servers by using the t

able replication arrangement policy and the condition for retrieving a sharding key. When multiple servers

in a same cluster group become the targets, then the generated query is performed only for a single acce

ssible server per cluster group considering the network condition.

The following is an example of selecting the performing target server.

● Generated query performing target server: A server in G2

● t_shard_1: All servers in G2

● The table replication arrangement policy: All servers in G1, G2, G3

● Cluster domain: All servers in G2

● The condition for retrieving a sharding key: All servers in G2

● t_clone_1: All servers in G1, G2, G3

1,276 | SQL Languages

● The table replication arrangement policy: All servers in G1, G2, G3

● Cluster domain: All servers in G1, G2, G3

gSQL> \EXPLAIN PLAN ONLY

SELECT * FROM t_shard_1@G2, t_clone_1 WHERE t_shard_1.shard_key = 300;

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

0 |

| 2 | NESTED LOOP JOIN (INNER JOIN) |

0 |

| 3 | TABLE ACCESS ("T_SHARD_1"@"G2N1") [RANGE SHARDING] |

0 |

| 4 | TABLE ACCESS ("T_CLONE_1") [CLONED] |

0 |

==

====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_NL("_A1") FULL("_A2")

USE_NL("_A2") */ "_A1"."SHARD_KEY","_A1"."C1","_A2"."C1" FROM "PUBLIC"."T_SHARD_1"@LOCAL "_A1"

INNER JOIN "PUBLIC"."T_CLONE_1"@LOCAL "_A2" ON "_A1"."SHARD_KEY" = ?

BIND PARAMS : {0} IN

REFERENCE SHARD KEY VALUE (T_SHARD_1) : (300)

2 - JOINED COLUMNS : T_SHARD_1.SHARD_KEY, T_SHARD_1.C1, T_CLONE_1.C1

3 - READ COLUMNS : SHARD_KEY, C1

PHYSICAL FILTER : SHARD_KEY = 300

4 - READ COLUMNS : C1

<<< end print plan

Processing SQL in Cluster | 1,277

Processing DML in Cluster

In GOLDILOCKS, a user can perform DML for all cluster members configuring a cluster system.

Data update on a cluster environment updates the data of the cluster member containing the same data

replication same.

The following constructed table is used to describe the data update.

CREATE TABLE t1(shard_key INTEGER, c1 INTEGER)

SHARDING BY RANGE(shard_key)

SHARD s1 VALUES LESS THAN (200) AT CLUSTER GROUP G1,

SHARD s2 VALUES LESS THAN (400) AT CLUSTER GROUP G2,

SHARD s3 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP G3;

DML is performed as the figure below on a cluster environment.

1,278 | SQL Languages

Figure 3 Processing DML in cluster

A master server and a slave server per each group are defined for the DML processing in cluster.

Selecting Master Server in Each Cluster Group

It is a single cluster member with the smallest member_id among accessible cluster members per each clu

ster group when updating data on a cluster environment.

Processing SQL in Cluster | 1,279

Selecting Slave Server in Each Cluster Group

They are cluster members remained after excluding master servers from accessible cluster members per e

ach cluster group when updating data on a cluster environment.

For more information about cluster group and cluster member configuration, refer to refer to DBA_CLUS

TER.

gSQL> SELECT * FROM DBA_CLUSTER;

GROUP_ID GROUP_NAME MEMBER_ID MEMBER_NAME MEMBER_HOST MEMBER_PORT

-------- ---------- --------- ----------- ----------- -----------

1 G1 1 G1N1 127.0.0.1 10110

1 G1 2 G1N2 127.0.0.1 10120

2 G2 3 G2N1 127.0.0.1 10210

2 G2 4 G2N2 127.0.0.1 10220

3 G3 5 G3N1 127.0.0.1 10310

3 G3 6 G3N2 127.0.0.1 10320

6 rows selected.

Performing DML

DML is sequentially performed by applying to a master server phase then applying to a slave server phase.

● Applying to a master server

○ It updates the data in the master server in each cluster group.

● Applying to a slave server

○ It updates the data in the slave server in the same way as they were applied in the master server i

n each cluster group.

In GOLDILOCKS, the following two methods are used to update data while synchronizing the master serv

er and the slave server per each cluster group.

● Data Update Using Generated Query

● Data Update Using Rowid (Rowid Pseudo Column)

Data Update Using Generated Query

Data update using the generated query is a method to update records of each server by using the genera

ted query. The generated query is internally generated by a server which was given a query from a user. It

is supported only when the same result performed by a generated query from each server is guaranteed.

For more information, refer to Generated Query.

1,280 | SQL Languages

The generated query for a master server and the generated query for a slave server may be different each

other depending on whether the updated record returns the result.

The data update using the generated query is performed as the figure below.

Figure 4 Updating data using generated query (Altering the entire cluster group)

If there is not a condition to select an alteration target cluster group in a conditional clause as given abov

e, then all cluster groups become the data update target by using the generated query.

The data update using the generated query is performed as follows.

1. The generated query is performed on each master server

Processing SQL in Cluster | 1,281

2. The generated query is performed on each slave server

If only a specific cluster group is selected as a data update target by a conditional clause, then it is perfor

med as follows.

Figure 5 Updating data using generated query (Altering a specific cluster group)

If the alteration target is determined by using the search condition (shard_key = 1) as given above, it is fo

und that the record whose shard_key is 1 is in G1 cluster group by the sharding strategy. Therefore, only

the record in G1 cluster group is deleted.

Updating the data in a specific cluster group is applied to a slave after it is applied to a master like as upd

ating the data in the entire cluster group.

1,282 | SQL Languages

Data update using the generated query is supported only in the following cases.

● The generated query which guarantees the same result when performing the generated query on eac

h cluster member of a cluster group can be generated.

○ This means that a deterministic statement or a function configures an unused generated query.

● Both of the data reference target server and the data update target server can be restricted to a same

server when configuring the generated query.

○ This means that the server performing the generated query does not need to access another serv

er while processing the query.

The following user queries support the data update using the generated query.

● SELECT .. FOR UPDATE

● SELECT .. INTO .. FOR UPDATE

● DELETE FROM

● DELETE FROM name RETURNING

● DELETE FROM name RETURNING .. INTO

● UPDATE

● UPDATE name RETURNING

● UPDATE name RETURNING .. INTO

The data update using the generated query is available even when the 14.6 Global Secondary Index i

s not configured.

Data Update Using Rowid (Rowid Pseudo Column)

Data update using the rowid information is a method to update the same records stored in different clust

er members by using the rowid. This method is used when adding a new record or when Data Update U

sing Generated Query is not available.

The rowid provided on a cluster environment is a logical identification information and it is a standard to

determine whether the records are same. The rowid of all same records stored in different cluster membe

rs is same. Rowid information is provided when creating a record, or a new rowid information is provided

when modifying the value of the sharding key column.

For more information about the rowid, refer to ROWID Pseudo Column .

Data update using the rowid information is divided into a rowid information collection phase and a data

update phase. When updating two or more records, a rowid information collection phase and a data upd

ate phase are repeated per record.

● The rowid information collection phase

○ It collects the rowid information of records to be added or to be updated.

● The data update phase

Processing SQL in Cluster | 1,283

○ It updates records of a cluster group corresponding to the collected rowid.

○ It sequentially updates records of a slave server after updating records of a master server.

Data update using the rowid information supports the following two methods depending on whether to

use the Global Secondary Index.

● Data Update Using Rowid Information without Global Secondary Index

● Data Update Using Rowid Information with Global Secondary Index

Data Update Using Rowid Information without Global Secondary Index

Data update using the rowid information without the global secondary index is supported when the exist

ing record is not updated like as INSERT.

Data update using the rowid information without the global secondary index is performed as follows.

1,284 | SQL Languages

Figure 6 Data update using the rowid information without the global secondary index

When adding a record, a rowid is provided to a new record and each record is stored at an appropriate p

osition in a master server. All records are applied to a slave server after applying to a master server.

If the sharding key column is configured by using the value (shard_key = 1) as given above, it is found tha

t the record whose shard_key is 1 is in G1 cluster group by the sharding strategy. Therefore, the record is

added only to the G1 cluster group.

Data update using the rowid information without the global secondary index supports the following quer

y types.

● INSERT INTO

● INSERT INTO name RETURNING

● INSERT INTO name RETURNING .. INTO

Processing SQL in Cluster | 1,285

Data Update Using Rowid Information with Global Secondary Index

Data update using the rowid information with the global secondary index is supported when the existing

record is updated.

To update the existing records, use the rowid information to guarantee the same update of the same dat

a both in a master server and a slave server.

Data update using the rowid information with the global secondary index is performed as follows.

Figure 7 Data update using the rowid information with the global secondary index

On the rowid information collection phase, the server received the user query collects the information of t

he target record to be updated. If the conditional clause whose result is updatable whenever it is evaluate

d, the server received the user query collects the rowid information and the column information being ref

erenced from that conditional clause by using the condition excluding that conditional clause. The target

1,286 | SQL Languages

record to be updated is selected by filtering with a condition excluded before collecting the result.

On the data update phase, data in a master server and a slave server for a cluster group to which the reco

rds selected on the rowid information collection phase belong is sequentially updated. The shard_key is in

the range from 1 to 300 by a condition ("shard_key = random(1,300)"), and it belongs to G1, G2 cluster

group by the sharding strategy as the figure above. Therefore, only the records in G1, G2 cluster groups a

re deleted.

On the data update phase, the server which collected the rowid information, transfers it to a master serve

r and a slave server, and requests the data modification. The servers received the request retrieves the tar

get record and modify it by using the received rowid information and the existing global secondary index.

The rowid information collection phase and the data update phase are repeated until there is not any rec

ord to be updated.

The following cases require the identification among the records to be updated, and they are supported

when data update using the generated query is not available.

● When using the non-deterministic expression

● When using the non-deterministic clause

● When unable to configure the generated query for the data update

The followings are query types supporting the data update using the rowid.

● SELECT .. FOR UPDATE

● SELECT .. INTO .. FOR UPDATE

● DELETE FROM

● DELETE FROM name RETURNING

● DELETE FROM name RETURNING .. INTO

● DELETE FROM name WHERE CURRENT OF cursor_name

● UPDATE

● UPDATE name RETURNING

● UPDATE name RETURNING .. INTO

● UPDATE name WHERE CURRENT OF cursor_name

When Using Non-deterministic Expression

The expression which can not guarantee the same result whenever performing the query described by usi

ng the expression is a non-deterministic expression.

If the generated query described by using the non-deterministic expression updates the data, then it can

not guarantee that the query in a master server and the query in a slave server are updated same. Therefo

re, the data update using the rowid is supported when the non-deterministic expression is described.

● The non-deterministic expressions are as follows.

Processing SQL in Cluster | 1,287

○ Sequence

■ seq_name.currval, seq_name.nextval, next value for seq_name

■ currval(), nextval()

○ The built-in function which should be evaluated in expression unit

■ random()

■ clock_date(), clock_time(), clock_timestamp(), clock_localtime(), clock_localtimestamp()

○ psm

■ Schema level function

The following is an example of using the non-deterministic expression.

● Using the sequence

UPDATE t1 SET c1 = seq.nextval;

● The built-in function which should be evaluated in expression unit

DELETE FROM t1 WHERE c1 = random(1, 100);

● Schema level function

SELECT * FROM t1 WHERE shard_key = func(c1);

When Using Non-deterministic Clause

The clause which can not guarantee the same result whenever performing the query described by using t

he clause is a non-deterministic clause.

If the generated query described by using the non-deterministic clause updates the data, then it can not

guarantee that the query in a master server and the query in a slave server are updated same. Therefore, t

he data update using the rowid is supported when the non-deterministic clause is described.

The clause using <offset limit clause> is classified as a non-deterministic clause.

The following is an example of using the non-deterministic clause.

● Using the OFFSET clause

DELETE FROM t1 OFFSET 1;

● Using the LIMIT clause

1,288 | SQL Languages

UPDATE t1 SET c1 = c1 + 1 LIMIT 10;

When Unable to Configure Generated Query for the Data Update

The data update using the rowid is supported when unable to configure a generated query by using a dat

a update query given by a user. For more information, refer to Constraints of Generated Query Configur

ation.

The following is an example of when unable to configure the generated query.

● Equi-join of tables with different sharding strategies each other

SELECT * FROM t1, t2 WHERE t1.shard_id = t2.shard_id FOR UPDATE;

● Accessing another cluster group to retrieve the t2 record of a subquery while retrieving the t1 record

belonging to a cluster group

DELETE FROM t1 WHERE t1.shard_id IN (SELECT t2.shard_id FROM t2);

SQL Objects

13.

1,289

This chapter describes the concepts and features of the following objects which configure the database.

● Authorization: User and privilege

● Schema

● Tablespace

● Table

● Index

● Sequence

● View

● Synonym

● Stored procedure

● Stored function

1,290 | SQL Objects

13.1 Database

Database-related Statements

For more information, refer to the followings.

● Starting up the database: ALTER SYSTEM {MOUNT | OPEN} DATABASE

● Backup and recovery

○ ALTER DATABASE BACKUP

○ ALTER DATABASE DELETE BACKUP

○ ALTER DATABASE RECOVER

○ ALTER DATABASE REGISTER

○ ALTER DATABASE RESTORE

● Creating, dropping, altering log files

○ ALTER SYSTEM CHECKPOINT

○ ALTER SYSTEM SWITCH LOGFILE

○ ALTER DATABASE ARCHIVELOG

○ ALTER DATABASE ADD LOGFILE

○ ALTER DATABASE DROP LOGFILE

○ ALTER DATABASE RENAME LOGFILE

● Comments on objects: COMMENT ON name IS

● System statistics information: ANALYZE SYSTEM

The information which is related to the database objects can be retrieved through the following views.

Table 13-1 Database object related information

Schema View name Description

DICTIONARY_SCHEM

A
ALL_NONSCHEMA_COMMENTS

Comment information of user accessible non-sche

ma objects

INFORMATION_SCHE

MA

INFORMATION_SCHEMA_CATALOG

_NAME
Database name information

SQL_FEATURES
The SQL standard compatibility information of GOL

DILOCKS

SQL_IMPLEMENTATION_INFO
The SQL standard compatibility information of GOL

DILOCKS

SQL_PACKAGES
The SQL standard compatibility information of GOL

Database | 1,291

DILOCKS

SQL_PARTS
The SQL standard compatibility information of GOL

DILOCKS

SQL_SIZING
The SQL standard compatibility information of GOL

DILOCKS

Schema View name Description

Database Configuration Objects

SQL Objects that Configure the Database

A database consists of multiple SQL objects.

SQL objects in database are classified as SQL schema objects and non-schema objects, depending on whe

ther they are included in the SCHEMA.

Figure 1 SQL objects

SQL schema objects are included in the SCHEMA, and they are as follows.

● TABLE: It is an object which stores the physical data, and it consists of columns and rows.

● VIEW: It is a logical object which provides a relation name for the query, and it is similar to a table.

● INDEX: It is an object to improve the query performance.

● SEQUENCE: It is an object to generate numbers.

● CONSTRAINT: It is an object to retain the integrity of tables.

● SYNONYM: It is an alias of TABLE, VIEW, SEQUENCE, and other synonym.

● STORED PROCEDURE: It is a persistent stored module in a procedure form.

● STORED FUNCTION: It is a persistent stored module in a function form.

1,292 | SQL Objects

SQL schema object can be used together with a schema name, or it can be used omitting a schema name.

If schema name is omitted, the name is interpreted by the user's schema path.

The following is an example of when objects are created by specifying the schema name.

gSQL> CREATE TABLE my_schema.lineitem (id INTEGER);

gSQL> CREATE INDEX my_schema.my_index ON my_schema.lineitem (id);

Non-schema object is not included in the schema, and they are as follows.

● PROFILE: It is a password management policy.

● AUDIT POLICY: It is an audit policy.

● USER: It is a user.

● SCHEMA: It is the logical locations of the SQL schema objects.

● TABLESPACE: It is the physical spaces of the SQL schema objects.

● PUBLIC SYNONYM: It is an alias of TABLE, VIEW, SEQUENCE, and other synonym which does not hav

e schema name

The SQL standard explicitly defines concepts and syntax for the SCHEMA objects. However, the concepts

of USER and DATABASE are described only, and their syntaxes are not defined in SQL. The SQL standard

does not deal with the TABLESPACE object. Namely, the SQL standard does not explicitly define the non-

schema objects.

GOLDILOCKS defines USER, SCHEMA, TABLESPACE as separate descendant of a database. However, oth

er DBMS vendors define the concepts of non-schema objects as follows.

● GOLDILOCKS

○ User and schema are separate objects.

○ User either does not have a schema, or has multiple schemas.

○ The relationship between user and schema is User : Schema = 1 : N.

● Oracle

○ User and schema are defined as similar concepts.

○ The relationship between user and schema is User : Schema = 1 : 1.

● DB2

○ User is not a descendant of DATABASE.

○ The relationship between user and schema is User : Schema = 1 : N.

● Postgres

○ User is not a descendant of DATABASE.

○ The relationship between user and schema is User : Schema = 1 : N.

● MySQL

○ User and schema are defined as similar concepts.

○ User is a descendant of DATABASE(SCHEMA).

Database | 1,293

Name Space of Objects

An object in the database has an identifiable name.

An SQL schema object has a unique name within a schema.

For example, the same lineitem table objects can be created in different schemas as follows.

gSQL> CREATE TABLE my_schema.lineitem (id INTEGER);

gSQL> CREATE TABLE your_schema.lineitem (name VARCHAR(128));

SQL schema objects have the following name spaces in a single schema as follows.

● TABLE, VIEW, SEQUENCE, PRIVATE SYNONYM, STORED PROCEDURE, STORED FUNCTION

● INDEX

● CONSTRAINT

Table and view can not be created under the same name, but table and index can be created under the s

ame name, as follows.

• Table and view can not be created under the same name.

gSQL> CREATE TABLE my_relation (id INTEGER);

gSQL> CREATE VIEW my_relation (name) AS SELECT name FROM tmp_relation;

• Table and index can be created under the same name.

gSQL> CREATE TABLE my_object (id INTEGER);

gSQL> CREATE INDEX my_object ON my_table (name);

A non-schema object has an identifiable name within a database. Non-schema objects have the name sp

aces as follows.

● PROFILE

● AUDIT POLICY

● USER

● SCHEMA

● TABLESPACE

Namely, USERs can not be created under the same name, but USER and SCHEMA can be created under t

he same name.

• my_name USER object and my_name SCHEMA object are created.

1,294 | SQL Objects

gSQL> CREATE USER my_name IDENTIFIED BY my_name WITH SCHEMA my_name;

Built-in Objects

When creating database, GOLDILOCKS automatically creates objects such as user, schema, tablespace w

hich are necessary for system operation.

Built-in User

When creating database, the following accounts are automatically created. The built-in accounts can not

be removed except TEST user.

● _SYSTEM account

○ It is an account used by the internal system. When creating database, it is the owner of the built-

in objects. When user creates an object, it becomes the grantor who grants the privilege to the o

bject owner.

● SYS account

○ It is a user to manage the database.

● TEST account

○ It is a user for testing, and this object can be removed.

● ADMIN account

○ It is a role to manage the database.

● SYSDBA account

○ It is a role to start up/shut down the database.

● PUBLIC account

○ It is an account for all users. It is used to control the privileges for all users.

Built-in Schema

When creating database, the following schemas are automatically created. All built-in schemas can not b

e removed.

● DEFINITION_SCHEMA

○ It consists of the physical tables which store all objects information of the database.

● FIXED_TABLE_SCHEMA

○ It consists of the fixed tables which display the data structure information of system in a table for

m.

● DICTIONARY_SCHEMA

○ It consists of the user perspective views for querying object information of the database.

Database | 1,295

● INFORMATION_SCHEMA

○ It consists of the views defined in the SQL standard for querying the object information of the dat

abase.

● PERFORMANCE_VIEW_SCHEMA

○ It consists of the user perspective views for querying the state of the system.

● PUBLIC

○ It is the schema in which all users can create objects, and it differs from the PUBLIC account, whi

ch means all users.

Built-in Tablespace

When creating database, the following tablespaces are created automatically. All the built-in tablespaces

can not be removed.

● DICTIONARY_TBS

○ It stores the dictionary tables to manage the SQL objects information.

● MEM_UNDO_TBS

○ It stores undo segments and transactions information.

● MEM_DATA_TBS

○ It is the first created data tablespace.

○ The user created tables are stored in data tablespace.

● MEM_TEMP_TBS

○ It is the first created temporary tablespace.

○ The temporary objects such as sort and hash which are created during query processing are store

d in the temporary tablespace.

● MEM_AUX_TBS

○ It is a system auxiliary tablespace and it stores records which is automatically created such as an a

udit record.

Built-in Profile

When creating database, the "DEFAULT" profile is automatically created. Password parameter informatio

n of the "DEFAULT" profile is as follows.

Table 13-2 Configuration of DEFAULT profile

Parameter Value

FAILED_LOGIN_ATTEMPTS 10

PASSWORD_LOCK_TIME 1

PASSWORD_LIFE_TIME 180

PASSWORD_GRACE_TIME 7

PASSWORD_REUSE_MAX UNLIMITED

1,296 | SQL Objects

PASSWORD_REUSE_TIME UNLIMITED

PASSWORD_VERIFY_FUNCTION NULL

Parameter Value

The followings are characteristics of the default values of "DEFAULT" profile.

● Account lockout

○ An account is locked for one day (PASSWORD_LOCK_TIME) after consecutive 10(FAILED_LOGIN

_ATTEMPTS) times of failed login attemps.

● Password expiration

○ After 180 days (PASSWORD_LIFE_TIME) has elapsed, the password expires after seven days of gr

ace period (PASSWORD_GRACE_TIME).

● Password reusable

○ The old password can be reused.

● Password complexity verification

○ The password complexity is not verified.

Profile | 1,297

13.2 Profile

Profile-related Statements

For more information, refer to the followings.

● Creating a profile: CREATE PROFILE.

● Dropping a profile: DROP PROFILE.

● Altering a profile: ALTER PROFILE.

● Assigning a profile to the user: CREATE USER, ALTER USER

● Clearing a password history: ALTER DATABASE CLEAR PASSWORD HISTORY.

Table 13-3 Profile object related information

Schema View Description

DICTIONARY_SCHEMA
DBA_PROFILES All profile information

DBA_USERS User profile information

Concepts of Profile

GOLDILOCKS performs user authentication for database security. The password management policy is re

quired because the user authentication password is vulnerable to theft, forgery and misuse.

Profile includes information such as this password management policy. DBA or security managers assign t

he profile to a user, and apply the password management policy which is appropriate to the correspondin

g user.

Creating, Altering, Allocating Profile

A profile is created by using CREATE PROFILE statement.

CREATE PROFILE profile1 LIMIT

FAILED_LOGIN_ATTEMPTS 10

PASSWORD_LOCK_TIME 1

PASSWORD_LIFE_TIME 180

PASSWORD_GRACE_TIME 7

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

1,298 | SQL Objects

PASSWORD_VERIFY_FUNCTION NULL;

A profile is allocated by using CREATE USER, ALTER USER statements.

CREATE USER u1 IDENTIFIED BY u1 PROFILE profile1;

ALTER USER u2 PROFILE profile1;

The profile parameters are updated by using ALTER PROFILE statement.

ALTER PROFILE profile1 LIMIT

PASSWORD_REUSE_MAX 3

PASSWORD_REUSE_TIME 30;

If a profile is not allocated to a user, the user is not restricted on creating and using the password.

If the created profile or a DEFAULT profile is allocated to a user, the user complies with the profile's pass

word policies when creating and using the password.

Setting Password of DEFAULT Profile

When the default profile is assigned to a user, the password is managed as follows.

Table 13-4 DEFAULT profile of password

Parameter
Default

setting
Description

FAILED_LOGIN_ATTEMPS 10
The allowed number of consecutive login failure

The account is locked after consecutive 10 times login attempt failures.

PASSWORD_LOCK_TIME 1

The account lockout duration

If the consecutive login failures exceed the allowable value, the account

is locked for one day.

PASSWORD_LIFE_TIME 180
The password life time

The password is expired after 180 days.

PASSWORD_GRACE_TIME 7

The duration to change the password when the the password is expired.

The password should be changed within seven days after first login sinc

e the password is expired. If a user does not change the password withi

n the period, the user can not log in using the password.

PASSWORD_REUSE_MAX UNLIMITED

The number of times of which passwords are not reusable.

PASSWORD_REUSE_MAX should be set together with PASSWORD_RE

USE_TIME. If both of the two values are UNLIMITED, the password can

always be reused.

PASSWORD_REUSE_TIME UNLIMITED The duration which the password can not be reused.

Profile | 1,299

Account Lockout

If the number of consecutive login attempt failures exceeds the number of times specified in FAILED_LOG

IN_ATTEMPTS, the account is locked during the period specified in PASSWORD_LOCK_TIME.

CREATE PROFILE profile1 LIMIT

FAILED_LOGIN_ATTEMPTS 10

PASSWORD_LOCK_TIME 1;

ALTER USER u1 PROFILE profile1;

When a user u1's login attempts consecutively fail more than 10 times, the account is locked for one day.

And after one day the account is automatically unlocked.

If the PASSWORD_LOCK_TIME value is not specified, it is regarded as the value which is specified in PASS

WORD_LIFE_TIME of DEFAULT profile.

If the PASSWORD_LOCK_TIME value is UNLIMITED the locked accounts are not automatically released. T

herefore, the following statement should be executed to unlock the account.

ALTER USER u1 ACCOUNT UNLOCK;

If login is successful, the number of failed login attempt is initialized to zero.

A security manager can explicitly lock the user accounts. In this case, the user accounts can not be autom

atically released so the security manager should unlock the user accounts.

ALTER USER u1 ACCOUNT LOCK;

ALTER USER u1 ACCOUNT UNLOCK;

Password Lifetime

PASSWORD_LIFE_TIME specifies the life time the password. After the life time, the password is expired.

A user, DBA or security manager should change the password after a password is expired.

CREATE PROFILE profile1 LIMIT

PASSWORD_LIFE_TIME 180

PASSWORD_GRACE_TIME 7;

ALTER USER u1 PROFILE profile1;

The grace period starts since when the user u1 has tried to log in for the first time after 180 days.

During seven days of the grace period, the user is reminded to enter a new password whenever accessing

the account, until he changes the password.

1,300 | SQL Objects

If seven days of the grace period passed and the password is not changed, the user can not login until en

tering a new password.

A password can be expired by using CREATE USER or ALTER USER statements.

ALTER USER u1 PASSWORD EXPIRE;

When the password is expired, the error (ERR-28000(16312) the password has expired) occurs whenever

logging in as follows, then a new password should be entered.

% gsql u1 u1

ERR-28000(16312): the password has expired

Changing password for u1

New password:

Retype new password:

Connected to GOLDILOCKS Database.

gSQL>

Reusing Password

The password can be reused after it is changed as many times as the specified value in PASSWORD_REUS

E_MAX. Also, it should be after the specified time in PASSWORD_REUSE_TIME.

CREATE PROFILE profile1 LIMIT

PASSWORD_REUSE_MAX 2

PASSWORD_REUSE_TIME 1;

ALTER USER u1 PROFILE profile1;

The user u1 can reuse the current password after the password has been changed for two times, and 10

days elapsed.

ALTER USER u1 IDENTIFIED BY u1 REPLACE u1;

ALTER USER u1 IDENTIFIED BY u1 REPLACE u1

*

ERROR at line 1:

ORA-28007: the password cannot be reused

ALTER USER u1 IDENTIFIED BY u2 REPLACE u1;

User altered.

ALTER USER u1 IDENTIFIED BY u3 REPLACE u2;

User altered.

• 10 days elapsed.

Profile | 1,301

ALTER USER u1 IDENTIFIED BY u1 REPLACE u3;

User altered.

The both conditions should be satisfied to reuse the old password. If only one of the value in PASSWORD

_REUSE_MAX and PASSWORD_REUSE_TIME is UNLIMITED, the password can not be reused.

If both of values are UNLIMITED, the password can always be reused.

Table 13-5 Password reuse

PASSWORD_REUSE_MAX PASSWORD_REUSE_TIME Password reusability

Integer value Integer value
If both of the conditions are satisfied,

it can be reused.

Integer value UNLIMITED It can not be reused.

UNLIMITED Integer value It can not be reused.

UNLIMITED UNLIMITED It can always be reused.

Password Complexity Verification

Password complexity verification checks if the password is complex enough to protect against breaking in

to the system.

GOLDILOCKS supports the method of password complexity verification as follows.

Table 13-6 Password complexity verification

Method Description

KISA_VERIFY_FUNCTION

● 8 or more characters

● 1 or more letters

● 1 or more numbers

● 1 or more special characters

ORA12C_VERIFY_FUNCTION

● 8 or more characters

● 1 or more letters

● 1 or more numbers

● Database name should not be included.

● Username or the reversed username should not be included.

● goldilocks should not be included.

● oracle should not be included.

● The following simple password can not be used.

○ welcome1, database1, account1, user1234, password1, oracle123, comp

uter1, abcdefg1, change_on_intall

● The new password should be different at least 3 characters from the old pass

word.

● 9 or more characters

● 2 or more uppercases

1,302 | SQL Objects

ORA12C_STRONG_VERIFY_F

UNCTION

● 2 or more lowercases

● 2 or more numbers

● 2 or more special characters

● The new password should be different at least 4 characters from the old pass

word.

VERIFY_FUNCTION_11G

● 8 or more characters

● 1 or more letters

● 1 or more numbers

● Username should not be included.

● The new password should be different at least 3 characters from the old pass

word.

VERIFY_FUNCTION

● It should not be same as the username.

● 4 or more characters

● 1 or more letters

● 1 or more numbers

● 1 or more special characters

● The following simple password can not be used.

○ welcome, database, account, user, password, oracle, computer, abcd

● The new password should be different at least 3 characters from the old pass

word.

Method Description

For more information about profile and user setting, refer to CREATE PROFILE , CREATE USER .

Audit Policy | 1,303

13.3 Audit Policy

Audit Policy-related Statement

For more information, refer to the followings.

● Creating audit policy: CREATE AUDIT POLICY

● Dropping audit policy: DROP AUDIT POLICY

● Altering audit policy: ALTER AUDIT POLICY

● Activating audit policy: AUDIT POLICY

● Deactivating audit policy: NOAUDIT POLICY

● Dropping audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

Table 13-7 Audit policy object information

Schema View Description

DICTIONARY_SCHEMA

AUDIT_POLICIES Information about all audit policies

AUDIT_POLICY_OPTIONS Information about audit policy option

AUDIT_POLICY_ENABLED Information about activating audit policy

Examples

AUDIT SYSTEM ON DATABASE privilege is required to perform the followings.

Creating Audit Policy

Perform CREATE AUDIT POLICY statement to create an audit policy object.

The following is an example of creating an audit_t1_dml object to audit the DML for a u1.t1 table.

CREATE AUDIT POLICY audit_t1_dml

ACTIONS INSERT ON u1.t1

, DELETE ON u1.t1

, UPDATE ON u1.t1

;

Audit policy created.

Enquire the information about audit policy options by using AUDIT_POLICY_OPTIONS view.

1,304 | SQL Objects

SELECT policy_name

, audit_option

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'AUDIT_T1_DML'

ORDER BY audit_option

;

POLICY_NAME AUDIT_OPTION OBJECT_SCHEMA OBJECT_NAME

------------ ------------ ------------- -----------

AUDIT_T1_DML DELETE U1 T1

AUDIT_T1_DML INSERT U1 T1

AUDIT_T1_DML UPDATE U1 T1

3 rows selected.

Activating Audit Policy

Use AUDIT POLICY statement to activate the audit policy.

The following is an example of activating an audit policy to leave an audit record when a user except for

u1, sys succeeded to perform DML for u1.t1 table.

AUDIT POLICY audit_t1_dml

EXCEPT u1, sys

WHENEVER SUCCESSFUL

;

The activated audit policy is applied to the newly created session, but it does not affect the existing sessio

ns.

View the information about activated audit policy by using AUDIT_POLICY_ENABLED.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

ORDER BY user_name

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

Audit Policy | 1,305

-------------------- --------------------- ---------- ------------ ---------

AUDIT_T1_DML EXCEPT SYS YES NO

AUDIT_T1_DML EXCEPT U1 YES NO

2 rows selected.

After the audit policy is activated, the corresponding actions create audit records.

The following is an example of when u2 user successfully performs SQL statements.

SELECT COUNT(*) FROM u1.t1;

INSERT INTO u1.t1 VALUES (1);

UPDATE u1.t1 SET id = id + 1 WHERE id = 1;

DELETE u1.t1 WHERE id = 2;

COMMIT;

In the example above, INSERT, UPDATE, DELETE are target actions of an audit, so it creates audit records,

but SELECT and COMMIT are not a target action of an audit, so it does not create audit records.

Viewing Audit Trail

SELECT ON DICTIONARY_SCHEMA.AUDIT_TRAIL privilege for AUDIT_TRAIL view is required to view audit

records.

The following is an example of viewing an audit trail created by an audit_t1_dml audit policy.

SELECT policy_name

, logon_username

, action_name

, object_schema

, object_name

, sql_text

FROM audit_trail

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME LOGON_USERNAME ACTION_NAME OBJECT_SCHEMA OBJECT_NAME SQL_TEXT

------------ -------------- ----------- ------------- -----------

AUDIT_T1_DML U2 INSERT U1 T1 INSERT INTO u1.t1 VALUES (1

)

AUDIT_T1_DML U2 UPDATE U1 T1 UPDATE u1.t1 SET c1 = c1 + 1

WHERE c1 = 1

AUDIT_T1_DML U2 DELETE U1 T1 DELETE u1.t1 WHERE c1 = 2

3 rows selected.

1,306 | SQL Objects

Dropping Audit Trail

When an audit policy is activated, the size of an audit trail keeps increasing.

Execute the following statement to drop the audit trail.

ALTER DATABASE CLEAR AUDIT TRAIL;

Store it in the user table and drop it as follows to store the audit trail.

● Creating a user table

CREATE TABLE my_audit_trail

AS SELECT *

FROM audit_trail

WITH NO DATA;

● Storing it in a user table, then dropping it.

INSERT INTO my_audit_trail SELECT * FROM audit_trail;

ALTER DATABASE CLEAR AUDIT TRAIL;

Create and manage the view as follows to view both the stored audit trail and the current audit_trail.

CREATE VIEW unified_audit_trail

AS

SELECT * FROM my_audit_trail

UNION ALL

SELECT * FROM dictionary_schema.audit_trail

;

Deactivating Audit Policy

Deactivate the audit policy by using the following statement.

NOAUDIT POLICY audit_t1_dml;

Deactivating audit policy affects the newly created session, but it does not affect the activated informatio

n about existing sessions.

Audit Policy | 1,307

Dropping Audit Policy

Execute the following statement to drop the audit policy object.

DROP AUDIT POLICY audit_t1_dml;

The audit policy object should be deactivated to be dropped, and dropping the object does not affect the

existing sessions.

Concepts of Audit Policy

Audit Trail

Viewing Audit Trail

Audit record can be viewed by using DICTIONARY_SCHEMA.AUDIT_TRAIL view.

SELECT privilege is required to view AUDIT_TRAIL view.

GRANT SELECT ON DICTIONARY_SCHEMA.AUDIT_TRAIL TO user_name;

AUDIT_TRAIL view has the following information.

Table 13-8 Column information

Information Column name Description

Session

information

MEMBER_NAME Cluster member name

SESSION_ID Session identifier

SESSION_SERIAL Session serial number

LOGON_USERNAME Logon user name of the user whose actions were audited

CURRENT_USERNAME Effective user for the statement execution

SERVER_PROCESS Server process identifer for the session

Peer client

information

CLIENT_PROGRAM_NA

ME
Client program used for session

CLIENT_USERNAME Client operating system user name for the session

CLIENT_PROCESS Client process identifer for the session

CLIENT_HOST Client host ip address for the session

CLIENT_PORT Client port number for the session

CLIENT_TERMINAL Client terminal name for the session

TRANSACTION_ID Transaction identifier

SCN
System change number (SCN) string of the query at the time of the e

vent

1,308 | SQL Objects

SQL

information

GCN Global change number (GCN) of the query at the time of the event

DCN Domain change number (DCN) of the query at the time of the event

LCN Local change number (LCN) of the query at the time of the event

STMT_NO Numeric number for each statement run in a session

SQL_TEXT SQL associated with the event

SQL_BINDS List of bind variables, if any, associated with SQL_TEXT

RETURN_CODE Error code generated by the action, zero if the action succeeded

ERROR_MESSAGE Error message generated by the action, null if the action succeeded

Event

information

ENTRY_ID Audit trail entry identifier in the session

EVENT_TIMESTAMP Timestamp of the creation of the audit trail entry in local time zone

POLICY_NAME Audit policy name that caused the current audit record

PRIVILEGE_USED Database privilege used to execute the action

ACTION_NAME Action name executed by the user

OBJECT_TYPE Object type of object affected by the action

OBJECT_SCHEMA Schema name of object affected by the action

OBJECT_NAME Object name of object affected by the action

Information Column name Description

Storing Audit Trail

AUDIT_TRAIL view consists of the following tables.

● AUDIT_TRAIL_SESSION

○ It records a record per a session.

○ Session information

○ Peer client information

● AUDIT_TRAIL_SQL

○ It records a record per SQL.

○ SQL information

● AUDIT_TRAIL_EVENT

○ It records a record per an audit option.

○ Audit event information

Audit records configuring an audit trail is divided into multiple tables then stored.

The schema of the tables is DEFINITION_SCHEMA, and it is stored in MEM_AUX_TBS tablespace.

● DEFINITION_SCHEMA

○ It is a schema storing dictionary tables.

● MEM_AUX_TBS

○ System auxiliary tablespace

○ It is a tablespace to store a record which automatically created by the database.

○ It is managed by a separate tablespace not to affect the service management by an automatically

Audit Policy | 1,309

created record.

Creating Audit Record

If an audit policy is activated, it creates an audit record when the corresponding action occurs.

It creates one or more audit records when multiple corresponding actions occur.

● If similar audit options are listed as follows, it creates a single audit record.

○ Defining an audit policy

CREATE AUDIT POLICY p1

PRIVILEGES INSERT ANY TABLE

ACTIONS INSERT;

AUDIT POLICY p1;

○ Performing an audit action

INSERT INTO other_user.t1 VALUES (1);

● If different audit options are listed as follows, it creates two audit records.

○ Defining an audit policy

CREATE AUDIT POLICY p1

ACTIONS SELECT ON u1.t1

, SELECT ON u1.t2;

AUDIT POLICY p1;

○ Performing an audit action

SELECT COUNT(*) FROM u1.t1 A, u1.t2 B WHERE A.id = B.id;

● If multiple audit policies are activated in the identical action as follows, it creates two audit records.

○ Defining an audit policy

CREATE AUDIT POLICY p1

PRIVILEGES INSERT ANY TABLE;

AUDIT POLICY p1;

CREATE AUDIT POLICY p2

ACTIONS INSERT;

AUDIT POLICY p2;

1,310 | SQL Objects

○ Performing an audit action

INSERT INTO other.t1 VALUES (1);

Dropping Audit Trail (purge)

Execute the following statement to drop the audit trail.

ALTER DATABASE CLEAR AUDIT TRAIL;

Create a user table and store old audit record in it as follows.

CREATE TABLE my_audit_trail AS SELECT * FROM audit_trail WITH NO DATA;

Then, regularly store it by using INSERT .. SELECT statement before dropping the audit trail.

INSERT INTO my_audit_trail SELECT * FROM audit_trail;

ALTER DATABASE CLEAR AUDIT TRAIL;

Execute DELETE statement by using EVENT_TIMESTAMP column to store the audit record of the specified

period.

INSERT INTO my_audit_trail SELECT * FROM audit_trail;

DELETE FROM my_audit_trail WHERE event_timestamp < ADD_MONTHS(sysdate, -3);

ALTER DATABASE CLEAR AUDIT TRAIL;

View the old audit record and the current audit record together by creating a view as follows.

CREATE VIEW audit_trail_view

AS SELECT * FROM dictionary_schema.audit_trail

UNION ALL

SELECT * FROM my_audit_trail;

SELECT * FROM audit_trail_view;

Configuring Audit Policy

Audit policy may include the following options.

● Privilege auditing

○ It audits SQL performance by using the database privilege.

● Object action auditing

○ It audits SQL performance for the specific object.

● System action auditing

Audit Policy | 1,311

○ It audits SQL performance for all objects.

Multiple audit options can be managed by creating multiple audit policies, but it is recommended to man

age multiple audit options by creating a small number of audit policies.

The activated audit policy information is constructed as a session information at logon time, so the less th

e number of audit policies, the less the load becomes.

Moreover, if multiple audit policies are activated, then it determines whether to create an audit record for

an SQL statement, so a load creating multiple audit records may occur.

Audit policy information constructed in a session at logon time is not affected by dropping, altering, activ

ating or deactivating an audit policy.

Altering an audit policy is applied only to a newly logon session.

Privilege Auditing

Privilege auditing is set to audit when SQL statement is successfully performed by using the database privi

lege.

It does not create an audit record which is based on the privilege auditing about sys user (the database o

wner).

The database privilege which can be listed for the privilege auditing can be viewed through V$AUDITABL

E_DB_PRIVILEGES view.

SELECT privilege_name FROM v$auditable_db_privileges;

PRIVILEGE_NAME

ADMINISTRATION

ALTER DATABASE

ALTER SYSTEM

ACCESS CONTROL

CREATE USER

ALTER USER

DROP USER

CREATE TABLESPACE

ALTER TABLESPACE

DROP TABLESPACE

USAGE TABLESPACE

CREATE SCHEMA

DROP SCHEMA

ANALYZE ANY

CREATE ANY TABLE

1,312 | SQL Objects

ALTER ANY TABLE

DROP ANY TABLE

SELECT ANY TABLE

INSERT ANY TABLE

DELETE ANY TABLE

UPDATE ANY TABLE

LOCK ANY TABLE

CREATE ANY VIEW

DROP ANY VIEW

CREATE ANY SEQUENCE

ALTER ANY SEQUENCE

DROP ANY SEQUENCE

USAGE ANY SEQUENCE

CREATE ANY INDEX

ALTER ANY INDEX

DROP ANY INDEX

CREATE ANY SYNONYM

DROP ANY SYNONYM

CREATE PUBLIC SYNONYM

DROP PUBLIC SYNONYM

CREATE PROFILE

ALTER PROFILE

DROP PROFILE

CREATE ANY PROCEDURE

ALTER ANY PROCEDURE

DROP ANY PROCEDURE

EXECUTE ANY PROCEDURE

AUDIT SYSTEM

43 rows selected.

The following is an example of when a user u1 who has SELECT ANY TABLE privilege activates an audit p

olicy for the privilege auditing.

CREATE AUDIT POLICY p1

PRIVILEGES SELECT ANY TABLE;

AUDIT POLICY p1;

Whether the audit record is created when a user u1 performs the following two statements is as follows.

● SELECT * FROM u1.t1

○ It does not use SELECT ANY TABLE privilege because it is an owner of the object.

○ An audit record does not exist.

Audit Policy | 1,313

● SELECT * FROM other.t1

○ It succeeds with SELECT ANY TABLE privilege even though it does not have SELECT ON other.t1

privilege.

○ It creates an audit record.

Use AUDIT_POLICY_OPTIONS view to view the privilege auditing information as follows.

SELECT audit_option

, audit_option_type

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'P1'

;

AUDIT_OPTION AUDIT_OPTION_TYPE OBJECT_SCHEMA OBJECT_NAME

-------------------- -------------------- ----------------- ------------

SELECT ANY TABLE DATABASE PRIVILEGE null null

Auditing Object Action

It audits SQL which is performed for a specific object.

Actions to be audited per each object type are as follows.

Table 13-9 Audit action per object type

Object type Actions

Table
ALTER, COMMENT, DELETE, GRANT, INDEX, INSERT, LOCK, RENAME, SELECT, UPDA

TE

View ALTER, COMMENT, GRANT, SELECT

Sequence ALTER, COMMENT, GRANT, SELECT

Stored function/

procedure
ALTER, COMMENT, EXECUTE, GRANT

Create the audit policy as follows to audit DML for table u1.t1.

CREATE AUDIT POLICY audit_t1_dml

ACTIONS INSERT ON u1.t1

, DELETE ON u1.t1

, UPDATE ON u1.t1

;

Execute AUDIT_POLICY_OPTIONS view as follows to view the information about object action auditing.

1,314 | SQL Objects

SELECT audit_option

, audit_option_type

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'AUDIT_T1_DML'

ORDER BY audit_option

;

AUDIT_OPTION AUDIT_OPTION_TYPE OBJECT_SCHEMA OBJECT_NAME

------------ ----------------- ------------- -----------

DELETE OBJECT ACTION U1 T1

INSERT OBJECT ACTION U1 T1

UPDATE OBJECT ACTION U1 T1

3 rows selected.

ALL option such as ALL ON schema.object means all audit actions which can be defined for the correspon

ding object.

The following is an example of using ALL option together with other options.

CREATE AUDIT POLICY p1

ACTIONS ALL ON u1.seq1

, ALTER ON u1.seq1

;

Audit policy created.

SELECT audit_option

, audit_option_type

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'P1'

ORDER BY audit_option

;

AUDIT_OPTION AUDIT_OPTION_TYPE OBJECT_SCHEMA OBJECT_NAME

------------ ----------------- ------------- -----------

ALL OBJECT ACTION U1 SEQ1

ALTER OBJECT ACTION U1 SEQ1

2 rows selected.

When dropping ALL option as follows, not every audit options are dropped, but only ALL option is dropp

ed.

Audit Policy | 1,315

ALTER AUDIT POLICY p1

DROP ACTIONS ALL ON u1.seq1;

Audit Policy altered.

SELECT audit_option

, audit_option_type

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'P1'

ORDER BY audit_option;

AUDIT_OPTION AUDIT_OPTION_TYPE OBJECT_SCHEMA OBJECT_NAME

------------ ----------------- ------------- -----------

ALTER OBJECT ACTION U1 SEQ1

1 row selected.

Auditing success or failure of EXECUTE a stored function or a stored procedure is determined based only

on whether it is executable at the time of the execution.

● WHENEVER NOT SUCCESSFUL creates an audit record when it can not performs a stored function/ pr

ocedure.

● WHENEVER SUCCESSFUL creates an audit record even when an error occurs while performing an SQ

L statement in a stored function/ procedure.

● If an auditing the failure of an SQL statement in a stored function/ procedure, then that SQL stateme

nt should be included in an auditing target.

The following is an example of executing SELECT statement including a stored function.

SELECT others.func1(t1.c1)

FROM t1;

It corresponds to WHENEVER NOT SUCCESSFUL when it fails to call others.func1() due to an error such a

s a lack of privilege. It corresponds to WHENEVER SUCCESSFUL even though an error occurs while execut

ing an SQL statement in a stored function when it succeeds to call others.func1().

Auditing System Action

It audits an SQL statement regardless of a specific object.

A valid system action enquires V$AUDITABLE_SYSTEM_ACTIONS.

SELECT action_name FROM v$auditable_system_actions;

ACTION_NAME

ALL

1,316 | SQL Objects

DDL

SELECT

INSERT

UPDATE

DELETE

EXECUTE

CREATE TABLE

DROP TABLE

ALTER TABLE

LOCK TABLE

TRUNCATE TABLE

ANALYZE TABLE

RENAME

CREATE INDEX

DROP INDEX

ALTER INDEX

CREATE SEQUENCE

DROP SEQUENCE

ALTER SEQUENCE

GRANT

REVOKE

CREATE SYNONYM

DROP SYNONYM

CREATE VIEW

DROP VIEW

ALTER VIEW

CREATE PROCEDURE

DROP PROCEDURE

ALTER PROCEDURE

CREATE FUNCTION

DROP FUNCTION

ALTER FUNCTION

COMMENT

ALTER DATABASE

CREATE PROFILE

DROP PROFILE

ALTER PROFILE

CREATE TABLESPACE

DROP TABLESPACE

ALTER TABLESPACE

CREATE USER

Audit Policy | 1,317

DROP USER

ALTER USER

CHANGE PASSWORD

CREATE SCHEMA

DROP SCHEMA

CREATE AUDIT POLICY

DROP AUDIT POLICY

ALTER AUDIT POLICY

AUDIT

NOAUDIT

ALTER SYSTEM

ALTER SESSION

ANALYZE SYSTEM

COMMIT

ROLLBACK

SAVEPOINT

LOGON

LOGOFF

SET SESSION

SET TRANSACTION

SET CONSTRAINTS

CREATE CLUSTER GROUP

DROP CLUSTER GROUP

ALTER CLUSTER GROUP

CREATE CLUSTER LOCATION

DROP CLUSTER LOCATION

ALTER CLUSTER LOCATION

69 rows selected.

A system action name corresponding to each SQL statement is viewed by executing V$SQL_COMMAND v

iew.

SELECT command, audit_action FROM v$sql_command;

COMMAND AUDIT_ACTION

--- -----------------------

ALTER AUDIT POLICY ALTER AUDIT POLICY

ALTER CLUSTER GROUP .. ADD CLUSTER MEMBER ALTER CLUSTER GROUP

ALTER CLUSTER GROUP .. OFFLINE CLUSTER MEMBER ALTER CLUSTER GROUP

ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS ALTER DATABASE

ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS ALTER DATABASE

... Ellipsis ...

1,318 | SQL Objects

UPDATE UPDATE

UPDATE .. RETURNING query UPDATE

UPDATE .. RETURNING .. INTO UPDATE

UPDATE .. WHERE CURRENT OF cursor UPDATE

CREATE CLUSTER LOCATION CREATE CLUSTER LOCATION

ALTER CLUSTER LOCATION ALTER CLUSTER LOCATION

DROP CLUSTER LOCATION DROP CLUSTER LOCATION

170 rows selected.

The following is an example of creating an audit policy including a system action, and enquiring an audit

option.

CREATE AUDIT POLICY p1

ACTIONS SELECT

, DROP TABLE

, DROP USER

;

Audit Policy created.

SELECT audit_option

, audit_option_type

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'P1'

ORDER BY audit_option

;

AUDIT_OPTION AUDIT_OPTION_TYPE OBJECT_SCHEMA OBJECT_NAME

------------ ----------------- ------------- -----------

DROP TABLE SYSTEM ACTION null null

DROP USER SYSTEM ACTION null null

SELECT SYSTEM ACTION null null

3 rows selected.

Useful Audit Policy

The following is an example of defining a useful audit policy.

● Auditing a logon failure

CREATE AUDIT POLICY AUDIT_LOGON_FAILURES

ACTIONS LOGON

;

Audit Policy | 1,319

AUDIT POLICY AUDIT_LOGON_FAILURES

WHENEVER NOT SUCCESSFUL

;

● Auditing a Data Definition Language (DDL) performance

CREATE AUDIT POLICY AUDIT_DDL

ACTIONS DDL

;

AUDIT POLICY AUDIT_DDL

WHENEVER SUCCESSFUL

;

● Auditing a parameter alteration

CREATE AUDIT POLICY AUDIT_DATABASE_PARAMETER

ACTIONS ALTER DATABASE

, ALTER SYSTEM

;

AUDIT POLICY AUDIT_DATABASE_PARAMETER

WHENEVER SUCCESSFUL

;

● Auditing an account alteration

CREATE AUDIT POLICY AUDIT_ACCOUNT_MGMT

ACTIONS CREATE USER

, DROP USER

, ALTER USER

, CHANGE PASSWORD

, GRANT

, REVOKE

;

AUDIT POLICY AUDIT_ACCOUNT_MGMT

;

● Auditing the recommendations of Center for Internet Security (CIS)

CREATE AUDIT POLICY AUDIT_CIS_RECOMMENDATIONS

PRIVILEGES ALTER SYSTEM

, ALTER DATABASE

ACTIONS CREATE USER

1,320 | SQL Objects

, DROP USER

, ALTER USER

, CHANGE PASSWORD

, GRANT

, REVOKE

, CREATE PROFILE

, ALTER PROFILE

, DROP PROFILE

, CREATE SYNONYM

, DROP SYNONYM

, CREATE PROCEDURE

, DROP PROCEDURE

, ALTER PROCEDURE

;

AUDIT POLICY AUDIT_CIS_RECOMMENDATIONS

WHENEVER SUCCESSFUL

;

Operationg Audit Policy

Activating Audit Poilcy

An audit policy object does not start auditing until it is activated.

An audit policy object should be activated by using AUDIT POLICY statement as follows to perform auditi

ng.

CREATE AUDIT POLICY audit_t1_dml

ACTIONS INSERT ON u1.t1

, DELETE ON u1.t1

, UPDATE ON u1.t1

;

Audit policy created.

AUDIT POLICY audit_t1_dml;

Audit succeeded.

When activating an audit policy, it audits new sessions only, but it does not affect the existing sessions.

When activating an audit policy by using AUDIT POLICY statement, it can specifies a user which will audit

using BY clause or EXCEPT clause, or it may audit success/ failure of an audit action by using WHENEVER

clause.

Audit Policy | 1,321

● BY | EXCEPT

○ BY user_list: It specifies a user to audit.

○ EXCEPT user_list: It audits all users except for specified users.

○ When it is omitted, it audits all users.

● WHENEVER

○ WHENEVER SUCCESSFUL: It creates an audit record when an audit action succeeds.

○ WHENEVER NOT SUCCESSFUL: It creates an audit record when an audit action fails.

○ When it is omitted, it creates an audit record regardless of a success/ failure of an audit action.

The information about activated audit policy can be viewed by executing AUDIT_POLICY_ENABLED view.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- ---------- ------------ ------------

AUDIT_T1_DML BY ALL USERS YES YES

If the auditing target user is omitted as the example above, it outputs ALL USERS meaning all users.

Note the followings when using BY clause and EXCEPT clause.

● BY clause and EXCEPT clause can not be used together for the same audit policy.

AUDIT POLICY audit_t1_dml BY u1;

Audit succeeded.

AUDIT POLICY audit_t1_dml EXCEPT u2;

ERR-42000(16475): audit policy already applied with the BY clause

● If multiple AUDIT POLICY BY clauses are used in the same audit policy, it is activated for the user sets.

In other words, the following examples have the same meaning.

○ Example 1

AUDIT POLICY audit_t1_dml BY u1;

Audit succeeded.

AUDIT POLICY audit_t1_dml BY u2;

Audit succeeded.

1,322 | SQL Objects

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY U1 YES YES

AUDIT_T1_DML BY U2 YES YES

2 rows selected.

○ Example 2

AUDIT POLICY audit_t1_dml BY u1, u2;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY U1 YES YES

AUDIT_T1_DML BY U2 YES YES

2 rows selected.

● If multiple AUDIT POLICY EXCEPT clauses are used in the same audit policy, only the last AUDIT POLI

CY statement is valid. In other words, the following examples have different meanings.

○ Example 1

AUDIT POLICY audit_t1_dml EXCEPT u1;

Audit succeeded.

AUDIT POLICY audit_t1_dml EXCEPT u2;

Audit succeeded.

SELECT policy_name

Audit Policy | 1,323

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML EXCEPT U2 YES YES

1 row selected.

○ Example 2

AUDIT POLICY audit_t1_dml EXCEPT u1, u2;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML EXCEPT U1 YES YES

AUDIT_T1_DML EXCEPT U2 YES YES

2 rows selected.

● WHENEVER clause which is used together with BY clause is accumulated. In other words, the followi

ng examples have the same meaning.

○ Example 1

AUDIT POLICY audit_t1_dml BY u1 WHENEVER SUCCESSFUL;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

1,324 | SQL Objects

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY U1 YES NO

1 row selected.

AUDIT POLICY audit_t1_dml BY u1 WHENEVER NOT SUCCESSFUL;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY U1 YES YES

1 row selected.

○ Example 2

AUDIT POLICY audit_t1_dml BY u1;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY U1 YES YES

1 row selected.

● If WHENEVER clause is used together with EXCEPT clause, then only the last part of it is valid. In othe

r words, the following examples have different meanings.

Audit Policy | 1,325

○ Example 1

AUDIT POLICY audit_t1_dml EXCEPT u1 WHENEVER SUCCESSFUL;

Audit succeeded.

AUDIT POLICY audit_t1_dml EXCEPT u1 WHENEVER NOT SUCCESSFUL;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML EXCEPT U1 NO YES

1 row selected.

○ Example 2

AUDIT POLICY audit_t1_dml EXCEPT u1;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML EXCEPT U1 YES YES

1 row selected.

Deactivating Audit Policy

NOAUDIT POLICY statement should be executed to deactivate an audit policy.

NOAUDIT POLICY statement is applied only to a new session, and it does not affect to the existing sessio

n.

1,326 | SQL Objects

If all information is set to be deactivated by using the query below, then an audit policy is completely dea

ctivated.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

no rows selected.

NOAUDIT POLICY statement deletes each activated information which is created according to the specifie

d AUDIT POLICY method.

The following is an example of deactivating only the auditing for u1 user of audit_t1_dml.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY U1 YES YES

AUDIT_T1_DML BY SYS YES YES

2 rows selected.

NOAUDIT POLICY audit_t1_dml BY u1;

Noaudit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

Audit Policy | 1,327

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY SYS YES YES

1 row selected.

If AUDIT POLICY name BY clause is used it should be deactivated by using NOAUDIT POLICY name BY sta

tement. If AUDIT POLICY name EXCEPT clause is used it should be deactivated by using NOAUDIT POLIC

Y name statement without BY clause.

NOAUDIT POLICY statement should be used according to the usage as follows to deactivate each option

of AUDIT POLICY statement.

Table 13-10 Activating/ deactivating audit policy

Type AUDIT POLICY statement NOAUDIT POLICY statement

All users AUDIT POLICY p1 NOAUDIT POLICY p1

Using BY AUDIT POLICY p1 BY u1 NOAUDIT POLICY p1 BY u1

Using EXCEPT AUDIT POLICY p1 EXCEPT u1 NOAUDIT POLICY p1

If all users are activated as follows, NOAUDIT POLICY BY clause does not affect anything.

AUDIT POLICY audit_t1_dml;

Audit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY ALL USERS YES YES

1 row selected.

NOAUDIT POLICY audit_t1_dml BY u1;

Noaudit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'AUDIT_T1_DML'

1,328 | SQL Objects

;

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

------------ ----------- --------- ------------ ------------

AUDIT_T1_DML BY ALL USERS YES YES

1 row selected.

If one or more users are separately activated, NOAUDIT POLICY statement should be used according to th

e AUDIT POLICY configuration.

● When it is activated by using BY clause

○ The following is an example of activating by using BY clause.

AUDIT POLICY p1 WHENEVER NOT SUCCESSFUL;

AUDIT POLICY p1 BY u1;

AUDIT POLICY p1 BY u2;

○ The information about activating is viewed as follows.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

----------- ----------- --------- ------------ ------------

P1 BY ALL USERS NO YES

P1 BY U1 YES YES

P1 BY U2 YES YES

3 rows selected.

○ The following is the information about activating when NOAUDIT statement is performed.

NOAUDIT POLICY p1;

Noaudit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

Audit Policy | 1,329

FROM audit_policy_enabled

WHERE policy_name = 'P1';

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

----------- ----------- --------- ------------ ------------

P1 BY U1 YES YES

P1 BY U2 YES YES

2 rows selected.

In the example above, the auditing for ALL USERS is deactivated, but the auditing for user u1 and u2 are

still activated.

If NOAUDIT POLICY statement is used again by using BY option as follows, then it completely deactivate t

he audit policy p1.

NOAUDIT POLICY p1 BY u1, u2;

Noaudit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

no rows selected.

● When it is activated by using EXCEPT

○ The following is an example of activating by using the audit policy.

AUDIT POLICY p1 EXCEPT u1, sys;

○ The information about activating is viewed as follows.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

----------- ----------- --------- ------------ ------------

P1 EXCEPT U1 YES YES

1,330 | SQL Objects

P1 EXCEPT SYS YES YES

2 rows selected.

○ Unlike AUDIT POLICY statement, NOAUDIT POLICY statement does not have an EXCEPT option,

and it executes the statement without an option as follows.

NOAUDIT POLICY p1;

Noaudit succeeded.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

no rows selected.

In other words, if an audit policy is activated by using an EXCEPT option, then a separate user can not be

re activated by using NOAUDIT POLICY statement.

Authorization | 1,331

13.4 Authorization

Authorization-related Statements

For more information, refer to the followings.

● Creating a user: CREATE USER

● Dropping a user: DROP USER

● Altering a user: ALTER USER

● Granting privileges: GRANT privileges TO

● Revoking privileges: REVOKE privileges FROM

Information related to a user object and the authorization can be retrieved through the following views.

Table 13-11 Authorization objects related information

Schema View Description

ALL_COL_PRIVS Privileges for the user-accessible column

ALL_COL_PRIVS_MADE Privileges for the column whose user is the grantor

ALL_COL_PRIVS_RECD Privileges for the column whose user is the grantee

ALL_DB_PRIVS DB privileges which is related to a user

ALL_DB_PRIVS_MADE Privileges for the DB whose user is the grantor

ALL_DB_PRIVS_RECD Privileges for the DB whose user is the grantee

ALL_PROC_PRIVS Stored procedure/function privileges which is related to a user

ALL_PROC_PRIVS_MAD

E

Privileges for the stored procedure/function whose user is the gra

ntor

ALL_PROC_PRIVS_REC

D

Privileges for the stored procedure/function whose user is the gra

ntee

ALL_SCHEMA_PRIVS Privileges for the user-accessible schema

ALL_SCHEMA_PRIVS_

MADE
Privileges for the schema whose user is the grantor

ALL_SCHEMA_PRIVS_R

ECD
Privileges for the schema whose user is the grantee

ALL_SEQ_PRIVS Privileges for the user-accessible sequence

ALL_SEQ_PRIVS_MADE Privileges for the sequence whose user is the grantor

ALL_SEQ_PRIVS_RECD Privileges for the sequence whose user is the grantee

ALL_TAB_PRIVS Privileges for the user-accessible table

ALL_TAB_PRIVS_MADE Privileges for the table whose user is the grantor

ALL_TAB_PRIVS_RECD Privileges for the table whose user is the grantee

ALL_TBS_PRIVS Privileges for the user-accessible tablespace

1,332 | SQL Objects

DICTIONARY_SCHE

MA

ALL_TBS_PRIVS_MADE Privileges for the tablespace whose user is the grantor

ALL_TBS_PRIVS_RECD Privileges for the tablespace whose user is the grantee

ALL_USERS Information about the user-accessible user

USER_COL_PRIVS Privilege information about the user owned column

USER_COL_PRIVS_MA

DE
Information of granting privileges about the user owned column

USER_COL_PRIVS_REC

D
Information of acquiring privilege about the user owned column

USER_PROC_PRIVS
Privilege information about the user owned stored procedure/fun

ction

USER_PROC_PRIVS_MA

DE

Information of granting privileges about the user owned stored pr

ocedure/function

USER_PROC_PRIVS_RE

CD

Information of acquiring privilege about the user owned stored pr

ocedure/function

USER_SCHEMA_PRIVS Privilege information about the user owned schema

USER_SCHEMA_PRIVS_

MADE
Information of granting privileges about the user owned schema

USER_SCHEMA_PRIVS_

RECD
Information of acquiring privilege about the user owned schema

USER_SEQ_PRIVS Privilege information about the user owned sequence

USER_SEQ_PRIVS_MAD

E

Information of granting privileges about the user owned sequenc

e

USER_SEQ_PRIVS_REC

D

Information of acquiring privilege about t the user owned sequen

ce

USER_TAB_PRIVS Privileges information about the user owned table

USER_TAB_PRIVS_MAD

E
Information of granting privileges about the user owned table

USER_TAB_PRIVS_REC

D
Information of acquiring privilege about the user owned table

USER_USERS Information about the current user

INFORMATION_SCH

EMA

COLUMN_PRIVILEGES Privilege information of user-accessible column

ROUTINE_PRIVILEGES Privilege information of user-accessible stored procedure/function

TABLE_PRIVILEGES Privilege information of user-accessible table

USAGE_PRIVILEGES Privilege information of user-accessible sequence

Schema View Description

Concepts of User

A user object consists of the user's execution privilege set. The user should have the appropriate privilege

to execute the SQL statements for the corresponding object.

Authorization | 1,333

For example, the user which is created by using CREATE USER statement is an object without any privileg

es. The user can not access the database nor does it execute any SQL statement. For access, the user sho

uld have CREATE SESSION ON DATABASE privilege which allows creating sessions in database object. Th

e appropriate privilege should be granted after executing CREATE USER statement as follows.

CREATE USER u1 IDENTIFIED BY u1_password;

GRANT CREATE SESSION ON DATABASE TO u1;

COMMIT;

For more information about granting privilege after creating user object, refer to Examples in CREATE U

SER and GRANT privileges TO.

Creating Objects and Privileges

Creating SQL Schema Object

When creating an SQL schema object such as a table, the user should have the privileges for the superord

inate non-schema object to which the table belongs in order to execute CREATE TABLE statements.

The following is an example of CREATE TABLE statements.

CREATE TABLE t1 (id BIGINT, name VARCHAR(128));

When it is interpreted as follows,

CREATE TABLE u1.t1 (id BIGINT, name VARCHAR(128)) TABLESPACE mem_data_tbs;

In the figure below, the owner of the table t1 is the account u1 who is the owner of the schema u1. The

schema u1 is the logical location which includes the table, and the table space mem_data_tbs is the physi

cal storage which stores the table.

1,334 | SQL Objects

Figure 2 CREATE TABLE and non-schema objects

In this case, the user u1 who performed the statement needs the following privileges for the schema and

tablespace to which the table t1 will belong.

One of the following privileges is required to create the table which will be stored on its logical location (s

chema u1).

● Privilege to create the table on the schema u1

○ CREATE TABLE ON SCHEMA ON u1

● Privilege to create any table on the database

○ CREATE ANY TABLE ON DATABASE

○ A table can be created when having privileges for the database which is superordinate object of t

he schama u1 even without the schema privilege.

One of the following privileges is required to create a table in tablespace mem_data_tbs which is the phy

sical storage space of tables.

● Privilege to create an object on the tablespace mem_data_tbs

○ CREATE OBJECT ON TABLESPACE mem_data_tbs

● Privilege to use all tablespaces in the database

○ USAGE TABLESPACE ON DATABASE

○ A table can be created when having privileges for the database which is the superordinate object

of mem_data_tbs tablespace even without the tablespace privilege.

Authorization | 1,335

The owner of the table object is determined as follows.

● The owner of the schema to which the table belongs

● If the owner of the schema to which the table belongs is PUBLIC, then it is the user who executed the

statement.

The owner of the table object has the following privileges to change the table structure and manipulate d

ata in the table.

● SELECT ON TABLE

○ The privilege to execute SELECT statement on the table

● INSERT ON TABLE

○ The privilege to execute INSERT statement on the table

● UPDATE ON TABLE

○ The privilege to execute UPDATE statement on the table

● DELETE ON TABLE

○ The privilege to execute DELETE statement on the table

● LOCK ON TABLE

○ The privilege to execute LOCK statement on the table

● INDEX ON TABLE

○ The privilege to execute CREATE/DROP/ALTER INDEX statement on the table

● ALTER ON TABLE

○ The privilege to execute ALTER TABLE statement on the table

The grantor of the given privilege is the _SYSTEM account which is used internally, and the grantee is th

e table owner. Therefore, any user including SYS account is not allowed to remove or change the owner

privilege using REVOKE privileges FROM. The table owner's privileges are also removed when the table is

removed.

Creating Non-schema Object

Like as creating the SQL schema object such as a table, the appropriate privileges for the database (a sup

erordinate object) are required to create the non-schema objects such as user, schema, tablespace.

A user who executes the following statements should have the following privileges for the database obje

ct (a superordinate object) per each statement.

● CREATE USER statement

○ CREATE USER ON DATABASE

○ The privilege to execute CREATE USER statement on the database

● CREATE TABLESPACE statement

○ CREATE TABLESPACE ON DATABASE

○ The privilege to execute CREATE TABLESPACE statement on the database

1,336 | SQL Objects

● CREATE SCHEMA statement

○ CREATE SCHEMA ON DATABASE

○ The privilege to execute CREATE SCHEMA statement on the database

● CREATE PUBLIC SYNONYM statement

○ The privilege to execute CREATE PUBLIC SYNONYM statement on the database

Unlike creating the SQL schema object, the user who performed CREATE statement is not the owner of n

on-schema object. Each object has the following characteristics.

● User object

○ There is not an owner.

○ DROP USER ON DATABASE privilege is required to drop a user object.

● Tablespace object

○ There is not an owner.

○ DROP TABLESPACE ON DATABASE privilege is required to drop a tablespace object.

● Schema object

○ It is an owner which is specified in the CREATE SCHEMA statement.

○ The schema object owner can drop it.

● Public synonym object

○ There is not an owner.

○ DROP PUBLIC SYNONYM ON DATABASE privilege is required to drop a public synonym object.

Privileges

Granting Privileges

To INSERT, DELETE, UPDATE, or SELECT data when the user is not the owner of SQL schema object such

as table, then the user should be granted the appropriate privileges by using GRANT privileges TO statem

ent.

For example, a user who is not the owner of the table requires one of the following privileges to execute

SELECT statement. As the figure below, the user can query the u1.t1 table if the user has SELECT privileg

es on the superordinate object u1 schema or the database even when the user does not have SELECT priv

ilege on table t1.

● The test user executes the following.

SELECT id, name FROM u1.t1 WHERE id < 100;

Authorization | 1,337

Figure 3 Privilege to execute SELECT statement

● SELECT ON TABLE u1.t1

○ SELECT privilege for the table u1.t1

● SELECT ON SCHEMA u1

○ SELECT privilege for the schema u1 which is the superordinate object

○ SELECT privilege for all tables of the schema u1

● SELECT ANY TABLE ON DATABASE

○ SELECT privilege for the database which is the second superordinate object

○ SELECT privilege for all tables of the database

The user who executed the GRANT statement should be one of the followings to grant the SELECT ON T

ABLE u1.t1 privileges to another user.

● Owner of the object u1.t1

○ The object owner has the privilege of SELECT ON TABLE u1.t1 WITH GRANT OPTION granted by

the _SYSTEM account.

● User with SELECT ON TABLE u1.t1 WITH GRANT OPTION

○ WITH GRANT OPTION enables the grantee to grant the granted privileges to another user.

● User with the privilege of ACCESS CONTROL ON DATABASE

○ The user can control all privileges on all objects.

The following is an example that the object owner grants privileges to another user.

● The owner of the table u1.t1 executes GRANT statement.

GRANT SELECT ON TABLE u1.t1 TO test;

1,338 | SQL Objects

For more information about the privilege types, refer to GRANT privileges TO.

For more information about privileges executing each SQL statements, refer to the Invocation and Access

Rule of each statement in SQL References.

Revoking Privileges

The granted privileges are revoked from a user by using REVOKE privileges FROM. The privileges of the o

bject's owner can not be revoked until the object is removed.

For example, a user who can execute REVOKE statement to revoke the SELECT privilege from the test use

r is as follows. The user can not revoke privileges which were not granted by the user even when the user

is the owner of the table.

REVOKE SELECT ON TABLE u1.t1 FROM test;

● User who grants privileges

○ The user grants the privilege of SELECT ON TABLE u1.t1 to the test1 user.

● User who has the privilege of ACCESS CONTROL ON DATABASE

○ The user can control all privileges on all objects.

When the test user is granted the same privileges from multiple users as follows, the test user can execut

e SELECT statement until all the privileges are revoked.

● The object owner u1 grants the privilege to the test user.

GRANT SELECT ON TABLE u1.t1 TO test;

● The object owner u1 grants the privilege of WITH GRANT OPTION to the user u2.

GRANT SELECT ON TABLE u1.t1 TO u2 WITH GRANT OPTION;

● The user u2 executes it.

● The u2 user with the privilege of WITH GRANT OPTION grants the privilege to the test user.

GRANT SELECT ON TABLE u1.t1 TO test;

In the example above, the test user has two SELECT ON TABLE u1.t1 privileges which were granted by us

er u1 and user u2. The privilege information consists of {grantor, grantee, object privileges}.

PUBLIC Account

PUBLIC account is a special account which means every user.

Authorization | 1,339

For example, if the SELECT privilege is granted to PUBLIC account as follows, every user can execute SELE

CT statements on the table, u1.t1.

GRANT SELECT ON TABLE u1.t1 TO PUBLIC;

Even a user without SELECT privilege can execute SELECT statements on the table u1.t1 using the SELECT

privilege on PUBLIC account.

When a privilege is granted to PUBLIC account, it is granted not to the existing users but to PUBLIC accou

nt itself. Even the newly created user can also execute SELECT statements.

Likewise, the user can execute SELECT statements if the user has the SELECT privilege on the table u1.t1

because revoking a privilege from PUBLIC account does not mean revoking the privilege from every user.

● The privilege is granted to the test user.

GRANT SELECT ON TABLE u1.t1 TO test;

● The privilege is granted to PUBLIC account.

GRANT SELECT ON TALBE u1.t1 TO PUBLIC;

● The privilege is revoked from PUBLIC account, and the test user still has the privilege on SELECT ON T

ABLE u1.t1.

REVOKE SELECT ON TABLE u1.t1 FROM PUBLIC;

Column Privilege

By granting privileges only on specific columns of a table, it is possible to control the execution of DML or

SELECT statements of other user.

The following is an example table.

CREATE TABLE u1.t1

(

id BIGINT,

name VARCHAR(128),

addr VARCHAR(1024),

salary NUMBER(20,0)

);

If SELECT privilege on the table u1.t1 excluding the salary column information is granted to another user,

GRANT privileges TO statement is executed by listing the columns to be grantees of the privilege as follo

1,340 | SQL Objects

ws. The test user who is the grantees of the privilege can not query the salary column.

● The privilege on SELECT columns is granted to the test user.

GRANT SELECT(id, name, addr) ON TABLE u1.t1 TO test;

If the privilege on a table is granted as follows, the privilege on every column in the table is automatically

granted. If both table privilege and column privilege are granted, the privilege information for a column is

duplicated and the information is not dually managed.

● SELECT privilege is granted to the test user.

GRANT SELECT ON TABLE u1.t1 TO test;

● Privileges on every column in the table u1.t1 are automatically granted.

GRANT SELECT(id) ON TABLE u1.t1 TO test;

GRANT SELECT(name) ON TABLE u1.t1 TO test;

GRANT SELECT(addr) ON TABLE u1.t1 TO test;

GRANT SELECT(salary) ON TABLE u1.t1 TO test;

The privilege on a column is revoked by using REVOKE privileges FROM as follows.

● The privilege on SELECT columns is revoked from the test user.

REVOKE SELECT(id, name, addr) ON TABLE u1.t1 FROM test;

If the privilege on a table is revoked as follows, the privilege on every column in the table is automatically

revoked. Even if the column privileges and table privileges are separately granted, the columns privileges

are revoked when the table privileges are revoked.

● SELECT privilege is revoked from the test user.

● Privileges on every column in the table u1.t1 are revoked.

REVOKE SELECT ON TABLE u1.t1 FROM test;

When revoking only the column privilege and the table privilege still exists as follows, then the following

statements can be executed by using the table privilege. Therefore, to grant the privilege only on a specifi

c column, the table privilege should be revoked, and then each column privilege should be granted.

● SELECT table privilege is granted to the test user.

Authorization | 1,341

GRANT SELECT ON TABLE u1.t1 TO test;

● The SELECT(salary) column privilege is revoked from the test user.

● The test user can query the salary column in the table u1.t1 because the test user has the SELECT priv

ilege on the table.

REVOKE SELECT(salary) ON TABLE u1.t1 FROM test;

For more information about the privileges on a table and columns, refer to GRANT privileges TO .

1,342 | SQL Objects

13.5 Schema

Schema-related Statements

For more information about creating and dropping a schema, refer to the followings.

● Creating a schema: CREATE SCHEMA.

● Dropping a schema: DROP SCHEMA.

Information which is related to a schema object can be retrieved through the following views.

Table 13-12 Schema object-related information

Schema View Description

DICTIONARY_SCHEMA

ALL_SCHEMAS User accessible schema information

ALL_SCHEMA_PATH User accessible schema path

USER_SCHEMAS User owned schema information

USER_SCHEMA_PATH User's schema path information

INFORMATION_SCHEMA SCHEMATA User accessible schema information

Concepts of Schema

The database consists of one or more schemas. The schema consists of objects such as tables, indexes, vi

ews, and sequences, which processes data. SQL schema object is an object which belongs to the schema.

Schema is similar to the directory in OS. The relationship between schema and tables is similar to the relat

ionship between the directories and files in OS.

Schema is the logical position of the SQL schema object and it is criteria of distinguishing the name. Every

SQL schema object should have a unique name and the naming space in the schema is as follows.

● Table, view, sequence, private synonym, stored procedure, stored function

● Index

● Constraint

The same name tables can be defined in the different schema. The different tables with same name are a

ccessible and executed by specifying together with the schema name.

Schema | 1,343

gSQL> SELECT u1.t1.id, u1.t1.name, u2.t1.addr

FROM u1.t1, u2.t1

WHERE u1.t1.id = u2.t1.id;

The name of SQL schema object is specified together with the schema name or without it. If the schema

name is omitted, it is determined by the user's schema path. For more information about the schema pat

h, refer to Schema Path clause.

● When the schema name is specified

gSQL> SELECT u1.t1.id, u1.t1.name FROM u1.t1;

● When the schema name is omitted

gSQL> SELECT t1.id, t1.name FROM t1;

User and Schema

In GOLDILOCKS, relationship between the user and the schema is 1:N. A user does not own a schema, or

the user can have multiple schemas.

The SQL standard does not explicitly define the relationship of the non-schema objects such as user, sche

ma, database. Each DBMS defines the relationship of the non-schema objects in different ways, and they

are as follows.

● Oracle

○ The relationship between the user and the schema is 1:1.

● DB2

○ The relationship between the user and the schema is 1:N.

● Postgres

○ The relationship between the user and the schema is 1:N.

● MySQL

○ The relationship between the database and the schema is 1:1.

○ User is a subordinate object of the schema (database).

When establishing the database, GOLDILOCKS configures various relationships between the users and sc

hemas in accordance with the characteristics of the client system as follows.

1,344 | SQL Objects

Figure 4 Relationship between user and schema

To configure the database in which each user has its own schema as shown in the figure (a), create the u

sers and schemas as follows.

● Create a user and the schema u1 together so that the user owns the schema.

gSQL> CREATE USER u1 IDENTIFIED BY u1_password WITH SCHEMA;

● WITH SCHEMA statement is optional and a schema whose name is as same as the user is created.

gSQL> CREATE USER u2 IDENTIFIED BY u2_password;

gSQL> CREATE USER u3 IDENTIFIED BY u3_password;

To configure the database in which a single user has multiple schemas as shown in the figure (b), create t

he users and schemas as follows.

● Create the user u1 only without creating a schema.

gSQL> CREATE USER u1 IDENTIFIED BY u1_password WITHOUT SCHEMA;

● Create multiple schemas and specify the owner of each schema as a user u1.

gSQL> CREATE SCHEMA s1 AUTHORIZATION u1;

gSQL> CREATE SCHEMA s2 AUTHORIZATION u1;

gSQL> CREATE SCHEMA s3 AUTHORIZATION u1;

To configure the database in which multiple users share a single schema without creating a schema as sh

own in the figure (c), create users as follows.

All users share PUBLIC Schema in the following examples.

● Create users only without creating a schema.

Schema | 1,345

gSQL> CREATE USER u1 IDENTIFIED BY u1_password WITHOUT SCHEMA;

gSQL> CREATE USER u2 IDENTIFIED BY u2_password WITHOUT SCHEMA;

gSQL> CREATE USER u3 IDENTIFIED BY u3_password WITHOUT SCHEMA;

For more information about creating user and schema, refer to CREATE USER, CREATE SCHEMA.

Schema Path

Schema path is a path to find the schema name when the SQL schema object name such as a table is use

d without the schema name. Schema path is similar to the PATH environment variable of Unix system. It i

s similar in searching for a command in the PATH in the specified order when executing commands on U

nix system.

When a user has multiple schemas, then creates or queries the table without a schema name as follows, t

he schema path determines in which schema the table will be created.

● A table t1 is created in the schema s1.

gSQL> CREATE TABLE s1.t1 (id INTEGER);

● A table t1 is created in the schema s2.

gSQL> CREATE TABLE s2.t1 (name VARCHAR(128));

● In which schema the table t1 will be created?

gSQL> CREATE TABLE t1 (address VARCHAR(1024));

● Which schema's table t1 is retrieved?

gSQL> SELECT * FROM t1;

The figure below illustrates an example of a schema path for user u1. The schema path of user u1 is desi

gnated in an order of {s1, s2, s3}. Schema s1 has a table t1, schema s2 has a table t2, and the schema s3

has tables t1 and t3.

1,346 | SQL Objects

Figure 5 Example of schema path

In the SELECT statement without the schema name, the schema name is construed by the schema path a

s follows.

● It is construed as table s1.t1 by the schema path.

gSQL> SELECT * FROM t1;

gSQL> SELECT * FROM s1.t1;

● It is construed as table s2.t2 by the schema path.

gSQL> SELECT * FROM t2;

gSQL> SELECT * FROM s2.t2;

● It is construed as table s3.t3 by the schema path.

gSQL> SELECT * FROM t3;

gSQL> SELECT * FROM s3.t3;

When omitting the schema name to retrieve the table s3.t1 as the example above, the table s3.t1 is deter

mined by schema path, so the schema name should be specified as follows.

● It retrieves the table s1.t1 by the schema path.

gSQL> SELECT * FROM t1;

● The schema s3 should be specified to retrieve the table s3.t1.

Schema | 1,347

gSQL> SELECT * FROM s3.t1;

The following CREATE TABLE statement in which the schema name is omitted creates a table in the first s

chema s1 of the schema path.

● An error occurs because the identical table s1.t1 exists.

gSQL> CREATE TABLE t1 (id INTEGER);

gSQL> CREATE TABLE s1.t1 (id INTEGER);

● The table s2.t2 exists, but the table s1.t2 is created in different schemas.

gSQL> CREATE TABLE t2 (name VARCHAR(128));

gSQL> CREATE TABLE s1.t2 (name VARCHAR(128));

● The table s3.t3 exists, but the table s1.t3 is created in different schemas.

gSQL> CREATE TABLE t3 (name VARCHAR(128));

gSQL> CREATE TABLE s1.t3 (name VARCHAR(128));

If the current user omits the schema name when creating an object, the schema name to be used can be

retrieved by using CURRENT_SCHEMA which is the SQL standard function.

gSQL> SELECT current_schema FROM dual;

CURRENT_SCHEMA

S1

1 row selected.

The schema path information of the current user can be retrieved by using ALL SCHEMA PATH view in DI

CTIONARY SCHEMA schema.

gSQL> SELECT * FROM all_schema_path;

AUTH_NAME SCHEMA_NAME SEARCH_ORDER

--------- ----------------------- ------------

U1 S1 1

U1 S2 2

U1 S3 3

U1 PUBLIC 4

PUBLIC DICTIONARY_SCHEMA 5

PUBLIC INFORMATION_SCHEMA 6

PUBLIC DEFINITION_SCHEMA 7

1,348 | SQL Objects

PUBLIC PERFORMANCE_VIEW_SCHEMA 8

PUBLIC FIXED_TABLE_SCHEMA 9

9 rows selected.

In the example above, the schema path of the user u1 is in an order of {s1, s2, s3, public}, and the schem

a path of PUBLIC account is in an order of {DICTIONARY_SCHEMA, INFORMATION_SCHEMA, DEFINITION

_SCHEMA, PERFORMANCE_VIEW_SCHEMA, FIXED_TABLE_SCHEMA}.

If omitting the schema name and retrieving a table t1, then it searches for the schema path for the curren

t user u1. If the schema path does not exist in it, then it searches for the schema path of PUBLIC account.

Schema path of a specific user can be altered by using ALTER USER statement as follows. The schema pat

h of PUBLIC account can be altered by using ALTER USER PUBLIC SCHEMA PATH statement.

CURRENT PATH clause is used to additionally alter other schemas together with the user's current schem

a.

● The schema path of user u1 is altered.

gSQL> ALTER USER u1 SCHEMA PATH (s3, s2, s1);

User altered.

● The schema path of PUBLIC account is altered.

gSQL> ALTER USER PUBLIC SCHEMA PATH (s1, s2, s3);

User altered.

● The schema path which includes the current schema path is altered by using CURRENT PATH.

gSQL> ALTER USER u1 SCHEMA PATH (s4, CURRENT PATH);

User altered.

The schema path is automatically determined when a user is created by using CREATE USER statement. A

nd if the user schema is created by using CREATE SCHEMA statement later, then it is not automatically in

cluded in the user's schema path, so, if necessary, it should be included in the schema path by using ALTE

R USER statement. For more information, refer to each statement.

PUBLIC Schema

PUBLIC schema is a shared schema in which any user can create objects. As shown in the example below,

if the user who does not have the schema creates the table whose schema name is not specified, then th

e table's schema is PUBLIC.

Schema | 1,349

● A user u1 who does not have the schema is created.

gSQL> CREATE USER u1 IDENTIFIED BY u1_password WITHOUT SCHEMA;

gSQL> GRANT CREATE SESSION TO u1;

gSQL> GRANT CREATE OBJECT ON TABLESPACE mem_data_tbs TO u1;

● The user u1 creates a table.

% gsql u1 u1_password

gSQL> CREATE TABLE t1 (id INTEGER);

● The statements above have the same meaning as the following.

gSQL> CREATE TABLE public.t1 (id INTEGER);

In the example above, the table t1's schema which is created by user u1, is PUBLIC. PUBLIC schema is a b

uilt-in schema which is automatically created when creating the database.

It is granted the privilege of the same meaning as the following statement so that any user can create an

object in the schema.

gSQL> GRANT CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, ADD CONSTRAINT

ON SCHEMA PUBLIC

TO PUBLIC;

PUBLIC schema, shared schema, is different from PUBLIC account which means all users. In the statement

above, the privilege of creating objects in the PUBLIC schema (ON SCHEMA PUBLIC) is granted to PUBLIC

account (TO PUBLIC) which means all users.

Any user can create or manage tables, but an appropriate privilege is required for retrieving the table crea

ted in PUBLIC schema by another user.

The followings are examples of GRANT statements using PUBLIC account and PUBLIC schema.

● SELECT privilege on table u1.t1 is granted to PUBLIC account.

● Any user can retrieve the table u1.t1.

gSQL> GRANT SELECT ON TABLE u1.t1 TO PUBLIC;

● SELECT privilege on all tables in PUBLIC schema is granted to user u1.

● The user u1 can retrieve all tables in PUBLIC schema.

gSQL> GRANT SELECT TABLE ON SCHEMA PUBLIC TO u1;

1,350 | SQL Objects

Examples of Using User and Schema

For example, if a single administrator and multiple developers use a single schema, the schema can be co

ntrolled by using the following SQL statement.

The following examples describe how to create a mgr_usr user who manages our_schema schema, and a

number of users such as app_user1, app_user2, app_user3 who develops applications using our_schema.

A mgr_user user and a our_schema schema are created as follows.

● mgr_user and our_schema are created.

● mgr_user owns our_schema.

gSQL> CREATE USER mgr_user IDENTIFIED BY mgr_user WITH SCHEMA our_schema;

User created.

● An appropriate privilege is granted to mgr_user.

gSQL> GRANT ALL PRIVILEGES ON DATABASE TO mgr_user;

Grant succeeded.

gSQL> COMMIT;

Commit complete.

Multiple app_user users are created as follows.

The app_user users are allowed to execute only SELECT and DML statements on our_schema.

● Multiple app_user users who do not own the schema are created as follows.

gSQL> CREATE USER app_user1 IDENTIFIED BY app_user1 WITHOUT SCHEMA;

User created.

gSQL> CREATE USER app_user2 IDENTIFIED BY app_user2 WITHOUT SCHEMA;

User created.

gSQL> CREATE USER app_user3 IDENTIFIED BY app_user3 WITHOUT SCHEMA;

User created.

gSQL> COMMIT;

Commit complete.

● The access privileges are granted to multiple app_user users.

gSQL> GRANT CREATE SESSION ON DATABASE TO app_user1, app_user2, app_user3;

Grant succeeded.

gSQL> COMMIT;

Schema | 1,351

Commit complete.

● Only read/write privileges on our_schema are granted to multiple app_user users.

gSQL> GRANT SELECT TABLE, INSERT TABLE, UPDATE TABLE, DELETE TABLE ON SCHEMA our_schema TO

app_user1, app_user2, app_user3;

Grant succeeded.

gSQL> COMMIT;

Commit complete.

● SCHEMA_PATH of multiple app_user users is specified as our_schema.

gSQL> ALTER USER app_user1 SCHEMA PATH (our_schema);

User altered.

gSQL> ALTER USER app_user2 SCHEMA PATH (our_schema);

User altered.

gSQL> ALTER USER app_user3 SCHEMA PATH (our_schema);

User altered.

gSQL> COMMIT;

Commit complete.

Through the operations above, mgr_user has DDL privileges of creating/ dropping/ altering an object in o

ur_schema, but multiple app_user can only read/write operations on the tables in our_schema.

mgr_user can perform management tasks such as creating a table as follows.

gSQL> \connect mgr_user mgr_user

gSQL> CREATE TABLE t1 (c1 INTEGER);

Table created.

gSQL> INSERT INTO t1 VALUES (1);

1 row created.

gSQL> INSERT INTO t1 VALUES (2), (3);

2 rows created.

gSQL> COMMIT;

Commit complete.

Multiple app_user can read/write operation for the table in our_schema without specifying the schema n

ame, but they are not allowed to create or drop an object as follows.

gSQL> \connect app_user1 app_user1

gSQL> SELECT * FROM t1;

C1

--

1,352 | SQL Objects

1

2

3

3 rows selected.

gSQL> INSERT INTO t1 VALUES (4);

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> DROP TABLE t1;

ERR-42000(16208): insufficient privileges

Tablespace | 1,353

13.6 Tablespace

Tablespace-related Statements

For more information, refer to the followings.

● Creating tablespace

○ CREATE TABLESPACE

○ CREATE MEMORY DATA TABLESPACE

○ CREATE MEMORY TEMPORARY TABLESPACE

● Dropping tablespace: DROP TABLESPACE

● Altering tablespace

○ ALTER TABLESPACE

○ ALTER TABLESPACE name RENAME TO

○ ALTER TABLESPACE name BACKUP

○ ALTER TABLESPACE name [ONLINE|OFFLINE]

● Adding, dropping, altering the datafile which configures the tablespace

○ ALTER TABLESPACE name ADD [DATAFILE|MEMORY]

○ ALTER TABLESPACE name DROP [DATAFILE|MEMORY]

○ ALTER TABLESPACE name RENAME DATAFILE

Information which is related to a tablespace object can be retrieved through the following views.

Table 13-13 Tablespace object related information

Schema View Description

DICTIONARY_SCHEMA USER_TABLESPACES Information of user accessible tablespaces

Concepts of Tablespace

A tablespace is a logical concept and it consists of one or more physical shared memory. It is a space to st

ore data, such as tables, indexes.

Physical objects such as tables, indexes which are stored in a tablespace can be spanned multiple shared

memories as shown below.

A tablespace can be extended by adding the shared memory.

1,354 | SQL Objects

Figure 6 Concept of tablespace

Tablespaces are classified into three types depending on the stored data type as follows.

● DATA TABLESPACE

○ It is tablespace to store and manage permanent data such as tables, logging indexes.

● TEMPORARY TABLESPACE

○ It is tablespace to store and manage volatile data such as the indexes without logging, the hash

which is generated during query execution and the sort.

● UNDO TABLESPACE

○ It is tablespace to store and manage the data change information for rollback the transaction.

Tables, indexes (LOGGING) stored in DATA tablespace create redo logs to permanently manage data. Ho

wever, indexes without logging stored in TEMPORARY tablespace do not create redo logs. The index wit

hout logging does not log the changes. When restarting the system, it is rebuilt based on the table data,

and the index facility is retained.

A tablespace is a physical storage in which SQL schema objects are stored. A particular tablespace can be

specified when creating a table and index. A table, the index which is related to the table, and the indexe

s which is created for the constraint condition of the table can be stored in different tablespaces.

For more information about specifying the tablespace when creating an object, refer to the followings.

Tablespace | 1,355

• CREATE TABLE

• CREATE INDEX

• ALTER TABLE name ADD CONSTRAINT

If a tablespace is not specified when creating an object such as a table or index, the default tablespace is

used.

For more information about the user's default tablespace, refer to the followings.

• CREATE USER

• ALTER USER

For more information about tablespace, refer to Managing Tablespace.

1,356 | SQL Objects

13.7 Table

Table-related Statements

Statements for creating, dropping, altering a table are as follows.

● Creating table

○ CREATE TABLE

○ CREATE TABLE AS SELECT

○ CREATE GLOBAL TEMPORARY TABLE

● Dropping table

○ DROP TABLE

○ TRUNCATE TABLE

● Altering table

○ ALTER TABLE

○ ALTER TABLE name RENAME TO

○ ALTER TABLE name STORAGE

● Adding, dropping, alerting a column of the table

○ ALTER TABLE name ADD COLUMN

○ ALTER TABLE name SET UNUSED COLUMN

○ ALTER TABLE name ALTER COLUMN

○ ALTER TABLE name RENAME COLUMN

● Adding, dropping, alerting a constraint of the table

○ ALTER TABLE name ADD CONSTRAINT

○ ALTER TABLE name DROP CONSTRAINT

○ ALTER TABLE name ALTER CONSTRAINT

● Adding, dropping additional log of the table

○ ALTER TABLE name ADD SUPPLEMENTAL LOG

○ ALTER TABLE name DROP SUPPLEMENTAL LOG

● Table statistics information: ANALYZE TABLE.

Information which is related to a table object can be retrieved through the following views.

Table | 1,357

Table 13-14 Table object related information

Schema View Description

DICTIONARY_SCHEMA

ALL_ALL_TABLES Information about user accessible tables

ALL_COL_COMMENTS
Information about comments of user accessible colum

n

ALL_CONSTRAINTS Information about user accessible constraints

ALL_CONS_COLUMNS Column information about user accessible constraints

ALL_TABLES Information about user accessible tables

ALL_TAB_COLS Information about user accessible columns

ALL_TAB_COLUMNS Information about user accessible columns

ALL_TAB_COMMENTS Information about comments of user accessible tables

ALL_TAB_IDENTITY_COLS
Identity column information about user accessible tabl

es

USER_ALL_TABLES Information about user owned tables

USER_COL_COMMENTS Information about comments of user owned columns

USER_CONSTRAINTS Information about user owned constraints

USER_CONS_COLUMNS Column information about user owned constraints

USER_TABLES Information about user owned tables

USER_TAB_COLS Information about user owned columns

USER_TAB_COLUMNS Information about user owned columns

USER_TAB_COMMENTS Information about comments of user owned tables

USER_TAB_IDENTITY_COLS Identity column information about user owned tables

INFORMATION_SCHEM

A

COLUMNS Information about user accessible columns

CONSTRAINT_COLUMN_USA

GE
Column information about user accessible constraints

CONSTRAINT_TABLE_USAGE Table information about user accessible constraints

KEY_COLUMN_USAGE
Column information about user accessible key constrai

nts

TABLES Information about user accessible tables

TABLE_CONSTRAINTS Information about user accessible constraints

Concepts of Table

Table is an underlying object which configures the database. In the SQL standard, the table is called as a

base table, and the view is called as a viewed table.

The table consists of columns and rows. The table consists of multiple rows, the number and order of col

umns in each row is same.

The table consists of one or more columns, and each column has a name but a row does not have a nam

e. The order of the row is not always as same as the order in which data is added.

1,358 | SQL Objects

The value is the data in intersection of a column and a row. Column is the set of value which have the sa

me data type.

Each column of a table has a unique name to be distinguished from other columns in the table. It has a d

ata type which corresponds to the characteristics of the value. For more information about data type, refe

r to Data Type section.

The constraints can be added to the table for data integrity. For more information about constraint, refer

to CREATE TABLE, ALTER TABLE name ADD CONSTRAINT.

The table index can be created to improve performance of queries. For more information about index, ref

er to Index section.

The following is an example of creating a lineitem table using CREATE TABLE statement.

CREATE TABLE lineitem

(

l_orderkey INTEGER NOT NULL

, l_partkey INTEGER NOT NULL

, l_suppkey INTEGER NOT NULL

, l_linenumber INTEGER NOT NULL

, l_quantity NUMERIC(12,2)

, l_extendedprice NUMERIC(12,2)

, l_discount NUMERIC(12,2)

, l_tax NUMERIC(12,2)

, l_returnflag CHAR(1) NOT NULL DEFAULT 'F'

, l_linestatus CHAR(1)

, l_shipdate DATE

, l_commitdate DATE

, l_receiptdate DATE

, PRIMARY KEY (l_orderkey, l_linenumber) INDEX lineitem_pk_idx TABLESPACE mem_temp_tbs

) TABLESPACE mem_data_tbs;

In the example above, multiple columns and constraints are defined in the lineitem table. When using co

nstraints to define columns, NOT NULL constraints are defined for the columns l_orderkey, l_partkey, l_su

ppkey, l_linenumber.

PPRIMARY KEY constraint is defined by combining columns of l_orderkey, l_linenumber.

In-line constraint is described together with the column definitions. Out-line constraint is described separ

ately from the column definitions.

Using DEFAULT clause in the column l_returnflag, the value 'F' is declared as a default value for the colu

mn. The index which is created when creating PRIMARY KEY constraints is named separately as lineitem_

pk_idx. The tablespace in which the index will be stored is named as mem_temp_tbs. The table is physical

ly stored in the tablespace mem_data_tbs.

Table | 1,359

The following is an example of adding a constraint to a table using ALTER TABLE name ADD CONSTRAIN

T statement.

ALTER TABLE lineitem

ADD CONSTRAINT lineitem_unique_all_key

UNIQUE(l_orderkey ASC, l_partkey DESC, l_suppkey DESC, l_linenumber ASC);

In the example above, UNIQUE constraint is added to the lineitem table, and the column sort order ASC/

DESC is specified for the automatically created index of constraints.

The following is an example of adding columns to the table using ALTER TABLE name ADD COLUMN stat

ement.

ALTER TABLE lineitem ADD COLUMN

(

l_shipinstruct CHAR(25)

, l_shipmode CHAR(10)

, l_comment VARCHAR(44)

);

In the example above, multiple columns are added to a table. The in-line constraints or default values can

be specified when adding columns.

The following is an example of creating an index in the table using CREATE INDEX statement.

CREATE INDEX lineitem_idx_shipdate ON lineitem(l_shipdate ASC NULLS LAST);

The example above describes the index which is created for the column l_shipdate which is often used as

the query conditions. The column sort order is ascending (ASC), and if NULL value exists, it is specified to

be located at the end.

For more information about DML statements of inserting/deleting/updating data to a table, refer to Data

Manipulation Language clause.

For more information about SELECT statements of querying data in a table, refer to Data Query Language

clause, SELECT statement.

Global Temporary Table

Global temporary table is a kind of temporary table and the table definition is shared by all users, but the

data is separated per section.

The table definition is created when executing CREATE GLOBAL TEMPORARY TABLE, but the physical se

1,360 | SQL Objects

gment is created in a state which is dependent on a session when executing INSERT to that table for the f

irst time. The segments which are allocated to all global temporary tables created in the session are releas

ed when the session is terminated. An option defined at the time of creating a global temporary table det

ermines whether to truncate the data left after committing or rolling back.

It supports all DDL and DML provided by a table except for cluster-related statements. A DDL statement r

eturns an error to the global temporary table which is used by the current session. However, TRUNCATE T

ABLE statement for a global temporary table is applied only to the current session, so it does not return a

n error even when it is used by another session.

A global temporary table can be defined only in a temporary tablespace, so it does not record a redo log f

or restart recovery. However, it records the undo log for MVCC and rollback, and the space on which the

undo log is recorded can be selected to system undo tablespace or system temp tablespace by using TEM

P_UNDO_ENABLED.

If TEMP_UNDO_ENABLED is 1, it records undo logs in a temp undo relation of the session separately fro

m the undo relation of the transaction. If the transaction performs only DML for a global temporary table,

then it does not record the transaction record nor the commit log, so it improves the DML performance.

When releasing the segment used in the session, it is returned to the corresponding tablespace, and it is

allocated again from the tablespace when allocating again. The process allocating and returning segment

s in a tablespace costs a lot to keep concurrency with other sessions and to allocate and release segments.

Therefore, the segment which was released after used in a session can be reused without returning it by

using TEMP_SEGMENT_CACHE_SIZE.

In other words, if TEMP_SEGMENT_CACHE_SIZE is set to 0 (default value), then it immediately returns th

e segement which is released after used to the tablespace. If TEMP_SEGMENT_CACHE_SIZE is set to the

value bigger than 1 (maximum 4294967295), then it reuses as many segments as set in a session when r

eturning the segment.

When a global temporary table is not used in a session any more, then cleanup segments in a segment ca

che at once by using ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL;.

The following is an example of creating a global temporary table by using CREATE GLOBAL TEMPORARY

TABLE.

CREATE GLOBAL TEMPORARY TABLE SESSION_TABLE1(

COL1 CHAR(10)

,COL2 VARCHAR2(20)

,COL3 NUMBER(10)

) ON COMMIT DELETE ROWS;

The information about the created global temporary table can be viewed in DICTIONARY tables or views i

n the same way as viewing the information of an ordinary table.

Table | 1,361

Table in Cluster

For more information about a table in the cluster environment, refer to Cluster Table and Shard.

1,362 | SQL Objects

13.8 Index

Index-related Statements

Statements for creating, dropping, altering an index are as follows.

• Creating an index: CREATE INDEX.

• Dropping an index: DROP INDEX.

• Updating an index: ALTER INDEX.

Information which is related to an index object can be retrieved through the following views.

Table 13-15 Index object related information

Schema View Description

DICTIONARY_SCHEMA

ALL_INDEXES Information about user accessible indexes

ALL_IND_COLUMNS Column information about user accessible index

USER_INDEXES Information about user owned indexes

USER_IND_COLUMNS Column information about user owned index

Concepts of Index

Index is a table related object, and it is used to improve data access performance when retrieving the tabl

e. Each index consists of key values using the data in one or more columns of the table. It is an object whi

ch is separate from a table.

Database automatically builds the key data of the index when creating the index, and the index key data i

s automatically managed when adding/deleting/ updating the table data.

The following is an example of a query.

SELECT data FROM t1 WHERE id = 12345;

If an index does not exist, the results which satisfy the condition are found by checking all rows in the tab

le. If the table consists of multiple rows while the number of results to satisfy the condition is relatively sm

all, the query above has a very inefficient response time.

When creating an index in id column by using the CREATE INDEX statement as follows, the optimizer eva

luates the costs between the full scan and index scan of a table, and selects the index scan to improve qu

ery performance.

Index | 1,363

CREATE INDEX t1_idx_id ON t1(id);

When creating an index, two or more columns can be used as an index key, and the index which consists

of two or more keys is called as a composite index. The composite index is sorted by the first key, or sorte

d by the second key if the first key value is same. It is sorted as many as the number of the keys in this wa

y.

When creating indexes, the column sort order can be specified in ascending (ASC) or descending (DESC).

The sort order of NULL value can be specified as NULLS FIRST or NULLS LAST. Refer to the following exam

ple.

gSQL> CREATE TABLE t1 (value INTEGER);

Table created.

gSQL> INSERT INTO t1 VALUES (1), (NULL), (3), (2), (NULL);

5 rows created.

gSQL> CREATE INDEX idx1 ON t1 (value ASC NULLS LAST);

Index created.

gSQL> CREATE INDEX idx2 ON t1 (value DESC NULLS FIRST);

Index created.

gSQL> SELECT /*+ INDEX(t1, idx1) */ * FROM t1;

VALUE

1

2

3

null

null

5 rows selected.

gSQL> SELECT /*+ INDEX(t1, idx2) */ * FROM t1;

VALUE

null

null

3

2

1

5 rows selected.

In the example above, the index idx1 is specified in the ascending order (ASC), which is NULLS LAST, and

the index idx2 is specified in the descending order (DESC), which is NULLS FIRST.

It uses the different index hints when retrieving the table with the same query, so all rows are retrieved by

using each index. Results using the index idx1 is sorted in ascending order, and NULL value is located at t

1,364 | SQL Objects

he end. However, the results using the index idx2 is sorted in descending order and NULL value is located

in the first.

Concepts of UNIQUE

Index can be created as UNIQUE index or non-unique index. If the key values is not UNIQUE when creatin

g UNIQUE index, then an error occurs.

NULL value is allowed as a key value in UNIQUE index and UNIQUE constraint.

If NULL value is included, the truth table for UNIQUE is as follows. In other words, if the key is one, then it

can have multiple null values.

Table 13-16 Truth table for UNIQUE in two values

Value1 Value2 UNIQUE

1 1 false

1 2 true

1 null true

null null true

The UNIQUE index or UNIQUE constraint consisting of two or more keys can have null as the whole value

or partial value. If NULL is included in the composite key, the truth table for UNIQUE is as follows.

Table 13-17 Truth table for UNIQUE in composite key

Row1 Row2 UNIQUE

(1, 1) (1, 1) false

(1, 1) (1, 2) true

(1, null) (1, null) false

(1, null) (2, null) true

(null, null) (null, null) true

Note that the definition of the UNIQUE has been changed in the SQL standard as follows.

Note

● UNIQUE definition until SQL1999

If there are no two rows in T such that the value of each column in one row is non-null and is

equal to the value of the corresponding column in the other row according to Subclause 8.2,

‘‘<comparison predicate>’’, then the result of the <unique predicate> is true; otherwise, the res

ult of the <unique predicate> is false.

Index | 1,365

● UNIQUE definition after SQL2003

If there are no two rows in T such that the value of each column in one row is non-null and is

not distinct from the value of the corresponding column in the other row, then the result of t

he <unique predicate> is True; otherwise, the result of the <unique predicate> is False.

GOLDILOCKS follows the SQL2011 standard which is the standard after SQL2003, and the SQL standard

UNIQUE is defined by whether or not UNIQUE of composite key exists as shown in the following table.

Table 13-18 Truth table for UNIQUE of the SQL standard composite key

Row1 Row2 Until SQL1999 After SQL2003

(1, 1) (1, 1) false false

(1, 1) (1, 2) true true

(1, null) (1, null) true false

(1, null) (2, null) true true

(null, null) (null, null) true true

Each DBMS vendor follows the SQL standard for UNIQUE definition as follows.

• DBMS which follows the UNIQUE definition after SQL2003: Oracle, SQL server

• DBMS which follows the UNIQUE definition until SQL1999: Postgres, MySQL

1,366 | SQL Objects

13.9 View

View-related Statements

Statements for creating, dropping, altering a view are as follows.

• Creating a view: Refer to CREATE VIEW.

• Dropping a view: Refer to DROP VIEW.

• Altering a view: Refer to ALTER VIEW.

Information which is related to a view object can be retrieved through the following views.

Table 13-19 View object related information

Schema View Description

DICTIONARY_SCHEMA

ALL_VIEWS Information about user accessible views

ALL_DEPENDENCIES Information about objects related to user accessible views

USER_VIEWS Information about user owned views

USER_DEPENDENCIES Information about objects related to user owned views

INFORMATION_SCHEM

A

VIEWS Information about user accessible views

VIEW_TABLE_USAGE Information about the table used when creating a view

VIEW_ROUTINE_USAG

E

Information about the stored function used when creating a v

iew

Concepts of View

While a table is a physical relation of storing data, a view is a logical relation consisting of queries. In the S

QL standard, it is called as the viewed table. Queries about view can be used as same as the table.

A view has the following advantages.

● Data access can be restricted to allow querying only part of the information in the table.

● The complex and frequent queries can be written in a single view to decrease query's complexity.

● Data can be presented in a perspective different from the table perspective by changing the column

names or data of the view.

● Creating applications of views is not affected by the changes in table structures.

The view which is created by a CREATE VIEW statement is replaced with in-line view when executing que

ries as follows.

View | 1,367

• Creating a view

CREATE VIEW v1 (v_id, v_sum)

AS

SELECT l_partkey, SUM(l_quantity)

FROM lineitem

GROUP BY l_partkey;

• Querying the view

SELECT v_id, v_sum

FROM v1

WHERE v_sum > 1000;

• Translating the view

SELECT v_id, v_sum

FROM (SELECT l_partkey, SUM(l_quantity)

FROM lineitem

GROUP BY l_partkey

) v1 (v_id, v_sum)

WHERE v_sum > 1000;

In the following example, the asterisk (*) is used in SELECT statement when creating a view v1, and the a

sterisk means all columns.

In this case, as follows, all the columns including the added column can be retrieved by executing query o

f view v1 even after a new column addr is added to the table t1 of which the view is approaching.

gSQL> CREATE TABLE t1 (id INTEGER, name VARCHAR(128));

Table created.

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

• Creating a view by using an asterisk (*)

gSQL> CREATE VIEW v1 AS SELECT * FROM t1;

View created.

• Querying the view

gSQL> SELECT * FROM v1;

ID NAME

1,368 | SQL Objects

-- ------

1 leekmo

1 row selected.

• Adding a column to the table which is referenced by the view

gSQL> ALTER TABLE t1 ADD COLUMN addr VARCHAR(1024) DEFAULT 'N/A';

Table altered.

• Querying the view after adding the column

gSQL> SELECT * FROM v1;

ID NAME ADDR

-- ------ ----

1 leekmo N/A

1 row selected.

However, creating a view using the asterisk (*) is not recommended because it can cause changes in the

application when changing the table structure.

Sequence | 1,369

13.10 Sequence

Sequence-related Statements

Statements for creating, dropping, altering, using a sequence are as follows.

• Creating a sequence: Refer to CREATE SEQUENCE.

• Dropping a sequence: Refer to DROP SEQUENCE.

• Altering a sequence: Refer to ALTER SEQUENCE.

• Using a sequence: Refer to NEXTVAL, CURRVAL.

Information which is related to a sequence object can be retrieved through the following views.

Table 13-20 Sequence object related information

Schema Vew Description

DICTIONARY_SCHEMA
ALL_SEQUENCES Information about user accessible sequences

USER_SEQUENCES Information about user owned sequences

INFORMATION_SCHEMA SEQUENCES Information about user accessible sequences

Concepts of Sequence

Sequence is an object which automatically creates a sequential number, and it is called as sequence gene

rator in the SQL standard. Sequence is a useful object to automatically manage the unique key or primary

key. A sequence can be spanned multiple tables.

The following is an example of using a single sequence object to automatically generate the id column va

lue, and using it across multiple tables.

gSQL> CREATE SEQUENCE seq;

Sequence created.

gSQL> INSERT INTO t1 (id, name) VALUES (seq.NEXTVAL, 'leekmo');

1 row created.

gSQL> INSERT INTO t2 (id, addr) VALUES (seq.CURRVAL, 'Seoul, Korea');

1 row created.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

1,370 | SQL Objects

gSQL> SELECT * FROM t2;

ID ADDR

-- ------------

1 Seoul, Korea

1 row selected.

In the example above, the next number of the id column in table t1 is automatically created by using the

seq.NEXTVAL function. The same value is used for id column in table t2 by using the seq.CURRVAL functi

on.

When creating the sequence, the starting value, incremental value, minimum value, maximum value, cycl

e or no cycle and cached value of the automatically generated number can be specified.

For more information, refer to CREATE SEQUENCE statement.

An identity column is similar to a sequence, and it automatically generates numbers in a table. It can be u

sed as follows.

gSQL> CREATE TABLE t1 (id INTEGER GENERATED ALWAYS AS IDENTITY, name VARCHAR(128));

Table created.

gSQL> INSERT INTO t1 (name) VALUES ('leekmo');

1 row created.

gSQL> INSERT INTO t1 (name) VALUES ('mkkim');

1 row created.

gSQL> INSERT INTO t1 (name) VALUES ('xcom73');

1 row created.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

2 mkkim

3 xcom73

3 rows selected.

In the example above, the id column is created as an identity column when creating table t1. The identity

column automatically generated id column values, and the values are inserted when executing INSERT sta

tement.

For more information, refer to <identity column specification> clause of CREATE TABLE statement.

The sequence and the identity column are functionally similar because they create the sequential number

s. However, they are different in the following aspects.

● Sequence is an SQL schema object but identity column is a column of the table.

● Sequence can be spanned multiple tables but identity column can be used only in one table.

Sequence | 1,371

After creating a sequence, the sequence values can be used by using NEXTVAL or CURRVAL function. Th

e sequence value is created independently from the transaction, and it is not affected by COMMIT or ROL

LBACK of the transaction.

gSQL> INSERT INTO t1(id) VALUES(seq.NEXTVAL);

1 row created.

gSQL> SELECT id FROM t1;

ID

--

1

1 row selected.

gSQL> ROLLBACK;

Rollback complete.

gSQL> INSERT INTO t1(id) VALUES(seq.NEXTVAL);

1 row created.

gSQL> SELECT id FROM t1;

ID

--

2

1 row selected.

In the example above, seq.NEXTVAL function generates a value of 1 in the first INSERT statement.

Then, the seq.NEXTVAL value 2 is generated after the transaction ROLLBACK by increasing the value sinc

e the next value, independently from the transaction.

The sequence value can be used only in the following statements.

● The select list value of the top-level SELECT statement

○ SELECT seq.NEXTVAL FROM dual;

● The select list value of INSERT .. SELECT statement

○ INSERT INTO t1(id) SELECT seq.NEXTVAL FROM daul;

● Input value of INSERT .. VALUES statement

○ INSERT INTO t1(id) VALUES (seq.NEXTVAL);

● SET value of UPDATE statement

○ UPDATE t1 SET id = seq.NEXTVAL;

The sequence value can be used only in the location as specified above. It can not be used in subquery, a

ggregation function argument, or clauses such as WHERE, DISTINCT, GROUP BY, HAVING, ORDER BY.

1,372 | SQL Objects

Cluster Sequence

When using GOLDILOCKS by configuring the cluster system, the global sequence object is internally used.

The global sequence object sets the pool of sequence values to be commonly used over all cluster system,

and allocates it as much as the cache size when each member node calls NEXTVAL. In other words, if valu

es of 20 sequences are alloceted to a specific node, then the value allocated to other nodes starts from th

e next value. A member node loads sequence values allocated by the global sequence object in its local c

ache, then returns them as a result of NEXTVAL call until all of them are run out.

The global sequence object has the following features and constraints comparing to the sequence for the

standalone database.

● The sign can not be modified by using the INCREMENT BY option in the ALTER SEQUENCE statement.

(The size can be modified.)

● When using the CYCLE option, a duplicated value can be returned to member nodes due to the size

of the entire sequence pool. Therefore, if the CYCLE option is required, then the sequence pool shoul

d be set big enough considering INCREMENT BY, CACHE SIZE, and the number of cluster member no

des.

● Even when there is not an error, the sequence values returned by a specific member node may not be

sequential. However, a sequential sequence value is obtained when only a single member node calls

NEXTVAL.

● If it is NOCACHE, then the CACHE SIZE is 1, so the additional sequence values are not loaded on a loc

al cache. In this case, the global sequence object allocates a single sequence whenever calling NEXTV

AL, then it increases the networking cost and may cause the poor performance.

● It is generally operated as AUTO COMMIT when creating, altering and deleting the sequence.

● When modifying the size of CACHE and INCREMENT by using the ALTER statement, then all sequenc

e values loaded on local caches of all nodes are reset. In other words, the new sequence set should b

e allocated again by the global sequence object when calling NEXTVAL later.

Synonym | 1,373

13.11 Synonym

Synonym-related Statements

Statements for creating and dropping a synonym are as follows.

• Creating a synonym: Refer to CREATE SYNONYM.

• Dropping a synonym: Refer to DROP SYNONYM.

Information which is related to a synonym object can be retrieved through the following views.

Table 13-21 Synonym object related information

Schema View Description

DICTIONARY_SCHEMA
ALL_SYNONYMS All synonym information

USER_SYNONYMS Information about user owned synonym

Concepts of Synonym

Synonym is an alias for the following objects.

● Table

● View

● Sequence

● Stored procedure

● Stored function

● Other synonyms

Synonyms can be used as aliases in SELECT, INSERT, UPDATE, DELETE, LOCK TABLE, GRANT, REVOKE, C

OMMENT statements.

Using synonym is very convenient. It is because only the synonym should be redefined without modifying

the application even when the schema of underlying objects is changed.

The database security can be improved by hiding the object's real name and its owner. Moreover, the dat

abase usability is enhanced by changing the long object name to a short name.

Synonyms are classified as private synonym and public synonym. Private synonym is a schema object and

public synonym is a non-schema object.

The following examples of creating and using the private synonym and the public synonym indicated by t

1,374 | SQL Objects

he table below describe the concepts of them.

gSQL> \CONNECT u1 u1

gSQL> CREATE TABLE u1.t1 (col1 INTEGER);

gSQL> INSERT INTO u1.t1 VALUES(1);

gSQL> COMMIT;

Private Synonym

Private synonym is a schema object. If a synonym is created without the schema name, the default schem

a name of the user performing the statement is used.

gSQL> \CONNECT u2 u2

gSQL> CREATE SYNONYM u2.syn1 FOR u1.t1;

Synonym created.

gSQL> SELECT * FROM u2.syn1;

ERR-42000(16254): lacks privilege (SELECT ON TABLE "U1"."T1")

Synonym is only an alias. Therefore, if a user does not have the appropriate privileges on the underlying o

bject u1.t1, then the user can not use it even when the user created the synonym.

gSQL> \CONNECT u1 u1

gSQL> GRANT SELECT ON TABLE u2.syn1 TO u2;

gSQL> \CONNECT u2 u2

gSQL> SELECT * FROM u2.syn1;

COL1

1

1 row selected.

gSQL> SELECT * FROM u1.t1;

COL1

1

1 row selected.

gSQL> DROP SYNONYM u2.syn1;

Synonym dropped.

In the example above, the SELECT privilege of u2.syn1 is granted to u2. This is as same as the SELECT priv

ilege of u1.t1 is granted to u2. Therefore, be cautious when granting privileges to synonyms.

Synonym | 1,375

Public Synonym

Public synonym is a non schema object. It is not allowed to specify the schema name when it is created or

droppped.

gSQL> \CONNECT u2 u2

gSQL> CREATE PUBLIC SYNONYM pubSyn1 FOR u1.t1;

Synonym created.

gSQL> SELECT * FROM pubSyn1;

ERR-42000(16254): lacks privilege (SELECT ON TABLE "U1"."T1")

Public synonym does not have an owner, and it is accessible for all users. However, a user without an app

ropriate privilege on the underlying objects can not access the underlying objects.

gSQL> \CONNECT u1 u1

gSQL> GRANT SELECT ON TABLE pubSyn1 TO u2;

gSQL> \CONNECT u2 u2

gSQL> SELECT * FROM pubSyn1;

COL1

1

1 row selected.

gSQL> SELECT * FROM u1.t1;

COL1

1

1 row selected.

gSQL> DROP SYNONYM pubSyn1;

Synonym dropped.

1,376 | SQL Objects

13.12 Stored Procedure

Stored Procedure-related Statements

Statements for creating, dropping and altering a stored procedure are as follows.

• Creating a stored procedure: Refer to CREATE PROCEDURE.

• Dropping a stored procedure: Refer to DROP PROCEDURE.

• Altering a stored procedure: Refer to ALTER PROCEDURE.

Information which is related to a stored procedure can be retrieved through the following views.

Table 13-22 Stored procedure object related information

Schema View Description

DICTIONARY_SCH

EMA

ALL_ARGUMENTS Argument information of user accessible procedure and function

ALL_DEPENDENCIES
Information of an object related to user accessible procedure and funct

ion

ALL_PROCEDURES Object information of user accessible procedure and function

ALL_SOURCE Source text information of user accessible procedure and function

USER_ARGUMENTS Argument information of user owned procedure and function

USER_DEPENDENCIE

S
Information of an object related to user owned procedure and function

USER_PROCEDURES Object information of user owned procedure and function

USER_SOURCE Source text information of user accessible procedure and function

INFORMATION_S

CHEMA

PARAMETERS Argument information of user accessible procedure and function

ROUTINES Object information of user accessible procedure and function

ROUTINE_ROUTINE_

USAGE

Information of procedure and function which is referenced by user acc

essible procedure and function

ROUTINE_SEQUENC

E_USAGE

Information of sequence which is referenced by user accessible proced

ure and function

ROUTINE_TABLE_US

AGE

Information of table and view which is referenced by user accessible pr

ocedure and function

Concepts of Stored Procedure

A stored procedure is a kind of a persistent stored module in procedure form and it is defined and manag

ed in schema unit like as other schema-level database objects. The return value is not defined because it i

s in procedure form. It is used by directly calling it in CALL statement, another stored procedure, or stored

Stored Procedure | 1,377

function.

For more information about a stored procedure, refer to Schema-level Procedure.

A store procedure is used as follows.

CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER, A2 INTEGER)

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

BEGIN

PROC1(2, 4); -- call schema-level procedure

END;

/

V1 = 3

Anonymous PL block executed.

1,378 | SQL Objects

13.13 Stored Function

Stored Function-related Statements

Statements for creating, dropping and altering a stored function are as follows.

• Creating a stored function: Refer to CREATE FUNCTION.

• Dropping a stored function: Refer to DROP FUNCTION .

• Altering a stored function: Refer to ALTER FUNCTION.

Information which is related to a stored function can be retrieved through the following views.

Table 13-23 Stored function object related information

Schema View Description

DICTIONARY_SCH

EMA

ALL_ARGUMENTS Argument information of user accessible procedure and function

ALL_DEPENDENCIES
Information of an object related to user accessible procedure and funct

ion

ALL_PROCEDURES Object information of user accessible procedure and function

ALL_SOURCE Source text information of user accessible procedure and function

USER_ARGUMENTS Argument information of user owned procedure and function

USER_DEPENDENCIE

S
Information of an object related to user owned procedure and function

USER_PROCEDURES Object information of user owned procedure and function

USER_SOURCE Source text information of user accessible procedure and function

INFORMATION_S

CHEMA

PARAMETERS Argument information of user accessible procedure and function

ROUTINES Object information of user accessible procedure and function

ROUTINE_ROUTINE_

USAGE

Information of procedure and function which is referenced by user acc

essible procedure and function

ROUTINE_SEQUENC

E_USAGE

Information of sequence which is referenced by user accessible proced

ure and function

ROUTINE_TABLE_US

AGE

Information of table and view which is referenced by user accessible pr

ocedure and function

Concepts of Stored Function

A stored function is a kind of a persistent stored module in function form and it is defined and managed i

n schema unit like as other schema-level database objects. The return value should be defined because it i

s in function form. It is used by directly calling it in CALL statement, another stored procedure, or stored f

Stored Function | 1,379

unction. Or, it is use by calling it in a general SQL internal expression.

For more information about a stored function, refer to schema-level function.

A store function is used as follows.

gSQL> CREATE OR REPLACE FUNCTION FUNC1(A1 INTEGER, A2 INTEGER)

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

RETURN V1;

END;

/

Function created.

gSQL> SELECT FUNC1(2, 4) FROM DUAL;

FUNC1(2, 4)

3

1 row selected.

Cluster Objects

14.

1,381

1,382 | Cluster Objects

14.1 Cluster System

Cluster System Related Statements

For more information, refer to the followings.

● Expanding a cluster system

○ CREATE CLUSTER GROUP

○ ALTER CLUSTER GROUP name ADD MEMBER

● Controlling an inactive cluster member

○ ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

○ ALTER SYSTEM JOIN DATABASE

● Rebalancing data

○ ALTER DATABASE REBALANCE

○ ALTER TABLE name REBALANCE

Information which is related to a cluster system can be retrieved through the following views.

Table 14-1 Cluster system related information

Schema View Description

DICTIONARY_SCHEMA

DBA_CLUSTER
Object information of a cluster group and a cluster member whi

ch configure a cluster

DBA_CLUSTER_COM

MENTS
Comment information of a cluster group and a cluster member

PERFORMANCE_VIEW_S

CHEMA

V$CLUSTER_MEMBE

R
Status information of a cluster member

Concepts of Cluster System

GOLDILOCKS cluster system manages data of a single database by sharding or duplicating the data into s

everal servers. Applications can be run on every server configuring a cluster system, and run in the same

way as using a single database system regardless of a system configuration or a connected server.

GOLDILOCKS cluster system consists of one or more cluster groups, and a cluster group consists of one or

more cluster members. It does not require a separate application server or a meta server, but applications

are connected to a cluster member corresponding to a data server, and run.

Cluster System | 1,383

Figure 1 3 x 2 cluster system

The figure above is a 3x2 cluster system which consists of two cluster members consisting of three cluster

groups and a single cluster group. In the figure above, the cluster system consists of cluster groups (G1,

G2, G3), and the cluster group G1 consists of cluster members (G1N1, G1N2), the cluster group G2 cons

ists of cluster members (G2N1 and G2N2), and the cluster group G3 consists of cluster members (G3N1,

G3N2). Applications can access any of those six cluster members and it is run as same as using a single da

tabase.

The table data is sharded and placed in each cluster group, and cluster members in a cluster group maint

ain the replications same. The figure below describes the concepts of the table data placement in a 3x2 cl

uster.

1,384 | Cluster Objects

Figure 2 Concepts of sharding and duplicating by the cluster

The table data is sharded and placed in each cluster group according to the sharding strategy defined by

a user. (According to the ID column in the figure above) The placed data in a cluster group maintains the

replication of a cluster member in a cluster group.

Cluster System | 1,385

Availability of Cluster System

Cluster continues to provide service even when a specific server is broken or the network is cut. Cluster m

embers configuring each cluster group maintain the same data replications, so the service does not stop

even when a single cluster member is broken. In other words, unless the data is lost due to the malfuncti

on of all cluster members in a cluster group, the service continues to be provided.

The cluster continues to provide service even when three devices are broken in the 3x2 cluster as follows.

Figure 3 Cluster availability

If additional errors occur in G1N1, G2N2, G3N1 in the situation above, then the data loss occurs and the

1,386 | Cluster Objects

service can not be provided any more. Therefore, a user should make the broken device to participate in a

cluster system, or add a new cluster member before an additional error occurs.

● ALTER SYSTEM JOIN DATABASE statement is used to make the broken cluster member to participate

in a cluster system again.

● ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS statement is used to drop the broken cluster

member from the cluster system.

● ALTER CLUSTER GROUP name ADD MEMBER statement is used to add a cluster member to a cluster

group for the high availability.

● ALTER DATABASE REBALANCE statement and ALTER TABLE name REBALANCE statement are used t

o rebalance data to a newly added cluster member.

Expanding Cluster System

The cluster can be expanded by adding a new server without stopping the service.

Cluster is expanded by adding a cluster member or a cluster group and by rebalancing the data to an crea

ted server.

The following is an example of expanding a 2x1 cluster to a 3x2 cluster.

Figure 4 Expanding cluster system

Cluster System | 1,387

Add a cluster group and a cluster member by using the following statements to expand a cluster.

● ALTER CLUSTER GROUP name ADD MEMBER

● CREATE CLUSTER GROUP

To add a new cluster member to the cluster system, tablespaces in the cluster member and those in the cl

uster system should be same. In other words, tablespaces as same as all tablespaces in the cluster system

should be created in the cluster member.

The following is an example of adding a cluster group and a cluster member of the 3x2 cluster to the 2x1

cluster. Add the member G1N2 to the group G1, and add the member G2N2 to the group G2. Then, cre

ate the group G3 including the members (G3N1, G3N2).

● Add the member G1N2 to the group G1.

gSQL>

ALTER CLUSTER GROUP G1

ADD CLUSTER MEMBER G1N2 HOST '192.168.0.12' PORT 10120;

Cluster Group altered.

● Add the member G2N2 to the group G2.

gSQL>

ALTER CLUSTER GROUP G2

ADD CLUSTER MEMBER G2N2 HOST '192.168.0.22' PORT 10220;

Cluster Group altered.

● Create the group G3.

gSQL>

CREATE CLUSTER GROUP G3

CLUSTER MEMBER G3N1 HOST '192.168.0.31' PORT 10310,

CLUSTER MEMBER G3N2 HOST '192.168.0.32' PORT 10320;

Cluster Group created.

The cluster group and the cluster member which are newly added to the cluster system can provide the s

ervice by synchronizing the dictionary information of the SQL object. However, the data is not yet placed i

n the added cluster member, so the availability can not be increased nor can the load balancing be expect

ed. Therefore, the data should be rebalanced to the created cluster member for the high availability and t

he load balancing.

Use the following statements sequentially to rebalance the data.

● ALTER DATABASE REBALANCE

1,388 | Cluster Objects

● ALTER TABLE name REBALANCE

The following is an example of rebalancing data to all tables in the database.

gSQL> ALTER DATABASE REBALANCE;

Database altered.

Cluster Group | 1,389

14.2 Cluster Group

Cluster Group Related Statements

For more information about creating, dropping, and altering a cluster group, refer to the followings.

● Creating a cluster group: CREATE CLUSTER GROUP

● Dropping a cluster group: DROP CLUSTER GROUP

● Altering a cluster group: ALTER CLUSTER GROUP name ADD MEMBER

Information which is related to a cluster group can be retrieved through the following views.

Table 14-2 Cluster group related information

Schema View Description

DICTIONARY_SCH

EMA

DBA_CLUSTER
Object information of a cluster group and a cluster member which c

onfigure the cluster

DBA_CLUSTER_COM

MENTS
Comment information of a cluster group and a cluster member

Concepts of Cluster Group

At least one cluster group should be created to run the cluster system.

Creating Cluster Group

The first created cluster group should include itself as a cluster member. For more information about crea

ting a cluster group, refer to CREATE CLUSTER GROUP.

A cluster member is a physical concept meaning the data server, but a cluster group is a logical concept c

onsisting of one or more cluster members.

The availability and load balancing of the cluster system depend on the configuration of the cluster group.

The more cluster members the cluster group includes the higher the availability. The more the number of

the cluster groups the bigger the throughput of the cluster system because the data is distributed.

All cluster members in a cluster group maintain the same data replications, so it can continuously provide

s the service unless an error occurs in all cluster members configuring a cluster group. It is recommended

to configure the cluster group with two or more cluster members to maintain the availability of the cluste

1,390 | Cluster Objects

r system.

The table data is sharded according to the sharding strategy, and it is stored and managed in each differe

nt cluster group according to the shard placement strategy. An appropriate table sharding strategy and t

he placement strategy according to the service feature determines the entire system performance. Each tr

ansaction and query is processed focusing on a cluster group in which the data is stored, so the performa

nce is improved if the referenced data exist in the same cluster group.

Dropping Cluster Group

The cluster group participating in a cluster system and providing a service can be dropped for various reas

ons. For more information about dropping the cluster group, refer to DROP CLUSTER GROUP.

To drop the cluster group, all shards in a sharded table which is created in that cluster group should be tr

ansferred to another cluster group. It should be transferred separately according to cluster-wide, group-s

pecific table.

Cluster Member | 1,391

14.3 Cluster Member

Cluster Member Related Statements

For more information, refer to the followings.

● Adding a cluster member: ALTER CLUSTER GROUP name ADD MEMBER

● Dropping a cluster member: ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

● Controlling a cluster member

○ ALTER SYSTEM JOIN DATABASE

○ ALTER CLUSTER GROUP name OFFLINE MEMBER

○ ALTER DATABASE RESET LOCAL CLUSTER MEMBER

Information which is related to a cluster member can be retrieved through the following views.

Table 14-3 Cluster member related information

Schema View Description

DICTIONARY_SCHEMA

DBA_CLUSTER
Object information of a cluster group and a cluster member whi

ch configure a cluster

DBA_CLUSTER_COM

MENTS
Comment information of a cluster group and a cluster member

PERFORMANCE_VIEW_S

CHEMA

V$CLUSTER_MEMBE

R
Status information of a cluster member

Concepts of Cluster Member

The cluster member is a server configuring a cluster system, and it maintains the replications as same as t

hose of cluster member in a cluster group.

The cluster member is a data server storing a part of the cluster database data, and it is also an applicatio

n server processing the connection and request of an application. Moreover, it is a meta server duplicatin

g and managing the meta information. In other words, GOLDILOCKS cluster does not require any data se

rver, application server, or meta server.

Cluster members which belong to the same cluster group have the same data replications. Therefore, an

error in a specific cluster member does not cause an error in the entire system. It is recommended to inclu

de two or more cluster members in each cluster group for the high availability of the system. A single clus

ter group can be configured with maximum 32 cluster members.

1,392 | Cluster Objects

Perform ALTER CLUSTER GROUP name ADD MEMBER statement to add a new cluster member to a clust

er group.

The added cluster member maintains the meta information of the SQL object as same as that in the clust

er system, so it can process the connection and request of the application. However, the data is not place

d, so adding a cluster member does not guarantee the high availability of the cluster group.

Perform the following statements to place the data after adding a cluster member.

● For rebalancing the entire data: Refer to ALTER DATABASE REBALANCE.

● For rebalancing only a part of the table: Refer to ALTER TABLE name REBALANCE.

When an error occurs on a cluster member, service is continously provided but DDL can not be performed.

For a normal service operation, an appropriate action should be taken for the cluster member with an err

or.

To make the cluster member with an error to participate in the cluster system again, then perform ALTER

SYSTEM JOIN DATABASE statement after connecting to the cluster member and driving up to the LOCAL

OPEN phase.

Even when a part of cluster members are not driven or the cluster system is driven while the network is di

sconnected, perform ALTER SYSTEM JOIN DATABASE statement after driving up the cluster member to t

he LOCAL OPEN phase.

If the cluster member device with an error can not be restored, then drop that cluster member by perfor

ming ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS statement in the cluster system.

The cluster member dropped from the cluster system still includes the previous information, and it can no

t participate in the cluster system again. Perform ALTER DATABASE RESET LOCAL CLUSTER MEMBER stat

ement to reset the cluster member to when it is before participating in the cluster system.

The statement above is different from newly creating the database of the cluster member because it main

tains the tablespace information. Therefore, it can shorten the time to create the tablespace when adding

a new cluster member to the cluster system.

Cluster Location | 1,393

14.4 Cluster Location

Cluster Location Related Statements

For more information about creating, dropping, and altering a cluster location, refer to the followings.

● Creating a cluster location: CREATE CLUSTER LOCATION

● Dropping a cluster location: DROP CLUSTER LOCATION

● Altering a cluster location: ALTER CLUSTER LOCATION

Information which is related to a cluster location can be retrieved through the following views.

Table 14-4 Cluster location related information

Schema View Description

PERFORMANCE_VIEW_SCHEMA V$CLUSTER_LOCATION Information of cluster location

Concepts of Cluster Location

Cluster location is a connection information to connect the internal cluster networks of each cluster mem

ber registered on the cluster system. Each cluster members use the cluster-exclusive tcp network to transf

er and receive various protocols such as the transaction processing and the exchanging the management

information. In this case, the member name, host ip address, and port are used for the connection and th

ey are called as a cluster location by the lump.

A unique cluster location information should be specified for each member, and if the information is dupl

icate, then the cluster network connection fails and the cluster system does not operate normally.

Cluster location information is automatically added or deleted when adding or dropping a cluster membe

r, so a user rarely need to directly and solely add or delete the location information. However, DDL statem

ent related to the cluster location can be used in the following case.

● When the cluster location information is lost due to the deleted location control file: CREATE CLUSTE

R LOCATION

● When the previously registered connection information of the cluster member is altered, which mean

s that the hardware or the connected ip and port is altered: ALTER CLUSTER LOCATION

1,394 | Cluster Objects

14.5 Cluster Table and Shard

Shard Related Statements

For more information about definition and rebalance of the shard, refer to the followings.

● Definition of a shard: <table sharding strategy> clause of CREATE TABLE.

● Rebalancing a shard: ALTER TABLE name REBALANCE

Information which is related to a shard in a cluster table can be retrieved through the following views.

Table 14-5 Shard in a cluster table related information

Schema View Description

DICTIONARY_SCHEM

A

ALL_CLUSTER_TABLES Information of user accessible cluster table

ALL_SHARD_KEY_COLUMNS
Shard key column information of user accessible cluster ta

ble

ALL_TAB_PLACE Placement information of user accessible cluster table

ALL_TAB_SHARDS Shard information of user accessible cluster table

USER_CLUSTER_TABLES Information of user owned cluster table

USER_SHARD_KEY_COLUM

NS
Shard key column information of user owned cluster table

USER_TAB_PLACE Placement information of user owned cluster table

USER_TAB_SHARDS Shard information of user owned cluster table

Cluster Table Type

A table which is created by a user in a cluster environment is one of the followings.

● Cloned table: Equally duplicating the table data and managing it

● Sharded table: Horizontally sharding the table data and managing it

A cloned table is appropriate for a table such as a product list or a provider list whose data is relatively sm

all and is not often altered, because a cloned table duplicates all table data and manages it. When inserti

ng, deleting, updating data to the cloned table, they are applied same to all cluster members to which th

e cloned table is placed.

A sharded table is appropriate for a table such as a transaction history or a call history whose data is big s

o required to be sharded. They are classifed according to three sharding strategies as follows.

Cluster Table and Shard | 1,395

● Hash sharded table

○ It divides the table data into several shards based on the hash value of a sharding key, then place

s them in the cluster system.

● Range sharded table

○ It divides the table data into several shards based on the range value of a sharding key, then plac

es them in the cluster system.

● List sharded table

○ It divides the table data into several shards based on the list value of a sharding key, then places t

hem in the cluster system.

A sharded table horizontally divides rows and manages them in shard unit, the sharding strategy is define

d by using the SHARDING BY clause in CREATE TABLE statement. The row set classified by the sharding s

trategy is called as shard.

Each shard is placed in a cluster group according to the placement strategy defined by a user. A shard ca

n automatically be placed by using AT CLUSTER WIDE of CREATE TABLE, or a cluster group to place a sha

rd can be specified by using AT CLUSTER GROUP clause. When a shard is automatically placed by using A

T CLUSTER WIDE, ALTER TABLE name REBALANCE is performed after creating the cluster group by using

CREATE CLUSTER GROUP. However, when specifying a cluster group to allocate a shard using AT CLUST

ER GROUP, the shard is not placed in the newly created cluster group.

The following is an example of creating a table according to the cluster table type and placing the data in

the 3x2 cluster environment.

Cloned Table

A cloned table equally duplicates the table data and manages it.

The following is an example of creating a cluster-wide cloned table. All table data is equally duplicated an

d placed in 3x2 cluster members.

CREATE TABLE t1 (id INTEGER)

CLONED

AT CLUSTER WIDE

;

1,396 | Cluster Objects

Figure 5 Cluster-wide cloned table

The following is an example of creating a group-specific cloned table. All table data is equally duplicated

and managed, but the duplicated table data exists only in cluster members of group g1 and g2 which are

specified by a user, but it does not exist in a group g3.

CREATE TABLE t1 (id INTEGER)

CLONED

AT CLUSTER GROUP g1, g2

;

Cluster Table and Shard | 1,397

Figure 6 Group-specific cloned table

Hash-sharded table

A hash-sharded table divides the table data into several shards based on the hash value of a sharding key,

then places them in the cluster system.

The following is an example of creating the cluster-wide hash-sharded table. When adding data to a tabl

e, the hash value is created based on the ID column value, and the shard to place row is selected among f

ive shards by using the hash value. Each shard is automatically placed. All rows with the same ID column

value are included in the same shard, and placed in the same cluster group.

CREATE TABLE t1 (id INTEGER)

SHARDING BY HASH(id)

SHARD COUNT 5

1,398 | Cluster Objects

AT CLUSTER WIDE

;

Figure 7 Cluster-wide hash-sharded table

The following is an example of creating the group-specific hash-sharded table. The hash value of an ID co

lumn determines the shard, but each shard is placed only in the cluster group g1 and g2 which are specifi

ed by a user.

CREATE TABLE t1 (id INTEGER)

SHARDING BY HASH(id)

SHARD COUNT 5

AT CLUSTER GROUP g1, g2

;

Cluster Table and Shard | 1,399

Figure 8 Group-specific hash-sharded table

Range-sharded Table

A range-sharded table divides the table data into several shards based on the range value of a sharding k

ey, then places them in the cluster system.

The following is an example of creating the cluster-wide range-sharded table. When adding data to a tab

le, the shard to place row is selected among five shards based on the range value of the ID column. Each

shard is automatically placed. All rows of the ID column within the same range are included in the same s

hard, and placed in the same cluster group.

CREATE TABLE t1 (id INTEGER)

SHARDING BY RANGE(id)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (20),

SHARD s2 VALUES LESS THAN (40),

SHARD s3 VALUES LESS THAN (60),

SHARD s4 VALUES LESS THAN (80),

SHARD s5 VALUES LESS THAN (MAXVALUE)

1,400 | Cluster Objects

;

Figure 9 Cluster-wide range-sharded table

The following is an example of creating the group-specific range-sharded table. The range value of the ID

column defines the shard, but each shard is placed in a cluster group specified by a user.

CREATE TABLE t1 (id INTEGER)

SHARDING BY RANGE(id)

SHARD s1 VALUES LESS THAN (20) AT CLUSTER GROUP g1,

SHARD s2 VALUES LESS THAN (40) AT CLUSTER GROUP g2,

SHARD s3 VALUES LESS THAN (60) AT CLUSTER GROUP g1,

SHARD s4 VALUES LESS THAN (80) AT CLUSTER GROUP g2,

SHARD s5 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP g3

;

Cluster Table and Shard | 1,401

Figure 10 Group-specific range-sharded table

List-sharded Table

A list-sharded table divides the table data into several shards based on the list value of a sharding key, the

n places them in the cluster system.

The following is an example of creating the cluster-wide list-sharded table. When adding data to a table,

rows are placed in a shard with the list value as same as the CITY column value. Each shard is automatical

ly placed.

CREATE TABLE t1 (city VARCHAR(128))

SHARDING BY LIST (city)

AT CLUSTER WIDE

SHARD s1 VALUES IN ('seoul'),

SHARD s2 VALUES IN ('busan', 'ulsan'),

SHARD s3 VALUES IN ('suwon', 'ansan', 'osan'),

SHARD s4 VALUES IN ('goyang', 'paju', 'guri'),

SHARD s5 VALUES IN (DEFAULT)

1,402 | Cluster Objects

;

Figure 11 Cluster-wide list-sharded table

The following is an example of creating the group-specific list-sharded table. The shard is selected by the l

ist value of the CITY column, but each shard is placed in the cluster group specified by a user.

CREATE TABLE t1 (city VARCHAR(128))

SHARDING BY LIST (city)

SHARD s1 VALUES IN ('seoul') AT CLUSTER GROUP g1,

SHARD s2 VALUES IN ('busan', 'ulsan') AT CLUSTER GROUP g2,

SHARD s3 VALUES IN ('suwon', 'ansan', 'osan') AT CLUSTER GROUP g1,

SHARD s4 VALUES IN ('goyang', 'paju', 'guri') AT CLUSTER GROUP g2,

SHARD s5 VALUES IN (DEFAULT) AT CLUSTER GROUP g3

;

Cluster Table and Shard | 1,403

Figure 12 Group-specific list-sharded table

Rebalancing Cluster Table

Rebalance the data of the cluster table by using ALTER TABLE name REBALANCE statement.

Data of the cluster table is rebalanced in the following unit.

● Cloned table: The entire table

● Sharded table: shard unit

If the table is specified as AT CLUSTER WIDE, the shard is automatically rebalanced to the created cluster

group, but if the cluster group to place the shard is specified by AT CLUSTER GROUP, the shard is not reb

alanced to the created cluster group.

● When automatically rebalancing by using AT CLUSTER WIDE, then the data can be rebalanced to a n

ew cluster group and a new cluster member.

1,404 | Cluster Objects

CREATE TABLE region

(

r_regionkey INTEGER

, r_name CHAR(25)

, r_comment VARCHAR(152)

)

CLONED

AT CLUSTER WIDE;

Figure 13 Rebalancing the region table defined by AT CLUSTER WIDE

● When specifying the location to place the shard by using AT CLUSTER GROUP

Cluster Table and Shard | 1,405

○ The data is not rebalanced on the new cluster group.

○ The data can be rebalanced on the new cluster member which is added to the specified cluster gr

oup.

CREATE TABLE nation

(

n_nationkey INTEGER

, n_name CHAR(25)

, n_regionkey INTEGER

, n_comment VARCHAR(152)

)

CLONED

AT CLUSTER GROUP g1, g2;

Figure 14 Rebalancing the nation table defined by AT CLUSTER GROUP

1,406 | Cluster Objects

Information about the table placement can be retrieved through the following views.

● USER_TAB_PLACE

● ALL_TAB_PLACE

gSQL>

SELECT group_name, member_name

FROM user_tab_place

WHERE table_name = 'REGION';

GROUP_NAME MEMBER_NAME

---------- -----------

G1 G1N1

G1 G1N2

G2 G2N1

G2 G2N2

G3 G3N1

G3 G3N2

6 rows selected.

The sharded table is rebalanced in shard unit, and rebalancing shards due to the increase of groups is as f

ollows.

CREATE TABLE orders

(

o_orderkey INTEGER

, o_custkey INTEGER

, o_orderstatus CHAR(1)

, o_totalprice NUMERIC(12,2)

, o_orderdate DATE

, o_orderpriority CHAR(15)

, o_clerk CHAR(15)

, o_shippriority INTEGER

, o_comment VARCHAR(79)

)

SHARDING BY HASH(o_orderkey)

SHARD COUNT 24

AT CLUSTER WIDE

;

Cluster Table and Shard | 1,407

Figure 15 Rebalancing shards due to the increase of groups

In the example above, the data of orders table is divided into 24 shards and placed. All shards are placed i

n a single group of 1x cluster which has only one group. 12 shards are placed in each group of 2x cluster

which has two groups.

When expanding 2x cluster to 3x cluster, shards are transferred from an old group to the new group, but

the number of shards in each group is same (8). When expanding 3x cluster to 4x cluster, then each G1,

G2, G3 rebalances two shards to the newly created group G4.

In other words, the shard rebalancing minimizes the movement when shards are transferred from an old

1,408 | Cluster Objects

group to the new group, then data is equally rebalanced maintaining the same number of shards in each

group.

Information about the shard placement of the sharded table can be retrieved through the following view

s.

● USER_TAB_SHARDS

● ALL_TAB_SHARDS

gSQL>

SELECT shard_name, group_name

FROM user_tab_shards

WHERE table_name = 'ORDERS';

SHARD_NAME GROUP_NAME

------------ ----------

SHARD_000000 G1

SHARD_000001 G1

SHARD_000002 G1

SHARD_000003 G1

SHARD_000004 G1

SHARD_000005 G1

SHARD_000006 G1

SHARD_000007 G1

SHARD_000008 G3

SHARD_000009 G3

SHARD_000010 G3

SHARD_000011 G3

SHARD_000012 G2

SHARD_000013 G2

SHARD_000014 G2

SHARD_000015 G2

SHARD_000016 G2

SHARD_000017 G2

SHARD_000018 G2

SHARD_000019 G2

SHARD_000020 G3

SHARD_000021 G3

SHARD_000022 G3

SHARD_000023 G3

24 rows selected.

When tables which have the same <sharding strategy> are completely rebalanced as follows, then the sha

Cluster Table and Shard | 1,409

rd placement result is same. Rows with the same shard key are guaranteed to be placed in the same shar

d and the same group even when the tables are different.

● Table t1

○ It is created in the 2x cluster.

○ CREATE TABLE t1 (c1 INTEGER) SHARDING BY (c1);

○ It is rebalanced in the 4x cluster.

○ ALTER TABLE t1 REBALANCE:

● Table t2

○ It is created in the 3x cluster.

○ CREATE TABLE t2 (a1 INTEGER) SHARDING BY (a1);

○ It is rebalanced in the 4x cluster.

○ ALTER TABLE t2 REBALANCE:

● Table t3

○ It is created in the 4x cluster.

○ CREATE TABLE t3 (i1 INTEGER) SHARDING BY (i1);

In other words, the following query can access only to a single cluster member and process it.

SELECT COUNT(*)

FROM t1, t2, t3

WHERE t1.c1 = t2.a1

AND t2.a1 = t3.i1

AND t1.c1 = 1;

1,410 | Cluster Objects

14.6 Global Secondary Index

Global Secondary Index Related Statements

For more information about creating, dropping, and altering a global secondary index, refer to the follow

ings.

● Creating a global secondary index: ALTER TABLE name ADD GLOBAL SECONDARY INDEX

● Dropping a global secondary index: ALTER TABLE name DROP GLOBAL SECONDARY INDEX

● Altering a global secondary index: ALTER TABLE name ALTER GLOBAL SECONDARY INDEX

Information related to a global secondary index can be retrieved through the following views.

Table 14-6 Global secondary index related information

Schema View Description

DICTIONARY_SCHE

MA

ALL_CLUSTER_TABLES
Existence of a global secondary index in user accessible

table

ALL_GLOBAL_SECONDARY_INDE

XES

Object information of user accessible global secondary i

ndex

ALL_GSI_PLACE
Placement information of user accessible global second

ary index

USER_CLUSTER_TABLES
Existence of a global secondary index in user owned ta

ble

USER_GLOBAL_SECONDARY_IN

DEXES

Object information of user owned global secondary ind

ex

USER_GSI_PLACE
Placement information of user owned global secondary

index

Concepts of Global Secondary Index

A global secondary index is a B-Tree index which configures the GRID (global row identifier) value as a ke

y in each cluster member of the cluster environment.

Tables in the cluster environment are duplicated to all members in a group and the same records are appl

ied and retrieved when performing DML or select. GRID is a unique value identifying the same records in

cluster members, and it is allocated when the record is inserted for the first time, and it is spread over all

members in a group, then stored together with the record.

The GRID value of the record is not altered even when the record is update, and it is not altered even wh

Global Secondary Index | 1,411

en the shard key is altered and transferred to another shard.

When creating a table in a cluster environment, a global secondary index may or may not be created, and

it can be separately created or deleted after the table is created. A table may not have a global secondary

index, or it may have maximum one global secondary index.

Figure 16 Structure of a global secondary index

A global secondary index is required to perform a non-deterministic query for a table. If the table does no

t have a global secondary index, then the non-deterministic query fails as follows.

gSQL> DELETE FROM T1 LIMIT 1;

ERR-42000(16423): does not support non-deterministic DML in the cluster system : global

secondary index expected

Refer to the dictionary such as ALL_GSI_PLACE, DBA_GSI_PLACE, and USER_GSI_PLACE to check if a tabl

e has a global secondary index.

SQL Tuning

15.

1,413

1,414 | SQL Tuning

15.1 Overview

SQL tuning describes a comprehensive overview on how to improve the query performance in the SQL sta

tements. GOLDILOCKS provides hint, plan Cache, SQL execution plan output for SQL tuning.

SQL tuning aims to minimize query response time and to improve query throughput, so it describes how t

o find and solve the problem.

The knowledge about database, database structure, SQL syntax and optimizer is required to understand S

QL tuning. This chapter is described under the assumption that the reader knows all prerequisite knowled

ge.

SQL Processing | 1,415

15.2 SQL Processing

The overall SQL processing of GOLDILOCKS has phases such as SQL parser, plan cache check, SQL validati

on, optimization, plan generation, execution as follows.

If an execution plan for the same query is stored in plan cache, then the plan cache check executes the pl

an.

Figure 1 SQL processing phases

1,416 | SQL Tuning

SQL Parser

SQL parser is the first phase of SQL processing, and it checks grammatical correctness of SQL statement i

nput by a user. If the SQL statement is not grammatically correct, it is regarded as an error.

The following is an example of the grammatically incorrect SQL statement.

gSQL> SELECT * FORM t1;

ERR-42000(40000): syntax error

SELECT * FORM t1

.........^ ^

Error at line 1

In SQL parser phase, the necessary information for parsing is collected and stored. The parsing result deriv

es the parsed SQL structure. The parsed SQL structure and other information are stored and managed in

each session area.

Plan Cache Check

After the SQL parser phase is completed, it checks if the same query as the submitted query is stored in th

e plan cache, and this is the plan cache check phase.

In the plan cache check phase, it searches for a plan which is matched with Plan cache parameters from t

he plan cache of the parsed query statement.

In case when the plan is stored in the plan cache, the plan checks the validity of the objects such as tables

and columns to which the plan accesses. If all objects are valid the process moves on to the execution ph

ase using the plan. If any object is invalid the process moves on to SQL validation phase.

All plans which are generated by different sessions are shared in plan cache, and plans stored by other se

ssions can be referenced.

By using the plan stored in the plan cache at plan cache check phase, the process from SQL validation ph

ase to plan generation phase can be omitted, so the performance is improved.

SQL Validation

The syntactic correctness of a query is checked in the SQL validation phase. In this phase, it checks syntact

ic errors such as whether the tables and columns of the submitted query statement exist, or whether the

columns can be referenced.

SQL Processing | 1,417

The following is an example of the syntactically incorrect SQL statement.

gSQL> SELECT * FROM t1;

ERR-42000(16040): table or view does not exist :

SELECT * FROM t1

*

ERROR at line 1:

Optimization

In the optimization phase, various execution plan for the SQL statement is set up, and the best plan is sel

ected. In the optimization phase, the cost of the optimization methods such as an access method for a ta

ble, a join order, a join method is calculated. Then, it creates various plans and selects the best plan amon

g them.

For more information, refer to Query Optimizer.

Plan Generation

In the plan generation phase, the execution plan which is selected in optimization phase is generated in e

xecutable form for execution phase. The execution plan consists of a combination of nodes in multiple ph

ases, and the nodes of each phase returns a result set to the superordinate node. The final phase nodes s

end the final result of the SQL statement to the user.

The execution plan consists of the nodes in a tree form, and it includes the following information.

● An access method for each table

● An order of the referencing tables

● A join method of the table join operation

● Information about the data filter

● Information about data grouping and aggregation

● Information about data sorting

The following is an example of the SQL execution plan generated in the plan generation phase.

gSQL>

\EXPLAIN PLAN

SELECT t1.i1, t1.i2, t2.i1, t2.i2

FROM t1, t2

WHERE t1.i1 = t2.i1

1,418 | SQL Tuning

AND t1.i2 = 1

ORDER BY t1.i1;

no rows selected.

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT INSTANT ACCESS | 0 |

| 2 | HASH JOIN (INNER JOIN) | 0 |

| 3 | TABLE ACCESS ("T2") | 0 |

| 4 | HASH JOIN INSTANT ACCESS | 0 |

| 5 | TABLE ACCESS ("T1") | 0 |

==

1 - SORT KEY : "T1.I1 ASC NULLS LAST"

RECORD COLUMNS : I2, I1, I2

READ COLUMNS : I1, I2, I1, I2

2 - JOINED COLUMNS : T1.I1, T1.I2, T2.I1, T2.I2

3 - READ COLUMNS : I1, I2

4 - INDEX COLUMNS : I1

TABLE COLUMNS : I2

READ COLUMNS : I1, I2

HASH FILTER : I1 = {I1}

5 - READ COLUMNS : I1, I2

PHYSICAL FILTER : I2 = 1

<<< end print plan

Plan Cache Registration

When using the plan cache, the plan generated in Plan Generation phase is registered in plan cache. The

plans in a cache are distinguished by whether it matches with the Plan cache parameters

value.

Table 15-1 Plan cache parameters

Parameter Description

Query text Case sensitive query text

User information User id

Cursor property The cursor property of the query which requires fetch

SQL Processing | 1,419

Bind parameter The number of bind parameters, and the IN/OUT property of each bind parameter

Enable atomic Whether to use atomic insertion

Enable hint error Whether validation error occurs for the hint

Parameter Description

The followings are examples of queries which have different query text values.

"select i1 from t1"

"Select i1 from t1"

"select i1 from t1"

"SELECT I1 FROM T1"

Note

If the schema objects (tables, indexes, views, sequences) referenced by the plan are not committe

d, the plan is not registered.

Execution

In execution phase, the execution plan which is generated in plan generation phase or selected in plan ca

che check phase is executed, and the result is returned. The execution plan in tree structure is executed fr

om the left and the lowest node to the superordinate node.

gSQL>

\EXPLAIN PLAN

SELECT t1.i1, t1.i2, t2.c1, t2.c2

FROM t1, t2

WHERE t1.i1 = t2.c1

AND t1.i2 = 1

ORDER BY t1.i1;

no rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | SORT INSTANT ACCESS | 0 |

1,420 | SQL Tuning

| 2 | HASH JOIN (INNER JOIN) | 0 |

| 3 | TABLE ACCESS ("T2") | 0 |

| 4 | HASH JOIN INSTANT ACCESS | 0 |

| 5 | TABLE ACCESS ("T1") | 0 |

===

1 - SORT KEY : "T1.I1 ASC NULLS LAST"

RECORD COLUMNS : I2, C1, C2

READ COLUMNS : I1, I2, C1, C2

2 - JOINED COLUMNS : T1.I1, T1.I2, T2.C1, T2.C2

3 - READ COLUMNS : C1, C2

4 - INDEX COLUMNS : I1

TABLE COLUMNS : I2

READ COLUMNS : I1, I2

HASH FILTER : I1 = {C1}

5 - READ COLUMNS : I1, I2

PHYSICAL FILTER : I2 = 1

<<< end print plan

The execution process using the plan generation example above is as follows.

1. The result is returned from IDX3 by using table access for the table T2. The result rows include the co

lumns C1, C2.

2. The result is returned from IDX5 by using table access for the table T1. "I2 = 1" is processed by using

physical filter, and the result is returned. The result rows include the columns I1, I2.

3. Hash join instant access for the result returned from IDX5 is created in IDX4, and "I1 = {I1}" is perfor

med as hash filter. The rows of the result include the columns I1, I2.

4. Hash join is performed in IDX2 by using hash filter in IDX4 for the result of IDX3, and the result rows

include the columns I1, I2 of the table T1, and the columns C1, C2 of the table T2.

5. Sort instant access for the result of IDX2 is generated in IDX1, and it is sorted by using the column I1

of the table T1. The result includes the columns I1, I2 of the table T1, and the columns I1, I2 of the t

able T2.

6. The result of IDX1 is finally returned to the user from IDX 0.

For more information about the SQL execution plan, refer to SQL Execution Plan.

Query Optimizer | 1,421

15.3 Query Optimizer

Overview

An query optimizer determines the most effective execution plan for the SQL statement. In order to do so,

the query optimizer generates various types of candidate plans for the SQL statement and calculates the c

ost for each plan. Then, it selects the final execution plan with the lowest cost among the candidate plans.

The process to find an effective plan by calculating the cost is cost-based optimization. During the proces

s, the query optimizer uses information such as the number of rows which are returned by nodes, the acc

ess paths, and the join methods.

The query optimizer produces the candidate plans for the SQL statement returned from parsing and valid

ation phases by calculating the cost based on query transformations and statistics. Then it selects the mos

t efficient (the lowest cost) plan among the candidate plans, then produces the final execution plan.

The query transformations push the conditional clause to a view, or they convert the subQuery to the join

form.

There are a heuristic query transformation and a cost-based query transformation.

The heuristic query transformation performs transformation only when transforming the queries is more

efficient than the original query.

When transformation is not always efficient, the cost-based query transformation determines the cost eff

ective form by comparing the original query with the transformed query.

Generally, the cost is calculated by using the selectivity and the cardinality. The selectivity is the rows ratio

of the result to be returned to the result set after applying conditions. The cardinality is the number of the

rows returned to the result from each node.

The query optimizer calculates the cost based on the selectivity and the cardinality. It also uses the access

paths method (table access, index access), the join method (nested loops join, hash join), and the join or

dering method.

The final execution plan selected by the query optimizer can be retrieved through the explain plan statem

ent. For more information about the translating the execution plan output through the explain plan state

ment, refer to SQL Execution Plan.

1,422 | SQL Tuning

Query Transformations

To perform the SQL statement more efficiently, the query transformations transform an SQL statement by

pushing the filter or by unnesting the subQuery. For these query transformations, GOLDILOCKS supports

the following methods.

● Simple view merging

● Filter push down

● SubQuery unnesting

● Single table min/max aggregation conversion

● Rewrite target on exists

Simple View Merging

It merges a simple view to the superordinate query block.

Merging the simple view enables applying more number of cases when determining a join ordering, a joi

n operation and an access path, so it can generate more optimized plan.

The following is an example of a query.

gSQL> \explain plan

select *

from (select t1.col1 col1, t2.col1 col2

from t1, t2

where t1.col1 = t2.col1)v1, t3

where v1.col1 = t3.col1;

It is assumed that the table t1, t2 are big and the table t3 is small.

If the simple view is not merged, the query above performs t3 after performing the join in the view. In thi

s case, the intermediate result is big and it is not filtered enough.

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 1 |

| 2 | VIEW (INLINE_VIEW AS V1) | 5 |

| 3 | NESTED LOOP JOIN (INNER JOIN) | 5 |

| 4 | INDEX ACCESS ("T2", "T2_COL1") | (5) 5 |

Query Optimizer | 1,423

| 5 | INDEX ACCESS ("T1", "T1_COL1") | (5) 5 |

| 6 | INDEX ACCESS ("T3", "T3_COL3") | (1) 1 |

===

However, if the simple view is merged, then t2 is performed after performing t1 and t3. In this case, the i

ntermediate result is filtered enough so it improves the performance.

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 1 |

| 2 | NESTED LOOP JOIN (INNER JOIN) | 1 |

| 3 | TABLE ACCESS ("T3") | 1 |

| 4 | INDEX ACCESS ("T1", "T1_COL1") | (1) 1 |

| 5 | INDEX ACCESS ("T2", "T2_COL1") | (1) 1 |

===

The view conditions to merge the simple view are as follows.

● A set operator should not exist within the view.

● DISTINCT should not exist within the view.

● GROUP BY, HAVING, aggregate function should not exist within the view.

● The full outer join should not exist within the view.

● The natural join should not exist within the view.

● The SELECT list within the view should not include a subquery.

● LIMIT, OFFSET statement should not exist within the view.

● The view should not participate in the full outer join.

● When the view is participating in the right side of the left outer join, then only one table should exist

in the from clause within the view.

● The view should not exist on the right side of the semi join.

Filter Push Down

The filter push down feature pushes the pushable filters among the filters of WHERE clause to the subQu

ery (view) of FROM clause. The filter push down feature pushes the filter to subQuery (view), and the pus

hed filter is used for index access in the subQuery (view). Or the pushed filter is used as the first executed

filter. It improves the query processing performance.

The following is an example of a query.

1,424 | SQL Tuning

SELECT l_linenumber, l_quantity

FROM (SELECT *

FROM lineitem

WHERE l_shipdate >= date '1996-01-01'

AND l_shipdate <= date '1996-12-31')

WHERE l_shipmode = 'AIR';

In the example above, the filter l_shipmode = 'AIR' which exists in the top-level node (WHERE clause) is p

ushed to the subQuery in FROM clause. It is as same as the example below.

SELECT l_linenumber, l_quantity

FROM (SELECT *

FROM lineitem

WHERE l_shipdate >= date '1996-01-01'

AND l_shipdate <= date '1996-12-31'

AND l_shipmode = 'AIR');

The transformed query as above improves the performance by using index access when an index exists fo

r l_shipmode in the lineitem table.

SubQuery Unnesting

The subQuery unnesting feature releases the subQuery in a conditional clause into join form. The subQue

ry unnesting feature transforms operators (IN, NOT IN, EXISTS, NOT EXISTS) and a quantify operator of A

NY and ALL into the semi join operation or anti-semi join operation. The transformed query efficiently pro

cesses the join, and it improves the query processing performance.

The following is an example of a query.

SELECT ps_availqty

FROM partsupp

WHERE ps_partkey IN (SELECT p_partkey

FROM part

WHERE p_type = 'STEEL');

In the example above, IN operator can be transformed into semi join of ps_partkey = p_partkey condition.

This transformed query can be retrieved by outputting the execution plan as follows.

gSQL>

\EXPLAIN PLAN

SELECT ps_availqty

FROM partsupp

Query Optimizer | 1,425

WHERE ps_partkey IN (SELECT p_partkey

FROM part

WHERE p_type = 'STEEL');

PS_AVAILQTY

8895

4969

4651

4093

4 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INVERTED LEFT SEMI) | 4 |

| 2 | SORT INSTANT ACCESS (UNIQUE) | 2 |

| 3 | TABLE ACCESS ("PART") | 2 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 4 |

===

1 - JOINED COLUMNS : PARTSUPP.PS_AVAILQTY

2 - SORT KEY : "PART.P_PARTKEY ASC NULLS LAST"

READ COLUMNS : P_PARTKEY

3 - READ COLUMNS : P_PARTKEY, P_TYPE

PHYSICAL FILTER : P_TYPE = 'STEEL'

4 - READ INDEX COLUMNS : PS_PARTKEY

READ TABLE COLUMNS : PS_AVAILQTY

MIN RANGE : PS_PARTKEY = {P_PARTKEY}

MAX RANGE : PS_PARTKEY = {P_PARTKEY}

<<< end print plan

In the execution plan output above, the IN operation is transformed into the inverted left semi join by usi

ng the nested loop join.

Single Table Min/Max Aggregation Conversion

When a query has a min (or max) aggregate function in a select list, and has a single table in from clause,

then an optimizer returns the result by using the index whose first key column is an argument column of

the aggregation.

In order to do so, the following conditions should be satisfied.

1,426 | SQL Tuning

● It should be a query for a single table. Only one of the MIN or MAX should exist on the target.

● OFFSET/LIMIT clause should not be in a query.

● A single column in a table should be the only aggregation argument.

● The index whose first key is the target column for aggregation should exist.

● The user should not provide a hint such as table access or rowid access.

The single table min/max aggregation conversion improves the query processing performance by reading

a single data of the beginning or end of the Index instead of reading all the rows.

The following is an example of a query.

SELECT p_name, p_brand, p_type

FROM part

WHERE p_size = (SELECT MAX(p_size)

FROM part);

The query above returns p_name, p_brand, p_type of the largest p_size value from part table. The query

has MAX aggregation in the SubQuery of the conditional clause.

The query above can be transformed to the query of returning only the last p_size data among data sorte

d in an ascending order by using the index access for p_size.

This transformed query can be retrieved by outputting the execution plan as follows.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

FROM part

WHERE p_size = (SELECT MAX(p_size)

FROM part);

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#3 Brand#2 STEEL

1 row selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("PART") | 1 |

| 2 | SUB QUERY LIST | 1 |

| 3 | INDEX ACCESS ("PART, PART_SIZE") | 1 |

Query Optimizer | 1,427

===

1 - READ COLUMNS : P_NAME, P_BRAND, P_TYPE, P_SIZE

PHYSICAL FILTER : P_SIZE = P_SIZE

2 - READ COLUMNS : P_SIZE

3 - READ INDEX COLUMNS : P_SIZE

MAX RANGE : P_SIZE IS NOT NULL

<<< end print plan

In the execution plan output above, the max range value is retrieved by using index access for subQuery i

n the conditional clause.

Rewrite Target on Exists

The rewrite target on exists feature transforms the target clause into the constant value in a subQuery wh

ich is located in exists or not exists operation. Exists or not exists operation determines whether the subQ

uery result row exists or not.

The result is same even when transforming target clause into the constant value because the number of t

argets or the result of the target expression does not affect the results of the operator.

The rewrite target on exists feature improves query processing performance by reducing an unnecessary

expression processing in the target clause.

The following is an example of a query.

SELECT p_name, p_brand, p_type

FROM part

WHERE EXISTS(SELECT /*+ NO_QUERY_TRANSFORMATION */

l_quantity, l_extendedprice * (1 - l_discount)

FROM lineitem

WHERE l_partkey = p_partkey

AND l_quantity > 30);

The query above returns the result rows of part table for the p_partkey when a row whose l_quantity is bi

gger than 30 exists among rows whose l_partkey and p_partkey are same in lineitem table.

Exists operator in conditional clause has two targets, which are l_quantity and l_extendedprice* (1 - l_dis

count). They can be transformed to a constant value (TRUE), and the transformed query can be retrieved

by outputting the execution plan as follows.

However, NO_QUERY_TRANSFORMATION hint prevents query transformation.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

1,428 | SQL Tuning

FROM part

WHERE EXISTS(SELECT /*+ NO_QUERY_TRANSFORMATION */

l_quantity, l_extendedprice * (1 - l_discount)

FROM lineitem

WHERE l_partkey = p_partkey

AND l_quantity > 30);

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

Part#3 Brand#2 STEEL

Part#4 Brand#3 NICKEL

Part#5 Brand#3 STEEL

4 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | SUB QUERY FILTER | 4 |

| 2 | TABLE ACCESS ("PART") | 5 |

| 3 | SUB QUERY LIST | 5 |

| 4 | SUB QUERY FUNCTION | 5 |

| 5 | TABLE ACCESS ("LINEITEM") | 4 |

===

1 - FILTER : EXISTS((TRUE))

2 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

4 - FUNCTION : EXISTS((TRUE))

5 - READ COLUMNS : L_PARTKEY, L_QUANTITY

PHYSICAL FILTER : L_PARTKEY = {P_PARTKEY} AND L_QUANTITY > 30

<<< end print plan

In the execution plan output above, target for subQuery in exists is transformed into TRUE.

Access Paths

An access paths is a method to access a single table. Access paths are classified into table access, index ac

cess, rowid access, index concat.

An query optimizer calculates the cost of each access method, then selects the access method with the lo

west cost as the execution plan.

Query Optimizer | 1,429

Table Access

A table access is a method which scans a stored table when retrieving a table instead of using index or ro

wid. In general, a query optimizer selects table access method only when other methods can not be used

or the user specifies table access hint because table access cost more than any other access method.

The table access is used in the following cases.

● Index does not exist.

● The function exists on the column side at the filter for the column in an index. (e.g. i1 + 1 = 10)

● Table access cost is small because the condition for the index's first column does not exist. (e.g. i2 =

3 condition is given to an index whose index keys are i1 and i2)

● The table is small so table access is less expensive than index access.

● A user specifies the table access hint (e.g. FULL(t1) hint)

● Though the condition for the index exists, but table access is needed. Therefore, the table access cost

turns out to be low when calculating the cost.

The following is an example of using the table access when an index with filter column does not exist.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

FROM part

WHERE p_size > 20;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#3 Brand#2 STEEL

1 row selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("PART") | 1 |

===

1 - READ COLUMNS : P_NAME, P_BRAND, P_TYPE, P_SIZE

PHYSICAL FILTER : P_SIZE > 20

<<< end print plan

The following is an example of specifying table access hint by a user, even when the index with filter colu

mn exists.

1,430 | SQL Tuning

gSQL>

\EXPLAIN PLAN

SELECT /*+ FULL(part) */

p_name, p_brand, p_type

FROM part

WHERE p_partkey > 1;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#2 Brand#1 NICKEL

Part#3 Brand#2 STEEL

Part#4 Brand#3 NICKEL

Part#5 Brand#3 STEEL

4 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("PART") | 4 |

===

1 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

PHYSICAL FILTER : P_PARTKEY > 1

<<< end print plan

Index Access

An index access performs table scan using an index. In general, when an index is usable in the filter, the i

ndex access is more efficient than others. When the index access is available, a query optimizer calculates

the cost, and selects the index access with the lowest cost. When a user specifies the index access hint, th

en a query optimizer calculates the cost of the user defined indexes, and selects the index access with the

lowest cost.

However, the index access is not selected in the following cases.

● The index exists in a filter, but it costs more than another access method, such as the table access wh

en calculating the cost.

● The user specifies another access hint except for an index access, and it can be used. (e.g. FULL(t1) hi

nt)

● There is a condition to select another access method. (Refer to the case when using the Table Access

.)

Query Optimizer | 1,431

The following is an example of using the index access selected by a query optimizer.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

FROM part

WHERE p_partkey = 1;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

1 row selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("PART, PART_PK_INDEX") | 1 |

===

1 - READ INDEX COLUMNS : P_PARTKEY

READ TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

MIN RANGE : P_PARTKEY = 1

MAX RANGE : P_PARTKEY = 1

<<< end print plan

The following is an example of the case when the index access hint is specified.

gSQL>

\EXPLAIN PLAN

SELECT /*+ INDEX(part, part_size) */

p_name, p_brand, p_type

FROM part

WHERE p_size > 10;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#4 Brand#3 NICKEL

Part#5 Brand#3 STEEL

Part#3 Brand#2 STEEL

3 rows selected.

>>> start print plan

< Execution Plan >

1,432 | SQL Tuning

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("PART, PART_SIZE") | 3 |

===

1 - READ INDEX COLUMNS : P_SIZE

READ TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

MIN RANGE : P_SIZE > 10

MAX RANGE : P_SIZE IS NOT NULL

<<< end print plan

Rowid Access

Rowid access directly accesses the page by using the rowid when retrieving the table. To use the rowid ac

cess, the filter for the rowid should exists. A query optimizer selects the rowid access prior to other access

es when the condition for the rowid access exists.

The following is an example of using the rowid access.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

FROM part

WHERE ROWID = 'AAAAAAAAADiAACAAACCjAAA';

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

1 row selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | USER ROWID ACCESS ("PART") | 1 |

===

1 - READ COLUMNS : P_NAME, P_BRAND, P_TYPE

ROWID ACCESS EXPR : ROWID = 'AAAAAAAAADiAACAAACCjAAA'

<<< end print plan

Query Optimizer | 1,433

Index Concat

If an or statement exists in a filter and the index access can be executed on each filter divided by the or o

perator, then the index concat returns the result by combining the results of each index access.

The index concat is a concat node which has multiple index access on the subordinate nodes. If the or sta

tement exists in a filter, a query optimizer calculates the cost of the index concat and selects the index co

ncat when it has lower cost than other accesses.

The index concat cost is calculated as follows.

1. The filters are created which are newly adjusted based on or.

2. The most appropriate index is selected among indexes which are applicable to filters classified based

on or .

3. The concat cost is calculated to remove the duplicate when collecting the results of the selected inde

xes.

4. The cost of the previously selected concat is added, then the final index concat cost is determined.

The index concat node is executed as follows.

1. The first node among the subordinate nodes of the index concat node is executed.

2. Among the execution results, the data for removing the duplicates are stored in concat node. The re

sult is transferred to the superordinate node.

3. From the second node, the duplicates are checked in the concat node, and the data for removing th

e duplicates in the non-duplicate rows are stored in the concat node. Then, the result is transferred t

o the superordinate node.

The following is an example of using the index concat.

gSQL>

\EXPLAIN PLAN

SELECT /*+ INDEX_COMBINE(part, part_size) */

p_name, p_brand, p_type

FROM part

WHERE p_size = 1

OR p_size = 21;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#2 Brand#1 NICKEL

Part#3 Brand#2 STEEL

2 rows selected.

>>> start print plan

< Execution Plan >

===

1,434 | SQL Tuning

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | CONCAT | 2 |

| 2 | INDEX ACCESS ("PART, PART_SIZE") | 1 |

| 3 | INDEX ACCESS ("PART, PART_SIZE") | 1 |

===

2 - READ INDEX COLUMNS : P_SIZE

READ TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

MIN RANGE : P_SIZE = 1

MAX RANGE : P_SIZE = 1

3 - READ INDEX COLUMNS : P_SIZE

READ TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

MIN RANGE : P_SIZE = 21

MAX RANGE : P_SIZE = 21

<<< end print plan

Join

Join combines result rows from two tables (or views) into a single result row. Join condition specifies the

condition for combining rows from two tables (or views). Join without join condition returns the results

which each rows of one table is combined with all rows of the other table.

The join process is generally expressed in a tree form. The left table in the join tree is an outer node and t

he right table is an inner node. In general, join is executed by reading a row of the outer node then comb

ining it with the inner node rows which satisfy the join condition.

If there are three or more tables (or views) in FROM clause, two tables are joined first, and then the result

is joined with the third table.

In this case, if join node exists only on the outer node, it is called as left deep join tree. If join node exists

only on the inner node, it is called as right deep join tree. If join node exists on both outer and inner node,

it is called as hybrid join tree.

The figure below describes the join tree type.

Query Optimizer | 1,435

Figure 2 Join tree type

In the figure above, all three types of join tree are performed in an order of table 1, table 2, table 3, table

4. If all data in each table is same and all the join conditions are same as well, then the three types of join

tree return the same result. The order of the result rows can be different from each other.

A query optimizer considers the following four items when calculating the join cost.

● The access paths cost to each table which participates in join

● The cost according to join type (inner, outer etc.)

● The cost of available join methods

● The cost according to the order of the two tables which participates in join

The cost differs according to the 4 items above, and a query optimizer selects the plan with lowest cost a

mong them.

Join Type

Cross Join

A cross join does not have a join condition. Therefore, all inner node rows are combined to each outer no

de row, then they are returned as the join result row.

The following is an example of the cross join.

gSQL>

\EXPLAIN PLAN

SELECT s_name, c_name FROM supplier, customer;

S_NAME C_NAME

------------------------- ----------

Supplier#1 Customer#1

Supplier#1 Customer#2

Supplier#1 Customer#3

1,436 | SQL Tuning

Supplier#1 Customer#4

Supplier#1 Customer#5

Supplier#2 Customer#1

Supplier#2 Customer#2

Supplier#2 Customer#3

Supplier#2 Customer#4

Supplier#2 Customer#5

Supplier#3 Customer#1

Supplier#3 Customer#2

Supplier#3 Customer#3

Supplier#3 Customer#4

Supplier#3 Customer#5

Supplier#4 Customer#1

Supplier#4 Customer#2

Supplier#4 Customer#3

Supplier#4 Customer#4

Supplier#4 Customer#5

S_NAME C_NAME

------------------------- ----------

Supplier#5 Customer#1

Supplier#5 Customer#2

Supplier#5 Customer#3

Supplier#5 Customer#4

Supplier#5 Customer#5

25 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 25 |

| 2 | TABLE ACCESS ("SUPPLIER") | 5 |

| 3 | TABLE ACCESS ("CUSTOMER") | 5 |

===

1 - JOINED COLUMNS : SUPPLIER.S_NAME, CUSTOMER.C_NAME

2 - READ COLUMNS : S_NAME

3 - READ COLUMNS : C_NAME

<<< end print plan

Query Optimizer | 1,437

Inner Join

An inner join has a join condition. Therefore, only the inner node rows which satisfy the join condition ar

e combined to each row of outer node, then they are returned to the join result row.

A join condition consists of operators between columns of two tables (or views). If the operator of the Joi

n condition is =(equal), then it is called equi-join. Otherwise it is called non-equi-join.

The following is an example of an equi-join in the inner join.

gSQL>

\EXPLAIN PLAN

SELECT p_name, ps_availqty

FROM part, partsupp

WHERE p_partkey = ps_partkey;

P_NAME PS_AVAILQTY

------ -----------

Part#1 3325

Part#1 8076

Part#2 3956

Part#2 4069

Part#3 8895

Part#3 4969

Part#4 8539

Part#4 3025

Part#5 4651

Part#5 4093

10 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (INNER JOIN) | 10 |

| 2 | TABLE ACCESS ("PARTSUPP") | 10 |

| 3 | HASH JOIN INSTANT ACCESS | 10 |

| 4 | TABLE ACCESS ("PART") | 5 |

===

1 - JOINED COLUMNS : PART.P_NAME, PARTSUPP.PS_AVAILQTY

2 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

3 - INDEX COLUMNS : P_PARTKEY

TABLE COLUMNS : P_NAME

1,438 | SQL Tuning

READ COLUMNS : P_PARTKEY, P_NAME

HASH FILTER : P_PARTKEY = {PS_PARTKEY}

4 - READ COLUMNS : P_PARTKEY, P_NAME

<<< end print plan

The following is an example of a non-equi-join in the inner join.

gSQL>

\EXPLAIN PLAN

SELECT o_totalprice, l_extendedprice, l_discount

FROM orders, lineitem

WHERE o_orderkey = 1

AND l_shipdate > o_orderdate;

O_TOTALPRICE L_EXTENDEDPRICE L_DISCOUNT

------------ --------------- ----------

173665.47 21168.23 .04

173665.47 45983.16 .09

173665.47 13309.6 .1

173665.47 28955.64 .09

173665.47 22824.48 .1

5 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 5 |

| 2 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 1 |

| 3 | TABLE ACCESS ("LINEITEM") | 5 |

===

1 - JOINED COLUMNS : ORDERS.O_TOTALPRICE, LINEITEM.L_EXTENDEDPRICE, LINEITEM.L_DISCOUNT

2 - READ INDEX COLUMNS : O_ORDERKEY

READ TABLE COLUMNS : O_TOTALPRICE, O_ORDERDATE

MIN RANGE : O_ORDERKEY = 1

MAX RANGE : O_ORDERKEY = 1

3 - READ COLUMNS : L_EXTENDEDPRICE, L_DISCOUNT, L_SHIPDATE

PHYSICAL FILTER : L_SHIPDATE > {O_ORDERDATE}

<<< end print plan

Query Optimizer | 1,439

Outer Join

Outer join have a join condition. If any inner join row satisfies the join condition, outer node rows are co

mbined with inner node rows which satisfies the join condition, then return the results. If there is not any

inner join row to satisfy the join condition, outer node rows are combined rows which have NULL data on

ly, and return the results.

Outer join is differentiated from other joins by having direction such as left, right and full.

Outer node of left outer join is the left table of a join, and outer node of right outer join is the right table

of a join.

Full outer join is the union of left outer join and right outer join. It combines rows which satisfy the join c

ondition, the left and right node rows which do not satisfy the condition and the rows which have NULL

data only. Then it returns the result.

The right outer join result is equivalent to the left outer join result when executing it after exchanging the

tables' position which are located at each end. Namely, "A LEFT OUTER JOIN B" and "B RIGHT OUTER JOI

N A" are equivalent in an aspect of the result. Therefore, query optimizer generates the plan by replacing

all the right outer join with left outer join.

The following is an example of the left outer join.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, ps_availqty

FROM part LEFT OUTER JOIN partsupp

ON p_partkey = ps_partkey

AND ps_availqty > 5000;

P_NAME P_BRAND PS_AVAILQTY

------ ---------- -----------

Part#1 Brand#1 8076

Part#2 Brand#1 null

Part#3 Brand#2 8895

Part#4 Brand#3 8539

Part#5 Brand#3 null

5 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (LEFT OUTER JOIN) | 5 |

| 2 | TABLE ACCESS ("PART") | 5 |

1,440 | SQL Tuning

| 3 | HASH JOIN INSTANT ACCESS | 5 |

| 4 | TABLE ACCESS ("PARTSUPP") | 3 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PARTSUPP.PS_AVAILQTY

2 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND

3 - INDEX COLUMNS : PS_PARTKEY

TABLE COLUMNS : PS_AVAILQTY

READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

HASH FILTER : {P_PARTKEY} = PS_PARTKEY

4 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

PHYSICAL FILTER : PS_AVAILQTY > 5000

<<< end print plan

The following is an example of the full outer join.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, ps_availqty

FROM part FULL OUTER JOIN partsupp

ON p_partkey = ps_partkey

AND ps_availqty > 3000

AND p_size < 20;

P_NAME P_BRAND PS_AVAILQTY

------ ---------- -----------

Part#1 Brand#1 8076

Part#1 Brand#1 3325

Part#2 Brand#1 4069

Part#2 Brand#1 3956

Part#3 Brand#2 null

Part#4 Brand#3 3025

Part#4 Brand#3 8539

Part#5 Brand#3 4093

Part#5 Brand#3 4651

null null 4969

null null 8895

11 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

Query Optimizer | 1,441

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (FULL OUTER JOIN) | 11 |

| 2 | TABLE ACCESS ("PART") | 5 |

| 3 | HASH JOIN INSTANT ACCESS | 11 |

| 4 | TABLE ACCESS ("PARTSUPP") | 10 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PARTSUPP.PS_AVAILQTY

JOIN FILTER : {PS_AVAILQTY} > 3000 AND {P_SIZE} < 20

2 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_SIZE

3 - INDEX COLUMNS : PS_PARTKEY

TABLE COLUMNS : PS_AVAILQTY

READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

HASH FILTER : {P_PARTKEY} = PS_PARTKEY

4 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

<<< end print plan

Semi Join

A semi join returns only the outer node rows which satisfy the join condition, so it should have a join con

dition. The semi join returns only the outer node rows whose inner node rows satisfy the join condition.

The semi join can not be explicitly specified in the SQL statement, but query optimizer transforms the ope

rators (IN, EXIST) and ANY type quantify operators (= ANY) to the semi join.

A nested loops join and a hash join support the semi join in the inverted form.

An inverted semi join in the nested loops join has an index for the join condition of the outer node. There

fore, it reads inner node rows in the way of ensuring its uniqueness, and returns the result which satisfy t

he join condition from the outer node.

This method is used when there are many rows in the outer node, there is a join condition index, and the

re are small number of rows in the inner node. The uniqueness of inner node rows should be ensured, so

the sort instance is used for it. The inverted semi join using the nested loops join has better performance t

han the semi join using the general nested loops join. For example, it reduces the cost of generating the

hash instance. It is because the inverted semi join using the nested loops join performs the index access t

o the outer node with many rows by using a small number of inner node rows, and returns the join resul

t.

The inverted semi join using the hash join generates outer node as a hash instant, and reads inner node r

ows. Then it returns the unreturned rows among the rows which satisfy the join condition from the hash

instant.

This method is used when there are small number of rows in the outer node, and there many rows in the

inner node.

The inverted semi join using the hash join makes a small number of outer node rows into the hash instant,

1,442 | SQL Tuning

and returns the result by reading many inner node rows and scanning the hash instant.

Therefore, it improves the performance than the semi join which generates the hash instant in the inner

node by using the hash join. For example, it reduces the cost of generating the hash instance.

The following is an example of the semi join.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand

FROM part

WHERE p_partkey IN (SELECT ps_partkey

FROM partsupp

WHERE ps_availqty > 5000);

P_NAME P_BRAND

------ ----------

Part#1 Brand#1

Part#3 Brand#2

Part#4 Brand#3

3 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (INVERTED LEFT SEMI) | 3 |

| 2 | TABLE ACCESS ("PARTSUPP") | 3 |

| 3 | HASH JOIN INSTANT ACCESS | 3 |

| 4 | TABLE ACCESS ("PART") | 5 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND

2 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

PHYSICAL FILTER : PS_AVAILQTY > 5000

3 - INDEX COLUMNS : P_PARTKEY

TABLE COLUMNS : P_NAME, P_BRAND

READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND

HASH FILTER : P_PARTKEY = {PS_PARTKEY}

4 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND

<<< end print plan

Query Optimizer | 1,443

Anti-semi Join

An anti-semi join returns only the outer node rows whose inner node rows do not satisfy the join conditio

n. Therefore, the anti-semi join should have a join condition.

The anti-semi join can not be explicitly specified in the SQL statement, but query optimizer transforms the

operators (NOT IN, NOT EXISTS) and ALL type quantify operators (= ALL) to anti-semi join.

The anti-semi join separately processes NULL data, unlike semi-join, if NULL data exists. It is because the c

omparison operation of NULL data returns UNKNOW instead of TRUE/FALSE.

A query optimizer performs the anti-semi join if the anti-semi join condition guarantees the absence of N

ULL. It not, it performs the null-aware anti-semi join.

The following is an example of the anti-semi join which guarantees the absence of NULL data in the join

condition.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand

FROM part

WHERE p_partkey NOT IN (SELECT ps_partkey

FROM partsupp

WHERE ps_availqty > 5000);

P_NAME P_BRAND

------ ----------

Part#2 Brand#1

Part#5 Brand#3

2 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (LEFT ANTI SEMI) | 2 |

| 2 | TABLE ACCESS ("PART") | 5 |

| 3 | HASH JOIN INSTANT ACCESS (UNIQUE) | 2 |

| 4 | TABLE ACCESS ("PARTSUPP") | 3 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND

2 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND

3 - INDEX COLUMNS : PS_PARTKEY

HASH FILTER : {P_PARTKEY} = PS_PARTKEY

1,444 | SQL Tuning

4 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

PHYSICAL FILTER : PS_AVAILQTY > 5000

<<< end print plan

The following is an example of anti-semi join which does not guarantee the absence of NULL data in the j

oin condition.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand

FROM part

WHERE p_partkey NOT IN (SELECT l_partkey

FROM lineitem

WHERE l_quantity > 30);

P_NAME P_BRAND

------ ----------

Part#2 Brand#1

1 row selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (LEFT ANTI SEMI NA) | 1 |

| 2 | TABLE ACCESS ("PART") | 5 |

| 3 | HASH JOIN INSTANT ACCESS (UNIQUE) | 1 |

| 4 | TABLE ACCESS ("LINEITEM") | 5 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND

2 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND

3 - INDEX COLUMNS : L_PARTKEY

HASH FILTER : {P_PARTKEY} = L_PARTKEY

4 - READ COLUMNS : L_PARTKEY, L_QUANTITY

PHYSICAL FILTER : L_QUANTITY > 30

<<< end print plan

Join Method

Query Optimizer | 1,445

Join methods are join operation methods for two tables (or views). They are classified into a nested loops

join, a sort merge join, and a hash join.

A query optimizer calculates cost for these three join methods, then selects the join method of the lowest

cost.

Nested Loops Join

A nested loops join is the basic join and it does not generate a separate instant in the outer node or the i

nner node when performing the join. A query optimizer performs the nested loops join in the following c

ases.

● The join condition does not exist.

● The equi-join condition does not exist in join condition.

● An effective access method such as index exists in inner node.

● USE_NL hint is specified.

The nested loops join usually has a good performance when the inner node uses an index access by the j

oin condition. A query optimizer selects the nested loops join when it is considered as best by calculating

the cost.

The nested loops join can be extended by using instances. The extended nested loops join generates a so

rt instance in the inner node for a similar effects like as index access in join condition.

It is used when the cost of generating the sort instance is added but the cost of searching the inner node

rows satisfying the join condition is decreased, so the entire join cost is decreased.

The following is an example of the nested loops join.

gSQL>

\EXPLAIN PLAN

SELECT /*+ USE_NL(part, partsupp) */

p_name, p_brand, p_type

FROM part, partsupp

WHERE p_partkey = ps_partkey

AND ps_availqty > 5000;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

Part#3 Brand#2 STEEL

Part#4 Brand#3 NICKEL

3 rows selected.

>>> start print plan

< Execution Plan >

===

1,446 | SQL Tuning

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 3 |

| 2 | TABLE ACCESS ("PART") | 5 |

| 3 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 3 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PART.P_TYPE

2 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

3 - READ INDEX COLUMNS : PS_PARTKEY

READ TABLE COLUMNS : PS_AVAILQTY

MIN RANGE : PS_PARTKEY = {P_PARTKEY}

MAX RANGE : PS_PARTKEY = {P_PARTKEY}

PHYSICAL TABLE FILTER : PS_AVAILQTY > 5000

<<< end print plan

The following is an example of the extended nested loops join using the sort instant in the inner node.

gSQL>

\EXPLAIN PLAN

SELECT /*+ USE_INL(part, lineitem) */

p_name, p_brand, p_type

FROM part, lineitem

WHERE p_partkey = l_partkey

AND l_quantity > 30;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#4 Brand#3 NICKEL

Part#5 Brand#3 STEEL

Part#1 Brand#1 COPPER

Part#4 Brand#3 NICKEL

Part#3 Brand#2 STEEL

5 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 5 |

| 2 | TABLE ACCESS ("LINEITEM") | 5 |

Query Optimizer | 1,447

| 3 | SORT INSTANT ACCESS | 5 |

| 4 | TABLE ACCESS ("PART") | 5 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PART.P_TYPE

2 - READ COLUMNS : L_PARTKEY, L_QUANTITY

PHYSICAL FILTER : L_QUANTITY > 30

3 - SORT KEY : "PART.P_PARTKEY ASC NULLS LAST"

RECORD COLUMNS : P_NAME, P_BRAND, P_TYPE

READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

MIN RANGE : P_PARTKEY = {L_PARTKEY}

MAX RANGE : P_PARTKEY = {L_PARTKEY}

4 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

<<< end print plan

Sort Merge Join

A sort merge join sorts the outer node rows and the inner node rows by column satisfying the join conditi

on, then sequentially compares them, and returns the result of join. If there is an index in the outer node

and in the inner node for the column which satisfies the join condition, and it is available, then that index

is used. Otherwise, it sorts the rows by using the sort instant.

The sort merge join has the better performance than the nested loops join. It is because the sort merge jo

in sequentially reads the sorted data in the outer node and the inner node, and compares the join conditi

on. On the other hand, the nested loops join searches for rows which satisfy the join condition from all in

ner node rows for each outer node row.

However, if the cost of generating the sort instant in the outer node and the inner node, and sorting row

s are big, then the performance is degraded. Therefore, a query optimizer calculates the cost, and selects

the sort merge join when its cost is low.

When performing the sort merge join, at least one equi-join should be included in the join condition, and

rows are sorted by columns of equi-join conditions.

If there is an index which includes all equi-join conditioned columns, it is used only when the order (ascen

ding, descending) of each column in index key is usable in sort merge join.

For example, if the column l1, l2 is used for sort merge join, and l1 is sorted in ascending order and I2 is s

orted in descending order in an index, then the index can not be used.

The following is an example of the sort merge join.

gSQL>

\EXPLAIN PLAN

SELECT /*+ USE_MERGE(part, partsupp) */

p_name, p_brand, p_type

1,448 | SQL Tuning

FROM part, partsupp

WHERE p_partkey = ps_partkey

AND ps_availqty > 5000;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

Part#3 Brand#2 STEEL

Part#4 Brand#3 NICKEL

3 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | SORT MERGE JOIN (INNER JOIN) : EQUAL | 3 |

| 2 | INDEX ACCESS ("PART, PART_PK_INDEX") | 5 |

| 3 | SORT JOIN INSTANT ACCESS | 3 |

| 4 | TABLE ACCESS ("PARTSUPP") | 3 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PART.P_TYPE

MERGE FILTER : PART.P_PARTKEY = PARTSUPP.PS_PARTKEY

2 - READ INDEX COLUMNS : P_PARTKEY

READ TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

3 - SORT KEY : "PARTSUPP.PS_PARTKEY ASC NULLS LAST"

READ COLUMNS : PS_PARTKEY

4 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

PHYSICAL FILTER : PS_AVAILQTY > 5000

<<< end print plan

Hash Join

A hash join performs join by generating the hash instance in the inner node. It has a good performance b

ecause hash instance is generated only in the inner node and a join condition is compared by using the h

ash.

When performing hash join, at least one equi-join should be included in a join condition, and it costs for

generating the hash instance whose hash key is columns in the equi-join condition.

However, the hash join has a better performance than other join methods, when the index for the join co

ndition does not exist in the inner node. It is because the hash key can quickly read each outer node row

when performing the join condition.

Query Optimizer | 1,449

The following is an example of the hash join.

gSQL>

\EXPLAIN PLAN

SELECT /*+ USE_HASH(part, partsupp) */

p_name, p_brand, p_type

FROM part, partsupp

WHERE p_partkey = ps_partkey

AND ps_availqty > 5000;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

Part#3 Brand#2 STEEL

Part#4 Brand#3 NICKEL

3 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (INNER JOIN) | 3 |

| 2 | TABLE ACCESS ("PARTSUPP") | 3 |

| 3 | HASH JOIN INSTANT ACCESS | 3 |

| 4 | TABLE ACCESS ("PART") | 5 |

===

1 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PART.P_TYPE

2 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

PHYSICAL FILTER : PS_AVAILQTY > 5000

3 - INDEX COLUMNS : P_PARTKEY

TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

HASH FILTER : P_PARTKEY = {PS_PARTKEY}

4 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

<<< end print plan

Join Concat

The join condition for the join concat has an or statement, and the join conditions which are separated b

y an or statement is processed as a separate join, then they are combined into one result. The join concat

selects the best plan for each join condition which is separated by the or condition, and removes the dupl

1,450 | SQL Tuning

icates, then returns the result.

The join concat is similar to the index concat except that the join concat has a join node as a subordinate

node.

The following is an example the index concat.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

FROM part, partsupp

WHERE (p_partkey = ps_partkey AND ps_availqty > 5000)

OR (p_partkey = ps_partkey AND ps_supplycost > 900);

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#1 Brand#1 COPPER

Part#3 Brand#2 STEEL

Part#4 Brand#3 NICKEL

Part#3 Brand#2 STEEL

Part#5 Brand#3 STEEL

5 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | CONCAT | 5 |

| 2 | HASH JOIN (INNER JOIN) | 3 |

| 3 | TABLE ACCESS ("PARTSUPP") | 3 |

| 4 | HASH JOIN INSTANT ACCESS | 3 |

| 5 | TABLE ACCESS ("PART") | 5 |

| 6 | HASH JOIN (INNER JOIN) | 3 |

| 7 | TABLE ACCESS ("PARTSUPP") | 3 |

| 8 | HASH JOIN INSTANT ACCESS | 3 |

| 9 | TABLE ACCESS ("PART") | 5 |

===

2 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PART.P_TYPE

3 - READ COLUMNS : PS_PARTKEY, PS_AVAILQTY

PHYSICAL FILTER : PS_AVAILQTY > 5000

4 - INDEX COLUMNS : P_PARTKEY

TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

Query Optimizer | 1,451

READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

HASH FILTER : P_PARTKEY = {PS_PARTKEY}

5 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

6 - JOINED COLUMNS : PART.P_NAME, PART.P_BRAND, PART.P_TYPE

7 - READ COLUMNS : PS_PARTKEY, PS_SUPPLYCOST

PHYSICAL FILTER : PS_SUPPLYCOST > 900

8 - INDEX COLUMNS : P_PARTKEY

TABLE COLUMNS : P_NAME, P_BRAND, P_TYPE

READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

HASH FILTER : P_PARTKEY = {PS_PARTKEY}

9 - READ COLUMNS : P_PARTKEY, P_NAME, P_BRAND, P_TYPE

<<< end print plan

Cluster

A cluster collects data in a local server and a remote server, then combines them into a result set. The clus

ters are classified into a cluster access and a cluster join. The cluster access collects data of a single table,

and the cluster join collects the data of joining two or more tables.

Cluster Access

The cluster access retrieves the table data in a local server and a remote server in a cluster environment. T

he cluster access collects a single table data and one of accesses corresponding to the Access Paths abov

e can be in its subordinate.

The cluster access is required only when the data should be retrieved from the remote server. Therefore, t

he cluster access does not occur in a stand alone, nor does it occur when the data should be retrieved onl

y from the local server in a cluster environment.

The following is an example of using the cluster access.

gSQL>

\EXPLAIN PLAN

SELECT p_name, p_brand, p_type

FROM part

WHERE p_size > 20;

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#3 Brand#2 STEEL

1 row selected.

1,452 | SQL Tuning

>>> start print plan

< Execution Plan >

==

====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("PART") [HASH SHARDING] |

1 |

| 2 | TABLE ACCESS ("PART") [HASH SHARDING] |

1 |

==

====

1 - SQL : SELECT /*+ FULL("_A1") */

"_A1"."P_NAME","_A1"."P_BRAND","_A1"."P_TYPE","_A1"."P_SIZE" FROM "PUBLIC"."PART"@LOCAL "_A1"

WHERE "_A1"."P_SIZE" > ?

BIND PARAMS : {0} IN

2 - READ COLUMNS : P_NAME, P_BRAND, P_TYPE, P_SIZE

PHYSICAL FILTER : P_SIZE > 20

<<< end print plan

Cluster Join

The cluster join retrieves the join result data in a local server and a remote server in a cluster environment.

The cluster join collects the result data of joining two or more tables and one of methods corresponding t

o the Join Method above can be in its subordinate.

The cluster join is required only when the data should be retrieved from the remote server. Therefore, the

cluster join does not occur in a stand alone, nor does it occur when the data should be retrieved only fro

m the local server in a cluster environment.

The following is an example of using the cluster join.

gSQL>

\EXPLAIN PLAN

SELECT c_name, o_totalprice

FROM orders, customer

WHERE o_custkey = c_custkey

AND c_nation = 'KOREA';

Query Optimizer | 1,453

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

Customer#3 32151.78

2 rows selected.

>>> start print plan

< Execution Plan >

==

=====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

2 |

| 2 | NESTED LOOP JOIN (INNER JOIN) |

2 |

| 3 | TABLE ACCESS ("CUSTOMER") [CLONED] |

2 |

| 4 | INDEX ACCESS ("ORDERS", "ORDERS_CUSTKEY_FK") [HASH SHARDING] | (2)

2 |

==

=====

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE FULL("_A1") USE_NL("_A1") INDEX_ASC("_A2",

"ORDERS_CUSTKEY_FK") USE_NL("_A2") */ "_A1"."C_NAME","_A2"."O_TOTALPRICE" FROM

"PUBLIC"."CUSTOMER"@LOCAL "_A1" INNER JOIN "PUBLIC"."ORDERS"@LOCAL "_A2" ON "_A1"."C_NATION" =

? AND "_A2"."O_CUSTKEY" = "_A1"."C_CUSTKEY"

BIND PARAMS : {0} IN

2 - JOINED COLUMNS : CUSTOMER.C_NAME, ORDERS.O_TOTALPRICE

3 - READ COLUMNS : C_CUSTKEY, C_NAME, C_NATION

PHYSICAL FILTER : C_NATION = 'KOREA'

4 - READ INDEX COLUMNS : O_CUSTKEY

READ TABLE COLUMNS : O_TOTALPRICE

MIN RANGE : O_CUSTKEY = {C_CUSTKEY}

MAX RANGE : O_CUSTKEY = {C_CUSTKEY}

<<< end print plan

1,454 | SQL Tuning

Statistics Information

A query optimizer uses statistics information to calculate the cost. Statistics information used by the query

optimizer includes the information about table statistics, column statistics, and index statistics.

● Table statistics

○ The numer of rows.

● Column statistics

○ The number of non-identical values

○ The number of the NULL values

○ The average length of a value

○ The minum value

○ The maximum value

● Index statistics

○ The number of non-identical keys

ANALYZE TABLE statement is performed to construct the statistics. The constructed statistics is stored in t

he database and that statistics is used until the new statistics is constructed.

In case when a statistics is not constructed in a table, then use it after constructing the statistics by using t

he catalog information and page information at the time of query execution.

Adjusting Optimizer

Generally, a query optimizer selects the most efficient plan by using the given statistics information. How

ever, a better plan than the selected plan may exist. If a query optimizer does not select the best plan, the

user can adjust the plan to be selected.

Currently in GOLDILOCKS, a query optimizer provides a hint. If the hint is described and applicable, then t

he the hint which is described by a user is preferentially applied regardless of the calculated cost. Therefor

e, when a better plan exists, the user can change the plan by using the hint.

For more information about hint, refer to hint clause.

SQL Execution Plan | 1,455

15.4 SQL Execution Plan

Overview

SQL execution constructs the plan which is selected as the best among many candidate plans by a query

optimizer into a form to be executed. SQL execution plan is separated by execution node unit and each n

ode has an filter to be executed.

The top nodes of an SQL execution plan are classified as INSERT, DELETE, UPDATE and SELECT statement

s. Each node consists in a tree form which starts from the top node, and it is actually performed from the

left bottom node.

The SQL execution plan tree includes the following information.

● The order of the tables referenced by the statement

● Access paths to each table

● Join method of node which processes the join

● Information of the sorting, grouping, aggregation, filter, etc

The identical SQL statements have SQL execution plans in same form, but they can have SQL execution pl

ans in other form in the following cases.

● The tables in different schemas have the same name and the queries are performed for the different

schemas.

● After the previous query execution, the schema change occurs such as adding/deleting index.

● After the previous query execution, the statistical information changed by adding/deleting the data, a

nd query optimizer selects and performs the other plan which is better using the change.

Output

Syntax

<explain plan> ::=

\explain plan [on | only] <sql statement>

<sql statement> ::=

<query expression>

| <select for update statement>

| <select statement: single row>

| <insert statement>

1,456 | SQL Tuning

| <update statement: searched>

| <delete statement: searched>

Invocation and Access Rules

To execute <explain plan>, the access privilege on <sql statement> is required.

Syntax Rules and Parameters

<explain plan>

● \explain plan on

○ <sql statement> is executed and the query result is output together.

● \explain plan only

○ <sql statement> is not executed.

● \explain plan

○ It is as same as \explain plan on.

<sql statement>

<sql statement> is a target query to output the execution plan.

Description

It outputs the execution plan of SELECT and DML statements specified in <sql statement>.

Examples

When used together with ON as follows, it performs SQL statement and outputs the query result togethe

r with the execution plan.

gSQL> \explain plan on SELECT id, name FROM t1 ORDER BY 1;

ID NAME

-- ----------

1 leekmo

2 jhkim

3 bsyou

3 rows selected.

>>> start print plan

< Execution Plan >

==

SQL Execution Plan | 1,457

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT INSTANT ACCESS | 3 |

| 2 | TABLE ACCESS ("T1") | 3 |

==

1 - SORT KEY : "T1.ID ASC NULLS LAST"

RECORD COLUMNS : NAME

READ COLUMNS : ID, NAME

2 - READ COLUMNS : ID, NAME

<<< end print plan

When ON or ONLY is omitted as follows, it performs SQL statement and outputs the query result togethe

r with the execution plan.

gSQL> \explain plan on SELECT id, name FROM t1 ORDER BY 1;

ID NAME

-- ----------

1 leekmo

2 jhkim

3 bsyou

3 rows selected.

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT INSTANT ACCESS | 3 |

| 2 | TABLE ACCESS ("T1") | 3 |

==

1 - SORT KEY : "T1.ID ASC NULLS LAST"

RECORD COLUMNS : NAME

READ COLUMNS : ID, NAME

2 - READ COLUMNS : ID, NAME

<<< end print plan

When used together with ONLY as follows, it does not perform SQL statement but outputs the execution

plan without the query result.

1,458 | SQL Tuning

gSQL> \explain plan only SELECT id, name FROM t1 ORDER BY 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT INSTANT ACCESS | 0 |

| 2 | TABLE ACCESS ("T1") | 0 |

==

1 - SORT KEY : "T1.ID ASC NULLS LAST"

RECORD COLUMNS : NAME

READ COLUMNS : ID, NAME

2 - READ COLUMNS : ID, NAME

<<< end print plan

Reading

Configuring SQL Execution Plan

An SQL execution plan is determined by a query optimizer, and it consists of nodes for actual query proce

ssing. The SQL execution plan is output by using EXPLAIN PLAN as follows.

gSQL> \explain plan SELECT id, name FROM t1;

ID NAME

-- ----------

1 leekmo

2 jhkim

3 bsyou

3 rows selected.

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 3 |

==

1 - READ COLUMNS : ID, NAME

<<< end print plan

SQL Execution Plan | 1,459

In the example above, \explain plan is specified before the SQL statement to output the SQL execution pl

an. As a result, the execution plan is output between >>> start print plan and <<< end print plan, which is

between the start and end of the execution result.

The output of SQL execution plans are classified as execution plan node table and node information. Exe

cution plan node outputs the node name and the number of performed rows in a table form. Node Infor

mation outputs the detailed information of each execution plan node.

Execution Plan Node Table

An execution plan node table in Configuring SQL Execution Plan which is about the query to retrieve id a

nd name of the table t1 is as follows.

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 3 |

==

In the example above, the execution plan node table consists of columns of IDX, NODE DESCRIPTION, RO

WS. Each node has a unique id number starting from zero. The tree form structure of each node is distin

guished by a white space before the node name. In the example above, SELECT STATEMENT has TABLE

ACCESS as a subordinate node.

Information for each column in execution plan node table is as follows.

● IDX

○ The identifier assigned to each plan node

● NODE DESCRIPTION

○ plan node name

○ Additional information in parentheses distinguishes the plan node.

○ Plan node indicated by the indentation means the subordinate plan node.

■ Starting from the subordinate plan node, and the result is transferred to the superordinate pl

an node.

● ROWS

○ The number of the result records by performing plan node.

The execution plan node table above is interpreted as follows.

● The execution plan node table above obtained 3 results by performing TABLE ACCESS for the table T

1, and it is transferred by inputting SELECT STATEMENT.

1,460 | SQL Tuning

Node Information

Node information in Configuring SQL Execution Plan which is about the query to retrieve id and name of

the table t1 is as follows.

1 - READ COLUMNS : ID, NAME

The node information is output when there are information to be output. The IDX of execution plan nod

e table is output in front of the node to distinguish nodes. The classified name and information is output

at the end of the node.

Each information is output within a single line per information when it is needed to output various kinds

of information.

The node information above is interpreted as follows.

● ID and NAME are the targets of read column when performing TABLE ACCESS for the table T1.

Classification of Execution Plan Node

The execution plan nodes are classified as <statement node>, <access node>, <join node>, <instant node>,

<aggregation node>, <SET operator node>, <subQuery node>, <filter node>, <cluster node> and <other n

ode>.

Each node is described in the following table.

Table 15-2 Classification of the execution plan node

Node Refer to

Statement node

DELETE STATEMENT

INSERT STATEMENT

SELECT STATEMENT

UPDATE STATEMENT

Access node

INDEX ACCESS (table_name [AS alias], index_name)

TABLE ACCESS (table_name [AS alias])

USER ROWID ACCESS (table_name [AS alias])

Join node

HASH JOIN (join_method)

NESTED LOOP JOIN (join_method)

SORT MERGE JOIN (join_method) : EQUAL

Instant node

GROUP HASH INSTANT ACCESS

HASH JOIN INSTANT ACCESS

HASH JOIN INSTANT ACCESS (UNIQUE)

SORT INSTANT ACCESS

SORT INSTANT ACCESS (UNIQUE)

SORT JOIN INSTANT ACCESS

SQL Execution Plan | 1,461

SORT JOIN INSTANT ACCESS (UNIQUE)

Aggregation node HASH AGGREGATION

SET operator node

EXCEPT ALL

EXCEPT DISTINCT

INTERSECT ALL

INTERSECT DISTINCT

UNION ALL

UNION DISTINCT

SubQuery node

SUB QUERY FUNCTION

SUB QUERY FUNCTION (MATERIALIZED)

SUB QUERY LIST

Filter node FILTER

Cluster node
CLUSTER ACCESS (table_name) [sharding_strategy]

CLUSTER JOIN

Other node

CONCAT

DELETE (table_name)

INSERT (table_name)

UPDATE (table_name)

VIEW

VIEW (view_name)

GROUP

Node Refer to

Classification of Node Information

Node information is classified as <Column Information>, <Filter Information> and <Aggregation Informati

on>.

Each node information is described in the following table.

Table 15-3 Classification of node information

Node

information
Name Description

Column

information

READ COLUMNS

COLUMNS
The column list which will be transferred from current node to the result

INDEX COLUMNS

READ INDEX COLU

MNS

The column list which the index will refer to

TABLE COLUMNS

READ TABLE COLU

MNS

The column list which the table will refer to

1,462 | SQL Tuning

JOINED COLUMNS The column list which will be transferred to the join result

SORT KEY The column list to be used as sort key in sort instance

RECORD COLUMNS The column list excluding sort keys in sort instance

GROUPING COLUM

NS
The column list to be used as grouping key

Filter

information

PHYSICAL FILTER AND-filter of comparison operation which does not need type casting

LOGICAL FILTER AND-filter which excludes physical filter

JOIN FILTER Filter about join condition

WHERE FILTER Filter to apply to rows consisting of join operation

HASH FILTER Filter which is processed by using hash key

PHYSICAL TABLE FIL

TER

AND-filter about comparison operation which does not need type castin

g among table filters

LOGICAL TABLE FILT

ER
AND-filter which excludes physical filter among table filters

MIN RANGE Min key range of index

MAX RANGE Max key range of index

PHYSICAL KEY FILTE

R

AND-filter about comparison operation which does not need type castin

g among index filters

LOGICAL KEY FILTER AND-filter which excludes physical filter among index filters

MERGE FILTER Filter which is used for merge join in sort merge join

SUBQUERY FILTER SubQuery AND filter to process a subQuery

FUNCTION Function expression to process a subQuery

ROWID ACCESS EXP

R
Filter related to a rowid

NODE FILTER Filter evaluating only once at the first execution

FILTER Filter evaluating every rowid

Aggregation

information

AGGREGATIONS General aggregation list

NESTED AGGREGAT

IONS
Nested aggregation list

Other

information

NODE EXPR Expression executing only once at the first execution

SQL SQL query statement to be transferred to a remote server

BIND PARAMS Bind parameter used in the SQL query statement above

REFERENCE SHARD

KEY VALUE

Value of '=' filter for a column which is specified as a shard key in a table

Node

information
Name Description

SQL Execution Plan | 1,463

Execution Plan Node References

CLUSTER ACCESS (table_name) [sharding_strategy]

● It collects results of the access node in a local server and a remote server in a cluster environment.

● It is created only when the data should be retrieved from the remote server.

● Node Information

○ SQL: The SQL query statement to be transferred to a remote server

○ BIND PARAMS: A bind parameter used in the SQL query statement above

○ REFERENCE SHARD KEY VALUE: Value of '=' filter for a column which is specified as a shard key i

n a table

The following is an example.

gSQL> \explain plan only

SELECT l_orderkey

FROM lineitem

WHERE l_orderkey = 1

AND l_linenumber = 2;

>>> start print plan

< Execution Plan >

==

=====

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER ACCESS ("LINEITEM") [HASH SHARDING] |

0 |

| 2 | INDEX ACCESS ("LINEITEM", "LINEITEM_PK_INDEX") [HASH SHARDING] |

0 |

==

=====

1 - SQL : SELECT /*+ INDEX_ASC("_A1", "LINEITEM_PK_INDEX") */

"_A1"."L_ORDERKEY","_A1"."L_LINENUMBER" FROM "PUBLIC"."LINEITEM"@LOCAL "_A1" WHERE

"_A1"."L_ORDERKEY" = ? AND "_A1"."L_LINENUMBER" = ?

BIND PARAMS : {0} IN {1} IN

REFERENCE SHARD KEY VALUE : (1, 2)

2 - READ INDEX COLUMNS : L_ORDERKEY, L_LINENUMBER

MIN RANGE : L_ORDERKEY = 1 AND L_LINENUMBER = 2

1,464 | SQL Tuning

MAX RANGE : L_ORDERKEY = 1 AND L_LINENUMBER = 2

<<< end print plan

CLUSTER JOIN

● It collects results of the join node in a local server and a remote server in a cluster environment.

● It is created only when the data should be retrieved from the remote server.

● Node Information

○ SQL: The SQL query statement to be transferred to a remote server

○ BIND PARAMS: A bind parameter used in the SQL query statement above

○ REFERENCE SHARD KEY VALUE: Value of '=' filter for a column which is specified as a shard key i

n a table

The following is an example.

gSQL> \explain plan only

SELECT c_name, o_totalprice

FROM orders, customer

WHERE o_custkey = c_custkey

AND o_orderkey = 1;

2 3 4 5

>>> start print plan

< Execution Plan >

==

======

| IDX | NODE DESCRIPTION |

ROWS |

--

| 0 | SELECT STATEMENT |

|

| 1 | CLUSTER JOIN |

0 |

| 2 | NESTED LOOP JOIN (INNER JOIN) |

0 |

| 3 | INDEX ACCESS ("ORDERS", "ORDERS_PK_INDEX") [HASH SHARDING] |

0 |

| 4 | INDEX ACCESS ("CUSTOMER", "CUSTOMER_PK_INDEX") [CLONED] |

0 |

==

======

1 - SQL : SELECT /*+ KEEP_JOINED_TABLE INDEX_ASC("_A1", "ORDERS_PK_INDEX")

SQL Execution Plan | 1,465

USE_NL("_A1") INDEX_ASC("_A2", "CUSTOMER_PK_INDEX") USE_NL("_A2") */

"_A2"."C_NAME","_A1"."O_TOTALPRICE" FROM "PUBLIC"."ORDERS"@LOCAL "_A1" INNER JOIN

"PUBLIC"."CUSTOMER"@LOCAL "_A2" ON "_A1"."O_ORDERKEY" = ? AND "_A2"."C_CUSTKEY" =

"_A1"."O_CUSTKEY"

BIND PARAMS : {0} IN

REFERENCE SHARD KEY VALUE (ORDERS) : (1)

2 - JOINED COLUMNS : CUSTOMER.C_NAME, ORDERS.O_TOTALPRICE

3 - READ INDEX COLUMNS : O_ORDERKEY

READ TABLE COLUMNS : O_CUSTKEY, O_TOTALPRICE

MIN RANGE : O_ORDERKEY = 1

MAX RANGE : O_ORDERKEY = 1

4 - READ INDEX COLUMNS : C_CUSTKEY

READ TABLE COLUMNS : C_NAME

MIN RANGE : C_CUSTKEY = {O_CUSTKEY}

MAX RANGE : C_CUSTKEY = {O_CUSTKEY}

<<< end print plan

CONCAT

● It concatenate the results for the subordinate nodes.

● It is generated when OR operation exists in the WHERE clause for index access or join.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier WHERE s_suppkey = 1 or s_suppkey = 2;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | CONCAT | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

MIN RANGE : S_SUPPKEY = 1

MAX RANGE : S_SUPPKEY = 1

3 - READ INDEX COLUMNS : S_SUPPKEY

MIN RANGE : S_SUPPKEY = 2

MAX RANGE : S_SUPPKEY = 2

1,466 | SQL Tuning

<<< end print plan

DELETE STATEMENT

● It performs the DELETE statement.

● It has the subordinate node, DELETE (table_name)

The following is an example.

gSQL> \explain plan only DELETE FROM supplier;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | DELETE STATEMENT | |

| 1 | DELETE ("SUPPLIER") | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

<<< end print plan

DELETE (table_name)

It performs the DELETE statement on the specified table.

The following is an example.

gSQL> \explain plan only DELETE FROM supplier;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | DELETE STATEMENT | |

| 1 | DELETE ("SUPPLIER") | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

<<< end print plan

SQL Execution Plan | 1,467

EXCEPT ALL

It performs the EXCEPT ALL operation for the subordinate nodes in an order of IDX.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier

EXCEPT ALL

SELECT /*+ FULL(lineitem) */ l_suppkey FROM lineitem

EXCEPT ALL

SELECT ps_suppkey FROM partsupp;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | EXCEPT-ALL | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

3 - READ COLUMNS : L_SUPPKEY

4 - READ INDEX COLUMNS : PS_SUPPKEY

<<< end print plan

EXCEPT DISTINCT

It performs EXCEPT DISTINCT operation for the subordinate nodes in an order of IDX.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier

EXCEPT DISTINCT

SELECT /*+ FULL(lineitem) */ l_suppkey FROM lineitem

EXCEPT DISTINCT

SELECT ps_suppkey FROM partsupp;

>>> start print plan

< Execution Plan >

1,468 | SQL Tuning

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | EXCEPT-DISTINCT | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

3 - READ COLUMNS : L_SUPPKEY

4 - READ INDEX COLUMNS : PS_SUPPKEY

<<< end print plan

FILTER

● It processes a filter for the subordinate sub-query result, a node expression, or a node filter.

● Node Information

○ READ COLUMNS: A column list to be read from a filter

○ NODE EXPR: An expression executing only once at the first execution

○ NODE FILTER: A filter evaluating only once at the first execution

○ FILTER: A filter evaluating every row

○ SUBQUERY FILTER: sub-query AND-filter

The following is an example.

gSQL> \explain plan only

SELECT l_orderkey

FROM lineitem

WHERE 1 = 1

AND l_linenumber = 1 + random(1,1)

AND l_quantity * l_discount >= 10 + random(1,1)

AND l_orderkey in

(SELECT /*+ NO_QUERY_TRANSFORMATION */ o_orderkey

FROM orders);

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | FILTER | 0 |

SQL Execution Plan | 1,469

| 2 | TABLE ACCESS ("LINEITEM") | 0 |

| 3 | SUB QUERY LIST | 0 |

| 4 | SUB QUERY FUNCTION (MATERIALIZED) | 0 |

| 5 | INDEX ACCESS ("ORDERS", "ORDERS_PK_INDEX") | 0 |

===

1 - READ COLUMNS : LINEITEM.L_ORDERKEY

NODE EXPR : 1 + RANDOM(1,1)

NODE FILTER : 1 = 1

FILTER : (LINEITEM.L_QUANTITY * LINEITEM.L_DISCOUNT) >= (10 + RANDOM(1,1))

SUBQUERY FILTER : (LINEITEM.L_ORDERKEY) IN (ORDERS.O_ORDERKEY)

2 - READ COLUMNS : L_ORDERKEY, L_LINENUMBER

PHYSICAL FILTER : L_LINENUMBER = ?

4 - FUNCTION : (L_ORDERKEY) IN (O_ORDERKEY)

5 - READ INDEX COLUMNS : O_ORDERKEY

<<< end print plan

GROUP

● It performs a grouping operation which does not require materialization.

● It is generated when GROUP BY clause or DISTINCT clause is in SELECT statement.

○ However, it is supported only when the uniqueness or sort order is ensured for the grouping key.

○ For other cases, the grouping is supported through GROUP HASH INSTANT ACCESS.

● Node information

○ AGGREGATIONS

■ An unnested aggregation list which is to be processed during grouping

■ Executing the grouping

○ GROUPING COLUMNS: A column list consisting of a grouping key

○ RECORD COLUMNS: A column list which is not a grouping key but is added for reference

○ READ COLUMNS: A column list to be read as the grouping results

○ LOGICAL FILTER: The entire AND-filter

The following is an example.

gSQL> \explain plan only SELECT /*+ INDEX(lineitem) */ max(sum(l_quantity))

FROM lineitem

GROUP BY l_orderkey

HAVING sum(l_quantity) > 10 and mod(sum(l_quantity), 10) = 1;2 3 4

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

1,470 | SQL Tuning

| 0 | SELECT STATEMENT | |

| 1 | HASH AGGREGATION | 0 |

| 2 | GROUP | 0 |

| 3 | INDEX ACCESS("LINEITEM, LINEITEM_PK_INDEX")| 0 |

==

1 - AGGREGATIONS : MAX(SUM(L_QUANTITY))

2 - AGGREGATIONS : SUM(L_QUANTITY)

GROUPING COLUMNS : L_ORDERKEY

RECORD COLUMNS : SUM(L_QUANTITY)

READ COLUMNS : SUM(L_QUANTITY)

LOGICAL FILTER : MOD(SUM(L_QUANTITY),10) = 1 AND SUM(L_QUANTITY) > 10

3 - READ INDEX COLUMNS : L_ORDERKEY

READ TABLE COLUMNS : L_QUANTITY

<<< end print plan

GROUP HASH INSTANT ACCESS

● It performs grouping operation.

● It is generated when GROUP BY clause or DISTINCT clause is in SELECT statement.

● Node information

○ AGGREGATIONS: An unnested aggregation list which is to be processed during grouping

○ NESTED AGGREGATIONS

■ A nested aggregation list which is to be processed during grouping

■ Executing the grouping

○ GROUPING COLUMNS: A column list of instance consisting of a grouping key

○ RECORD COLUMNS: A column list of instance which is not a grouping key but is added for refere

nce

○ READ COLUMNS: A column list to be read from an instant

○ PHYSICAL FILTER: An AND-filter for comparison operation which does not require the type castin

g

○ LOGICAL FILTER: An AND-filter which excludes PHYSICAL FILTER from the entire FILTER

The following is an example.

gSQL> \explain plan only SELECT /*+ FULL(lineitem) */ max(sum(l_quantity))

FROM lineitem

GROUP BY l_orderkey

HAVING sum(l_quantity) > 10 and mod(sum(l_quantity), 10) = 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

SQL Execution Plan | 1,471

--

| 0 | SELECT STATEMENT | |

| 1 | GROUP HASH INSTANT ACCESS | 0 |

| 2 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - AGGREGATIONS : SUM(L_QUANTITY)

NESTED AGGREGATIONS : MAX(SUM(L_QUANTITY))

GROUPING COLUMNS : L_ORDERKEY

RECORD COLUMNS : SUM(L_QUANTITY)

READ COLUMNS : SUM(L_QUANTITY)

PHYSICAL FILTER : SUM(L_QUANTITY) > 10

LOGICAL FILTER : MOD(SUM(L_QUANTITY),10) = 1

2 - READ COLUMNS : L_ORDERKEY, L_QUANTITY

<<< end print plan

HASH AGGREGATION

● It performs the aggregation for the result of the subordinate node.

● If aggregation can not be processed in the subordinate node, a separated HASH AGGREGATION nod

e is generated.

● Node information

○ AGGREGATIONS: An unnested aggregation list which is to be processed in a node

The following is an example.

gSQL> \explain plan only SELECT sum(l_quantity) FROM orders, lineitem;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH AGGREGATION | 0 |

| 2 | NESTED LOOP JOIN (INNER JOIN) | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

==

1 - AGGREGATIONS : SUM(L_QUANTITY)

2 - JOINED COLUMNS : LINEITEM.L_QUANTITY

3 - READ COLUMNS : L_QUANTITY

4 - READ INDEX COLUMNS : NOTHING

<<< end print plan

1,472 | SQL Tuning

HASH JOIN (join_method)

● It performs a hash join for the two subordinate nodes.

● Inner node of a subordinate node consists of hash instants.

● IDX of the outer node is smaller than IDX of the inner node. (The outer node is displayed on top.)

● join_method

○ INNER JOIN

○ LEFT OUTER JOIN

○ FULL OUTER JOIN

○ LEFT SEMI JOIN

○ LEFT SEMI JOIN NA

○ INVERTED LEFT SEMI JOIN

○ LEFT ANTI SEMI JOIN

● Node information

○ JOINED COLUMNS: A column list which is to be a join result

○ JOIN FILTER: A filter which is to be applied as a join condition

○ WHERE FILTER: A filter which is to be applied after join operation

The following is an example.

gSQL> \explain plan only

SELECT l_quantity

FROM orders FULL OUTER JOIN lineitem

ON o_orderkey = l_orderkey and o_orderdate <> l_shipdate

WHERE o_orderkey > 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (FULL OUTER JOIN) | 0 |

| 2 | TABLE ACCESS ("ORDERS") | 0 |

| 3 | HASH JOIN INSTANT ACCESS | 0 |

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : ORDERS.O_ORDERKEY, LINEITEM.L_QUANTITY

JOIN FILTER : {O_ORDERDATE} <> {L_SHIPDATE}

WHERE FILTER : ORDERS.O_ORDERKEY > 1

2 - READ COLUMNS : O_ORDERKEY, O_ORDERDATE

3 - INDEX COLUMNS : L_ORDERKEY

TABLE COLUMNS : L_SHIPDATE, L_QUANTITY

SQL Execution Plan | 1,473

READ COLUMNS : L_ORDERKEY, L_SHIPDATE, L_QUANTITY

HASH FILTER : {O_ORDERKEY} = L_ORDERKEY

4 - READ COLUMNS : L_ORDERKEY, L_QUANTITY, L_SHIPDATE

<<< end print plan

HASH JOIN INSTANT ACCESS

● It is the inner node of the hash join.

● It configures the hash instance for the result of the subordinate node based on the column expressio

n which is used as a hash join condition(equi-join).

● Node information

○ INDEX COLUMNS: A column list of the hash instant which is to be a hash column

○ TABLE COLUMNS: A column list of the hash instant which excludes hash columns

○ READ COLUMNS: A column list which is to be read from the hash instant

○ HASH FILTER: An equi-join condition for the hash join

○ PHYSICAL TABLE FILTER: An AND-filter for the comparison operation which does not require the

type casting and does not include INDEX COLUMNS

○ LOGICAL TABLE FILTER: An AND-filter which excludes PHYSICAL TABLE FILTER from the entire T

ABLE FILTER

The following is an example.

gSQL> \explain plan only

SELECT /*+ USE_HASH(orders, lineitem)

ORDERING(orders, lineitem) */ l_quantity

FROM orders INNER JOIN lineitem

ON o_orderkey = l_orderkey and l_suppkey > o_orderkey

and l_quantity * 20 > o_totalprice;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (INNER JOIN) | 0 |

| 2 | TABLE ACCESS ("ORDERS") | 0 |

| 3 | HASH JOIN INSTANT ACCESS | 0 |

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : LINEITEM.L_QUANTITY

2 - READ COLUMNS : O_ORDERKEY, O_TOTALPRICE

3 - INDEX COLUMNS : L_ORDERKEY

1,474 | SQL Tuning

TABLE COLUMNS : L_SUPPKEY, L_QUANTITY

READ COLUMNS : L_ORDERKEY, L_SUPPKEY, L_QUANTITY

HASH FILTER : {O_ORDERKEY} = L_ORDERKEY

PHYSICAL TABLE FILTER : L_SUPPKEY > {O_ORDERKEY}

LOGICAL TABLE FILTER : (L_QUANTITY * 20) > {O_TOTALPRICE}

4 - READ COLUMNS : L_ORDERKEY, L_SUPPKEY, L_QUANTITY

<<< end print plan

HASH JOIN INSTANT ACCESS (UNIQUE)

● It configures the hash instance for the result of the subordinate node based on the column expressio

n which is used as hash join condition(equi-join).

○ However, it configures the hash instance by excluding the duplicates based on the entire hash col

umn list.

● It is generated when the hash join method is semi join or anti semi join.

● Node information

○ INDEX COLUMNS: A column list of the hash instant which is to be a hash column

○ TABLE COLUMNS: A column list of the hash instance which excludes the hash column

○ READ COLUMNS: A column list which is to be read from hash instant

○ HASH FILTER: An equi-join condition for the hash join

○ PHYSICAL TABLE FILTER: An AND-filter for the comparison operation which does not require the

type casting and includes columns which is not INDEX COLUMNS.

○ LOGICAL TABLE FILTER: An AND-filter which excludes PHYSICAL TABLE FILTER from the entire T

ABLE FILTER

The following is an example.

gSQL> \explain plan only

SELECT o_custkey

FROM orders

WHERE o_orderkey in

(SELECT l_orderkey

FROM lineitem);

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH JOIN (LEFT SEMI) | 0 |

| 2 | TABLE ACCESS ("ORDERS") | 0 |

| 3 | HASH JOIN INSTANT ACCESS (UNIQUE) | 0 |

SQL Execution Plan | 1,475

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : ORDERS.O_CUSTKEY

2 - READ COLUMNS : O_ORDERKEY, O_CUSTKEY

3 - INDEX COLUMNS : L_ORDERKEY

HASH FILTER : {O_ORDERKEY} = L_ORDERKEY

4 - READ COLUMNS : L_ORDERKEY

<<< end print plan

INDEX ACCESS (table_name [AS alias], index_name)

● It searches for records in table_name using the index in index_name.

● Node information

○ READ INDEX COLUMNS: A referencing column list which is the index key column

○ READ TABLE COLUMNS: A referencing column list excluding the index key column

○ AGGREGATIONS: An unnested aggregation list which is to be processed in a node

○ MIN RANGE: A min key range of an index

○ MAX RANGE: A max key range of an index

○ PHYSICAL KEY FILTER: An AND-filter for the comparison which does not requires type casting an

d whose only target is the key column

○ LOGICAL KEY FILTER: An AND-filter in the entire KEY FILTER, except for PHYSICAL KEY FILTER

○ PHYSICAL TABLE FILTER: An AND-filter for the comparison which does not require the type casti

ng and includes columns which are not index key columns

○ LOGICAL TABLE FILTER: An AND-filter which excludes PHYSICAL TABLE FILTER from the entire T

ABLE FILTER

The following is an example.

gSQL> \explain plan only

SELECT /*+ INDEX(lineitem) */ count(l_orderkey)

FROM lineitem

WHERE l_orderkey > 100 and l_linenumber > 0

and mod(l_orderkey, 2) = 0 and l_quantity > 0

and l_discount * l_tax > 100;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("LINEITEM, LINEITEM_PK_INDEX") | 0 |

==

1,476 | SQL Tuning

1 - READ INDEX COLUMNS : L_ORDERKEY, L_LINENUMBER

READ TABLE COLUMNS : L_QUANTITY, L_DISCOUNT, L_TAX

AGGREGATIONS : COUNT(L_ORDERKEY)

MIN RANGE : L_ORDERKEY > 100

MAX RANGE : L_ORDERKEY IS NOT NULL

PHYSICAL KEY FILTER : L_LINENUMBER > 0

LOGICAL KEY FILTER : MOD(L_ORDERKEY,2) = 0

PHYSICAL TABLE FILTER : L_QUANTITY > 0

LOGICAL TABLE FILTER : (L_DISCOUNT * L_TAX) > 100

<<< end print plan

INSERT STATEMENT

● It performs the INSERT statement.

● It has INSERT (table_name) as a subordinate node.

The following is an example.

gSQL> \explain plan only

INSERT INTO supplier VALUES (123, 'jhkim', 'KOREA', '0123456789');

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | INSERT STATEMENT | |

| 1 | INSERT ("SUPPLIER") | 0 |

==

<<< end print plan

INSERT (table_name)

It performs the INSERT operation for the specified table.

The following is an example.

gSQL> \explain plan only

INSERT INTO supplier VALUES (123, 'jhkim', 'KOREA', '0123456789');

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

SQL Execution Plan | 1,477

--

| 0 | INSERT STATEMENT | |

| 1 | INSERT ("SUPPLIER") | 0 |

==

<<< end print plan

INTERSECT ALL

It performs the INTERSECT ALL operation for subordinate nodes.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier

INTERSECT ALL

SELECT /*+ FULL(lineitem) */ l_suppkey FROM lineitem

INTERSECT ALL

SELECT ps_suppkey FROM partsupp;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INTERSECT-ALL | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

3 - READ COLUMNS : L_SUPPKEY

4 - READ INDEX COLUMNS : PS_SUPPKEY

<<< end print plan

INTERSECT DISTINCT

It performs the INTERSECT DISTINCT operation for subordinate nodes.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier

1,478 | SQL Tuning

INTERSECT DISTINCT

SELECT /*+ FULL(lineitem) */ l_suppkey FROM lineitem

INTERSECT DISTINCT

SELECT ps_suppkey FROM partsupp;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INTERSECT-DISTINCT | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

3 - READ COLUMNS : L_SUPPKEY

4 - READ INDEX COLUMNS : PS_SUPPKEY

<<< end print plan

NESTED LOOP JOIN (join_method)

● It performs a nested loop join for the two subordinate nodes.

● IDX of the outer node is smaller than IDX of the inner node. (The outer node is displayed on top.)

● join_method

○ CROSS JOIN

○ INNER JOIN

○ LEFT OUTER JOIN

○ FULL OUTER JOIN

○ LEFT SEMI JOIN

○ INVERTED LEFT SEMI JOIN

○ LEFT ANTI SEMI JOIN

● Node information

○ JOINED COLUMNS: A column list which is to be a join result

○ JOIN FILTER: A filter which is to be applied as a join condition

○ WHERE FILTER: A filter which is to be applied after join operation

The following is an example.

gSQL> \explain plan only

SELECT /*+ USE_NL(orders, lineitem)

ORDERING(orders, lineitem) */ l_quantity

SQL Execution Plan | 1,479

FROM orders FULL OUTER JOIN lineitem

ON o_orderkey = l_orderkey

WHERE l_quantity > 10;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (FULL OUTER JOIN) | 0 |

| 2 | TABLE ACCESS ("ORDERS") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : LINEITEM.L_QUANTITY

JOIN FILTER : {O_ORDERKEY} = {L_ORDERKEY}

WHERE FILTER : LINEITEM.L_QUANTITY > 10

2 - READ COLUMNS : O_ORDERKEY, O_TOTALPRICE

3 - READ COLUMNS : L_ORDERKEY, L_SUPPKEY, L_QUANTITY

<<< end print plan

SELECT STATEMENT

It performs the SELECT statement.

The following is an example.

gSQL> \explain plan only SELECT s_suppkey FROM supplier;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

==

1 - READ INDEX COLUMNS : S_SUPPKEY

<<< end print plan

SORT INSTANT ACCESS

● It configures the sort instance for the result of the subordinate node based on the sort key column.

● It is generated when using the ORDER BY clause or materializing the subquery in SELECT statement.

1,480 | SQL Tuning

● Node information

○ SORT KEY: A column list of the sort instance to be a sort key column

○ RECORD COLUMNS: A column list of the sort instance which excludes the sort key column

○ READ COLUMNS: A column list which is read from the sort instant

○ MIN RANGE: A min key range of an index

○ MAX RANGE: A max key range of an index

○ PHYSICAL KEY FILTER: An AND-filter for the comparison which does not require type casting and

whose only target is the key column

○ LOGICAL KEY FILTER: An AND-filter in the entire KEY FILTER, except for PHYSICAL KEY FILTER

○ PHYSICAL TABLE FILTER: An AND-filter for the comparison which does not require the type casti

ng and includes columns which is not index key column

○ LOGICAL TABLE FILTER: An AND-filter which excludes PHYSICAL TABLE FILTER from the entire T

ABLE FILTER

The following is an example.

gSQL> \explain plan only

SELECT /*+ USE_NL(lineitem, partsupp)

ORDERING(lineitem, partsupp) */ l_orderkey

FROM lineitem INNER JOIN

(SELECT /*+ NO_QUERY_TRANSFORMATION */

ps_partkey, ps_suppkey, ps_availqty

FROM partsupp OFFSET 1)

ON l_partkey = ps_partkey and l_suppkey = ps_suppkey

and ps_suppkey > l_suppkey and ps_partkey + 1 > l_partkey

and ps_availqty < l_quantity and ps_availqty * 10 > l_quantity;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 0 |

| 2 | TABLE ACCESS ("LINEITEM") | 0 |

| 3 | SORT INSTANT ACCESS | 0 |

| 4 | VIEW | 0 |

| 5 | TABLE ACCESS ("PARTSUPP") | 0 |

==

1 - JOINED COLUMNS : LINEITEM.L_ORDERKEY

2 - READ COLUMNS : L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_QUANTITY

3 - SORT KEY : "PARTSUPP.PS_SUPPKEY ASC NULLS LAST",

"PARTSUPP.PS_PARTKEY ASC NULLS LAST"

SQL Execution Plan | 1,481

RECORD COLUMNS : PS_AVAILQTY

READ COLUMNS : PS_SUPPKEY, PS_PARTKEY, PS_AVAILQTY

MIN RANGE : PS_SUPPKEY = {L_SUPPKEY}

AND PS_SUPPKEY > {L_SUPPKEY}

MAX RANGE : PS_SUPPKEY = {L_SUPPKEY}

PHYSICAL KEY FILTER : PS_PARTKEY = {L_PARTKEY}

LOGICAL KEY FILTER : (PS_PARTKEY + 1) > {L_PARTKEY}

PHYSICAL TABLE FILTER : PS_AVAILQTY < {L_QUANTITY}

LOGICAL TABLE FILTER : (PS_AVAILQTY * 10) > {L_QUANTITY}

4 - COLUMNS : PS_PARTKEY, PS_SUPPKEY, PS_AVAILQTY

5 - READ COLUMNS : PS_PARTKEY, PS_SUPPKEY, PS_AVAILQTY

<<< end print plan

SORT INSTANT ACCESS (UNIQUE)

● It configures the sort instance for the result of the subordinate node based on the sort key column.

○ However, it configures the sort instance by excluding the duplicates based on the entire sort key

column list.

● The node is created when subquery result is materialized as a outer node of join.

● Node information

○ SORT KEY: A column list of the sort instance which is a sort key column

○ READ COLUMNS: A column list which is read from the sort instant

The following is an example.

gSQL> \explain plan only

SELECT l_orderkey

FROM lineitem

WHERE EXISTS(SELECT /*+ NL_ISJ */ o_orderkey

FROM orders WHERE o_orderkey = l_orderkey);

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOP JOIN (INVERTED LEFT SEMI) | 0 |

| 2 | SORT INSTANT ACCESS (UNIQUE) | 0 |

| 3 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 4 | INDEX ACCESS ("LINEITEM, LINEITEM_PK_INDEX") | 0 |

==

1 - JOINED COLUMNS : LINEITEM.L_ORDERKEY

1,482 | SQL Tuning

2 - SORT KEY : "ORDERS.O_ORDERKEY ASC NULLS LAST"

READ COLUMNS : O_ORDERKEY

3 - READ INDEX COLUMNS : O_ORDERKEY

4 - READ INDEX COLUMNS : L_ORDERKEY

MIN RANGE : L_ORDERKEY = {O_ORDERKEY}

MAX RANGE : L_ORDERKEY = {O_ORDERKEY}

<<< end print plan

SORT JOIN INSTANT ACCESS

● It is the inner node of sort merge join.

● It configures the sort instance for the result of the subordinate node based on the column expression

which is used as sort merge join condition (equi-join).

● Node information

○ SORT KEY: A column list of the sort instance which is a sort key column

○ RECORD COLUMNS: A column list of the sort instance which excludes the sort key column

○ READ COLUMNS: A column list which is read from the sort instant

○ MIN RANGE: The min key range of the sort instant

○ MAX RANGE: The max key range of the sort instant

The following is an example.

gSQL> \explain plan only

SELECT /*+ USE_MERGE(orders, lineitem)

ORDERING(orders, lineitem) */ l_quantity

FROM orders INNER JOIN lineitem

ON o_orderkey = l_orderkey

and l_quantity * 20 > o_totalprice;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT MERGE JOIN (INNER JOIN) : EQUAL | 0 |

| 2 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 3 | SORT JOIN INSTANT ACCESS | 0 |

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : LINEITEM.L_QUANTITY

MERGE FILTER : ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY

JOIN FILTER : ({L_QUANTITY} * 20) > {O_TOTALPRICE}

SQL Execution Plan | 1,483

2 - READ INDEX COLUMNS : O_ORDERKEY

READ TABLE COLUMNS : O_TOTALPRICE

3 - SORT KEY : "LINEITEM.L_ORDERKEY ASC NULLS LAST"

RECORD COLUMNS : L_QUANTITY

READ COLUMNS : L_ORDERKEY, L_QUANTITY

MIN RANGE : L_ORDERKEY >= {O_ORDERKEY}

MAX RANGE : L_ORDERKEY IS NOT NULL

4 - READ COLUMNS : L_ORDERKEY, L_QUANTITY

<<< end print plan

SORT JOIN INSTANT ACCESS (UNIQUE)

● It configures the sort instance for the result of the subordinate node based on the column expression

which is used as sort merge join condition (equi-join).

○ However, it configures the sort instance by excluding the duplicates based on the entire sort key

column list.

● Node information

○ SORT KEY: A column list of the sort instance which is a sort key column

○ RECORD COLUMNS: A column list to be read from a sort instance

○ MIN RANGE: The min key range of the sort instant

○ MAX RANGE: The max key range of the sort instant

The following is an example.

gSQL> \explain plan only

SELECT o_custkey

FROM orders

WHERE o_orderkey in

(SELECT /*+ MERGE_SJ FULL(lineitem) */ l_orderkey FROM lineitem);

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT MERGE JOIN (LEFT SEMI) : EQUAL | 0 |

| 2 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 3 | SORT JOIN INSTANT ACCESS (UNIQUE) | 0 |

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : ORDERS.O_CUSTKEY

MERGE FILTER : ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY

1,484 | SQL Tuning

2 - READ INDEX COLUMNS : O_ORDERKEY

READ TABLE COLUMNS : O_CUSTKEY

3 - SORT KEY : "LINEITEM.L_ORDERKEY ASC NULLS LAST"

READ COLUMNS : L_ORDERKEY

MIN RANGE : L_ORDERKEY >= {O_ORDERKEY}

MAX RANGE : L_ORDERKEY IS NOT NULL

4 - READ COLUMNS : L_ORDERKEY

<<< end print plan

SORT MERGE JOIN (join_method) : EQUAL

● It performs a sort merge join for the two subordinate nodes.

● Inner node of the subordinate node consists of a sort instant.

● IDX of the outer node is smaller than IDX of the inner node. (The outer node is displayed on top.)

● join_method

○ INNER JOIN

○ LEFT OUTER JOIN

○ FULL OUTER JOIN

○ LEFT SEMI JOIN

○ LEFT ANTI SEMI JOIN

● Node information

○ JOINED COLUMNS: A column list which is to be a join result

○ MERGE FILTER: A filter which is to be used as a equi-join condition

○ JOIN FILTER: A filter which is to be applied to the join condition

○ WHERE FILTER: A filter which is to be applied after join operation

The following is an example.

gSQL> \explain plan only

SELECT /*+ USE_MERGE(orders, lineitem) */ l_quantity

FROM orders FULL OUTER JOIN lineitem

ON o_orderkey = l_orderkey and o_orderdate <> l_shipdate

WHERE o_orderkey > 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT MERGE JOIN (FULL OUTER JOIN) : EQUAL | 0 |

| 2 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 3 | SORT JOIN INSTANT ACCESS | 0 |

SQL Execution Plan | 1,485

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - JOINED COLUMNS : ORDERS.O_ORDERKEY, LINEITEM.L_QUANTITY

MERGE FILTER : ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY

JOIN FILTER : {O_ORDERDATE} <> {L_SHIPDATE}

WHERE FILTER : ORDERS.O_ORDERKEY > 1

2 - READ INDEX COLUMNS : O_ORDERKEY

READ TABLE COLUMNS : O_ORDERDATE

3 - SORT KEY : "LINEITEM.L_ORDERKEY ASC NULLS LAST"

RECORD COLUMNS : L_SHIPDATE, L_QUANTITY

READ COLUMNS : L_ORDERKEY, L_SHIPDATE, L_QUANTITY

4 - READ COLUMNS : L_ORDERKEY, L_QUANTITY, L_SHIPDATE

<<< end print plan

SUB QUERY FUNCTION

● It processes the function which includes a subquery.

● Node information

○ FUNCTION: A function expression

The following is an example.

gSQL> \explain plan only

SELECT exists (SELECT /*+ FULL(lineitem) */ l_orderkey

FROM lineitem

WHERE o_orderkey = l_orderkey) FROM orders;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 2 | SUB QUERY LIST | 0 |

| 3 | SUB QUERY FUNCTION | 0 |

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - READ INDEX COLUMNS : O_ORDERKEY

3 - FUNCTION : EXISTS((L_ORDERKEY))

4 - READ COLUMNS : L_ORDERKEY

PHYSICAL FILTER : {O_ORDERKEY} = L_ORDERKEY

<<< end print plan

1,486 | SQL Tuning

SUB QUERY FUNCTION (MATERIALIZED)

● It processes the function after materializing the subquery result.

● Node information

○ FUNCTION: A function expression

The following is an example.

gSQL> \explain plan only

SELECT o_orderkey in

(SELECT /*+ FULL(lineitem) */ l_orderkey FROM lineitem)

FROM orders;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 2 | SUB QUERY LIST | 0 |

| 3 | SUB QUERY FUNCTION (MATERIALIZED) | 0 |

| 4 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - READ INDEX COLUMNS : O_ORDERKEY

3 - FUNCTION : (O_ORDERKEY) IN (L_ORDERKEY)

4 - READ COLUMNS : L_ORDERKEY

<<< end print plan

SUB QUERY LIST

● It executes subqueries and transfers the results to the superordinate node.

● It makes an outer column, if exists, a constant, and transfers it to the superordinate node.

○ The subordinate node column which is referenced by the superordinate node is the outer column.

● Node information

○ READ COLUMNS: A column list consists of an outer column.

The following is an example.

gSQL> \explain plan only

SELECT (SELECT count(*) FROM lineitem) = count(*) FROM orders;

>>> start print plan

< Execution Plan >

SQL Execution Plan | 1,487

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 0 |

| 2 | SUB QUERY LIST | 0 |

| 3 | INDEX ACCESS ("LINEITEM, LINEITEM_PK_INDEX") | 0 |

==

1 - READ INDEX COLUMNS : NOTHING

AGGREGATIONS : COUNT(*)

2 - READ COLUMNS : COUNT(*)

3 - READ INDEX COLUMNS : NOTHING

AGGREGATIONS : COUNT(*)

<<< end print plan

TABLE ACCESS (table_name [AS alias])

● It searches for records in table_name.

● Node information

○ READ COLUMNS: A referencing column list

○ AGGREGATIONS: An unnested aggregation list which is to be processed in a node

○ PHYSICAL FILTER: An AND-filter for the comparison operation which does not require type castin

g

○ LOGICAL FILTER: An AND-filter in the entire TABLE FILTER, except for PHYSICAL FILTER

The following is an example.

gSQL> \explain plan only

SELECT /*+ FULL(lineitem) */ count(l_orderkey)

FROM lineitem

WHERE l_orderkey > 0

and l_quantity * l_extendedprice > 100;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("LINEITEM") | 0 |

==

1 - READ COLUMNS : L_ORDERKEY, L_QUANTITY, L_EXTENDEDPRICE

AGGREGATIONS : COUNT(L_ORDERKEY)

1,488 | SQL Tuning

PHYSICAL FILTER : L_ORDERKEY > 0

LOGICAL FILTER : (L_QUANTITY * L_EXTENDEDPRICE) > 100

<<< end print plan

UNION ALL

It performs the UNION ALL operation for the subordinate nodes.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier

UNION ALL

SELECT /*+ FULL(lineitem) */ l_suppkey FROM lineitem

UNION ALL

SELECT ps_suppkey FROM partsupp;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | UNION-ALL | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

3 - READ COLUMNS : L_SUPPKEY

4 - READ INDEX COLUMNS : PS_SUPPKEY

<<< end print plan

UNION DISTINCT

It performs the UNION DISTINCT operation for the subordinate nodes.

The following is an example.

gSQL> \explain plan only

SELECT s_suppkey FROM supplier

UNION DISTINCT

SELECT /*+ FULL(lineitem) */ l_suppkey FROM lineitem

SQL Execution Plan | 1,489

UNION DISTINCT

SELECT ps_suppkey FROM partsupp;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | UNION-DISTINCT | 0 |

| 2 | INDEX ACCESS ("SUPPLIER, SUPPLIER_PK_INDEX") | 0 |

| 3 | TABLE ACCESS ("LINEITEM") | 0 |

| 4 | INDEX ACCESS ("PARTSUPP, PARTSUPP_PK_INDEX") | 0 |

==

2 - READ INDEX COLUMNS : S_SUPPKEY

3 - READ COLUMNS : L_SUPPKEY

4 - READ INDEX COLUMNS : PS_SUPPKEY

<<< end print plan

UPDATE STATEMENT

● It performs the UPDATE statement.

● It has the subordinate node, UPDATE (table_name).

The following is an example.

gSQL> \explain plan only UPDATE lineitem SET l_quantity = l_quantity + 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | UPDATE STATEMENT | |

| 1 | UPDATE ("LINEITEM") | 0 |

| 2 | TABLE ACCESS ("LINEITEM") | 0 |

==

2 - READ COLUMNS : L_QUANTITY

<<< end print plan

UPDATE (table_name)

1,490 | SQL Tuning

It performs the UPDATE operation for the specified table.

The following is an example.

gSQL> \explain plan only UPDATE lineitem SET l_quantity = l_quantity + 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | UPDATE STATEMENT | |

| 1 | UPDATE ("LINEITEM") | 0 |

| 2 | TABLE ACCESS ("LINEITEM") | 0 |

==

2 - READ COLUMNS : L_QUANTITY

<<< end print plan

USER ROWID ACCESS (table_name [AS alias])

● It searches for a single record which matches the given rowid.

● Node information

○ READ COLUMNS: A referencing column list

○ AGGREGATIONS: An unnested aggregation list which is to be processed in a node

○ ROWID ACCESS EXPR: A rowid expression to be searched

○ PHYSICAL FILTER: An AND-filter for the comparison operation which does not require type castin

g

○ LOGICAL FILTER: An AND-filter in the entire TABLE FILTER, except for PHYSICAL FILTER

The following is an example.

gSQL> \explain plan only

SELECT /*+ ROWID(T1) */ COUNT(l_orderkey)

FROM lineitem

WHERE rowid = null and l_orderkey > 0

and l_quantity * l_extendedprice > 100;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | USER ROWID ACCESS ("LINEITEM") | 0 |

SQL Execution Plan | 1,491

==

1 - READ COLUMNS : L_ORDERKEY, L_QUANTITY, L_EXTENDEDPRICE

AGGREGATIONS : COUNT(L_ORDERKEY)

ROWID ACCESS EXPR : ROWID = NULL

PHYSICAL FILTER : L_ORDERKEY > 0

LOGICAL FILTER : (L_QUANTITY * L_EXTENDEDPRICE) > 100

<<< end print plan

VIEW

● It performs a subordinate node which consists of inline view.

● Node information

○ COLUMNS: A referencing column list

○ FILTER: An AND-filter for the result of a view query

The following is an example.

gSQL> \explain plan only

SELECT /*+ ORDERED FULL(T1) */ count(*)

FROM lineitem AS T1,

(SELECT /*+ FULL(lineitem) */ l_orderkey key FROM lineitem

UNION ALL

SELECT /*+ FULL(orders) */ o_orderkey FROM orders)

WHERE key = 1 or key = 2;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH AGGREGATION | 0 |

| 2 | NESTED LOOP JOIN (INNER JOIN) | 0 |

| 3 | TABLE ACCESS ("LINEITEM AS T1") | 0 |

| 4 | VIEW | 0 |

| 5 | UNION-ALL | 0 |

| 6 | TABLE ACCESS ("LINEITEM") | 0 |

| 7 | TABLE ACCESS ("ORDERS") | 0 |

==

1 - AGGREGATIONS : COUNT(*)

2 - JOINED COLUMNS : NOTHING

3 - READ COLUMNS : NOTHING

4 - COLUMNS : L_ORDERKEY

1,492 | SQL Tuning

FILTER : LINEITEM.L_ORDERKEY = 1 OR LINEITEM.L_ORDERKEY = 2

6 - READ COLUMNS : L_ORDERKEY

7 - READ COLUMNS : O_ORDERKEY

<<< end print plan

VIEW (view_name)

● It performs inline view, or a view with the view name.

● Node information

○ COLUMNS: A referencing column list

○ FILTER: An AND-filter for the result of querying a view

The following is an example.

gSQL> \explain plan only

SELECT /*+ ORDERING(T1, V1) FULL(T1) */ count(*)

FROM (SELECT /*+ FULL(lineitem) */ l_orderkey key FROM lineitem

UNION ALL

SELECT /*+ FULL(orders) */ o_orderkey FROM orders) V1,

lineitem AS T1

WHERE V1.key = 1 or V1.key = 2;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | HASH AGGREGATION | 0 |

| 2 | NESTED LOOP JOIN (INNER JOIN) | 0 |

| 3 | TABLE ACCESS ("LINEITEM AS T1") | 0 |

| 4 | VIEW ("V1") | 0 |

| 5 | UNION-ALL | 0 |

| 6 | TABLE ACCESS ("LINEITEM") | 0 |

| 7 | TABLE ACCESS ("ORDERS") | 0 |

==

1 - AGGREGATIONS : COUNT(*)

2 - JOINED COLUMNS : NOTHING

3 - READ COLUMNS : NOTHING

4 - COLUMNS : L_ORDERKEY

FILTER : LINEITEM.L_ORDERKEY = 1 OR LINEITEM.L_ORDERKEY = 2

6 - READ COLUMNS : L_ORDERKEY

7 - READ COLUMNS : O_ORDERKEY

SQL Execution Plan | 1,493

<<< end print plan

1,494 | SQL Tuning

15.5 SQL Trace Log

Overview

An SQL trace log is a log which records the analizable information of a user's query execution. SQL trace l

og is created in $GOLDILOCKS_DATA/trc directory. They are classified as a process ID and a session ID, an

d each of them is separately created. SQL trace log consists of the several information such as the user qu

ery, SQL execution plan, SQL processing time of each procedure, and they are output to the file.

Output

To output the SQL trace log, the TRACE_LOG_ID property value should be set by using the ALTER SESSIO

N or the ALTER SYSTEM statement. For more information about the set value, refer to TRACE_LOG_ID of

the server property.

A trace log can record both a successful SQL query and a failed SQL query, and this is set by combining th

e flag value of the TRACE_LOG_ID.

Note

A failed SQL query is the query which is failed during the execution (The execution phase of SQL P

rocessing) after a execution plan is determined through parsing, validation, optimization of an SQ

L statement. Therefore, the query which failed before the determination of the query execution pl

an does not record the trace log.

The following is an example of output the SQL trace log by using the TRACE_LOG_ID property.

● It outputs a successful SQL query and a failed SQL query.

gSQL> ALTER SESSION SET TRACE_LOG_ID = 110000;

Session altered.

● It outputs a successful SQL query and a bind value.

gSQL> ALTER SYSTEM SET TRACE_LOG_ID = 100010;

System altered.

SQL Trace Log | 1,495

TRACE_LOG_ID is a property which is used to output SQL trace log. If TRACE_LOG_ID is set to ALTER SES

SION, then it is applied only to the corresponding session. If TRACE_LOG_ID is set to ALTER SYSTEM, the

n it is applied to all sessions of all processes which are connected to the server.

Therefore, ALTER SESSION is used to retrieve SQL trace log of the current session. ALTER SYSTEM is used

to retrieve SQL trace log of other processes or sessions in progress.

Caution

Note that if many processes and sessions are connected to the server when ALTER SYSTEM is set,

then SQL trace log files are generated as many as that. Therefore, be cautious when using ALTER

SYSTEM.

The SQL trace log file is created under trc directory. The rule for the file name is as follows.

opt_p[processID]_s[sessionID].trc

opt is added to the front of the file name, and it is followed by p identifier along with process ID, and the

n s identifier with session ID follows it. The delimiter is - and the file extension is trc.

If the amount of information generated in the same session of the same process exceeds the maximum si

ze of the SQL trace log file, the old information changes the file name by adding current time to the end

of the file name. Then it keeps recording by making a new file with current file name.

The following is an example of the SQL trace log file name.

opt_p17104_s12.trc

Output Format

SQL trace logs are classified as <SQL query string>, <execution plan>, <execution type>, <bind param valu

e>, and <time info>.

<SQL Query String>

It outputs queries which are input by the user together with the current time, its success or failure, and th

e query processing time.

[The current time] [success or failure][the query processing time] SQL statement

1,496 | SQL Tuning

[The current time] is an output of the data and the time up to us unit, [success or failure] is output an S (s

uccess) or a F (failure). The query processing time is output in us unit, and the SQL statement is a stateme

nt input by a user.

By the way, if the TRACE_LOG_TIME_DETAIL property is not set to ON, then the query processing time is

measured in 10 ms unit. Be cautious when setting this property to ON because it may degrade the query

processing performance.

<Execution Plan>

It outputs the execution plan for the SQL statement. It is almost as same as SQL Execution Plan, and the t

otal time column is additionally output on the execution plan node table.

The total time which is output on the statement is the time to perform all queries. The total time which is

output on each other node is the time to respectively perform the query in each node, and the total time

is output in 10 ms units.

The TRACE_LOG_TIME_DETAIL property is used to output more detailed output time. Be cautious when s

etting this property to ON because it may degrade the query processing performance.

<Execution Type>

It is the execution form of the SQL statement. It outputs DIRECT EXECUTE, if the query is directly execute

d, and outputs PREPARE EXECUTE, if the query is executed by using prepare.

<Bind Param Value>

It outputs the information of bind param value when bind param value is used in the SQL statement. It o

utputs No Bind Param when bind param value is not used in the SQL statement.

<Time Info>

It outputs the execution time for each phase of SQL process. The time info is separately output into modu

le, time, rate, and call. Module outputs the phase name such as parse, validate. Time outputs the actual e

xecution time and rate outputs the ratio of the each step's execution time to the total execution time. Cal

l outputs the number of times which each phase is called.

Module is divided to the seven phases and the total. The seven phases are parse, validate, code opt, opti

mizer, data opt, execute, and fetch.

Parse is a step of parsing the query, and validate is a step of validating the parsed query. Code opt is a pre

processing step for performing SQL optimizer, and optimizer is a step of performing the actual SQL optim

izer. Data opt is a step of preparing for the actual SQL execution plan, and execute is a step of executing

SQL Trace Log | 1,497

SQL execution plan. Fetch is a step of collecting and returning the results of queries such as SELECT state

ments.

If the plan cache is used, then validate, code opt, optimizer may not be called. Time which is less than 10

ms outputs zero because time outputs in 10 ms units. Rate is the ratio of the execution time of each step

to the total execution time, so the total is 100 %, and it outputs the ratio of dividing each step's executio

n time by total. If each step's execution time is zero, the rate outputs 0 %.

The TRACE_LOG_TIME_DETAIL property can be used to output more detailed time. Be cautious when set

ting this property to ON because it may degrade the query processing performance.

Examples

The following is an SQL statement without the bind param value.

SELECT O_TOTALPRICE, O_ORDERDATE, L_QUANTITY

FROM ORDERS, LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >= DATE '1996-01-01'

AND L_SHIPMODE = 'AIR';

The following is an SQL trace log which is output when performing the SQL statement above after set the

TRACE_LOG_ID to 101111.

[2017-05-25 12:27:59.199657] [S][0.000000] SELECT O_TOTALPRICE, O_ORDERDATE, L_QUANTITY

FROM ORDERS, LINEITEM

WHERE O_ORDERKEY = L_ORDERKEY

AND O_ORDERDATE >= DATE '1996-01-01'

AND L_SHIPMODE = 'AIR'

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS | Total Time |

--

| 0 | SELECT STATEMENT | | 0:00:00.00 |

| 1 | NESTED LOOP JOIN (INNER JOIN) | 1 | 0:00:00.00 |

| 2 | TABLE ACCESS ("LINEITEM") | 2 | 0:00:00.00 |

| 3 | INDEX ACCESS ("ORDERS, ORDERS_PK_INDEX") | 1 | 0:00:00.00 |

==

1 - JOINED COLUMNS : ORDERS.O_TOTALPRICE, ORDERS.O_ORDERDATE, LINEITEM.L_QUANTITY

2 - READ COLUMNS : L_ORDERKEY, L_QUANTITY, L_SHIPMODE

1,498 | SQL Tuning

PHYSICAL FILTER : L_SHIPMODE = 'AIR'

3 - READ INDEX COLUMNS : O_ORDERKEY

READ TABLE COLUMNS : O_TOTALPRICE, O_ORDERDATE

MIN RANGE : O_ORDERKEY = {L_ORDERKEY}

MAX RANGE : O_ORDERKEY = {L_ORDERKEY}

PHYSICAL TABLE FILTER : O_ORDERDATE >= CAST('1996-01-01' AS DATE)

< Execution Type >

DIRECT EXECUTE

< Bind Param Value >

No Bind Param.

< Time Info >

==

| Module | Time | Rate | Call |

--

| Parse | 0:00:00.00 | 0.00 % | 1 |

| Validate | 0:00:00.00 | 0.00 % | 1 |

| Code Opt | 0:00:00.00 | 0.00 % | 1 |

| Optimizer | 0:00:00.00 | 0.00 % | 1 |

| Data Opt | 0:00:00.00 | 0.00 % | 1 |

| Execute | 0:00:00.00 | 0.00 % | 1 |

| Fetch | 0:00:00.00 | 0.00 % | 1 |

| Total | 0:00:00.00 | 100.00 % | |

==

The following is an SQL statement with the bind param value.

SELECT L_QUANTITY

FROM LINEITEM

WHERE L_SHIPMODE = :V1;

The following is an SQL trace log which is output when performing the SQL statement above after setting

the TRACE_LOG_ID to 101111.

[2017-05-25 12:27:59.200204] [S][0.000000] SELECT L_QUANTITY

FROM LINEITEM

WHERE L_SHIPMODE = :V1

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS | Total Time |

--

SQL Trace Log | 1,499

| 0 | SELECT STATEMENT | | 0:00:00.00 |

| 1 | TABLE ACCESS ("LINEITEM") | 0 | 0:00:00.00 |

==

1 - READ COLUMNS : L_QUANTITY, L_SHIPMODE

PHYSICAL FILTER : L_SHIPMODE = :V1

< Execution Type >

DIRECT EXECUTE

< Bind Param Value >

1 - :V1(IN, "AIR")

< Time Info >

==

| Module | Time | Rate | Call |

--

| Parse | 0:00:00.00 | 0.00 % | 1 |

| Validate | 0:00:00.00 | 0.00 % | 1 |

| Code Opt | 0:00:00.00 | 0.00 % | 1 |

| Optimizer | 0:00:00.00 | 0.00 % | 1 |

| Data Opt | 0:00:00.00 | 0.00 % | 1 |

| Execute | 0:00:00.00 | 0.00 % | 1 |

| Fetch | 0:00:00.00 | 0.00 % | 1 |

| Total | 0:00:00.00 | 100.00 % | |

==

SQL References

16.

1,501

1,502 | SQL References

16.1 ALTER AUDIT POLICY

Function

It adds an auditing target to an audit policy object, or drops an auditing target from an audit policy objec

t.

Syntax

<alter audit policy statement> ::=

ALTER AUDIT POLICY policy_name

{ <add_audit_option> | <drop_audit_option> }

;

<add_audit_option> ::=

ADD { <privilege_audit_clause> | <action_audit_clause> | <privilege_audit_clause>

<action_audit_clause> }

<drop_audit_option> ::=

DROP { <privilege_audit_clause> | <action_audit_clause> | <privilege_audit_clause>

<action_audit_clause> }

<privilege_audit_clause> ::=

PRIVILEGES <database_privilege> [, ...]

<action_audit_clause> ::=

ACTIONS { <object_action_audit> | <system_action_audit> } [, ...]

<object_action_audit> ::=

ALL ON [schema_name.]object_name

| <object_action> ON [schema_name.]object_name

<system_action_audit> ::=

ALL

| <system_action>

Invocation and Access Rules

AUDIT SYSTEM ON DATABASE privilege is required to perform <alter audit policy statement>.

ALTER AUDIT POLICY | 1,503

Syntax Rules and Parameters

policy_name

It is the name of an audit policy object to be altered.

<add_audit_option>

It adds an auditing target to an audit policy.

<drop_audit_option>

It drops an auditing target from an audit policy.

<privilege_audit_clause>

For more information, refer to CREATE AUDIT POLICY.

<action_audit_clause>

For more information, refer to CREATE AUDIT POLICY.

Description

It can alter an audit policy which is already activated, and it does not effect the existing session but it effe

cts only the newly created session.

Note

When dropping ALL option as follows, not all actions are dropped, but only the corresponding AL

L option is dropped.

CREATE AUDIT POLICY p1

ACTIONS ALL ON u1.t1,

SELECT ON u1.t1;

ALTER AUDIT POLICY p1 DROP

1,504 | SQL References

ACTIONS ALL ON u1.t1;

Examples

The following is an example of adding a new audit option to an audit policy.

ALTER AUDIT POLICY policy_dml

ADD ACTIONS SELECT ON u1.t1;

The following is an example of dropping an audit option from an audit policy.

ALTER AUDIT POLICY policy_dml

DROP ACTIONS SELECT ON u1.t1;

Compatibility

The SQL standard does not have the audit policy.

For More Information

Refer to the followings.

● Managing audit policy object

○ CREATE AUDIT POLICY

○ DROP AUDIT POLICY

○ ALTER AUDIT POLICY

● Activating/ deactivating audit policy

○ AUDIT POLICY

○ NOAUDIT POLICY

● Enquiring audit trail: AUDIT_TRAIL

● Dropping audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

ALTER CLUSTER GROUP name ADD MEMBER | 1,505

16.2 ALTER CLUSTER GROUP name ADD MEMBER

Function

It adds a cluster member to a cluster group.

Syntax

<alter cluster group add member statement> ::=

ALTER CLUSTER GROUP group_name ADD

<cluster member definition> [, ...]

;

<cluster member definition> ::=

CLUSTER MEMBER member_name <connection attribute>

<connection attribute> ::

HOST 'address' PORT port_no

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <alter cluster group add member state

ment>.

Syntax Rules and Parameters

group_name

It is the cluster group name.

1,506 | SQL References

<cluster member definition>

It defines a cluster member to be included in a cluster group.

A cluster group may include maximum 32 cluster members.

member_name

It is the name of a cluster member.

The cluster member name should be as same as the member name which was defined when the databas

e of that cluster member was created.

There should not be the same cluster group, nor the same cluster member.

The length of the name should be shorter than 128 bytes.

The start-up phase for the cluster member should be OPEN.

<connection attribute>

It defines the connection information for the communication between the cluster members.

<connection attribute> should be as same as the HOST and PORT which were defined when the database

of that cluster member was created.

The combination of HOST and PORT should be unique in the cluster system.

● HOST 'address' uses ip v4 type.

● PORT port_no should be in the range between 1024 ~ 49151.

Description

<alter cluster group add member statement> statement does not rebalance shards in the tables.

The following statement should be performed to rebalance shards on the added cluster member.

● ALTER DATABASE REBALANCE

● ALTER TABLE name REBALANCE

Examples

The following is an example of adding two cluster members to a cluster group.

ALTER CLUSTER GROUP name ADD MEMBER | 1,507

gSQL>

ALTER CLUSTER GROUP g1 ADD

CLUSTER MEMBER g1n3 HOST '192.168.0.13' PORT 10130,

CLUSTER MEMBER g1n4 HOST '192.168.0.14' PORT 10140

;

Cluster Group altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● CREATE CLUSTER GROUP

● DROP CLUSTER GROUP

● ALTER DATABASE REBALANCE

● ALTER TABLE name REBALANCE

1,508 | SQL References

16.3 ALTER CLUSTER GROUP name OFFLINE MEM

BER

Function

It sets a cluster member of the cluster group to offline.

Syntax

<alter cluster group offline member statement> ::=

ALTER CLUSTER GROUP group_name OFFLINE

<cluster member definition>

;

<cluster member definition> ::=

CLUSTER MEMBER member_name

;

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <alter cluster group offline member sta

tement>.

Syntax Rules and Parameters

group_name

It is the cluster group name.

ALTER CLUSTER GROUP name OFFLINE MEMBER | 1,509

<cluster member definition>

It defines a cluster member to be included in a cluster group.

A cluster group may include maximum 32 cluster members.

member_name

It is the name of a cluster member.

The cluster member name should be as same as the member name which was defined when the databas

e of that cluster member was created.

There should not be the same cluster group, nor the same cluster member.

The length of the name should be shorter than 128 bytes.

The start-up phase for the cluster member should be OPEN.

Description

<alter cluster group offline member statement> statement does not rebalance shards in the tables.

Examples

The following is an example of setting a specific cluster member to offline.

gSQL>

ALTER CLUSTER GROUP g1 OFFLINE

CLUSTER MEMBER g1n3

;

Cluster Group altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

1,510 | SQL References

For More Information

Refer to the followings.

● CREATE CLUSTER GROUP

● DROP CLUSTER GROUP

● ALTER DATABASE REBALANCE

● ALTER TABLE name REBALANCE

ALTER CLUSTER LOCATION | 1,511

16.4 ALTER CLUSTER LOCATION

Function

It alters a cluster location information.

Syntax

<alter cluster location statement> ::=

ALTER CLUSTER LOCATION member_name

<cluster connection attribute>

;

<cluster connection attribute> ::

HOST 'address' PORT port_no

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <alter cluster location statement>.

Syntax Rules and Parameters

member_name

It is the name of a cluster member.

The same cluster member name should exist in the registered cluster location information.

The length of the name should be shorter than 128 bytes.

<cluster connection attribute>

It defines the connection information for the communication between the cluster members.

The combination of HOST and PORT should be unique in the cluster system.

1,512 | SQL References

● HOST 'address' uses ip v4 type.

● PORT port_no should be in the range between 1024 ~ 49151.

Description

If the connection information of the cluster location is altered, the cluster member does not need to be dr

opped or recreated, but the connection information can be altered by using ALTER CLUSTER LOCATION.

Examples

gSQL>

ALTER CLUSTER LOCATION g1n2

HOST '192.168.0.12' PORT 10120,

;

Created

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● CREATE CLUSTER LOCATION

● DROP CLUSTER LOCATION

ALTER DATABASE ADD LOGFILE | 1,513

16.5 ALTER DATABASE ADD LOGFILE

Function

It adds log file groups or log file members to the database.

Syntax

<alter database add logfile statement> ::=

<add logfile member statement>

| <add logfile group statement>

;

<add logfile member statement> ::=

ALTER DATABASE ADD LOGFILE MEMBER <add logfile clause> [, ...] TO

<group clause>

<add logfile group statement> ::=

ALTER DATABASE ADD LOGFILE <group clause> ('logfile_name' [, ...])

<size clause> [REUSE]

<group clause> ::=

GROUP integer

<add logfile clause> ::=

'logfile_name' [REUSE]

<size clause> ::=

integer [M | G]

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database add logfile statement>.

Syntax Rules and Parameters

1,514 | SQL References

<alter database add logfile statement>

The database should be in MOUNT phase.

<add logfile member statement>

The log member is added to an existing log file group.

● <add logfile clause>

○ 'logfile_name' is the file name of logfile member to be added to the log file group.

○ If the file does not exist, a new file is created.

○ The length of the logfile_name should be shorter than 1024 bytes.

● <group clause>

○ It specifies the identifier of the logfile group to be added to the database.

○ Integer should be an identifier of the existing logfile group.

○ If an identifier for the integer does not exist, an error occurs.

<add logfile group statement>

It adds a new log file group.

● It is added as the next group of the CURRENT log file group.

● <group clause>

○ It specifies the identifier of the logfile group to be added to the database.

○ Integer should be an identifier of the unexisting logfile group.

○ If an identifier for the integer exists, an error occurs.

● <size clause>

○ The file size can be specified minimum of 10 MB to maximum of 10 GB.

○ The file size should be bigger than the sum of redo log buffer size and pending log buffer size.

● When logfile_name already exists, and the REUSE option is used, if the file size is as same as another

group member, then the existing log file is reused.

Description

It is recommended to back up the control file just in case for the file damage because the newly added lo

g file groups and log members are stored in the control file.

ALTER DATABASE ADD LOGFILE | 1,515

Examples

The following is an example of adding two log file members to an existing log file group 3.

ALTER DATABASE ADD LOGFILE MEMBER 'logfile1.log', 'logfile2.log' TO GROUP 3;

The following is an example of adding a new log file group 4 to database. The size of log file group 4 is 1

00 M, and the log file name is 'logfile1.log'.

ALTER DATABASE ADD LOGFILE GROUP 4 ('logfile1.log') SIZE 100M;

Note

When adding a log group, a single log file should be used, and multiple log files can be added to

an existing group as a member.

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER DATABASE ADD LOGFILE

● ALTER DATABASE DROP LOGFILE

● ALTER DATABASE RENAME LOGFILE

1,516 | SQL References

16.6 ALTER DATABASE ARCHIVELOG

Function

It alters an archive setting of the online log file in the database.

Syntax

<alter database archivelog statement> ::=

ALTER DATABASE { ARCHIVELOG | NOARCHIVELOG }

;

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database archivelog statement>.

Syntax Rules and Parameters

<alter database archivelog statement>

● The database should be in MOUNT phase.

● ARCHIVELOG

○ It archives the online log file.

● NOARCHIVELOG

○ It does not archive the online log file.

Description

For the database backup and the media recovery using the backup, the system should be operated in AR

CHIVELOG mode.

ALTER DATABASE ARCHIVELOG | 1,517

Example

The following is an example of how to set up a database to archive mode.

ALTER DATABASE ARCHIVELOG;

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER DATABASE BACKUP

● ALTER TABLESPACE name BACKUP

1,518 | SQL References

16.7 ALTER DATABASE BACKUP

Function

The backup state is set to ACTIVE or INACTIVE to perform a full backup of the database. Then, the increm

ental database backup and control file backup are performed.

Syntax

<alter database backup statement> ::=

<database begin backup statement>

| <database end backup statement>

| <database incremental backup statement>

| <database controlfile backup statement>

;

<database begin backup statement> ::=

ALTER DATABASE BEGIN BACKUP [AT <domain name>]

;

<database end backup statement> ::=

ALTER DATABASE END BACKUP [AT <domain name>]

;

<database incremental backup statement> ::=

ALTER DATABASE BACKUP INCREMENTAL

<incremental backup option> [AT <domain name>] ;

<incremental backup option> ::=

LEVEL integer [CUMULATIVE | DIFFERENTIAL]

<database controlfile backup statement> ::=

ALTER DATABASE BACKUP CONTROLFILE TO 'target_name'

[AT <domain name>] ;

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database backup statement>.

ALTER DATABASE BACKUP | 1,519

Syntax Rules and Parameters

<database begin backup clause>

The database is set to the state which the full backup is available.

● All tablespaces in ONLINE state, which are created and used in the database, are set to the state of w

hich the full backup is available.

● The database should be OPEN state and operated in ARCHIVELOG mode.

● After starting BEGIN BACKUP, the following operations which require writing to the data file can not

be performed.

○ SHUTDOWN NORMAL

○ OFFLINE / DROP TABLESPACE

○ ADD / DROP DATAFILE

● It may require media recovery on restart when a full backup is ACTIVE state and the instance is abnor

mally terminated.

<database end backup clause>

The database is set to the state which the full backup is not available.

● All tablespaces in ONLINE state, which are created and used in the database, are set to the state whic

h the full backup is not available.

● The database should be in OPEN phase and operated in ARCHIVELOG mode.

<database incremental backup statement>

● An incremental backup is performed for the database.

● The database should be in OPEN phase and operated in ARCHIVELOG mode.

<incremental backup option>

● 'integer' can be specified from 0 to 4.

● LEVEL 0 can not specify CUMULATIVE or DIFFERENTIAL.

● CUMULATIVE | DIFFERENTIAL

○ CUMULATIVE

■ If 'integer' is n, it backs up all pages which are altered after the most recent backups of LEVE

L 0 ~ LEVEL n-1.

○ DIFFERENTIAL

■ If 'integer' is n, it backs up all pages which are altered after the most recent backups of LEVE

L 0 ~ LEVEL n.

1,520 | SQL References

○ If it is omitted, DIFFERENTIAL is specified by default.

<database controlfile backup statement>

● The control file is backed up.

○ The length of 'target_name' should be shorter than 1024 bytes.

○ If 'target_name' already exists, the operation fails.

● The database should be in OPEN phase and operated in ARCHIVELOG mode.

Note

The maximum length of the 'target_name' managed by GOLDILOCKS is 1024 bytes. However, the

maximum lengths of the file name varies depending on the OS, so the actual length of 'target_na

me' which is available to be created can be shorter than 1024 bytes.

<domain name>

● It is a name of a member or a group for which the statement is performed.

● If it is omitted, it is performed for all groups.

Description

It backs up data files and control files in the database. A full backup of the database begins with BEGIN B

ACKUP, and copies the datafiles using OS file copy, then ends with END BACKUP. The incremental backu

p file is created in the path set by the BACKUP_DIR 1 property using a single statement.

Examples

The following is an example of setting the entire backup state to ACTIVE.

ALTER SYSTEM BEGIN BACkUP;

The following is an example of setting the entire backup state to INACTIVE.

ALTER DATABASE BACKUP | 1,521

ALTER SYSTEM END BACkUP;

The following is an example to create the incremental backup of LEVEL 1 by using DIFFERENTIAL.

ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DIFFERENTIAL;

The following is an example to create the 'controlfile.bak' backup file for the control file. If the absolute p

ath is not included, a backup file is created in the path set by the LOG_DIR property.

ALTER DATABASE BACKUP CONTROLFILE TO 'controlfile.bak';

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER TABLESPACE name BACKUP

● ALTER DATABASE RECOVER

1,522 | SQL References

16.8 ALTER DATABASE CLEAR AUDIT TRAIL

Function

It purges audit records which are accumulated when applying an audit policy.

Syntax

<clear audit trail statement> ::=

ALTER DATABASE CLEAR AUDIT TRAIL

;

Invocation and Access Rules

AUDIT SYSTEM ON DATABASE privilege is required to perform <clear audit trail statement>.

Description

If an audit policy is activated, an audit trails is getting longer as time goes by.

Tables configuring an audit trail are stored in MEM_AUX_TBS tablespace, and a user should be cautious

not to let the audit trail keep increasing.

Storing Audit Trail

A user should purge an audit trail after storing it according to the following procedure to store an audit tr

ail when it is necessary.

● When performing it for the first time

CREATE TABLE backup_audit_trail AS SELECT * FROM AUDIT_TRAIL;

COMMIT;

ALTER DATABASE CLEAR AUDIT TRAIL | 1,523

● When repeatedly performing it

INSERT INTO backup_audit_trail SELECT * FROM AUDIT_TRAIL;

COMMIT;

● When purging an audit trail

ALTER DATABASE CLEAR AUDIT TRAIL;

Examples

Purge an audit trail by using the following statement.

ALTER DATABASE CLEAR AUDIT TRAIL;

Compatibility

The SQL standard does not have the audit policy.

For More Information

Refer to the followings.

● Managing audit policy object

○ CREATE AUDIT POLICY

○ DROP AUDIT POLICY

○ ALTER AUDIT POLICY

● Activating/ deactivating audit policy

○ AUDIT POLICY

○ NOAUDIT POLICY

● Enquiring audit trail: AUDIT_TRAIL

● Dropping audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

1,524 | SQL References

16.9 ALTER DATABASE CLEAR PASSWORD HISTO

RY

Function

It deletes the user's password change history which is accumulated due by applying the profile.

Syntax

<clear password history statement> ::=

ALTER DATABASE CLEAR PASSWORD HISTORY

;

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <clear password history statement>.

Description

When a profile is applied to a user, the user's password change history is accumulated according to the P

ASSWORD_REUSE_MAX and PASSWORD_REUSE_TIME policies.

Table 16-1 Managing the change history

PASSWORD_REUS

E_MAX

PASSWORD_REU

SE_TIME
Managing the change history

value value
It manages only the change history within the value range, and the chang

e history out of the value range is automatically deleted.

value UNLIMITED
It accumulates all change history and it does not delete any change history

because all change history should be checked.

UNLIMITED value
It accumulates all change history and it does not delete any change history

because all change history should be checked.

UNLIMITED UNLIMITED
It does not manage the change history because the change history is not c

hecked.

ALTER DATABASE CLEAR PASSWORD HISTORY | 1,525

<Clear password history statement> deletes the accumulated user's password change history.

Examples

The following is an example of executing <clear password history statement> statement.

gSQL> ALTER DATABASE CLEAR PASSWORD HISTORY;

Database altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● CREATE PROFILE

● CREATE USER

1,526 | SQL References

16.10 ALTER DATABASE DELETE BACKUP

Function

It deletes the backup file and the backup information of incremental backup. It can delete all incremental

backup of the database or no longer usable obsolete backup.

Syntax

<alter database delete backup statement> ::=

ALTER DATABASE DELETE <delete backup list option>

BACKUP LIST [<including backup file option>]

;

<delete backup list option> ::=

OBSOLETE

| ALL

<including backup file option> ::=

INCLUDING BACKUP FILES

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database delete backup stateme

nt>.

Syntax Rules and Parameters

<alter database delete backup statement>

The database should be in MOUNT or OPEN phase.

ALTER DATABASE DELETE BACKUP | 1,527

<delete backup list option>

It selects the backups to be deleted among the existing incremental backups.

● OBSOLETE: It selects backups of database or tablespaces to be deleted, which was backed up before

the most recent database LEVEL 0 backup.

● ALL: It selects all incremental backups to be deleted.

<including backup file option>

● If it is omitted, it deletes only the backup information from the control file.

● It also deletes not only backup information but also the backup files.

Description

Deletion of the OBSOLETE incremental backup deletes the incremental backup of which is before the mo

st recent LEVEL 0 database backup. When non-LEVEL 0 incremental backup is performed, it is not delete

d even if it includes the previously performed incremental backup. It is because it can be used when perfo

rming the incomplete recovery by using the incremental backups.

Caution

Be cautious of deleting the backup file together when an incremental backup is deleted. It can not

be recovered even by using the control file which has incremental backup information.

Example

The following is an example to delete the backup information and backup files of all existing incremental

backups.

ALTER DATABASE DELETE ALL BACKUP LIST INCLUING BACKUP FILES;

1,528 | SQL References

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER TABLESPACE name BACKUP

● ALTER DATABASE RECOVER

ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS | 1,529

16.11 ALTER DATABASE DROP INACTIVE CLUSTER

MEMBERS

Function

It drops the entire inactive cluster member.

Syntax

<alter database drop inactive members statement> ::=

ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

;

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <alter database drop inactive cluster m

embers statement>.

Description

It drops the entire inactive cluster member.

The inactive state of a cluster member means that it is not connected to the cluster system, and it occurs i

n the following cases.

● An error occurs on a cluster member in an operating cluster system.

● Trying to start-up the cluster system without driving the cluster member.

However, if the table shard is lost while dropping the cluster member, then an inactive cluster member ca

n not be dropped.

It is recommended to use <alter database drop inactive members statement> when an inactive cluster me

1,530 | SQL References

mber can not be included in the cluster system any more.

Examples

The following is an example of executing <alter database drop inactive members statement>.

gSQL> ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS;

Database altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to ALTER SYSTEM JOIN DATABASE.

ALTER DATABASE DROP LOGFILE | 1,531

16.12 ALTER DATABASE DROP LOGFILE

Function

It drops a log file group or a member which exists in the database.

Syntax

<alter database drop logfile statement> ::=

<drop logfile group statement>

| <drop logfile member statement>

;

<drop logfile group statement> ::=

ALTER DATABASE DROP LOGFILE <group clause>

<group clause> ::=

GROUP integer

<drop logfile member statement> ::=

ALTER DATABASE DROP LOGFILE MEMBER <logfile_list>

<logfile_list> ::=

'logfile_name'

| <logfile_list> , 'logfile_name'

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database drop logfile statement>.

Syntax Rules and Parameters

<alter database drop logfile statement>

The database should be in MOUNT phase.

An error occurs when the log file to be deleted is in CURRENT or ACTIVE stage.

At least four log file groups should be remained after dropping.

1,532 | SQL References

<drop logfile group statement>

It drops the existing log file group.

● <group clause>

○ It specifies the log file group to be dropped.

○ An integer should be an identifier of the existing log file.

○ An error occurs if the integer does not exist.

<drop logfile member statement>

It drops the existing log file members.

● <logfile_list>

○ It is the list of the log file members to be dropped.

○ 'logfile_name' should be an existing name.

○ An error occurs if 'logfile_name' does not exist.

Description

For more information, refer to the rules for each syntax.

Examples

The following is an example of dropping the existing log file GROUP 3.

ALTER DATABASE DROP LOGFILE GROUP 3;

The following is an example of dropping logfile1.log and logfile2.log from the existing logfile GROUP 3.

ALTER DATABASE DROP LOGFILE MEMBER 'logfile1.log', 'logfile2.log';

Compatibility

The SQL standard does not define ALTER DATABASE statement.

ALTER DATABASE DROP LOGFILE | 1,533

For More Information

Refer to the respective syntax rules, and the followings.

● ALTER DATABASE ADD LOGFILE

● ALTER DATABASE RENAME LOGFILE

1,534 | SQL References

16.13 ALTER DATABASE MOVE SHARD

Function

It rebalances shard of all tables in a specific cluster group to another cluster group.

Syntax

<alter database move shard statement> ::=

ALTER DATABASE MOVE SHARD FROM CLUSTER GROUP src_cluster_group

TO CLUSTER GROUP dest_cluster_group [ONLINE | OFFLINE];

Invocation and Access Rules

It can be performed in a cluster system.

ALTER DATABASE ON DATABASE privilege is required to perform <alter database move shard statement>.

Syntax Rules and Parameters

src_cluster_group

It is a cluster group to which the table shard is moved.

dest_cluster_group

It is a target cluster group to which the table shard is moved.

[ONLINE | OFFLINE]

It determines whether to allow DML when rebalancing table shard.

● ONLINE

○ It allows INSERT, UPDATE, and DELETE.

ALTER DATABASE MOVE SHARD | 1,535

● OFFLINE

○ It does not allow INSERT, UPDATE, DELETE.

● When it is omitted, the default value is ONLINE.

Description

When adding a cluster member and a cluster group using the following statements, the table shard is not

rebalanced.

● CREATE CLUSTER GROUP

● ALTER CLUSTER GROUP name ADD MEMBER

Perform <alter database rebalance statement> to rebalance the shard of the entire table which was not re

balanced when adding a cluster group and a cluster member.

<alter database move shard statement> is performed as the following concepts for tables which did not r

ebalance the shard.

ALTER TABLE t1 MOVE SHARD FROM CLUSTER GROUP src_group TO CLUSTER GROUP dest_group;

COMMIT;

ALTER TABLE t2 MOVE SHARD FROM CLUSTER GROUP src_group TO CLUSTER GROUP dest_group;

COMMIT;

ALTER TABLE t3 MOVE SHARD FROM CLUSTER GROUP src_group TO CLUSTER GROUP dest_group;

COMMIT;

...

...

ALTER TABLE t_n MOVE SHARD FROM CLUSTER GROUP src_group TO CLUSTER GROUP dest_group;

COMMIT;

The <alter database move shard statement> is proceeded even when the rebalancing the shard of a speci

fic table fails. It does not rollback the table which succeeded in rebalancing the shard.

Therefore, when performing <alter database move shard statement> again after appropriately processed

an error, then it rebalances only the shard for the table requiring the rebalancing. In this case, the table w

hich succeeded in rebalancing the shard is not included in a target of the rebalancing.

1,536 | SQL References

Examples

The following is an example of performing <alter database move shard statement>.

gSQL> ALTER DATABASE MOVE SHARD FROM CLUSTER GROUP G1 TO CLUSTER GROUP G2;

Database altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● ALTER TABLE name MOVE SHARD

● CREATE CLUSTER GROUP

● ALTER CLUSTER GROUP name ADD MEMBER

ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS | 1,537

16.14 ALTER DATABASE OFFLINE INACTIVE CLUST

ER MEMBERS

Function

It sets the entire inactive cluster member to offline. In other words, it sets the shard map for the cluster m

ember to offline.

Syntax

<alter database offline inactive cluster members statement> ::=

ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS

;

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <alter database offline inactive cluster

members statement>.

Syntax Rules and Parameters

It sets the entire inactive cluster member to offline.

The inactive state of a cluster member means that it is not connected to the cluster system, and it occurs i

n the following cases.

● An error occurs on a cluster member in an operating cluster system.

● Trying to start-up the cluster system without driving the cluster member.

1,538 | SQL References

Description

It is recommended to use <alter database offline inactive members statement> when an inactive cluster m

ember can not be included in the cluster system any more.

If an inactive cluster member can participate in a cluster system, then perform ALTER SYSTEM JOIN DATA

BASE to include it in a cluster system.

The cluster member which is set to offline can be shifted to online again by using the following statemen

ts after the join.

● ALTER DATABASE REBALANCE

● ALTER TABLE name REBALANCE

Examples

gSQL> ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS;

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● ALTER SYSTEM JOIN DATABASE

● ALTER DATABASE REBALANCE

● ALTER TABLE name REBALANCE

ALTER DATABASE REBALANCE | 1,539

16.15 ALTER DATABASE REBALANCE

Function

It rebalances shard of all tables.

Syntax

<alter database rebalance statement> ::=

ALTER DATABASE REBALANCE [ONLINE | OFFLINE];

Invocation and Access Rules

It can be performed in a cluster system.

ALTER DATABASE ON DATABASE privilege is required to perform <alter database rebalance statement>.

Syntax Rules and Parameters

[ONLINE | OFFLINE]

It determines whether to allow DML when rebalancing table shard.

● ONLINE

○ It allows INSERT, UPDATE, and DELETE.

● OFFLINE

○ It does not allow INSERT, UPDATE, DELETE.

● When it is omitted, the default value is ONLINE.

1,540 | SQL References

Description

When adding a cluster member and a cluster group using the following statements, the table shard is not

rebalanced.

● CREATE CLUSTER GROUP

● ALTER CLUSTER GROUP name ADD MEMBER

Perform <alter database rebalance statement> to rebalance the shard of the entire table which was not re

balanced when adding a cluster group and a cluster member.

<alter database rebalance statement> is performed as the following concepts for tables which did not reb

alance the shard.

ALTER TABLE t1 REBALANCE;

COMMIT;

ALTER TABLE t2 REBALANCE;

COMMIT;

ALTER TABLE t3 REBALANCE;

COMMIT;

...

...

ALTER TABLE t_n REBALANCE;

COMMIT;

The <alter database rebalance statement> is proceeded even when the rebalancing the shard of a specific

table fails. It does not rollback the table which succeeded in rebalancing the shard.

Therefore, when performing <alter database rebalance statement> again after appropriately processed an

error, then it rebalances only the shard for the table requiring the rebalancing. In this case, the table whic

h succeeded in rebalancing the shard is not included in a target of the rebalancing.

Examples

The following is an example of performing <alter database rebalance statement>.

gSQL> ALTER DATABASE REBALANCE;

Database altered.

ALTER DATABASE REBALANCE | 1,541

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to ALTER TABLE name REBALANCE.

1,542 | SQL References

16.16 ALTER DATABASE REBALANCE EXCLUDE CL

USTER GROUP

Function

It rebalances shard of all tables excluding shards of a specific cluster group.

Syntax

<alter database rebalance exclude cluster group statement> ::=

ALTER DATABASE REBALANCE EXCLUDE CLUSTER GROUP cluster_group_name [ONLINE | OFFLINE];

Invocation and Access Rules

It can be performed in a cluster system.

ALTER DATABASE ON DATABASE privilege is required to perform <alter database rebalance exclude clust

er group statement>.

Syntax Rules and Parameters

cluster_group_name

It is a name of the cluster group excluding a shard of the table.

If the specified cluster group is the only cluster group, then the statement can not be performed.

[ONLINE | OFFLINE]

It determines whether to allow DML when rebalancing table shard.

● ONLINE

○ It allows INSERT, UPDATE, and DELETE.

● OFFLINE

ALTER DATABASE REBALANCE EXCLUDE CLUSTER GROUP | 1,543

○ It does not allow INSERT, UPDATE, DELETE.

● When it is omitted, the default value is ONLINE.

Description

To drop a cluster group by using DROP CLUSTER GROUP, there should not be a shard in the cluster grou

p.

Perform <alter database rebalance exclude cluster group statement> to exclude a shard from the cluster g

roup. <alter database rebalance exclude cluster group statement> is performed as the following concepts

for tables which include a shard in the cluster group.

ALTER TABLE t1 REBALANCE EXCLUDE CLUSTER GROUP g3;

COMMIT;

ALTER TABLE t2 REBALANCE EXCLUDE CLUSTER GROUP g3;

COMMIT;

ALTER TABLE t3 REBALANCE EXCLUDE CLUSTER GROUP g3;

COMMIT;

...

...

ALTER TABLE t_n REBALANCE EXCLUDE CLUSTER GROUP g3;

COMMIT;

If the <alter database rebalance exclude cluster group statement> fails due to the lack of storage space, i

t does not rollback the table which succeed in excluding a shard.

Therefore, when performing <alter database rebalance exclude cluster group statement> again after appr

opriately processed an error, then it excludes and rebalances only the shard for the table requiring the reb

alancing. In this case, the table which succeeded in excluding the shard is not included in a target of the r

ebalancing.

Examples

The following is an example of performing <alter database rebalance exclude cluster group statement>.

gSQL> ALTER DATABASE REBALANCE EXCLUDE CLUSTER GROUP g3;

Database altered.

1,544 | SQL References

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● DROP CLUSTER GROUP

● ALTER TABLE name REBALANCE EXCLUDE CLUSTER GROUP cluster_group_list

ALTER DATABASE RENAME LOGFILE | 1,545

16.17 ALTER DATABASE RENAME LOGFILE

Function

It renames the logfile in the database.

Syntax

<alter database rename logfile statement> ::=

ALTER DATABASE RENAME LOGFILE <logfile_list> TO <logfile_list>

;

<logfile_list> ::=

'logfile_name'

| <logfile_list> , 'logfile_name'

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required for performing <alter database rename logfile stat

ement>.

Syntax Rules and Parameters

<alter database rename logfile statement>

● The database should be in MOUNT phase.

● FROM <logfile_list>

○ The name list of the logfiles to modify in the database.

● TO <logfile_list>

○ The name list of the logfiles to be modified in the database.

○ <logfile_list> should be an existing file.

○ An error occurs if the file does not exist.

1,546 | SQL References

Description

For more information, refer to the rules for each syntax.

Example

The following is an example of modifying the existing 'logfile.log' logfile to 'newlogfile.log'.

ALTER DATABASE RENAME LOGFILE 'logfile.log' TO 'newlogfile.log';

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER DATABASE ADD LOGFILE

● ALTER DATABASE DROP LOGFILE

ALTER DATABASE RECOVER | 1,547

16.18 ALTER DATABASE RECOVER

Function

It recovers the entire data file or part of the data files in the database by using the online and archive log f

iles.

Syntax

<alter database recover statement> ::=

<complete database recover statement>

| <datafile recover statement>

| <complete tablespace recover statement>

| <incomplete database recover statement>

;

<complete database recover statement> ::=

ALTER DATABASE RECOVER

<datafile recover statement> ::=

ALTER DATABASE RECOVER DATAFILE <datafile recovery clause>

<datafile recovery clause> ::=

<datafile recovery object> [, ...]

<datafile recovery object> ::=

'datafile_name' [<recovery using backup option>] [recovery corruption option>]

<recovery using backup option> ::=

USING BACKUP 'backup_datafile_name'

<recovery corruption option> ::=

CORRUPTION

<complete tablespace recover statement> ::=

ALTER DATABASE RECOVER TABLESPACE tablespace_name

<incomplete database recover statement> ::=

<batch incomplete recovery statement>

| <interactive incomplete recovery statement>

;

<batch incomplete recovery statement> ::=

ALTER DATABASE RECOVER <until clause> [<using backup controlfile option>]

<until clause> ::=

1,548 | SQL References

UNTIL CHANGE integer

<using backup controlfile option> ::=

USING BACKUP CONTROLFILE

<interactive incomplete recovery statement> ::=

ALTER DATABASE <incomplete recovery option> [<using backup controlfile option>]

<incomplete recovery option> ::=

BEGIN INCOMPLETE RECOVERY

| END INCOMPLETE RECOVERY

| RECOVER 'logfile name'

| RECOVER AUTOMATICALLY

| RECOVER SUGGESTION

;

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database recover statement>.

Syntax Rules and Parameters

<complete database recover statement>

The data files of the database are recovered up to date by using the online and archive log files.

● The recovery is performed for all tablespaces in the ONLINE state.

● The database should be in MOUNT phase and in ARCHIVELOG mode.

● If the required archived log file does not exist, it fails.

<datafile recover statement>

It recovers the backuped datafile, the datafile of the tablespace which requires the recovery by using the

archive logfile due to an error during the backup, or the datafile of the tablespace which was set to offlin

e by an immediate option, to the latest status.

● Datafile can be recovered on MOUNT phase or OPEN phase.

● The datafile of the tablespace which is in OFFLINE state can be recovered on OPEN phase, and datafil

e which is either in ONLINE/OFFLINE state can be recovered in MOUNT phase.

● If the required archive logfile does not exist, then the recovery fails.

● <datafile recovery clause>

○ It specifies one or more datafile object list which is a target of the recovery.

ALTER DATABASE RECOVER | 1,549

● <datafile recovery object>

○ It sets the name of datafile which is a target of the recovery, and the recovery option.

● <recovery using backup option>

○ It sets the name of backup datafile of the datafile which is a target of the recovery.

● <recovery corruption option>

○ It determines whether to recover only the pages corrupted from the datafile which is a target of t

he recovery.

<complete tablespace recover statement>

The data files of the tablespace is recovered up to date.

● Tablespace recovery should be performed when the database is in MOUNT or OPEN phase.

● The recovery in the OPEN phase can only be performed when the tablespaces is in the OFFLINE stage,

and the recovery in MOUNT phase can be performed when the tablespace is either in ONLINE/ OFFLI

NE stage.

● If the required archive log file does not exist, it fails.

● The following is the case which requires the tablespace recovery operation.

○ The tablespace became OFFLINE by IMMEDIATE.

○ The backed up data file is used.

○ A failure occurred during the entire backup.

<incomplete database recover statement>

<batch incomplete database recover statement>

The datafiles in the database are recovered in a batch up to a specific point of time by using the online an

d archive logfile.

● The recovery is performed for all tablespaces in the ONLINE stage.

● The database should be in MOUNT phase and in ARCHIVELOG mode.

● It fails if using the data file containing data which is after the time of the incomplete recovery.

● The database should be OPEN by using RESETLOGS after completion of incomplete recovery.

● <until clause>

○ A specific point of time for incomplete recovery

○ UNTIL CHANGE: The point of time is specified for incomplete recovery in log units

● <using backup controlfile>

○ Deprecated

1,550 | SQL References

<interactive incomplete database recover statement>

The data files in the database are interactively recovered with a user up to a specific point of time by usin

g online and archive log file.

● The recovery is performed for all tablespaces in the ONLINE stage.

● The database should be in MOUNT phase and in ARCHIVELOG mode.

● It fails if using the data file containing data which is after the time of the incomplete recovery.

● The database should be OPEN by using RESETLOGS after completion of incomplete recovery.

● <incomplete recovery option>

○ It is an option to perform an interactive incomplete recovery in log units.

○ BEGIN INCOMPLETE RECOVERY: It starts an incomplete recovery.

○ END INCOMPLETE RECOVERY: It ends an incomplete recovery.

○ RECOVER 'logfile name': A user directly specifies the log file performing the recovery.

○ RECOVER AUTOMATICALLY: All recoverable archive log files are recovered.

○ RECOVER SUGGESTION: It recovers archive log files which are required for the recovery and reco

mmended by the system.

● <using backup controlfile>

○ Deprecated.

Description

Incomplete recovery of the database is not easy to find a recovery completion point at a time. Therefore, t

he desired recovery point is found by performing it several times.

However, it becomes a new database if the database is started up with RESETLOGS option after an inco

mplete recovery. Therefore, the incomplete recovery should be performed several times after creating a c

opy of the archived log files and online redo log files.

Examples

The following is an example of a complete recovery for entire database.

ALTER DATABASE RECOVER;

The following is an example of a datafile recovery.

ALTER DATABASE RECOVER DATAFILE 'test.dbf';

The following is an example of a tablespace recovery.

ALTER DATABASE RECOVER | 1,551

ALTER DATABASE RECOVER TABLESPACE test_tbs;

The following is an example of incomplete recovery for the entire database until LSN is 11123.

ALTER DATABASE RECOVER UNTIL CHANGE 11123;

The following is an example of interactive incomplete recovery until the recoverable archive log files.

ALTER DATABASE BEGIN INCOMPLETE RECOVERY;

ALTER DATABASE RECOVER AUTOMATICALLY;

ALTER DATABASE END INCOMPLETE RECOVERY;

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER DATABASE BACKUP

● ALTER TABLESPACE name BACKUP

● ALTER SYSTEM {MOUNT | OPEN} DATABASE

1,552 | SQL References

16.19 ALTER DATABASE REGISTER

Function

It registers unrecoverable segments in the database.

Syntax

<alter database register statement> ::=

ALTER DATABASE REGISTER IRRECOVERALBE SEGMENT

<segment physical identifier list>

;

<segment physical identifier list> ::=

integer

| <segment physical identifier list> , integer

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database register statement>.

Syntax Rules and Parameters

<alter database register statement>

It registers the unrecoverable segments in the database. The statement can be used on the assumption th

at the segment is not used any more, when the database is not recoverable and the backup does not exis

t.

● The database should be in MOUNT phase.

● The registered segment identifier list is initialized at restart.

● If a server restart is successful, the registered segment becomes 'UNUSABLE' state, and that segment

s should be deleted.

ALTER DATABASE REGISTER | 1,553

<segment physical identifier list>

The list of unrecoverable segment identifier

• Integer: 8 bytes integer segment identifier

Description

When a server restarts after abnormal termination, the database performs the recovery process. During t

his process, it executes pages again by using the REDO log to recover pages which was not reflected in th

e disk in the previous service stage.

If an unexpected failure occurs during execution of the REDO operation, that statement can be used to ig

nore the failure and to execute the recovery.

Example

The following is an example of giving up the recovery of the segment whose identifier is 402867932364

8.

ALTER DATABASE REGISTER IRRECOVERABLE SEGMENT 4028679323648;

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER TABLESPACE name BACKUP

● ALTER DATABASE RECOVER

1,554 | SQL References

16.20 ALTER DATABASE RESET LOCAL CLUSTER

MEMBER

Function

It resets the local cluster member except for the tablespace object to the time of creating the database.

Syntax

<alter database reset local cluster member statement> ::=

ALTER DATABASE RESET LOCAL CLUSTER MEMBER

;

Invocation and Access Rules

It can be performed in a cluster system.

The start-up phase should be LOCAL OPEN.

ADMINISTRATION ON DATABASE privilege is required to perform <alter database reset local cluster mem

ber statement>.

Description

It resets the local cluster member except for the tablespace object to the time of creating the database. It

drops all objects created by a user except for the tablespace object.

<alter database reset local cluster member statement> statement resets an inactive cluster member, and

makes the new cluster member to participate in a cluster system.

An inactive cluster member which is disconnected from the cluster system is processed as follows.

● If it can join in a cluster system again, then use JOIN statement to make it join.

○ ALTER SYSTEM JOIN DATABASE

● If it can not join in a cluster system again, then use DROP statement to exclude it.

ALTER DATABASE RESET LOCAL CLUSTER MEMBER | 1,555

○ ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

In this case, the device corresponding to the cluster member which is excluded from a cluster system can

be used again by using the following two methods.

● Method 1: Recreate the database of the local cluster member.

● Method 2: Reset the local cluster member by using <alter database reset local cluster member statem

ent>.

The method 2 reduces the cost of recreating the tablespace comparing to the method 1.

Examples

The following is an example of a reset by using <alter database reset local cluster member statement> aft

er driving the local cluster member, which is excluded from the cluster system, up to LOCAL OPEN phase.

gSQL> \startup nomount

Startup success

gSQL> ALTER SYSTEM MOUNT DATABASE;

System altered.

gSQL> ALTER SYSTEM OPEN LOCAL DATABASE;

System altered.

gSQL> ALTER DATABASE RESET LOCAL CLUSTER MEMBER;

Database altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● ALTER SYSTEM JOIN DATABASE

● ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS

1,556 | SQL References

16.21 ALTER DATABASE RESTORE

Function

It restores the data files in the database or tablespace by using the incremental backup.

Syntax

<alter database restore statement> ::=

<database restore statement>

| <tablespace restore statement>

| <controlfile restore statement>

;

<database restore statement> ::=

ALTER DATABASE RESTORE [<until clause>]

<until clause> ::=

UNTIL CHANGE integer

<tablespace restore statement> ::=

ALTER DATABASE RESTORE TABLESPACE tablespace_name

<controlfile restore statement> ::=

ALTER DATABASE RESTORE CONTROLFILE FROM 'file_name'

Invocation and Access Rules

ALTER DATABASE ON DATABASE privilege is required to perform <alter database restore statement>.

Syntax Rules and Parameters

<database restore statement>

It restores the data files in the database by using the incremental backup.

The database should be in MOUNT phase.

ALTER DATABASE RESTORE | 1,557

<tablespace restore statement>

It restores the data files in the tablespace by using the incremental backup.

● The database should be in MOUNT or OPEN phase.

● The recovery in OPEN state can be performed only for the tablespaces in OFFLINE state. The recovery

in MOUNT phase can be performed for the tablespace is either in ONLINE state or OFFLINE state.

<controlfile restore statement>

The control file is recovered using 'file_name'.

● The database should be in NOMOUNT phase.

● The absolute path is recommended for 'file_name' but if relative path is described, then <GOLDILOC

KS_HOME>/wal/'file_name' is used.

Description

The data recovery using full backup uses OS copy command to directly copy the backup file to the data fil

e path. The data recovery using incremental backup restores only the deleted data files or old data files.

Examples

The following is an example of recovering the database by using the incremental backup.

ALTER DATABASE RESTORE;

The following is an example of recovering the tablespace by using the incremental backup.

ALTER DATABASE RESTORE TABLESPACE test_tbs;

The following is an example of recovering the database by using only the incremental backup whose LSN

is smaller than 11123.

ALTER DATABASE RESTORE UNTIL CHANGE 11123;

The following is an example of recovering the control file by using controlfile.bak.

1,558 | SQL References

ALTER DATABASE RESTORE CONTROLFILE FROM 'controlfile.bak'

Compatibility

The SQL standard does not define ALTER DATABASE statement.

For More Information

Refer to the followings.

● ALTER DATABASE BACKUP

● ALTER TABLESPACE name BACKUP

● ALTER DATABASE RECOVER

ALTER INDEX | 1,559

16.22 ALTER INDEX

Function

It alters the index definition.

Syntax

<alter index statement> ::=

<alter index physical attribute statement>

| <rename index statement>

| <aging index statement>

;

Invocation and Access Rules

One of the following privileges is required to perform <alter index statement>.

● The owner of that index

● The owner of the table to which the index belongs

● CONTROL TABLE ON TABLE for the table to which the index belongs.

● (ALTER INDEX or CONTROL SCHEMA) ON SCHEMA for the schema to which the index belongs

● ALTER ANY INDEX ON DATABASE

Syntax Rules and Parameters

<alter index physical attribute statement>

It alters physical attributes of the index.

For more information, refer to ALTER INDEX name STORAGE.

1,560 | SQL References

<rename index statement>

It alters the index name.

For more information, refer to ALTER INDEX name RENAME TO.

<aging statement>

It deletes the empty page of the index.

For more information, refer to ALTER INDEX name AGING.

Description

Refer to the descriptions of each detailed statement.

Examples

Refer to the examples of each detailed statement.

Compatibility

The SQL standard does not define the concepts of the index.

ALTER INDEX name AGING | 1,561

16.23 ALTER INDEX name AGING

Function

It deletes an empty page of the index.

Syntax

<aging index statement> ::=

ALTER INDEX index_name AGING

;

Invocation and Access Rules

One of the following privileges is required to perform <aging index statement>.

● The owner of that index

● The owner of the table to which the index belongs

● CONTROL TABLE ON TABLE for the table to which the index belongs.

● (ALTER INDEX or CONTROL SCHEMA) ON SCHEMA for the schema to which the index belongs

● ALTER ANY INDEX ON DATABASE

Syntax Rules and Parameters

index_name

It is the name of the target index.

Description

This syntax returns pages whose all keys are deleted among index pages to a segment. Aging is processe

d in two steps which are logical deletion and physical deletion. A logical deletion is disconnection of inde

1,562 | SQL References

x page, and it is performed when SCN of when deleting the last key of a page is smaller than the agable S

CN of the system. Then the physical deletion is performed when the SCN of the logical deletion is smaller

then the agable SCN of the system.

Caution

If the agable SCN of the system does not increase, then the empty page may not be deleted even

though the index AGING statement succeeded.

Examples

The following is an example of aging the index.

gSQL> select index_name, empty_blocks from user_indexes where index_name = 'T1X';

INDEX_NAME EMPTY_BLOCKS

---------- ------------

T1X 2

1 row selected.

gSQL> alter index t1x aging;

Index altered.

gSQL> select index_name, empty_blocks from user_indexes where index_name = 'T1X';

INDEX_NAME EMPTY_BLOCKS

---------- ------------

T1X 0

1 row selected.

Compatibility

The SQL standard does not define the concepts of the index.

For More Information

Refer to the followings.

● CREATE INDEX

ALTER INDEX name AGING | 1,563

● ALTER INDEX

● DROP INDEX

1,564 | SQL References

16.24 ALTER INDEX name STORAGE

Function

It alters the physical attributes of the index.

Syntax

<alter index physical attribute statement> ::=

ALTER INDEX index_name

| <physical attribute clause>

| [STORAGE (<segment attr clause> [...])]

;

<physical attribute clause> ::=

PCTFREE integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

INITIAL <size_clause>

| NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

<size clause> ::=

integer [K | M | G | T]

Invocation and Access Rules

One of the following privileges is required to perform <alter index physical attribute statement>.

● The owner of that index

● The owner of the table to which the index belongs

● CONTROL TABLE ON TABLE for the table to which the index belongs.

● (ALTER INDEX or CONTROL SCHEMA) ON SCHEMA for the schema to which the index belongs

● ALTER ANY INDEX ON DATABASE

ALTER INDEX name STORAGE | 1,565

Syntax Rules and Parameters

index_name

It is the target index name.

<physical attribute clause>

It defines the physical attribute information of the index.

● PCTFREE integer

○ Definition

■ The reserved space to adjust the frequency of page splits caused by inserting the key in the p

age.

■ It is applied only when the index bottom-up build.

○ It can use of the value from 0 to 99.

○ If it is omitted, the value set in DEFAULT_INDEX_PCTFREE property is used by default.

● INITRANS integer

○ Definition

■ The initial number of transactions simultaneously accessing the page.

■ If the number of users accessing the index is small, then INITRANS is set low. If the number o

f users simultaneously accessing the index is big, then INITRANS is set high.

■ If necessary, it is automatically increased to the specified MAXTRANS.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 4.

● MAXTRANS integer

○ Definition

■ It specifies the maximum number of transactions simultaneously accessing the page.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 8.

<segment attr clause>

It specifies the information for the index storage space.

● INITIAL integer

○ Definition

■ It specifies the size of physical storage space which is initially allocated when creating the ind

ex.

1,566 | SQL References

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'INITIAL 100' is actually operated as 8192 bytes.)

■ The size (aligned to the EXTENT size of TABLESPACE) should be equal to or bigger than MIN

EXTENTS, or it should be equal to or less than MAXEXTENTS.

■ It is applied only when the index bottom-up build.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the table belongs.

● NEXT integer

○ Definition

■ It specifies the physical space size to be allocated when adding the space to the index.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'NEXT 100' is actually operated as 8192 bytes.)

■ NEXT operates as follows depending on the remaining space size of the currently available in

dex. (Obtained by subtracting the amount of currently used space from the MAXEXTENTS siz

e)

- If the remaining space size is 0, then it can not extend the space.

- If the remaining space size is bigger than 0, but smaller than NEXT, then it allocates the

space as big as the remaining space.

- If the remaining space size is bigger than NEXT, then it allocates the space as big as the NEXT.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the index belongs.

● MINSIZE integer

○ Definition

■ It is the minimum space size of the index.

■ The value should be equal to or smaller than MAXSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is smaller than the size of two EXTENT, it is specified to the size of two EXTENT.

○ If it is omitted, the default value is the size of two EXTENT.

● MAXSIZE integer

○ Definition

■ It is the maximum space size of the index.

■ The value should be equal to or bigger than MINSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is EXTENT size * 2147483647(The maximum positive integer of I

NT32).

ALTER INDEX name STORAGE | 1,567

<size clause>

It specifies the file size in byte. (If it is omitted, the default unit is bytes.)

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

Description

Refer to the syntax rules of each statement.

Examples

The following is an example of altering the physical attributes of the index.

gSQL> ALTER INDEX idx_t1_id PCTFREE 10 INITRANS 4 MAXTRANS 8;

Index altered.

Compatibility

The SQL standard does not define the concepts of the index.

For More Information

Refer to the followings.

● CREATE INDEX

● ALTER INDEX

● DROP INDEX

1,568 | SQL References

16.25 ALTER INDEX name RENAME TO

Function

It alters the index name.

Syntax

<rename index statement> ::=

ALTER INDEX index_name

RENAME TO new_index_name

;

Invocation and Access Rules

One of the following privileges is required to perform <rename index statement>.

● The owner of that index

● The owner of the table to which the index belongs

● CONTROL TABLE ON TABLE for the table to which the index belongs

● (ALTER INDEX or CONTROL SCHEMA) ON SCHEMA for the schema to which the index belongs

● ALTER ANY INDEX ON DATABASE

Syntax Rules and Parameters

index_name

It is the name of the target index.

The schema name can not be described and it has the same schema name as same as that of the existing

index.

ALTER INDEX name RENAME TO | 1,569

new_index_name

It is the name of the new index, and it should be a unique index name within the schema.

Description

Refer to the syntax rules of each statement.

Examples

The following is an example of altering the index name.

gSQL> ALTER INDEX t1_idx1 RENAME TO idx_t1_id;

Index altered.

Compatibility

The SQL standard does not define the concepts of the index.

For More Information

Refer to the followings.

● CREATE INDEX

● ALTER INDEX

● DROP INDEX

1,570 | SQL References

16.26 ALTER PROFILE

Function

It alters the password management method.

Syntax

<alter profile statement> ::=

ALTER PROFILE profile_name LIMIT

{ <password_parameters>, ...}

;

<password parameters> ::=

FAILED_LOGIN_ATTEMPTS { integer | UNLIMITED | DEFAULT }

| PASSWORD_LOCK_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_LIFE_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_GRACE_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_REUSE_MAX { integer | UNLIMITED | DEFAULT }

| PASSWORD_REUSE_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_VERIFY_FUNCTION { <verify_policy> | NULL | DEFAULT }

<verify_policy> ::=

KISA_VERIFY_FUNCTION

| ORA12C_VERIFY_FUNCTION

| ORA12C_STRONG_VERIFY_FUNCTION

| VERIFY_FUNCTION_11G

| VERIFY_FUNCTION

<password_parameter_number_interval> ::=

integer

| integer / integer

Invocation and Access Rules

ALTER PROFILE ON DATABASE privilege is required to perform <alter profile statement>.

ALTER PROFILE | 1,571

Syntax Rules and Parameters

profile_name

It is a profile name to be altered.

FAILED_LOGIN_ATTEMPTS

It sets the number of consecutive login attempts allowed to fail.

For more information, refer to CREATE PROFILE.

PASSWORD_LOCK_TIME

It sets an account lockout duration (day) after the consecutive login failures.

For more information, refer to CREATE PROFILE.

PASSWORD_LIFE_TIME

It sets the password lifetime (day).

For more information, refer to CREATE PROFILE.

PASSWORD_GRACE_TIME

It sets a password expiration grace period when log in after PASSWORD_LIFE_TIME.

For more information, refer to CREATE PROFILE.

PASSWORD_REUSE_MAX

It specifies the number of the recent passwords which can not be reused when a user wants to reuse the

old password.

For more information, refer to CREATE PROFILE.

PASSWORD_REUSE_TIME

It specifies the duration which the password can not be reused when a user wants to reuse the old passw

ord.

For more information, refer to CREATE PROFILE.

1,572 | SQL References

PASSWORD_VERIFY_FUNCTION

It sets the password complexity verification method.

For more information, refer to CREATE PROFILE.

Examples

The following is an example of changing the profile to control the account lockout.

gSQL> ALTER PROFILE prof1 LIMIT

FAILED_LOGIN_ATTEMPTS 3

PASSWORD_LOCK_TIME 3;

Profile altered.

gSQL> COMMIT;

Commit complete.

The following is an example of changing the profile to control the password lifetime.

gSQL> ALTER PROFILE prof1 LIMIT

PASSWORD_LIFE_TIME 90

PASSWORD_GRACE_TIME 7;

Profile altered.

gSQL> COMMIT;

Commit complete.

The following is an example of changing the profile to control the password reusability.

gSQL> ALTER PROFILE prof1 LIMIT

PASSWORD_REUSE_MAX DEFAULT

PASSWORD_REUSE_TIME DEFAULT;

Profile altered.

gSQL> COMMIT;

Commit complete.

The following is an example of changing the profile to control the password complexity verification.

gSQL> ALTER PROFILE prof1 LIMIT

PASSWORD_VERIFY_FUNCTION KISA_VERIFY_FUNCTION;

Profile altered.

gSQL> COMMIT;

ALTER PROFILE | 1,573

Commit complete.

Compatibility

The SQL standard does not define the concepts of the profile.

For More Information

Refer to DROP PROFILE.

1,574 | SQL References

16.27 ALTER SEQUENCE

Function

It alters the sequence.

Syntax

<alter sequence generator statement> ::=

ALTER SEQUENCE sequence_name <alter sequence generator options>

;

<alter sequence generator options> ::=

<alter sequence generator option> [, ...]

<alter sequence generator option> ::=

<alter sequence generator restart option>

| <basic sequence generator option>

<alter sequence generator restart option> ::=

RESTART [WITH integer]

<basic sequence generator option> ::=

<sequence generator increment by option>

| <sequence generator maxvalue option>

| <sequence generator minvalue option>

| <sequence generator cycle option>

| <sequence generator cache option>

<sequence generator increment by option> ::=

INCREMENT BY integer

<sequence generator maxvalue option> ::=

MAXVALUE integer

| (NO MAXVALUE | NOMAXVALUE)

<sequence generator minvalue option> ::=

MINVALUE integer

| (NO MINVALUE | NOMINVALUE)

<sequence generator cycle option> ::=

CYCLE

| (NO CYCLE | NOCYCLE)

<sequence generator cache option> ::=

CACHE integer

ALTER SEQUENCE | 1,575

| (NO CACHE | NOCACHE)

Invocation and Access Rules

One of the following privileges is required to perform <alter sequence generator statement>.

● The owner of that sequence

● (ALTER SEQUENCE or CONTROL SCHEMA) ON SCHEMA for the schema to which the sequence belo

ngs

● ALTER ANY SEQUENCE ON DATABASE

Syntax Rules and Parameters

sequence_name

It is the sequence name to be altered.

It can define schema to which the sequence belongs such as schema_name.sequence_name and if schem

a_name is omitted, the default schema name of the user performing the statement is used.

<alter sequence generator restart option>

It sets NEXT VALUE of the sequence.

However, it does not change the value of START WITH which is defined in CREATE SEQUENCE statement.

● RESTART

○ If the value is not specified, the value of START WITH defined in <sequence generator definition>

is set as the next value of the sequence.

● RESTART WITH integer

○ It sets an integer value as the next value of the sequence.

○ The integer value should be between MINVALUE and MAXVALUE.

If <alter sequence generator restart option> clause is not specified, it changes the sequence attributes bas

ed on the current sequence value.

<sequence generator increment by option>

1,576 | SQL References

It changes the interval of the sequence number.

The constraints and characteristics are as follows.

● A positive or negative value can be used, but 0 can not be used.

● The absolute value of the interval should be smaller than the difference between MINVALUE and MA

XVALUE.

● If it is a positive value, it an ascending sequence. If it is a negative value, it is a descending sequence.

<sequence generator maxvalue option>

It changes the maximum value which the sequence can generate.

However, the MAXVALUE should not be smaller than the current sequence value.

● MAXVALUE integer

○ The maximum value is in the range between the minimum (-9,223,372,036,854,775,808) and t

he maximum (+9,223,372,036,854,775,807) of 64 bit integer.

○ It should be equal to or bigger than the value of START WITH, and bigger than the value of MINV

ALUE.

● NO MAXVALUE | NOMAXVALUE

○ It changes the maximum value as follows.

■ If it is an ascending sequence, it is the maximum value (+9,223,372,036,854,775,807) of the

64 bit integer.

■ If it is a descending sequence, the value is -1.

■ NO MAXVALUE (SQL standard) and NOMAXVALUE are the reserved words with the same m

eaning, and either of them can be used.

<sequence generator minvalue option>

It changes the minimum value which the sequence can generate.

However, the MINVALUE should not be bigger than the current sequence value.

● MINVALUE integer

○ The minimum value is in the range between the minimum (-9,223,372,036,854,775,808) and th

e maximum (+9,223,372,036,854,775,807) of 64bit integer.

○ It should be equal to or smaller than the value of START WITH, and smaller than the value of MA

XVALUE.

● NO MINVALUE | NOMINVALUE

○ It changes the minimum value as follows.

■ If it is an ascending sequence, the value is 1.

■ If it is a descending sequence, it is the minimum value (−9,223,372,036,854,775,808) of th

e 64bit integer.

○ NO MINVALUE (SQL standard) and NOMINVALUE are the reserved words with the same meanin

ALTER SEQUENCE | 1,577

g, and either of them can be used.

<sequence generator cycle option>

It changes whether to continue generating a value when the sequence value becomes the maximum or

minimum value.

● CYCLE

○ If an ascending sequence becomes the maximum value, it generates the value again from the mi

nimum value.

○ If a descending sequence becomes the minimum value, it generates the value again from the ma

ximum value.

● NO CYCLE | NOCYCLE

○ It can not generate the value sequence when it becomes the maximum value or the minimum val

ue.

○ NO CYCLE (SQL standard) and NOCYCLE are the reserved words with the same meaning, and eit

her of them can be used.

<sequence generator cache option>

For quick access of a sequence, it defines the number of sequence values to be pre-loaded on the memor

y.

When restarting the database, the sequence value loaded on the memory is lost, and it starts from the val

ue after loading.

● CACHE integer

○ The CACHE value should be equal to or bigger than 2.

○ If CYCLE exists, the CACHE value should not be bigger than the length of CYCLE.

■ The length of CYCLE: CEIL(MAXVALUE - MINVALUE) / ABS(INCREMENT)

● NO CACHE | NOCACHE

○ It does not pre-load the sequence value in memory.

Description

It can not change START WITH which is one of the sequence attributes defined in CREATE SEQUENCE sta

tement. To change START WITH attribute, it should be re-created by performing CREATE SEQUENCE stat

ement after performing DROP SEQUENCE statement.

1,578 | SQL References

Examples

The following is an example of restating the sequence value by using RESTART option, then assigning a n

ew ID.

gSQL> SELECT id, name FROM t1 ORDER BY 1;

ID NAME

--- ------

10 leekmo

42 mkkim

51 jhkim

172 ehpark

4 rows selected.

gSQL> ALTER SEQUENCE seq1 RESTART;

Sequence altered.

gSQL> UPDATE t1 SET id = seq1.NEXTVAL;

4 rows updated.

gSQL> SELECT id, name FROM t1 ORDER BY 1;

ID NAME

-- ------

1 leekmo

2 mkkim

3 jhkim

4 ehpark

4 rows selected.

Compatibility

The SQL standard does not define CACHE/ NO CACHE statement.

Table 16-2 SQL standard compatibility

Feature ID Description Compatibility

T176 Sequence generator support O

T177 Sequence generator support: simple restart option O

ALTER SEQUENCE | 1,579

For More Information

Refer to the followings.

● CREATE SEQUENCE

● DROP SEQUENCE

1,580 | SQL References

16.28 ALTER SESSION CLEANUP GLOBAL TEMPOR

ARY SEGMENT POOL;

Function

It returns all segments which were caught to be reused in a session to tablespaces.

Syntax

<alter session cleanup global temporary segment pool statement> ::=

ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL

;

Description

It cleans up only the segments of a segment cache in the performed session.

Examples

The following is an example of cleaning up the segment cache of the session.

gSQL> ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL;

Session altered.

Compatibility

The SQL standard does not define the concepts of the segment cache of a global temporary table and a g

lobal temporary index.

ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL; | 1,581

For More Information

Refer to Global Temporary Table.

1,582 | SQL References

16.29 ALTER SESSION SET property_name

Function

It sets the property value of the session.

Syntax

<alter session set statement> ::=

ALTER SESSION SET <property name> { = <property value> | TO DEFAULT }

;

Syntax Rules and Parameters

<property name>

It is the property name to be set.

For more information, refer to Server Property in an administration manual.

<property value>

It is the property value to be set.

TO DEFAULT

It sets the session property value as a system property value.

Description

For more information about property, refer to Server Property in an administration manual.

ALTER SESSION SET property_name | 1,583

Examples

The following is an example of an error when setting ERROR HINT property so the hint clause includes an

error.

gSQL> ALTER SESSION SET HINT_ERROR = ON;

Session altered.

gSQL> SELECT /*+ INDEX(t1, invalid_index) */ name FROM t1 WHERE id = 1;

ERR-42000(16058): not applicable hint :

SELECT /*+ INDEX(t1, invalid_index) */ name FROM t1 WHERE id = 1

*

ERROR at line 1:

The following is an example of setting the session property value as the system property value.

gSQL> ALTER SESSION SET HINT_ERROR TO DEFAULT;

Session altered.

Compatibility

The SQL standard does not define the concepts of the session property.

For More Information

Refer to ALTER SESSION SET property_name.

1,584 | SQL References

16.30 ALTER SYSTEM CHECKPOINT

Function

It performs CHECKPOINT.

Syntax

<alter system checkpoint statement> ::=

ALTER SYSTEM CHECKPOINT

[AT <domain name>]

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system checkpoint statement>.

Syntax Rules and Parameters

<alter system checkpoint statement>

CHECKPOINT is an operation to ensure that all altered data by the committed transactions are written to

disk.

● The database should be in OPEN phase.

● The database should be in TDS mode.

● When a full backup is in progress, the altered pages are not recorded in the data file, but only the RE

DO logs and control files are written to the disk. If the server is abnormally terminated in this situatio

n, a media recovery should be performed.

<domain name>

● It is a name of a member or a group for which the statement is performed.

● If it is omitted, it is performed for all groups.

ALTER SYSTEM CHECKPOINT | 1,585

Description

The checkpoint operation records all changes by the committed transactions to disk, so it enables a rapid

recovery at system error.

Example

The following is an example of performing CHECKPOINT.

ALTER SYSTEM CHECKPOINT;

Compatibility

The SQL standard does not define the concepts of CHECKPOINT.

1,586 | SQL References

16.31 ALTER SYSTEM CLEANUP PLAN

Function

It cleans up all SQL plans.

Syntax

<alter system cleanup plan statement> ::=

ALTER SYSTEM CLEANUP PLAN

[AT <domain name>]

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system cleanup plan statement>.

Syntax Rules and Parameters

<alter system cleanup plan statement>

There is not any syntax rules or parameters for <alter system cleanup plan statement>.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

ALTER SYSTEM CLEANUP PLAN | 1,587

It cleans up all of the cached SQL plan. However, the plan whose V$SQL CACHE.REF COUNT is bigger tha

n 0 (the plan referenced by the prepared statement) is excluded from cleanup.

Examples

The following is an example of executing CLEANUP PLAN.

ALTER SYSTEM CLEANUP PLAN;

Compatibility

The SQL standard does not define the concepts of CLEANUP PLAN.

1,588 | SQL References

16.32 ALTER SYSTEM IRRECOVERABLE CLUSTER

MEMBER

Function

It specifies an irrecoverable cluster member.

Syntax

<alter system irrecoverable cluster member statement> ::=

ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER <domain name>

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system irrecoverable cluster membe

r statement>.

Syntax Rules and Parameters

<alter system irrecoverable cluster member statement>

There is not any syntax rules or parameters for <alter system irrecoverable cluster member statement>.

<domain name>

It is a name of an irrecoverable member.

It is not allowed to specify all members in a group as an irrecoverable member.

ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER | 1,589

Description

It is used to restart the system excluding the corresponding member if the cluster failed to restart due to

an irrecoverable member. The corresponding member should be dropped by using ALTER DATABASE DR

OP INACTIVE CLUSTER MEMBERS after the system succeeded to restart.

Examples

The following is an example of executing IRRECOVERABLE CLUSTER MEMBER.

gSQL> ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER g1n1;

Compatibility

The SQL standard does not define the concepts of IRRECOVERABLE CLUSTER MEMBER.

1,590 | SQL References

16.33 ALTER SYSTEM JOIN DATABASE

Function

It includes a specific inactive cluster member in a cluster system again.

Syntax

<alter system join database statement> ::=

ALTER SYSTEM JOIN DATABASE

;

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <alter system join database statement>.

Description

The inactive state of a cluster member means that it is not connected to the cluster system, and it occurs i

n the following cases.

● An error occurs on a cluster member in an operating cluster system.

● Trying to start-up the cluster system without driving the cluster member included in the cluster syste

m.

If a specific cluster member is inactive, then the member can be included in a cluster system again accordi

ng to the following procedure.

● Start-up the unstarted cluster member to the local open phase.

$ gsql sys gliese --as sysdba --dsn=G3N2

gSQL> \startup

ALTER SYSTEM JOIN DATABASE | 1,591

● Include it in a cluster system by using <alter system join database statement>.

$ gsql sys gliese --as sysdba --dsn=G3N2

gSQL> ALTER SYSTEM JOIN DATABASE;

Use <alter system join database statement> to make an inactive cluster member which is started up to the

local open phase to participate in the cluster system without shutting it down.

To make the inactive cluster member to participate in the cluster system again, the database state of the

cluster system and that of the inactive cluster member should be same.

The inactive cluster member can not participate in the cluster system again after the transaction altering t

he database in the cluster system completed.

To operate the cluster system normally the inactive cluster members should be dropped according to the

following procedure when multiple inactive cluster members exist.

1. JOIN inactive cluster members which can participate in the cluster system.

gSQL> ALTER SYSTEM JOIN DATABASE;

2. DROP inactive cluster members which can not participate in the cluster system.

gSQL> ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS;

All inactive cluster members which can participate in the cluster system should be included in the cluster s

ystem before dropping because all inactive cluster members are dropped from the cluster system when p

erforming <alter database drop inactive cluster member statement>.

Examples

gSQL> ALTER SYSTEM JOIN DATABASE;

Compatibility

The SQL standard does not define the concepts of the cluster.

1,592 | SQL References

For More Information

Refer to ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS.

ALTER SYSTEM {MOUNT | OPEN} DATABASE | 1,593

16.34 ALTER SYSTEM {MOUNT | OPEN} DATABAS

E

Function

It mounts the database on system, or alters the database to the state which is available for the service.

Syntax

<alter system database statement> ::=

ALTER SYSTEM <alter system database clause>

;

<alter system database clause> ::=

MOUNT DATABASE

| OPEN [<database_scope>] DATABASE [<open_database_option>]

<open_database_option> ::=

READ WRITE [NORESETLOGS | RESETLOGS]

| READ ONLY

<database_scope> ::=

LOCAL

| GLOBAL

Invocation and Access Rules

ADMINISTRATION ON DATABASE privilege is required to perform <alter system database statement>.

Syntax Rules and Parameters

<alter system database clause>

● MOUNT DATATABASE

○ It mounts the database on the system.

● OPEN DATABASE

1,594 | SQL References

○ It changes the database to the state which is available for the service.

<open database option>

● READ ONLY / READ WRITE

○ It specifies the read/write mode and drives the database.

○ If it is omitted, it is driven in READ WRITE.

● RESETLOGS / NORESETLOGS

○ It determines whether to keep the online redo logs after recovering the database.

○ NORESETLOGS maintains the existing redo log, but RESETLOGS initializes it.

○ RESETLOGS should be specified when the database is incompletely recovered.

○ If it is omitted, NORESETLOGS is specified by default.

<database_scope>

● LOCAL

○ It starts up the LOCAL server to the OPEN phase.

● GLOBAL

○ It starts up the GLOBAL server, the entire server, to the OPEN phase.

● If it is omitted in a cluster environment, it starts up the GLOBAL server.

Examples

The following is an example of driving the database in read only.

ALTER SYSTEM OPEN DATABASE READ ONLY;

The following is an example of driving the database in read/write, and initializing the online redo logs.

ALTER SYSTEM OPEN DATABASE READ WRITE RESETLOGS;

Compatibility

The SQL standard does not define the concepts of MOUNT or OPEN in the database.

ALTER SYSTEM {MOUNT | OPEN} DATABASE | 1,595

For More Information

Refer to ALTER DATABASE RECOVER.

1,596 | SQL References

16.35 ALTER SYSTEM [KILL | DISCONNECT] SESSIO

N

Function

It terminates a session.

Syntax

<alter system end session statement> ::=

ALTER SYSTEM DISCONNECT SESSION [<member_position>,] <session_id>,

<serial#> [<disconnect_option>] [AT <domain name>]

| ALTER SYSTEM KILL SESSION [<member_position>,]

<session_id>, <serial#> [AT <domain name>]

;

<disconnect_option> ::=

POST_TRANSACTION

| IMMEDIATE

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system end session statement>.

Syntax Rules and Parameters

<member_position>

It is a member position of a session which is a disconnect/kill target in a cluster environment.

<session_id>

It is the session ID.

ALTER SYSTEM [KILL | DISCONNECT] SESSION | 1,597

<serial#>

It is the SERIAL NUMBER of the session.

<disconnect_option>

● POST_TRANSACTION: The session is terminated after completion of the transaction.

● IMMEDIATE: The session is immediately terminated without waiting for the completion of the transac

tion.

If <disconnect_option> is not used, then it is operated in IMMEDIATE.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

DISCONNECT SESSION can specify the options such as POST TRANSACTION and IMMEDIATE.

POST TRANSACTION terminates the session after the currently running transaction is completed. IMMEDI

ATE terminates the session after immediately cleaning up the currently running transaction.

KILL SESSION terminates the abnormal session which remains on the system without its process.

Example

gSQL> SELECT USER_NAME, SESSION_ID, SERIAL_NO, SESSION_STATUS, PROGRAM_NAME FROM V$SESSION

WHERE USER_NAME = 'TEST';

USER_NAME SESSION_ID SERIAL_NO SESSION_STATUS PROGRAM_NAME

--------- ---------- --------- -------------- ------------

TEST 62 49 CONNECTED gsql

TEST 65 109 CONNECTED gsqlnet

TEST 66 130 CONNECTED gsql

3 rows selected.

gSQL> ALTER SYSTEM DISCONNECT SESSION 65, 109;

System altered.

1,598 | SQL References

Compatibility

The SQL standard does not define it.

ALTER SYSTEM RECONNECT GLOBAL CONNECTION | 1,599

16.36 ALTER SYSTEM RECONNECT GLOBAL CONN

ECTION

Function

It determines whether to reconnect to the session which is connected in GLOBAL CONNECTION form.

Syntax

<alter system reconnect global connection statement> ::=

ALTER SYSTEM RECONNECT GLOBAL CONNECTION

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system reconnect global connection

statement>.

Description

Whether the GLOBAL CONNECTION client reconnects is determined by comparing SCN of a system objec

t acquired from a server at the first connection and SCN of current server system object. This statement le

ads the client to reconnect by increasing SCN of the system object.

The client does not necessarily reconnect immediately after this statement is performed. The client reconn

ects by comparing SCN when the client executes a command in a server, and it does not try to reconnect

if connections to all members from a client are valid.

1,600 | SQL References

Examples

The following is an example of executing the statement.

gSQL> ALTER SYSTEM RECONNECT GLOBAL CONNECTION;

System altered.

Compatibility

The SQL standard does not define the concepts of GLOBAL CONNECTION.

ALTER SYSTEM RESET property_name | 1,601

16.37 ALTER SYSTEM RESET property_name

Function

It removes a property value from the property file.

Syntax

<alter system reset statement> ::=

ALTER SYSTEM { RESET | UNSET } <property name>

[SCOPE = { FILE | SPFILE }]

[AT <domain name>]

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system reset statement>.

Syntax Rules and Parameters

{ RESET | UNSET }

RESET and UNSET are the reserved words with the same meaning, so either of them can be used.

<property name>

It is the property name to be removed.

For more information, refer to Server Property in an administration manual.

[SCOPE = { FILE | SPFILE }]

It removes the property from a property file, so only SCOPE=FILE/SPFILE can be used.

● SCOPE = FILE

1,602 | SQL References

○ FILE and SPFILE are the reserved words with the same meaning, so either of them can be used.

○ A property is removed from FILE, and is not applied to the current state.

○ When restarting the database, the changes are applied.

If SCOPE clause is not specified, the default value is SCOPE = FILE.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

If a property is altered by using SCOPE=FILE/SPFILE, the updated property value is stored in the property fi

le, and it is applied when restarting the database.

When executing RESET, the updated property value is removed from the property file and the default val

ue is used when restarting the database.

Examples

The following is an example of altering the property by using SCOPE=FILE.

gSQL> ALTER SYSTEM SET PROCESS_MAX_COUNT=128 SCOPE=FILE;

System altered.

gSQL> alter system set DEFAULT_INDEX_LOGGING=YES scope=FILE;

System altered.

The following is an example of removing the property altered above.

gSQL> ALTER SYSTEM RESET PROCESS_MAX_COUNT SCOPE=FILE;

System altered.

gSQL> ALTER SYSTEM RESET PROCESS_MAX_COUNT SCOPE=SPFILE;

System altered.

gSQL> ALTER SYSTEM RESET PROCESS_MAX_COUNT;

System altered.

gSQL> ALTER SYSTEM RESET DEFAULT_INDEX_LOGGING;

System altered.

ALTER SYSTEM RESET property_name | 1,603

gSQL> ALTER SYSTEM UNSET DEFAULT_INDEX_LOGGING;

System altered.

Compatibility

The SQL standard does not define the concepts of the system property.

For More Information

Refer to ALTER SYSTEM SET property_name.

1,604 | SQL References

16.38 ALTER SYSTEM SET property_name

Function

It sets the system property value.

Syntax

<alter system set statement> ::=

ALTER SYSTEM SET <property name> { = <property value> | TO DEFAULT }

[DEFERRED]

[SCOPE = [MEMORY | { FILE | SPFILE } | BOTH]]

[AT <domain name>]

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system set statement>.

Syntax Rules and Parameters

<property name>

It is the property name to be set.

For more information, refer to 10. Server Property in an administration manual.

<property value>

It is the property value to be set.

ALTER SYSTEM SET property_name | 1,605

TO DEFAULT

It sets the system property value as the initial value of system driving.

[DEFERRED]

It defines the point of time to apply the altered property.

● DEFERRED

○ It does not effect the current SESSION, but it is applied to the newly generated SESSION.

○ It can be applied when ISSYS_MODIFIABL property value is IMMEDIATE/DEFERRED. It should be

explicitly specified.

○ It is not applicable when the SYS_MODIFIABLE property value is FALSE.

If SYS_MODIFIABLE property value is IMMEDIATE, and DEFERRED is not explicitly specified, then it is imm

ediately applied to all sessions.

[SCOPE = [MEMORY | { FILE | SPFILE } | BOTH]]

It specifies the range which is affected by the property changes of the system.

● SCOPE = MEMORY

○ The changes are applied only to the current state, and the value is lost when restarting the datab

ase.

● SCOPE = FILE

○ FILE and SPFILE are the reserved words with the same meaning, so either of them can be used.

○ The changes are stored in FILE, and not applied to the current state.

○ The changes are applied when restarting the database.

● SCOPE = BOTH

○ The changes are stored in FILE, and applied to the current state.

If SCOPE clause is omitted, the default value is SCOPE = MEMORY.

If SYS_MODIFIABLE property value is FALSE, it should be specified as SCOPE=FILE/SPFILE.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

1,606 | SQL References

Description

For more information, refer to Server Property in an administration manual.

Examples

The following is an example of changing the property whose SYS_MODIFIABLE property is DEFERRED.

gSQL> ALTER SYSTEM SET HINT_ERROR = ON;

ERR-22000(13019): Invalid property modify mode.(HINT_ERROR)

gSQL> ALTER SYSTEM SET HINT_ERROR = ON DEFERRED;

System altered.

The following is an example of changing the property whose SYS_MODIFIABLE property is FALSE.

gSQL> ALTER SYSTEM SET PROCESS_MAX_COUNT=128;

ERR-22000(13018): Specified property cannot be modified with this SCOPE

option.(PROCESS_MAX_COUNT)

gSQL> ALTER SYSTEM SET PROCESS_MAX_COUNT=128 SCOPE=FILE;

System altered.

The following is an example of changing the altered property to the default value of when the session wa

s connected.

gSQL> ALTER SYSTEM SET TRANSACTION_COMMIT_WRITE_MODE=0;

System altered.

gSQL> ALTER SYSTEM SET TRANSACTION_COMMIT_WRITE_MODE TO DEFAULT;

System altered.

gSQL> ALTER SYSTEM SET TRANSACTION_COMMIT_WRITE_MODE TO DEFAULT DEFERRED;

System altered.

Compatibility

The SQL standard does not define the concepts of the system property.

ALTER SYSTEM SET property_name | 1,607

For More Information

Refer to ALTER SYSTEM RESET property_name.

1,608 | SQL References

16.39 ALTER SYSTEM SWITCH LOGFILE

Function

It alters the log files in CURRENT state to ACTIVE state in database.

Syntax

<alter system switch logfile statement> ::=

ALTER SYSTEM SWITCH LOGFILE

[AT <domain name>]

;

Invocation and Access Rules

ALTER SYSTEM ON DATABASE privilege is required to perform <alter system switch logfile statement>.

Syntax Rules and Parameters

<alter system switch logfile statement>

The database should be in MOUNT or OPEN phase.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

ALTER SYSTEM SWITCH LOGFILE | 1,609

Description

Basically, if the log file in CURRENT state is filled, the log switch automatically occurs. That statement is us

ed to forcibly execute log switch in special circumstances.

Example

ALTER SYSTEM SWITCH LOGFILE;

Compatibility

The SQL standard does not define the concepts of the LOGFILE.

For More Information

Refer to ALTER SYSTEM {MOUNT | OPEN} DATABASE.

1,610 | SQL References

16.40 ALTER TABLE

Function

It alters the table definition.

Syntax

<alter table statement> ::=

<alter table physical attribute statement>

| <rename table statement>

| <add column definition>

| <drop column definition>

| <alter column definition>

| <rename column statement>

| <add table constraint definition>

| <drop table constraint definition>

| <alter table constraint definition>

| <add table supplemental log statement>

| <drop table supplemental log statement>

| <rebalance statement>

| <move shard statement>

| <split shard statement>

;

Invocation and Access Rules

One of the following privileges is required to perform <alter table statement>.

● (ALTER or CONTROL TABLE) ON TABLE for the table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

ALTER TABLE | 1,611

Syntax Rules and Parameters

<alter table physical attribute statement>

It alters physical attributes of a table.

For more information, refer to ALTER TABLE name STORAGE.

<rename table statement>

It renames the table.

For more information, refer to ALTER TABLE name RENAME TO.

<add column definition>

It adds columns to the table.

For more information, refer to ALTER TABLE name ADD COLUMN.

<drop column definition>

It drops a column from the table.

For more information, refer to ALTER TABLE name SET UNUSED COLUMN.

<alter column definition>

It alters the column definition in the table.

For more information, refer to ALTER TABLE name ALTER COLUMN.

<rename column statement>

It renames the column in the table.

For more information, refer to ALTER TABLE name RENAME COLUMN.

<add table constraint definition>

It adds constraints to the table.

For more information, refer to ALTER TABLE name ADD CONSTRAINT.

1,612 | SQL References

<drop table constraint definition>

It drops the constraints of the table.

For more information, refer to ALTER TABLE name DROP CONSTRAINT.

<alter table constraint definition>

It alters the constraints of the table.

For more information, refer to ALTER TABLE name ALTER CONSTRAINT.

<rename table constraint statement>

It renames the constraints of the table.

For more information, refer to ALTER TABLE name RENAME CONSTRAINT.

<add table supplemental log statement>

It sets to add information to the redo log when the data is altered in the table.

For more information, refer to ALTER TABLE name ADD SUPPLEMENTAL LOG.

<drop table supplemental log statement>

It sets not to add information to the redo log when the data is altered in the table.

For more information, refer to ALTER TABLE name DROP SUPPLEMENTAL LOG.

<rebalance statement>

It restores consistency by rebalancing the shard of the table or by synchronizing the broken shard in a clus

ter environment.

For more information, refer to ALTER TABLE name REBALANCE.

<move shard statement>

It rebalances a specific shard of a table on a specific cluster group in a cluster environment.

For more information, refer to ALTER TABLE name MOVE SHARD.

ALTER TABLE | 1,613

<split shard statement>

It rebalances a specific shard of a table on a specific cluster group by splitting the shard in a cluster enviro

nment.

For more information, refer to ALTER TABLE name SPLIT SHARD.

<rename shard statement>

It renames a specific shard of a table in cluster environment.

For more information, refer to ALTER TABLE name RENAME SHARD.

<read { only | write } statement>

It sets READ (only | write } to a table.

For more information, refer to ALTER TABLE name READ { ONLY | WRITE }.

Description

For more information, refer to the description of each detailed statement.

Example

Refer to the examples of each detailed statement.

Compatibility

The SQL standard does not define the following statements.

● <alter table physical attribute statement>

● <rename table statement>

● <rename column statement>

● <rename table constraint statement>

● <add table supplemental log statement>

● <drop table supplemental log statement>

● <rebalance statement>

● <move shard statement>

1,614 | SQL References

● <split shard statement>

● <rename shard statement>

● <read { only | write } statement>

ALTER TABLE name ADD COLUMN | 1,615

16.41 ALTER TABLE name ADD COLUMN

Function

It adds a column to the table.

Syntax

<add column definition> ::=

ALTER TABLE table_name ADD [COLUMN] <column definition>

| ALTER TABLE table_name ADD [COLUMN] (<column definition> [, ...])

;

Invocation and Access Rules

The user should satisfy the following conditions to perform <add column definition>.

● At least one of the following privileges is required to alter the table.

○ (ALTER or CONTROL TABLE) ON TABLE for that table

○ (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ ALTER ANY TABLE ON DATABASE

● If the constraints are specified with the added columns, the conditions should be satisfied to generat

e the constraints as follows.

○ One of the following privileges is required for the schema in which constraints are to be generate

d.

■ (ADD CONSTRAINT or CONTROL SCHEMA) ON SCHEMA for the schema

■ ALTER ANY TABLE ON DATABASE

○ If the key constraint is to be generated, one of the following privileges is required for the tablesp

ace in which an index is to be created.

■ CREATE OBJECT ON TABLESPACE for the tablespace

■ USAGE TABLESPACE ON DATABASE

● The table owner has the following privileges for the added columns.

○ Privileges on all added columns

■ SELECT(columns) ON TABLE WITH GRANT OPTION

1,616 | SQL References

■ INSERT(columns) ON TABLE WITH GRANT OPTION

■ UPDATE(columns) ON TABLE WITH GRANT OPTION

■ REFERENCES(columns) ON TABLE WITH GRANT OPTION

○ Privilege on the constraint generated together

■ The owner of that constraint

■ The index owner generated together with the constraint

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

ADD [COLUMN]

The reserved word COLUMN can be omitted.

<column definition>

It defines the column to be added. For more information, refer to <column definition> clause of CREATE

TABLE statement.

There should not be columns with the same name in a table.

If DEFAULT clause is specified when defining the column, the default value of all rows are stored in the a

dded column.

If <identity column specification> clause is specified when defining the column, each automatically gener

ated value of all rows is stored in the added column.

If NOT NULL constraint is specified when defining the column, the table should be empty or it should be s

pecified together with DEFAULT or <identity column specification> clause.

(<column definition> [, ...])

It adds multiple columns.

It lists multiple <column definition> inside the parentheses.

ALTER TABLE name ADD COLUMN | 1,617

Description

The added column is positioned at the end of the existing columns.

When specifying DEFAULT or <identity column specification> clause, the processing time is increased in p

roportion to the number of the rows in the table.

Examples

The following is an example of adding a column.

gSQL> ALTER TABLE region ADD COLUMN r_new_comment VARCHAR(152);

Table altered.

The following is an example of adding multiple columns.

gSQL> ALTER TABLE partsupp ADD COLUMN (

ps_retailprice NUMERIC(12,2),

ps_acctbal NUMERIC(12,2), ps_mktsegment CHAR(10));

Table altered.

The following is an example of adding the identity column and the column including DEFAULT clause.

gSQL> ALTER TABLE region ADD COLUMN (

r_regionkey INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,

r_comment VARCHAR(152) DEFAULT 'N/A');

Table altered.

gSQL> SELECT r_regionkey, r_name, r_comment FROM region;

R_REGIONKEY R_NAME R_COMMENT

----------- ------------------------- ---------

1 AFRICA N/A

2 AMERICA N/A

3 ASIA N/A

4 EUROPE N/A

5 MIDDLE EAST N/A

5 rows selected.

The following is an example of adding the column including the deferrable constraint.

1,618 | SQL References

gSQL> ALTER TABLE t1 ADD COLUMN (id INTEGER CONSTRAINT t1_uk UNIQUE DEFERRABLE);

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define of adding multiple column definitions.

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name SET UNUSED COLUMN

● ALTER TABLE name ALTER COLUMN

● ALTER TABLE name RENAME COLUMN

ALTER TABLE name SET UNUSED COLUMN | 1,619

16.42 ALTER TABLE name SET UNUSED COLUMN

Function

It drops a table column.

Syntax

<drop column definition> ::=

ALTER TABLE table_name <drop column clause>

;

<drop column clause> ::=

SET UNUSED [COLUMN] <column_name_list> [<drop behavior>]

<column name list> ::=

column_name

| (column_name [, ...])

<drop behavior> ::=

RESTRICT

| CASCADE

| CASCADE CONSTRAINTS

Invocation and Access Rules

One of the following privileges is required to perform <drop column definition>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

1,620 | SQL References

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

SET UNUSED [COLUMN]

It sets the column not to be used.

column_name_list

One or more column names to be dropped.

● e.g. ALTER TABLE t1 SET UNUSED COLUMN c1

● e.g. ALTER TABLE t1 SET UNUSED COLUMN (c1, c2)

column_name

It is the column name to be dropped.

It also drops the constraints and indexes which use the column.

drop behavior

When it is omitted, the default value is RESTRICT.

Currently, RESTRICT/CASCADE is operated in the same way.

Description

SET UNUSED COLUMN does not delete the data physically, so it ensures consistent performance regardle

ss of the number of the rows.

Example

The following is an example of setting the column not to be used.

ALTER TABLE name SET UNUSED COLUMN | 1,621

gSQL> ALTER TABLE t1 SET UNUSED COLUMN (addr);

Table altered.

Compatibility

The SQL standard does not define the following clauses.

• SET UNUSED

• CASCADE CONSTRAINTS

• Listing multiple columns

Table 16-3 SQL standard compatibility

Feature ID Description Compatibility

F033 ALTER TABLE statement: DROP COLUMN clause X

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name ADD COLUMN

● ALTER TABLE name ALTER COLUMN

● ALTER TABLE name RENAME COLUMN

1,622 | SQL References

16.43 ALTER TABLE name ALTER COLUMN

Function

It alters the column definition.

Syntax

<alter column definition> ::=

ALTER TABLE table_name

ALTER [COLUMN] column_name <alter column action>

<alter column action> ::=

<set column default clause>

| <drop column default clause>

| <set column not null clause>

| <drop column not null clause>

| <alter column data type clause>

| <alter identity column specification>

| <drop identity property clause>

;

<set column default clause> ::=

SET DEFAULT <default option>

<drop column default clause> ::=

DROP DEFAULT

<set column not null clause> ::=

SET [CONSTRAINT constraint_name] NOT NULL [<constraint characteristics>]

<constraint characteristics> ::=

[NOT] DEFERRABLE [<constraint check time>]

| <constraint check time> [[NOT] DEFERRABLE]

<constraint check time> ::=

INITIALLY DEFERRED

| INITIALLY IMMEDIATE

<drop column not null clause> ::=

DROP NOT NULL

<alter column data type clause> ::=

SET DATA TYPE <data type>

<alter identity column specification> ::=

ALTER TABLE name ALTER COLUMN | 1,623

<set identity column generation clause> [<alter identity column option> ...]

| <alter identity column option> ...

<set identity column generation clause> ::=

SET GENERATED { ALWAYS | BY DEFAULT }

<alter identity column option> ::=

<alter sequence generator restart option>

| [SET] <basic sequence generator option>

<alter sequence generator restart option> ::=

RESTART [WITH integer]

<basic sequence generator option> ::=

<sequence generator increment by option>

| <sequence generator maxvalue option>

| <sequence generator minvalue option>

| <sequence generator cycle option>

| <sequence generator cache option>

<drop identity property clause> ::=

DROP IDENTITY

Invocation and Access Rules

One of the following privileges is required to performing <alter column definition>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

1,624 | SQL References

ALTER [COLUMN]

The reserved word COLUMN can be omitted.

column_name

It is the column name to be altered.

<set column default clause>

It sets the default value of the column.

It should not be an identity column.

The default value set when using the DEFAULT clause is used in INSERT statement later.

The data type of DEFAULT expression should be compatible with the data type of the column.

If there is insufficient space or the data type is not compatible, an error occurs when using DEFAULT in I

NSERT, UPDATE statements.

For more information, refer to <default clause> of CREATE TABLE statement.

<drop column default clause>

It drops the default value of the column.

It should not be an identity column.

If the default value is dropped, NULL is set when using DEFAULT clause in INSERT statement.

<set column not null clause>

● SET [CONSTRAINT constraint_name] NOT NULL [<constraint characteristics>]

○ It sets NOT NULL constraint on the column.

○ NULL is not allowed as the column value.

○ NULL should not exist in the column.

● If [CONSTRAINT constraint_name] is omitted, the constraint name is automatically given.

● If <constraint characteristics> is omitted, it has NOT DEFERRABLE INITIALLY IMMEDIATE property.

● The Identity column can not have DEFERRABLE property.

For more information about the DEFERRABLE constraint, refer to SET CONSTRAINTS.

ALTER TABLE name ALTER COLUMN | 1,625

<drop column not null clause>

● DROP NOT NULL

○ It drops NOT NULL constraint from the column.

<alter column data type clause>

● SET DATA TYPE <data type>

○ It changes the data type of the column.

Note

SET DATA TYPE is a DDL statement which is automatically committed.

The type conversion can be executed among the same family, and it should satisfy the following conditio

ns.

Table 16-4 Conversion of character string type

from \ to CHAR(n) VARHCAR(n) LONG VARCHAR

CHAR(m) X X X

VARCHAR(m) X n >= m X

LONG VARCHAR X X O

The conversion of char length unit should satisfy the following condition.

Table 16-5 Conversion of character length unit

from \ to OCTETS CHARACTERS

OCTETS O O

CHARACTERS X O

Table 16-6 Conversion of binary string type

from \ to BINARY(n) VARBINARY(n) LONG VARBINARY

BINARY(m) X X X

VARBINARY(m) X n >= m X

LONG VARBINARY X X O

1,626 | SQL References

Table 16-7 Conversion of numeric type

from

\ to

SM

ALLI

NT

INTEGER BIGINT

NU

MER

IC

NU

MER

IC(q

)

NU

MER

IC(q,

t)

NU

MBE

R(q)

NUMBER

(q,t)

REA

L

DOU

BLE P

RECIS

ION

FLO

AT

FLOAT

(q)

NU

MBE

R

SMAL

LINT
O O O O

q >=

5

q >=

5

t >=

0

(q-t)

>= 5

q >=

5

q >= 5

t >= 0

(q-t) >=

5

O O O
ddc(q)

>= 5
O

INTE

GER
X O O O

q >=

10

q >=

10

t >=

0

(q-t)

>= 1

0

q >=

10

q >= 10

t >= 0

(q-t) >=

10

X O O
ddc(q)

>= 10
O

BIGIN

T
X X O O

q >=

19

q >=

19

t >=

0

(q-t)

>= 1

9

q >=

19

q >= 19

t >= 0

(q-t) >= 1

9

X X O
ddc(q)

>= 19
O

NUM

ERIC
X X X O

q ==

38

q ==

38

t ==

0

q ==

38

q == 38

t == 0
X X O

ddc(q)

== 38
O

NUM

ERIC

(p)

5 >=

p
10 >= p 19 >= p O

q >=

p

q >=

p

t >=

0

(q-t)

>= p

q >=

p

q >= p

t >= 0

(q-t) >= p

8 >=

p

16 >=

p
O

ddc(q)

>= p
O

NUM

ERIC

(p,s)

5 >=

p

0 >=

s

5 >=

(p-s)

10 >= p

0 >= s

10 >= (p-s)

19 >= p

0 >= s 1

9 >= (p-s

)

38 >

= p

0 >

= s

38

>=

(p-s)

q >=

p

0 >=

s

q >

= (p

-s)

q >=

p

t >=

s

(q-t

) >=

(p-s)

q >=

p

0 >

= s

q >

= (p

-s)

q >= p

t >= s

(q-t) >=

(p-s)

8 >=

p

16 >=

p
O

ddc(q)

>= p
O

q >=

p

ALTER TABLE name ALTER COLUMN | 1,627

NUM

BER(p

)

5 >=

p

10 >= p 19 >= p O q >=

p

t >=

0

(q-t

) >=

p

q >=

p

q >= p

t >= 0 (q-

t) >= p

8 >=

p

16 >=

p

O ddc(q)

>= p

O

NUM

BER(p

,s)

5 >=

p

0 >=

s

5 >=

(p-s)

10 >= p 0 >=

s 10 >= (p-s)

19 >= p

0 >= s

19 >=

(p-s)

38 >

= p

0 >=

s

3

8 >=

(p-s)

q >=

p

0 >=

s

q >=

(p-s)

q >=

p

t >=

s

(q-t

) >=

(p-s)

q >=

p

0 >=

s

q >=

(p-s)

q >= p

t >= s (q-

t) >= (p-s

)

8 >=

p

16 >=

p
O

ddc(q)

>= p
O

REAL X X X X X X X X O O O
ddc(q)

>= 8
O

DOU

BLE P

RECIS

ION

X X X X X X X X X O O
ddc(q)

>= 16
O

FLOA

T
X X X X X X X X X X O

ddc(q)

== 38
O

FLOA

T(p)
X X X X X X X X

8 >=

ddc

(p)

16 >=

ddc(p

)

O

ddc(q)

>= ddc

(p)

O

NUM

BER
X X X X X X X X X - O

ddc(q)

== 38
O

from

\ to

SM

ALLI

NT

INTEGER BIGINT

NU

MER

IC

NU

MER

IC(q

)

NU

MER

IC(q,

t)

NU

MBE

R(q)

NUMBER

(q,t)

REA

L

DOU

BLE P

RECIS

ION

FLO

AT

FLOAT

(q)

NU

MBE

R

Decimal digit count (ddc) value for the FLOAT (p) is as follows.

Table 16-8 Decimal digit count (ddc) value

FLOAT(p) ddc(p)

1 ~ 3 1

4 ~ 6 2

7 ~ 9 3

10 ~ 13 4

14 ~ 16 5

17 ~ 19 6

20 ~ 23 7

24 ~ 26 8

1,628 | SQL References

27 ~ 29 9

30 ~ 33 10

34 ~ 36 11

37 ~ 39 12

40 ~ 43 13

44 ~ 46 14

47 ~ 49 15

50 ~ 53 16

54 ~ 56 17

57 ~ 59 18

60 ~ 63 19

64 ~ 66 20

67 ~ 69 21

70 ~ 73 22

74 ~ 76 23

77 ~ 79 24

80 ~ 83 25

84 ~ 86 26

87 ~ 89 27

90 ~ 93 28

94 ~ 96 29

97 ~ 99 30

100 ~ 103 31

104 ~ 106 32

107 ~ 109 33

110 ~ 113 34

114 ~ 116 35

117 ~ 119 36

120 ~ 123 37

124 ~ 126 38

FLOAT(p) ddc(p)

All numeric types are managed in the same structure, and each numeric type is as same as the following

NUMBER (p, s) expression.

Table 16-9 NUMBER expressions of the numeric types

Numeric type NUMBER(p,s) expression

SMALLINT NUMBER(5,0)

INTEGER NUMBER(10,0)

BIGINT NUMBER(19,0)

NUMERIC NUMBER(38,0)

ALTER TABLE name ALTER COLUMN | 1,629

NUMERIC(p) NUMBER(p,0)

NUMERIC(p,s) NUMBER(p,s)

NUMBER(p) NUMBER(p,0)

NUMBER(p,s) NUMBER(p,s)

REAL NUMBER(8,N/A) <= FLOAT(24)

DOUBLE PRECISION NUMBER(16,N/A) <= FLOAT(53)

FLOAT NUMBER(38,N/A) <= FLOAT(126)

FLOAT(p) NUMBER(ddc(p), N/A)

NUMBER NUMBER(38, N/A)

Numeric type NUMBER(p,s) expression

Native numeric type is as same with as C language numeric type, and it can not be converted to another t

ype.

Table 16-10 Conversion of native numeric type

from \ to NATIVE_SMALLINT NATIVE_INTEGER NATIVE_BIGINT NATIVE_REAL NATIVE_DOUBLE

NATIVE_SMALLINT O X X X X

NATIVE_INTEGER X O X X X

NATIVE_BIGINT X X O X X

NATIVE_REAL X X X O X

NATIVE_DOUBLE X X X X O

Table 16-11 Conversion of boolean type

from \ to BOOLEAN

BOOLEAN O

Table 16-12 Conversion of date/time type (TZ: WITH TIME ZONE)

from \ to
DAT

E
TIME

TIME(g

)

TIME T

Z

TIME(g)

TZ

TIMESTA

MP

TIMESTAM

P(g)

TIMESTAM

P TZ

TIMESTAMP

(g) TZ

DATE O X X X X X X X X

TIME X O g >= 6 X X X X X X

TIME(f) X 6 >= f g >= f X X X X X X

TIME TZ X X X O g >= 6 X X X X

TIME(f) TZ X X X 6 >= f g >= f X X X X

TIMESTAMP X X X X X O g >= 6 X X

TIMESTAMP

(f)
X X X X X 6 >= f g >= f X X

1,630 | SQL References

TIMESTAMP

TZ
X X X X X X X O g >= 6

TIMESTAMP

(f) TZ
X X X X X X X 6 >= f g >= f

from \ to
DAT

E
TIME

TIME(g

)

TIME T

Z

TIME(g)

TZ

TIMESTA

MP

TIMESTAM

P(g)

TIMESTAM

P TZ

TIMESTAMP

(g) TZ

Table 16-13 Type conversion of INTERVAL YEAR TO MONTH family (If p,q are omitted, then it is 2.)

from \ to YEAR(q) MONTH(q) YEAR(q) TO MONTH

YEAR(p) q >= p X X

MONTH(p) X q >= p X

YEAR(p) TO MONTH X X q >= p

Table 16-14 Type conversion of INTERVAL DAY TO TIME family (If p,q are omitted, then it is 2.) (If f,g ar

e omitted, then it is 6.)

from \ to
DAY

(q)

HO

UR

(q)

MIN

UTE

(q)

SECO

ND(q,

g)

DAY(q)

TO HOU

R

DAY(q) T

O MINUT

E

DAY(q) T

O SECON

D(g)

HOUR(q)

TO MINU

TE

HOUR(q) T

O SECOND

(g)

MINUTE(q)

TO SECOND

(g)

DAY(p)
q >=

p
X X X X X X X X X

HOUR(p) X
q >=

p
X X X X X X X X

MINUTE(p) X X
q >=

p
X X X X X X X

SECOND(p,f

)
X X X

q >=

p

g >=

f

X X X X X X

DAY(p) TO

HOUR
X X X X q >= p X X X X X

DAY(p) TO

MINUTE
X X X X X q >= p X X X X

DAY(p) TO

SECOND(f)
X X X X X X

q >= p

g >= f
X X X

HOUR(p) T

O MINUTE
X X X X X X X q >= p X X

HOUR(p) T

O SECOND

(f)

X X X X X X X X
q >= p

g >= f
X

ALTER TABLE name ALTER COLUMN | 1,631

MINUTE(p)

TO SECOND

(f)

X X X X X X X X X
q >= p

g >= f

from \ to
DAY

(q)

HO

UR

(q)

MIN

UTE

(q)

SECO

ND(q,

g)

DAY(q)

TO HOU

R

DAY(q) T

O MINUT

E

DAY(q) T

O SECON

D(g)

HOUR(q)

TO MINU

TE

HOUR(q) T

O SECOND

(g)

MINUTE(q)

TO SECOND

(g)

Table 16-15 Conversion of ROWID type

from \ to ROWID

ROWID O

<alter identity column specification>

It alters the identity property of the column.

The column should be an identity column.

● SET GENERATED [ALWAYS | BY DEFAULT]

○ It changes the method of generating the identity column.

○ For more information, refer to <identity column specification> of CREATE TABLE statement.

● <alter sequence generator restart option>

○ It changes NEXT VALUE of the identity column.

○ For more information, refer to <alter sequence generator restart option> clause of ALTER SEQUE

NCE statement.

● <basic sequence generator option>

○ It changes the property of the identity column.

○ In SQL standard, it is defined to be described in the form of SET <basic sequence generator optio

n>, but it can be omitted.

○ For more information, refer to ALTER SEQUENCE statement.

<drop identity property clause>

It drops the identity property of the column.

The column should be the identity column.

Description

SET NOT NULL clause requires the time for checking null in proportion to the number of table rows.

1,632 | SQL References

The following columns do not allow NULL values. In other words, even if DROP NOT NULL clause is perfor

med, NULL is not allowed in the following cases.

● A column which includes NOT NULL constraint

● A column which is included in primary key constraint

● An identity column

The change of the default value using SET DEFAULT clause and the change of the identity property using

<alter identity column specification> clause, is applied to INSERT or UPDATE statement which is performe

d later.

Examples

The following is an example of setting DEFAULT property to the column.

gSQL> ALTER TABLE region ALTER COLUMN r_comment SET DEFAULT 'N/A';

Table altered.

The following is an example of dropping DEFAULT property from the column.

gSQL> ALTER TABLE region ALTER COLUMN r_comment DROP DEFAULT;

Table altered.

The following is an example of setting NOT NULL constraint to the column.

gSQL> ALTER TABLE region ALTER COLUMN r_regionkey SET NOT NULL;

Table altered.

The following is an example of dropping the NOT NULL constraint from the column.

gSQL> ALTER TABLE region ALTER COLUMN r_regionkey DROP NOT NULL;

Table altered.

The following is an example of extending the data type size of the column.

gSQL> ALTER TABLE region ALTER COLUMN r_comment SET DATA TYPE VARCHAR(512);

Table altered.

The following is an example of restarting the next value of the identity column.

ALTER TABLE name ALTER COLUMN | 1,633

gSQL> ALTER TABLE region ALTER COLUMN r_regionkey RESTART;

Table altered.

The following is an example of dropping the identity property from the column.

gSQL> ALTER TABLE region ALTER COLUMN r_regionkey DROP IDENTITY;

Table altered.

Compatibility

Table 16-16 The SQL satndards compatibility

Feature ID Description Compatibility

F381 Extended schema manipulation X

F382 Alter column data type O

F383 Set column not null clause O

F384 Drop identity property value O

F385 Drop column generation expression clause X

F386 Set identity column generation clause O

S043 Enhanced reference types X

T174 Identity columns O

T178 Identity columns: simple restart option O

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name ADD COLUMN

● ALTER TABLE name SET UNUSED COLUMN

● ALTER TABLE name RENAME COLUMN

1,634 | SQL References

16.44 ALTER TABLE name RENAME COLUMN

Function

It renames the table column.

Syntax

<rename column statement> ::=

ALTER TABLE table_name

RENAME COLUMN old_column_name TO new_column_name

;

Invocation and Access Rules

One of the following privileges is required to perform <rename column statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

old_column_name

It is the old column name to be altered.

ALTER TABLE name RENAME COLUMN | 1,635

new_column_name

It is the new column name to be altered.

The same column name should not exist in a table.

Description

Even when the column name is altered it does not require the object change such as index, constraint wh

ich is generated based on the previous column.

Example

The following is an example of exchanging the names of two columns, col_1 and col_2.

gSQL> ALTER TABLE t1 RENAME COLUMN col_1 TO col_temp;

Table altered.

gSQL> ALTER TABLE t1 RENAME COLUMN col_2 TO col_1;

Table altered.

gSQL> ALTER TABLE t1 RENAME COLUMN col_temp TO col_2;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define <rename column statement>.

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name ADD COLUMN

● ALTER TABLE name SET UNUSED COLUMN

● ALTER TABLE name ALTER COLUMN

1,636 | SQL References

16.45 ALTER TABLE name ADD CONSTRAINT

Function

It adds a table constraint.

Syntax

<add table constraint definition> ::=

ALTER TABLE table_name

ADD <table constraint definition>

;

Invocation and Access Rules

The user should satisfy the following conditions to perform <add table constraint definition> clause.

● One of the following privileges is required on the table to create the constraint.

○ (ALTER or CONTROL TABLE) ON TABLE for that table

○ (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ ALTER ANY TABLE ON DATABASE

● One of the following privileges is required on the schema to create the constraint.

○ (ADD CONSTRAINT or CONTROL SCHEMA) ON SCHEMA for the schema

○ ALTER ANY TABLE ON DATABASE

● One of the following privileges is required for the tablespace in which the index is to be created to cr

eate the key constraint

○ CREATE OBJECT ON TABLESPACE for the tablespace

○ USAGE TABLESPACE ON DATABASE

● The owner of the created constraint is determined as follows.

○ The owner of the schema to which the constraint belongs.

○ If the schema to which the constraint belongs is PUBLIC, then it is the user who executed the stat

ement.

ALTER TABLE name ADD CONSTRAINT | 1,637

Note

Constraints of PRIMARY KEY, UNIQUE in a cluster system should include all sharding keys.

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

<table constraint definition>

It defines the constraint to be added.

NOT NULL constraint can not be added by using ALTER TABLE .. ADD CONSTRAINT statement, and it can

be defined by using ALTER TABLE name ALTER COLUMN statement as follows.

ALTER TABLE t1 ALTER COLUMN c1 SET NOT NULL;

For more information, refer to <table constraint definition> clause of CREATE TABLE statement.

Description

When adding the key constraints such as primary key, unique key, the index is automatically created for t

hem.

Examples

The following is an example of adding the primary key constraint to the table.

gSQL> ALTER TABLE t1 ADD PRIMARY KEY (id);

Table altered.

The following is an example of specifying the constraint name when adding a primary key constraint to th

1,638 | SQL References

e table.

gSQL> ALTER TABLE t1 ADD CONSTRAINT t1_pk PRIMARY KEY (id);

Table altered.

The following is an example of adding a DEFERRABLE constraint.

gSQL> ALTER TABLE t1 ADD CONSTRAINT t1_uk UNIQUE (id) DEFERRABLE INITIALLY DEFERRED;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

Table 16-17 SQL standard compatibility

Feature ID Description Compatibility

F381 Extended schema manipulation O

For More Information

Refer to the followings.

● CREATE TABLE

● CREATE INDEX

● ALTER TABLE

● ALTER TABLE name DROP CONSTRAINT

ALTER TABLE name DROP CONSTRAINT | 1,639

16.46 ALTER TABLE name DROP CONSTRAINT

Function

It drops a table constraint.

Syntax

<drop table constraint definition> ::=

ALTER TABLE table_name

DROP <constraint object>

[<drop behavior>]

;

<constraint object> ::=

CONSTRAINT constraint_name

| PRIMARY KEY

| UNIQUE (column_name [, ...])

<drop behavior> ::=

RESTRICT

| CASCADE

| CASCADE CONSTRAINTS

Invocation and Access Rules

One of the following privileges is required to perform <drop table constraint definition>.

● The owner of that constraint

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

1,640 | SQL References

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

CONSTRAINT constraint_name

It is the constraint name to be dropped.

PRIMARY KEY

It is the primary key constraint for the table.

UNIQUE(column_name [, ...])

It is the unique constraint for the columns.

<drop behavior>

When it is omitted, the default value is RESTRICT.

Currently, RESTRICT/CASCADE is operated in the same way.

Description

<drop column not null clause> of ALTER TABLE name ALTER COLUMN is used to drop NOT NULL constrai

nt without using the constraint name.

Examples

The following is an example of dropping a primary key constraint from the table.

gSQL> ALTER TABLE t1 DROP PRIMARY KEY;

Table altered.

ALTER TABLE name DROP CONSTRAINT | 1,641

The following is an example of dropping the table constraint by specifying the constraint name.

gSQL> ALTER TABLE t1 DROP CONSTRAINT t1_pk;

Table altered.

Compatibility

The SQL standard does not define the following clauses.

● DROP PRIMARY KEY

● DROP UNIQUE (column_name [, ...])

● CASCADE CONSTRAINTS

Table 16-18 SQL standard compatibility

Feature ID Description Compatibility

F381 Extended schema manipulation O

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name ADD CONSTRAINT

● DROP INDEX

1,642 | SQL References

16.47 ALTER TABLE name ALTER CONSTRAINT

Function

It alters the characteristics of the table constraint.

Syntax

<alter table constraint definition> ::=

ALTER TABLE table_name

ALTER <constraint object> <constraint characteristics>

;

<constraint object> ::=

CONSTRAINT constraint_name

| PRIMARY KEY

| UNIQUE (column_name [, ...])

<constraint characteristics> ::=

[NOT] DEFERRABLE [<constraint check time>]

| <constraint check time> [[NOT] DEFERRABLE]

<constraint check time> ::=

INITIALLY DEFERRED

| INITIALLY IMMEDIATE

Invocation and Access Rules

One of the following privileges is required to perform <alter table constraint definition>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Note

Cluster does not support the deferrable constraints.

ALTER TABLE name ALTER CONSTRAINT | 1,643

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

<constraint object>

The constraint to be altered is specified as follows.

● CONSTRAINT constraint_name

○ The constraint name to be altered.

● PRIMARY KEY

○ PRIMARY KEY constraint of the table

● UNIQUE(column [,...])

○ UNIQUE constraint which satisfies the column list.

DEFERRABLE | NOT DEFERRABLE

It alters whether the constraint state is deferrable.

● DEFERRABLE

○ The constraint is altered to be deferrable.

● NOT DEFERRABLE

○ The constraint is altered not to be deferrable.

INITIALLY IMMEDIATE | INITIALLY DEFERRED

It alters an initial value of the check point for the constraint.

● INITIALLY IMMEDIATE

○ It checks the constraints at the time of DML.

● INITIALLY DEFERRED

○ It checks the constraints at the time of COMMIT.

The constraints defined as NOT DEFERRABLE can not be altered to INITIALLY DEFERRED.

1,644 | SQL References

Description

For more information about the deferrable constraints, refer to SET CONSTRAINTS.

Example

The following is an example that the constraint t1_uk is set as deferrable and its checking time is set as D

EFERRED.

gSQL> ALTER TABLE t1 ALTER CONSTRAINT t1_uk DEFERRABLE INITIALLY DEFERRED;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define the following clauses.

● ALTER PRIMARY KEY clause

● ALTER UNIQUE(column [,...]) clause

Table 16-19 SQL standard compatibility

Feature ID Description Compatibility

F492 Optional table constraint enforcement X

ALTER TABLE name RENAME CONSTRAINT | 1,645

16.48 ALTER TABLE name RENAME CONSTRAINT

Function

It renames the table constraints.

Syntax

<rename table constraint statement> ::=

ALTER TABLE table_name

RENAME <constraint object> TO new_constraint_name

;

<constraint object> ::=

CONSTRAINT constraint_name

| PRIMARY KEY

| UNIQUE (column_name [, ...])

Invocation and Access Rules

One of the following privileges is required to perform <rename table constraint statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

1,646 | SQL References

<constraint object>

The existing name of the constraint to be altered is specified as follows.

● CONSTRAINT constraint_name

○ The constraint name to be altered

● PRIMARY KEY

○ PRIMARY KEY constraint of the table

● UNIQUE(column [,...])

○ UNIQUE constraint which satisfies the column list

new_column_name

It is the new name of a constraint to be altered.

Description

The index name which was automatically created with a key constraint such as primary key, unique key is

not altered. Use ALTER INDEX name RENAME TO statement to rename the index.

Examples

The following is an example of renaming the primary key constraint of the table.

gSQL> ALTER TABLE t1 RENAME PRIMARY KEY TO pk_t1;

Table altered.

The following is an example of renaming the table constraint by specifying the constraint name.

gSQL> ALTER TABLE t1 RENAME CONSTRAINT pk_t1 TO t1_pk;

Table altered.

Compatibility

The SQL standard does not define the <rename table constraint statement> statement.

ALTER TABLE name RENAME CONSTRAINT | 1,647

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name ADD CONSTRAINT

● ALTER TABLE name DROP CONSTRAINT

● ALTER TABLE name ALTER CONSTRAINT

1,648 | SQL References

16.49 ALTER TABLE name ADD GLOBAL SECOND

ARY INDEX

Function

It creates a global secondary index in a table.

Syntax

<alter table add global secondary index definition> ::=

ALTER TABLE table_name

ADD GLOBAL SECONDARY INDEX

[<index attributes> [...]] [TABLESPACE tablespace_name]

;

<index attributes> ::=

<physical attribute clause>

| STORAGE (<segment attr clause> [...])

| <logging clause>

| <parallel clause>

<physical attribute clause> ::=

PCTFREE integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

INITIAL <size_clause>

| NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

<size clause> ::=

integer [K | M | G | T]

<logging clause> ::=

LOGGING

| NOLOGGING

<parallel clause> ::=

NOPARALLEL

| PARALLEL [integer]

ALTER TABLE name ADD GLOBAL SECONDARY INDEX | 1,649

Invocation and Access Rules

<alter table add global secondary index definition> can be defined in a cluster system, and a user should s

atisfy the following conditions.

● At least one of the following privileges for a table in which the index is to be created is required.

○ (ALTER or CONTROL TABLE) ON TABLE for that table

○ (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs.

○ ALTER ANY TABLE ON DATABASE

● At least one of the following privileges for a tablespace in which the index is to be created is required.

○ CREATE OBJECT ON TABLESPACE for that tablespace

○ USAGE TABLESPACE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a table in which the index is to be created.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

<physical attribute clause>

It defines the physical attribute information of the index.

● PCTFREE integer

○ Definition

■ The reserved space to adjust the frequency of page splits caused by inserting the key in the p

age.

■ It is applied only when the index bottom-up build.

○ It can use of the value from 0 to 99.

○ If it is omitted, the value set in DEFAULT_INDEX_PCTFREE property is used by default.

● INITRANS integer

○ Definition

■ The initial number of transactions simultaneously accessing the page.

■ If the number of users accessing the index is small, then INITRANS is set low. If the number o

f users simultaneously accessing the index is big, then INITRANS is set high.

■ If necessary, it is automatically increased to the specified MAXTRANS.

1,650 | SQL References

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 4.

● MAXTRANS integer

○ Definition

■ It specifies the maximum number of transactions simultaneously accessing the page.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 8.

<segment attr clause>

It specifies the information for the index storage space.

● INITIAL integer

○ Definition

■ It specifies the size of physical storage space which is initially allocated when creating the ind

ex.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'INITIAL 100' is actually operated as 8192 bytes.)

■ The size (aligned to the EXTENT size of TABLESPACE) should be equal to or bigger than MIN

EXTENTS, or it should be equal to or less than MAXEXTENTS.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the table belongs.

● NEXT integer

○ Definition

■ It specifies the physical space size to be allocated when adding the space to the index.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'NEXT 100' is actually operated as 8192 bytes.)

■ NEXT operates as follows, depending on the remaining space size of the index available curr

ently. (Obtained by subtracting the amount of currently used space from the MAXEXTENTS si

ze)

- If the remaining space size is 0, then it can not extend the space.

- If the remaining space size is bigger than 0, but smaller than NEXT, then it allocates the

space as big as the remaining space.

- If the remaining space size is bigger than NEXT, then it allocates the space as big as the NEXT.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the index belongs.

● MINSIZE integer

○ Definition

■ It is the minimum space size of the index.

■ The value should be equal to or smaller than MAXSIZE.

ALTER TABLE name ADD GLOBAL SECONDARY INDEX | 1,651

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is smaller than the size of two EXTENT, it is specified to the size of two EXTENT.

○ If it is omitted, the default value is the size of two EXTENT.

● MAXSIZE integer

○ Definition

■ It is the maximum space size of the index.

■ The value should be equal to or bigger than MINSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is EXTENT size * 2147483647(The maximum positive integer of I

NT32).

<size clause>

It specifies the file size in byte. (If it is omitted, the default unit is bytes.)

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

LOGGING | NOLOGGING

It specifies whether to redo log the index.

If it is omitted, the default value is NOLOGGING.

NOPARALLEL | PARALLEL [integer]

It specifies the number of threads to be used when building an index.

● NOPARALLEL

○ It does not build an index in parallel.

● PARALLEL [integer]

○ It builds an index in parallel.

○ If an integer is omitted or set as 0, then it follows the property (INDEX_BUILD_PARALLEL_FACTO

R).

○ The minimum value of an integer is 0 and the maximum value is 16.

○ If the property value is 0, then the system determines the optimal value.

● If it is omitted, the default value is PARALLEL.

1,652 | SQL References

TABLESPACE tablespace_name

It specifies the name of the tablespace in which the index is to be stored.

● If it specifies tablespace_name

○ The tablespace_name of LOGGING index should be a data tablespace.

○ The tablespace_name of NOLOGGING index should be a temporary tablespace or a nologging ta

blespace.

● If it omits TABLESPACE clause

○ If INDEX TABLESPACE tablespace_name of USER is specified

■ The defined tablespace is used.

○ If INDEX TABLESPACE of USER is NULL

■ LOGGING index uses the user's default data tablespace.

■ NOLOGGING index uses the user's default temporary tablespace.

Description

A non-deterministic query requires the global secondary index. LOGGING index and NOLOGGING index h

ave the following trade-offs.

● LOGGING index

○ Advantage: It does not separately build an index because the index is automatically restored by u

sing the log when starting up the system.

○ Disadvantage: A disk I/O occurs because the changes on the index are recorded on the log when

altering the row.

● NOLOGGING index

○ Advantage: A disk I/O does not occur for the changes on the index when altering the row.

○ Disadvantage: It automatically rebuilds the index when starting up the system because the log inf

ormation of the index does not exist.

Examples

The following is an example of adding a global secondary index to the table T1.

gSQL> ALTER TABLE T1 ADD GLOBAL SECONDARY INDEX;

Table altered.

gSQL> COMMIT;

Commit complete.

ALTER TABLE name ADD GLOBAL SECONDARY INDEX | 1,653

The following is an example of creating a global secondary index with a logging option on the tablespac

e USER_DATA_TBS of table T1.

gSQL> ALTER TABLE T1 ADD GLOBAL SECONDARY INDEX LOGGING TABLESPACE USER_DATA_TBS;

Table altered.

gSQL> COMMIT;

Commit complete.

The following is an example of creating a global secondary index with a nologging option on the tablesp

ace USER_TEMP_TBS of table T1.

gSQL> ALTER TABLE T1 ADD GLOBAL SECONDARY INDEX NOLOGGING TABLESPACE USER_TEMP_TBS;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define the concepts of the global secondary index.

For More Information

Refer to the followings.

● ALTER TABLE name DROP GLOBAL SECONDARY INDEX

● ALTER TABLE name ALTER GLOBAL SECONDARY INDEX

● CREATE TABLE

1,654 | SQL References

16.50 ALTER TABLE name DROP GLOBAL SECOND

ARY INDEX

Function

It drops a global secondary index from the table.

Syntax

<alter table drop global secondary index definition> ::=

ALTER TABLE table_name

DROP GLOBAL SECONDARY INDEX

;

Invocation and Access Rules

<alter table drop global secondary index definition> statement can be defined in a cluster system, and the

user should satisfy the following conditions.

● The following privilege for the table from which the index is to be dropped is required

○ (ALTER or CONTROL TABLE) ON TABLE for that table

○ (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a table from which the index is to be dropped.

ALTER TABLE name DROP GLOBAL SECONDARY INDEX | 1,655

Description

A global secondary index is required to enquire a non-deterministic query.

Examples

It drops a global secondary index from the table T1.

gSQL> ALTER TABLE T1 DROP GLOBAL SECONDARY INDEX;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define the concepts of the global secondary index.

For More Information

Refer to the followings.

● ALTER TABLE name ADD GLOBAL SECONDARY INDEX

● ALTER TABLE name ALTER GLOBAL SECONDARY INDEX

1,656 | SQL References

16.51 ALTER TABLE name ALTER GLOBAL SECON

DARY INDEX

Function

It alters the physical attributes of the global secondary index in the table.

Syntax

<alter table alter global secondary index storage statement> ::=

ALTER TABLE table_name ALTER GLOBAL SECONDARY INDEX

<physical attribute clause>

| [STORAGE (<segment attr clause> [...])]

;

<physical attribute clause> ::=

PCTFREE integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

INITIAL <size_clause>

| NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

<size clause> ::=

integer [K | M | G | T]

Invocation and Access Rules

One of the following privileges is required to perform <alter table alter global secondary index storage sta

tement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

ALTER TABLE name ALTER GLOBAL SECONDARY INDEX | 1,657

Syntax Rules and Parameters

table_name

It is the name of a table in which the index is to be created.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

<physical attribute clause>

It defines the physical attribute information of the index.

● PCTFREE integer

○ Definition

■ The reserved space to adjust the frequency of page splits caused by inserting the key in the p

age.

■ It is applied only when the index bottom-up build.

○ It can use of the value from 0 to 99.

○ If it is omitted, the value set in DEFAULT_INDEX_PCTFREE property is used by default.

● INITRANS integer

○ Definition

■ The initial number of transactions simultaneously accessing the page.

■ If the number of users accessing the index is small, then INITRANS is set low. If the number o

f users simultaneously accessing the index is big, then INITRANS is set high.

■ If necessary, it is automatically increased to the specified MAXTRANS.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 4.

● MAXTRANS integer

○ Definition

■ It specifies the maximum number of transactions simultaneously accessing the page.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 8.

<segment attr clause>

It specifies the information for the index storage space.

● INITIAL integer

○ Definition

1,658 | SQL References

■ It specifies the size of physical storage space which is initially allocated when creating the ind

ex.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'INITIAL 100' is actually operated as 8192 bytes.)

■ The size (aligned to the EXTENT size of TABLESPACE) should be equal to or bigger than MIN

EXTENTS, or it should be equal to or less than MAXEXTENTS.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the table belongs.

● NEXT integer

○ Definition

■ It specifies the physical space size to be allocated when adding the space to the index.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'NEXT 100' is actually operated as 8192 bytes.)

■ NEXT operates as follows, depending on the remaining space size of the index available curr

ently. (Obtained by subtracting the amount of currently used space from the MAXEXTENTS si

ze)

- If the remaining space size is 0, then it can not extend the space.

- If the remaining space size is bigger than 0, but smaller than NEXT, then it allocates the

space as big as the remaining space.

- If the remaining space size is bigger than NEXT, then it allocates the space as big as the NEXT.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the index belongs.

● MINSIZE integer

○ Definition

■ It is the minimum space size of the index.

■ The value should be equal to or smaller than MAXSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is smaller than the size of two EXTENT, it is specified to the size of two EXTENT.

○ If it is omitted, the default value is the size of two EXTENT.

● MAXSIZE integer

○ Definition

■ It is the maximum space size of the index.

■ The value should be equal to or bigger than MINSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is EXTENT size * 2147483647(The maximum positive integer of I

NT32).

ALTER TABLE name ALTER GLOBAL SECONDARY INDEX | 1,659

<size clause>

It specifies the file size in byte. (If it is omitted, the default unit is bytes.)

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

Description

A global secondary index is required to enquire a non-deterministic query.

Examples

It alters the maximum available size to be used by a global secondary index in the table T1 to 100 MBytes.

gSQL> ALTER TABLE T1 ALTER GLOBAL SECONDARY INDEX STORAGE(MAXSIZE 100M);

Table altered.

gSQL> COMMIT;

Commit complete.

It alters the INITRANS value and the MAXTRANS value to 2 and 4 each which are to be used by a global s

econdary index in the table T1

gSQL> ALTER TABLE T1 ALTER GLOBAL SECONDARY INDEX INITRANS 2 MAXTRANS 4;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define the concepts of the global secondary index.

1,660 | SQL References

For More Information

Refer to the followings.

● ALTER TABLE name ADD GLOBAL SECONDARY INDEX

● ALTER TABLE name DROP GLOBAL SECONDARY INDEX

ALTER TABLE name MOVE SHARD | 1,661

16.52 ALTER TABLE name MOVE SHARD

Function

It rebalances a specific shard of a table, or the entire shard in a specific cluster group to a specific cluster

group.

Syntax

<alter table move shard statement> ::=

ALTER TABLE table_name MOVE SHARD

{ shard_name_list | FROM CLUSTER GROUP src_cluster_group }

TO CLUSTER GROUP dest_cluster_group [ONLINE | OFFLINE]

;

Invocation and Access Rules

It can be performed in a cluster system.

One of the following privileges is required to perform <alter table move shard statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

The statement can be performed only when that table is a cluster group specific table.

1,662 | SQL References

shard_name_list

It is the shard name list to be rebalanced.

If the shard does not exist in that table, then the statement can not be performed.

src_cluster_group

It is the name of a specific cluster group to be rebalanced.

dest_cluster_group

It is the name of a target cluster group on which the shard of the table is to be rebalanced.

If the shard of the table already exists in the specified cluster group, the statement cannot be performed.

[ONLINE | OFFLINE]

It determines whether to allow DML when rebalancing table shard.

● ONLINE

○ It allows INSERT, UPDATE, and DELETE.

● OFFLINE

○ It does not allow INSERT, UPDATE, DELETE.

● When it is omitted, the default value is ONLINE.

Description

It rebalances a specific shard of the table from a specific cluster group to another cluster group.

To drop a specific cluster group, rebalance the shard of the table then perform the DROP CLUSTER GRO

UP statement.

To move shards of all tables from a specific cluster group to another cluster group, then perform the ALT

ER DATABASE MOVE SHARD FROM CLUSTER GROUP TO CLUSTER GROUP statement.

Examples

The following is an example of executing the <alter table move shard statement> statement.

ALTER TABLE name MOVE SHARD | 1,663

gSQL> ALTER TABLE t1 MOVE SHARD shard1, shard2 TO CLUSTER GROUP g3;

Table altered.

gSQL> ALTER TABLE t1 MOVE SHARD FROM CLUSTER GROUP g1 TO CLUSTER GROUP g3;

Table altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to ALTER DATABASE MOVE SHARD.

1,664 | SQL References

16.53 ALTER TABLE name REBALANCE

Function

It rebalances the shard in a table.

Syntax

<alter table rebalance statement> ::=

ALTER TABLE table_name REBALANCE [ONLINE | OFFLINE]

;

Invocation and Access Rules

It can be performed in a cluster system.

One of the following privileges is required to perform <alter table rebalance statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

[ONLINE | OFFLINE]

It determines whether to allow DML when rebalancing table shard.

ALTER TABLE name REBALANCE | 1,665

● ONLINE

○ It allows INSERT, UPDATE, and DELETE.

● OFFLINE

○ It does not allow INSERT, UPDATE, DELETE.

● When it is omitted, the default value is ONLINE.

Description

It does not rebalance shards in a table when adding a cluster member or a cluster group by using the foll

owing statements.

● CREATE CLUSTER GROUP

● ALTER CLUSTER GROUP name ADD MEMBER

To rebalance the shards of a table in the added cluster group and the cluster member, perform the <alter

table rebalance statement> statement. The operation succeeds without a separate rebalancing if the shar

d of the table is already rebalanced.

To rebalance shards in all tables, perform the ALTER DATABASE REBALANCE statement.

Examples

The following is an example of executing the <alter table rebalance statement> statement.

gSQL> ALTER TABLE t1 REBALANCE;

Table altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

1,666 | SQL References

16.54 ALTER TABLE name REBALANCE EXCLUDE

CLUSTER GROUP cluster_group_list

Function

It rebalances the shard of the table not to include a shard in a specific cluster group.

Syntax

<alter table rebalance exclude cluster group statement> ::=

ALTER TABLE table_name REBALANCE

EXCLUDE CLUSTER GROUP cluster_group_list [ONLINE | OFFLINE]

;

Invocation and Access Rules

It can be performed in a cluster system.

One of the following privileges is required to perform <alter table rebalance exclude cluster group statem

ent>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

The statement can be performed only when that table is a cluster-wide table.

ALTER TABLE name REBALANCE EXCLUDE CLUSTER GROUP cluster_group_list | 1,667

cluster_group_list

It is a list of the cluster group which does not include a shard of a table.

If the cluster group to be excluded from the rebalancing is the entire group, the statement can not be per

formed.

[ONLINE | OFFLINE]

It determines whether to allow DML when rebalancing table shard.

● ONLINE

○ It allows INSERT, UPDATE, and DELETE.

● OFFLINE

○ It does not allow INSERT, UPDATE, DELETE.

● When it is omitted, the default value is ONLINE.

Description

It excludes a specific cluster group and rebalances the shard of the table.

If the shard of the table does not exist in that cluster group, the operation succeeds without a separate re

balancing.

It rebalances the shard based on the cluster group in which the shard of the table is located.

To drop a specific cluster group, rebalance the shard of the table and perform DROP CLUSTER GROUP st

atement.

To rebalance the shard excluding a cluster group from all tables, perform the ALTER DATABASE REBALA

NCE EXCLUDE CLUSTER GROUP statement.

Examples

The following is an example of executing the <alter table rebalance exclude cluster group statement> stat

ement.

gSQL> ALTER TABLE t1 REBALANCE EXCLUDE CLUSTER GROUP g3;

Table altered.

1,668 | SQL References

Compatibility

The SQL standard does not define the concepts of the cluster.

ALTER TABLE name SPLIT SHARD | 1,669

16.55 ALTER TABLE name SPLIT SHARD

Function

It rebalances a specific shard of a table by splitting it in a cluster environment.

Syntax

<alter table split shard statement> ::=

ALTER TABLE table_name SPLIT SHARD source_shard_name

INTO (<split shard placement> [, ...])

;

<split shard placement> ::=

<split shard bound def> AT CLUSTER GROUP dest_group_name

<split shard bound def> ::=

<split list shard def>

| <split range shard def>

<split list shard def> :=

SHARD dest_shard_name VALUES IN (<split list value clause>)

<split list value clause> :=

<split list value> [, ...]

<split list value> :=

constant

| NULL

<split range shard def> :=

SHARD dest_shard_name VALUES LESS THAN (<split range value clause>)

<split range value clause> :=

<split range value> [, ...]

<split range value> :=

constant

Invocation and Access Rules

It can be performed in a cluster system.

1,670 | SQL References

One of the following privileges is required to perform <alter table split shard statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

The statement can be performed only when that table is a cluster group specific table, and when the shar

d is a list shard or a range shard.

source_shard_name

It is the name of an original shard to be split.

If the shard does not exist in that table, the statement can not be performed.

<split shard placement>

It defines the target shard to which the original shard is rebalanced by splitting.

<split shard bound def>

It defines the bound of a target shard to be split.

It can be defined as one of two following bound defs.

● <split list shard def>

● <split range shard def>

<split list shard def>

It defines a split shard bound for a list shard.

● dest_shard_name

○ It is the name of a target shard.

ALTER TABLE name SPLIT SHARD | 1,671

● <split list value clause>

○ <split list value> should be an integer.

○ <split list value> can not be NULL.

○ <split list value> can not be DEFAULT.

○ S1 : (1, 11, 21, 31, NULL) SPLIT SHARD S1 INTO (<split list value clause> ..)

■ (O) SHARD S11 VALUES IN (1)

■ (O) SHARD S11 VALUES IN (1, NULL)

■ (O) SHARD S11 VALUES IN (1, 11, 21, 31)

■ (X) SHARD S11 VALUES IN (2)

■ (X) SHARD S11 VALUES IN (DEFAULT)

■ (X) SHARD S11 VALUES IN (1, 11, 21, 31, NULL)

<split range shard def>

It defines a split shard bound for a range shard.

● <split range value clause>

○ <split list value> should be an integer.

○ <split list value> can not be NULL.

○ <split list value> can not be MAXVALUE.

○ S1 : (100, 100), S2 : (50, 50) SPLIT SHARD S1 INTO (<split range value clause> ..)

■ (O) SHARD S11 VALUES IN (50, 100)

■ (O) SHARD S11 VALUES IN (100, 50)

■ (O) SHARD S11 VALUES IN (60, 60)

■ (X) SHARD S11 VALUES IN (50, NULL)

■ (X) SHARD S11 VALUES IN (50, 50)

■ (X) SHARD S11 VALUES IN (100, 100)

■ (X) SHARD S11 VALUES IN (100, 110)

■ (X) SHARD S11 VALUES IN (MAXVALUE, 100)

dest_group_name

It is the name of a cluster group in which the split shard is to be rebalanced.

Description

It splits a specific shard of a specific table and rebalances it to a random cluster group.

This is used to distribute records and loads by splitting the shards when records corresponding to a specifi

c shard is too much or when a specific group member is overloaded.

1,672 | SQL References

Examples

The following is an example of executing the <alter table split shard statement> statement.

gSQL> ALTER TABLE t1 SPLIT SHARD shard1 INTO (SHARD shard11 VALUES IN (11) AT CLUSTER GROUP

G2);

Table altered.

gSQL> ALTER TABLE t1 SPLIT SHARD shard1 INTO (SHARD shard11 VALUES LESS THAN (11) AT

CLUSTER GROUP G2);

Table altered.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● ALTER TABLE name REBALANCE

● ALTER TABLE name REBALANCE EXCLUDE CLUSTER GROUP cluster_group_list

● ALTER TABLE name MOVE SHARD

ALTER TABLE name RENAME SHARD | 1,673

16.56 ALTER TABLE name RENAME SHARD

Function

It renames a specific shard of a table in cluster environment.

Syntax

<alter table rename shard statement> ::=

ALTER TABLE table_name

RENAME SHARD shard_name TO new_shard_name

;

Invocation and Access Rules

It can be performed in a cluster system.

One of the following privileges is required to perform <alter table rename shard statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

1,674 | SQL References

shard_name

It is the existing name of a shard to be altered.

If the shard does not exist in that table, then the statement can not be performed.

new_shard_name

It is the new name of a shard to be altered.

The same shard name should not exist in the table.

Description

It alters the name of a specific shard of a hash, a range, or a list table. This statement can not be perform

ed for a cloned table.

Examples

The following is an example of executing <alter table rename shard statement> statement.

gSQL> ALTER TABLE t_range RENAME SHARD r_01 TO r_new_01;

Table altered.

gSQL> ALTER TABLE t_list RENAME SHARD l_01 TO l_new_01;

Table altered.

gSQL> ALTER TABLE t_hash RENAME SHARD shard_000000 TO h_new_00;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define the concepts of the cluster.

ALTER TABLE name RENAME SHARD | 1,675

For More Information

Refer to the followings.

● ALTER TABLE

● ALTER TABLE name MOVE SHARD

● ALTER TABLE name SPLIT SHARD

● ALTER TABLE name REBALANCE

1,676 | SQL References

16.57 ALTER TABLE name READ { ONLY | WRITE }

Function

It sets READ { ONLY | WRITE } in a table.

Syntax

<alter table read { only | write } statement> :==

ALTER TABLE table_name

READ { ONLY | WRITE }

;

Invocation and Access Rules

One of the following privileges is required to perform <alter table read { only | write } statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name.

It can define a schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

ALTER TABLE name READ { ONLY | WRITE } | 1,677

Description

It sets table property to READ { ONLY | WRITE }.

If it is set to READ ONLY, neither SELECT .. FOR UPDATE statement, nor DML/ DDL statement which upd

ates table data can be used. However, DDL statement which does not update the table data is allowed.

Note

Disallowed SQL statements when it is set to READ ONLY

• INSERT, UPDATE, DELETE

• TRUNCATE

• SELECT .. FOR UPDATE

• ALTER TABLE RENAME/DROP COLUMN

• ALTER TABLE SET COLUMN UNUSED

Allowed SQL statements when it is set to READ ONLY

• SELECT

• CREATE/ALTER/DROP INDEX

• ALTER TABLE ADD/ALTER COLUMN

• ALTER TABLE ADD/ALTER/RENAME/DROP CONSTRAINT

• ALTER TABLE for physical property changes

• ALTER TABLE DROP UNUSED COLUMNS

• ALTER TABLE RENAME TO

• DROP TABLE

• ALTER TABLE ADD/DROP SUPPLEMENTAL LOG

• LOCK TABLE

Examples

The following is an example of executing <alter table read { only | write } statement>.

gSQL> ALTER TABLE t1 READ ONLY;

Table altered.

gSQL> ALTER TABLE t1 READ WRITE;

Table altered.

1,678 | SQL References

Compatibility

The SQL standard does not define <alter table read { only | write } statement>.

For More Information

Refer to ALTER TABLE.

ALTER TABLE name RENAME TO | 1,679

16.58 ALTER TABLE name RENAME TO

Function

It renames the table.

Syntax

<rename table statement> ::=

ALTER TABLE table_name

RENAME TO new_table_name

;

Invocation and Access Rules

One of the following privileges is required to perform <rename table statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the existing name of the table.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

new_table_name

It is a new name of the table.

The same table name should not exist in the schema.

1,680 | SQL References

Description

Even when the table is renamed, the object referring to the table such as index, constraint does not need

to be renamed.

Example

The following is an example of exchanging the name of the two tables t1, t2.

gSQL> ALTER TABLE t1 RENAME TO t_temp;

Table altered.

gSQL> ALTER TABLE t2 RENAME TO t1;

Table altered.

gSQL> ALTER TABLE t_temp RENAME TO t2;

Table altered.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not define <rename table statement>.

For More Information

Refer to ALTER TABLE.

ALTER TABLE name STORAGE | 1,681

16.59 ALTER TABLE name STORAGE

Function

It alters physical attributes of a table.

Syntax

<alter table physical attribute statement> ::=

ALTER TABLE table_name

[<physical attribute clause>]

| [STORAGE (<segment attr clause> [...])]

;

<physical attribute clause> ::=

PCTFREE integer

| PCTUSED integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

<size clause> ::=

integer [K | M | G | T]

Invocation and Access Rules

One of the following privileges is required to perform <alter table physical attribute statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

1,682 | SQL References

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

<physical attribute clause>

It alters the physical attribute of a page which configures the table.

It is not applied to the already allocated page, but is applied to the newly allocated page.

For more information, refer to <table physical attribute clause> of CREATE TABLE.

<segment attr clause>

It alters the physical attribute of the extent configuring the segment. It is not applied to the already alloca

ted extent but is applied to the newly allocated extent.

● MAXSIZE integer

○ It alters the space size of the segment which can be allocated.

○ If the newly allocated space is smaller than the already allocated space, the MAXSIZE is altered to

the currently allocated space size.

Description

For more information, refer to the rules for each syntax.

Example

The following is an example of changing the physical attribute of the table.

gSQL> ALTER TABLE t1 PCTFREE 10 PCTUSED 40 STORAGE (NEXT 10M MAXSIZE 100M);

Table altered.

ALTER TABLE name STORAGE | 1,683

Compatibility

The SQL standard does not define the physical attribute of a table.

For More Information

Refer to ALTER TABLE.

1,684 | SQL References

16.60 ALTER TABLE name ADD SUPPLEMENTAL L

OG

Function

If the primary key exists in the table when table data is altered, it sets to add the primary key value to red

o log.

Syntax

<add table supplemental log statement> ::=

ALTER TABLE table_name

ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS

;

Invocation and Access Rules

One of the following privileges is required to perform <add table supplemental log statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

ALTER TABLE name ADD SUPPLEMENTAL LOG | 1,685

Even when the primary key does not exist in the table, the statement can be executed.

Description

It additionally records SUPPLEMENTAL LOG when executing UPDATE/DELETE on the corresponding TABL

E. The recorded SUPPLEMENTAL LOG is used to analyze logs or tools such as CDC.

To record SUPPLEMENTAL LOG of every TABLE, set the property as SUPPLEMENTAL_LOG_DATA_PRIMA

RY_KEY = YES.

Example

The following is an example of setting to additionally add a primary key value to the redo log when chan

ging the data in the table.

gSQL> ALTER TABLE t1 ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

Table altered.

Compatibility

The SQL standard does not cover <add table supplemental log statement>.

For More Information

Refer to ALTER TABLE name DROP SUPPLEMENTAL LOG.

1,686 | SQL References

16.61 ALTER TABLE name DROP SUPPLEMENTAL L

OG

Function

It sets not to leave the primary key information on the redo log when changing the data in the table.

Syntax

<add table supplemental log statement> ::=

ALTER TABLE table_name

DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS

;

Invocation and Access Rules

One of the following privileges is required to perform <drop table supplemental log statement>.

● (ALTER or CONTROL TABLE) ON TABLE for that table

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the table name to be altered.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

It should have been set by using ALTER TABLE name ADD SUPPLEMENTAL LOG statement.

ALTER TABLE name DROP SUPPLEMENTAL LOG | 1,687

Description

For more information, refer to the rules for each syntax.

Example

The following is an example of setting not to leave the primary key information on the redo log when cha

nging the data in the table.

gSQL> ALTER TABLE t1 DROP SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

Table altered.

Compatibility

The SQL standard does not cover <drop table supplemental log statement>.

1,688 | SQL References

16.62 ALTER TABLESPACE

Function

It alters the tablespace definition.

Syntax

<alter tablespace statement> ::=

<rename tablespace statement>

| <backup tablespace statement>

| <on/offline tablespace statement>

| <add file statement>

| <drop file statement>

| <rename datafile statement>

;

Invocation and Access Rules

ALTER TABLESPACE privilege is required to perform <alter tablespace statement>.

Syntax Rules and Parameters

<rename tablespace statement>

It renames the tablespace.

For more information, refer to ALTER TABLESPACE name RENAME TO statement.

<backup tablespace statement>

It backs up the tablespace.

For more information, refer to ALTER TABLESPACE name BACKUP statement.

ALTER TABLESPACE | 1,689

<on-offline tablespace statement>

It changes all files in the tablespace to the online state or offline state.

For more information, refer to ALTER TABLESPACE name [ONLINE|OFFLINE] statement.

<add file statement>

It adds a file to the tablespace.

For more information, refer to ALTER TABLESPACE name ADD [DATAFILE|MEMORY] statement.

<drop file statement>

It drops a file from the tablespace.

For more information, refer to ALTER TABLESPACE name DROP [DATAFILE|MEMORY] statement.

<rename datafile statement>

It renames the datafile in the data tablespace.

For more information, refer to ALTER TABLESPACE name RENAME DATAFILE statement.

Description

Unlike other Data Definition Language (DDL), ALTER TABLESPACE statement is not allowed to ROLLBAC

K, and its transaction is automatically committed after executing the statement.

Example

Refer to the examples of each detailed statement.

Compatibility

The SQL standard does not define the concepts of the tablespace.

1,690 | SQL References

For More Information

Refer to the followings.

● CREATE TABLESPACE

● DROP TABLESPACE

ALTER TABLESPACE name RENAME TO | 1,691

16.63 ALTER TABLESPACE name RENAME TO

Function

It renames the tablespace.

Syntax

<rename tablespace statement> ::=

ALTER TABLESPACE tablespace_name RENAME TO <new_tablespace_name>

;

Invocation and Access Rules

ALTER TABLESPACE ON DATABASE privilege required to perform <rename space statement>.

Syntax Rules and Parameters

tablespace_name

It is a name of the old tablespace.

● The built-in tablespace can not be renamed.

● The OFFLINE tablespace can not be renamed.

new_tablespace_name

It is a name of the new tablespace.

1,692 | SQL References

Description

Even when the tablespace is renamed, the table or index which was already created in the existing tables

pace does not need to be renamed.

Example

The following is an example of renaming the tablespace.

gSQL> ALTER TABLESPACE space1 RENAME TO space2;

Tablespace altered.

Compatibility

The SQL standard does not define the concepts of the tablespace.

For More Information

Refer to ALTER TABLESPACE.

ALTER TABLESPACE name BACKUP | 1,693

16.64 ALTER TABLESPACE name BACKUP

Function

It switches the tablespace to backup enabled state and backup disabled state to perform backup.

Syntax

<backup tablespace statement> ::=

<tablespace begin backup statement>

| <tablespace end backup statement>

| <tablespace incremental backup statement>

;

<tablespace begin backup statement> ::=

ALTER TABLESPACE tablespace_name BEGIN BACKUP [AT <domain_name>]

;

<tablespace end backup statement> ::=

ALTER TABLESPACE tablespace_name END BACKUP [AT <domain_name>]

;

<tablesapce incremental backup statement> ::=

ALTER TABLESPACE tablespace_name

BACKUP INCREMENTAL <incremental backup option> [AT <domain_name>] ;

<incremental backup option> ::=

LEVEL integer [CUMULATIVE | DIFFERENTIAL]

Invocation and Access Rules

ALTER TABLESPACE ON DATABASE privilege is required to perform <backup space statement>.

Syntax Rules and Parameters

1,694 | SQL References

<tablespace begin backup statement>

It sets the tablespace to the backup enabled state.

● The tablespace being used is set to the backup enabled state.

● The backup state of the tablespace such as OFFLINE/ temporary can not be switched.

tablespace_name

It is the tablespace name whose backup state is to be switched.

<tablespace end backup statement>

It sets the tablespace to the backup disabled state.

<tablesapce incremental backup statement>

It performs the incremental backup of the tablespace.

The database is in OPEN phase and it should be operated in ARCHIVELOG mode.

<incremental backup option>

● An 'Integer' can be specified from 0 to 4.

● 'LEVEL 0' can not specify CUMULATIVE or DIFFERENTIAL.

● CUMULATIVE | DIFFERENTIAL

○ CUMULATIVE

■ If 'integer' is n, it backs up all pages which are altered after the most recent backups of LEVE

L 0 ~ LEVEL n-1.

○ DIFFERENTIAL

■ If 'integer' is n, it backs up all pages which are altered after the most recent backups of LEVE

L 0 ~ LEVEL n.

○ If it is omitted, DIFFERENTIAL is specified by default.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

ALTER TABLESPACE name BACKUP | 1,695

Description

It backs up the datafiles which are created in the tablespace. A full backup of the tablespace begins with

BEGIN BACKUP, and copies the datafiles by OS file copy and ends with END BACKUP. The incremental ba

ckup file is created in the path set by BACKUP_DIR 1 property using a single statement.

Examples

The following is an example of setting the full backup state to 'ACTIVE' for the tablespace DICTIONARY_

TBS.

ALTER TABLESPACE DICTIONARY_TBS BEGIN BACKUP;

The following is an example of setting the full backup state to 'INACTIVE' for the tablespace DICTIONARY

_TBS.

ALTER TABLESPACE DICTIONARY_TBS END BACKUP;

The following is an example of generating the LEVEL 0 incremental backup of the tablespace DICTIONAR

Y_TBS.

ALTER TABLESPACE DICTIONARY_TBS BACKUP INCREMENTAL LEVEL 0;

Compatibility

The SQL standard does not define the concepts of the tablespace.

For More Information

Refer to the followings.

● ALTER TABLESPACE

● ALTER TABLESPACE name [ONLINE|OFFLINE]

1,696 | SQL References

16.65 ALTER TABLESPACE name [ONLINE|OFFLINE

]

Function

It alters the tablespace status.

Syntax

<on/off tablespace statement> ::=

ALTER TABLESPACE tablespace_name { ONLINE | OFFLINE [NORMAL | IMMEIDATE] }

[AT <domain name>]

;

Invocation and Access Rules

ALTER TABLESPACE ON DATABASE privilege is required to perform <on/off tablespace statement>.

Syntax Rules and Parameters

ONLINE

It alters the tablespace status in OFFLINE state to ONLINE state.

OFFLINE NORMAL

It alters the tablespace status in ONLINE state to OFFLINE state.

The media recovery is not required in ONLINE state because the tablespace which was altered to OFFLINE

state is in consistent state.

ALTER TABLESPACE name [ONLINE|OFFLINE] | 1,697

Note

OFFLINE NORMAL is not allowed in MOUNT phase.

(However, if the previous instance is terminated by \SHUTDOWN NORMAL, OFFLINE NORMAL is

allowed.)

OFFLINE IMMEDIATE

It alters the tablespace status in ONLINE state to OFFLINE state.

The media recovery is required in ONLINE state because the tablespace which was altered to OFFLINE stat

e is in inconsistent state.

Note

The SYSTEM tablespace can not be altered to OFFLINE state.

OFFLINE IMMEDIATE requires the media recovery, so it can be performed only in ARCHIVELOG m

ode.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

For more information, refer to the rules for each syntax.

Examples

The following is an example of setting the tablespace to OFFLINE.

gSQL> ALTER TABLESPACE space1 OFFLINE;

Tablespace altered.

1,698 | SQL References

The following is an example of that OFFLINE NORMAL for the tablespace fails in MOUNT phase.

gSQL> ALTER TABLESPACE space1 OFFLINE;

ERR-42000(16290): OFFLINE NORMAL is only allowed if the database is in OPEN phase :

ALTER TABLESPACE space1 OFFLINE

*

ERROR at line 1:

gSQL> ALTER TABLESPACE space1 OFFLINE NORMAL;

ERR-42000(16290): OFFLINE NORMAL is only allowed if the database is in OPEN phase :

ALTER TABLESPACE space1 OFFLINE NORMAL

*

ERROR at line 1:

Compatibility

The SQL standard does not define the concepts of the tablespace.

For More Information

Refer to the followings.

● ALTER TABLESPACE

● ALTER TABLESPACE name BACKUP

ALTER TABLESPACE name ADD [DATAFILE|MEMORY] | 1,699

16.66 ALTER TABLESPACE name ADD [DATAFILE|

MEMORY]

Function

It extends the space of the tablespace.

Syntax

<add space statement> ::=

ALTER TABLESPACE tablespace_name ADD <space specification>

[AT <domain name>]

;

<space specification> ::=

MEMORY <memory clause> [, ...]

| DATAFILE <add datafile clause> [, ...]

<size clause> ::=

integer [K | M | G | T]

<memory clause>

'memory_name' { SIZE <size clause> }

<add datafile clause> ::=

'filename'

{ SIZE <size clause> | REUSE | SIZE <size clause> REUSE }

Invocation and Access Rules

ALTER TABLESPACE ON DATABASE privilege is required to perform <add space statement>.

Syntax Rules and Parameters

1,700 | SQL References

tablespace_name

It is the tablespace name to be altered.

<file specification>

The following syntax should be used according to the tablespace type.

● Memory data tablespace

○ DATAFILE <add datafile clause>

● Memory temporary tablespace

○ MEMORY <memory clause>

<add datafile clause>

It defines the memory datafile to be added.

● 'filename'

○ It is the file name to store and manage the data.

○ It is the space to store the checkpoint image for the memory data.

○ The filename can be either the new file or existing file.

○ The length of filename should be shorter than 1024 bytes.

● SIZE <size clause>

○ For the new file, the initial size is specified by using SIZE clause.

○ An error occurs if the file exists.

○ The file size can be specified from 1M to 30G.

● REUSE

○ If the file exists, it uses REUSE clause.

○ If the file does not exist, a new file is created.

○ The size of newly created file

■ For the data tablespace, it is determined by MEMORY_DATA_TABLESPACE_SIZE property.

■ For the temporary table space, it is determined by MEMORY_TEMP_TABLESPACE_SIZE prope

rty.

● SIZE <size clause> REUSE

○ If both of SIZE clause and REUSE clause are specified, it is operated as follows based on the prese

nce of the filename.

■ For the new filename, the initial file size is specified by using SIZE clause.

■ For the existing filename, it is adjusted to the SIZE clause value by using the existing file.

ALTER TABLESPACE name ADD [DATAFILE|MEMORY] | 1,701

<memory clause>

● <size clause>

○ It defines the memory to be added.

For more information, refer to <memory clause> of CREATE MEMORY TEMPORARY TABLESPACE statem

ent.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

For more information, refer to the rules for each syntax.

Example

The following is an example of adding datafile to the tablespace.

gSQL> ALTER TABLESPACE space1 ADD DATAFILE 'test_file_a2.dbf' SIZE 10M REUSE;

Tablespace altered.

Compatibility

The SQL standard does not define the concepts of the tablespace.

For More Information

Refer to the followings.

● CREATE MEMORY DATA TABLESPACE

● CREATE MEMORY TEMPORARY TABLESPACE

● ALTER TABLESPACE

1,702 | SQL References

16.67 ALTER TABLESPACE name DROP [DATAFILE|

MEMORY]

Function

It reduces the space of the tablespace.

Syntax

<drop space statement> ::=

ALTER TABLESPACE tablespace_name DROP <file specification>

[AT <domain name>]

;

<file specification> ::=

DATAFILE 'filename'

| MEMORY 'memory_name'

Invocation and Access Rules

ALTER TABLESPACE ON DATABASE privilege is required to perform <drop space statement>.

Syntax Rules and Parameters

tablespace_name

It is the tablespace name to be altered.

<file specification>

The following syntax should be used according to the tablespace type.

● Memory data tablespace

○ DATAFILE 'filename'

ALTER TABLESPACE name DROP [DATAFILE|MEMORY] | 1,703

● Memory temporary tablespace

○ MEMORY 'memory_name'

Note

The file of OFFLINE tablespace can not be dropped.

The first file of the tablespace can not be dropped.

The data file which has been used once can not be dropped.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

For more information, refer to the rules for each syntax.

Example

The following is an example of dropping the file from the tablespace.

gSQL> ALTER TABLESPACE space1 DROP DATAFILE 'test_file_f2.dbf';

Tablespace altered.

Compatibility

The SQL standard does not define the concepts of the tablespace.

For More Information

1,704 | SQL References

Refer to the followings.

● ALTER TABLESPACE

● ALTER TABLESPACE name ADD [DATAFILE|MEMORY]

● ALTER TABLESPACE name RENAME DATAFILE

ALTER TABLESPACE name RENAME DATAFILE | 1,705

16.68 ALTER TABLESPACE name RENAME DATAFI

LE

Function

It renames the datafiles that configure the tablespace.

Syntax

<rename datafile statement> ::=

ALTER TABLESPACE tablespace_name RENAME DATAFILE <filename_list> TO <filename_list>

;

<filename_list> ::=

'filename' [, ...]

Invocation and Access Rules

ALTER TABLESPACE ON DATABASE privilege is required to perform <rename datafile statement>.

Note

ONLINE tablespace file can not be altered when it is in TDS mode and the database is in OPEN pha

se. (Except for the temporary memory tablespace.)

The file should exist even after the alteration.

Syntax Rules and Parameters

tablespace_name

It is the tablespace name to be altered.

1,706 | SQL References

'filename'

The memory temporary tablespace is 'memory_name' and the other kinds of tablespace is 'filename'.

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

Description

The tablespace status determines whether the operation can be performed.

● OFFLINE: It can be performed in MOUNT or OPEN phase.

● ONLINE: It can be performed only in MOUNT phase.

Example

The following is an example of renaming 'test.dbf' to 'test1.dbf'.

gSQL> ALTER TABLESPACE TEST_TBS RENAME DATAFILE 'test.dbf' TO 'test1.dbf';

Tablespace altered.

Compatibility

The SQL standard does not define the concepts of the tablespace.

For More Information

Refer to the followings.

● ALTER TABLESPACE

● ALTER TABLESPACE name ADD [DATAFILE|MEMORY]

● ALTER TABLESPACE name DROP [DATAFILE|MEMORY]

ALTER USER | 1,707

16.69 ALTER USER

Function

It alters the user definition of the database.

Syntax

<alter user statement> ::=

ALTER USER user_identifier <alter user action>

| ALTER USER PUBLIC <alter schema path>

;

<alter user action> ::=

<alter password>

| <alter profile>

| <password expire>

| <account lock>

| <alter default tablespace>

| <alter temporary tablespace>

| <alter schema path>

<alter password> ::=

IDENTIFIED BY new_password [REPLACE old_password]

<alter profile> ::=

PROFILE { profile_name | DEFAULT | NULL }

<password expire> ::=

PASSWORD EXPIRE

<account lock> ::=

ACCOUNT { LOCK | UNLOCK }

<alter default tablespace> ::=

DEFAULT TABLESPACE tablespace_name

<alter temporary tablespace> ::=

TEMPORARY TABLESPACE tablespace_name

<alter schema path> ::=

SCHEMA PATH ({ schema_name | CURRENT PATH } [, ...])

1,708 | SQL References

Invocation and Access Rules

ALTER USER ON DATABASE privilege is required to perform <alter user statement>.

However, <alter password> can be performed without any privilege, when the user and user_identifier ar

e identical.

Syntax Rules and Parameters

user_identifier

It is the username to be altered.

<alter password>

It alters the user's password.

● IDENTIFIED BY new_password

○ The new password is encrypted and stored.

○ The length of the password should be shorter than 128 bytes.

○ The password is case sensitive.

● REPLACE old_password

○ It can be omitted when ALTER USER ON DATABASE privilege is given.

○ It can not be omitted when ALTER USER ON DATABASE privilege is not given.

■ The user and the user_identifier should be identical.

<alter profile>

It alters the profile for the password management policy.

● PROFILE profile_name

○ It allocates profile_name which is created by a user.

● PROFILE DEFAULT

○ It allocates "DEFAULT" which is the default profile.

● PROFILE NULL

○ It does not allocate the profile.

ALTER USER | 1,709

<password expire>

It expires the user's password.

<account lock>

● ACCOUNT LOCK

○ It locks the user account.

● ACCOUNT UNLOCK

○ It unlocks the user account.

<alter default tablespace>

It alters the user's default tablespace.

The tablespace_name should be a data tablespace.

<alter temporary tablespace>

It alters the user's temporary tablespace.

The tablespace_name should be a temporary tablespace.

<alter index tablespace>

It alters an index tablespace of the user.

● It specifies INDEX TABLESPACE tablespace_name.

○ If the data tablespace is specified, then it should be a LOGGING index.

○ If the temporary tablespace is specified, then it should be a NOLOGGING index.

● INDEX TABLESPACE NULL

○ It does not specify an index tablespace.

<alter schema path>

It alters the user's schema access path.

If the schema is not specified in user's SQL statement, the schema access path is determined in the schem

a order for the naming resolution of the object.

If the schema name is as same as another schema which is previously listed, it is not applied.

1,710 | SQL References

The following is an example of objects existing in a schema when performing ALTER USER u1 SCHEMA P

ATH (u1, s2, public); statement.

Schema name u1 s2 public

- t1 - t1

- - t2 -

- - - t3

The object name whose schema name is not specified when the user u1 executes the schema is interpret

ed by the SCHEMA PATH as follows.

● CREATE statement

○ CREATE TABLE t1 (c1 INTEGER);

■ Error: CREATE TABLE u1.t1 (c1 INTEGER);

○ CREATE TABLE t2 (c1 INTEGER);

■ Execution: CREATE TABLE u1.t2 (c1 INTEGER);

● SELECT statement

○ SELECT * FROM t1;

■ Execution: SELECT * FROM u1.t1;

○ SELECT * FROM t2;

■ Execution: SELECT * FROM s2.t2;

○ SELECT * FROM t3;

■ Execution: SELECT * FROM public.t3;

CURRENT PATH

It is the current user's schema path.

A new schema path can be added using CURRENT PATH maintaining the existing schema path as follows.

● The u1's current schema path

○ (u1, public)

● The statement execution

○ ALTER USER u1 SCHEMA PATH (s1, CURRENT PATH, s2);

● The u1's schema path is altered as follows.

○ (s1, u1, public, s2)

ALTER USER | 1,711

ALTER USER PUBLIC <alter schema path>

It alters the schema path of PUBLIC account.

The schema path of PUBLIC account is included in every user's schema path.

The initial schema path which is allocated to PUBLIC account is as follows.

● DICTIONARY_SCHEMA

● INFORMATION_SCHEMA

● DEFINITION_SCHEMA

● PERFORMANCE_VIEW_SCHEMA

● FIXED_TABLE_SCHEMA

Description

For more information, refer to the rules for each syntax.

Examples

The following is an example of altering the user's password.

gSQL> ALTER USER u1 IDENTIFIED BY new_password;

User altered.

The following is an example of allocating the profile to the user.

gSQL> ALTER USER u1 PROFILE prof1;

User altered.

gSQL> COMMIT;

Commit complete.

The following is an example of dropping the user's profile.

gSQL> ALTER USER u1 PROFILE NULL;

User altered.

gSQL> COMMIT;

Commit complete.

The following is an example of expiring the user's password.

1,712 | SQL References

gSQL> ALTER USER u1 PASSWORD EXPIRE;

User altered.

gSQL> COMMIT;

Commit complete.

The following is an example of unlocking the user's account.

gSQL> ALTER USER u1 ACCOUNT UNLOCK;

User altered.

gSQL> COMMIT;

Commit complete.

The following is an example of altering the user's DEFAULT TABLESPACE.

gSQL> ALTER USER u1 DEFAULT TABLESPACE mem_data_tbs;

User altered.

The following is an example of altering the user's TEMPORARY TABLESPACE.

gSQL> ALTER USER u1 TEMPORARY TABLESPACE mem_temp_tbs;

User altered.

The following is an example of altering the user's INDEX TABLESPACE.

gSQL> ALTER USER u1 INDEX TABLESPACE mem_temp_tbs;

User altered.

The following is an example of altering the user's schema path.

gSQL> ALTER USER u1 SCHEMA PATH (s1, CURRENT PATH);

User altered.

Compatibility

SQL standard covers the concepts of a user, but it does not define the SQL statements associated with cre

ating, altering, dropping a user.

ALTER USER | 1,713

For More Information

Refer to the followings.

● CREATE USER

● DROP USER

1,714 | SQL References

16.70 ALTER VIEW

Function

It alters the view definition.

Syntax

<alter view statement> ::=

ALTER VIEW view_name <alter view action>

;

<alter view action> ::=

COMPILE

Invocation and Access Rules

One of the following privileges is required to perform <alter view statement>.

● (ALTER or CONTROL TABLE) ON TABLE for the view

● (ALTER TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the view belongs

● ALTER ANY TABLE ON DATABASE

Syntax Rules and Parameters

view_name

It is the view name to be altered.

It can define the schema to which the view belongs, such as schema_name.view_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

ALTER VIEW | 1,715

COMPILE

It compiles the view again.

COMMENT which is given to the view column is initialized.

Description

When the table or the view which is referenced by the view is altered or dropped, then it affects that vie

w.

This information can be retrieved from INFORMATION_SCHEMA.VIEWS.

● IS_COMPILED column

○ TRUE: The view was successfully created.

○ FALSE: The view was created with FORCE option when an error exists.

● IS_AFFECTED column

○ TRUE: The table and the view which was referenced by the view was altered.

○ FALSE: After creation and compilation of a view, the table and the view which was referenced by

the view was not altered.

Example

The following is an example of compiling the view which is affected by the table change referenced by th

at view.

gSQL> SELECT TABLE_NAME, IS_AFFECTED

FROM INFORMATION_SCHEMA.VIEWS

WHERE TABLE_SCHEMA = 'PUBLIC'

AND TABLE_NAME = 'V1';

TABLE_NAME IS_AFFECTED

---------- -----------

V1 TRUE

1 row selected.

gSQL> ALTER VIEW v1 COMPILE;

View altered.

COMMIT;

Commit complete.

gSQL> SELECT TABLE_NAME, IS_AFFECTED

1,716 | SQL References

FROM INFORMATION_SCHEMA.VIEWS

WHERE TABLE_SCHEMA = 'PUBLIC'

AND TABLE_NAME = 'V1';

TABLE_NAME IS_AFFECTED

---------- -----------

V1 FALSE

1 row selected.

Compatibility

The SQL standard does not define <alter view statement>.

For More Information

Refer to the followings.

● CREATE VIEW

● DROP VIEW

ANALYZE SYSTEM | 1,717

16.71 ANALYZE SYSTEM

Function

It controls the statistics information of the system.

Syntax

<analyze system statement> ::=

ANALYZE SYSTEM [<analyze action>]

;

<analyze action> ::=

COMPUTE STATISTICS

| DELETE STATISTICS

Invocation and Access Rules

ANALYZE ANY ON DATABASE privilege is required to perform <analyze system statement>.

Syntax Rules and Parameters

<analyze action>

When it is omitted, the default value is COMPUTE STATISTICS.

COMPUTE STATISTICS

It builds the following statistics information related to the system.

● CPU_OPS (Operations Per Second)

○ It is the number of operations of which the CPU can process per second.

● NETWORK_IOPS (I/O operations Per Second)

○ It is valid for the cluster.

1,718 | SQL References

○ It is the number of the network I/O which can be processed per second.

DELETE STATISTICS

It deletes the statistics information of the system.

Description

The built statistics information of the system is used to calculate the cost of optimization for the query pr

ocess.

Examples

The following is an example of building the statistics information of the system by using the <analyze syst

em statement> statement.

gSQL> ANALYZE SYSTEM COMPUTE STATISTICS;

analyzed.

The following is an example of retrieving the built statistics information of the system.

gSQL>

SELECT * FROM DBA_STAT_SYSTEM;

CPU_OPS NETWORK_IOPS NETWORK_BUFSIZE LAST_ANALYZED

-------- ------------ --------------- --------------------------

53000412 2914 65536 2017-03-30 16:49:42.200000

1 row selected.

Compatibility

The SQL standard does not define the concepts of the statistics information.

ANALYZE SYSTEM | 1,719

For More Information

Refer to ANALYZE TABLE.

1,720 | SQL References

16.72 ANALYZE TABLE

Function

It controls the statistics information of the table.

Syntax

<analyze table statement> ::=

ANALYZE TABLE table_name

[<parallel clause>]

[<analyze action>]

;

<parallel clause> ::=

NOPARALLEL

| PARALLEL [thread_count]

<analyze action> ::=

COMPUTE STATISTICS [<for_clause>]

| ESTIMATE STATISTICS <sample_clause> [<for_clause>]

| DELETE STATISTICS

<sample_clause>

SAMPLE row_count ROWS

| SAMPLE percentage PERCENT

<for_clause>

FOR ALL COLUMNS

| FOR ALL INDEXED COLUMNS

| FOR COLUMNS column_name [, ...]

| FOR ALL INDEXES

| FOR INDEXES index_name [, ...]

Invocation and Access Rules

ANALYZE ANY ON DATABASE privilege is required to perform <analyze table statement>.

ANALYZE TABLE | 1,721

Syntax Rules and Parameters

table_name

It is the table name.

It can define the schema to which the table belongs, such as schema_name.table_name. If schema_name

is omitted, the default schema name of the user performing the statement is used.

<parallel clause>

It specifies the number of threads to be used in a analyzing process.

If it is not specified, the default value is PARALLEL.

● NOPARALLEL

○ It does not analyze in parallel.

● PARALLEL [thread_count]

○ It analyzes in parallel.

○ The minimum value of the thread_count is 0, and the maximum value is 64.

○ If the thread_count value is 0 or it is omitted, then it is determined by the number of CPUs in the

system.

<analyze action>

When it is omitted, the default value is COMPUTE STATISTICS.

COMPUTE STATISTICS

It builds the following statistics information related to the table through the all inspection.

● The table statistics information

○ Row count

● The statistics information of each column

○ The number of different values

○ The number of NULL values

○ The average length of the value

○ The minimum value

○ The maximum value

● The statistics information of an index

○ The number of different keys

1,722 | SQL References

The statistics information which is built according to the data type of the column is as follows.

Table 16-20 Statistics information built according to the data type

Data type NUM_DISTINCT NUM_NULLS AVG_LENGTH MIN/MAX

BOOLEAN O O O X

NATIVE_SMALLINT O O O O

NATIVE_INTEGER O O O O

NATIVE_BIGINT O O O O

NATIVE_REAL O O O O

NATIVE_DOUBLE O O O O

NUMBER O O O O

NUMERIC O O O O

FLOAT O O O O

CHAR(n) O O O
It is built when it is 6

4 bytes or smaller.

VARCHAR(n) O O O
It is built when it is 6

4 bytes or smaller.

LONG VARCHAR X X X X

BINARY O O O X

VARBINARY O O O X

LONG VARBINARY X X X X

DATE O O O O

TIME O O O O

TIMESTAMP O O O O

INTERVAL O O O O

ROWID O O O X

ESTIMATE STATISTICS <sample_clause>

It builds the statistics information of the column and the index by using as many samples as the specified

<sample_clause>.

● SAMPLE row_count ROWS

○ It uses as many samples as the specified number of rows.

○ row_count is a positive integer bigger than 0.

● SAMPLE percentage PERCENT

○ It uses as many samples as the specified ratio.

○ The percentage is a positive integer in the range between 1 and 99.

If the number of the sampling rows is smaller than the value of MIN_SAMPLE_ROW_COUNT property, th

en it follows the property value.

ANALYZE TABLE | 1,723

<for_clause>

If it is omitted, it builds the statistics information of all possible columns and indexes.

FOR ALL COLUMNS

It builds the statistics information of all possible columns.

It does not build the statistics information of an index.

FOR ALL INDEXED COLUMNS

It builds the statistics information of all columns included in an index.

It does not build the statistics information of other columns.

It does not build the statistics information of an index.

FOR COLUMNS column_name [, ...]

It builds the statistics information of the listed columns.

It does not build the statistics information of unlisted columns.

It does not build the statistics information of an index.

FOR ALL INDEXES

It builds the statistics information of all indexes.

It does not build the statistics information of columns.

FOR INDEXES index_name [, ...]

It builds the statistics information of the listed indexes.

It does not build the statistics information of unlisted indexes.

It does not build the statistics information of a column.

DELETE STATISTICS

It deletes the statistics information of the table.

1,724 | SQL References

Description

The statistics information of the table affects the query optimization, so it is very important information.

The time to build the statistics information is increased in proportion to the data volumes in a table. There

fore, when the data volume is big, then it is recommended to build the statistics information by using the

sampling or to build only the statistics of major information which affects the query.

● The following is an example of building the statistics information by using the sampling.

ANALYZE TABLE lineitem ESTIMATE STATISTICS SAMPLE 10 PERCENT;

● The following is an example of building the statistics information only of major columns and the inde

x.

ANALYZE TABLE lineitem COMPUTE STATISTICS FOR ALL INDEXED COLUMNS;

ANALYZE TABLE lineitem COMPUTE STATISTICS FOR ALL INDEXES;

Examples

The following is an example of building the statistics information through the all inspection.

gSQL> ANALYZE TABLE orders;

Table analyzed.

The following is an example of retrieving the built statistics information of the table.

gSQL>

SELECT

TABLE_NAME

, NUM_ROWS

FROM

DICTIONARY_SCHEMA.USER_TABLES

WHERE

TABLE_SCHEMA = 'PUBLIC'

AND TABLE_NAME = 'ORDERS'

;

TABLE_NAME NUM_ROWS

---------- --------

ORDERS 1500000

ANALYZE TABLE | 1,725

1 row selected.

gSQL>

SELECT

TABLE_NAME

, COLUMN_NAME

, NUM_DISTINCT

, NUM_NULLS

, LOW_VALUE

, HIGH_VALUE

FROM

DICTIONARY_SCHEMA.USER_TAB_COLUMNS

WHERE

TABLE_SCHEMA = 'PUBLIC'

AND TABLE_NAME = 'ORDERS'

;

TABLE_NAME COLUMN_NAME NUM_DISTINCT NUM_NULLS LOW_VALUE HIGH_VALUE

---------- --------------- ------------ --------- ------------------- -------------------

ORDERS O_ORDERKEY 1500000 0 1 6000000

ORDERS O_CUSTKEY 99996 0 1 149999

ORDERS O_ORDERSTATUS 3 0 F P

ORDERS O_TOTALPRICE 1464556 0 857.71 555285.16

ORDERS O_ORDERDATE 2406 0 1992-01-01 00:00:00 1998-08-02 00:00:00

ORDERS O_ORDERPRIORITY 5 0 1-URGENT 5-LOW

ORDERS O_CLERK 1000 0 Clerk#000000001 Clerk#000001000

ORDERS O_SHIPPRIORITY 1 0 0 0

ORDERS O_COMMENT 1482071 0 null null

9 rows selected.

gSQL>

SELECT

TABLE_NAME

, INDEX_NAME

, DISTINCT_KEYS

FROM

DICTIONARY_SCHEMA.USER_INDEXES

WHERE

TABLE_SCHEMA = 'PUBLIC'

AND TABLE_NAME = 'ORDERS'

;

TABLE_NAME INDEX_NAME DISTINCT_KEYS

---------- ----------------- -------------

ORDERS ORDERS_PK_INDEX 1500000

1,726 | SQL References

ORDERS ORDERS_CUSTKEY_FK 99996

2 rows selected.

Compatibility

The SQL standard does not define the concepts of the statistics information.

For More Information

Refer to ANALYZE SYSTEM.

AUDIT POLICY | 1,727

16.73 AUDIT POLICY

Function

It activates the audit policy.

Syntax

<audit policy statement> ::=

AUDIT POLICY policy_name

[<specified_user_option>]

[<specified_success_option>]

;

<specified_user_option> ::=

BY user_name [, ...]

| EXCEPT user_name [, ...]

<specified_success_option> ::=

WHENEVER SUCCESSFUL

| WHENEVER NOT SUCCESSFUL

Invocation and Access Rules

AUDIT SYSTEM ON DATABASE privilege is required to perform <audit policy statement>.

Syntax Rules and Parameters

policy_name

It is the name of the audit policy object to be activated.

The activated audit policy does not effect on the existing session, and it effects only on the newly created

session.

1,728 | SQL References

<specified_user_option>

It specifies the user to be audited.

If omitted, all users are audited.

BY clause and EXCEPT clause can not be used together for the same audit policy.

● BY user_list: If the user to be audited is specified, then use BY clause.

● EXCEPT user_list: If other users excluding a specific user is to be audited, use EXCEPT clause.

<specified_success_option>

● WHENEVER SUCCESSFUL

○ If an action succeeds, then the audit record is created.

● WHENEVER NOT SUCCESSFUL

○ If an action fails, then the audit record is created.

● If omitted, both when an action succeeds and fails, the audit record is created.

Description

Activating the audit policy does not affect the existing session, but it starts to audit the newly created ses

sion.

Retrieving Audit Record

The audit record is created when it corresponds to the audit policy, and it can be retrieved through DICTI

ONARY_SCHEMA.AUDIT_TRAIL view as follows.

SELECT logon_user

, event_timestamp

, action_name

, object_name

, sql_text

FROM audit_trail

WHERE policy_name = 'P1'

;

SELECT privilege should be given to an ordinary user to retrieve AUDIT_TRAIL.

AUDIT POLICY | 1,729

GRANT SELECT ON DICTIONARY_SCHEMA.AUDTI_TRAIL TO user_name;

Retrieving Audit Policy Information

The information about the audit policy object can be retrieved through DICTIONARY_SCHEMA.AUDIT_P

OLICY_OPTIONS view.

SELECT policy_name

, audit_option

, object_schema

, object_name

FROM audit_policy_options

;

The information about whether the audit policy object is activated can be retrieved through DICTIONARY

_SCHEMA.AUDIT_POLICY_ENABLED view.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

;

Cautions When Using BY and EXCEPT Clauses

Activate the users group if multiple AUDIT POLICY BY clauses are used for the same audit policy.

In other words, the following two examples have the same meaning.

● Example 1: It activates the p1 audit policy for u1 and u2.

AUDIT POLICY p1 BY u1;

AUDIT POLICY p1 BY u2;

● Example 2: It activates the p1 audit policy for u1 and u2.

AUDIT POLICY p1 BY u1, u2;

If multiple AUDIT POLICY EXCEPT clauses are used for the same audit policy, only the last AUDIT POLICY

clause is valid.

1,730 | SQL References

In other words, the following two examples have different meanings.

● Example 1: Only the last clause is valid, and activates the p1 audit policy excluding u2.

AUDIT POLICY p1 EXCEPT u1;

AUDIT POLICY p1 EXCEPT u2;

● Example 2: It activates the p1 audit policy excluding u1 and u2.

AUDIT POLICY p1 EXCEPT u1, u2;

BY and EXCEPT can not be used together for the same policy.

● If the audit policy is activated with BY clause, then only BY clause can be used afterwards.

AUDIT POLICY p1 BY u1;

○ Error

AUDIT POLICY p1 EXCEPT u2;

● If the audit policy is activated with EXCEPT clause, then only EXCEPT clause can be used afterwards.

AUDIT POLICY p1 EXCEPT u1;

○ Error: It corresponds to by all users.

AUDIT POLICY p1;

If a user wants to convert the audit policy activated with BY to EXCEPT or to convert the audit policy activ

ated with EXCEPT to BY, the activated audit policy should be deactivated first, then it can be converted.

Deactivate the audit policy with NOAUDIT POLICY statement as follows.

● AUDIT POLICY p1 BY u1, u2;

○ NOAUDIT POLICY p1 BY u1, u2;

● AUDIT POLICY p1;

○ NOAUDIT POLICY p1;

● AUDIT POLICY p1 EXCEPT u1, u2;

○ NOAUDIT POLICY p1;

○ NOAUDIT POLICY statement does not have an EXCEPT option.

WHENEVER clause which is used together with BY clause is accumulated.

AUDIT POLICY | 1,731

The following two examples have the same meaning.

● Example 1: It creates the audit record regardless of success/ failure.

AUDIT POLICY p1 BY u1 WHENEVER SUCCESSFUL;

AUDIT POLICY p1 BY u1 WHENEVER NOT SUCCESSFUL;

● Example 2: It creates the audit record regardless of success/ failure.

AUDIT POLICY p1 BY u1;

If WHENEVER clauses are used together with EXCEPT clause, only the last WHENEVER clause is valid.

The following two examples have different meanings.

● Example 1: It creates the audit record when it fails.

AUDIT POLICY p1 EXCEPT u1 WHENEVER SUCCESSFUL;

AUDIT POLICY p1 EXCEPT u1 WHENEVER NOT SUCCESSFUL;

● Example 2: It creates the audit record regardless of success/ failure.

AUDIT POLICY p1 EXCEPT u1;

Examples

The following is an example of activating the audit policy for all users.

AUDIT POLICY table_pol;

The information about activation can be viewed through the following query.

SELECT policy_name

, enabled_opt

, user_name

FROM audit_policy_enabled

WHERE policy_name = 'TABLE_POL';

POLICY_NAME ENABLED_OPT USER_NAME

----------- ----------- ---------

TABLE_POL BY ALL USERS

The following is an example of activating the audit policy by defining specific users.

1,732 | SQL References

AUDIT POLICY dml_pol BY u1, u2;

The following is an example of activating the audit policy by excluding a specific user.

AUDIT POLICY read_seq_pol EXCEPT sys;

The following is an example of auditing the failure of SQL statement by a specific user.

AUDIT POLICY delete_pol BY u1 WHENEVER NOT SUCCESSFUL;

Compatibility

The SQL standard does not have the audit policy.

For More Information

Refer to the followings.

● Managing audit policy object

○ CREATE AUDIT POLICY

○ DROP AUDIT POLICY

○ ALTER AUDIT POLICY

● Activating/ deactivating audit policy

○ AUDIT POLICY

○ NOAUDIT POLICY

● Viewing audit trail: AUDIT_TRAIL

● Clearing audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

CLOSE cursor_name | 1,733

16.74 CLOSE cursor_name

Function

It closes a cursor.

Syntax

<close statement> ::=

CLOSE cursor_name

;

Syntax Rules and Parameters

cursor_name

The cursor should be open.

The cursor should be declared with DECLARE cursor_name statement in the session.

Description

The cursor is an object which exists in the session and it does not affect the cursor in a different session.

Example

The following is an example of DECLARE, OPEN, FETCH, and CLOSE the cursor by using gsql (interactive

SQL tool).

gSQL> DECLARE cur1 CURSOR FOR SELECT id, data FROM t1;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

1,734 | SQL References

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

no rows fetched.

gSQL> CLOSE cur1;

Cursor closed.

Compatibility

Table 16-21 SQL standard compatibility

Feature ID Description Compatibility

B031 Basic dynamic SQL O

For More Information

Refer to the followings.

● DECLARE cursor_name

● OPEN cursor_name

● FETCH cursor_name

COMMENT ON name IS | 1,735

16.75 COMMENT ON name IS

Function

It stores the comments about the object in the dictionary.

Syntax

<comment statement> ::=

COMMENT ON <comment object> IS 'comment string'

;

<comment object> ::=

CLUSTER GROUP group_name

| CLUSTER MEMBER member_name

| DATABASE

| PROFILE profile_name

| AUTHORIZATION user_name

| TABLESPACE tablespace_name

| SCHEMA schema_name

| TABLE [schema_name].table_name

| COLUMN [schema_name].table_name.column_name

| INDEX [schema_name].index_name

| SEQUENCE [schema_name].sequence_name

| CONSTRAINT [schema_name].constraint_name

| PROCEDURE [schema_name].procedure_name

Invocation and Access Rules

The altering privileges on each object are required to perform <comment statement> as follows.

● CLUSTER GROUP

○ ALTER SYSTEM ON DATABASE

● CLUSTER MEMBER

○ ALTER SYSTEM ON DATABASE

● DATABASE

1,736 | SQL References

○ ALTER DATABASE ON DATABASE

● PROFILE

○ ALTER PROFILE ON DATABASE

● AUDIT POLICY

○ AUDIT SYSTEM ON DATABASE

● AUTHORIZATION (user)

○ ALTER USER ON DATABASE

● AUTHORIZATION (role)

○ ALTER ROLE ON DATABASE

● TABLESPACE

○ ALTER TABLESPACE ON DATABASE

● SCHEMA: One of the following privileges is required.

○ The owner of the schema

○ CONTROL SCHEMA ON SCHEMA for the schema

○ ALTER SCHEMA ON DATABASE

● TABLE: One of the following privileges is required.

○ The owner of the table

○ CONTROL TABLE ON TABLE for the table

○ CONTROL SCHEMA ON SCHEMA for the schema to which the table belongs

○ ALTER ANY TABLE ON DATABASE

● COLUMN: One of the following privileges is required.

○ The owner of the table to which the column belongs

○ CONTROL TABLE ON TABLE for the table to which the column belongs

○ CONTROL SCHEMA ON SCHEMA for the schema of the table to which the column belongs

○ ALTER ANY TABLE ON DATABASE

● INDEX: One of the following privileges is required.

○ The owner of the index

○ CONTROL SCHEMA ON SCHEMA for the schema to which the index belongs

○ ALTER ANY INDEX ON DATABASE

● SEQUENCE

○ The owner of the sequence

○ CONTROL SCHEMA ON SCHEMA for the schema to which the sequence belongs

○ ALTER ANY SEQUENCE ON DATABASE

● CONSTRAINT

○ The owner of that constraint

○ CONTROL SCHEMA ON SCHEMA for the schema to which the constraint belongs

○ ALTER ANY TABLE ON DATABASE

● PROCEDURE

○ The owner of the stored procedure/function

○ CONTROL SCHEMA ON SCHEMA for the schema to which the stored procedure/function belong

s

COMMENT ON name IS | 1,737

○ ALTER ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

<comment object>

It is an object in which the comments are to be stored. The comments for the following database objects

are stored.

● Cluster object

○ CLUSTER GROUP

○ CLUSTER MEMBER

● Non-schema object

○ DATABASE

○ PROFILE

○ AUDIT POLICY

○ AUTHORIZATION (User or role)

○ TABLESPACE

○ SCHEMA

● Schema object

○ TABLE or VIEW

○ COLUMN

○ INDEX

○ SEQUENCE

○ CONSTRAINT

○ PROCEDURE or FUNCTION

If schema_name for the schema object is not specified, the schema name is determined by Schema Path

of the user performing the statement.

COMMENT ON TABLE test_table IS 'test comment';

→ COMMENT ON TABLE user_default_schema.test_table IS 'test comment';

'comment string'

It describes the comments to be stored.

Use the empty string ('') to delete the comments as follows.

1,738 | SQL References

COMMENT ON TABLE test_table IS '';

The length of the comment string can not exceed 1024 bytes.

Description

The information can be retrieved from the COMMENTS column of the following dictionary view per each

object type.

● Cluster objects

○ CLUSTER GROUP & CLUSTER MEMBER

■ DICTIONARY_SCHEMA.DBA_CLUSTER_COMMENTS view

● Non-schema objects

○ DATABASE

■ DICTIONARY_SCHEMA.ALL_NONSCHEMA_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_NONSCHEMA_COMMENTS view

○ PROFILE

■ DICTIONARY_SCHEMA.DBA_NONSCHEMA_COMMENTS view

○ AUDIT POLICY

■ DICTIONARY_SCHEMA.AUDIT_POLICIES view

○ USER

■ DICTIONARY_SCHEMA.ALL_NONSCHEMA_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_NONSCHEMA_COMMENTS view

○ TABLESPACE

■ DICTIONARY_SCHEMA.ALL_NONSCHEMA_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_NONSCHEMA_COMMENTS view

○ SCHEMA

■ DICTIONARY_SCHEMA.ALL_NONSCHEMA_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_NONSCHEMA_COMMENTS view

● SQL schema objects

○ TABLE

■ DICTIONARY_SCHEMA.USER_TAB_COMMENTS view

■ DICTIONARY_SCHEMA.ALL_TAB_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_TAB_COMMENTS view

○ VIEW

■ DICTIONARY_SCHEMA.USER_TAB_COMMENTS view

■ DICTIONARY_SCHEMA.ALL_TAB_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_TAB_COMMENTS view

○ COLUMN

■ DICTIONARY_SCHEMA.USER_COL_COMMENTS view

COMMENT ON name IS | 1,739

■ DICTIONARY_SCHEMA.ALL_COL_COMMENTS view

■ DICTIONARY_SCHEMA.DBA_COL_COMMENTS view

○ INDEX

■ DICTIONARY_SCHEMA.USER_INDEXES view

■ DICTIONARY_SCHEMA.ALL_INDEXES view

■ DICTIONARY_SCHEMA.DBA_INDEXES view

○ SEQUENCE

■ DICTIONARY_SCHEMA.USER_SEQUENCES view

■ DICTIONARY_SCHEMA.ALL_SEQUENCES view

■ DICTIONARY_SCHEMA.DBA_SEQUENCES view

○ CONSTRAINT

■ DICTIONARY_SCHEMA.USER_CONSTRAINTS view

■ DICTIONARY_SCHEMA.ALL_CONSTRAINTS view

■ DICTIONARY_SCHEMA.DBA_CONSTRAINTS view

○ PROCEDURE & FUNCTION

■ DICTIONARY_SCHEMA.USER_PROCEDURES view

■ DICTIONARY_SCHEMA.ALL_PROCEDURES view

■ DICTIONARY_SCHEMA.DBA_PROCEDURES view

For more information about the detailed description of each view, refer to DICTIONARY_SCHEMA.

Examples

The following is an example of creating the comment on the table.

gSQL> COMMENT ON TABLE t1 IS 'test comment on table t1';

Comment created.

The following is an example of creating the comment on the column.

gSQL> COMMENT ON COLUMN t1.id IS 'test comment on column t1.id';

Comment created.

The following is an example of creating the comment on the schema.

gSQL> COMMENT ON SCHEMA s1 IS 'test comment on schema s1';

Comment created.

1,740 | SQL References

Compatibility

<comment statement> does not exist in SQL standard.

COMMIT | 1,741

16.76 COMMIT

Function

It terminates the current transaction and makes all changes permanent.

Syntax

<commit statement> ::=

COMMIT [WORK]

[[<commit comment clause>] [<commit write clause>] |

[<commit force clause>] [<commit comment clause>]]

;

<commit comment clause> ::=

COMMENT 'comment_string'

<commit write clause> ::=

WRITE [WAIT | NOWAIT]

<commit force clause> ::=

FORCE 'xid_string'

Syntax Rules and Parameters

WORK

It is the reserved word which does not affect the operation.

<commit comment clause>

● COMMENT 'comment_string'

○ It specifies the comment to the transaction when committing the transaction.

<commit write clause>

It determines whether to wait until the redo logs generated by the commit operation are written on the r

edo log file.

1,742 | SQL References

● WAIT

○ It waits until the redo logs generated by the commit operation are written to the redo log file, an

d then the operation is terminated.

● NOWAIT

○ The operation is terminated when the redo logs generated by the commit operation are written t

o the redo log buffer.

● If it is not specified, it follows the property.

<commit force clause>

It is used to manually commit a distributed transaction.

● FORCE 'xid_string'

○ It commits the distributed transaction 'xid_string'.

○ 'xid_string' consists of 'format_id.transaction_id.branch_id'.

Description

COMMIT statement completes the following statements which were executed in a transaction.

● Data Manipulation Language (DML) statement

○ It is the statement which changes data, such as INSERT, UPDATE, DELETE.

● Data Definition Language (DDL) statement

○ It is the statement which changes the structure and definition of the objects, such as CREATE, DR

OP, ALTER, TRUNCATE, GRANT, REVOKE.

Exceptionally, the following DDL statements which manage the OS resources or change the DATA TYPE a

re automatically committed.

● CREATE TABLESPACE

● DROP TABLESPACE

● ALTER TABLESPACE

● ALTER TABLE .. ALTER COLUMN .. SET DATA TYPE: <alter column data type clause>

When performing COMMIT, the cursor opened by WITHOUT HOLD option is automatically closed. For mo

re information about cursors, refer to the following cursor related statements.

● DECLARE cursor_name

● OPEN cursor_name

If the transaction violates the DEFERRED constraint, the COMMIT statement fails and the transaction is rol

COMMIT | 1,743

led back. For more information about DEFERRED constraint, refer to SET CONSTRAINTS.

Example

The following is an example of performing COMMIT after executing INSERT statement.

gSQL> INSERT INTO t1 VALUES (1, 'anonymous');

1 row created.

gSQL> COMMIT WORK COMMENT 'INSERT T1';

Commit complete.

Compatibility

Table 16-22 SQL standard compatibility

Feature ID Description Compatibility

T261 Chained transactions X

For More Information

Refer to the followings.

● ROLLBACK

● SAVEPOINT savepoint_specifier

1,744 | SQL References

16.77 CREATE AUDIT POLICY

Function

It creates an audit policy object.

AUDIT POLICY should be performed to activate the created audit policy object.

Syntax

<audit policy definition> ::=

CREATE AUDIT POLICY policy_name

{ <privilege_audit_clause> | <action_audit_clause> | <privilege_audit_clause>

<action_audit_clause> }

;

<privilege_audit_clause> ::=

PRIVILEGES <database_privilege> [, ...]

<action_audit_clause> ::=

ACTIONS { <object_action_audit> | <system_action_audit> } [, ...]

<object_action_audit> ::=

ALL ON [schema_name.]object_name

| <object_action> ON [schema_name.]object_name

<system_action_audit> ::=

ALL

| DDL

| <system_action>

Invocation and Access Rules

AUDIT SYSTEM ON DATABASE privilege is required to perform <audit policy definition>.

CREATE AUDIT POLICY | 1,745

Syntax Rules and Parameters

policy_name

It is the name of the audit policy to be created.

<privilege_audit_clause>

The privilege audit is auditing when the SQL statement is successfully performed by using the database pr

ivilege.

It can audit a specific user performing SQL statement by using the database privilege, and it does not rec

ord the privilege audit for SYS user who is the owner of the database.

The following is an example of granting SELECT ANY TABLE privilege to user u1 and activating the audit

policy.

CREATE AUDIT POLICY p1

PRIVILEGES SELECT ANY TABLE;

AUDIT POLICY p1;

If the user u1 performs the following SQL statement, the privilege audit differently operates.

● SELECT * FROM u1.t1;

○ It does not create the audit record by performing SQL statement with the privilege as an owner o

f table u1.t1.

● SELECT * FROM u2.t1;

○ It creates the audit record by performing SQL statement with SELECT ANY TABLE privilege.

<database_privilege> which can be described in the privilege audit can be viewed with the following quer

y.

SELECT PRIVILEGE_NAME FROM V$AUDITABLE_DB_PRIVILEGES;

<action_audit_clause>

It audits an action for a specific object and an action for the entire database.

1,746 | SQL References

<object_action_audit>

ALL ON object_name

It means all actions which can list objects corresponding to object_name.

The following table describes audit actions of which each object type can audit.

Table 16-23 Audit action per object type

Object type Action

Table
ALTER, COMMENT, DELETE, GRANT, INDEX, INSERT, LOCK, RENAME, SELECT, UPDA

TE

View ALTER, COMMENT, GRANT, SELECT

Sequence ALTER, COMMENT, GRANT, SELECT

Stored Function/Procedure ALTER, COMMENT, EXECUTE, GRANT

<object_action> ON object_name

Each separate action per a specific object should be listed by specifying ON clause as follows.

CREATE AUDIT POLICY p1

ACTIONS INSERT ON u1.t1

, DELETE ON u1.t1

, UPDATE ON u1.t1

;

Caution of EXECUTE action

Auditing the success or the failure of stored function or stored procedure is determined only based on wh

ether it is executable at the time of execution.

● WHENEVER NOT SUCCESSFUL creates the audit record when neither the stored function nor proced

ure is executable.

● WHENEVER SUCCESSFUL creates the audit record even though an error occurs while executing SQL s

tatement within the stored function or the procedure

● If an auditing for the failure of SQL statement within the stored function or the procedure is required,

then the audit target should include the corresponding SQL statement.

<system_action_audit>

It audits the system action which occurs in the database regardless of a specific object.

● <system_action>

CREATE AUDIT POLICY | 1,747

The valid system action can be retrieved by using the following query.

SELECT ACTION_NAME FROM V$AUDITABLE_SYSTEM_ACTIONS;

● ALL

It means all system actions.

● DDL

It means all Data Definition Language (DDL).

Description

An audit policy object is an object which defines auditing targets.

Perform AUDIT POLICY statement to activate an audit policy.

Though it is possible to define and activate multiple audit policies, but it is recommended to maintain cert

ain number of audit policies.

It is also recommended to bind multiple small pieces of policies into a small number of groups.

The information about an option of the created audit policy object can be retrieved through AUDIT_POLI

CY_OPTIONS view as follows.

SELECT audit_option

, audit_option_type

, object_schema

, object_name

FROM audit_policy_options

WHERE policy_name = 'P1'

;

AUDIT_OPTION AUDIT_OPTION_TYPE OBJECT_SCHEMA OBJECT_NAME

------------ ----------------- -------------- ------------

DELETE OBJECT ACTION U1 T1

INSERT OBJECT ACTION U1 T1

UPDATE OBJECT ACTION U1 T1

Creating Audit Record

If an action corresponding to multiple audit policies occurs, then one or more audit records are created.

1,748 | SQL References

If similar audit options are listed as follows, then one audit record is created.

● Defining an audit policy

CREATE AUDIT POLICY p1

PRIVILEGES SELECT ANY TABLE

ACTIONS SELECT;

AUDIT POLICY p1;

● Performing an audit action

SELECT * FROM other_user.t1;

If two different audit options are listed as follows, then two audit records are created.

● Defining an audit policy

CREATE AUDIT POLICY p1

ACTIONS SELECT ON u1.t1

, SELECT ON u2.t2;

AUDIT POLICY p1;

● Performing an audit action

SELECT COUNT(*) FROM u1.t1 A, u2.t2 B WHERE A.id = B.id;

If multiple audit policies are activated for the same action as follows, then two audit records are created.

● Defining an audit policy

CREATE AUDIT POLICY p1

PRIVILEGES SELECT ANY TABLE;

AUDIT POLICY p1;

CREATE AUDIT POLICY p2

ACTIONS SELECT;

AUDIT POLICY p2;

● Performing an audit action

SELECT * FROM other.t1;

CREATE AUDIT POLICY | 1,749

Examples

The following is an example of defining an audit policy which audits an privilege.

CREATE AUDIT POLICY policy_table

PRIVILEGES CREATE ANY TABLE

, DROP ANY TABLE

;

The following is an example of defining an audit policy which audits an action for an object.

CREATE AUDIT POLICY policy_dml

ACTIONS INSERT ON u1.t1

, DELETE ON u1.t1

, UPDATE ON u1.t1

, ALL ON u1.t2

;

The following is an example of defining an audit policy which audits the system action.

CREATE AUDIT POLICY policy_drop

ACTIONS DROP TABLE, TRUNCATE TABLE

;

The following is an example of defining an audit policy which combines all examples above.

CREATE AUDIT POLICY policy_group

PRIVILEGES CREATE ANY TABLE

, DROP ANY TABLE

ACTIONS INSERT ON u1.t1

, DELETE ON u1.t1

, UPDATE ON u1.t1

, ALL ON u1.t2

, DROP TABLE

, TRUNCATE TABLE

;

1,750 | SQL References

Compatibility

The audit policy does not exist in SQL standard.

For More Information

Refer to the followings.

● Managing audit policy object

○ CREATE AUDIT POLICY

○ DROP AUDIT POLICY

○ ALTER AUDIT POLICY

● Activating/ deactivating audit policy

○ AUDIT POLICY

○ NOAUDIT POLICY

● Retrieving audit trail: AUDIT_TRAIL

● Clearing audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

CREATE CLUSTER GROUP | 1,751

16.78 CREATE CLUSTER GROUP

Function

It creates a cluster group which is to participate in a cluster system.

Syntax

<cluster group definition> ::=

CREATE CLUSTER GROUP group_name

<cluster member definition> [, ...]

;

<cluster member definition> ::=

CLUSTER MEMBER member_name <connection attribute>

<connection attribute> ::

HOST 'address' PORT port_no

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <cluster group definition>.

Syntax Rules and Parameters

group_name

It is the name of a cluster group.

An identical cluster group name or a cluster member name should not exist.

The name length should be shorter than 128 bytes.

1,752 | SQL References

<cluster member definition>

It defines a cluster member to be included in a cluster group.

A cluster group can include maximum 32 cluster members.

A cluster group which is created first in a cluster system can define only one cluster member, and should i

nclude itself as a cluster member.

member_name

It is the name of a cluster member.

The name of a cluster member should be same as the name of the member which was defined when cre

ating the database of that member.

An identical cluster group name or a cluster member name should not exist.

The name length should be shorter than 128 bytes.

The start-up phase of the cluster member should be the OPEN phase.

<connection attribute>

It defines the connection information for the communication between the cluster members.

<connection attribute> should be as same as the HOST and PORT which were defined when the database

of that cluster member was created.

The combination of HOST and PORT should be unique in the cluster system.

● HOST address uses ip v4 type.

● PORT port_no should be in the range between 1024 ~ 49151.

Description

<cluster group definition> statement does not rebalance the shard of tables.

Perform the following statements to rebalance the shard to an added cluster group.

● ALTER DATABASE REBALANCE

● ALTER TABLE name REBALANCE

CREATE CLUSTER GROUP | 1,753

Examples

The following is an example of creating a cluster group which consists of two cluster members.

gSQL>

CREATE CLUSTER GROUP g1

CLUSTER MEMBER g1n1 HOST '192.168.0.11' PORT 10110

;

Cluster Group created.

gSQL>

ALTER CLUSTER GROUP g1

ADD CLUSTER MEMBER g1n2 HOST '192.168.0.12' PORT 10120

;

Cluster Group altered.

gSQL>

CREATE CLUSTER GROUP g2

CLUSTER MEMBER g2n1 HOST '192.168.0.21' PORT 10210,

CLUSTER MEMBER g2n2 HOST '192.168.0.22' PORT 10220

;

Cluster Group created.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● DROP CLUSTER GROUP

● ALTER CLUSTER GROUP name ADD MEMBER

1,754 | SQL References

16.79 CREATE CLUSTER LOCATION

Function

It creates the connection information of a cluster member.

Syntax

<cluster location definition> ::=

CREATE CLUSTER LOCATION member_name

<cluster connection attribute>

;

<cluster connection attribute> ::

HOST 'address' PORT port_no

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <cluster location definition>.

Syntax Rules and Parameters

member_name

It is the name of a cluster member.

The same cluster member name should not exist in the registered cluster location information.

The length of the name should be shorter than 128 bytes.

<cluster connection attribute>

It defines the connection information for the communication between the cluster members.

The combination of HOST and PORT should be unique in the cluster system.

CREATE CLUSTER LOCATION | 1,755

● HOST address uses ip v4 type.

● PORT port_no should be in the range between 1024 ~ 49151.

Description

Generally, the information of the cluster location is automatically created by using the connection inform

ation provided when creating the cluster group or adding the cluster member. The created information is

deleted together when deleting the cluster member and the cluster group.

If the information of the cluster location is modified, then the connection information can be modified by

using ALTER CLUSTER LOCATION without deleting or recreating the cluster member.

Examples

gSQL>

CREATE CLUSTER LOCATION g1n2

HOST '192.168.0.12' PORT 10120,

;

Created

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to DROP CLUSTER LOCATION.

1,756 | SQL References

16.80 CREATE INDEX

Function

It creates an index.

Syntax

<index definition> ::=

CREATE [UNIQUE] INDEX index_name

ON table_name (<index column element> [, ...])

[<index attributes> [...]]

[TABLESPACE tablespace_name]

;

<index column element> ::=

column_name [ASC | DESC] [NULLS FIRST | NULLS LAST]

<index attributes> ::=

<physical attribute clause>

| STORAGE (<segment attr clause> [...])

| <logging clause>

| <parallel clause>

<physical attribute clause> ::=

PCTFREE integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

INITIAL <size_clause>

| NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

<size clause> ::=

integer [K | M | G | T]

<logging clause> ::=

LOGGING

| NOLOGGING

<parallel clause> ::=

NOPARALLEL

CREATE INDEX | 1,757

| PARALLEL [integer]

Invocation and Access Rules

The user should satisfy the following conditions to perform <index definition>.

● One of the following privileges is required to create an index on the table.

○ (INDEX or CONTROL TABLE ON) TABLE for that table

○ CONTROL SCHEMA ON SCHEMA for the schema to which the table belongs

○ CREATE ANY INDEX ON DATABASE

● One of the following privileges is required for the schema on which the index to be created.

○ (CREATE INDEX or CONTROL SCHEMA) ON SCHEMA for the schema

○ CREATE ANY INDEX ON DATABASE

● One of the following privileges is required for the tablespace on which the index to be created.

○ CREATE OBJECT ON TABLESPACE for that tablespace

○ USAGE TABLESPACE ON DATABASE

● The owner of the index is determined as follows.

○ The owner of the schema to which the index belongs.

○ If the schema to which the index belongs is PUBLIC, then it is the user who executed the stateme

nt.

Note

Unique indexes in a cluster system should include all sharding keys.

Syntax Rules and Parameters

UNIQUE

It does not allow duplicate values for the columns of the index.

1,758 | SQL References

index_name

It is the index name to be created and it should be a unique name within the schema.

If the schema name is omitted, the index is created in the schema to which the referring table belongs.

The length of the index name should be shorter than 128 bytes.

table_name

It is the table name which creates the index.

The schema to which a table belongs, such as schema_name.table_name, can be defined. If schema_na

me is omitted, the default schema name of the user performing the statement is used.

column_name

It is the column name to be used as an index key.

One or more columns should be defined, and maximum 32 columns can be used as an index key.

The following constraints can occur depending on the implementation.

● If the column data type included in an index is LONG CHARACTER VARYING, LONG BINARY VARYIN

G, an index can not be created.

● An index is created only when the sum of the column precisions is less than half of the page size.

ASC | DESC

It specifies the sort order of a column.

● ASC: It is sorted in ascending order.

● DESC: It is sorted in descending order.

● If not specified, the default value is ASC.

NULLS FIRST | NULLS LAST

It specifies the sort order of the NULL value.

● NULLS FIRST: It precedes the non-NULL values.

● NULLS LAST: It is behind the non-NULL values.

● If not specified, the default value is NULLS LAST.

CREATE INDEX | 1,759

<physical attribute clause>

It defines the physical attribute of the index.

● PCTFREE integer

○ Definition

■ It is the reserved space for adjusting the page split frequency caused by the key inserted in th

e page.

■ It applies only to the index bottom-up build.

○ It can use the value from 0 to 99.

○ If it is omitted, the default value is the value set in DEFAULT_INDEX_PCTFREE property.

● INITRANS integer

○ Definition

■ It specifies the initial number of transactions which can simultaneously access the page.

■ If the number of users who access the index is small, INITRANS is set to low, and if the numb

er of users who simultaneously access the index is big, INITRANS is set to high.

■ If necessary, it is automatically increased to the specified MAXTRANS.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 4.

● MAXTRANS integer

○ Definition

■ It specifies the maximum number of transactions which can simultaneously access the page.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 8.

<segment attr clause>

It specifies the information for the index storage space.

● INITIAL integer

○ Definition

■ It specifies the size of physical storage space which is initially allocated when creating the ind

ex.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'INITIAL 100' is actually operated as 8192 bytes.)

■ The size (aligned to the EXTENT size of TABLESPACE) should be equal to or bigger than MIN

EXTENTS, or it should be equal to or less than MAXEXTENTS.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the table belongs.

● NEXT integer

1,760 | SQL References

○ Definition

■ It specifies the physical space size to be allocated when adding the space to the index.

■ This size is aligned to the EXTENT size of the TABLESPACE to which the table belongs. (e.g. If

the EXT size is 8192 bytes, 'NEXT 100' is actually operated as 8192 bytes.)

■ NEXT operates as follows, depending on the remaining space size of the index available curr

ently. (Obtained by subtracting the amount of currently used space from the MAXEXTENTS si

ze)

- If the remaining space size is 0, then it can not extend the space.

- If the remaining space size is bigger than 0, but smaller than NEXT, then it allocates the

space as big as the remaining space.

- If the remaining space size is bigger than NEXT, then it allocates the space as big as the NEXT.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is one EXTENT size of TABLESPACE to which the index belongs.

● MINSIZE integer

○ Definition

■ It is the minimum space size of the index.

■ The value should be equal to or smaller than MAXSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is smaller than the size of two EXTENT, it is specified to the size of two EXTENT.

○ If it is omitted, the default value is the size of two EXTENT.

● MAXSIZE integer

○ Definition

■ It is the maximum space size of the index.

■ The value should be equal to or bigger than MINSIZE.

○ This size is aligned to the EXTENT size of the TABLESPACE to which the index belongs.

○ The minimum value is 1 and the maximum value depends on the system environment.

○ If it is omitted, the default value is EXTENT size * 2147483647 (The maximum positive integer of

INT32).

<size clause>

It specifies the file size in bytes.(If the unit is omitted, the default value is bytes.)

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

CREATE INDEX | 1,761

LOGGING | NOLOGGING

It specifies whether the index performs redo logging.

If not specified, the default value is NOLOGGING.

NOPARALLEL | PARALLEL [integer]

It specifies the number of threads to be used when building an index.

● NOPARALLEL

○ It does not build an index in parallel.

● PARALLEL [integer]

○ It builds an index in parallel.

○ If an integer is omitted or set as 0, then it follows the property (INDEX_BUILD_PARALLEL_FACTO

R).

○ The minimum value of an integer is 0 and the maximum value is 16.

○ If the property value is 0, then the system determines the optimal value.

● If it is omitted, the default value is PARALLEL.

TABLESPACE tablespace_name

It specifies the name of the tablespace in which the index is to be stored.

● If it specifies tablespace_name

○ The tablespace_name of LOGGING index should be a data tablespace.

○ The tablespace_name of NOLOGGING index should be a temporary tablespace or a nologging ta

blespace.

● If it omits TABLESPACE clause

○ If INDEX TABLESPACE tablespace_name of USER is specified

■ The defined tablespace is used.

○ If INDEX TABLESPACE of USER is NULL

■ LOGGING index uses the user's default data tablespace.

■ NOLOGGING index uses the user's default temporary tablespace.

Description

LOGGING index and NOLOGGING index have the following trade-offs.

● LOGGING index

1,762 | SQL References

○ Advantage: It does not separately build an index because the index is automatically restored by u

sing the log when starting up the system.

○ Disadvantage: A disk I/O occur because the changes on the index is recorded on the log when alt

ering the row.

● NOLOGGING index

○ Advantage: A disk I/O does not occur for the changes on the index when altering the row.

○ Disadvantage: It automatically rebuilds the index when starting up the system because the log inf

ormation of the index does not exist.

Examples

The following is an example of creating the unique index.

gSQL> CREATE UNIQUE INDEX idx_t1_id ON t1(id);

Index created.

The following is an example of creating an index for multiple columns.

gSQL> CREATE INDEX idx_t1_id_name ON t1(id, name);

Index created.

The following is an example of specifying the sort order of the index column.

gSQL> CREATE INDEX idx_t1_dept_id ON t1(dept_id DESC);

Index created.

The following is an example of specifying the sort order of NULL value of the index column.

gSQL> CREATE INDEX idx_t1_name ON t1(name NULLS FIRST);

Index created.

The following is an example of setting information about the space in which index is stored.

gSQL> CREATE INDEX idx_t1_id ON t1(id)

STORAGE (INITIAL 10M NEXT 1M MINSIZE 10M MAXSIZE 100M);

Index created.

The following is an example of creating the redo logging for the index.

gSQL> CREATE INDEX idx_t1_id ON t1(id) LOGGING;

Index created.

CREATE INDEX | 1,763

The following is an example of creating the index with parallel option.

gSQL> CREATE INDEX idx_t1_name ON t1(name) PARALLEL;

Index created.

The following is an example of specifying the tablespace when creating an index.

gSQL> CREATE INDEX idx_t1_name ON t1(name) NOLOGGING TABLESPACE mem_temp_tbs;

Index created.

Compatibility

The SQL standard does not cover the concepts of the index.

For more information

Refer to DROP INDEX.

1,764 | SQL References

16.81 CREATE PROFILE

Function

It is the statement which creates the profile, and it sets the password management method.

When a profile is allocated to a user, the user's password is managed in the way defined in the profile.

Syntax

<profile definition> ::=

CREATE PROFILE profile_name LIMIT

{ <password_parameters>, ...}

;

<password parameters> ::=

FAILED_LOGIN_ATTEMPTS { integer | UNLIMITED | DEFAULT }

| PASSWORD_LOCK_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_LIFE_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_GRACE_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_REUSE_MAX { integer | UNLIMITED | DEFAULT }

| PASSWORD_REUSE_TIME { password_parameter_number_interval | UNLIMITED | DEFAULT }

| PASSWORD_VERIFY_FUNCTION { <verify_policy> | NULL | DEFAULT }

<verify_policy> ::=

KISA_VERIFY_FUNCTION

| ORA12C_VERIFY_FUNCTION

| ORA12C_STRONG_VERIFY_FUNCTION

| VERIFY_FUNCTION_11G

| VERIFY_FUNCTION

<password_parameter_number_interval> ::=

integer

| integer / integer

Invocation and Access Rules

CREATE PROFILE ON DATABASE privilege is required to perform <profile definition>.

CREATE PROFILE | 1,765

Syntax Rules and Parameters

profile_name

It specifies the profile name to be created.

password_parameters

It sets the parameters for password management.

● The following parameters are to be set.

○ FAILED_LOGIN_ATTEMPTS

○ PASSWORD_LOCK_TIME

○ PASSWORD_LIFE_TIME

○ PASSWORD_GRACE_TIME

○ PASSWORD_REUSE_MAX

○ PASSWORD_REUSE_TIME

○ PASSWORD_VERIFY_FUNCTION

The omitted parameters follow the "DEFAULT" profile policy.

FAILED_LOGIN_ATTEMPTS

It sets the number of consecutive login attempts allowed to fail.

If the failed attempts exceed the specified number, the account is locked.

● FAILED_LOGIN_ATTEMPTS integer

○ The value range should be a positive integer bigger than 0.

● FAILED_LOGIN_ATTEMPTS UNLIMITED

○ Account lockout which is due to a login failure does not occur.

● FAILED_LOGIN_ATTEMPTS DEFAULT

○ It follows the "DEFAULT" profile policy.

PASSWORD_LOCK_TIME

It sets the period (days) which the account is locked after consecutive login failure.

● PASSWORD_LOCK_TIME constant_expression

○ It is the lock duration (day).

○ The default unit is a day.

○ Hours(n/24), minutes (n/1440), seconds (n/86400) can be specified for testing.

1,766 | SQL References

○ The value range is from one second (1/86400) to 100,000 days.

● PASSWORD_LOCK_TIME UNLIMITED

○ If an account lockout occurs, the lock is not release until performing ALTER USER user_name AC

COUNT UNLOCK statement.

● PASSWORD_LOCK_TIME DEFAULT

○ It follows the "DEFAULT" profile policy.

PASSWORD_LIFE_TIME

It sets the life time of the password (day).

● PASSWORD_LIFE_TIME constant_expression

○ It is the life time of the password (day).

○ The default unit is a day.

○ Hours(n/24), minutes (n/1440), seconds (n/86400) can be specified for testing.

○ The value range is from one second (1/86400) to 100,000 days.

● PASSWORD_LIFE_TIME UNLIMITED

○ The password does not have the expiration date.

● PASSWORD_LIFE_TIME DEFAULT

○ It follows the "DEFAULT" profile policy.

PASSWORD_GRACE_TIME

It sets the grace period of password expiration when logging in after PASSWORD_LIFE_TIME.

● PASSWORD_GRACE_TIME constant_expression

○ The grace period for password expiration (day)

○ The default unit is a day.

○ Hours (n/24), minutes (n/1440), seconds (n/86400) can be specified for testing.

○ The value range is from one second (1/86400) to 100,000 days.

● PASSWORD_GRACE_TIME UNLIMITED

○ It continues to defer the password expiration.

● PASSWORD_GRACE_TIME DEFAULT

○ It follows the "DEFAULT" profile policy.

PASSWORD_GRACE_TIME starts at first login trial after the password life time. If the password is not alte

red during the grace period, the password expires.

CREATE PROFILE | 1,767

PASSWORD_REUSE_MAX

It sets the number of the recent passwords which can not be reused when the user wants to reuse the ol

d password.

PASSWORD_REUSE_MAX should be used together with PASSWORD_REUSE_TIME.

● PASSWORD_REUSE_MAX integer

○ The value range should be a positive integer bigger than 0.

● PASSWORD_REUSE_MAX UNLIMITED

○ If PASSWORD_REUSE_TIME is UNLIMITED, all old passwords can be reused.

○ If PASSWORD_REUSE_TIME is not UNLIMITED, any old password can not be reused.

● PASSWORD_REUSE_MAX DEFAULT

○ It follows the "DEFAULT" profile policy.

PASSWORD_REUSE_TIME

It sets the duration which the password can not be reused when the user wants to reuse the old passwor

d.

PASSWORD_REUSE_TIME should be used together with PASSWORD_REUSE_MAX.

● PASSWORD_REUSE_TIME constant_expression

○ It is the duration which the password can not be reused. (day)

○ The default unit is a day.

○ Hours(n/24), minutes (n/1440), seconds (n/86400) can be specified for testing.

○ The value range is from one second (1/86400) to 100,000 days.

● PASSWORD_REUSE_TIME UNLIMITED

○ If PASSWORD_REUSE_MAX is UNLIMITED, all old passwords can be reused.

○ If PASSWORD_REUSE_MAX is not UNLIMITED, any old password can not be reused.

● PASSWORD_REUSE_TIME DEFAULT

○ It follows the "DEFAULT" profile policy.

PASSWORD_VERIFY_FUNCTION

It sets the password complexity verification methods.

● PASSWORD_VERIFY_FUNCTION null

○ The password complexity verification is not performed.

● PASSWORD_VERIFY_FUNCTION DEFAULT

○ It follows the "DEFAULT" profile policy.

● PASSWORD_VERIFY_FUNCTION <verify policy>

○ The password complexity verification methods can be specified as follows.

1,768 | SQL References

■ KISA_VERIFY_FUNCTION

■ ORA12C_VERIFY_FUNCTION

■ ORA12C_STRONG_VERIFY_FUNCTION

■ VERIFY_FUNCTION_11G

■ VERIFY_FUNCTION

KISA_VERIFY_FUNCTION

It is the password verification method of KISA (Korea Internet & Security Agency).

● 8 or more letters

● One or more characters

● One or more numbers

● One or more special characters

ORA12C_VERIFY_FUNCTION

It is the password verification method of Oracle, ORA12C_VERIFY_FUNCTION.

● 8 or more letters

● 1 or more characters

● 1 or more numbers

● The database name should not be included.

● The username or the reversed username should not be included.

● goldilocks should not be included.

● oracle should not be included.

● The following simple passwords are not allowed.

○ welcome1, database1, account1, user1234, password1, oracle123, computer1, abcdefg1, chang

e_on_intall

● At least 3 characters of the new password should be different from the old password.

ORA12C_STRONG_VERIFY_FUNCTION

It is the password verification method of Oracle, ORA12C_STRONG_VERIFY_FUNCTION.

● 9 or more letters

● 2 or more uppercases

● 2 or more lowercases

● 2 or more numbers

● 2 or more special characters

● At least 4 characters of the new password should be different from the old password.

CREATE PROFILE | 1,769

VERIFY_FUNCTION_11G

It is the password verification method of Oracle, VERIFY_FUNCTION_11G.

● 8 or more letters

● 1 or more characters

● 1 or more numbers

● The username should not be included.

● At least 3 characters of the new password should be different from the old password.

VERIFY_FUNCTION

It is the password verification method of Oracle, VERIFY_FUNCTION.

● It should not be as same as the username.

● 4 or more letters

● 1 or more characters

● 1 or more numbers

● 1 or more special characters

● The following simple passwords are not allowed.

○ welcome, database, account, user, password, oracle, computer, abcd

● At least 3 characters of the new password should be different from the old password.

Description

Account Lockout

The followings are the parameters affecting the account lockout.

● FAILED_LOGIN_ATTEMPTS

● PASSWORD_LOCK_TIME

For example, when a user and a profile are created as follows.

CREATE PROFILE prof LIMIT

FAILED_LOGIN_ATTEMPTS 4

PASSWORD_LOCK_TIME 30;

ALTER USER u1 PROFILE prof;

If the user u1 fails to log in more than four times, the account is locked for 30 days. Then the account loc

kout is released after 30 days.

1,770 | SQL References

If PASSWORD_LOCK_TIME is UNLIMITED, the account lockout should be explicitly released by using ALTE

R USER statement.

ALTER USER user1 ACCOUNT UNLOCK;

Password Expiration

The followings are the parameters affecting the password expiration.

● PASSWORD_LIFE_TIME

● PASSWORD_GRACE_TIME

The password is expired in the following order.

1. The password is set.

○ The time of the password expiration is set to the time elapsed as much as PASSWORD_LIFE_TIME

since when a password is altered.

○ The password expiration status is OPEN, and it allows a normal login.

2. When a user logs in after the password expiration

○ The login succeeds but the password expiration status becomes EXPIRED (GRACE) and the follo

wing warnings occur.

■ ERR-28000(16310): The password will expire in n days

■ ERR-28000(16311): The password will expire soon

■ The SQL standard does not cover the concepts of password expiration.

■ 28000 is the authentication warning or SQL standard status code of an error. 16310, 16311

are the GOLDILOCKS error code.

○ The time of the password expiration is reset to the time elapsed as much as PASSWORD_GRACE

_TIME since when a user logged in.

3. When a user logs in after the grace time

○ The password expiration status becomes EXPIRED, the user can not log in, and the following erro

r occurs.

■ ERR-28000(16312): The password has expired

■ The SQL standard does not cover the concepts of password expiration.

■ 28000 is the authentication warning or SQL standard status code of an error. 16312 is the G

OLDILOCKS error code.

■ GOLDILOCKS internal error code of 16312 should be used to control password reentering usi

ng program.

Table 16-24 Password expiration status transition

Step Point of time login Status

1 The password is changed. Success OPEN

CREATE PROFILE | 1,771

2 PASSWORD_LIFE_TIME is elapsed. Success with warning EXPIRED(GRACE)

3 PASSWORD_GRACE_TIME is elapsed. Error EXPIRED

Step Point of time login Status

The following is another example.

CREATE PROFILE prof LIMIT

PASSWORD_LIFE_TIME 90

PASSWORD_GRACE_TIME 3;

ALTER USER u1 PROFILE prof;

The example above describes that the user u1 succeeds in login after 90 days of password expiration. Ho

wever, the user receives a warning that the password expires in three days.

If the password is not changed within three days, the password expires.

Once the password expires, it reminds that the new password should be entered when logging in, and th

e account access is denied.

Password Reusability

The followings are the parameters affecting the password reusability.

● PASSWORD_REUSE_MAX

● PASSWORD_REUSE_TIME

The password reusability of the two parameters above is determined according to the following table.

Table 16-25 Conditions for the password reusability

PASSWORD_REUSE_MAX PASSWORD_REUSE_TIME Reusable condition

value value
It can be reused when both conditions of PASSWORD_R

EUSE_TIME and PASSWORD_REUSE_MAX are satisfied.

value UNLIMITED It can not be reused.

UNLIMITED value It can not be reused.

UNLIMITED UNLIMITED It can always be reused.

If a profile is created as follows,

CREATE PROFILE prof LIMIT

PASSWORD_REUSE_MAX 5

PASSWORD_REUSE_TIME 3;

the password can not be reused if it is the five recent passwords or the password changed within three d

1,772 | SQL References

ays.

The following is an example of the user u1's password change history. If the current password is P # _000

007 and the current date is 2015-08-08, the reusability of existing passwords is as follows.

Table 16-26 Examples of password reusability

Password Password_date Password reusability

P#_000001 2015-08-01 It can be reused.

P#_000002 2015-08-02 It can be reused.

P#_000003 2015-08-03 It violates REUSE_MAX.

P#_000004 2015-08-04 It violates REUSE_MAX.

P#_000005 2015-08-05 It violates REUSE_MAX, REUSE_TIME.

P#_000006 2015-08-06 It violates REUSE_MAX, REUSE_TIME.

P#_000007 2015-08-07 It violates REUSE_MAX, REUSE_TIME.

The password change history accumulated for checking the password reusability can be deleted by using

the following statement.

ALTER DATABASE CLEAR PASSWORD HISTORY;

DEFAULT profile

When creating the database, the following "DEFAULT" profile is automatically created. The password par

ameters of the "DEFAULT" profile are as follows.

Table 16-27 Configuration of DEFAULT profile

Parameter Value

FAILED_LOGIN_ATTEMPTS 10

PASSWORD_LOCK_TIME 1

PASSWORD_LIFE_TIME 180

PASSWORD_GRACE_TIME 7

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

PASSWORD_VERIFY_FUNCTION NULL

The default values of "DEFAULT" profile have the following characteristics.

● Account lockout

○ The account is locked for one day (PASSWORD_LOCK_TIME) after ten consecutive login failure (F

AILED_LOGIN_ATTEMPTS).

● Password expiration

○ The password expires after the grace period of seven days (PASSWORD_GRACE_TIME) after 180

CREATE PROFILE | 1,773

days (PASSWORD_LIFE_TIME) are exceeded.

● Password reusability

○ The old password can be reused.

● Password complexity verification

○ It is not performed.

DEFAULT profile can not be dropped but it can be altered as follows.

ALTER PROFILE DEFAULT LIMIT ...

Examples

The following is an example of creating the profile to control the account lockout. The account is locked f

or three days after three consecutive login failures.

gSQL> CREATE PROFILE prof1 LIMIT

FAILED_LOGIN_ATTEMPTS 3

PASSWORD_LOCK_TIME 3;

Profile created.

gSQL> COMMIT;

Commit complete.

The following is an example of creating the profile to control the password expiration. The life time of th

e password is 90 days, and the grace time of the password is seven days.

gSQL> CREATE PROFILE prof1 LIMIT

PASSWORD_LIFE_TIME 90

PASSWORD_GRACE_TIME 7;

Profile created.

gSQL> COMMIT;

Commit complete.

The following is an example of creating the profile to control whether the password is reusable. The follo

wing example does not verify the old password when changing the password.

gSQL> CREATE PROFILE prof1 LIMIT

PASSWORD_REUSE_MAX DEFAULT

PASSWORD_REUSE_TIME DEFAULT;

Profile created.

gSQL> COMMIT;

1,774 | SQL References

Commit complete.

The following is an example of creating the profile to control the password complexity check.

gSQL> CREATE PROFILE prof1 LIMIT

PASSWORD_VERIFY_FUNCTION KISA_VERIFY_FUNCTION;

Profile created.

gSQL> COMMIT;

Commit complete.

The following is an example of creating the profile by setting all parameter.

gSQL> CREATE PROFILE prof1 LIMIT

FAILED_LOGIN_ATTEMPTS 3

PASSWORD_LOCK_TIME 3

PASSWORD_LIFE_TIME 90

PASSWORD_GRACE_TIME 7

PASSWORD_REUSE_MAX DEFAULT

PASSWORD_REUSE_TIME DEFAULT

PASSWORD_VERIFY_FUNCTION KISA_VERIFY_FUNCTION;

Profile created.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not cover the concepts of the profile.

For More Information

Refer to the followings.

● DROP PROFILE

● ALTER PROFILE

● CREATE USER

● ALTER USER

● ALTER DATABASE CLEAR PASSWORD HISTORY

CREATE SCHEMA | 1,775

16.82 CREATE SCHEMA

Function

It defines the schema.

Syntax

<schema definition> ::=

CREATE SCHEMA <schema name clause>

[<schema element> [...]]

;

<schema name clause> ::=

schema_name

| AUTHORIZATION user_identifier

| schema_name AUTHORIZATION user_identifier

<schema element> ::=

<table definition>

| <view definition>

| <index definition>

| <sequence generator definition>

| <grant privilege statement>

| <comment statement>

Invocation and Access Rules

The user should satisfy the following conditions to perform <schema definition>.

● CREATE SCHEMA ON DATABASE privilege is required to create the schema.

● If <schema element> exists, the privilege to perform each <schema element> is required.

For more information about the access privilege, refer to invocation and access rules in the following

statements.

○ CREATE TABLE

○ CREATE VIEW

○ CREATE INDEX

1,776 | SQL References

○ CREATE SEQUENCE

○ GRANT privileges TO

○ COMMENT ON name IS

● The user who is user_identifier has the following privileges for the created schema.

○ The owner of the created schema, which is schema_name

○ The owner of the object which is created by <schema element> clause

● An appropriate privilege for the schema is required to create an object because a separate privilege o

n the created schema is not granted.

For more information about schema privilege types, refer to <schema privilege> of GRANT privileges

TO statement.

For more information about usage example, refer to Examples of CREATE USER statement.

Syntax Rules and Parameters

schema_name

It is the schema name to be created.

An identical schema name should not exist in the database.

The length of the schema name should be shorter than 128 bytes.

AUTHORIZATION user_identifier

If the schema name is omitted, a schema with the same name as the user_identifier is created.

If the AUTHORIZATION is not specified, the user_identifier of the user performing the statement is used.

schema_name AUTHORIZATION user_identifier

It specifies the schema name and schema owner to be created.

The owner can not be a role or PUBLIC.

<schema element>

It defines the objects to be created in the schema along with the schema creation.

The schema_element is executed in the listed order, and they are separated by a white space without a c

omma (,).

The object can not be defined in a schema which has different name from the schema to be created.

CREATE SCHEMA | 1,777

● The <grant privilege statement> can be specified only for the following privileges.

○ <schema privilege>

○ <table privilege>

○ <sequence privilege>

● The <comment statement> can be specified only for the following objects.

○ SCHEMA schema_name

○ TABLE [schema_name].table_name

○ COLUMN [schema_name].table_name.column_name

○ INDEX [schema_name].index_name

○ SEQUENCE [schema_name].sequence_name

○ CONSTRAINT [schema_name].constraint_name

Description

A schema is an object which logically classifies SQL schema objects such as table, view, index, sequence a

nd constraint.

In GOLDILOCKS, the relationship between the user and the schema is 1 : N. In other words, the schema o

wned by a user may not exist, or the user may own multiple schemas.

The SQL standard does not explicitly define the relationship of the non-schema objects such as user, sche

ma, database, but each DBMS defines the relationship between the non-schema objects as a different co

ncept. Refer to the following note.

Note

The relationship between user and schema in other DBMS

● Oracle

○ User : schema = 1 : 1

● DB2

○ User : schema = 1 : N

1,778 | SQL References

● Postgres

○ User : schema = 1 : N

● MySQL

○ Database : schema = 1 : 1

○ User is a subordinate object of a database (schema).

Examples

The following is an example of creating a schema.

gSQL> CREATE SCHEMA s1;

Schema created.

The following is an example of creating a schema and assigning the schema owner.

gSQL> CREATE SCHEMA s1 AUTHORIZATION test;

Schema created.

The following is an example of creating a schema together with the objects which belong to the schema.

gSQL> CREATE SCHEMA s1

CREATE TABLE t1 (id INTEGER, name VARCHAR(128))

CREATE INDEX idx_t1_id ON t1 (id)

COMMENT ON TABLE t1 IS 'comment on s1.t1'

;

Schema created.

Compatibility

Table 16-28 SQL standard compatibility

Feature ID Description Compatibility

S071 SQL paths in function and type name resolution X

F461 Named character sets X

F171 Multiple schemas per user O

CREATE SCHEMA | 1,779

T332 Extended roles X

Feature ID Description Compatibility

For More Information

Refer to the followings.

● DROP SCHEMA

● CREATE USER

● CREATE TABLE

● CREATE VIEW

● CREATE INDEX

● CREATE SEQUENCE

● GRANT privileges TO

● COMMENT ON name IS

1,780 | SQL References

16.83 CREATE SEQUENCE

Function

It creates a sequence.

Syntax

<sequence generator definition> ::=

CREATE SEQUENCE [schema_name.] sequence_name

[<sequence generator option> [, ...]]

;

<sequence generator option> ::=

<sequence generator start with option>

| <basic sequence generator option>

<sequence generator start with option> ::=

START WITH integer

<basic sequence generator option> ::=

<sequence generator increment by option>

| <sequence generator maxvalue option>

| <sequence generator minvalue option>

| <sequence generator cycle option>

| <sequence generator cache option>

<sequence generator increment by option> ::=

INCREMENT BY integer

<sequence generator maxvalue option> ::=

MAXVALUE integer

| (NO MAXVALUE | NOMAXVALUE)

<sequence generator minvalue option> ::=

MINVALUE integer

| (NO MINVALUE | NOMINVALUE)

<sequence generator cycle option> ::=

CYCLE

| (NO CYCLE | NOCYCLE)

<sequence generator cache option> ::=

CACHE integer

| (NO CACHE | NOCACHE)

CREATE SEQUENCE | 1,781

Invocation and Access Rules

The user should have one of the following privileges to perform <sequence generator definition> stateme

nt.

• (CREATE SEQUENCE or CONTROL SCHEMA) ON SCHEMA for the schema to which the sequence

belongs

• CREATE ANY SEQUENCE ON DATABASE

The sequence owner is determined as follows.

• The owner of the schema to which the sequence belongs

• If the schema to which the sequence belongs is PUBLIC, then it is the user who executed the statement.

The sequence owner has USAGE ON SEQUENCE WITH GRANT OPTION privilege.

One of the following privileges is required to use the created sequence.

• USAGE ON SEQUENCE for the sequence

• (USAGE SEQUENCE or CONTROL SCHEMA) ON SCHEMA for the schema to which the sequence

belongs

• USAGE ANY SEQUENCE ON DATABASE

Syntax Rules and Parameters

sequence_name

It is the sequence name to be created, and it should be a unique name within the schema.

The schema to which the sequence belongs, such as schema_name.sequence_name, can be defined. If sc

hema_name is omitted, the default schema name of the user performing the statement is used.

The length of the sequence name should be shorter than 128 bytes.

<sequence generator option>

If any of <sequence generator option> is not used, the following two statements have the same meaning.

● CREATE SEQUENCE test_seq;

● CREATE SEQUENCE test_seq START WITH 1 INCREMENT BY 1 NO MINVALUE NO MAXVALUE NO C

YCLE CACHE 20;

1,782 | SQL References

<sequence generator start with option>

It defines the first sequence number to be generated.

Depending on the ascending or the descending order, it has the following features.

● Ascending sequence (INCREMENT BY a positive number)

○ It is used when starting the sequence with bigger sequence value than the minimum value.

○ If START WITH clause is omitted, the default value is the minimum value (MINVALUE value).

● Descending sequence (INCREMENT BY a negative number)

○ It is used when starting the sequence with smaller sequence value than the maximum value.

○ If START WITH clause is omitted, the default value is the maximum value (MAXVALUE value).

<sequence generator increment by option>

It defines the interval of sequence numbers.

The constraints and features are as follows.

● A positive number or a negative number is allowed, but 0 is not allowed.

● The absolute value of the interval should be smaller than the difference between MINVALUE and MA

XVALUE.

● The ascending sequence is generated if it is a positive number, and the descending sequence is gener

ated if it is a negative number.

● If INCREMENT BY clause is omitted, the default is a positive number 1.

<sequence generator maxvalue option>

It defines the maximum value of which the sequence can generate.

● MAXVALUE integer

○ The maximum value range is between the minimum (-9,223,372,036,854,775,808) and the max

imum (+9,223,372,036,854,775,807) of the 64 bit integer.

○ It should be equal to or bigger than START WITH value, and bigger than MINVALUE value.

● NO MAXVALUE | NOMAXVALUE

○ The maximum value is defined as follows.

■ If it is an ascending sequence, it is the maximum value (+9,223,372,036,854,775,807) of the

64 bit integer.

■ If it is a descending sequence, it is -1.

○ NO MAXVALUE(SQL standard) and NOMAXVALUE are the reserved words with the same meani

ng, so either of them can be used.

● If MAXVALUE and NO MAXVALUE are not specified, the default value is NO MAXVALUE.

CREATE SEQUENCE | 1,783

<sequence generator minvalue option>

It defines the minimum value of which the sequence can generate.

● MINVALUE integer

○ The minimum value range is between the minimum (-9,223,372,036,854,775,808) and the maxi

mum (+9,223,372,036,854,775,807) of the 64 bit integer.

○ It should be equal to or smaller than START WITH value, and smaller than MAXVALUE.

● NO MINVALUE | NOMINVALUE

○ The minimum value is defined as follows.

■ If it is an ascending sequence, it is 1.

■ If it is a descending sequence, it is the minimum value (-9,223,372,036,854,775,808) of the

64 bit integer.

○ NO MINVALUE(SQL standard) and NOMINVALUE are the reserved words with the same meaning,

so either of them can be used.

● If MINVALUE and NO MINVALUE are not specified, the default value is NO MINVALUE.

<sequence generator cycle option>

It specifies whether to continue generating a value when the sequence value becomes the maximum valu

e or the minimum value.

● CYCLE

○ When the ascending sequence becomes the maximum value, it generates the value again from t

he minimum value.

○ When the descending sequence becomes the minimum value, it generates the value again from t

he maximum value.

● NO CYCLE | NOCYCLE

○ When the sequence value becomes the maximum value or the minimum value, it does not gener

ate a sequence value.

○ NO CYCLE(SQL standard) and NOCYCLE are the reserved words with the same meaning, so eithe

r of them can be used.

● If CYCLE and NO CYCLE are not specified, the default value is NO CYCLE.

<sequence generator cache option>

For quick access of a sequence, it defines the number of the sequence values to be preloaded in memory.

When restarting database, the sequence values loaded in memory are lost, and it starts from the value sin

ce being loaded.

● CACHE integer

○ CACHE value should be equal to or bigger than 2.

1,784 | SQL References

○ CACHE value should not be bigger than CYCLE length, if CYCLE exists.

■ CYCLE length: CEIL(MAXVALUE - MINVALUE) / ABS(INCREMENT)

● NO CACHE | NOCACHE

○ The sequence values are not preloaded in memory.

● If CACHE and NO CACHE are not specified, the default value is CACHE 20.

Description

The sequence values of the created sequence objects are used by using NEXTVAL and CURRVAL function

s.

The sequence value does not have a transaction property. The sequence value maintains the most recent

value, even when an error occurs in the SQL statement in which the sequence function is used or when e

xplicit ROLLBACK is performed.

CURRVAL function returns NEXTVAL value from the most recent call by a session.

Therefore, using this feature, the sequence value obtained by NEXTVAL can still be usable in the other SQ

L statements. However, when the session does not call NEXTVAL, using CURRVAL function generates an

error.

Examples

The object seq1 without the defined sequence options is an ascending sequence of the same meanings a

s the object seq2 in the following example.

gSQL> CREATE SEQUENCE seq1;

Sequence created.

gSQL> CREATE SEQUENCE seq2 START WITH 1 INCREMENT BY 1 NO MINVALUE NO MAXVALUE NO CYCLE CACHE

20;

Sequence created.

The following is an example of a sequence which generates an odd value.

gSQL> CREATE SEQUENCE seq1 START WITH 1 INCREMENT BY 2;

Sequence created.

The following is an example of generating sequence which repeatedly generates an even number starting

from 0 to 1000.

CREATE SEQUENCE | 1,785

gSQL> CREATE SEQUENCE seq1 START WITH 0 MINVALUE 0 MAXVALUE 1000 INCREMENT BY 2 CYCLE;

Sequence created.

The following is an example of generating a descending sequence starting from -1.

gSQL> CREATE SEQUENCE seq1 INCREMENT BY -1;

Sequence created.

Compatibility

The SQL standard does not define <sequence generator cache option> clause.

Table 16-29 SQL standard compatibility

Feature ID Description Compatibility

T176 Sequence generator support O

For More Information

Refer to the followings.

● DROP SEQUENCE

● ALTER SEQUENCE

● NEXTVAL

● CURRVAL

1,786 | SQL References

16.84 CREATE SYNONYM

Function

It creates a synonym. A synonym is an alternative name for a table, view, sequence, or another synonym,

and it can be used in the following statements.

● DML: SELECT, INSERT, UPDATE, DELETE, LOCK TABLE, CALL

● DDL: GRANT, REVOKE, COMMENT

Syntax

<table definition> ::=

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema_name.]synonym_name

FOR [schema_name.]object_name

;

Invocation and Access Rules

The user should satisfy the following conditions to perform <synonym definition> statement.

● CREATE PUBLIC SYNONYM ON DATABASE privilege is required to create public synonym by explicitly

specifying PUBLIC.

● The owner of public synonym is PUBLIC. The user who created the synonym does not have any privile

ge.

● One of the following privileges is required to create the private synonym.

○ (CREATE SYNONYM or CONTROL SCHEMA) ON SCHEMA for that schema

○ CREATE ANY SYNONYM ON DATABASE

● The private synonym owner is determined as follows.

○ The owner of the schema to which the private synonym belongs

○ If the schema to which the private synonym belongs is PUBLIC, then it is the user who executed t

he statement.

● If the user does not have privilege on the base object, the user is not allowed to execute the stateme

CREATE SYNONYM | 1,787

nt using its synonym even when the user created the synonym.

● Be cautious when allowing the privilege on the synonym because it means allowing privilege on the b

ase object to which the synonym indicates.

Syntax Rules and Parameters

[OR REPLACE]

It replaces the existing synonym if the synonym already exists.

[PUBLIC]

It is specified when creating public synonym.

If it is omitted, private synonym is created.

synonym_name

It is the synonym name to be created, and it should be a unique name within the schema.

The schema to which the synonym belongs, such as schema_name.synonym_name, can be defined. If sch

ema_name is omitted, default schema name of the user performing the statement is used.

The length of the synonym name should be shorter than 128 bytes.

Public synonym is a non-schema object. Therefore, a schema name can not be specified when creating p

ublic synonym by explicitly specifying PUBLIC.

object_name

The schema to which the object belongs, such as schema_name.object_name, can be defined. If schema

_name is omitted, default schema name of the user performing the statement is used.

The object types which can specify the object_name are as follows.

● Table

● View

● Sequence

● Another synonym

Existence of the target object, cycle check and privilege check are performed when executing the statem

ent using the synonym.

1,788 | SQL References

Description

A synonym is an alternative name for a table, view, sequence, or another synonym.

If synonym is created, the applications do not need to be modified even when the base object is changed

instead only the synonyms should be redefined. Therefore, it is convenient.

Also, the database security is improved by hiding the objects' real names and their schemas, and the usab

ility is enhanced by changing the object's long name to a shorter name.

The synonym is literally an alternative name so creating the synonym does not mean that the synonym ca

n be used to access the object. The proper privilege is required to access the object.

When executing the statement using the synonym, the object access procedure is as follows.

1. Find a table of the corresponding name.

2. If the table does not exist, find the private synonym of the corresponding name.

3. If the private synonym does not exist, find the public synonym of the corresponding name.

gSQL> CREATE PUBLIC SYNONYM syn1 FOR u1.t1;

Synonym created.

gSQL> CREATE PUBLIC SYNONYM syn2 FOR syn1;

Synonym created.

gSQL> SELECT * FROM syn2;

The example above is the object access procedure in SELECT statement.

1. It searched for the table syn2, but it does not exist.

2. It searched for the private synonym syn2, but it does not exist.

3. It searched for the public synonym syn2, and it exists.

I. It searched for the table syn1, but it does not exist.

II. It searched for the private synonym syn1, but it does not exist.

III. It searched for the public synonym syn2, and it exists.

i. It searched for the table u1.t1, and it exists.

Examples

The following is an example of creating a private synonym.

gSQL> CREATE SYNONYM MyEmp FOR branch.Employee;

Synonym created.

CREATE SYNONYM | 1,789

gSQL> SELECT * FROM MyEmp;

The following is an example of creating a public synonym.

gSQL> CREATE PUBLIC SYNONYM MainEmp FOR main.Employee;

Synonym created.

gSQL> SELECT * FROM MainEmp;

Compatibility

The SQL standard does not define the CREATE SYNONYM statement.

For More Information

Refer to DROP SYNONYM.

1,790 | SQL References

16.85 CREATE TABLE

Function

It defines a table.

Syntax

<table definition> ::=

CREATE TABLE table_name

(<table element> [, ...])

[<table sharding strategy>]

[<table attribute clause> [...]]

[TABLESPACE tablespace_name]

[<table global secondary index clause>]

;

<table element> ::=

<column definition>

| <table constraint definition>

<column definition> ::=

column_name <data type>

[<default clause> | <identity column specification>]

[<column constraint definition>]

<data type> ::=

<character string type>

| <binary string type>

| <numeric type>

| <boolean type>

| <datetime type>

| <interval type>

<character string type> ::=

CHARACTER [(integer [<character length units>])]

| CHAR [(integer [<character length units>])]

| CHARACTER VARYING (integer [<character length units>])

| CHAR VARYING (integer [<character length units>])

| VARCHAR (integer [<character length units>])

| CHARACTER LONG VARYING

CREATE TABLE | 1,791

| LONG VARCHAR

<character length units> ::=

CHARACTERS

| CHAR

| OCTETS

| BYTE

<binary string type> ::=

BINARY [(length)]

| BINARY VARYING (length)

| VARBINARY (length)

| LONG BINARY VARYING

| LONG VARBINARY

<numeric type> ::=

<exact numeric type>

| <approximate numeric type>

| <native numeric type>

<exact numeric type> ::=

NUMERIC [(precision [, scale])]

| SMALLINT

| INTEGER

| INT

| BIGINT

<approximate numeric type> ::=

| FLOAT [(precision)]

| REAL

| DOUBLE PRECISION

<native numeric type> ::=

NATIVE_SMALLINT

| NATIVE_INTEGER

| NATIVE_BIGINT

| NATIVE_REAL

| NATIVE_DOUBLE

<boolean type> ::=

BOOLEAN

<datetime type> ::=

DATE

| TIME [(time_precision)] [WITH TIME ZONE | WITHOUT TIME ZONE]

| TIMESTAMP [(timestamp_precision)] [WITH TIME ZONE | WITHOUT TIME ZONE]

<interval type> ::=

INTERVAL <interval qualifier>

1,792 | SQL References

<interval qualifier> ::=

<non-second primary datetime field> [(interval_leading_field_precision)]

TO { <non-second primary datetime field> | SECOND [(

interval_fractional_seconds_precision)] }

| <non-second primary datetime field> [(interval_leading_field_precision)]

| SECOND [(interval_leading_field_precision [, interval_fractional_seconds_precision])

]

<non-second primary datetime field> ::=

YEAR

| MONTH

| DAY

| HOUR

| MINUTE

<default clause> ::=

DEFAULT <default option>

<default option> ::=

constant

| NULL

| expression

<identity column specification> ::=

GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY

[(<common sequence generator option> [, ...])]

<common sequence generator option> ::=

START WITH integer_constant

| <basic sequence generator option>

<basic sequence generator option> ::=

INCREMENT BY integer_constant

| { MAXVALUE integer_constant | NO MAXVALUE }

| { MINVALUE integer_constant | NO MINVALUE }

| { CYCLE | NO CYCLE }

| { CACHE integer_constant | NO CACHE }

<column constraint definition> ::=

[CONSTRAINT constraint_name] <column constraint> [<constraint characteristics>]

<column constraint> ::=

NOT NULL

| { UNIQUE | PRIMARY KEY } [<index name clause> [<index attributes>] [TABLESPACE

index_tablespace_name]]

<index name clause> ::=

INDEX index_name

<index attributes> ::=

<index physical attribute clause>

CREATE TABLE | 1,793

| STORAGE (<segment attr clause> [...])

| <logging clause>

<table constraint definition> ::=

[CONSTRAINT constraint_name] <table constraint> [<constraint characteristics>]

<table constraint> ::=

<unique constraint definition> [<index name clause> [<index attributes>] [TABLESPACE

index_tablespace_name]]

<unique constraint definition> ::=

{ UNIQUE | PRIMARY KEY } (<key column element> [, ...])

<key column element> ::=

column_name [ASC | DESC] [NULLS FIRST | NULLS LAST]

<table sharding strategy> ::=

<cloned strategy>

| <hash sharding strategy>

| <range sharding strategy>

| <list sharding strategy>

<cloned strategy> ::=

CLONED [<clone placement>]

<clone placement> ::=

AT CLUSTER WIDE

| AT CLUSTER GROUP group_list

<hash sharding strategy> ::=

SHARDING BY [HASH] (column_list)

[<hash shard count>]

[<hash shard placement>]

<hash shard count> ::=

SHARD COUNT integer

<hash shard placement> ::=

AT CLUSTER WIDE

| AT CLUSTER GROUP group_list

<range sharding strategy> ::=

SHARDING BY RANGE (column_list)

{ <cluster-wide range shard placement> | <group-specific range shard placement> }

<cluster-wide range shard placement> ::=

AT CLUSTER WIDE

<range shard definition> [, ...]

<group-specific range shard placement> ::=

<group-specific range shard definition> [, ...]

<group-specific range shard definition> ::=

<range shard definition> AT CLUSTER GROUP group_name

<range shard definition> ::=

1,794 | SQL References

SHARD range_name VALUES LESS THAN (<range value clause>)

<range value clause> ::=

<range value> [, ...]

<range value> ::=

constant

| MAXVALUE

<list sharding strategy> ::=

SHARDING BY LIST (column_name)

{ <cluster-wide list shard placement> | <group-specific list shard placement> }

<cluster-wide list shard placement> ::=

AT CLUSTER WIDE

<list shard definition> [, ...]

<group-specific list shard placement> ::=

<group-specific list shard definition> [, ...]

<group-specific list shard definition> ::=

<list shard definition> AT CLUSTER GROUP group_name

<list shard definition> ::=

SHARD shard_name VALUES IN (<list value clause>)

<list value clause> ::=

<list value> [, ...]

<list value> ::=

constant

| NULL

| DEFAULT

<table attribute clause> ::=

[<table physical attribute clause>]

| [STORAGE (<segment attr clause> [...])]

<table physical attribute clause> ::=

PCTFREE integer

| PCTUSED integer

| INITRANS integer

| MAXTRANS integer

<index physical attribute clause> ::=

PCTFREE integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

INITIAL <size_clause>

| NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

CREATE TABLE | 1,795

<size clause> ::=

integer [K | M | G | T]

<logging clause> ::=

LOGGING

| NOLOGGING

<constraint characteristics> ::=

[NOT] DEFERRABLE [<constraint check time>]

| <constraint check time> [[NOT] DEFERRABLE]

<constraint check time> ::=

INITIALLY DEFERRED

| INITIALLY IMMEDIATE

<table global secondary index clause> ::=

WITH GLOBAL SECONDARY INDEX [<index attributes> [...]] [TABLESPACE tablespace_name]

| WITHOUT GLOBAL SECONDARY INDEX

Invocation and Access Rules

The differences between the stand-alone database and the cluster database are as follows.

● Stand-alone

○ It can not define <table sharding strategy>.

○ It can not define <table global secondary index clause>.

● Cluster

○ Constraints of PRIMARY KEY, UNIQUE should include all sharding keys.

○ It can not define the deferrable constraints.

The user should satisfy the following conditions to perform <table definition> statement.

● One of the following privileges is required for the schema in which a table is to be created.

○ (CREATE TABLE or CONTROL SCHEMA) ON SCHEMA for that schema

○ CREATE ANY TABLE ON DATABASE

● One of the following privileges is required for the tablespace in which a table is to be created.

○ CREATE OBJECT ON TABLESPACE for that tablespace

○ USAGE TABLESPACE ON DATABASE

● One of the following privileges is required for the schema in which the constraints are to be created

when the constraints exists which were created together.

○ (ADD CONSTRAINT or CONTROL SCHEMA) ON SCHEMA for that schema

○ ALTER ANY TABLE ON DATABASE

1,796 | SQL References

● One of the following privileges is required for the tablespace in which the index is to be created whe

n the key constraint is created together.

○ CREATE OBJECT ON TABLESPACE for that tablespace

○ USAGE TABLESPACE ON DATABASE

● The owner of the table is determined as follows.

○ The owner of the schema to which the table belongs

○ If the schema to which the table belongs is PUBLIC, then it is the user who executed the stateme

nt.

● The table owner has the following privileges for the created table.

○ The privilege for the table

■ SELECT ON TABLE WITH GRANT OPTION

■ INSERT ON TABLE WITH GRANT OPTION

■ UPDATE ON TABLE WITH GRANT OPTION

■ DELETE ON TABLE WITH GRANT OPTION

■ TRIGGER ON TABLE WITH GRANT OPTION

■ REFERENCES ON TABLE WITH GRANT OPTION

■ LOCK ON TABLE WITH GRANT OPTION

■ INDEX ON TABLE WITH GRANT OPTION

■ ALTER ON TABLE WITH GRANT OPTION

○ The privilege for all columns in the table.

■ SELECT(columns) ON TABLE WITH GRANT OPTION

■ INSERT(columns) ON TABLE WITH GRANT OPTION

■ UPDATE(columns) ON TABLE WITH GRANT OPTION

■ REFERENCES(columns) ON TABLE WITH GRANT OPTION

○ The privilege for the constraint which was generated together

■ The owner of that constraint

■ The owner of the index which was generated together with the constraint

<table sharding strategy> statement can be used in a cluster system.

Syntax Rules and Parameters

table_name

It is the table name to be created and it should be a unique name within the schema.

The schema to which the table belongs, such as schema_name.table_name, can be defined. If schema_n

ame is omitted, the default schema name of the user performing the statement is used.

The length of the table name should be shorter than 128 bytes.

CREATE TABLE | 1,797

<column definition>

It defines the columns which configure the table.

The table should include one or more column definitions.

It can specify the column data type, default value, automatically generated value, and constraints.

column_name

It is name of the column which configures a table and each column should have a unique name within th

e table.

The length of the column name should be shorter than 128 bytes.

<data type>

● <character string type>

● <binary string type>

● <numeric type>

● <exact numeric type>

● <approximate numeric type>

● <boolean type>

● <datetime type>

● <interval type>

● <interval qualifier>

● <non-second primary datetime field>

It defines the data type of the column.

When defining the column including automatically generated values(<identity column specification>), its

data type should be one of SMALLINT, INTEGER or BIGINT.

For more information about data types, refer to Data Type.

<character length units>

It specifies the length unit of a single character for the character type.

● CHARACTERS/ CHAR assigns the maximum bytes of a single character as the length of a single chara

cter. Therefore, the length of multi-bytes single character such as Hangul is 1.

● OCTETS/ BYTE assigns one byte for the length of a single character. Therefore, the length of multi-by

tes single character such as Hangul is multi-bytes.

● If it is omitted, it follows CHAR_LENGTH UNITS property which is used when creating the database.

The SQL standard defines CHARACTERS as a default value.

1,798 | SQL References

Note

The default value of the char length unit in other DBMS are as follows.

● Oracle, DB2: OCTETS

● MS-SQL, MySQL, PostgreSQL: CHARACTERS

[<default clause> | <identity column specification>]

It specifies the default value of a column.

<default clause> and <identity column specification> can not be used together.

When both of them are omitted, the default value is NULL.

<default clause>

The DEFAULT clause defines the default value to be used when DEFAULT is specified in INSERT, UPDATE

statements or the corresponding column name is omitted.

● When DEFAULT clause is used

○ e.g. CREATE TABLE t1 (id INTEGER, name VARCHAR(32) DEFAULT 'anonymous');

○ When the column is omitted

■ INSERT INTO t1(id) VALUES (1);

■ INSERT INTO t1(id) SELECT id FROM other_table;

○ When the DEFAULT is specified

■ INSERT INTO t1 DEFAULT VALUES;

■ INSERT INTO t1 VALUES (2, DEFAULT);

■ UPDATE t1 SET name = DEFAULT;

The data type of DEFAULT expression should be compatible with the data type of the column.

If the data type is not compatible or the space is insufficient, an error occurs when using DEFAULT in INSE

RT, UPDATE statements.

● CREATE TABLE t1 (user_name VARCHAR(1) DEFAULT CURRENT_USER);

● e.g. error: INSERT INTO t1 VALUES (DEFAULT);

● e.g. error: UPDATE t1 SET user_name = DEFAULT;

DEFAULT expression can use any built-in functions but it can not use the followings.

● Logical operators (AND, OR, NOT), comparison operators (=,>, ...)

CREATE TABLE | 1,799

● Stored function

● Column name

● Subquery expression

<identity column specification>

It defines a column which has automatically generated values.

The table can have only one identity column.

The identity column becomes not nullable column even though NOT NULL constraint is not specified.

<identity column specification> clause can not be specified together with DEFAULT clause.

<identity column specification> clause, like as DEFAULT clause, specifies DEFAULT in INSERT, UPDATE stat

ements or it defines the default value to be used when the column name is omitted.

The generation method is defined as follows.

● GENERATED BY DEFAULT AS IDENTITY

A user defined value is applied if defined, but the value is automatically generated, like as DEFAULT cl

ause, when the default value should be used.

○ CREATE TABLE t1 (id INTEGER GENERATED BY DEFAULT AS IDENTITY, name VARCHAR(32));

○ (O) INSERT INTO t1 VALUES (12345, 'GOLDILOCKS');

■ It inserts the user defined value (12345).

○ (O) INSERT INTO t1(name) VALUES ('GOLDILOCKS');

■ It inserts the automatically generated value in an id column.

○ (O) INSERT INTO t1(id, name) SELECT other_id, other_name FROM other_table;

■ It inserts the user defined value.

○ (O) INSERT INTO t1(name) SELECT other_name FROM other_table;

■ It inserts the automatically generated value in an id column.

○ (O) UPDATE t1 SET id = 10000 WHERE id = 12345;

■ It inserts the user defined value

○ (O) UPDATE t1 SET id = DEFAULT WHERE id = 12345;

■ It inserts the automatically generated value in an id column.

● GENERATED ALWAYS AS IDENTITY

A user can not define the value and the default value should be generated like as DEFAULT clause.

○ CREATE TABLE t1 (id INTEGER GENERATED ALWAYS AS IDENTITY, name VARCHAR(32));

○ (X) INSERT INTO t1 VALUES (12345, 'GOLDILOCKS');

■ Error, a user can not define the value.

○ (O) INSERT INTO t1(name) VALUES ('GOLDILOCKS');

■ It inserts the automatically generated value in an id column.

○ (X) INSERT INTO t1(id, name) SELECT other_id, other_name FROM other_table;

1,800 | SQL References

■ Error, a user can not define the value.

○ (O) INSERT INTO t1(name) SELECT other_name FROM other_table;

■ It inserts the automatically generated value in an id column.

○ (X) UPDATE t1 SET id = 10000 WHERE id = 12345;

■ Error, a user can not define the value.

○ (O) UPDATE t1 SET id = DEFAULT WHERE id = 12345;

■ It inserts the automatically generated value in an id column.

For more information about <common sequence generator option> and <basic sequence generator optio

n>, which are options to create an identity column, refer to CREATE SEQUENCE.

<column constraint definition>

It defines the following constraints for a column.

● NOT NULL constraints

● UNIQUE constraints

● PRIMARY KEY constraints

constraint_name

It is the constraint name and it can be omitted.

If the constraint_name is omitted, it is automatically set as follows.

If the automatically generated name is duplicated, the constraint_name should be explicitly specified.

● NOT NULL constraints

○ "table_name" + "_" + "NOT_NULL" + "_" + "column_name"

● UNIQUE constraints

○ "table_name" + "_" + "UNIQUE" + "_" + "column_name"

● PRIMARY KEY constraints

○ "table_name" + "_" + "PRIMARY_KEY"

The length of the constraint name should be shorter than 128 bytes.

NOT NULL Constraint

NULL is not allowed for the column value.

CREATE TABLE | 1,801

UNIQUE Constraint

The identical value is not allowed for the column value, but NULL is allowed.

PRIMARY KEY Constraint

NULL or the identical value is not allowed as the column value. A single PRIMARY KEY constraint can be

defined on a single table.

<index name clause>

It defines the index name to be created when defining UNIQUE constraint and PRIMARY KEY constraint.

● INDEX index_name

○ It defines the index name for the constraint.

○ It can not be used together with a schema name and it is created in the same schema where the

constraint is created.

When defining UNIQUE constraint and PRIMARY KEY constraint, if INDEX clause is omitted, an index whi

ch satisfies the constraints is automatically created.

"constraint_name" + "INDEX" is added to the name of index which is automatically generated.

● <index attributes>

○ It specifies the physical attributes of the index to be created.

○ For more information, refer to CREATE INDEX.

● TABLESPACE index_tablespace_name

○ It specifies the tablespace where the index is to be created.

○ For more information, refer to CREATE INDEX.

<table constraint definition>

<unique constraint definition>

● When defining a table, the constraints can be classified in two ways depending on the location in the

statement.

○ When defining a column, column constraints can be specified by using <column constraint defini

tion>.

○ On the other hand, the table constraint definition clause, <table constraint definition>, can be sp

ecified separately from the column definition and the constraints on one or more columns can be

specified.

The table constraint definition has the following syntactic difference compared to the column constraint

definition.

1,802 | SQL References

● NOT NULL constraint

○ It can not be specified by using the table constraint definition.

● It should explicitly specify the column unlike the column constraint definition.

○ UNIQUE constraint <unique constraint definition>

■ UNIQUE (column_name [, ...])

○ PRIMARY KEY CONSTRAINT <unique constraint definition>

■ PRIMARY KEY (column_name [, ...])

key column element

It specifies the column to be a target of the key.

● column name

○ It is name of the column which creates the key.

● ASC | DESC

○ ASC: It is sorted in an ascending order.

○ DESC: It is sorted in a descending order.

○ If not specified, the default value is ASC.

● NULLS FIRST | NULLS LAST

○ NULLS FIRST: It is located before non-NULL values.

○ NULLS LAST: It is located after non-NULL values.

○ If not specified, the default value is NULLS LAST.

<table sharding strategy>

It defines the sharding strategy of a table.

It can be defined as one of the four following strategies.

● <cloned strategy>

● <hash sharding strategy>

● <range sharding strategy>

● <list sharding strategy>

If it is omitted, it is determined by DEFAULT_SHARDING property value.

● If DEFAULT_SHARDING value is 0

○ <cloned strategy>

● If DEFAULT_SHARDING value is 1

○ <hash sharding strategy>

CREATE TABLE | 1,803

<cloned strategy>

It clones all data in a table.

<clone placement>

It defines the placement strategy of a clone.

● AT CLUSTER WIDE

○ It places clones in all cluster members of all cluster groups in a cluster system.

○ A clone can be relocated by using ALTER TABLE name REBALANCE statement when adding a clu

ster group and a cluster member.

● AT CLUSTER GROUP group_list

○ It places clones in all cluster members of a specified cluster groups.

○ A clone can be relocated by using ALTER TABLE name REBALANCE statement when adding a clu

ster member in a specified cluster group.

○ Adding a cluster group does not affect the relocation of the clone.

● When it is omitted, the default value is AT CLUSTER WIDE.

<hash sharding strategy>

It shards the table data according to the hash value of the sharding key.

SHARDING BY [HASH] (column_list)

It defines a sharding key for a hash sharding.

● It can list maximum 32 columns.

● It can not use a duplicate column.

● It can not use a LONG VARCHAR type column or a LONG VARBINARY type column.

<hash shard count>

It defines the number of the hash shards to be sharded.

The number of shards can be defined from 1 to 512.

If it is omitted, the default value is 24.

<hash shard placement>

It defines the placement strategy of a hash shard.

1,804 | SQL References

● AT CLUSTER WIDE

○ It places shards in all cluster members of all cluster groups in a cluster system.

○ A shard can be relocated by using ALTER TABLE name REBALANCE statement when adding a clu

ster group and a cluster member.

● AT CLUSTER GROUP group_list

○ It places hash shards in all cluster members of a specified cluster groups.

○ The number of group_list should be equal to or smaller than the value of <hash shard count>.

○ Unlike a range shard and a list shard, the cluster group on which the specific hash shard is to be l

ocated can not be specified, but the system automatically determines a cluster group on which th

e shard is to be located.

○ A shard can be relocated by using ALTER TABLE name REBALANCE statement when adding a clu

ster member in a specified cluster group.

○ Adding a cluster group does not affect the relocation of the hash shard.

● When it is omitted, the default value is AT CLUSTER WIDE.

<range sharding strategy>

It shards the table data according to the range value of the sharding key.

SHARDING BY RANGE (column_list)

It defines a sharding key for the range sharding.

● It can list maximum 32 columns.

● It can not use a duplicate column.

● It can not use a LONG VARCHAR type column or a LONG VARBINARY type column.

<cluster-wide range shard placement>

It automatically places range shards in all cluster groups of a cluster system.

AT CLUSTER WIDE statement is described before describing <range shard definition>.

Shards can be relocated by using ALTER TABLE name REBALANCE statement when adding a cluster grou

p and a cluster member.

● Create a range sharded table.

● Place six shards in the existing cluster groups (g1, g2, g3).

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

CREATE TABLE | 1,805

SHARDING BY RANGE (id)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (200000),

SHARD s2 VALUES LESS THAN (400000),

SHARD s3 VALUES LESS THAN (500000),

SHARD s4 VALUES LESS THAN (600000),

SHARD s5 VALUES LESS THAN (800000),

SHARD s6 VALUES LESS THAN (MAXVALUE)

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Relocate the range shard.

● Place six shards in the cluster groups (g1, g2, g3, g4) including the added g4.

ALTER TABLE t1 REBALANCE;

<group-specific range shard placement>

It places range shards in a specified cluster group.

It describes AT CLUSTER GROUP group_name statement which places that shard together with <range sh

ard definition>.

Shards can be automatically relocated by using ALTER TABLE name REBALANCE statement when adding

a cluster member to a specified cluster group.

Adding a cluster group does not affect the relocation of the range shard.

● Create a range sharded table.

● Place each range shard in a specified cluster group.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY RANGE (id)

SHARD s1 VALUES LESS THAN (200000) AT CLUSTER GROUP g1,

SHARD s2 VALUES LESS THAN (400000) AT CLUSTER GROUP g2,

1,806 | SQL References

SHARD s3 VALUES LESS THAN (500000) AT CLUSTER GROUP g3,

SHARD s4 VALUES LESS THAN (600000) AT CLUSTER GROUP g2,

SHARD s5 VALUES LESS THAN (800000) AT CLUSTER GROUP g3,

SHARD s6 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP g1

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Relocate a range shard.

● The shard is not placed in a newly created cluster group g4.

ALTER TABLE t1 REBALANCE;

<range shard definition>

SHARD range_name should be unique in a table.

It can define maximum 512 of <range shard definition>.

The listed <range shard definition> is sorted in an order of <range value clause>, and it should use each di

fferent <range value clause>.

The <range shard definition> whose all values are define as MAXVALUE is a MAX shard.

MAX shard should exist, and it should be a single one.

● It should include a MAX shard.

gSQL>

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY RANGE (id)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (100000),

SHARD s2 VALUES LESS THAN (200000),

SHARD s3 VALUES LESS THAN (MAXVALUE)

CREATE TABLE | 1,807

;

Table created.

● If it does not include a MAX shard, then an error occurs.

gSQL>

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY RANGE (id)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (100000),

SHARD s2 VALUES LESS THAN (200000),

SHARD s3 VALUES LESS THAN (300000)

;

ERR-42000(16377): MAX shard not defined :

SHARD s3 VALUES LESS THAN (300000)

*

ERROR at line 10:

<range value clause>

<range value> should be a constant or a MAXVALUE (a maximum value).

NULL can not be used as <range value>.

● (O) SHARD s1 VALUES LESS THAN (1)

● (O) SHARD s2 VALUES LESS THAN (1 + 1)

● (O) SHARD s3 VALUES LESS THAN (MAXVALUE)

● (X) SHARD s4 VALUES LESS THAN (SYSDATE)

● (X) SHARD s5 VALUES LESS THAN (NULL)

MAXVALUE is always bigger than any other value, and it includes null.

If there are multiple sharding keys, only a MAXVALUE can be specified after the MAXVALUE.

● (O) SHARD s1 VALUES LESS THAN (100, MAXVALUE)

● (X) SHARD s2 VALUES LESS THAN (MAXVALUE, 100)

● (O) SHARD s3 VALUES LESS THAN (MAXVALUE, MAXVALUE)

If a sharding key is defined by using multiple columns, a MAX shard which is listed with MAXVALUE for it

1,808 | SQL References

s all values like as the SHARD s3 below should exist.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY RANGE (id, name)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (100000, MAXVALUE),

SHARD s2 VALUES LESS THAN (200000, 20000),

SHARD s3 VALUES LESS THAN (MAXVALUE, MAXVALUE)

;

<list sharding strategy>

It shards the table data according to the listed value of the sharding key.

SHARDING BY LIST (column_name)

It defines a sharding key for a list sharding.

● It can use only one column.

● It can not use a LONG VARCHAR type column or a LONG VARBINARY type column.

<cluster-wide list shard placement>

It automatically places list shards in all cluster groups of a cluster system.

AT CLUSTER WIDE statement is described before describing <range shard definition>.

Shards can be relocated by using ALTER TABLE name REBALANCE statement when adding a cluster grou

p and a cluster member.

● Create a list sharded table.

● Place five shards in the existing cluster groups (g1, g2, g3).

CREATE TABLE city

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY LIST (name)

CREATE TABLE | 1,809

AT CLUSTER WIDE

SHARD s1 VALUES IN ('SEOUL'),

SHARD s2 VALUES IN ('PUSAN', 'ULSAN', 'DAEGU'),

SHARD s3 VALUES IN ('DAEJEON', 'GWANGJU'),

SHARD s4 VALUES IN ('ANSAN', 'GOYANG'),

SHARD s5 VALUES IN (DEFAULT)

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Relocate a list shard.

● Place five shards in the cluster groups (g1, g2, g3, g4) including the added g4.

ALTER TABLE t1 REBALANCE;

<group-specific list shard placement>

It places list shards in a specified cluster group.

It describes AT CLUSTER GROUP group_name statement which places that shard together with <list shar

d definition>.

Shards can be automatically relocated by using ALTER TABLE name REBALANCE statement when adding

a cluster member to a specified cluster group.

Adding a cluster group does not affect the relocation of the list shard.

● Create a list sharded table.

● Place each list shard in a specified cluster group.

CREATE TABLE city

(

id INTEGER,

name VARCHAR(32)

)

SHARDING BY LIST (name)

SHARD s1 VALUES IN ('SEOUL') AT CLUSTER GROUP g1,

SHARD s2 VALUES IN ('PUSAN', 'ULSAN', 'DAEGU') AT CLUSTER GROUP g2,

SHARD s3 VALUES IN ('DAEJEON', 'GWANGJU') AT CLUSTER GROUP g3,

SHARD s4 VALUES IN ('ANSAN', 'GOYANG') AT CLUSTER GROUP g2,

1,810 | SQL References

SHARD s5 VALUES IN (DEFAULT) AT CLUSTER GROUP g1

;

● Add a cluster group.

CREATE CLUSTER GROUP g4

CLUSTER MEMBER g4n1 HOST '192.168.0.41' PORT 10401

;

● Relocate a list shard.

● The shard is not placed in a newly added cluster group g4.

ALTER TABLE t1 REBALANCE;

<list shard definition>

LIST list_name should be unique in a table.

It can define maximum 512 of <list shard definition>.

All <list value> of the listed <list shard definition> should be different each other.

DFFAULT are other values which is not the listed <list value>.

DFFAULT can not be defined together with another value.

A shard including DEFAULT is a DEFAULT shard.

MAX shard should exist, and it should be a single one.

● It should include a DEFAULT shard.

gSQL>

CREATE TABLE t1

(

category INTEGER,

name VARCHAR(32)

)

SHARDING BY LIST (category)

AT CLUSTER WIDE

SHARD s1 VALUES IN (1, 3, 5, 7),

SHARD s2 VALUES IN (2, 4, 6, 8),

SHARD s3 VALUES IN (DEFAULT)

;

Table created.

CREATE TABLE | 1,811

● If it does not include a DEFAULT shard, then an error occurs.

gSQL>

CREATE TABLE t1

(

category INTEGER,

name VARCHAR(32)

)

SHARDING BY LIST (category)

AT CLUSTER WIDE

SHARD s1 VALUES IN (1, 3, 5, 7),

SHARD s2 VALUES IN (2, 4, 6, 8),

SHARD s3 VALUES IN (9, 10)

;

ERR-42000(16385): DEFAULT shard not defined :

SHARD s3 VALUES IN (9, 10)

*

ERROR at line 10:

<list value clause>

<list value> should be a constant.

NULL or DEFAULT can be used as <list value>.

● (O) SHARD s1 VALUES IN (1, 1 + 1, 3, 4)

● (O) SHARD s2 VALUES IN (5, 6, 7, NULL)

● (O) SHARD s3 VALUES IN (DEFAULT)

● (X) SHARD s4 VALUES IN (DEFAULT, 8, 9, 10)

● (X) SHARD s5 VALUES IN (current_timestamp, systimestamp)

● (X) SHARD s6 VALUES IN (c1, c2)

<table physical attribute clause>

It defines the physical attribute information of the table.

● PCTFREE integer

○ Definition

■ The reserved space in case the row size is increased when altering or updating a row in a pag

e.

■ The initial input is input in other space except for this reserved space.

■ If PCTFREE is not enough ROW MIGRATION occurs when altering or updating the data.

1,812 | SQL References

○ It can use of the value from 0 to 99.

○ If it is omitted, the default value is 10.

● PCTUSED integer

○ Definition

■ It is the minimum percentage which can be used for the row data and overhead before addi

ng a new row to a page.

■ It can be input only on this page when the value got smaller than PCTUSED due to alteration

or deletion of the existing data.

○ It can use of the value from 0 to 99.

○ If it is omitted, the default value is 40.

● INITRANS integer

○ Definition

■ It specifies the initial number of transactions which can simultaneously access the page.

■ If the number of users who access the index is small, INITRANS is set to low, and if the numb

er of users who simultaneously access the index is big, INITRANS is set to high.

■ If necessary, it is automatically increased to the specified MAXTRANS.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 4.

● MAXTRANS integer

○ Definition

■ It specifies the maximum number of transactions which can simultaneously access the page.

○ It can use the value from 1 to 32.

○ If it is omitted, the default value is 8.

<index physical attribute clause>

It defines the physical attributes of the index.

● PCTFREE integer

○ Definition

■ It is a reserved space for adjusting the frequency of page splits caused by the key insertion in

the page.

■ It is applied only to the index bottom-up build.

○ It can use the value from 0 to 99.

○ If it is omitted, the value set in DEFAULT_INDEX_PCTFREE property is used.

● INITRANS integer

○ It is as same as INITRANS in <table physical attribute clause>.

● MAXTRANS integer

○ It is as same as MAXTRANS in <table physical attribute clause>.

CREATE TABLE | 1,813

<segment attr clause>

It describes the information about the space in which the table is stored.

● INITIAL integer

○ Definition

■ It specifies the size of physical storage space which is initially allocated when creating the tabl

e.

■ The size is aligned to the EXTENT size of TABLESPACE to which the table belongs. (e.g. If the

EXT size is 8192 bytes, 'INITIAL 100' actually operates as 8192 bytes.)

■ The size (aligned to the size of TABLESPACE EXTENT) should be equal to or bigger than the s

ize of MINEXTENTS, and it should be equal to or smaller than the size of the MAXEXTENTS.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is a single EXTENT size of TABLESPACE where the table belongs.

● NEXT integer

○ Definition

■ It specifies the physical space size to be allocated when adding the space to the table.

■ The size is aligned to EXTENT size of TABLESPACE to which the table belongs. (e.g. If the EX

T size is 8192 bytes, 'INITIAL 100' actually operates as 8192 bytes.)

■ NEXT is operated as follows according to the size of the remaining space of the currently avai

lable table. (The size of subtracting the currently used space from the size of MAXEXTENTS.)

- If the remaining space size is 0, then it can not extend the space.

- If the remaining space size is bigger than 0, but smaller than NEXT, then it allocates the

space as big as the remaining space.

- If the remaining space size is bigger than NEXT, then it allocates the space as big as the NEXT.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is a single EXTENT size of TABLESPACE to which the table belon

gs.

● MINSIZE integer

○ Definition

■ It is the minimum space size which the table should maintain.

■ It should be equal to or smaller than the value of MAXSIZE.

○ It is aligned to the EXTENT size of TABLESPACE to which the table belongs.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is smaller than the size of two EXTENT, the size of two EXTENT is allocated.

○ If it is omitted, the default value is the size of two EXTENT.

● MAXSIZE integer

○ Definition

■ It is the maximum space size which can be allocated to a table.

■ It should be equal to or bigger than the value of MINSIZE.

1,814 | SQL References

○ This size is aligned to the EXTENT size of TABLESPACE to which the table belongs.

○ The minimum value is 1, and the maximum value depends on the system environment.

○ If it is omitted, the default value is EXTENT size * 2147483647 (The maximum positive integer of

INT32).

<size clause>

It specifies the file size in bytes. (If it is omitted, the default unit is bytes.)

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

TABLESPACE tablespace_name

It specifies the tablespace name in which a table is to be stored.

If TABLESPACE clause is omitted, the default tablespace_name of the user performing the statement is us

ed.

LOGGING | NOLOGGING

It specifies whether to perform redo logging of the index.

If not specified, the default value is NOLOGGING.

TABLESPACE index_tablespace_name

It specifies the tablespace name in which an index is to be stored.

If the TABLESPACE clause is omitted, LOGGING index uses the user's default data tablespace and NOLOG

GING index uses the user's default temporary tablespace.

<constraint characteristics>

It defines characteristics of the constraint.

When defining constraints, the following characteristics can be set.

● DEFERRABLE | NOT DEFERRABLE

● <constraint check time>

If <constraint characteristics> is omitted, it is set to NOT DEFERRABLE INITIALLY IMMEDIATE.

CREATE TABLE | 1,815

DEFERRABLE | NOT DEFERRABLE

It sets whether the constraints checking is deferrable so that the constraints can be checked when executi

ng COMMIT without checking when executing DML statements.

The checking time of the deferrable constraint is controlled by SET CONSTRAINTS.

● NOT DEFERRABLE

○ The checking point is not deferrable, and the constraints are checked when executing INSERT/DE

LETE/UPDATE statements.

● DEFERRABLE

○ The checking point can be controlled by SET CONSTRAINTS statement.

○ SET CONSTRAINTS constraint_name IMMEDIATE

■ The constraint is checked when executing DML statement.

○ SET CONSTRAINTS constraint_name DEFERRED

■ The constraint is checked when executing COMMIT statement.

● If not specified, the default value is determined in accordance with the <constraint check time>.

○ If INITIALLY IMMEDIATE is specified, the constraint check time is NOT DEFERRABLE.

○ If INITIALLY DEFERRED is specified, the constraint check time is DEFERRABLE.

○ If <constraint check time> is not specified, the constraint check time is NOT DEFERRABLE.

<constraint check time>

If the constraints are DEFERRABLE, it sets an initial value for the checking time.

● INITIALLY IMMEDIATE

○ The constraint is checked when executing the DML statements.

● INITIALLY DEFERRED

○ The constraint is checked when executing the COMMIT statements.

○ It can not be used together with NOT DEFERRABLE.

● If not specified, the default value is INITIALLY IMMEDIATE.

For more information about the deferrable constraints, refer to SET CONSTRAINTS.

<table global secondary index clause>

It defines a global secondary index of the table.

● WITH GLOBAL SECONDARY INDEX [<index attributes> [...]] [TABLESPACE tablespace_name]

○ It creates a global secondary index when creating a table in a cluster system environment.

○ <index attribute>

■ It sets an index attribute of a global secondary index.

○ TABLESPACE tablespace_name

1,816 | SQL References

■ It specifies a tablespace to create a global secondary index.

● WITHOUT GLOBAL SECONDARY INDEX

○ It does not create a global secondary index when creating a table in a cluster system environment.

Description

Constraint Characteristics

GOLDILOCKS automatically creates an index to check the uniqueness when generating key constraints.

The following columns do not allow NULL value.

● A column including NOT NULL constraint

● A column which is included in primary key constraints

● An identity column

Cluster Table

A table manages data using one of the following sharding strategies in a cluster environment.

● Cloned table

○ It duplicates all table data and places them in a cluster system.

● Hash sharded table

○ It divides the table data into several shards based on the hash value of a sharding key, then place

s them in the cluster system.

● Range sharded table

○ It divides the table data into several shards based on the range value of a sharding key, then plac

es them in the cluster system.

● List sharded table

○ It divides the table data into several shards based on the list value of a sharding key, then places t

hem in the cluster system.

The sharding strategy is determined considering the followings when creating a table. Tables operated in

a cluster system are specified as a code table and a fact table based on its features.

● Code table

○ It is a table such as a product list or a provider list whose data is relatively small and is not often al

tered

○ This table is referenced often together with a fact table.

● Fact table

○ It is a table such as a transaction history or a call history whose data is relatively big and is often al

tered.

CREATE TABLE | 1,817

○ Its data is big so required to be sharded.

<cloned strategy> is appropriate for a code table, and an appropriate <table sharding strategy> should be

determined according to the table access pattern in case of a fact table.

Examples

The following is an example of generating an ordinary table.

gSQL> CREATE TABLE region

(

r_regionkey INTEGER

, r_name CHAR(25)

, r_comment VARCHAR(152)

);

Table created.

The following is an example of specifying the constraints on the columns when creating a table.

gSQL> CREATE TABLE supplier

(

s_suppkey INTEGER PRIMARY KEY

, s_name CHAR(25) NOT NULL

, s_address VARCHAR(40)

, s_nationkey INTEGER

, s_phone CHAR(15)

, s_acctbal NUMERIC(12,2)

, s_comment VARCHAR(101)

);

Table created.

The following is an example of specifying the constraint which includes multiple columns when creating a

table.

gSQL> CREATE TABLE partsupp

(

ps_partkey INTEGER

, ps_suppkey INTEGER

, ps_availqty INTEGER

, ps_supplycost NUMERIC(12,2)

1,818 | SQL References

, ps_comment VARCHAR(199)

, CONSTRAINT ps_unique_key UNIQUE(ps_partkey, ps_suppkey)

);

Table created.

The following is an example of specifying whether constraints are deferrable when creating a table.

gSQL> CREATE TABLE t1

(

id NUMBER PRIMARY KEY

NOT DEFERRABLE INITIALLY IMMEDIATE

, name VARCHAR(128) CONSTRAINT t1_nn NOT NULL

DEFERRABLE INITIALLY IMMEDIATE

, addr VARCHAR(1024)

, CONSTRAINT t1_uk UNIQUE (id, name)

DEFERRABLE INITIALLY DEFERRED

);

Table created.

gSQL> COMMIT;

Commit complete.

The following is an example of specifying a column including automatically generated values and the def

ault value when creating a table.

CREATE TABLE customer

(

c_custkey INTEGER GENERATED BY DEFAULT AS IDENTITY

, c_name VARCHAR(25)

, c_address VARCHAR(40) DEFAULT 'N/A'

, c_nationkey INTEGER

, c_phone CHAR(15)

, c_acctbal NUMERIC(12,2)

, c_mktsegment CHAR(10)

, c_comment VARCHAR(117)

);

Table created.

The following is an example of specifying the tablespace which is to be stored when creating a table.

gSQL> CREATE TABLE lineitem

(

l_orderkey INTEGER

CREATE TABLE | 1,819

, l_partkey INTEGER

, l_suppkey INTEGER

, l_linenumber INTEGER

, l_quantity NUMERIC(12,2)

, l_extendedprice NUMERIC(12,2)

, l_discount NUMERIC(12,2)

, l_tax NUMERIC(12,2)

, l_returnflag CHAR(1)

, l_linestatus CHAR(1)

, l_shipdate DATE

, l_commitdate DATE

, l_receiptdate DATE

, l_shipinstruct CHAR(25)

, l_shipmode CHAR(10)

, l_comment VARCHAR(44)

, PRIMARY KEY (l_orderkey, l_linenumber) INDEX lineitem_pk_idx TABLESPACE mem_temp_tbs

) TABLESPACE mem_data_tbs;

Table created.

The following is an example of defining a cluster-wide cloned table. The table data is copied and placed a

ll over the cluster system.

gSQL>

CREATE TABLE region

(

r_regionkey INTEGER

, r_name CHAR(25)

, r_comment VARCHAR(152)

)

CLONED

AT CLUSTER WIDE

;

Table created.

The following is an example of defining a group-specific cloned table. The table data is copied and placed

in a cluster group g1 and g2 specified by a user.

gSQL>

CREATE TABLE region

(

r_regionkey INTEGER

, r_name CHAR(25)

1,820 | SQL References

, r_comment VARCHAR(152)

)

CLONED

AT CLUSTER GROUP g1, g2

;

Table created.

The following is an example of defining a cluster-wide hash sharded table. The table data is divided into 2

4 shards based on the hash value of a ps_partkey column, and each shard is automatically placed all over

the cluster system.

gSQL>

CREATE TABLE partsupp

(

ps_partkey INTEGER

, ps_suppkey INTEGER

, ps_availqty INTEGER

, ps_supplycost NUMERIC(12,2)

, ps_comment VARCHAR(199)

)

SHARDING BY HASH (ps_partkey)

SHARD COUNT 24

AT CLUSTER WIDE

;

Table created.

The following is an example of defining a group-specific hash sharded table. The table data is divided int

o 24 shards based on the hash value of a ps_partkey column, and each shard is automatically placed in th

e specified cluster groups g2 and g3.

gSQL>

CREATE TABLE partsupp

(

ps_partkey INTEGER

, ps_suppkey INTEGER

, ps_availqty INTEGER

, ps_supplycost NUMERIC(12,2)

, ps_comment VARCHAR(199)

)

SHARDING BY HASH (ps_partkey)

SHARD COUNT 24

AT CLUSTER GROUP g2, g3

CREATE TABLE | 1,821

;

Table created.

The following is an example of defining a cluster-wide range sharded table. The table data is divided into

24 shards based on the range value of D_ID column, and each shard is automatically placed all over the cl

uster system.

gSQL>

CREATE TABLE DISTRICT (

D_ID INTEGER,

D_W_ID INTEGER,

D_NAME VARCHAR(10),

D_STREET_1 VARCHAR(20),

D_STREET_2 VARCHAR(20),

D_CITY VARCHAR(20),

D_STATE CHAR(2),

D_ZIP CHAR(9),

D_TAX NUMERIC(4,4),

D_YTD NUMERIC(15,2),

D_NEXT_O_ID INTEGER,

PRIMARY KEY (D_W_ID, D_ID) INDEX DISTRICT_PK_IDX

)

SHARDING BY RANGE (D_ID)

AT CLUSTER WIDE

SHARD s1 VALUES LESS THAN (100),

SHARD s2 VALUES LESS THAN (200),

SHARD s3 VALUES LESS THAN (300),

SHARD s4 VALUES LESS THAN (400),

SHARD s5 VALUES LESS THAN (500),

SHARD s6 VALUES LESS THAN (600),

SHARD s7 VALUES LESS THAN (700),

SHARD s8 VALUES LESS THAN (MAXVALUE);

;

Table created.

The following is an example of defining a group-specific range sharded table. The table data is divided int

o three range values based on the range value of a NO_D_ID column, and a shard s1 is placed in a cluster

group g1, a shard s2 is placed in a cluster group g2, a shard s3 is placed in a cluster group g3.

gSQL>

CREATE TABLE NEW_ORDER

(

1,822 | SQL References

NO_O_ID INTEGER,

NO_D_ID INTEGER,

NO_W_ID INTEGER,

PRIMARY KEY(NO_W_ID, NO_D_ID, NO_O_ID) INDEX NEW_ORDER_PK_IDX

)

SHARDING BY RANGE (NO_D_ID)

SHARD s1 VALUES LESS THAN (5) AT CLUSTER GROUP g1,

SHARD s2 VALUES LESS THAN (8) AT CLUSTER GROUP g2,

SHARD s3 VALUES LESS THAN (MAXVALUE) AT CLUSTER GROUP g3

;

Table created.

The following is an example of defining a cluster-wide list sharded table. A list shard is divided into five b

ased on a city column, and each shard is automatically placed all over the cluster system.

gSQL>

CREATE TABLE t1

(

id INTEGER

, name VARCHAR(32)

, city VARCHAR(128)

)

SHARDING BY LIST (city)

AT CLUSTER WIDE

SHARD s1 VALUES IN ('seoul'),

SHARD s2 VALUES IN ('busan', 'ulsan'),

SHARD s3 VALUES IN ('suwon', 'ansan', 'osan'),

SHARD s4 VALUES IN ('goyang', 'paju', 'guri'),

SHARD s5 VALUES IN (DEFAULT)

;

Table created.

The following is an example of defining a group-specific list sharded table. A list shard is divided into five

based on a city column, and each shard is placed in a specified cluster group.

gSQL>

CREATE TABLE t1

(

id INTEGER

, name VARCHAR(32)

, city VARCHAR(128)

)

CREATE TABLE | 1,823

SHARDING BY LIST (city)

SHARD s1 VALUES IN ('seoul') AT CLUSTER GROUP g1,

SHARD s2 VALUES IN ('busan', 'ulsan') AT CLUSTER GROUP g2,

SHARD s3 VALUES IN ('suwon', 'ansan', 'osan') AT CLUSTER GROUP g1,

SHARD s4 VALUES IN ('goyang', 'paju', 'guri') AT CLUSTER GROUP g2,

SHARD s5 VALUES IN (DEFAULT) AT CLUSTER GROUP g3

;

Table created.

A table T1 is created without a global secondary index.

gSQL> CREATE TABLE T1 (I1 INTEGER, I1 CHAR(32)) WITHOUT GLOBAL SECONDARY INDEX;

Table created.

A global secondary index is created after creating a table T1.

gSQL> CREATE TABLE T1 (I1 INTEGER, I1 CHAR(32)) WITH GLOBAL SECONDARY INDEX;

Table created.

A global secondary index of table T1 is created in a tablespace USER_DATA_TBS with a logging option aft

er creating a table T1.

gSQL> CREATE TABLE T1 (I1 INTEGER, I1 CHAR(32))

WITH GLOBAL SECONDARY INDEX

LOGGING TABLESPACE USER_DATA_TBS;

Table created.

A global secondary index of table T1 is created in a tablespace USER_TEMP_TBS with a nologging option

after creating a table T1.

gSQL> CREATE TABLE T1 (I1 INTEGER, I1 CHAR(32))

WITH GLOBAL SECONDARY INDEX

NOLOGGING TABLESPACE USER_TEMP_TBS;

Table created.

Compatibility

The SQL standard does not define the following clauses.

● The physical concepts of TABLESPACE clause and <physical attribute clause> clause.

● The SQL standard does not allow an operation in DEFAULT clause.

1,824 | SQL References

Table 16-30 SQL standard compatibility

Feature ID Description Compatibility

T171 LIKE clause in table definition X

F531 Temporary tables X

S051 Create table of type X

S043 Enhanced reference types X

S081 Subtables X

T173 Extended LIKE clause in table definition X

T180 System-versioned tables X

F692 Extended collation support X

T174 Identity columns O

T175 Generated columns X

S071 SQL paths in function and type name resolution X

F321 User authorization O

T322 Extended roles X

F762 CURRENT_CATALOG O

F763 CURRENT_SCHEMA O

For More Information

Refer to the followings.

● DROP TABLE

● ALTER TABLE

● CREATE TABLESPACE

● CREATE SCHEMA

● CREATE INDEX

● CREATE SEQUENCE

● SET CONSTRAINTS

● ALTER TABLE name ADD GLOBAL SECONDARY INDEX

CREATE TABLE AS SELECT | 1,825

16.86 CREATE TABLE AS SELECT

Function

It creates a new table from the query result.

Syntax

<table definition: AS query expression> ::=

CREATE TABLE table_name

[(column_name [, ...])]

[<table sharding strategy>]

[<table attribute clause> [, ...]]

[TABLESPACE tablespace_name]

[<table global secondary index clause>]

AS <query expression> [WITH [NO] DATA]

;

<table sharding strategy> ::=

<cloned strategy>

| <hash sharding strategy>

| <range sharding strategy>

| <list sharding strategy>

<cloned strategy> ::=

CLONED [<clone placement>]

<clone placement> ::=

AT CLUSTER WIDE

| AT CLUSTER GROUP group_list

<hash sharding strategy> ::=

SHARDING BY [HASH] (column_list)

[<hash shard count>]

[<hash shard placement>]

<hash shard count> ::=

SHARD COUNT integer

<hash shard placement> ::=

AT CLUSTER WIDE

| AT CLUSTER GROUP group_list

<range sharding strategy> ::=

1,826 | SQL References

SHARDING BY RANGE (column_list)

{ <cluster-wide range shard placement> | <group-specific range shard placement> }

<cluster-wide range shard placement> ::=

AT CLUSTER WIDE

<range shard definition> [, ...]

<group-specific range shard placement> ::=

<group-specific range shard definition> [, ...]

<group-specific range shard definition> ::=

<range shard definition> AT CLUSTER GROUP group_name

<range shard definition> ::=

SHARD range_name VALUES LESS THAN (<range value clause>)

<range value clause> ::=

<range value> [, ...]

<range value> ::=

constant

| MAXVALUE

<list sharding strategy> ::=

SHARDING BY LIST (column_name)

{ <cluster-wide list shard placement> | <group-specific list shard placement> }

<cluster-wide list shard placement> ::=

AT CLUSTER WIDE

<list shard definition> [, ...]

<group-specific list shard placement> ::=

<group-specific list shard definition> [, ...]

<group-specific list shard definition> ::=

<list shard definition> AT CLUSTER GROUP group_name

<list shard definition> ::=

SHARD shard_name VALUES IN (<list value clause>)

<list value clause> ::=

<list value> [, ...]

<list value> ::=

constant

| NULL

| DEFAULT

<table attribute clause> ::=

[<table physical attribute clause>]

| [STORAGE (<segment attr clause> [...])]

<table physical attribute clause> ::=

PCTFREE integer

| PCTUSED integer

| INITRANS integer

CREATE TABLE AS SELECT | 1,827

| MAXTRANS integer

<index physical attribute clause> ::=

PCTFREE integer

| INITRANS integer

| MAXTRANS integer

<segment attr clause> ::=

INITIAL <size_clause>

| NEXT <size_clause>

| MINSIZE <size_clause>

| MAXSIZE <size_clause>

<size clause> ::=

integer [K | M | G | T]

<table global secondary index clause> ::=

WITH GLOBAL SECONDARY INDEX [<index attributes> [...]] [TABLESPACE tablespace_name]

| WITHOUT GLOBAL SECONDARY INDEX

Invocation and Access Rules

A user should satisfy the following conditions to perform <table definition:AS query expression>statemen

t.

● Table creation privilege

○ Refer to the access privilege in CREATE TABLE.

● SELECT access privilege

○ Refer to the access privilege in SELECT.

Syntax Rules and Parameters

table_name

It is the table name to be created.

For more information, refer to table_name.

column_name_list

These are the names of the columns that configure the table, and it should be unique names within the t

able.

The number of columns should be as same as the number of result columns in SELECT clause.

1,828 | SQL References

If not specified, the column names of SELECT clause in <query expression> are used.

However, if an expression (such as a function, operation, or subquery) is used instead of a column in SEL

ECT clause, the alias or column name should be specified.

The length of the column name should be shorter than 128 bytes.

WITH [NO] DATA

If WITH DATA is specified, the result of SELECT clause is inserted to the table to be created.

If WITH NO DATA is specified, the result of SELECT clause is not inserted to the table to be created.

If not specified, it is operated as same as when WITH DATA is specified.

Other Syntax

For more information about other syntaxes, refer to the syntax in CREATE TABLE statement.

Description

When executing CREATE TABLE AS SELECT, if a column including a NOT NULL constraint is specified in S

ELECT list, the NOT NULL constraint is also created in the new table.

However, if the NOT NULL constraint is deferrable, then NOT NULL constraint is not created in the new ta

ble.

On the other hand, the NOT NULL constraint is not created in the new table if NOT NULL constraint was n

ot explicitly created but there is NOT NULL property such as primary key column or identity column.

Examples

The following is an example of executing CREATE TABLE AS SELECT statement.

gSQL> CREATE TABLE recent_orders

AS SELECT order_id, order_item, order_date

FROM orders

WHERE order_date >= '2015-03-03'

Table created.

The following is an example of specifying the column name.

CREATE TABLE AS SELECT | 1,829

gSQL> CREATE TABLE recent_orders (order_id, order_item, order_date)

AS SELECT order_id, order_item, order_date

FROM orders

WHERE order_date >= '2015-03-03'

Table created.

The following is an example of a function in SELECT list.

gSQL> CREATE TABLE recent_orders (order_date, order_count)

AS SELECT order_date, COUNT(*)

FROM orders

WHERE order_date >= '2015-03-03'

GROUP BY order_date;

Table created.

The following is an example of the statement including WITH DATA.

gSQL>CREATE TABLE orders

(

order_id NUMBER

, order_item VARCHAR(128)

, order_date DATE

);

gSQL> COMMIT;

gSQL> INSERT INTO orders VALUES (1, 'Pen', '2010-01-01');

gSQL> INSERT INTO orders VALUES (2, 'Book', '2015-03-03');

gSQL> COMMIT;

gSQL> CREATE TABLE recent_orders

AS SELECT order_id, order_item, order_date

FROM orders

WHERE order_date >= '2015-03-03'

WITH DATA;

Table created.

gSQL> SELECT COUNT(*) FROM recent_orders;

COUNT(*)

1

1 row selected.

The following is an example of the statement including WITH NO DATA.

1,830 | SQL References

gSQL>CREATE TABLE orders

(

order_id NUMBER

, order_item VARCHAR(128)

, order_date DATE

);

gSQL> COMMIT;

gSQL> INSERT INTO orders VALUES (1, 'Pen', '2010-01-01');

gSQL> INSERT INTO orders VALUES (2, 'Book', '2015-03-03');

gSQL> COMMIT;

gSQL> CREATE TABLE recent_orders

AS SELECT order_id, order_item, order_date

FROM orders

WHERE order_date >= '2015-03-03'

WITH NO DATA;

Table created.

gSQL> SELECT COUNT(*) FROM recent_orders;

COUNT(*)

0

1 row selected.

Compatibility

CREATE TABLE AS SELECT statement follows SQL standard. However, the following is an extension of SQ

L standard.

● SQL standard requires parentheses outside SELECT clause, but it is optional in GOLDILOCKS.

● SQL standard requires WITH [NO] DATA clause, but it is optional in GOLDILOCKS.

● The concepts of tablespace in GOLDILOCKS is an extended concept, and it is not supported in SQL st

andard.

Table 16-31 SQL standard compatibility

Feature ID Description Compatibility

T172 AS subquery clause in table definition O

CREATE TABLE AS SELECT | 1,831

For More Information

Refer to the followings.

● CREATE TABLE

● SELECT

1,832 | SQL References

16.87 CREATE GLOBAL TEMPORARY TABLE

Function

It creates a new global temporary table.

Syntax

<global temporary table definition> ::=

CREATE GLOBAL TEMPORARY TABLE table_name

(<table element> [, ...])

[<table commit action clause>]

[TABLESPACE tablespace_name]

;

<global temporary table definition: AS query expression> ::=

CREATE GLOBAL TEMPORARY TABLE table_name

[TABLESPACE tablespace_name]

AS <query expression> [WITH [NO] DATA]

;

<table commit action clause> ::=

ON COMMIT { PRESERVE | DELETE } ROWS

Note

The definition of <table element> is as same as those in <table_definition>.

For more information, refer to CREATE TABLE.

Invocation and Access Rules

A user should satisfy the following conditions to perform <global temporary table definition> statement.

● Table creation privilege

○ Refer to the access privilege in CREATE TABLE.

● SELECT access privilege

CREATE GLOBAL TEMPORARY TABLE | 1,833

○ Refer to the access privilege in SELECT.

Syntax Rules and Parameters

table_name

It is the table name to be created.

For more information, refer to table_name.

other syntax

For more information about other syntaxes, refer to the syntax in CREATE TABLE and in CREATE TABLE A

S SELECT statement.

Description

GLOBAL TEMPORARY TABLE is used to store the data which is maintained while a transaction or a sessio

n is performed.

It is used for the purpose as same as that of the variable of which a developer temporarily stores the mid-

data of the operation when developing an application.

The global temporary table has the following features.

● The definition of the global temporary table can be viewed in every session.

● The physical segment is not allocated when defining the global temporary table, but the segment sub

ordinated to that session is allocated when it is inserted for the first time.

● The data of the global temporary table can be viewed in a session or a transaction which was inserte

d.

● The tablespace to store the data of the global temporary table is determined as follows.

Whether to specify tablespace The tablespace in which the table is created

It specifies the tablespace. It is created in the specified tablespace.

It does not specify the tablespace. It is created in the default temporary tablespace of the current session user.

● The index for the global temporary table is subordinate to the same session of the corresponding tabl

e, and the time duration is as same as that of the table.

● It can define the view for the global temporary table.

● It can not specify <table sharding strategy> statement which describe the cluster-related features of t

he table for the global temporary table, nor <table global secondary index clause> statement.

1,834 | SQL References

● It can not specify <table attribute clause> which describes the physical attributes of the table for the g

lobal temporary table, nor <index attribute clause> which describes the physical attributes of the inde

x.

● <index attribute clause> which describes the physical attributes of the index can not be specified for t

he index which is created based on the global temporary table.

● If a transaction is terminated by <table commit action clause>, it can determine how to process the re

maining data.

Table commit action Description

ON COMMIT PRESERVE ROWS It maintains the data remained in a table even after COMMIT or ROLLBACK.

ON COMMIT DELETE ROWS (defa

ult)

It deletes all data remained in a table at the time of COMMIT or ROLLBACK (TR

UNCATE).

● It supports most of DDLs for an ordinary table. (Including ALTER and TRUNCATE)

○ It does not support CLUSTER-related statement (SHARD and global secondary index-related state

ment).

○ DDL for the global temporary table which is currently used in its own session or in another sessio

n causes an error.

○ DDL is available after removing all segments which is used as TRUNCATE TABLE or COMMIT in all

sessions in use.

● It supports all DMLs and select statements for an ordinary table.

● All alteration for the global temporary table (DML) do not leave the redo log.

● All alteration for the global temporary table (DML) leaves the undo log, the location of the undo log i

s determined according to TEMP_UNDO_ENABLED property.

TEMP_UNDO_ENABLED value Description

TRUE
The undo log is recorded in the default temporary tablespace of the database sy

stem.

FALSE The undo log is recorded in the undo tablespace of the database system.

● TRUNCATE command for the global temporary table truncates only the segment of the correspondin

g session.

● If the session is terminated, all segments are TRUNCATEd and then returned.

Examples

The following is an example of performing CREATE GLOBAL TEMPORARY TABLE statement.

gSQL> CREATE GLOBAL TEMPORARY TABLE SESSION_TABLE1(

COL1 CHAR(10)

,COL2 VARCHAR2(20)

CREATE GLOBAL TEMPORARY TABLE | 1,835

,COL3 NUMBER(10)

) ON COMMIT DELETE ROWS;

Table created.

The following is an example of performing CREATE GLOBAL TEMPORARY TABLE ... AS SELECT statemen

t.

gSQL> CREATE GLOBAL TEMPORARY TABLE SESSION_TABLE2

ON COMMIT PRESERVE ROWS

AS SELECT *

FROM EMPLOYEES;

Table created.

Compatibility

CREATE GLOBAL TEMPORARY TABLE and CREATE GLOBAL TEMPORARY TABLE AS SELECT statements f

ollow the definition of SQL standard <table definition>. However, the following is an extension of SQL sta

ndard.

● SQL standard requires parentheses outside SELECT clause, but it is optional in GOLDILOCKS.

● SQL standard requires WITH [NO] DATA clause, but it is optional in GOLDILOCKS.

● The concepts of tablespace in GOLDILOCKS is an extended concept, and it is not supported in SQL st

andard.

Table 16-32 SQL standard compatibility

Feature ID Description Compatibility

T171 LIKE clause in table definition X

T172 AS subquery clause in table definition O

F531 Temporary tables X

S051 Create table of type X

S043 Enhanced reference types X

S081 Subtables X

T173 Extended LIKE clause in table definition X

T180 System-versioned tables X

F692 Extended collation support X

T174 Identity columns O

T175 Generated columns X

S071 SQL paths in function and type name resolution X

F321 User authorization O

T322 Extended roles X

1,836 | SQL References

F762 CURRENT_CATALOG O

F763 CURRENT_SCHEMA O

Feature ID Description Compatibility

For More Information

Refer to the followings.

● CREATE TABLE

● CREATE TABLE AS SELECT

CREATE TABLESPACE | 1,837

16.88 CREATE TABLESPACE

Function

It creates a tablespace.

Syntax

<create tablespace statement> ::=

<memory data tablespace statement>

| <memory temporary tablespace statement>

;

Invocation and Access Rules

CREATE TABLESPACE ON DATABASE privilege is required to perform <create tablespace statement>.

The user who performed the statement has CREATE OBJECT ON TABLESPACE privilege on the created ta

blespace.

One of the following privileges is required to create the objects on the created tablespace.

● CREATE OBJECT ON TABLESPACE for that tablespace

● USAGE TABLESPACE ON DATABASE

Syntax Rules and Parameters

<memory data tablespace statement>

● [MEMORY] TEMPORARY

It is a memory temporary tablespace to store the no logging indexes or the temporary objects such as inte

rmediate results which are generated during the query processing.

The reserved word MEMORY can be omitted.

1,838 | SQL References

<memory data tablespace clause>

It defines a memory data tablespace.

For more information, refer to CREATE MEMORY DATA TABLESPACE.

<memory temporary tablespace definition>

It defines a memory temporary tablespace.

For more information, refer to CREATE MEMORY TEMPORARY TABLESPACE.

Description

For more information, refer to the description of each detailed statement.

Example

For more information, refer to usage example of each detailed statement.

Compatibility

The SQL standard does not cover the concepts of the tablespace.

For More Information

Refer to the followings.

● DROP TABLESPACE

● ALTER TABLESPACE

CREATE MEMORY DATA TABLESPACE | 1,839

16.89 CREATE MEMORY DATA TABLESPACE

Function

It defines a memory data tablespace.

Syntax

<memory data tablespace statement> ::=

CREATE [MEMORY] [DATA] TABLESPACE tablespace_name

DATAFILE <memory datafile clause> [, ...]

[<data tablespace management clause> [, ...]]

<memory datafile clause> ::=

'filename'

[SIZE <size clause> | REUSE | SIZE <size clause> REUSE]

[AT <domain_name>]

<size clause> ::=

integer [K | M | G | T]

<data tablespace management clause> ::=

{ ONLINE | OFFLINE }

| EXTSIZE <size clause>

Invocation and Access Rules

CREATE TABLESPACE ON DATABASE privilege is required to perform <memory data tablespace definition>

.

The user who performed the statement has CREATE OBJECT ON TABLESPACE privilege on the created ta

blespace.

One of the following privileges is required to create the objects on the created tablespace.

● CREATE OBJECT ON TABLESPACE for that tablespace

● USAGE TABLESPACE ON DATABASE

1,840 | SQL References

Syntax Rules and Parameters

[MEMORY] [DATA]

It is a memory tablespace to store the permanent objects such as tables, indexes, etc.

The reserved words, MEMORY and DATA, can be omitted.

tablespace_name

It is the tablespace name to be created.

The length of the tablespace name should be shorter than 128 bytes.

<memory datafile clause>

● 'filename'

○ It is the file name to store and manage the data.

○ It is the space to store the checkpoint image for the memory data.

○ filename can be either a new file or an already existing file.

○ The length of the filename should be shorter than 1024 bytes.

● SIZE <size clause>

○ The initial size is assigned for a new file by using the SIZE clause.

○ An error occurs if the file already exists.

○ The file size can be specified between minimum 1M and maximum 30G.

● REUSE

○ If the file already exists, REUSE clause is used.

○ If the file does not exist, a new file is created.

○ The newly created file size is

■ determined by MEMORY_DATA_TABLESPACE_SIZE property in case of the data tablespace.

■ determined by MEMORY_TEMP_TABLESPACE_SIZE property in case of the temporary tables

pace.

● SIZE <size clause> REUSE

○ If both SIZE clause and REUSE clause are specified, it is operated as follows according to the pres

ence of the filename.

■ For the new filename, the initial file size is assigned by using the SIZE clause.

■ For the existing filename, the size is adjusted to the value of SIZE clause by using the existing

file.

CREATE MEMORY DATA TABLESPACE | 1,841

<size clause>

It specifies the file size in bytes. (If it is omitted, the default unit is bytes.)

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

ONLINE | OFFLINE

It sets ONLINE or OFFLINE of the tablespace.

● ONLINE is the state which a tablespace can be used as soon as it is created.

● OFFLINE is the state which a tablespace is unable to be used, it can be used after switching to ONLIN

E state.

EXTSIZE <size clause>

It specifies extent size of the tablespace.

● The extent size is specified in bytes, and one of the five (64K, 128K, 256K, 512K, 1M) is selected.

● If the extent size is defined as a value between 64K ~ 128K, 128K is set. If the extent size is defined a

s 1M or bigger, 1M is set.

Description

The data tablespace is an object which provides the physical space to store the SQL schema object such a

s a table, an index (with LOGGING option).

1,842 | SQL References

Examples

The following is an example of creating a memory data tablespace.

gSQL> CREATE TABLESPACE space1 DATAFILE 'test_file_1.dbf' SIZE 10M REUSE;

Tablespace created.

The following is an example of creating a tablespace which consists of multiple data files.

gSQL> CREATE TABLESPACE space1

DATAFILE 'test_file_3_1.dbf' SIZE 10M REUSE,

'test_file_3_2.dbf' SIZE 10M REUSE;

Tablespace created.

Compatibility

The SQL standard does not cover the concepts of the tablespace.

For More Information

Refer to the followings.

● DROP TABLESPACE

● ALTER TABLESPACE

CREATE MEMORY TEMPORARY TABLESPACE | 1,843

16.90 CREATE MEMORY TEMPORARY TABLESPA

CE

Function

It defines a memory temporary tablespace.

Syntax

<memory temporary tablespace statement> ::=

CREATE [MEMORY] TEMPORARY TABLESPACE tablespace_name

MEMORY <memory clause> [, ...]

<temporary tablespace management clause>

<memory clause>

'memory_name' { SIZE <size clause> } [AT <domain_name>]

<temporary tablespace management clause> ::=

EXTSIZE <size clause>

Invocation and Access Rules

CREATE TABLESPACE ON DATABASE privilege is required to perform <memory temporary tablespace defi

nition>.

The user who performed the statement has CREATE OBJECT ON TABLESPACE privilege on the created ta

blespace.

One of the following privileges is required to create the objects on the created tablespace.

● CREATE OBJECT ON TABLESPACE for the tablespace.

● USAGE TABLESPACE ON DATABASE

1,844 | SQL References

Syntax Rules and Parameters

[MEMORY] TEMPORARY

It is a memory temporary tablespace to store the no logging indexes or the temporary objects such as inte

rmediate results which are generated during the query processing.

The reserved word, MEMORY, can be omitted.

tablespace_name

It is the tablespace name to be created.

The length of the tablespace name should be shorter than 128 bytes.

<memory clause>

● 'memory_name'

○ It is a memory name to store the temporary data.

○ memory_name should be guaranteed to be unique within the tablespace.

○ The length of the memory_name should be shorter than 1024 bytes.

● SIZE <size clause>

○ It specifies the initial size.

○ It can be specified between minimum 1M and maximum 30G.

<size clause>

It specifies the size of shared memory space in bytes.(If it is omitted, the default unit is bytes.)

The image is not managed as a file in case of the temporary memory data.

● K: Kilobytes

● M: Megabytes

● G: Gigabytes

● T: Terabytes

<domain name>

It is a name of a member or a group for which the statement is performed.

If it is omitted, it is performed for all groups.

CREATE MEMORY TEMPORARY TABLESPACE | 1,845

EXTSIZE <size clause>

It specifies extent size of the tablespace.

● The extent size is specified in bytes, and one of the five (64K, 128K, 256K, 512K, 1M) is selected.

● If the extent size is defined as a value between 64K ~ 128K, 128K is set. If the extent size is defined a

s 1M or bigger, 1M is set.

Description

The temporary tablespace is an object which provides the physical space to store the SQL schema object s

uch as an index (with NOLOGGING option), and to store the intermediate results for sorting, hashing dur

ing the query processing.

Examples

The following is an example of creating a temporary tablespace.

gSQL> CREATE TEMPORARY TABLESPACE temp_space1 MEMORY 'test_memory_1' SIZE 10M;

Tablespace created.

The following is an example of creating a temporary tablespace which includes multiple memory spaces.

gSQL> CREATE TEMPORARY TABLESPACE temp_space1

MEMORY 'test_memory_3_1' SIZE 10M,

'test_memory_3_2' SIZE 10M;

Tablespace created.

Compatibility

The SQL standard does not cover the concepts of the tablespace.

1,846 | SQL References

For More Information

Refer to the followings.

● DROP TABLESPACE

● ALTER TABLESPACE

CREATE USER | 1,847

16.91 CREATE USER

Function

It defines a database user.

Syntax

<user definition> ::=

CREATE USER user_identifier IDENTIFIED BY password

[PROFILE { profile_name | DEFAULT | NULL }]

[PASSWORD EXPIRE]

[ACCOUNT { LOCK | UNLOCK }]

[DEFAULT TABLESPACE tablespace_name]

[TEMPORARY TABLESPACE tablespace_name]

[INDEX TABLESPACE { tablespace_name | NULL }]

[<schema clause>]

;

<schema clause> ::=

WITH SCHEMA [schema_name]

| WITHOUT SCHEMA

Invocation and Access Rules

CREATE USER ON DATABASE privilege is required to perform <user definition>.

The created user, user_identifier, has the privilege, which is the owner the schema created by using <sche

ma clause>.

Note

A separate privilege is not granted to the created user_identifier.

The appropriate privileges should be granted to user_identifier to access and perform SQL statem

ents.

1,848 | SQL References

Syntax Rules and Parameters

user_identifier

It is the username to be created.

The identical username (user identifier) or role (role name) should not exist.

The length of user_identifier should be shorter than 128 bytes.

password

It is the user's password to be created. It is encrypted and stored.

The length of password should be shorter than 128 bytes.

The password should start with an alphabetic character, and it can include alphabetic characters, number

s, underscore (_), and $.

The other special characters should be enclosed in double quotes (").

PROFILE { profile_name | DEFAULT | NULL }

The profile for password management policy is assigned.

● PROFILE profile_name

○ It allocates the profile_name which is created by a user.

● PROFILE DEFAULT

○ It allocates the default profile "DEFAULT".

● PROFILE NULL

○ It does not allocate the profile.

If PROFILE clause is omitted, it is as same as PROFILE NULL, and the profile is not applied.

For more information about the password management policy, refer to 16.81 CREATE PROFILE.

PASSWORD EXPIRE

It expires the user's password.

It is used when a user attempts to change the password by force before login.

CREATE USER | 1,849

ACCOUNT { LOCK | UNLOCK }

● ACCOUNT LOCK

○ It locks the user account.

● ACCOUNT UNLOCK

○ It unlocks the user account.

DEFAULT TABLESPACE tablespace_name

It specifies the default TABLESPACE to store objects such as the table created by the user, the indexes (wi

th NOLOGGING option).

If DEFAULT TABLESPACE clause is omitted, default data tablespace(MEM_DATA_TBS) is specified, which

was defined when creating DATABASE.

TEMPORARY TABLESPACE tablespace_name

It specifies the TABLESPACE which stores the temporary tables created by a user, indexes (NO LOGGING),

and the intermediate results generated by the query processing.

If TEMPORARY TABLESPACE clause is omitted, default temporary tablespace (MEM_TEMP_TBS) is specifi

ed, which was defined when creating DATABASE.

INDEX TABLESPACE { tablespace_name | NULL }

It specifies the default TABLESPACE which stores the index objects created by a user.

● Specifying INDEX TABLESPACE tablespace_name

○ If it specifies the data tablespace, then it should be the LOGGING index.

○ If it specifies the temporary tablespace,then it should be the NOLOGGING index.

● INDEX TABLESPACE NULL

○ It does not specify the index tablespace.

If INDEX TABLESPACE clause is omitted, then it is INDEX TABLESPACE NULL.

<schema clause>

It creates a schema which a user uses by default.

The schema name should be unique in the database.

● WITH SCHEMA [schema_name]

○ If schema_name is not assigned, the schema is created whose name is as same as user_identifier.

1,850 | SQL References

○ SCHEMA PATH of the user is set as follows.

■ schema_name, PUBLIC

● WITHOUT SCHEMA

○ It does not create the schema which is to be owned by a user.

○ SCHEMA PATH of the user is set as PUBLIC.

If <schema clause> is not specified, the default value is WITH SCHEMA and the schema is created whose

name is as same as user_identifier.

The schema to be owned by the user can be additionally created by using CREATE SCHEMA statement.

Description

A user is an authorization object which consists of a set of privileges.

When <user definition> statement is executed for the first time, a user without any privilege is created, an

d the appropriate privileges should be granted as follows.

In GOLDILOCKS, the relationship between user and schema is 1 : N.

In other words, a user does not own any schema, or a user can own multiple schemas.

The SQL standard does not explicitly define the relationship of the non-schema objects such as a user, a s

chema, or a database. Each DBMS defines the relationship of non-schema objects in different concept as

follows.

Note

The relationship between user and schema in other DBMS.

• Oracle

° User : schema = 1 : 1.

• DB2

° It is as same as the OS user.

° The separate SQL statements which creates or deletes a user do not exist.

• Postgres

° User : schema = 1 : N.

• MySQL

° Database : schema = 1 : 1.

CREATE USER | 1,851

° User is a subordinate object of database (schema).

Examples

At least the following privileges should be granted to create a user, and for the created user to create the

objects, manipulate data.

The following is an example of creating a user and granting privileges.

• Create a user.

gSQL> CREATE USER u1 IDENTIFIED BY u1_password

DEFAULT TABLESPACE mem_data_tbs

TEMPORARY TABLESPACE mem_temp_tbs

INDEX TABLESPACE NULL;

User created.

gSQL> COMMIT;

Commit complete.

• Grant database privileges.

gSQL> GRANT CREATE SESSION ON DATABASE TO u1;

Grant succeeded.

COMMIT;

Commit complete.

• Grant schema privileges.

GRANT CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, ADD CONSTRAINT

ON SCHEMA u1 TO u1;

Grant succeeded.

COMMIT;

Commit complete.

• Grant tablespace privileges.

GRANT CREATE OBJECT ON TABLESPACE mem_data_tbs TO u1;

Grant succeeded.

GRANT CREATE OBJECT ON TABLESPACE mem_temp_tbs TO u1;

Grant succeeded.

1,852 | SQL References

COMMIT;

Commit complete.

The following is an example of creating objects by the user.

• It needs CREATE SESSION ON DATABASE.

gSQL> \connect u1 u1_password

• It needs CREATE TABLE ON SCHEMA u1.

• It needs CREATE OBJECT ON TABLESPACE mem_data_tbs.

gSQL> CREATE TABLE u1.t1 (c1 INTEGER, c2 INTEGER) TABLESPACE mem_data_tbs;

Table created.

gSQL> COMMIT;

• It needs CREATE INDEX ON SCHEMA u1.

• It needs CREATE OBJECT ON TABLESPACE mem_temp_tbs.

gSQL> CREATE INDEX u1.idx ON t1 (c2) TABLESPACE mem_temp_tbs;

Index created.

gSQL> COMMIT;

• It needs ADD CONSTRAINT ON SCHEMA u1.

gSQL> ALTER TABLE t1 ADD CONSTRAINT u1.t1_pk PRIMARY KEY (c1) ;

Table altered.

gSQL> COMMIT;

• It needs CREATE SEQUENCE ON SCHEMA u1.

gSQL> CREATE SEQUENCE u1.seq;

Sequence created.

gSQL> COMMIT;

gSQL> INSERT INTO u1.t1 VALUES (u1.seq.NEXTVAL, u1.seq.NEXTVAL);

1 row created

gSQL> COMMIT;

CREATE USER | 1,853

Compatibility

The SQL standard covers the concepts of the user, but it does not define the SQL statements associated

with the creation and deletion of user.

For More Information

Refer to the followings.

● DROP USER

● ALTER USER

● CREATE SCHEMA

1,854 | SQL References

16.92 CREATE VIEW

Function

It defines a view.

Syntax

<view definition> ::=

CREATE [OR REPLACE] [FORCE | NO FORCE]

VIEW view_name [(column_name [, ...])]

AS <query expression>

;

Invocation and Access Rules

The user should satisfy the following conditions to perform <view definition> statement.

● One of the following privileges is required to create a view.

○ (CREATE VIEW or CONTROL SCHEMA) ON SCHEMA for the schema to which the view belongs

○ CREATE ANY VIEW ON DATABASE

● When using OR REPLACE clause, if a view already exists, then one of the following privileges is requir

ed to remove the existing view.

○ The owner of that view

○ CONTROL TABLE ON TABLE for that view.

○ (DROP VIEW or CONTROL SCHEMA) ON SCHEMA for the schema to which the view belongs

○ DROP ANY VIEW ON DATABASE

● One of the following privileges is required for all tables used in <Query expression>.

○ SELECT(columns) ON TABLE for all columns used in the statement among table columns

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

● The owner of the created view is determined as follows.

CREATE VIEW | 1,855

○ The owner of the schema to which the view belongs.

○ If the schema to which the view belongs is PUBLIC, then it is the user who executed the statemen

t.

● The owner of the view has the following privileges for the created view.

○ SELECT ON TABLE WITH GRANT OPTION

○ INSERT ON TABLE WITH GRANT OPTION

○ UPDATE ON TABLE WITH GRANT OPTION

○ DELETE ON TABLE WITH GRANT OPTION

○ TRIGGER ON TABLE

○ LOCK ON TABLE WITH GRANT OPTION

○ ALTER ON TABLE WITH GRANT OPTION

Syntax Rules and Parameters

[OR REPLACE]

It replaces the existing view when a view already exists.

[FORCE | NO FORCE]

● FORCE

○ A view is created regardless of the validity of <query expression>.

● NO FORCE

○ A view is created when <Query expression> is valid.

● The default value is NO FORCE.

view_name

It is the view name to be created, and it should be a unique name within the schema.

The schema to which the view belongs, such as schema_name.view_name, can be defined. If schema_na

me is omitted, the default schema name of the user performing the statement is used.

The length of the view name must be shorter than 128 bytes.

[(column_name [, ...])]

It defines a column name which will configure the view.

Each column name should be unique within the view.

1,856 | SQL References

The number of columns should be as same as the number of result columns in SELECT clause.

If the list of column names is omitted, the column names of SELECT clause in <query expression> are used.

AS <query expression>

It is the SELECT query which will create a view.

<query expression> can not include the following variables.

● Host parameter

● SQL parameter

● Dynamic parameter

● Embedded variable

● SEQUENCE object

Description

A view is the object which gave a name to the query, and it is used in the similar way of a table.

When executing a query including the view, that view is interpreted as the query included in the view defi

nition. If the table referenced by the view is altered, as the following example, the asterisk (*) included in

the view definition is automatically interpreted based on the altered table information.

gSQL> CREATE VIEW v1 AS SELECT * FROM t1;

gSQL> COMMIT;

gSQL> SELECT * FROM v1;

ID NAME

-- ---------

1 leekmo

2 mkkim

3 egonspace

3 rows selected.

gSQL> ALTER TABLE t1 ADD COLUMN (dept_id INTEGER, addr VARCHAR(1024));

gSQL> COMMIT;

gSQL> select * from v1;

ID NAME DEPT_ID ADDR

-- --------- ------- ----

1 leekmo null null

2 mkkim null null

3 egonspace null null

CREATE VIEW | 1,857

3 rows selected.

The view is affected if the view is created on the query including errors by using FORCE option, the tables

referred by the view, or views are altered or deleted.

This information can be retrieved from INFORMATION_SCHEMA.VIEWS information.

● IS_COMPILED column

○ TRUE: The view is normally created.

○ FALSE: The view is created having an error by using FORCE option.

● IS_AFFECTED column

○ TRUE : The referenced tables by a view or view is altered.

○ FALSE: After a view is created and compiled, the referenced tables or views are not altered.

The maximum number of creating views and the maximum number of columns to be created within a vie

w is not limited. Therefore, they can be created as many as the storage space is available.

Examples

The following is an example of creating a view.

gSQL> CREATE VIEW v1 AS SELECT * FROM t1 WHERE dept_id = 101;

View created.

The following is an example of defining the column names when defining a view.

gSQL> CREATE VIEW v1 (v_id, v_name)

AS SELECT id, name FROM t1 WHERE dept_id = 101;

View created.

The following is an example of removing the existing view and creating a new view by using REPLACE op

tion.

gSQL> CREATE OR REPLACE VIEW v1(id, name)

AS SELECT id, name FROM t1;

View created.

The following is an example of forcing to create a view by using FORCE option even when the referenced

object by the view does not exist.

1,858 | SQL References

gSQL> CREATE FORCE VIEW v1

AS SELECT * FROM t1 WHERE dept_id = 101;

ERR-01000(16243): Warning: View created with compilation errors

ERR-42000(16040): table or view does not exist :

AS SELECT * FROM t1 WHERE dept_id = 101

*

ERROR at line 2:

View created.

Compatibility

The SQL standard does not define the following clauses.

● [OR REPLACE] clause

● [FORCE | NO FORCE] clause

Table 16-33 SQL standard compatibility

Feature ID Description Compatibility

T131 Recursive query X

F751 View CHECK enhancements X

S043 Enhanced reference types X

T111 Updatable joins, unions, and columns X

F852 Top-level <order by clause> in views O

F864 Top-level <result offset clause> in views O

F859 Top-level <fetch first clause> in views O

S081 Subtables X

For More Information

Refer to the followings.

● DROP VIEW

● ALTER VIEW

● SELECT

DECLARE cursor_name | 1,859

16.93 DECLARE cursor_name

Function

It declares a cursor.

Syntax

<declare cursor> ::=

DECLARE cursor_name <cursor properties> { FOR | IS } <cursor specification>

;

<cursor properties> ::=

[<cursor sensitivity>] [<cursor scrollability>]] CURSOR [<cursor holdability>]

| [<odbc cursor type] CURSOR [<cursor holdability>]

<cursor sensitivity> ::=

INSENSITIVE

| SENSITIVE

| ASENSITIVE

<cursor scrollability> ::=

NO SCROLL

| SCROLL

<cursor holdability> ::=

WITH HOLD

| WITHOUT HOLD

<odbc cursor type> ::=

STATIC

| KEYSET

<cursor specification> ::=

statement_name

| <cursor query> [<updatability clause>]

<cursor query> ::=

<select statement>

| <insert returning query statement>

| <update returning query statement>

| <delete returning query statement>

<updatability clause> ::=

FOR READ ONLY

1,860 | SQL References

| FOR UPDATE [OF <column name list>] [<lock wait mode>]

<lock wait mode> ::=

| WAIT

| WAIT second

| NOWAIT

Invocation and Access Rules

The dynamic cursor which uses statement_name can be used in an embedded SQL.

An appropriate access privilege is required depending on <cursor query> types.

For more information about the access privileges, refer to the followings.

● The access privilege of a SELECT statement

● The access privilege of a SELECT .. FOR UPDATE statement

● The access privilege of a INSERT INTO name RETURNINGstatement

● The access privilege of a UPDATE name RETURNINGstatement

● The access privilege of a DELETE FROM name RETURNINGstatement

Syntax Rules and Parameters

cursor_name

It is the cursor name to be declared.

It should be a unique name within the session.

The length of cursor name should be shorter than 128 bytes.

{ FOR | IS }

Either FOR or IS is used as a syntax keyword in SQL standard.

<cursor properties>

It defines the cursor properties.

● If <cursor sensitivity> is not specified, the default value is INSENSITIVE.

● If <cursor scrollability> is not specified, the default value is NO SCROLL.

● If <cursor holdability> is not specified, the default value is determined by <cursor updatability>.

DECLARE cursor_name | 1,861

updatable query

To use a cursor property such as SENSITIVE or FOR UPDATE, a query of the cursor should identify changes

in rows of the base table, or it should be the updatable query which can acquire a lock on the row.

The updatable query should satisfy all of the following conditions.

● DISTINCT should not exist at the top level query.

○ (X) SELECT DISTINCT * FROM t1;

● GROUP BY, HAVING, aggregation function should not exist at the top level query.

○ (X) SELECT MAX(c1) FROM t1;

● A returning query should not exist.

○ (X) DELETE FROM t1 RETURNING c1;

● Set operator should not exist.

○ (X) SELECT * FROM t1 UNION ALL SELECT * FROM t2;

● At least one updatable column is required on the listed tables in FROM clause.

○ The columns of the tables, which are included in join operations and are not used in the cross joi

n, are not the updatable columns.

■ FULL OUTER JOIN is not cross join.

■ NATURAL JOIN is not cross join.

■ If INNER JOIN uses USING phrase, it is not cross join.

○ The columns of the following tables are not the updatable columns.

■ Dictionary table, fixed table, performance view

○ The columns of the view are not updatable tables.

<cursor sensitivity>

It determines whether the following data changes that affect the query results can be queried when oper

ating the cursor.

● INSENSITIVE

○ It can not detect the data updated during the cursor operation.

● SENSITIVE

○ <cursor query> should be an updatable query.

○ It detects the updated and deleted data in the transaction as same as that of the cursor.

○ It detects the data updated and deleted through COMMIT of other transactions.

● ASENSITIVE

○ INSENSITIVE or SENSITIVE is determined depending on the type of <cursor query>.

■ For the updatable query, it is SENSITIVE.

■ For no updatable query, it is INSENSITIVE.

● If it is not specified, the default value is INSENSITIVE.

1,862 | SQL References

<cursor scrollability>

It specifies whether the result set of the cursor can be fetched sequentially or non-sequentially.

● NO SCROLL

○ Only sequential FETCH (FETCH NEXT) is possible.

● SCROLL

○ Non-sequential FETCH is possible.

● If not specified, the default value is NO SCROLL.

<cursor holdability>

It determines whether the cursor is maintained after the cursor is OPEN and the transaction is committed.

● WITH HOLD

○ The cursor is maintained after the transaction is committed.

○ It can not be used together with FOR UPDATE statement.

○ It can not be used together with INSERT INTO name RETURNING statement.

○ It can not be used together with UPDATE name RETURNING statement.

○ It can not be used together with DELETE FROM name RETURNING statement.

● WITHOUT HOLD

○ When the transaction is committed or rolled back, the cursor is closed.

● Rollback and cursor

○ It closes a cursor included in a transaction when rolling back the transaction.

○ It closes a cursor created since the savepoint when rolling back up to the savepoint.

● If not specified, the default value of <cursor holdability> is determined by <cursor updatability>.

○ If it is FOR READ ONLY or <cursor updatability> is not specified, the default value is WITH HOLD.

○ If it is used together with FOR UPDATE statement, the default value is WITHOUT HOLD.

<odbc cursor type>

It is the cursor type in the ODBC standard, and it has the SCROLL property.

● STATIC CURSOR

○ It is as same as INSENSITIVE SCROLL in SQL standard.

○ Non-sequential FETCH is possible.

○ It is the static scroll cursor in the ODBC standard.

● KEYSET CURSOR

○ It is as same as ASENSITIVE SCROLL in SQL standard.

○ It is the keyset-driven scroll cursor in the ODBC standard.

DECLARE cursor_name | 1,863

○ The property of sensitivity is determined according to the following characteristics.

Table 16-34 Sensitivity according to FOR [UPDATE / READ ONLY] statement and the query type

Updatability Query type Sensitivity

FOR UPDATE Updatable query SENSITIVE

FOR UPDATE Non-updatable query Query error

FOR READ ONLY Any query INSENSITIVE

N/A Updatable query SENSITIVE

N/A Non-updatable query INSENSITIVE

<cursor specification>

It defines a query which is a target of the cursor.

If statement_name is used, a dynamic cursor whose query has not been defined is declared.

If <cursor query> is used, a standing cursor whose query is defined is declared.

statement_name

It is a statement_name to be referenced by the cursor, and it can be used in an embedded SQL.

statement_name should exist before performing <declare cursor> statement, and the SQL statement refe

renced by statement_name should be the query prepared by PREPARE statement_name statement.

If it is not a query, an error occurs when executing OPEN cursor_name statement.

<cursor query>

For more information about available query types in the cursor, refer to the followings.

● SELECT

● SELECT .. FOR UPDATE

● INSERT INTO name RETURNING

● UPDATE name RETURNING

● DELETE FROM name RETURNING

<updatability clause>

It specifies whether to change rows by using the cursor.

● FOR READ ONLY

○ It declares a read-only cursor.

1,864 | SQL References

● FOR UPDATE

○ It declares a writable cursor.

○ When opening the cursor, the x lock for the corresponding rows is acquired to prevent the chang

e by other transactions until the transaction is completed.

○ It can not be used together with WITH HOLD statement.

○ <cursor query> should be an updatable query.

● If not specified, the default value is FOR READ ONLY.

FOR UPDATE OF …

It lists the columns associated with the lock obtaining when OPENing the cursor.

● If it is the columns listed in FOR UPDATE OF statement

○ It should be an updatable column of the table listed in FROM clause of <select statement>.

○ It acquires the lock for the table of listed columns.

● If only FOR UPDATE statement is used

○ It is the same meaning as listing all updatable columns of the table in FROM clause of <select stat

ement>.

○ It acquires the lock for the table of all columns.

<lock wait mode>

It is used together with FOR UPDATE clause, and it specifies the lock acquisition method.

● WAIT

○ It acquires the lock for all rows of the query result when OPENing the cursor.

○ It waits until acquiring the lock.

● WAIT second

○ It acquires the lock for all rows of the query result when OPENing the cursor.

○ An error occurs if the lock is not acquired within the specified time.

○ The wait time is in seconds, and it can use the value between 0 and 1000000000.

● NOWAIT

○ It acquires the lock for all rows of the query result when OPENing the cursor.

○ An error occurs if the lock is not immediately acquired.

● If not specified, the default value is WAIT.

Description

When controlling the query property, using DECLARE CURSOR, OPEN, FETCH, CLOSE statements have th

e performance burden compared to using the cursor with the ODBC or JDBC statements. It is because usi

DECLARE cursor_name | 1,865

ng DECLARE CURSOR, OPEN, FETCH, CLOSE statements control the cursor of the server.

Before executing the query, the cursor property can be controlled by ODBC statement and JDBC stateme

nt. The SQL cursor property control method by DECLARE CURSOR statement, and cursor property control

method by the ODBC standard and the JDBC standard are as follows.

Table 16-35 Controlling the cursor property of ODBC/ JDBC

Property
GOLDILOCKS

cursor property
ODBC standard cursor property JDBC standard cursor property

Sensitivity

INSENSITIVE

SQLSetStmtAttr(stmt, SQL_ATTR_C

URSOR_SENSITIVITY, SQL_INSENSITI

VE, len)

It can not be set.

SENSITIVE

SQLSetStmtAttr(stmt, SQL_ATTR_C

URSOR_SENSITIVITY, SQL_SENSITIV

E, len)

It can not be set.

ASENSITIVE

SQLSetStmtAttr(stmt, SQL_ATTR_C

URSOR_SENSITIVITY, SQL_UNSPECI

FIED, len)

It can not be set.

Scrollability

NO SCROLL

SQLSetStmtAttr(stmt, SQL_ATTR_C

URSOR_SCROLLABLE, SQL_NONSC

ROLLABLE, len)

It can not be set.

SCROLL

SQLSetStmtAttr(stmt, SQL_ATTR_C

URSOR_SCROLLABLE, SQL_SCROLL

ABLE, len)

It can not be set.

Holdability

WITHOUT HOLD It can not be set.

java.sql.Connection::prepareState

ment(query, type, conc, ResultSet.

CLOSE_CURSORS_AT_COMMIT)

WITH HOLD It can not be set.

java.sql.Connection::prepareState

ment(query, type, conc, ResultSet.

HOLD_CURSORS_OVER_COMMIT

)

SQL cursor declaration corresponding to ODBC cursor type is as follows.

Table 16-36 SQL cursor declaration corresponding to ODBC cursor type

ODBC cursor type SQL cursor declaration

SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_TYPE, SQL_CURSOR_FORWARD_ONLY, le

n)
NO SCROLL CURSOR

SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_TYPE, SQL_CURSOR_STATIC, len) STATIC CURSOR

SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN, len

)
KEYSET CURSOR

SQL cursor declaration corresponding to JDBC cursor type is as follows.

1,866 | SQL References

Table 16-37 SQL cursor declaration corresponding to JDBC cursor type

JDBC cursor type SQL cursor declaration

java.sql.Connection::prepareStatement(query, ResultSet.TYPE_FORWAR

D_ONLY, conc, hold)
INSENSITIVE NO SCROLL CURSOR

java.sql.Connection::prepareStatement(query, ResultSet.TYPE_SCROLL_I

NSENSITIVE, conc, hold)
INSENSITIVE SCROLL CURSOR

java.sql.Connection::prepareStatement(query, ResultSet.TYPE_SCROLL_S

ENSITIVE, conc, hold)
KEYSET CURSOR

Examples

The following is an example of declaring the cursor by using interactive SQL (gsql), and using it.

gSQL> DECLARE cur1 CURSOR FOR SELECT id, data FROM t1;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

4 data_4

1 row fetched.

DECLARE cursor_name | 1,867

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

no rows fetched.

gSQL> CLOSE cur1;

Cursor closed.

The following is an example of declaring KEYSET cursor, sequentially searching, then completing the tran

saction of UPDATE, DELETE statements, and searching for it in the reverse direction.

gSQL> DECLARE cur_keyset KEYSET CURSOR FOR SELECT id, data FROM t1;

Cursor declared.

gSQL> OPEN cur_keyset;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH NEXT cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH NEXT cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> FETCH NEXT cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH NEXT cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

4 data_4

1 row fetched.

gSQL> FETCH NEXT cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

1,868 | SQL References

---- ------

5 data_5

1 row fetched.

gSQL> FETCH NEXT cur_keyset INTO :v_id, :v_data;

no rows fetched.

gSQL> UPDATE t1 SET data = 'new data_2' WHERE id = 2;

1 row updated.

gSQL> COMMIT;

Commit complete.

gSQL> DELETE FROM t1 WHERE id = 4;

1 row deleted.

gSQL> COMMIT;

Commit complete.

gSQL> FETCH PRIOR cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH PRIOR cur_keyset INTO :v_id, :v_data;

no rows fetched.

gSQL> FETCH PRIOR cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH PRIOR cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ----------

2 new data_2

1 row fetched.

gSQL> FETCH PRIOR cur_keyset INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> CLOSE cur_keyset;

Cursor closed.

The following is an example of declaring SCROLL cursor, and using the cursor through the fetch orientati

on.

DECLARE cursor_name | 1,869

gSQL> DECLARE cur_scroll SCROLL CURSOR FOR SELECT id, data FROM t1;

Cursor declared.

gSQL> OPEN cur_scroll;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH LAST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH PRIOR cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

4 data_4

1 row fetched.

gSQL> FETCH FIRST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH ABSOLUTE 3 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH RELATIVE -1 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> FETCH ABSOLUTE 3 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> CLOSE cur_scroll;

Cursor closed.

1,870 | SQL References

Compatibility

<declare cursor> statement has the following differences compared to the SQL standard.

● In SQL standard, the default value of <cursor sensitivity> is ASENSITIVE, but in GOLDILOCKS, the defa

ult value is INSENSITIVE.

● The SQL standard does not cover the following <odbc cursor type>.

○ STATIC CURSOR

○ KEYSET CURSOR

● In SQL standard, the default value of <cursor holdability> is WITHOUT HOLD, but in GOLDILOCKS, the

default value depends on <cursor updatability>.

● SQL standard can use only <select statement> as <cursor query>, but GOLDILOCKS can use the return

ing query as follows.

○ INSERT INTO name RETURNING

○ UPDATE name RETURNING

○ DELETE FROM name RETURNING

● In SQL standard, the default value of <cursor updatability> is determined by <select statement>, but i

n GOLDILOCKS the default value is FOR READ ONLY.

● In SQL standard, <lock wait mode> statement does not exist.

Table 16-38 SQL standard compatibility

Feature ID Description Compatibility

F831 Full cursor update O

T231 Sensitive cursors O

F791 Insensitive cursors O

F431 Read-only scrollable cursors O

T471 Result sets return value X

T551 Optional key words for default syntax O

T111 Updatable joins, unions, and columns X

B031 Basic dynamic SQL O

For More Information

Refer to the followings.

● OPEN cursor_name

● FETCH cursor_name

● CLOSE cursor_name

● PREPARE statement_name

DECLARE cursor_name | 1,871

● SELECT

● SELECT .. FOR UPDATE

● INSERT INTO name RETURNING

● UPDATE name RETURNING

● DELETE FROM name RETURNING

1,872 | SQL References

16.94 DELETE FROM

Function

It deletes rows in a table.

Syntax

<delete statement: searched> ::=

DELETE [FROM] table_name [[AS] alias_name]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

;

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

Invocation and Access Rules

One of the following privileges is required to perform <delete statement: searched>.

● (DELETE or CONTROL TABLE) ON TABLE for the table

● (DELETE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● DELETE ANY TABLE ON DATABASE

DELETE FROM | 1,873

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be deleted.

It defines the schema to which the table belongs such as schema_name.table_name.

If schema_name is omitted, the default schema name of the user performing the statement is used.

[AS alias_name]

It is the alias of table_name.

WHERE <search condition>

It deletes the rows which satisfy WHERE condition.

If WHERE condition is omitted, it deletes all rows.

For more information about WHERE condition, refer to where clause of SELECT statement.

<result offset clause>

It specifies the number of rows to be skipped among the query result.

For more information, refer to offset limit clause of SELECT statement.

<fetch limit clause>

The following two ways are used to specify the number of rows to be fetched.

● <fetch first clause>

○ It specifies the number of rows to be fetched.

○ For more information, refer to <fetch first clause> of SELECT statement.

● <limit clause>

○ It specifies the number of rows to be fetched, or it simultaneously specifies both the number of r

ows to be skipped and the number of rows to be fetched.

○ For more information, refer to <limit clause> of SELECT statement.

1,874 | SQL References

Description

Differences among DELETE-related Statements

● DELETE FROM

○ It deletes multiple rows which satisfy conditions.

○ e.g. DELETE FROM t1 WHERE c1 = 0;

● DELETE FROM name WHERE CURRENT OF cursor_name

○ It deletes the row which the current cursor indicates.

○ e.g. DELETE FROM t1 WHERE CURRENT OF cursor;

● DELETE FROM name RETURNING

○ It deletes multiple rows which satisfy the conditions, and the deleted rows can be retrieved in the

same way as SELECT statement (API such as SQLFetch ()).

○ e.g. DELETE FROM t1 WHERE c1 = 0 RETURNING c2;

● DELETE FROM name RETURNING .. INTO

○ It deletes row equal to or less than one, and if one row is deleted, the value is obtained into the h

ost variable of RETURNING INTO clause.

○ e.g. DELETE FROM t1 WHERE c1 = 0 RETURNING c2 INTO :v1;

Examples

The following is an example of DELETE statement.

gSQL> DELETE FROM t1 WHERE id > 3;

2 rows deleted.

The following is an example of skipping some rows (two rows) and deleting some rows (two rows) amon

g the rows which satisfy the conditions by using <result offset clause> and <fetch first clause> clauses.

gSQL> DELETE FROM t1 OFFSET 2 FETCH 2;

2 rows deleted.

gSQL> SELECT * FROM t1 ORDER BY 1;

ID DATA

-- ------

1 data_1

2 data_2

5 data_5

3 rows selected.

DELETE FROM | 1,875

Compatibility

The SQL standard does not define the following clauses of DELETE statement.

● <result offset clause>

● <fetch limit clause>

Table 16-39 SQL standard compatibility

Feature ID Description Compatibility

F781 Self-referencing operations X

T111 Updatable joins, unions, and columns X

For More Information

Refer to the followings.

● DELETE FROM name WHERE CURRENT OF cursor_name

● DELETE FROM name RETURNING

● DELETE FROM name RETURNING .. INTO

● SELECT

1,876 | SQL References

16.95 DELETE FROM name RETURNING

Function

It deletes rows of the table, and retrieves the deleted rows.

Syntax

<delete returning query statement> ::=

DELETE [FROM] table_name [[AS] alias_name]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

<returning clause>

;

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

<returning clause> ::=

{ RETURN | RETURNING } { * | { <value expression> [[AS] alias_name] } [, ...] }

Invocation and Access Rules

The user should satisfy the following conditions to perform <delete returning query statement>.

● One of the following privileges is required to perform DELETE statement.

○ (DELETE or CONTROL TABLE) ON TABLE for the table

○ (DELETE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ DELETE ANY TABLE ON DATABASE

DELETE FROM name RETURNING | 1,877

● One of the following privileges is required for all the columns used in RETURNING clause.

○ SELECT(columns) ON TABLE for all columns used in RETURNING clause.

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be deleted.

[AS alias_name]

It is the alias of table_name.

WHERE <search condition>

It deletes the rows which satisfy WHERE condition.

For more information, refer to DELETE FROM statement.

<result offset clause>

It specifies the number of rows to be skipped among the query result.

For more information, refer to DELETE FROM statement.

<fetch first clause>

It specifies the number of rows to be fetched.

For more information, refer to DELETE FROM statement.

<limit clause>

It specifies the number of rows to be fetched, or it simultaneously specifies both the number of rows to b

e skipped and the number of rows to be fetched.

For more information, refer to DELETE FROM statement.

1,878 | SQL References

<returning clause>

It sets the deleted rows as a result set, and it specifies the columns to be searched from the set.

● RETURNING clause returns the rows deleted by DELETE statement as a result set.

● <value expression>

○ It is as same as <select list> of SELECT statement, but it can not use aggregation.

● [[AS] alias_name]

○ It can give the name to the value expression by using AS clause.

The keywords RETURNING and RETURN have the same meaning.

Description

For more information, refer to Differences among DELETE-related Statements.

Examples

The following is an example of deleting rows which satisfy the condition, and searching for the deleted ro

ws.

gSQL> DELETE FROM t1 WHERE id > 3 RETURNING *;

ID DATA

-- ------

4 data_4

5 data_5

2 rows deleted.

The following is an example of querying information of the deleted rows by using operation in RETURNIN

G clause.

gSQL> DELETE FROM t1

WHERE id > 3

RETURNING 'ID: ' || id || ', DATA: ' || data AS id_data;

ID_DATA

ID: 4, DATA: data_4

ID: 5, DATA: data_5

2 rows deleted.

DELETE FROM name RETURNING | 1,879

Compatibility

The SQL standard does not cover <delete returning query statement>.

For More Information

Refer to the followings.

● DELETE FROM

● DELETE FROM name WHERE CURRENT OF cursor_name

● DELETE FROM name RETURNING .. INTO

● SELECT

1,880 | SQL References

16.96 DELETE FROM name RETURNING .. INTO

Function

It deletes a single row from the table, and the value of the deleted row is obtained into the host variable.

Syntax

<delete returning query statement> ::=

DELETE [FROM] table_name [[AS] alias_name]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

<returning into clause>

;

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

<returning into clause> ::=

{ RETURN | RETURNING } { * | { <value expression> [[AS] alias_name] } [, ...] } INTO

variable_name [, ...]

Invocation and Access Rules

The user should satisfy the following conditions to perform <delete returning into statement>.

● One of the following privileges is required to perform DELETE statement.

○ (DELETE or CONTROL TABLE) ON TABLE for the table

○ (DELETE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

DELETE FROM name RETURNING .. INTO | 1,881

○ DELETE ANY TABLE ON DATABASE

● One of the following privileges is required for all columns used in RETURNING clause.

○ SELECT(columns) ON TABLE for all columns used in RETURNING clause

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be deleted.

[AS alias_name]

It is the alias of table_name.

WHERE <search condition>

It deletes the rows which satisfy WHERE condition.

For more information, refer to DELETE FROM statement.

<result offset clause>

It specifies the number of rows to be skipped among the query result.

For more information, refer to DELETE FROM statement.

<fetch first clause>

It specifies the number of rows to be fetched.

For more information, refer to DELETE FROM statement.

<limit clause>

It specifies the number of rows to be fetched, or it simultaneously specifies both the number of rows to b

e skipped and the number of rows to be fetched.

For more information, refer to DELETE FROM statement.

1,882 | SQL References

<returning into clause>

● RETURNING .. AS ..

○ For more information, refer to <returning clause> of 16.95 DELETE FROM name RETURNIN

G statement.

● INTO variable_name [, ...]

○ The number of variables specified in INTO clause should be equal to the number of the expressio

ns specified in RETURNING clause.

Description

The number of rows to be deleted should be equal to or less than one.

If two or more rows are deleted, then an error occurs.

For more information, refer to Differences among DELETE-related Statements.

Example

The following is an example of deleting rows and obtaining the value of deleted rows into the host variab

le in an interactive SQL (gsql).

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> DELETE FROM t1 WHERE id = 3 RETURNING id, data INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row deleted.

Compatibility

The SQL standard does not cover <delete returning into statement>.

DELETE FROM name RETURNING .. INTO | 1,883

For More Information

Refer to the followings.

● DELETE FROM

● DELETE FROM name WHERE CURRENT OF cursor_name

● DELETE FROM name RETURNING

● SELECT

1,884 | SQL References

16.97 DELETE FROM name WHERE CURRENT OF c

ursor_name

Function

It deletes a single row which the cursor indicates.

Syntax

<delete statement: positioned> ::=

DELETE [FROM] table_name [[AS] alias_name]

WHERE CURRENT OF cursor_name

;

Invocation and Access Rules

The privilege to perform DELETE FROM statement is required to perform <delete statement: positioned>.

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be deleted.

[AS alias_name]

It is the alias of table_name.

cursor_name

The cursor corresponding to cursor_name should satisfy the following conditions.

● The cursor should be OPEN. (Refer to OPEN cursor_name.)

DELETE FROM nameWHERE CURRENT OF cursor_name | 1,885

● Fetched rows by using the cursor should exist. (Refer to FETCH cursor_name.)

● The query used for the cursor should identify table_name. (Refer to DECLARE cursor_name.)

● The cursor should be updatable for table_name. (Refer to DECLARE cursor_name.)

Description

For more information, refer to Differences among DELETE-related Statements.

Example

The following is an example of declaring the FOR UPDATE cursor, and deleting rows by using the cursor i

n interactive SQL (gsql).

gSQL> DECLARE cur1 CURSOR FOR SELECT id, data FROM t1 FOR UPDATE;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> DELETE FROM t1 WHERE CURRENT OF cur1;

1 row deleted.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

1,886 | SQL References

---- ------

4 data_4

1 row fetched.

gSQL> DELETE FROM t1 WHERE CURRENT OF cur1;

1 row deleted.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

no rows fetched.

gSQL> CLOSE cur1;

Cursor closed.

gSQL> SELECT id, data FROM t1 ORDER BY 1;

ID DATA

-- ------

1 data_1

3 data_3

5 data_5

3 rows selected.

Compatibility

Table 16-40 SQL standard compatibility

Feature ID Description Compatibility

S111 ONLY in query expressions X

B031 Basic dynamic SQL O

For More Information

Refer to the followings.

● DECLARE cursor_name

● OPEN cursor_name

● FETCH cursor_name

● DELETE FROM

● DELETE FROM name RETURNING

DELETE FROM nameWHERE CURRENT OF cursor_name | 1,887

● DELETE FROM name RETURNING .. INTO

1,888 | SQL References

16.98 DROP AUDIT POLICY

Function

It drops an audit policy.

Syntax

<drop audit policy statement> ::=

DROP AUDIT POLICY [IF EXISTS] policy_name

;

Invocation and Access Rules

AUDIT SYSTEM ON DATABASE privilege is required to perform <drop audit policy statement>.

Syntax Rules and Parameters

IF EXISTS

An error does not occur even when a policy_name does not exist.

policy_name

It is the name of an audit policy object to be dropped.

Description

The audit policy object which is already activated can not be dropped. In this case, the audit policy should

be deactivated by using NOAUDIT POLICY statement.

DROP AUDIT POLICY | 1,889

Examples

The following is an example of dropping an audit policy.

DROP AUDIT POLICY policy_table;

Compatibility

In the SQL standard, an audit policy does not exist.

For More Information

Refer to the followings.

● Managing audit policy object

○ CREATE AUDIT POLICY

○ DROP AUDIT POLICY

○ ALTER AUDIT POLICY

● Activating/ deactivating audit policy

○ AUDIT POLICY

○ NOAUDIT POLICY

● Retrieving audit trail: AUDIT_TRAIL

● Clearing audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

1,890 | SQL References

16.99 DROP CLUSTER GROUP

Function

It drops a cluster group from a cluster system.

Syntax

<drop cluster group statement> ::=

DROP CLUSTER GROUP [IF EXISTS] group_name

;

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <drop cluster group statement>.

Syntax Rules and Parameters

[IF EXISTS]

An error does not occur even when a cluster group does not exist.

group_name

It is the name of a cluster group.

A cluster group without any shard can be dropped.

Description

A cluster group can be dropped only when dropping the cluster group does not cause the data loss.

DROP CLUSTER GROUP | 1,891

Examples

The following is an example of dropping a cluster group.

gSQL> DROP CLUSTER GROUP g3;

Cluster Group dropped.

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to CREATE CLUSTER GROUP.

1,892 | SQL References

16.100 DROP CLUSTER LOCATION

Function

It drops the access information of a cluster member.

Syntax

<drop cluster location statement> ::=

DROP CLUSTER LOCATION member_name

;

Invocation and Access Rules

It can be performed in a cluster system.

ADMINISTRATION ON DATABASE privilege is required to perform <drop cluster location statement>.

Syntax Rules and Parameters

member_name

It is the name of a cluster member.

The same cluster member name should exist in a registered cluster location information.

The length of the name should be shorter than 128 bytes.

Description

Generally, the information of the cluster location is automatically created by using the connection inform

ation provided when creating the cluster group or adding the cluster member. The created information is

deleted together when deleting the cluster member and the cluster group.

If the access information of the cluster location is modified, then the connection information can be modi

DROP CLUSTER LOCATION | 1,893

fied by using ALTER CLUSTER LOCATION without deleting or recreating the cluster member.

Example

gSQL>

DROP CLUSTER LOCATION g1n2

;

Created

Compatibility

The SQL standard does not define the concepts of the cluster.

For More Information

Refer to the followings.

● CREATE CLUSTER LOCATION

● ALTER CLUSTER LOCATION

1,894 | SQL References

16.101 DROP INDEX

Function

It drops an index.

Syntax

<drop index statement> ::=

DROP INDEX [IF EXISTS] index_name

;

Invocation and Access Rules

One of the following privileges is required to perform <drop index statement>.

● The owner of that index

● The owner of the table to which the index belongs

● CONTROL TABLE ON TABLE for the table to which the index belongs

● (DROP INDEX or CONTROL SCHEMA) ON SCHEMA for the schema to which the index belongs

● DROP ANY INDEX ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the index does not exist, an error does not occur.

index_name

It is the index name to be dropped.

It can define schema to which the index belongs such as schema_name.index_name and if schema_name

is omitted, the default schema name of the user performing the statement is used.

DROP INDEX | 1,895

The indexes created for UNIQUE constraint, PRIMARY KEY constraint can not be dropped.

To drop the indexes created for the constraints above, the constraints should be removed through ALTER

TABLE name DROP CONSTRAINT statement.

Description

Data Definition Language (DDL) statement such as DROP INDEX can be rolled back if it is before when th

e transaction is committed.

Examples

The following is an example of dropping an index.

gSQL> DROP INDEX idx_t1_id;

Index dropped.

The following is an example of preventing an error even when the index does not exist by using IF EXISTS

statement.

gSQL> DROP INDEX IF EXISTS not_exist_index;

Index dropped.

Compatibility

The SQL standard does not cover the concepts of the index.

For More Information

Refer to the followings.

● CREATE INDEX

● DROP TABLE

● ALTER TABLE name DROP CONSTRAINT

1,896 | SQL References

16.102 DROP PROFILE

Function

It drops a profile.

Syntax

<drop profile statement> ::=

DROP PROFILE [IF EXISTS] profile_name [CASCADE] ;

Invocation and Access Rules

DROP PROFILE ON DATABASE privilege is required to perform <drop profile statement>.

Syntax Rules and Parameters

IF EXISTS

Even when the profile does not exist, an error does not occur.

profile_name

It specifies the profile name to be dropped.

It can not drop the DEFAULT profile.

CASCADE

If the profile has already been assigned to users, CASCADE clause should be explicitly specified to drop th

e profile.

The profile which is assigned to users and to be dropped is changed to DEFAULT profile.

DROP PROFILE | 1,897

Example

The following is an example of dropping a profile by using CASCADE statement.

gSQL> DROP PROFILE prof CASCADE;

Profile dropped.

gSQL> COMMIT;

Commit complete.

Compatibility

The SQL standard does not cover the concepts of the profile.

For More Information

Refer to the followings.

● CREATE PROFILE

● ALTER PROFILE

1,898 | SQL References

16.103 DROP SCHEMA

Function

It drops a schema.

Syntax

<drop schema statement> ::=

DROP SCHEMA [IF EXISTS] schema_name

[<drop behavior>]

;

<drop behavior> ::=

RESTRICT

| CASCADE

Invocation and Access Rules

One of the following privileges is required to perform <drop schema statement>.

● The owner of that schema

● CONTROL SCHEMA ON SCHEMA for the schema

● DROP SCHEMA ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the schema does not exist, an error does not occur.

DROP SCHEMA | 1,899

schema_name

It is the schema name to be dropped.

However, it can not drop the built-in schema such as "DICTIONARY_SCHEMA", "INFORMATION_SCHEM

A" and "PUBLIC" which are automatically created when creating the database.

<drop behavior>

● When it is RESTRICT

○ Objects should not exist within the schema.

● When it is CASCADE

○ It drops all objects in the schema together.

● When it is omitted, the default value is RESTRICT.

Description

Data Definition Language (DDL) statement such as DROP SCHEMA can be rolled back if it is before when

the transaction is committed.

Examples

The following is an example of dropping a schema and all objects which exist within the schema.

gSQL> DROP SCHEMA s1 CASCADE;

Schema dropped.

The following is an example of preventing an error even when the schema does not exist by using IF EXIS

TS statement.

gSQL> DROP SCHEMA IF EXISTS not_exist_schema;

Schema dropped.

Compatibility

The SQL standard does not define IF EXISTS clause.

1,900 | SQL References

Table 16-41 SQL standard compatibility

Feature ID Description Compatibility

F032 CASCADE drop behavior O

F381 Extended schema manipulation O

For More Information

Refer to CREATE SCHEMA.

DROP SEQUENCE | 1,901

16.104 DROP SEQUENCE

Function

It drops a sequence.

Syntax

<drop sequence generator statement> ::=

DROP SEQUENCE [IF EXISTS] [schema_name.] sequence_name

;

Invocation and Access Rules

One of the following privileges is required to perform <drop sequence generator statement>.

● The owner of that sequence

● (DROP SEQUENCE or CONTROL SCHEMA) ON SCHEMA for the schema to which the sequence belon

gs

● DROP ANY SEQUENCE ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the sequence does not exist, an error does not occur.

sequence_name

It is the sequence name to be dropped.

It can define schema to which the sequence belongs such as schema_name.sequence_name and if schem

a_name is omitted, the default schema name of the user performing the statement is used.

1,902 | SQL References

Description

Data Definition Language (DDL) statement such as DROP SEQUENCE can be rolled back if it is before wh

en the transaction is committed.

Examples

The following is an example of dropping a sequence.

gSQL> DROP SEQUENCE seq1;

Sequence dropped.

The following is an example of preventing an error even when the sequence does not exist by using IF EXI

STS statement.

gSQL> DROP SEQUENCE invalid_sequence;

ERR-42000(16044): sequence does not exist :

DROP SEQUENCE invalid_sequence

*

ERROR at line 1:

gSQL> DROP SEQUENCE IF EXISTS invalid_sequence;

Sequence dropped.

Compatibility

The SQL standard does not define IF EXISTS clause.

Table 16-42 SQL standard compatibility

Feature ID Description Compatibility

T176 Sequence generator support O

For More Information

Refer to the followings.

● CREATE SEQUENCE

DROP SEQUENCE | 1,903

● ALTER SEQUENCE

1,904 | SQL References

16.105 DROP SYNONYM

Function

It drops a synonym.

Syntax

<drop synonym statement> ::=

DROP [PUBLIC] SYNONYM [IF EXISTS] [schema_name.]synonym_name

;

Invocation and Access Rules

DROP PUBLIC SYNONYM ON DATABASE privilege is required to drop a public synonym by specifying PUB

LIC.

One of the following privileges is required to drop a private synonym.

● The owner of that synonym

● (DROP SYNONYM or CONTROL SCHEMA) ON SCHEMA for the schema to which the synonym belon

gs

● DROP ANY SYNONYM ON DATABASE

Syntax Rules and Parameters

[PUBLIC]

It is specified when dropping the public synonym.

If this clause is omitted, the private synonym is dropped.

DROP SYNONYM | 1,905

IF EXISTS

Even when the synonym does not exist, an error does not occur.

synonym_name

It is the synonym name to be dropped.

It can define schema to which the synonym belongs such as schema_name.synonym_name and if schema

_name is omitted, the default schema name of the user performing the statement is used.

If PUBLIC is explicitly specified, the schema name can not be specified.

Description

Data Definition Language (DDL) statement such as DROP SYNONYM can be rolled back if it is before whe

n the transaction is committed.

Examples

The following is an example of dropping a private synonym.

gSQL> DROP SYNONYM MyEmp;

Synonym dropped.

The following is an example of dropping a public synonym.

gSQL> DROP PUBLIC SYNONYM MainEmp;

Synonym dropped.

Compatibility

The SQL standard does not define DROP SYNONYM statement.

1,906 | SQL References

For More Information

Refer to CREATE SYNONYM.

DROP TABLE | 1,907

16.106 DROP TABLE

Function

It drops a table.

Syntax

<drop table statement> ::=

DROP TABLE [IF EXISTS] table_name

[<drop behavior>]

;

<drop behavior> ::=

RESTRICT

| CASCADE

| CASCADE CONSTRAINTS

Invocation and Access Rules

One of the following privileges is required to perform <drop table statement>.

● The owner of that table

● CONTROL TABLE ON TABLE for that table

● (DROP TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● DROP ANY TABLE ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the table does not exist, an error does not occur.

1,908 | SQL References

table_name

It is the table name to be dropped.

It can define schema to which the table belongs such as schema_name.table_name and if schema_name

is omitted, the default schema name of the user performing the statement is used.

The following tables which are automatically created during creating the database, can not be dropped.

● The tables in "DEFINITION_SCHEMA" schema

● The tables in "FIXED_TABLE_SCHEMA" schema

It also drops constraints and indexes created in the table.

drop behavior

Currently, both RESTRICT and CASCADE are operated same.

When it is omitted, the default value is RESTRICT.

Description

Data Definition Language (DDL) statement such as DROP TABLE can be rolled back if it is before when th

e transaction is committed.

Examples

The following is an example of dropping an ordinary table.

gSQL> DROP TABLE region;

Table dropped.

The following is an example of preventing an error even when the table does not exist by using IF EXISTS

statement.

gSQL> DROP TABLE IF EXISTS invalid_table;

Table dropped.

The following is an example of rolling back the dropped table.

DROP TABLE | 1,909

gSQL> SELECT r_regionkey, r_name FROM region;

R_REGIONKEY R_NAME

----------- -------------------------

0 AFRICA

1 AMERICA

2 ASIA

3 EUROPE

4 MIDDLE EAST

5 rows selected.

gSQL> DROP TABLE region;

Table dropped.

gSQL> SELECT r_regionkey, r_name FROM region;

ERR-42000(16040): table or view does not exist :

SELECT r_regionkey, r_name FROM region

*

ERROR at line 1:

gSQL> ROLLBACK;

Rollback complete.

gSQL> SELECT r_regionkey, r_name FROM region;

R_REGIONKEY R_NAME

----------- -------------------------

0 AFRICA

1 AMERICA

2 ASIA

3 EUROPE

4 MIDDLE EAST

5 rows selected.

Compatibility

The SQL standard does not define the following clauses.

● IF EXISTS

● CASCADE CONSTRAINTS

Table 16-43 SQL standard compatibility

Feature ID Description Compatibility

F032 CASCADE drop behavior O

1,910 | SQL References

For More Information

Refer to CREATE TABLE.

DROP TABLESPACE | 1,911

16.107 DROP TABLESPACE

Function

It drops a tablespace.

Syntax

<drop tablespace statement> ::=

DROP TABLESPACE [IF EXISTS] tablespace_name

[INCLUDING CONTENTS]

[{ AND | KEEP } DATAFILES]

[<drop behavior>]

;

<drop behavior> ::=

RESTRICT

| CASCADE

| CASCADE CONSTRAINTS

Invocation and Access Rules

DROP TABLESPACE ON DATABASE privilege is required to perform <drop tablespace definition>.

Syntax Rules and Parameters

IF EXISTS

Even when the tablespace does not exist, an error does not occur.

tablespace_name

It is the tablespace name to be dropped.

The following system tablespaces which are automatically created during creating the database, can not

1,912 | SQL References

be dropped.

● DICTIONARY_TBS: system tablespace for dictionary management

● MEM_UNDO_TBS: system tablespace for default undo tablespace

● MEM_DATA_TBS: system tablespace for default user data tablespace

● MEM_TEMP_TBS: system tablespace for default temporary tablespace

Note

If tablespace_name was used as a default tablespace of a user, the space for the objects can not b

e allocated after dropping the tablespace.

After dropping the tablespace, the default tablespace should be changed by using 16.69 AL

TER USER statement.

INCLUDING CONTENTS

It drops objects (table, index, key constraint) which belong to the tablespace. If the index or key constrain

t which refers to the table which belongs to the tablespace exists outside of the tablespace, then it is also

dropped.

If INCLUDING CONTENTS clause is not used, then any object which belongs to the tablespace should not

exist.

[{ AND | KEEP } DATAFILES]

It specifies whether to drop the datafiles which configure the tablespace together.

The datafiles are not in the memory temporary tablespace, so the clause is ignored.

● AND DATAFILES

○ It drops the datafiles together.

● KEEP DATAFILES

○ It does not drop the datafiles, but keeps them.

● If it is not specified, the default value is KEEP DATAFILES.

drop behavior

DROP TABLESPACE | 1,913

Currently, both RESTRICT and CASCADE are operated same.

When it is omitted, the default value is RESTRICT.

Description

Unlike other Data Definition Language (DDL), DROP TABLESPACE statement can not be rolled back and t

he executed transaction is automatically committed.

Examples

The following is an example of dropping a tablespace together with all objects in the tablespace and data

files which configure the tablespace.

gSQL> DROP TABLESPACE space1 INCLUDING CONTENTS AND DATAFILES CASCADE CONSTRAINTS;

Tablespace dropped.

The following is an example of preventing an error even when the tablespace does not exist by using IF E

XISTS statement.

gSQL> DROP TABLESPACE IF EXISTS not_exist_tablespace;

Tablespace dropped.

Compatibility

The SQL standard does not cover the concepts of the tablespace.

For More Information

Refer to the followings.

● CREATE MEMORY DATA TABLESPACE

● CREATE MEMORY TEMPORARY TABLESPACE

● ALTER TABLESPACE

1,914 | SQL References

16.108 DROP USER

Function

It drops a database user.

Syntax

<drop user statement> ::=

DROP USER [IF EXISTS] user_identifier [<drop behavior>]

;

<drop behavior> ::=

RESTRICT

| CASCADE

Invocation and Access Rules

DROP USER ON DATABASE privilege is required to perform <drop user statement>.

Note

The schema owned by user_identifier should not exist.

For more information about dropping the schema, refer to DROP SCHEMA.

Syntax Rules and Parameters

IF EXISTS

Even when the user does not exist, an error does not occur.

DROP USER | 1,915

user_identifier

It is the database username to be dropped.

However, the user which is automatically created during creating the database such as "SYS", can not be

dropped.

It does not drop the object which is created by user_identifier but is not an owner as follows.

● Role

● Tablespace

<drop behavior>

● RESTRICT

○ There should not be the following user owned SQL schema objects.

■ Table, view

■ Index

■ Sequence

■ Table constraint

● CASCADE

○ It drops all the following user owned SQL schema objects.

■ Table, view

■ Index

■ Sequence

■ Table constraint

● When it is omitted, the default value is RESTRICT.

Note

The relationship between user and schema in other DBMS

● Oracle

○ User : schema = 1 : 1.

○ When CASCADE, the schema is also dropped.

● DB2

○ It is as same as the OS user.

1,916 | SQL References

○ The separate SQL statements which create or delete a user do not exist.

● Postgres

○ User : schema = 1 : N.

○ It does not support CASCADE option, and a user can be dropped after dropping all the ob

jects owned by the user and all the privileges granted to other users.

● MySQL

○ Database : schema = 1 : 1.

○ User is a subordinate object of database (schema), and it does not support CASCADE opti

on.

Description

In GOLDILOCKS, relationship between the user and the schema is 1 : N. A user does not own a schema, o

r the user can have multiple schemas.

To drop a user, all schema owned by the user should be dropped.

Examples

The following is an example of dropping all schema owned by the user and then dropping the user.

gSQL> DROP SCHEMA u1 CASCADE;

Schema dropped.

gSQL> DROP USER u1 CASCADE;

User dropped.

The following is an example of preventing an error even when the user does not exist by using IF EXISTS s

tatement.

gSQL> DROP USER IF EXISTS not_exist_user;

User dropped.

DROP USER | 1,917

Compatibility

SQL standard cover the concepts of the user, but they do not define the SQL statements related to creati

ng or dropping a user.

For More Information

Refer to the followings.

● CREATE USER

● ALTER USER

● DROP SCHEMA

1,918 | SQL References

16.109 DROP VIEW

Function

It drops a view.

Syntax

<drop view statement> ::=

DROP VIEW [IF EXISTS] view_name

;

Invocation and Access Rules

One of the following privileges is required to perform <drop view statement>.

● The owner of that view

● CONTROL TABLE ON TABLE for that view

● (DROP VIEW or CONTROL SCHEMA) ON SCHEMA for the schema to which the view belongs

● DROP ANY VIEW ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the view does not exist, an error does not occur.

view_name

It is the view name to be dropped.

The schema to which the table belongs, such as schema_name.view_name, can be defined. If schema_na

me is omitted, the default schema name of the user performing the statement is used.

DROP VIEW | 1,919

Description

Data Definition Language (DDL) statement such as DROP VIEW can be rolled back if it is before when the

transaction is committed.

Examples

The following is an example of dropping a view.

gSQL> DROP VIEW v1;

View dropped.

The following is an example of preventing an error even when the view does not exist by using IF EXISTS

statement.

gSQL> DROP VIEW IF EXISTS not_exist_view;

View dropped.

Compatibility

The SQL standard does not define IF EXISTS clause.

Table 16-44 SQL standard compatibility

Feature ID Description Compatibility

F032 CASCADE drop behavior X

For More Information

Refer to the followings.

● CREATE VIEW

● ALTER VIEW

1,920 | SQL References

16.110 EXECUTE statement_name

Function

It executes the prepared statement.

Syntax

<execute statement> ::=

EXECUTE statement_name [<parameter using clause>] [<result into clause>]

;

<parameter using clause> ::=

<using parameter arguments>

<using parameter arguments> ::=

USING variable_name [, ...]

<result into clause> ::=

<into result arguments>

<into result arguments> ::=

INTO variable_name [, ...]

Invocation and Access Rules

It can be used in an embedded SQL.

An appropriate privilege according to the type of a dynamic SQL statement is required.

Syntax Rules and Parameters

statement_name

It is the name of a prepared statement.

Statement_name should be prepared by using PREPARE statement_name.

EXECUTE statement_name | 1,921

If the dynamic SQL statement referenced by statement_name contains a dynamic parameter, <parameter

using clause> should explicitly be specified.

{

...

EXEC SQL PREPARE stmt1 FROM 'DELETE FROM t1 WHERE c1 > ?';

EXEC SQL EXECUTE stmt1 USING :sValue;

...

}

{

...

EXEC SQL PREPARE stmt1 FROM 'SELECT COUNT(*) INTO :v1 FROM t1';

EXEC SQL EXECUTE stmt1 USING :sValue;

...

}

If the dynamic SQL statement referenced by statement_name is a query or a stored function including the

result, <result into clause> should explicitly be specified.

{

...

EXEC SQL PREPARE stmt1 FROM 'SELECT COUNT(*) FROM t1';

EXEC SQL EXECUTE stmt1 INTO :sValue;

...

}

If there are multiple queries they are normally executed, but only the first query can get the result.

To get multiple results, the following statements related to the cursor should be used.

● DECLARE cursor_name

● OPEN cursor_name

● FETCH cursor_name

● CLOSE cursor_name

If there is not any query result, it is completed as NO DATA.

[<parameter using clause>] [<result into clause>]

<parameter using clause> and <result into clause> can be specified in any order, but they should not be re

peated.

1,922 | SQL References

<parameter using clause>

If any parameter exists in a dynamic SQL statement referenced by statement_name, the parameter inform

ation is specified with <using parameter arguments> clause.

<using parameter arguments>

If <using parameter arguments> statement is used, the number of variable_name should be equal to the

number of the parameter included in the dynamic SQL statement referenced by statement_name.

The listed variable_name corresponds to the dynamic parameter in an order of its description.

{

...

EXEC SQL PREPARE stmt1 FROM 'DELETE FROM t1 WHERE c1 IN (?, ?, ?)';

EXEC SQL EXECUTE stmt1 USING :sValue1, :sValue2, :sValue3;

...

}

<result into clause>

If the dynamic SQL statement referenced by statement_name is a query, the information about the result

columns is specified with <into result arguments> clause.

If the result is null and INDICATOR is not specified, [DATA EXCEPTION, NULL VALUE, NO INDICATOR PAR

AMETER] error occurs.

<into result arguments>

If <into result arguments> clause is used, the number of variable_name should be equal to the number of

the result column in the dynamic SQL statement referenced by statement_name.

The listed variable_name corresponds to the dynamic parameter in an order of its description.

{

...

EXEC SQL PREPARE stmt1 FROM 'SELECT MIN(salary), MAX(salary), AVG(salary) FROM employee';

EXEC SQL EXECUTE stmt1 INTO :sMinValue, :sMaxValue, :sAvgValue;

...

}

EXECUTE statement_name | 1,923

Description

Statement_name is an identifier which informs the precompiler the statement in an embedded SQL sourc

e code.

A separate type or declaration is not required because statement_name is not a host variable. EXECUTE st

atement_name should be written after PREPARE statement_name.

For more information, refer to Embedded Dynamic SQL.

Example

The following is an example of using EXECUTE statement_name in an embedded SQL source code.

{

...

sprintf(sUpdateSql, "UPDATE EMP SET sal = sal * :v1 WHERE JOB = 'SALES'");

EXEC SQL PREPARE UPDATE_STMT FROM :sUpdateSql;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sRatio = 1.1;

EXEC SQL EXECUTE UPDATE_STMT USING :sRatio;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

...

}

The full source code in which EXECUTE statement_name was used can be viewed in Dynamic Embedded

SQL Example Program.

Compatibility

1,924 | SQL References

Table 16-45 SQL standard compatibility

Feature ID Description Compatibility

B031 Basic Dynamic SQL O

B032 Extended dynamic SQL X

For More Information

Refer to the followings.

● PREPARE statement_name

● DECLARE cursor_name

● OPEN cursor_name

● FETCH cursor_name

● CLOSE cursor_name

● Embedded Dynamic SQL

EXECUTE IMMEDIATE 'sql_string' | 1,925

16.111 EXECUTE IMMEDIATE 'sql_string'

Function

It executes a dynamic SQL statement which was not defined when writing a program.

Syntax

<execute immediate statement> ::=

EXECUTE IMMEDIATE <SQL statement variable>

;

<SQL statement variable> ::=

variable_name

| 'sql statement'

| "sql statement"

| sql statement

Invocation and Access Rules

It can be used in an embedded SQL.

An appropriate privilege according to the type of a dynamic SQL statement is required.

Syntax Rules and Parameters

<SQL statement variable>

The dynamic SQL statement referenced by <SQL statement variable> can not use a host variable (:var) or

parameter marker (?).

The following four types of <SQL statement variable> can be used.

● variable_name: It is a variable in which an SQL statement is stored.

● 'sql statement': It is an SQL statement which is enclosed with a single quote (').

● "sql statement": It is an SQL statement which is enclosed with double quotes (").

1,926 | SQL References

● sql statement: It is an SQL statement without quote.

The single quote (') is used twice as follows to represent string data within a single-quoted string.

{

...

EXEC SQL EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (''literal data'')';

...

}

If the SQL statement is a query including a query result, it is successfully executed, but the result can not

be obtained.

variable_name

The type corresponding to the variable_name should be a character string.

The dynamic SQL statement defined in the variable_name should be valid.

sql statement

The dynamic SQL statement defined in the sql statement should be valid.

Description

EXECUTE IMMEDIATE 'sql_string' statement can be used as the non-query SQL without a host variable in

dynamic embedded SQL application. It is appropriate to execute DDL, DML as one-off because it does not

require separate preparation procedure.

For more information, refer to Embedded Dynamic SQL.

Example

The following is an example of using EXECUTE IMMEDIATE 'sql_string' in the embedded SQL source cod

e.

{

...

sprintf(sSqlStmt, "INSERT INTO EMP_RND\n"

EXECUTE IMMEDIATE 'sql_string' | 1,927

"SELECT *\n"

"FROM EMP\n"

"WHERE JOB = 'RND'\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

...

}

The full source code in which EXECUTE IMMEDIATE 'sql_string' was used can be viewed in Dynamic Emb

edded SQL Example Program.

Compatibility

Table 16-46 SQL standard compatibility

Feature ID Description Compatibility

B031 Basic Dynamic SQL O

For More Information

Refer to the followings.

● PREPARE statement_name

● EXECUTE statement_name

● Embedded Dynamic SQL

1,928 | SQL References

16.112 FETCH cursor_name

Function

It locates the cursor on a specific row of result set, and obtains the value of that row to a host variable.

Syntax

<fetch statement> ::=

FETCH [<fetch orientation>] [FROM] cursor_name

<result into clause>

;

<fetch orientation> ::=

NEXT

| PRIOR

| FIRST

| LAST

| CURRENT

| ABSOLUTE position

| RELATIVE position

<result into clause> ::=

<into result arguments>

<into result arguments> ::=

INTO variable_name [, ...]

Syntax Rules and Parameters

[FROM] cursor_name

It should be an open cursor in a session.

FROM can be omitted.

FETCH cursor_name | 1,929

<fetch orientation>

To use <fetch orientation> other than FETCH NEXT, a scrollable cursor should be used.

If <fetch orientation> is omitted, the default value is NEXT.

The open cursor has the cursor position information for the result set as follows.

Figure 1 The position of cursor

Table 16-47 The position of cursor

Cursor position Description

BEFORE THE FIRST ROW
The cursor is positioned before the first row of the result set. It is also the cursor positi

on when opening it.

ON A CERTAIN ROW The cursor is positioned on a certain row of the result set through FETCH.

AFTER THE LAST ROW The cursor is positioned after the last row of the result set.

Each <fetch orientation> operates based on the cursor position as follows.

● NEXT: It searches for the row next to the current position.

● PRIOR: It searches for the row prior to the current position.

● FIRST: It searches for the first row of the result set.

● LAST: It searches for the last row of the result set.

● CURRENT: It searches for the row in the current position.

● ABSOLUTE position

○ It searches for the row corresponding to the position from the result set.

○ If the position value is negative, it searches for the row at previous position from AFTER THE LAS

T ROW.

● RELATIVE position

1,930 | SQL References

○ It searches for the row apart as much as position from the current position.

<result into clause>

The variable information to obtain the result column is specified by using <into result arguments>.

If the result is null and INDICATOR is not specified, [DATA EXCEPTION, NULL VALUE, NO INDICATOR PAR

AMETER] error occurs.

<into result arguments>

The number of variables in INTO clause should be as same as the number of columns in the result set of t

he cursor.

Description

If the cursor is BEFORE THE FIRST ROW or AFTER THE LAST ROW after performing FETCH, it is positioned

at the same position regardless of the entered position in <fetch orientation>.

Example

The following is an example of declaring SCROLL cursor by using the interactive SQL (gsql), then operatin

g the various <fetch orientation>.

gSQL> DECLARE cur_scroll SCROLL CURSOR FOR SELECT id, data FROM t1;

Cursor declared.

gSQL> OPEN cur_scroll;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH NEXT cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH NEXT cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

FETCH cursor_name | 1,931

2 data_2

1 row fetched.

gSQL> FETCH PRIOR cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH PRIOR cur_scroll INTO :v_id, :v_data;

no rows fetched.

gSQL> FETCH FIRST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH FIRST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH LAST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH LAST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH FIRST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH CURRENT cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH LAST cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

1,932 | SQL References

---- ------

5 data_5

1 row fetched.

gSQL> FETCH CURRENT cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH ABSOLUTE 3 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH CURRENT cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH ABSOLUTE 1 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH ABSOLUTE -1 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH ABSOLUTE 6 cur_scroll INTO :v_id, :v_data;

no rows fetched.

gSQL> FETCH ABSOLUTE -6 cur_scroll INTO :v_id, :v_data;

no rows fetched.

gSQL> FETCH ABSOLUTE 3 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH ABSOLUTE -3 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

FETCH cursor_name | 1,933

1 row fetched.

gSQL> FETCH RELATIVE 1 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

4 data_4

1 row fetched.

gSQL> FETCH RELATIVE -1 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH RELATIVE 5 cur_scroll INTO :v_id, :v_data;

no rows fetched.

gSQL> FETCH RELATIVE -5 cur_scroll INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> CLOSE cur_scroll;

Cursor closed.

Compatibility

The SQL standard does not define CURRENT among <fetch orientation>.

Table 16-48 SQL standard compatibility

Feature ID Description Compatibility

F431 Read-only scrollable cursors O

B031 Basic dynamic SQL O

For More Information

Refer to the followings.

● DECLARE cursor_name

● OPEN cursor_name

● CLOSE cursor_name

1,934 | SQL References

16.113 GRANT privileges TO

Function

It grants privileges to a user.

Syntax

<grant privilege statement> ::=

GRANT <privilege> TO <grantee> [, ...]

[WITH GRANT OPTION]

;

<grantee> ::=

PUBLIC

| user_identifier

;

<privilege> ::=

<database privilege>

| <tablespace privilege>

| <schema privilege>

| <table privilege>

| <sequence privilege>

| <procedure privilege>

<database privilege> ::=

ALL [PRIVILEGES] [ON DATABASE]

| <database action> [, ...] [ON DATABASE]

<database action> ::=

ADMINISTRATION

| ANALYZE ANY

| ALTER DATABASE

| ALTER SYSTEM

| AUDIT SYSTEM

| ACCESS CONTROL

| CREATE SESSION

| CREATE PROFILE

| ALTER PROFILE

GRANT privileges TO | 1,935

| DROP PROFILE

| CREATE USER

| ALTER USER

| DROP USER

| CREATE ROLE

| ALTER ROLE

| DROP ROLE

| CREATE TABLESPACE

| ALTER TABLESPACE

| DROP TABLESPACE

| USAGE TABLESPACE

| CREATE SCHEMA

| ALTER SCHEMA

| DROP SCHEMA

| CREATE PUBLIC SYNONYM

| DROP PUBLIC SYNONYM

| CREATE ANY TABLE

| ALTER ANY TABLE

| DROP ANY TABLE

| SELECT ANY TABLE

| INSERT ANY TABLE

| DELETE ANY TABLE

| UPDATE ANY TABLE

| LOCK ANY TABLE

| CREATE ANY VIEW

| DROP ANY VIEW

| CREATE ANY SEQUENCE

| ALTER ANY SEQUENCE

| DROP ANY SEQUENCE

| USAGE ANY SEQUENCE

| CREATE ANY INDEX

| ALTER ANY INDEX

| DROP ANY INDEX

| CREATE ANY SYNONYM

| DROP ANY SYNONYM

| CREATE ANY PROCEDURE

| ALTER ANY PROCEDURE

| DROP ANY PROCEDURE

| EXECUTE ANY PROCEDURE

<tablespace privilege> ::=

ALL [PRIVILEGES] ON TABLESPACE tablespace_name

1,936 | SQL References

| <tablespace action> [, ...] ON TABLESPACE tablespace_name

<tablespace action> ::=

CREATE OBJECT

<schema privilege> ::=

ALL [PRIVILEGES] ON SCHEMA schema_name

| <schema action> [, ...] [ON SCHEMA schema_name]

<schema action> ::=

CONTROL SCHEMA

| CREATE TABLE

| ALTER TABLE

| DROP TABLE

| SELECT TABLE

| INSERT TABLE

| DELETE TABLE

| UPDATE TABLE

| LOCK TABLE

| CREATE VIEW

| DROP VIEW

| CREATE SEQUENCE

| ALTER SEQUENCE

| DROP SEQUENCE

| USAGE SEQUENCE

| CREATE INDEX

| ALTER INDEX

| DROP INDEX

| ADD CONSTRAINT

| CREATE SYNONYM

| DROP SYNONYM

| CREATE PROCEDURE

| ALTER PROCEDURE

| DROP PROCEDURE

| EXECUTE PROCEDURE

<table privilege> ::=

ALL [PRIVILEGES] ON [TABLE] table_name

| { <table action> | <column action> } [, ...] ON [TABLE] table_name

<table action> ::=

CONTROL TABLE

| SELECT

| INSERT

| UPDATE

| DELETE

GRANT privileges TO | 1,937

| REFERENCES

| LOCK

| INDEX

| ALTER

<column action> ::=

SELECT (column_name [, ...])

| INSERT (column_name [, ...])

| UPDATE (column_name [, ...])

| REFERENCES (column_name [, ...])

<sequence privilege> ::=

ALL [PRIVILEGES] ON SEQUENCE sequence_name

| <sequence action> ON SEQUENCE sequence_name

<sequence action> ::=

USAGE

<procedure privilege> ::=

ALL [PRIVILEGES] ON PROCEDURE procedure_name

| <procedure action> ON PROCEDURE procedure_name

<procedure action> ::=

EXECUTE

Syntax Rules and Parameters

<grantee>

It is the user to be granted the privileges.

● user_identifier

○ It grants the privilege to a user.

● PUBLIC

○ It is an authorization object which means all users.

WITH GRANT OPTION

It allows the grantee to grant the privilege to other users.

When the same <privilege> is granted as follows, WITH GRANT OPTION is maintained.

● GRANT SELECT ON t1 TO u1 WITH GRANT OPTION;

● GRANT SELECT ON t1 TO u1;

1,938 | SQL References

<privilege>

It is a privilege which is to be granted to a grantee (the user to be granted the privilege).

The grantor (the user to perform the statement) should satisfy one of the following conditions.

● The grantor owns that <privilege> by using WITH GRANT OPTION.

○ The grantor is the user who performs the statement.

● The grantor owns the ACCESS CONTROL ON DATABASE privilege.

○ The grantor is the object owner.

■ <database privilege>: _SYSTEM account

■ <tablespace privilege>: _SYSTEM account

■ <schema privilege>: _SYSTEM account

■ <table privilege>: The owner of the table

■ <sequence privilege>: The owner of the sequence

■ <procedure privilege>: The owner of the procedure/function

<database privilege>

It is the privilege for the database objects.

[ON DATABASE] statement can be omitted.

The database action which can be defined with the database privilege is as follows.

● ALL [PRIVILEGES] [ON DATABASE]

○ All privileges for the database which the grantor (the user who performs the statement) owns by

using WITH GRANT OPTION.

Table 16-49 Database privilege

<database action> Description

ADMINISTRATION Privilege for starting or terminating the server

ALTER DATABASE Privilege for executing ALTER DATABASE

ALTER SYSTEM Privilege for executing ALTER SYSTEM

AUDIT SYSTEM Privilege for controlling the audit policy

ACCESS CONTROL Privilege for controlling all the privileges

CREATE SESSION Privilege for connecting to the database

CREATE PROFILE Privilege for creating profiles in the database

ALTER PROFILE Privilege for altering any profile in the database

DROP PROFILE Privilege for dropping any profile in the database

CREATE USER Privilege for creating users in the database

ALTER USER Privilege for altering any user in the database

DROP USER Privilege for dropping any user in the database

GRANT privileges TO | 1,939

CREATE ROLE Privilege for creating roles in the database

ALTER ROLE Privilege for altering any role in the database

DROP ROLE Privilege for dropping any role in the database

CREATE TABLESPACE Privilege for creating tablespaces in the database

ALTER TABLESPACE Privilege for altering any tablespace in the database

DROP TABLESPACE Privilege for dropping any tablespace in the database

USAGE TABLESPACE Privilege for using any tablespace in the database

CREATE SCHEMA Privilege for creating schemas in the database

ALTER SCHEMA Privilege for altering any schema in the database

DROP SCHEMA Privilege for dropping any schema in the database

CREATE PUBLIC SYNONYM Privilege for creating public synonyms in the database

DROP PUBLIC SYNONYM Privilege for dropping any public synonym in the database

CREATE ANY TABLE Privilege for creating tables in any schema of the database

ALTER ANY TABLE Privilege for altering any table in the database

DROP ANY TABLE Privilege for dropping any table in the database

SELECT ANY TABLE Privilege for querying rows of any table in the database

INSERT ANY TABLE Privilege for creating rows of any table in the database

DELETE ANY TABLE Privilege for deleting rows of any table in the database

UPDATE ANY TABLE Privilege for updating rows of any table in the database

LOCK ANY TABLE Privilege for locking any table in the database

CREATE ANY VIEW Privilege for creating views in any schema of the database

DROP ANY VIEW Privilege for dropping any view in the database

CREATE ANY SEQUENCE Privilege for creating sequences in any schema of the database

ALTER ANY SEQUENCE Privilege for altering any sequence of the database

DROP ANY SEQUENCE Privilege for dropping any sequence of the database

USAGE ANY SEQUENCE Privilege for using any sequence of the database

CREATE ANY INDEX Privilege for creating indexes in any schema of the database

ALTER ANY INDEX Privilege for altering any index in the database

DROP ANY INDEX Privilege for dropping any index in the database

CREATE ANY SYNONYM Privilege for creating synonyms in the database

DROP ANY SYNONYM Privilege for dropping any synonym in the database

CREATE ANY PROCEDURE Privilege for creating any procedure/function in any schema of the database

ALTER ANY PROCEDURE Privilege for altering any procedure/function in the database

DROP ANY PROCEDURE Privilege for dropping any procedure/function in the database

EXECUTE ANY PROCEDURE Privilege for executing any procedure/function in the database

<database action> Description

1,940 | SQL References

<tablespace privilege>

It is the privilege for the tablespace objects.

The tablespace action which can be defined with the tablespace privilege is as follows.

● ALL [PRIVILEGES] ON TABLESPACE tablespace_name

○ All privileges for the tablespace which the grantor (the user who performs the statement) owns b

y using WITH GRANT OPTION.

Table 16-50 Tablespace privilege

<tablespace action> Description

CREATE OBJECT Privilege for creating objects in the tablespace

<schema privilege>

It is the privilege for the schema objects.

● Whether to omit [ON SCHEMA schema_name]

○ If multiple <grantee> exist, [ON SCHEMA schema_name] statement can not be omitted.

○ If ALL [PRIVILEGES] is used, [ON SCHEMA schema_name] statement can not be omitted.

○ If [ON SCHEMA schema_name] statement is omitted, <grantee> can use only one user_identifier,

and the privilege on the first schema in the schema search path of <grantee> is granted.

The schema action which can be defined with the schema privilege is as follows.

● ALL [PRIVILEGES] ON SCHEMA schema_name

○ All privileges for the schema which the grantor (the user who performs the statement) owns by u

sing WITH GRANT OPTION

Table 16-51 Schema privilege

<schema action> Description

CONTROL SCHEMA All privileges for that schema

CREATE TABLE Privilege for creating tables in the schema

ALTER TABLE Privilege for altering any table in the schema

DROP TABLE Privilege for dropping any table in the schema

SELECT TABLE Privilege for querying rows of any table in the schema

INSERT TABLE Privilege for creating rows of any table in the schema

DELETE TABLE Privilege for deleting rows of any table in the schema

UPDATE TABLE Privilege for updating rows of any table in the schema

LOCK TABLE Privilege for locking any table of the schema

CREATE VIEW Privilege for creating views in the schema

GRANT privileges TO | 1,941

DROP VIEW Privilege for dropping any view of the schema

CREATE SEQUENCE Privilege for creating sequences in the schema

ALTER SEQUENCE Privilege for altering any sequence of the schema

DROP SEQUENCE Privilege for dropping any sequence of the schema

USAGE SEQUENCE Privilege for using any sequence of the schema

CREATE INDEX Privilege for creating indexes in the schema

ALTER INDEX Privilege for altering any index in the schema

DROP INDEX Privilege for dropping any index in the schema

ADD CONSTRAINT Privilege for creating constraints in the schema

CREATE SYNONYM Privilege for creating synonyms in the schema

DROP SYNONYM Privilege for dropping any synonym of the schema

CREATE PROCEDURE Privilege for creating any procedure/function in the schema

ALTER PROCEDURE Privilege for altering any procedure/function in the schema

DROP PROCEDURE Privilege for dropping any procedure/function in the schema

EXECUTE PROCEDURE Privilege for executing any procedure/function in the schema

<schema action> Description

<table privilege>

It is the privilege for the table object or the view object.

[TABLE] statement can be omitted.

The table action which can be defined with the table privilege is as follows.

● ALL [PRIVILEGES] ON [TABLE] table_name

○ All privileges for the table which the grantor (the user who performs the statement) owns by usin

g WITH GRANT OPTION

Table 16-52 Table privilege

<table action> Description

CONTROL TABLE All privileges for that table

SELECT Privilege for querying rows of the table

INSERT Privilege for creating rows into the table

UPDATE Privilege for updating rows in the table

DELETE Privilege for deleting rows from the table

REFERENCES Privilege for creating referential constraints which refers to the table

LOCK Privilege for locking the table

INDEX Privilege for creating indexes in the table

ALTER Privilege for altering the table

1,942 | SQL References

For SELECT, INSERT, UPDATE, REFERENCES, additional privileges are granted to all columns of the table.

The column action which can be defined with the table privilege is as follows. However, the column actio

n is applicable only to the base table.

Table 16-53 Column privilege

<column action> Description

SELECT (columns) Privilege for querying that columns

INSERT (columns) Privilege for creating rows including that columns

UPDATE (columns) Privilege for updating that columns

REFERENCES (columns) Privilege for creating referential constraints which refers to that columns

<sequence privilege>

It is the privilege for the sequence object.

The sequence action which can be defined with the sequence privilege is as follows.

● ALL [PRIVILEGES] ON SEQUENCE sequence_name

○ All privileges for the sequence which the grantor (the user who performs the statement) owns by

using WITH GRANT OPTION.

Table 16-54 Sequence privilege

<sequence action> Description

USAGE Privilege for using the sequence

<procedure privilege>

It is the privilege for the procedure/ function object.

The action which can be defined with the procedure privilege is as follows.

● ALL [PRIVILEGES] ON PROCEDURE procedure_name

○ All privileges for the procedure/ function which the grantor (the user who performs the statemen

t) owns by using WITH GRANT OPTION

Table 16-55 Procedure privilege

<procedure action> Description

EXECUTE Privilege for executing the procedure/function

GRANT privileges TO | 1,943

Description

Data Definition Language (DDL) such as GRANT privilege can be rolled back if it is before when the trans

action is committed.

The owner who created SQL schema object, such as table, sequence, has certain privileges without being

granted any separate privilege for the object.

For more information, refer to the following CREATE statements.

● CREATE TABLE

● CREATE VIEW

● CREATE SEQUENCE

● ALTER TABLE name ADD COLUMN

● CREATE FUNCTION

● CREATE PROCEDURE

The owner who created non-schema object such as schema, tablespace, does not automatically have any

privilege for the object. Therefore, the privilege should be separately granted.

For more information, refer to the following CREATE statements.

● CREATE SCHEMA

● CREATE TABLESPACE

● CREATE USER

Examples

The following is an example of granting SELECT ON TABLE t1 privilege to the user u1.

gSQL> GRANT SELECT ON t1 TO u1;

Grant succeeded.

The following is an example of granting SELECT ON TABLE t1 privilege to the PUBLIC account (all users).

gSQL> GRANT SELECT ON t1 TO PUBLIC;

Grant succeeded.

The following is an example that the user u1 grants the privilege to the other user by using WITH GRANT

OPTION.

1,944 | SQL References

gSQL> GRANT SELECT ON t1 TO u1 WITH GRANT OPTION;

Grant succeeded.

The following is the example that the user executing the statement grants all privileges on the TABLE t1 t

o user u1 by using WITH GRANT OPTION.

gSQL> GRANT ALL PRIVILEGES ON TABLE t1 TO u1;

Grant succeeded.

The following is an example of granting CREATE SESSION ON DATABASE privilege which is a privilege for

connecting to the database.

gSQL> GRANT CREATE SESSION ON DATABASE TO u1;

Grant succeeded.

The following is an example of granting multiple privileges for creating objects such as the table, view, in

dex, sequence, constraint in the SCHEMA s1 to the user u1.

gSQL> GRANT CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, ADD CONSTRAINT ON SCHEMA

s1 TO u1;

Grant succeeded.

The following is an example of granting the privileges for creating objects in TABLESPACE mem_data_tbs

to the user u1.

gSQL> GRANT CREATE OBJECT ON TABLESPACE mem_data_tbs TO u1;

Grant succeeded.

The following is an example of granting the privilege for querying some columns in the TABLE t1 to the u

ser u1.

gSQL> GRANT SELECT(id, name) ON TABLE t1 TO u1;

Grant succeeded.

The following is an example of granting the privilege to the user u1 for using NEXTVAL(), CURRVAL() fun

ctions in the SEQUENCE seq1.

gSQL> GRANT USAGE ON SEQUENCE seq1 TO u1;

Grant succeeded.

GRANT privileges TO | 1,945

Compatibility

The SQL standard does not define the following privileges.

● <database privilege>

● <tablespace privilege>

● <schema privilege>

Table 16-56 SQL standard compatibility

Feature ID Description Compatibility

S023 Basic structured types X

S024 Enhanced structured types X

S081 Subtables X

T211 Basic trigger capability X

T281 SELECT privilege with column granularity O

T332 Extended Roles X

F731 INSERT column privileges O

For More Information

Refer to the followings.

● REVOKE privileges FROM

● CREATE USER

● DROP USER

● ALTER USER

1,946 | SQL References

16.114 INSERT INTO

Function

It creates new rows in a table.

Syntax

<insert statement> ::=

INSERT INTO table_name [(column_name [, ...])]

<insert source>

;

<insert source> ::=

<values clause>

| <from subquery>

| <from default>

<values clause> ::=

VALUES { ({ <value expression> | DEFAULT } [, ...]) } [, ...]

<from subquery> ::=

<query expression>

<from default> ::=

DEFAULT VALUES

Invocation and Access Rules

A user should satisfy the following conditions to perform <Insert statement>.

● One of the following privileges is required to perform the INSERT statement.

○ INSERT(columns) ON TABLE for all columns which are targets of insert

○ (INSERT or CONTROL TABLE) ON TABLE for the table

○ (INSERT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ INSERT ANY TABLE ON DATABASE

● One of the following privileges is required for all tables used in <from subquery>.

○ SELECT(columns) ON TABLE for all columns of tables which were used in the statement

○ (SELECT or CONTROL TABLE) ON TABLE for the table

INSERT INTO | 1,947

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table in which the row is to be created.

It can define schema to which the table belongs such as schema_name.table_name and if schema_name

is omitted, the default schema name of the user performing the statement is used.

[(column_name [, ...])]

It is the column name of a table.

The column list can be omitted.

The number of columns and the number of <insert source> values should be same, and DEFAULT value is

assigned to the omitted column.

<values clause>

It is the list of values to be assigned to the corresponding columns.

● <value expression>

○ It is the value or expression to be assigned to the corresponding column.

● DEFAULT

○ The value of corresponding column will use the default value which were defined through CREA

TE TABLE.

○ If it is not defined, NULL will be assigned.

Multiple rows can be created as follows.

INSERT INTO table_name VALUES (1, 'A'), (2, 'B'), (3, 'C')

<from subquery>

It is the query to create rows.

For more information, refer to query expression clause of SELECT statement.

1,948 | SQL References

DEFAULT VALUES

It fills every column with default value.

DEFAULT VALUES clause means as same as the following.

VALUES (DEFAULT, DEFAULT, ..., DEFAULT)

Description

Differences among INSERT-related Statements

● INSERT INTO

○ It creates one or multiple rows into the table.

○ e.g. INSERT INTO t1 SELECT * FROM t1;

● INSERT INTO name RETURNING

○ It creates one or multiple rows into the table, then the created rows can be retrieved in the same

way as SELECT statement(API such as SQLFetch()).

○ e.g. INSERT INTO t1 SELECT * FROM t1 RETURNING c1;

● INSERT INTO name RETURNING .. INTO

○ It creates one or less row, and if a single row is created, it obtains the value to the host variable o

f RETURNING INTO clause.

○ e.g. INSERT INTO t1 DEFAULT VALUES RETURNING c1 INTO :v1;

Examples

The following is an example of creating a single row by using INSERT statement.

gSQL> INSERT INTO region VALUES (0, 'AFRICA');

1 row created.

The following is an example of using the DEFAULT value or identity value of the column in INSERT statem

ent.

gSQL> CREATE TABLE region

(

r_regionkey BIGINT GENERATED BY DEFAULT AS IDENTITY

, r_name CHAR(25) DEFAULT 'N/A'

);

INSERT INTO | 1,949

Table created.

gSQL> COMMIT;

Commit complete.

• DEFAULT is inserted into all columns.

gSQL> INSERT INTO region DEFAULT VALUES;

1 row created.

• DEFAULT is inserted into all columns.

gSQL> INSERT INTO region VALUES (DEFAULT, DEFAULT);

1 row created.

• If a column is omitted, the DEFAULT value of r_name column is used.

gSQL> INSERT INTO region(r_regionkey) VALUES (-100);

1 row created.

• If a column is omitted, the identity value of r_regionkey column is used.

gSQL> INSERT INTO region(r_name) VALUES ('ASIA');

1 row created.

gSQL> SELECT * FROM region;

R_REGIONKEY R_NAME

----------- -------------------------

1 N/A

2 N/A

-100 N/A

3 ASIA

4 rows selected.

The following is an example of creating multiple rows by describing them in VALUES clause.

gSQL> INSERT INTO region

VALUES (1, 'AFRICA'),

(2, 'ASIA'),

(3, 'EUROPE');

3 rows created.

The following is an example of creating multiple rows by using a subquery.

1,950 | SQL References

gSQL> INSERT INTO region SELECT r_regionkey, r_name FROM tmp_region WHERE r_regionkey < 3;

3 rows created.

Compatibility

Table 16-57 SQL standard compatibility

Feature ID Description Compatibility

F781 Self-referencing operations X

F222 INSERT statement: DEFAULT VALUES clause O

S204 Enhanced structured types X

S043 Enhanced reference types X

T111 Updatable joins, unions, and columns X

For More Information

Refer to the followings.

● SELECT

● INSERT INTO name RETURNING

● INSERT INTO name RETURNING .. INTO

INSERT INTO name RETURNING | 1,951

16.115 INSERT INTO name RETURNING

Function

It creates new rows in the table, and retrieves them.

Syntax

<insert statement> ::=

INSERT INTO table_name [(column_name [, ...])]

<insert source>

<returning clause>

;

<insert source> ::=

<values clause>

| <from subquery>

| <from default>

<values clause> ::=

VALUES { ({ <value expression> | DEFAULT } [, ...]) } [, ...]

<from subquery> ::=

<query expression>

<from default> ::=

DEFAULT VALUES

<returning clause> ::=

[RETURN | RETURNING] { * | { <value expression> [[AS] alias_name] } [, ...]

Invocation and Access Rules

A user should satisfy the following conditions to perform <insert returning query statement>.

● One of the following privileges is required to perform INSERT statement.

○ INSERT(columns) ON TABLE for all columns which are targets of insert

○ (INSERT or CONTROL TABLE) ON TABLE for the table

○ (INSERT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ INSERT ANY TABLE ON DATABASE

1,952 | SQL References

● One of the following privileges is required for all tables used in <from subquery>.

○ SELECT(columns) ON TABLE for all columns of tables which were used in the statement

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

● One of the following privileges is required for all columns used in RETURNING clause.

○ SELECT(columns) ON TABLE for all columns which were used in RETURNING clause.

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table in which the row is to be created.

[(column_name [, ...])]

It is the column name of a table.

For more information, refer to INSERT INTO.

<values clause>

It is the list of values to be assigned to the corresponding columns.

For more information, refer to INSERT INTO.

<from subquery>

It is the query to create rows.

For more information, refer to INSERT INTO.

DEFAULT VALUES

It fills every column with default value.

For more information, refer to INSERT INTO.

INSERT INTO name RETURNING | 1,953

<returning clause>

It returns the inserted rows.

● It sets the inserted rows as a result set, and specifies the rows to be retrieved.

○ RETURNING clause returns the rows which were inserted by INSERT statement, and which is a res

ult set.

○ <value expression>

■ It is as same as <select list> in SELECT statement, but it can not use the aggregation.

○ [[AS] alias_name]

■ It can name a value expression by using AS clause.

The keywords RETURNING and RETURN have the same meaning.

Description

For more information, refer to Differences among INSERT-related Statements.

Examples

The following is an example of retrieving the column values created by using INSERT statement.

gSQL> CREATE TABLE region

(

r_regionkey BIGINT GENERATED BY DEFAULT AS IDENTITY

, r_name CHAR(25) DEFAULT 'N/A'

);

Table created.

gSQL> COMMIT;

Commit complete.

● The following is an example of returning the created DEFAULT value (RETURNING).

gSQL> INSERT INTO region VALUES (DEFAULT, DEFAULT) RETURNING r_regionkey, r_name;

R_REGIONKEY R_NAME

----------- -------------------------

1 N/A

1 row created.

1,954 | SQL References

● The following is an example of returning the omitted column value (RETURNING).

gSQL> INSERT INTO region(r_name) VALUES ('ASIA') RETURNING r_regionkey;

R_REGIONKEY

2

1 row created.

The following is an example of retrieving the rows created by using the subquery.

gSQL> INSERT INTO region

SELECT r_regionkey, r_name FROM tmp_region WHERE r_regionkey < 3

RETURNING r_regionkey, r_name;

R_REGIONKEY R_NAME

----------- -------------------------

0 AFRICA

1 AMERICA

2 ASIA

3 rows created.

Compatibility

The SQL standard does not define <insert returning query statement>.

For More Information

Refer to the followings.

● INSERT INTO

● INSERT INTO name RETURNING .. INTO

INSERT INTO name RETURNING .. INTO | 1,955

16.116 INSERT INTO name RETURNING .. INTO

Function

It creates a single row in a table, and obtains the value of the created row as a host variable.

Syntax

<insert statement> ::=

INSERT INTO table_name [(column_name [, ...])]

<insert source>

<returning into clause>

;

<insert source> ::=

<values clause>

| <from subquery>

| <from default>

<values clause> ::=

VALUES { ({ <value expression> | DEFAULT } [, ...]) } [, ...]

<from subquery> ::=

<query expression>

<from default> ::=

DEFAULT VALUES

<returning into clause> ::=

[RETURN | RETURNING] { * | { <value expression> [[AS] alias_name] } [, ...] INTO

variable_name [, ...]

Invocation and Access Rules

A user should satisfy the following conditions to perform <insert returning into statement>.

● One of the following privileges is required to perform INSERT statement.

○ INSERT(columns) ON TABLE for all columns which are targets of insert.

○ (INSERT or CONTROL TABLE) ON TABLE for the table

○ (INSERT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

1,956 | SQL References

○ INSERT ANY TABLE ON DATABASE

● One of the following privileges is required for all tables used in <from subquery>.

○ SELECT(columns) ON TABLE for all columns of tables which were used in the statement

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

● One of the following privileges is required for all columns used in RETURNING clause.

○ SELECT(columns) ON TABLE for all columns which were used in RETURNING clause

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table in which the row is to be created.

[(column_name [, ...])]

It is the column name of a table.

For more information, refer to INSERT INTO.

<values clause>

It is the list of values to be assigned to the corresponding columns.

For more information, refer to INSERT INTO.

<from subquery>

It is the query to create rows.

For more information, refer to INSERT INTO.

INSERT INTO name RETURNING .. INTO | 1,957

DEFAULT VALUES

It fills every column with default value.

For more information, refer to INSERT INTO.

<returning clause>

It returns the inserted rows.

For more information, refer to <returning clause> in INSERT INTO name RETURNING statement.

INTO variable_name [, ...]

The number of variables in INTO clause should be equal to the number of the expressions in RETURNING

clause.

The row to be created should be one or less. If two or more rows are created, an error occurs.

Description

For more information, refer to Differences among INSERT-related Statements.

Example

The following is an example of obtaining the value of the created row as a host variable.

gSQL> CREATE TABLE region

(

r_regionkey BIGINT GENERATED BY DEFAULT AS IDENTITY

, r_name CHAR(25) DEFAULT 'N/A'

);

Table created.

gSQL> COMMIT;

Commit complete.

• The host variables are declared.

\VAR v_key BIGINT

\VAR v_name VARCHAR(128)

1,958 | SQL References

• The created DEFAULT values are obtained as the host variables.

gSQL> INSERT INTO region

VALUES (DEFAULT, DEFAULT)

RETURNING r_regionkey, r_name

INTO :v_key, :v_name;

V_KEY V_NAME

----- -------------------------

1 N/A

1 row created.

• The omitted column value is obtained as the host variable.

gSQL> INSERT INTO region(r_name)

VALUES ('ASIA')

RETURNING r_regionkey

INTO :v_key;

V_KEY

2

1 row created.

Compatibility

The SQL standard does not define <insert returning into statement>.

For More Information

Refer to the followings.

● INSERT INTO

● INSERT INTO name RETURNING

LOCK TABLE | 1,959

16.117 LOCK TABLE

Function

It locks one or more tables.

Syntax

<lock table statement> ::=

LOCK TABLE lock target [, ...]

IN <lock mode> MODE [<wait clause>]

;

<lock mode> ::=

SHARE

| EXCLUSIVE

| ROW SHARE

| ROW EXCLUSIVE

| SHARE ROW EXCLUSIVE

<wait clause> ::=

NOWAIT

| WAIT time

Invocation and Access Rules

One of the following privileges is required to perform <lock table statement>.

● (LOCK or CONTROL TABLE) ON TABLE for the table

● (LOCK TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● LOCK ANY TABLE ON DATABASE

1,960 | SQL References

Syntax Rules and Parameters

<lock target>

It specifies the target table to be locked.

<lock mode>

It specifies the LOCK mode.

● SHARE

○ It allows concurrent queries for the locked table, but prohibits updating the table.

● EXCLUSIVE

○ It allows exclusive queries for the locked table.

● ROW SHARE

○ It allows concurrent access to the locked table, but prohibits locking the entire table for exclusive

access.

● ROW EXCLUSIVE

○ It allows concurrent access to the locked table, but prohibits locking the entire table for exclusive

access.

○ If ROW EXCLUSIVE mode is set, it prohibits locking in SHARE mode.

○ ROW EXCLUSIVE mode is automatically obtained when updating, inserting, deleting.

● SHARE ROW EXCLUSIVE

○ It is used to search for the entire table or to make other users search for the rows in the table.

○ It prohibits other users from accessing the locked tables in SHARE mode or accessing the rows be

ing updated.

<wait clause>

It specifies the waiting time to acquire the lock.

● NOWAIT

○ It immediately acquires the lock contol for the object.

○ If the lock is already set by another user, the control is immediately handed over.

■ In this case, the database generates a message.

● WAIT time

○ It sets the waiting time for acquiring the lock.

○ It is specified in seconds, and its value is from 0 to 1,000,000,000.

● If it is not specified, it waits indefinitely until acquiring the lock.

LOCK TABLE | 1,961

Description

If the transaction is committed or rolled back all acquired locks are automatically released. When using R

OLLBACK TO SAVEPOINT statement, all locks acquired since that savepoint are released.

Examples

The following is an example of locking the TABLE t1 to prevent any updating operation by another transa

ction.

gSQL> LOCK TABLE t1 IN EXCLUSIVE MODE;

Table locked.

The following is an example of performing LOCK statement for multiple tables.

gSQL> LOCK TABLE t1, t2 IN EXCLUSIVE MODE;

Table locked.

The following is an example of acquiring SHARE ROW EXCLUSIVE lock for the TABLE t1.

gSQL> LOCK TABLE t1 IN SHARE ROW EXCLUSIVE MODE;

Table locked.

The following statement is performed only when the lock can be immediately acquired for the table. If th

e lock can not be acquired, an error occurs.

gSQL> LOCK TABLE t1 IN EXCLUSIVE MODE NOWAIT;

Table locked.

The following is an example of waiting 10 seconds to acquire the lock.

gSQL> LOCK TABLE t1 IN EXCLUSIVE MODE WAIT 10;

Table locked.

Compatibility

The SQL standard does not cover the concepts of the lock table.

1,962 | SQL References

For More Information

Refer to the followings.

● COMMIT

● ROLLBACK

NOAUDIT POLICY | 1,963

16.118 NOAUDIT POLICY

Function

It deactivates the audit policy.

Syntax

<noaudit policy statement> ::=

NOAUDIT POLICY policy_name

[<specified_user_option>]

;

<specified_user_option> ::=

BY user_name [, ...]

Invocation and Access Rules

AUDIT SYSTEM ON DATABASE privilege is required to perform <noaudit policy statement>.

Syntax Rules and Parameters

policy_name

It is the name of the audit policy object to be deactivated.

The deactivated audit policy does not effect on the existing session, and it effects only on the newly creat

ed session.

<specified_user_option>

It specifies the user to be excluded from the auditing target.

Unlike AUDIT POLICY statement, NOAUDIT POLICY does not have EXCEPT option.

1,964 | SQL References

If AUDIT POLICY name BY clause is used, NOAUDIT POLICY name BY statement should be used to deacti

vate it.

If AUDIT POLICY name EXCEPT clause is used, NOAUDIT POLICY name statement without BY clause shou

ld be used to deactivate it.

NOAUDIT POLICY statement should be used as follows according to the usage of AUDIT POLICY stateme

nt to deactivate it.

Table 16-58 Activating/ deactivating audit policy

Type AUDIT POLICY statement NOAUDIT POLICY statement

All users AUDIT POLICY p1 NOAUDIT POLICY p1

Using BY AUDIT POLICY p1 BY u1 NOAUDIT POLICY p1 BY u1

Using EXCEPT AUDIT POLICY p1 EXCEPT u1 NOAUDIT POLICY p1

When deactivating all activated users, the audit policy object is completely deactivated.

Description

The activation information of an audit policy object can be queried as follows.

SELECT policy_name

, enabled_opt

, user_name

FROM audit_policy_enabled

WHERE policy_name = 'P1';

NOAUDIT POLICY statement deletes each created information about activationaccording to the AUDIT P

OLICY specifying method.

If the information activated through the query above does not exist, then the audit policy is completely d

eactivated.

If all users are activated as follows, NOAUDIT POLICY BY clause does not does not affect it.

AUDIT POLICY p1;

● It does not have any effect.

NOAUDIT POLICY p1 BY u1;

● It should be deactivated as follows.

NOAUDIT POLICY | 1,965

NOAUDIT POLICY p1;

If one or more users are separately activated, use NOAUDIT POLICY statement according to the AUDIT PO

LICY specifying method.

When Activated by Using BY

If the audit policy is activated as follows,

AUDIT POLICY p1 WHENEVER NOT SUCCESSFUL;

AUDIT POLICY p1 BY u1;

AUDIT POLICY p1 BY u2;

the information about activation is as follows.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

----------- ----------- --------- ------------ ------------

P1 BY ALL USERS NO YES

P1 BY U1 YES YES

P1 BY U2 YES YES

The following is an example of performing NOAUDIT statement and the information about activation.

NOAUDIT POLICY p1;

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

----------- ----------- --------- ------------ ------------

P1 BY U1 YES YES

P1 BY U2 YES YES

1,966 | SQL References

The auditing for a failure for ALL USERS is deactivated, but the auditing for user u1, u2 is still activated.

If NOAUDIT POLICY statement is additionally used through BY option as follows, then audit policy p1 is c

ompletely deactivated.

NOAUDIT POLICY p1 BY u1, u2;

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

no rows selected.

When Activated by Using EXCEPT

If the audit policy is activated as follows,

AUDIT POLICY p1 EXCEPT u1, sys;

the information about activation is as follows.

SELECT policy_name

, enabled_opt

, user_name

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

POLICY_NAME ENABLED_OPT USER_NAME WHEN_SUCCESS WHEN_FAILURE

----------- ----------- --------- ------------ ------------

P1 EXCEPT U1 YES YES

P1 EXCEPT SYS YES YES

Unlike AUDIT POLICY statement, NOAUDIT POLICY does not have EXCEPT option, so execute the statem

ent without an option as follows.

NOAUDIT POLICY p1;

SELECT policy_name

, enabled_opt

, user_name

NOAUDIT POLICY | 1,967

, when_success

, when_failure

FROM audit_policy_enabled

WHERE policy_name = 'P1';

no rows selected.

In other words, if the audit policy is activated by using EXCEPT option, each user can not be deactivated a

gain by using NOAUDIT POLICY statement.

Examples

The following is an example of deactivating all users.

NOAUDIT POLICY table_pol;

The following is an example of deactivating a specific activated user by using BY.

NOAUDIT POLICY table_pol BY u1;

Compatibility

The SQL standard does not have the audit policy.

For More Information

Refer to the followings.

● Managing audit policy object

○ CREATE AUDIT POLICY

○ DROP AUDIT POLICY

○ ALTER AUDIT POLICY

● Activating/ deactivating audit policy

○ AUDIT POLICY

○ NOAUDIT POLICY

● Viewing audit trail: AUDIT_TRAIL

1,968 | SQL References

● Clearing audit trail: ALTER DATABASE CLEAR AUDIT TRAIL

OPEN cursor_name | 1,969

16.119 OPEN cursor_name

Function

It opens a cursor.

Syntax

<open statement> ::=

OPEN cursor_name [<parameter using clause>]

;

<parameter using clause> ::=

<using parameter arguments>

<using parameter arguments> ::=

USING variable_name [, ...]

Invocation and Access Rules

If cursor_name is a dynamic cursor which is declared by using PREPARE statement_name and DECLARE c

ursor_name, it can be used in an embedded SQL.

It is same with the privilege of <cursor query> included in DECLARE cursor_name which declared cursor_n

ame.

Syntax Rules and Parameters

cursor_name

It should be a cursor declared with DECLARE cursor_name within the session.

1,970 | SQL References

<parameter using clause>

It can be used in an embedded SQL.

When <parameter using clause> is used, cursor_name should be a dynamic cursor declared by using PREP

ARE statement_name and DECLARE cursor_name.

<using parameter arguments>

When <using parameter arguments> is used, the number of variable_name should be equal to the numb

er of the parameter included in a query which is referenced by PREPARE statement_name.

The listed variable_name corresponds to the dynamic parameter in an order of its description.

{

...

EXEC SQL PREPARE stmt1 FROM 'SELECT c1, c2 FROM t1 WHERE c1 IN (?, ?, ?)';

EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

EXEC SQL OPEN cur1 USING :sValue1, :sValue2, :sValue3;

...

EXEC SQL WHENEVER NOT FOUND DO break;

for(;;)

{

EXEC SQL FETCH cur1 INTO :sC1, :sC2;

}

EXEC SQL WHENEVER NOT FOUND CONTINUE;

...

EXEC SQL CLOSE cur1;

...

}

Description

The cursor is a distinguishable object in a session. The cursor being used in the current session has nothin

g to do with the cursor being used in another session.

To use OPEN cursor_name statement, it should be a cursor declared with DECLARE cursor_name, and it s

hould be a closed cursor.

OPEN cursor_name | 1,971

Examples

The following is an example of declaring a cursor and using OPEN cursor statement in an interactive SQL

(gsql).

gSQL> DECLARE cur1 CURSOR FOR SELECT id, data FROM t1;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

1 data_1

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

2 data_2

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

3 data_3

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

4 data_4

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

V_ID V_DATA

---- ------

5 data_5

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_data;

no rows fetched.

gSQL> CLOSE cur1;

Cursor closed.

1,972 | SQL References

Compatibility

Table 16-59 SQL standard compatibility

Feature ID Description Compatibility

B031 Basic Dynamic SQL O

For More Information

Refer to the followings.

● DECLARE cursor_name

● FETCH cursor_name

● CLOSE cursor_name

● PREPARE statement_name

PREPARE statement_name | 1,973

16.120 PREPARE statement_name

Function

It prepares a dynamic SQL statement for a repeated execution.

Syntax

<prepare statement> ::=

PREPARE statement_name FROM <SQL statement variable>

;

<SQL statement variable> ::=

variable_name

| 'sql statement'

| "sql statement"

| sql statement

Invocation and Access Rules

It can be used in an embedded SQL.

An appropriate privilege according to the type of a dynamic SQL statement is required.

Syntax Rules and Parameters

statement_name

It is the name of the statement to be prepared.

The length of the statement name should be shorter than 128 bytes.

EXECUTE statement_name and DECLARE cursor_name, which are to be performed later, refers to the sta

tement_name.

If the same statement_name exists, the previously prepared dynamic SQL is dropped.

1,974 | SQL References

{

...

EXEC SQL PREPARE stmt1 FROM 'DELETE FROM t1';

...

EXEC SQL PREPARE stmt1 FROM 'UPDATE t1 SET c1 = c1 + 10';

...

}

<SQL statement variable>

<SQL statement variable> can be used as following four types.

● variable_name: It is a variable in which an SQL statement is stored.

● 'sql statement': It is an SQL statement which is enclosed with single quote (').

● "sql statement": It is an SQL statement which is enclosed with double quotes (").

● sql statement: It is an SQL statement without quote.

The single quote (') is used twice as follows to represent string data within single-quoted string.

{

...

PREPARE stmt_name FROM 'INSERT INTO t1 VALUES (''literal data'')';

...

}

The dynamic SQL statement referenced by <SQL statement variable> can use a host variable (:var) or para

meter marker (?).

However, if the unquoted SQL statement is used, the parameter marker (?) can not be used.

Depending on the characteristics of the referenced dynamic SQL statements, the variable can be either in

put or output dynamic parameter.

The dynamic parameter described in the dynamic SQL statement does not have a meaning for the variabl

e name, and it is identified by the specified order regardless of its type.

● Example 1

{

...

int sValue1;

int sValue2;

...

EXEC SQL PREPARE stmt1 FROM 'DELETE FROM t1 WHERE c1 BETWEEN ? AND ?';

PREPARE statement_name | 1,975

EXEC SQL EXECUTE stmt1 USING :sValue1, :sValue2;

...

}

● All parameter markers are the input dynamic parameters.

● The order to identify

○ No. 1 - BETWEEN ?

■ Input dynamic parameter

■ It uses the value of :sValue1.

○ No. 2 - AND ?

■ Input dynamic parameter

■ It uses the value of :sValue2.

● Example 2

{

...

int sValue1;

int sValue2;

...

EXEC SQL PREPARE stmt1 FROM 'SELECT SUM(c2) INTO :v1 FROM t1 WHERE c1 > :v2';

EXEC SQL EXECUTE stmt1 USING :sValue1, :sValue2;

...

}

● The input dynamic parameter and the output dynamic parameter exist.

● The order to identify

○ No. 1 - :v1

■ Output dynamic parameter

■ It stores the value in :sValue1.

○ No. 2 - :v2

■ Input dynamic parameter

■ It uses the value of :sValue2.

variable_name

The type corresponding to variable_name should be a character string.

The dynamic SQL statement defined in variable_name should be valid.

1,976 | SQL References

sql statement

The dynamic SQL statement defined in the sql statement should be valid.

Description

PREPARE statement_name FROM sql_string statement analyzes SQL statement to use EXECUTE or cursor

statement. Statement_name is an identifier which informs the precompiler the statement in an embedde

d SQL source code. A separate type or declaration is not required because statement_name is not a host

variable.

For more information, refer to Embedded Dynamic SQL.

Example

The following is an example of using PREPARE statement_name in an embedded SQL source code.

{

...

sprintf(sUpdateSql, "UPDATE EMP SET sal = sal * :v1 WHERE JOB = 'SALES'");

EXEC SQL PREPARE UPDATE_STMT FROM :sUpdateSql;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sRatio = 1.1;

EXEC SQL EXECUTE UPDATE_STMT USING :sRatio;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

...

}

The full source code in which PREPARE statement_name was used can be viewed in Dynamic Embedded

SQL Example Program.

PREPARE statement_name | 1,977

Compatibility

Table 16-60 SQL standard compatibility

Feature ID Description Compatibility

B031 Basic Dynamic SQL O

B034 Dynamic specification of cursor attributes X

For More Information

Refer to the followings.

● EXECUTE statement_name

● DECLARE cursor_name

● EXECUTE IMMEDIATE 'sql_string'

● Embedded Dynamic SQL

1,978 | SQL References

16.121 RELEASE SAVEPOINT savepoint_specifier

Function

It releases a savepoint.

Syntax

<release savepoint statement> ::=

RELEASE SAVEPOINT savepoint_name

;

Syntax Rules and Parameters

savepoint_name

It is a name of the savepoint, and it should exist.

The length of the savepoint name should be shorter than 128 bytes.

Description

If multiple savepoints are defined and RELEASE SAVEPOINT savepoint_name statement is performed, all s

avepoints defined since the savepoint_name are also released.

Example

The following is an example of releasing a savepoint.

gSQL> RELEASE SAVEPOINT sp2;

Savepoint dropped.

RELEASE SAVEPOINT savepoint_specifier | 1,979

Compatibility

Table 16-61 SQL standard compatibility

Feature ID Description Compatibility

T271 Savepoints O

For More Information

Refer to the followings.

● COMMIT

● ROLLBACK

● SAVEPOINT savepoint_specifier

1,980 | SQL References

16.122 REVOKE privileges FROM

Function

It revokes the granted privilege from a user.

Syntax

<revoke privilege statement> ::=

REVOKE [<revoke option extention>] <privilege>

FROM <grantee> [, ...]

[<revoke behavior>]

;

<revoke option extention> ::=

GRANT OPTION FOR

<revoke behavior> ::=

RESTRICT

| CASCADE

| CASCADE CONSTRAINTS

Syntax Rules and Parameters

<privilege>

It is a privilege which is to be revoked from the revokee (the user whose privilege is to be revoked).

The revoker (the user who performs the statement) should satisfy one of the following conditions.

● If it is <privilege> which the revoker grants to the revokee.

○ Only the <privilege> which the revoker grants to the revokee is revoked.

● If the revoker owns ACCESS CONTROL ON DATABASE privilege.

○ The <privilege> which other grantors grant to the revokee is revoked.

When using ALL [PRIVILEGES], it succeeds even when the satisfying <privilege> does not exist.

REVOKE privileges FROM | 1,981

For more information about the types of <privilege>, refer to <privilege> clause of GRANT privileges TO st

atement.

<grantee>

It is a user whose privilege is to be revoked.

● user_identifier

○ It revokes the privilege of that user.

● PUBLIC

○ They are authorization objects which mean all users.

GRANT OPTION FOR

It revokes WITH GRANT OPTION included in the privilege.

It also revokes WITH GRANT OPTION of the dependent privilege.

The privilege is maintained.

<revoke behavior>

● Dependent privilege: It is as same as the <privilege> which was granted to the revokee by using WITH

GRANT OPTION and granted to another user by the revokee.

● RESTRICT

○ If the dependent privilege exists, it can not be revoked.

● CASCADE

○ The dependent privilege should also be revoked.

● CASCADE CONSTRAINTS

○ The dependent privilege should also be revoked.

● If it is omitted, the default value is CASCADE.

Description

Data Definition Language (DDL) such as REVOKE privilege can be rolled back if it is before when the trans

action is committed.

When performing the following DROP statement, all privilege information related to the object is revoked

even without performing any separate REVOKE statement.

● DROP statement related to SQL schema object

1,982 | SQL References

○ DROP TABLE

○ DROP VIEW

○ DROP SEQUENCE

○ ALTER TABLE name SET UNUSED COLUMN

○ DROP FUNCTION

○ DROP PROCEDURE

● DROP statement related to non-schema object

○ DROP SCHEMA

○ DROP TABLESPACE

○ DROP USER

Examples

The following is an example of revoking multiple privileges for the table t1.

gSQL> REVOKE INSERT, UPDATE, DELETE, LOCK, ALTER, INDEX ON t1 FROM u1;

Revoke succeeded.

The following is an example of revoking SELECT ON TABLE t1 privilege granted to the PUBLIC account, w

hich means all users. However, only the privilege for PUBLIC account is revoked, and SELECT ON TABLE t1

privilege which was explicitly granted to a specific user is not revoked.

gSQL> REVOKE SELECT ON t1 FROM PUBLIC;

Revoke succeeded.

The following is an example that SELECT ON TABLE t1 privilege granted to user u1 is remained, and only

REVOKE GRANT OPTION which can grant the privilege to another user is revoked.

gSQL> REVOKE GRANT OPTION FOR SELECT ON t1 FROM u1;

Revoke succeeded.

The following is an example that an error occurs when the privilege granted to the user u1 is revoked by

using RESTRICT option and the user u1 grants it to another user. CASCADE option is used to revoke these

dependent privileges as well.

gSQL> REVOKE SELECT ON t1 FROM u1 RESTRICT;

ERR-2B000(16235): dependent privilege descriptors still exist

gSQL> REVOKE SELECT ON t1 FROM u1 CASCADE;

Revoke succeeded.

REVOKE privileges FROM | 1,983

Compatibility

The SQL standard does not define the following privileges.

● <database privilege>

● <tablespace privilege>

● <schema privilege>

<revoke behavior> of the SQL standard has the following differences.

● The default value of the SQL standard is RESTRICT.

● The SQL standard does not cover CASCADE CONSTRAINTS.

Table 16-62 SQL standard compatibility

Feature ID Description Compatibility

T311 Basic roles X

F034 Extended REVOKE statement X

S081 Subtables X

For More Information

Refer to the followings.

● GRANT privileges TO

● <database privilege>

● <tablespace privilege>

● <schema privilege>

● <table privilege>

● Column privilege

● <sequence privilege>

1,984 | SQL References

16.123 ROLLBACK

Function

It rolls back a transaction, or the operation after the savepoint.

Syntax

<rollback statement> ::=

ROLLBACK [WORK] [<rollback force clause> | <savepoint clause>]

;

<rollback force clause> ::=

FORCE 'xid_string' [COMMENT 'comment_string']

<savepoint clause> ::=

TO SAVEPOINT savepoint_name

Syntax Rules and Parameters

WORK

It is a reserved word which does not affect the operation.

<rollback force clause>

It is used to manually rollback the distributed transaction.

● FORCE 'xid_string'

○ It rolls back the distributed transaction corresponding to 'xid_string'.

○ 'xid_string' consists of 'format_id.transaction_id.branch_id'.

● COMMENT 'comment_string'

○ It specifies the comment on a transaction when rolling back the distributed transaction.

ROLLBACK | 1,985

<savepoint clause>

It specifies the rollback scope of the current transaction.

● If it is omitted

○ It undoes all operations of the current transaction.

○ It ends the transaction.

○ It deletes all savepoints.

○ It releases all transaction locks.

● TO SAVEPOINT savepoint_name

○ It undoes the operations of the current transaction since savepoint_name.

○ It does not end the transaction.

○ It deletes all savepoints since savepoint_name.

○ It releases all transaction locks acquired since savepoint_name.

Description

ROLLBACK statement undoes the following statements performed in the transaction.

● Data Manipulation Language (DML) statement

○ The statements to update data, such as INSERT, UPDATE and DELETE

● Data Definition Language (DDL) statement

○ The statements to alter the structure and definition of the object such as CREATE, DROP, ALTER,

TRUNCATE, GRANT and REVOKE

Exceptionally, the following statements of DDL which deals with OS resources or alters the DATA TYPE ca

n not be rolled back, but are automatically committed when executing the statement.

● CREATE TABLESPACE

● DROP TABLESPACE

● ALTER TABLESPACE

● ALTER TABLE .. ALTER COLUMN .. SET DATA TYPE: <alter column data type clause>

Examples

The following is an example of rolling back the INSERT statement.

1,986 | SQL References

gSQL> INSERT INTO t1 VALUES (1, 'anonymous');

1 row created.

gSQL> SELECT * FROM t1;

ID DATA

-- ---------

1 anonymous

1 row selected.

gSQL> ROLLBACK;

Rollback complete.

gSQL> SELECT * FROM t1;

no rows selected.

The following is an example of ROLLBACK after performing the DROP TABLE statement.

gSQL> DROP TABLE t1;

Table dropped.

gSQL> SELECT * FROM t1;

ERR-42000(16040): table or view does not exist :

SELECT * FROM t1

*

ERROR at line 1:

gSQL> ROLLBACK;

Rollback complete.

gSQL> SELECT * FROM t1;

ID DATA

-- ---------

1 anonymous

1 row selected.

Compatibility

Table 16-63 SQL standard compatibility

Feature ID Description Compatibility

T271 Savepoints O

T261 Chained transactions X

ROLLBACK | 1,987

For More Information

Refer to the followings.

● COMMIT

● SAVEPOINT savepoint_specifier

1,988 | SQL References

16.124 SAVEPOINT savepoint_specifier

Function

It defines a savepoint.

Syntax

<savepoint statement> ::=

SAVEPOINT savepoint_name

;

Syntax Rules and Parameters

savepoint_name

It is a name of the savepoint.

If the savepoint name is as same as the existing savepoint name, then the existing savepoint is deleted.

The length of the savepoint name should be shorter than 128 bytes.

Description

The defined savepoint is used by ROLLBACK TO SAVEPOINT statement (refer to ROLLBACK.), and DML or

DDL statement which has been performed up to the savepoint is rolled back. Then the locks acquired by

using that statement are released, too.

The defined savepoint is automatically deleted when the transaction is committed or rolled back, or it can

be explicitly deleted by using RELEASE SAVEPOINT savepoint_specifier.

SAVEPOINT savepoint_specifier | 1,989

Example

The following is an example of defining the savepoint and using ROLLBACK TO SAVEPOINT statement.

gSQL> SAVEPOINT sp1;

Savepoint created.

gSQL> INSERT INTO t1 VALUES (1, 'anonymous');

1 row created.

gSQL> SAVEPOINT sp2;

Savepoint created.

gSQL> INSERT INTO t1 VALUES (2, 'someone');

1 row created.

gSQL> SAVEPOINT sp3;

Savepoint created.

gSQL> INSERT INTO t1 VALUES (3, 'anyone');

1 row created.

gSQL> SELECT * FROM t1;

ID DATA

-- ---------

1 anonymous

2 someone

3 anyone

3 rows selected.

gSQL> ROLLBACK TO SAVEPOINT sp3;

Rollback complete.

gSQL> SELECT * FROM t1;

ID DATA

-- ---------

1 anonymous

2 someone

2 rows selected.

gSQL> ROLLBACK TO SAVEPOINT sp2;

Rollback complete.

gSQL> SELECT * FROM t1;

ID DATA

-- ---------

1 anonymous

1 row selected.

gSQL> ROLLBACK TO SAVEPOINT sp1;

Rollback complete.

1,990 | SQL References

gSQL> SELECT * FROM t1;

no rows selected.

Compatibility

Table 16-64 SQL standard compatibility

Feature ID Description Compatibility

T271 Savepoints O

For More Information

Refer to the followings.

● COMMIT

● ROLLBACK

● RELEASE SAVEPOINT savepoint_specifier

SELECT | 1,991

16.125 SELECT

query expression

Function

It retrieves desired rows from one or more tables or views.

Syntax

<query expression> ::=

<query expression body> [<order by clause>] [<offset limit clause>]

<query expression body> ::=

<query term>

| <set operator>

<query term> ::=

<query specification>

| <left paren> <query expression body> [<order by clause>] [<offset limit clause>]

<right paren>

Invocation and Access Rules

One of the following privileges for all tables used in the statement is required for a user to perform <quer

y expression>.

● SELECT(columns) ON TABLE for all used columns of table in the statement

● (SELECT or CONTROL TABLE) ON TABLE for the table

● (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

<set operator>

It performs a set operation among the subqueries.

For more information, refer to set operator.

1,992 | SQL References

<query specification>

It specifies a single subquery.

For more information, refer to <query specification>.

<order by clause>

It specifies sorting information of a query result.

For more information, refer to order by clause.

<offset limit clause>

It specifies the number of rows to skip and the number of rows to fetch from the query result set.

For more information, refer to offset limit clause.

Description

It is specifying SELECT statement, and <order by clause>, <offset limit clause> can be omitted and two or

more subqueries can be specified through <set operator>.

Examples

The following is an example of SELECT statement.

gSQL> SELECT s_name, s_nation FROM supplier;

S_NAME S_NATION

------------------------- -------------

Supplier#1 FRANCE

Supplier#2 KOREA

Supplier#3 GERMANY

Supplier#4 UNITED STATES

Supplier#5 CANADA

5 rows selected.

The following is an example of the SELECT statement which uses <order by clause>.

gSQL> SELECT s_name, s_nation FROM supplier ORDER BY s_name DESC;

S_NAME S_NATION

------------------------- -------------

Supplier#5 CANADA

Supplier#4 UNITED STATES

Supplier#3 GERMANY

SELECT | 1,993

Supplier#2 KOREA

Supplier#1 FRANCE

5 rows selected.

The following is an example of the SELECT statement which uses <offset limit clause>.

gSQL> SELECT s_name, s_nation FROM supplier OFFSET 1;

S_NAME S_NATION

------------------------- -------------

Supplier#2 KOREA

Supplier#3 GERMANY

Supplier#4 UNITED STATES

Supplier#5 CANADA

4 rows selected.

gSQL> SELECT s_name, s_nation FROM supplier LIMIT 1;

S_NAME S_NATION

------------------------- --------

Supplier#1 FRANCE

1 row selected.

The following is an example of the SELECT statement which uses <order by clause> and <offset limit claus

e>.

gSQL> SELECT s_name, s_nation FROM supplier ORDER BY s_name DESC OFFSET 3 LIMIT 1;

S_NAME S_NATION

------------------------- --------

Supplier#2 KOREA

1 row selected.

Compatibility

Table 16-65 SQL standard compatibility

Feature ID Description Compatibility

T121 WITH(excluding RECURSIVE) in query expression X

T122 WITH(excluding RECURSIVE) in subquery X

T131 Recursive query X

T132 Recursive query in subquery X

F661 Simple tables O

F302 INTERSECT table operator O

F301 CORRESPONDING in query expressions X

T551 Optional key words for default syntax O

1,994 | SQL References

F304 EXCEPT ALL table operator O

F850 Top-level <order by clause> in <query expression> X

F851 <order by clause> in subqueries O

F855 Nested <order by clause> in <query expression> O

F856 Nested <fetch first clause> in <query expression> X

F857 Top-level <fetch first clause> in <query expression> X

F858 <fetch first clause> in subqueries X

F860 dynamic <fetch first row count> in <fetch first clause> X

F861 Top-level <result offset clause> in <query expression> O

F862 <result offset clause> in subqueries O

F863 Nested <result offset clause> in <query expression> O

F865 dynamic <offset row count> in <result offset clause> X

F866 FETCH FIRST clause: PERCENT option X

F867 FETCH FIRST clause: WITH TIES option X

Feature ID Description Compatibility

SELECT | 1,995

query specification

Function

It specifies the table which is derived from the result of <table expression>.

Syntax

<query specification> ::=

SELECT [<hint clause>] [<set quantifier>] <select list> <table expression>

<set quantifier> ::=

ALL

| DISTINCT

<table expression> ::=

<from clause> [<where clause>] [<group by clause>] [<having clause>]

Invocation and Access Rules

The use should satisfy one of the following conditions to perform <query specification>.

● The owner of that table

● SELECT privilege for the table

● The user owns one of SELECT TABLE, CONTROL TABLE, CONTROL privileges for the schema to which

the table belongs

● The user owns the SELECT TABLE privilege for the database

Syntax Rules and Parameters

<hint clause>

It specifies the hint for query execution.

For more information, refer to hint clause.

<set quantifier>

It specifies whether to remove a duplicate of the query result.

If it is omitted, it operates in the same way as ALL.

1,996 | SQL References

<select list>

It specifies the expression to be output among query results.

For more information, refer to select list.

<from clause>

It specifies the tables to be retrieved.

For more information, refer to from clause.

<where clause>

It specifies conditions for retrieving.

For more information, refer to where clause.

<group by clause>

It specifies grouping of the query result.

For more information, refer to group by clause.

<having clause>

It specifies conditions for the grouping result.

For more information, refer to having clause.

Description

<hint clause>

<hint clause> is a statement that the user commands an optimizer to perform the better execution plan t

han the plan selected by an optimizer, if exist.

The optimizer of GOLDILOCKS preferentially applies <hint clause> specified by a user. If it is not applicable,

the optimizer selects the best execution plan through the cost calculation.

Even when a syntactic error occurs in <hint clause>, GOLDILOCKS is set to ignore and perform it by defaul

t. Set "HINT_ERROR" property to on, then execute the query to check if a syntactic error exist in <hint clau

se>.

<set quantifier>

<set quantifier> sets whether to remove duplicates for each row consisting of the expressions specified in

<select list>. The meaning of each set quantifier is as follows.

SELECT | 1,997

● ALL: It does not remove the duplicates from the result set.

● DISTINCT: It removes the duplicates from the result set.

<set quantifier> can be omitted. If it is omitted, it is operated by default which is as same as ALL.

<select list>

<select list> specifies the expression list to be returned from each row of the result set.

They are listed by separating by a comma (,).

An asterisk (*) is used to specify all columns in <from clause>.

<from clause>

<from clause> specifies the tables or views to be retrieved.

<where clause>

<where clause> specifies the conditions to get only the desired results from the result obtained from <tabl

e expression>.

<group by clause>

<group by clause> specifies the grouping method for the result set acquired from <table expression>.

When <group by clause> is specified, only the group key determining the group, or aggregation function

for the data belonging to the group can be used in <select list>.

<having clause>

<having clause> specifies the retrieving condition for the group to get only the desired results from the gr

ouped result set.

It is generally used together with <group by clause>. When it is used without <group by clause>, the resul

t set returned from <table expression> operates as same as when <group by clause>, a single group, is sp

ecified.

Examples

The following is an example of SELECT statement which uses <hint clause>.

gSQL> SELECT /*+ INDEX_DESC(supplier, supplier_pk_index) */ s_name, s_nation FROM supplier;

S_NAME S_NATION

------------------------- -------------

Supplier#5 CANADA

Supplier#4 UNITED STATES

1,998 | SQL References

Supplier#3 GERMANY

Supplier#2 KOREA

Supplier#1 FRANCE

5 rows selected.

The following is an example of SELECT statement which uses <set quantifier>.

gSQL> SELECT ALL p_type FROM part;

P_TYPE

COPPER

NICKEL

STEEL

NICKEL

STEEL

5 rows selected.

gSQL> SELECT DISTINCT p_type FROM part;

P_TYPE

COPPER

STEEL

NICKEL

3 rows selected.

The following is an example of SELECT statement which uses <where clause>.

gSQL> SELECT p_name, p_brand, p_type, p_size FROM part where p_size < 10;

P_NAME P_BRAND P_TYPE P_SIZE

------ ---------- ------ ------

Part#1 Brand#1 COPPER 7

Part#2 Brand#1 NICKEL 1

2 rows selected.

The following is an example of SELECT statement which uses <group by clause>.

gSQL> SELECT ps_partkey, SUM(ps_availqty) FROM partsupp GROUP BY ps_partkey;

PS_PARTKEY SUM(PS_AVAILQTY)

---------- ----------------

1 11401

2 8025

3 13864

4 11564

SELECT | 1,999

5 8744

5 rows selected.

The following is an example of SELECT statement which uses <having clause>.

gSQL> SELECT ps_partkey, SUM(ps_availqty) FROM partsupp GROUP BY ps_partkey having

SUM(ps_availqty) > 10000;

PS_PARTKEY SUM(PS_AVAILQTY)

---------- ----------------

1 11401

3 13864

4 11564

3 rows selected.

Compatibility

Table 16-66 SQL standard compatibility

Feature ID Description Compatibility

F801 Full set function X

T051 Row types X

T301 Functional dependencies X

T325 Qualified SQL parameter references X

T053 Explicit aliases for all-fields reference O

T285 Enhanced derived column names O

For More Information

Refer to query expression.

2,000 | SQL References

select list

Function

It specifies the columns to be retrieved from the query result.

Syntax

<select list> ::=

<asterisk>

| <select sublist> [{ <comma> <select sublist> } ...]

<select sublist> ::=

<derived column>

| <qualified asterisk>

<qualified asterisk> ::=

<asterisked identifier chain> <period> <asterisk>

<asterisked identifier chain> ::=

<asterisked identifier> [{ <period> <asterisked identifier> } ...]

<derived column> ::=

<value expression> [<as clause>]

<as clause> ::=

[AS] <column name>

Invocation and Access Rules

If columns or subqueries exist in <select list> statement, to perform <select list>, a user should have the ac

cess privileges for the columns and the access privileges for the table and columns of the subqueries.

Syntax Rules and Parameters

<select list>

It has <asterisk> or <select sublist>.

<asterisk> can be used in <select list> only when it is alone. In other words, it can not specify <select sublis

t>.

If two or more <select sublist> are specified, each <select sublist> should be separated by a comma(,).

SELECT | 2,001

<select sublist>

It has <derived column> or <qualified asterisk>.

A single table can have only one <quantified asterisk>.

<derived column> can change the output name by using AS, and AS can be omitted.

Description

<select list>

<select list> specifies the columns to be included in the result set. If <asterisk> is specified in <select list>, a

ll columns in <from clause> are specified as a select list, and <select sublist> can not be additionally specifi

ed.

<select sublist>

<select sublist> has <derived column> or <qualified asterisk>. If two or more <select sublist> are specified,

they should be separated by a comma (',').

For <qualified asterisk>, all columns belonging to a particular table or view are set as a select list. For <deri

ved column>, the column can be directly specified, or <value expression> can be specified.

<derived column> can change the column name by using <as clause>, and AS can be omitted.

Names to Be Set in select list

● When <column name> is specified in <derived column>, the name is set as a select list name.

● When <column name> is not specified in <derived column>, the select list name is specified as follows.

○ If <derived column> is a single column reference, the column name of a single column is set to a

select list name.

○ If <derived column> is SQL parameter reference, <SQL parameter name> of SQL parameter is set

as a select list name.

○ Otherwise, the column name of <derived column> is not set.

● When two or more tables exist in <from clause> and the columns with the same name are included i

n these tables, the table name or table alias should be specified to refer to these columns.

Examples

The following is an example of SELECT statement which uses <asterisk>.

gSQL> SELECT * FROM supplier;

S_SUPPKEY S_NAME S_NATION S_PHONE

--------- ------------------------- ------------- ---------------

2,002 | SQL References

1 Supplier#1 FRANCE 27-918-335-1736

2 Supplier#2 KOREA 15-679-861-2259

3 Supplier#3 GERMANY 11-383-516-1199

4 Supplier#4 UNITED STATES 25-843-787-7479

5 Supplier#5 CANADA 21-151-690-3663

5 rows selected.

The following is an example of SELECT statement which uses <select sublist>.

gSQL> SELECT revenue.* FROM revenue;

SUPPLIER_NO TOTAL_REVENUE

----------- -------------

1 11978.64

2 20321.5

3 41844.68

3 rows selected.

gSQL> SELECT supplier_no suppno, total_revenue AS TOTAL FROM revenue;

SUPPNO TOTAL

------ --------

1 11978.64

2 20321.5

3 41844.68

3 rows selected.

gSQL> SELECT 1, revenue.*, CAST(total_revenue AS NATIVE_INTEGER) TOTAL FROM revenue;

1 SUPPLIER_NO TOTAL_REVENUE TOTAL

- ----------- ------------- -----

1 1 11978.64 11979

1 2 20321.5 20322

1 3 41844.68 41845

3 rows selected.

Compatibility

Unlike <select list>, the SQL standard supports <all fields reference>.

For More Information

Refer to query specification.

SELECT | 2,003

from clause

Function

It specifies the table which is derived from one or more tables.

Syntax

<from clause> ::=

FROM <table reference list>

<table reference list> ::=

<table reference> [{ , <table reference> } ...]

<table reference> ::=

<table factor>

| <joined table>

<table factor> ::=

<table primary>

<table primary> ::=

<table name> [<cluster domain>] [[AS] <correlation name>]

| <derived table> [<cluster domain>] [[AS] <correlation name> [<left paren> <derived

column list> <right paren>]]

| <parenthesized joined table>

<derived table> ::=

<table subquery>

<parenthesized joined table> ::=

<left paren> <parenthesized joined table> <right paren>

| <left paren> <joined table> <right paren>

<derived column list> ::=

<column name list>

<cluster domain> ::=

@ <cluster domain name>

<cluster domain name> ::=

GLOBAL

| LOCAL

| LOCAL_OFFLINE

| <identifier>

2,004 | SQL References

Invocation and Access Rules

The access privilege for the table or view specified in <table reference list> is required.

Syntax Rules and Parameters

<table reference list>

● One or more tables can be specified in <table reference list> by using a comma (,).

● When two or more tables are specified

○ The evaluation order for the tables is from left to right.

○ When * is specified in <select list>, the columns are sequentially mapped in <select list> from the l

eft table to the right table.

<table primary>

An alias name can be specified by using <correlation name>.

<table subquery> is in <derived table>, and an alias name can be specified by using <correlation name>.

<derived column list> can be specified in <derived table>, and the number of <column name> in <derived

column list> should be same as the number of the target of <select list> specified in <table subquery>.

If <derived column list> is specified in <derived table>, then it is sequentially mapped one to one with targ

ets of <select list> specified in <table subquery>.

If <derived column list> is specified in <derived table>, <column name> in <derived column list> should be

used to refer to <select list> of <table subquery> in <derived table>.

<correlation name>

The same <correlation name> should not exist two or more in <table reference list>.

When <correlation name> is specified in <table name> or <derived table>, <correlation name> should be

used to refer to <table name> or <derived table>.

AS which is specified in front of <correlation name> can be omitted.

<derived column list>

The same <column name> should not exist two or more in <derived column list>.

SELECT | 2,005

<cluster domain>

● <cluster domain> may be a table, a view, or a table subquery, but a joined table in parentheses can n

ot be <cluster domain>.

● <cluster domain> can not be specified in a table or a view whose structure or data is to be altered.

○ However, "@LOCAL" is specified in a target table for a data altering query created by Processing

SELECT in Cluster.

<cluster domain name>

Only a cluster group name or a cluster member name can be <identifier> of <cluster domain name>.

Description

<table reference list>

Two or more tables can be specified in <table reference list> by using a comma (,). When specifying two

or more tables, it operates in the same way as cross join each table from left to right. If the conditions to j

oin two tables exist in <where clause>, the two tables operate in the same way as inner join which has

<where clause> as a join condition.

If outer join operator (+) is used in <where clause>, it operats in the same way as outer join.

For more information about outer join operator (+), refer to outer join operator specification of joined ta

ble.

<table reference>

A single table, or view, table subquery, joined table can be <table reference>. They can have a correlation

name except for the joined table.

For more information about joined table, refer to joined table.

<table primary>

The tables, views, table subqueries and joined tables in parentheses can be <table primary>. The table, vie

w, table subquery can have a correlation name, and 'AS' can be omitted. If the correlation name is specifi

ed, it should be used in everywhere referring to the table, view, table subquery such as <select list>, <whe

re clause>.

The table subquery can specify <derived column list> by using parentheses. The name specified in <derive

d column list> should be used in everywhere referring to table subquery column like as correlation name.

To use <derived column list> in the table subquery, the correlation name should be specified.

The joined table enclosed with parentheses specifies the logical join order for the table participating in th

2,006 | SQL References

e join operation. At this time, if all join operations for the tables enclosed with parentheses are cross join,

inner join, the join order can be changed by an optimizer.

<cluster domain>

When <cluster domain> is omitted, it means the same as using GLOBAL as <cluster domain name>.

<cluster domain name>

The reserved words defined in <cluster domain name> mean as follows.

● GLOBAL

○ It selects all cluster groups as a cluster domain.

● LOCAL

○ It selects only the server performing the user query as a cluster domain.

● LOCAL_OFFLINE

○ If the table to which the domain is to be applied is offline, it selects only the server performing th

e user query as a cluster domain.

○ If LOCAL_OFFLINE domain is specified in an online table, then an error occurs.

If <identifier> is specified in <cluster domain name>, a cluster group or a cluster member with the corresp

onding name is selected as Cluster Domain.

Examples

The following is an example of SELECT statement to query a single table by using <table name>.

gSQL> SELECT c_name, c_nation FROM customer;

C_NAME C_NATION

---------- -------------

Customer#1 KOREA

Customer#2 CANADA

Customer#3 KOREA

Customer#4 GERMANY

Customer#5 UNITED STATES

5 rows selected.

The following is an example of SELECT statement which uses <derived table>.

gSQL> SELECT * FROM (SELECT c_name, c_nation FROM customer);

C_NAME C_NATION

---------- -------------

Customer#1 KOREA

SELECT | 2,007

Customer#2 CANADA

Customer#3 KOREA

Customer#4 GERMANY

Customer#5 UNITED STATES

5 rows selected.

gSQL> SELECT * FROM (SELECT c_name, c_nation FROM customer) AS CUST ("CUSTOMER_NAME",

"CUSTOMER_NATION");

CUSTOMER_NAME CUSTOMER_NATION

------------- ---------------

Customer#1 KOREA

Customer#2 CANADA

Customer#3 KOREA

Customer#4 GERMANY

Customer#5 UNITED STATES

5 rows selected.

The following is an example of SELECT statement for a joined table which uses parentheses.

gSQL> SELECT customer.c_name, o_totalprice FROM (customer INNER JOIN orders ON

customer.c_custkey = orders.o_custkey);

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

Customer#2 46929.18

Customer#4 193846.25

Customer#3 32151.78

Customer#5 144659.2

5 rows selected.

The following is an example of SELECT statement which uses two table separated by a comma (,).

gSQL> SELECT c_name, o_totalprice FROM customer, orders;

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

Customer#1 46929.18

Customer#1 193846.25

Customer#1 32151.78

Customer#1 144659.2

Customer#2 173665.47

Customer#2 46929.18

Customer#2 193846.25

2,008 | SQL References

Customer#2 32151.78

Customer#2 144659.2

Customer#3 173665.47

Customer#3 46929.18

Customer#3 193846.25

Customer#3 32151.78

Customer#3 144659.2

Customer#4 173665.47

Customer#4 46929.18

Customer#4 193846.25

Customer#4 32151.78

Customer#4 144659.2

C_NAME O_TOTALPRICE

---------- ------------

Customer#5 173665.47

Customer#5 46929.18

Customer#5 193846.25

Customer#5 32151.78

Customer#5 144659.2

25 rows selected.

The following is an example of SELECT statement which uses <cluster domain>.

● Using the reserved word GLOBAL

gSQL> SELECT * FROM (SELECT c_name, c_nation FROM customer@GLOBAL);

C_NAME C_NATION

---------- -------------

Customer#1 KOREA

Customer#2 CANADA

Customer#3 KOREA

Customer#4 GERMANY

Customer#5 UNITED STATES

5 rows selected.

● Using the reserved word LOCAL

gSQL> SELECT * FROM (SELECT c_name, c_nation FROM customer)@LOCAL;

C_NAME C_NATION

---------- -------------

Customer#1 KOREA

Customer#2 CANADA

SELECT | 2,009

2 rows selected.

● Using the cluster group name G1

gSQL> SELECT * FROM (SELECT c_name, c_nation FROM customer@G1);

C_NAME C_NATION

---------- -------------

Customer#1 KOREA

Customer#2 CANADA

2 rows selected.

● Using the cluster member name G2N1

gSQL> SELECT * FROM (SELECT c_name, c_nation FROM customer@G2N1);

C_NAME C_NATION

---------- -------------

Customer#3 KOREA

Customer#4 GERMANY

2 rows selected.

Compatibility

The SQL standard has the following differences compared to GOLDILOCKS.

● It supports <sample clause> in <table factor>.

● It supports <lateral derived table>, <collection derived table>, <table function derived table>, <only sp

ec>, <data change delta table> in <table primary>.

○ <lateral derived table> allows <from clause> to refer to the left tables of the corresponding state

ment within subquery of <lateral derived table>. (e.g. select * from dual a,(select * from dual b w

here a.dummy = b.dummy);)

○ <only spec> does not allow the results of the subview to be included if the view of <from clause>

is a hierarchical view.

● It supports system-versioned table in <table primary>.

● It supports <derived column list> in <table primary>.

● It supports <transition table name> and <query name> in <table primary>.

● <correlation name> should exist for <derived table>.

For More Information

Refer to subquery.

2,010 | SQL References

joined table

Function

It specifies the table derived from a cartesian product, inner join, outer join.

Syntax

<joined table> ::=

<cross join>

| <qualified join>

| <natural join>

<cross join> ::=

<table reference> CROSS JOIN <table factor>

<qualified join> ::=

<table reference> [<join type>] JOIN <table reference> <join specification>

<natural join> ::=

<table reference> NATURAL [<join type>] JOIN <table factor>

<join specification> ::=

<join condition>

| <named columns join>

<join condition> ::=

ON <search condition>

<named columns join> ::=

USING (<join column list>)

<join type> ::=

INNER

| { LEFT | RIGHT | FULL } [OUTER]

<join column list> ::=

<column name list>

Invocation and Access Rules

The access privilege for all tables and views specified in a joined table is required.

Syntax Rules and Parameters

SELECT | 2,011

<cross join>

<join specification> does not appear, and a single table, <table subquery> or <joined table> in parenthese

s can appear on the right.

<qualified join>

● <join specification> should be specified.

● <join type> can be omitted. When it is omitted, it performs INNER.

● OUTER can be omitted in <join type>.

● If <join type> is OUTER JOIN, only <join condition> can appear in <join specification>. (If <named colu

mns join> appears, an error occurs.)

<natural join>

● <join specification> does not appear and a single table, <table subquery> or <joined table> in parenth

eses can appear on the right.

● <join type> can be omitted. When it is omitted, it performs INNER.

● It does not support OUTER in <join type>.

● If the same <column name> does not exist between the left row and right row of NATURAL JOIN, it p

erforms <cross join>.

● If the same <column name> exists between the left row and right row of NATURAL JOIN, it is treated

in the same way specified with USING clause.

● If comparison operation does not exist for the two corresponding columns, an error occurs.

<join specification>

● Only one of <join condition> or <named columns join> can be specified.

● When <named columns join> is specified

○ One or more column name should be specified in <join column list>.

○ The column name can not be specified such as <table name>.<column name>.

○ The listed columns in <join column list> should be on the left row and right row of JOIN, and they

should be able to be compared.

○ If * is used in <select list>, the display column names of listed columns in <join column list> are co

rresponding column names, and those columns are excluded from the left row and right row of J

OIN.

○ If * is used in <select list>, the display order of target is the listed columns in <join column list>, fo

llowed by the columns which does not correspond to <join column list> on the left row, then foll

owed by the columns which does not correspond to <join column list> on the right row.

○ The columns corresponding to the left row and right row of the columns specified in <join colum

n list> of the JOIN statement can not be referenced. (In other words, <column name> specified in

<join column list> can not be referenced such as <table name>.<column name>, but only <colum

n name> can be referenced.)

2,012 | SQL References

○ If the listed columns in <join column list> are treated using a join condition, the condition <left ta

ble name>.<column name> = <right table name>.<column name> is generated for each <column

name>, and the conditions to treat each <column name> condition using AND are generated and

processed.

○ It can not use '<table name>.*' phrase which returns all the row for a particular table to <select li

st>.

○ If comparison operation does not exist for the two corresponding columns, an error occurs.

Description

<cross join>

<cross join> returns a result which combines all of each left row with each right rows.

The explicit join condition can not be specified in <cross join>, but the join condition for the two tables ca

n be specified in <where clause>. In this case, it performs inner join.

<qualified join>

<qualified join> returns results which satisfy the join condition in combinations of all right rows for each l

eft row. If <where clause> exists, the conditions of <where clause> are applied to the result rows to which

the join condition is applied when executing join statement.

The result is same, even when inner join treats the conditions in <where clause> in the same way as the jo

in conditions. But result differs when outer join treats the conditions in <where clause> in the same way a

s the join conditions.

Left outer join returns combined results of rows when right rows satisfying the condition for the left rows

exist. If right rows satisfying the condition for the left rows do not exist, then it keep the value of left row

s and fill the value of right rows with NULL and return them as a result.

Right outer join is operated exactly contrary to the left outer join.

Full outer join returns the result of left outer join, and rows whose values of the left rows are filled with N

ULL for all right rows which do not satisfy the join condition.

<natural join>

<natural join> joins all columns with same names in two tables participating in join as equal. In other wor

ds, it is as same as specifying all columns with same names in two tables participating in join in USING cla

use of inner join.

SELECT | 2,013

<join specification>

<join condition> specifies the condition for joining left rows and right rows of a join statement. <named c

olumns join> specifies the join condition by listing that <column name>, if the same <column name> exist

in left rows and right rows.

Examples

The following is an example of SELECT statement which uses <cross join>.

gSQL> SELECT c_name, o_totalprice FROM customer CROSS JOIN orders;

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

Customer#1 46929.18

Customer#1 193846.25

Customer#1 32151.78

Customer#1 144659.2

Customer#2 173665.47

Customer#2 46929.18

Customer#2 193846.25

Customer#2 32151.78

Customer#2 144659.2

Customer#3 173665.47

Customer#3 46929.18

Customer#3 193846.25

Customer#3 32151.78

Customer#3 144659.2

Customer#4 173665.47

Customer#4 46929.18

Customer#4 193846.25

Customer#4 32151.78

Customer#4 144659.2

C_NAME O_TOTALPRICE

---------- ------------

Customer#5 173665.47

Customer#5 46929.18

Customer#5 193846.25

Customer#5 32151.78

Customer#5 144659.2

25 rows selected.

2,014 | SQL References

The following is an example of SELECT statement which uses inner join.

gSQL> SELECT c_name, o_totalprice FROM customer INNER JOIN orders ON c_custkey = o_custkey;

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

Customer#2 46929.18

Customer#4 193846.25

Customer#3 32151.78

Customer#5 144659.2

5 rows selected.

The following is an example of SELECT statement which uses outer join.

gSQL> SELECT c_name, o_totalprice FROM customer LEFT OUTER JOIN orders ON c_custkey =

o_custkey AND o_orderdate < '1996-01-01';

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 null

Customer#2 null

Customer#3 32151.78

Customer#4 193846.25

Customer#5 144659.2

5 rows selected.

gSQL> SELECT c_name, o_totalprice FROM customer RIGHT OUTER JOIN orders ON c_custkey =

o_custkey AND c_nation = 'KOREA';

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

null 46929.18

null 193846.25

Customer#3 32151.78

null 144659.2

5 rows selected.

gSQL> SELECT c_name, o_totalprice FROM customer FULL OUTER JOIN orders ON c_custkey =

o_custkey AND c_nation = 'KOREA' AND o_orderdate < '1996-01-01';

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 null

Customer#2 null

Customer#3 32151.78

SELECT | 2,015

Customer#4 null

Customer#5 null

null 173665.47

null 46929.18

null 193846.25

null 144659.2

9 rows selected.

The following is an example of SELECT statement which uses natural join.

gSQL> SELECT c_name, o_totalprice FROM (SELECT c_custkey custkey, c_name FROM customer)

NATURAL JOIN (SELECT o_custkey custkey, o_totalprice FROM orders);

C_NAME O_TOTALPRICE

---------- ------------

Customer#1 173665.47

Customer#2 46929.18

Customer#4 193846.25

Customer#3 32151.78

Customer#5 144659.2

5 rows selected.

Compatibility

The SQL standard has the following differences compared to GOLDILOCKS.

● It supports <partitioned join table> for <qualified join> and <natural join>.

● It supports USING clause for the outer join.

● It supports the type for outer join as <join type> of <natural join>.

● It supports <set function specification> in <join condition>.

Table 16-67 SQL standard compatibility

Feature ID Description Compatibility

F401 Extended joined table O

F402 Named column joins for LOBs, arrays, and multisets X

F403 Partitioned join tables X

For More Information

Refer to from clause.

2,016 | SQL References

where clause

Function

It applies <search condition> to the result of <from clause>.

Syntax

<where clause> ::=

WHERE <search condition>

Syntax Rules and Parameters

<where clause>

<search condition> which returns a boolean type is required after WHERE keyword.

Description

For more information about <where clause>, refer to Conditions.

Example

The following is an example of SELECT statement which uses <where clause>.

gSQL> SELECT s_name, s_nation FROM supplier WHERE s_nation = 'KOREA';

S_NAME S_NATION

------------------------- --------

Supplier#2 KOREA

1 row selected.

gSQL> SELECT s_name, ps_availqty, ps_supplycost FROM supplier, partsupp WHERE s_nation =

'KOREA' AND s_suppkey = ps_suppkey;

S_NAME PS_AVAILQTY PS_SUPPLYCOST

------------------------- ----------- -------------

Supplier#2 8076 993.49

Supplier#2 4069 357.84

2 rows selected.

SELECT | 2,017

Compatibility

Table 16-68 SQL standard compatibility

Feature ID Description Compatibility

F441 Extended set function support O

For More Information

Refer to query specification.

2,018 | SQL References

group by clause

Function

It specifies the grouped table of which <group by clause> was applied to the result processed by the previ

ous statements.

Syntax

<group by clause> ::=

GROUP BY <grouping element list>

<grouping element list> ::=

<grouping element> [{ , <grouping element> } ...]

<grouping element> ::=

<ordinary grouping set>

| <empty grouping set>

<ordinary grouping set> ::=

<grouping column reference>

<grouping column reference> ::=

<column reference>

| <value_expression>

<empty grouping set> ::=

<left paren> <right paren>

Invocation and Access Rules

Any separate access privilege is not required for a user to perform <group by clause>.

Syntax Rules and Parameters

<ordinary grouping set>

It consists of one or more <grouping column reference>.

It does not support LONG type.

<empty grouping set>

It can be specified by using only parentheses, and any expression should not be used within the parenthe

ses.

SELECT | 2,019

Description

<grouping element list>

<grouping element> in <group by clause> is grouped sequentially into a GROUPING SET. At this time, if al

l values of <grouping element> in GROUPING SET are matched sequentially, it is processed as the same gr

oup.

When <group by clause> is specified, the column in <group by clause> or the column, not in <group by cl

ause> but in aggregate functions, can appear in <select list>.

<grouping column reference>

<column reference> or <value expression> can appear in <grouping column reference>.

For <column reference>, only the columns belong to <from clause> of <query specification> can be refere

nced. If columns with a same name exist, the column name should be explicitly specified by using the tabl

e name.

<value expression> consists of expressions which include or do not include <column reference>. The form

er can be divided into several groups by <column reference>, but all records of the latter are configured i

nto a single group because all values of <value expression> is an identical constant value.

If NULL is specified in <value expression>, all NULL values are treated as the same value. Therefore, all rec

ords with NULL values are configured into a single group.

<empty grouping set>

<empty grouping set> specifies that the grouping target column does not exist. Therefore, all records are

configured into a single group.

Example

The following is an example of SELECT statement which uses GROUP BY clause.

gSQL> SELECT c_nation, COUNT(c_name) FROM customer GROUP BY c_nation;

C_NATION COUNT(C_NAME)

------------- -------------

UNITED STATES 1

CANADA 1

KOREA 2

GERMANY 1

4 rows selected.

gSQL> SELECT COUNT(c_name) FROM customer GROUP BY NULL;

COUNT(C_NAME)

2,020 | SQL References

5

1 row selected.

gSQL> SELECT COUNT(c_name) FROM customer GROUP BY ();

COUNT(C_NAME)

5

1 row selected.

Compatibility

Table 16-69 SQL standard compatibility

Feature ID Description Compatibility

T431 Extended grouping capabilities X

T432 Nested and concatenated GROUPING SETS X

T434 GROUP BY DISTINCT X

For More Information

Refer to the followings.

● having clause

● query specification

SELECT | 2,021

having clause

Function

It specifies grouped tables having removed groups which do not satisfy <search condition>.

Syntax

<having clause> ::=

HAVING <search condition>

Invocation and Access Rules

Any separate access privilege is not required for a user to perform <having clause>.

Syntax Rules and Parameters

<having clause>

The columns which can be used without aggregate functions in <search condition> is only the columns s

pecified in <group by clause>.

The columns which are not specified in <group by clause> can be specified by using aggregate functions.

Description

<having clause>

<having clause> specifies search conditions for the grouped data. Generally, it is used together with <gro

up by clause>. When <having clause> is used without <group by clause>, it is considered as if "GROUP BY

()" exists.

Other columns can not be specified alone in <having clause> but only the columns specified in <group by

clause> can be specified. Other columns can be used only when using aggregate functions.

Example

The following is an example of SELECT statement which uses <having clause>.

2,022 | SQL References

gSQL> SELECT c_nation, COUNT(c_name) FROM customer GROUP BY c_nation HAVING COUNT(c_name) > 1;

C_NATION COUNT(C_NAME)

-------- -------------

KOREA 2

1 row selected.

gSQL> SELECT COUNT(c_name) FROM customer HAVING COUNT(c_name) > 1;

COUNT(C_NAME)

5

1 row selected.

Compatibility

Table 16-70 SQL standard compatibility

Feature ID Description Compatibility

T301 Functional dependencies O

For More Information

Refer to the followings.

● group by clause

● Conditions

SELECT | 2,023

order by clause

Function

It specifies the sorting order of the query results.

Syntax

<order by clause> ::=

ORDER BY <sort specification list>

<sort specification list> ::=

<sort specification> [{ <comma> <sort specification> }...]

<sort specification> ::=

<sort key> [<ordering specification>] [<null ordering>]

<sort key> ::=

<value expression>

<ordering specification> ::=

ASC

| DESC

<null ordering> ::=

NULLS FIRST

| NULLS LAST

Invocation and Access Rules

The access privilege for a column is required if the column exist in a sort key specified for sorting.

Syntax Rules and Parameters

<order by clause>

● When the column not used in <select list> of <query specification> is used as <sort key>, <set quantifi

er> DISTINCT or one or more <set function specification> can not be specified.

● However, the specified DISTINCT clause can be omitted in the followings, so the constraint above is n

ot applied to them.

○ When <group by clause> or <having clause> is not specified, and one or more <set function speci

fication> are specified.

○ When one or more nested <set function specification> are specified.

● If <order by clause> is specified in <set operator>, <sort key> is analysed based on the firstly specified

<query specification>.

2,024 | SQL References

<sort specification list>

If <ordering specification> is not specified, the default value is ASC.

If <null ordering> is not specified, the default value is NULLS LAST.

<sort key>

● If <value expression> of <sort key> is the positive integer value whose scale is zero, the value is used a

s a sort key index.

○ The i-th <select sublist> of <query specification> which corresponds to the value is used as a sort

key.

○ If the i-th <select sublist> of <query specification> which corresponds to the value does not exist, i

t returns an error.

● A row subquery or relation subquery is not supported as <value expression>.

● Other <value expression> are used as sort keys.

Description

<order by clause>

<order by clause> specifies a method to sort the query results. <sort key> can be listed in <order by clause

> by using a comma (,), and <sort key> of each records are compared and listed in order.

<ordering specification> can specify a sorting by an ascending or by a descending order in <sort key>. If it

is omitted, it is regarded as a sorting by an ascending order.

Also, <null ordering> specifies an order between the non-NULL values and NULL values in <sort key>. If it i

s omitted, it is regarded as NULLS LAST.

If a constant value is specified in <sort key>, the expression positioned in the location corresponding to its

value in <select list> is regarded as <sort key>. In this case, the constant value should be equal to or smalle

r than the total number of expression in <select list>, and its scale should be 0.

LONG type can not be specified in <sort key>.

Comparison of Null Value

● The comparison between null values is regarded as the same value.

● The comparison between non-null value and null value is subject to the following rules.

○ When it is NULLS FIRST and ASC: null value < not null value

○ When it is NULLS LAST and ASC: null value > not null value

○ When it is NULLS FIRST and DESC: null value > not null value

○ When it is NULLS LAST and DESC: null value < not null value

● If the comparison result between null values is UNKNOWN, it is sorted according to the scan order.

SELECT | 2,025

Sorting Rows Which Have Same Sort Key Value

Peers are rows which can not be distinguished by a sort key, and the peers are sorted according to the sc

an order.

<aggregation function> Which Is Used As <sort key>

If <aggregation function> is used in <query specification>, or <group by clause> is specified, <aggregation

function> can be used as <sort key>. However, the nested aggregation function can be used as <sort key>

only when <group by clause> is specified.

Example

The following is an example of SELECT statement which uses ORDER BY clause.

gSQL> SELECT c_name, c_nation FROM customer ORDER BY c_nation;

C_NAME C_NATION

---------- -------------

Customer#2 CANADA

Customer#4 GERMANY

Customer#1 KOREA

Customer#3 KOREA

Customer#5 UNITED STATES

5 rows selected.

gSQL> SELECT c_name, c_nation FROM customer ORDER BY c_nation DESC;

C_NAME C_NATION

---------- -------------

Customer#5 UNITED STATES

Customer#1 KOREA

Customer#3 KOREA

Customer#4 GERMANY

Customer#2 CANADA

5 rows selected.

gSQL> SELECT c_name, c_nation FROM customer ORDER BY 2 DESC;

C_NAME C_NATION

---------- -------------

Customer#5 UNITED STATES

Customer#1 KOREA

Customer#3 KOREA

Customer#4 GERMANY

Customer#2 CANADA

2,026 | SQL References

5 rows selected.

Compatibility

<order by clause> has the following differences compared to the SQL standard.

● The SQL standard supports only <column reference> as <value expression> of <sort key>.

● The SQL standard does not use <value expression> of <sort key> as a sort key index.

Table 16-71 SQL standard compatibility

Feature ID Description Compatibility

F850 Top-level <order by clause> in <query expression> X

F851 <order by clause> in subqueries O

F852 Top-level <order by clause> in views O

F855 Nested <order by clause> in <query expression> O

For More Information

Refer to query expression.

SELECT | 2,027

offset limit clause

Function

It specifies the number of rows to skip and the number of rows to fetch from the query results.

Syntax

<offset limit clause> ::=

<result offset clause>

| <fetch limit clause>

| <result offset clause> <fetch limit clause>

<result offset clause> ::=

OFFSET <offset row count> [{ ROW | ROWS }]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [<fetch row count>] [ROW ONLY | ROWS ONLY]

<limit clause> ::=

LIMIT { <fetch row count> | <offset row count> , <fetch row count> | ALL }

Invocation and Access Rules

The access privilege for <offset limit clause> is not required.

Syntax Rules and Parameters

<result offset clause>

● <offset row count> value should be a positive integer which is equal to or bigger than zero.

● ROW and ROWS are keywords with the same meaning and they can be omitted.

● If the statement is omitted, it means as same as OFFSET 0 ROWS.

<fetch limit clause>

● It specifies the number of rows to skip in the query result.

● If the statement is omitted, it means as same as LIMIT ALL.

2,028 | SQL References

<fetch first clause>

● It specifies the number of rows to fetch from the query result.

● It can not be used together with <limit clause>.

● FIRST and NEXT are keywords with the same meaning and they can be omitted.

● The value of <fetch row count> should be a positive integer which is bigger than zero.

● ROW ONLY and ROWS ONLY are keywords with the same meaning and they can be omitted.

● <fetch row count> can be omitted and if it is omitted, its value is one.

<limit clause>

● It specifies the number of rows to fetch or, it specifies the number of rows to fetch and the number o

f rows to be skipped in query results together.

● It can not be used together with <fetch first clause>.

● When it is used as LIMIT <fetch row count>

○ <fetch row count> should be a positive integer which is bigger than zero.

○ The statement means as same as FETCH FIRST <fetch row count> ROWS ONLY.

● When it is used as LIMIT <offset row count>, <fetch row count>

○ It can not be used together with <result offset clause>.

○ <offset row count> should be a positive integer which is equal to or bigger than zero.

○ <fetch row count> should be a positive integer which is bigger than zero.

○ The statement means as same as OFFSET <offset row count> ROWS FETCH FIRST <fetch row cou

nt> ROWS ONLY.

● When it is used as LIMIT ALL

○ It does not limit the number of rows to fetch.

Description

<result offset clause>

It returns rows starting from the <offset row count> th of the query results to a user. If <offset row count

> is equal to or greater than the number of rows of query results, the returned result to a user is zero.

<fetch first clause>

It returns the query results to a user as many as the number of <fetch row count>.

<limit clause>

When it is used as LIMIT <fetch_row_count>, it returns the query results to a user as many as the number

of <fetch row count>.

When it is used as LIMIT <offset row count>, <fetch row count>, it returns the query results to a user as m

SELECT | 2,029

any as the number of <fetch row count> from the <offset row count>th row.

When it is used as LIMIT ALL, it returns the query results to a user without limit of the number.

Examples

The following is an example of SELECT statement which uses <result offset clause>.

gSQL> SELECT c_name, c_nation FROM customer OFFSET 1;

C_NAME C_NATION

---------- -------------

Customer#2 CANADA

Customer#3 KOREA

Customer#4 GERMANY

Customer#5 UNITED STATES

4 rows selected.

The following is an example of SELECT statement which uses <fetch first clause>.

gSQL> SELECT c_name, c_nation FROM customer FETCH FIRST ROW ONLY;

C_NAME C_NATION

---------- --------

Customer#1 KOREA

1 row selected.

gSQL> SELECT c_name, c_nation FROM customer FETCH FIRST 2 ROW ONLY;

C_NAME C_NATION

---------- --------

Customer#1 KOREA

Customer#2 CANADA

2 rows selected.

The following is an example of SELECT statement which uses <limit clause>.

gSQL> SELECT c_name, c_nation FROM customer LIMIT 1;

C_NAME C_NATION

---------- --------

Customer#1 KOREA

1 row selected.

gSQL> SELECT c_name, c_nation FROM customer LIMIT 1, 2;

C_NAME C_NATION

---------- --------

Customer#2 CANADA

2,030 | SQL References

Customer#3 KOREA

2 rows selected.

gSQL> SELECT c_name, c_nation FROM customer LIMIT ALL;

C_NAME C_NATION

---------- -------------

Customer#1 KOREA

Customer#2 CANADA

Customer#3 KOREA

Customer#4 GERMANY

Customer#5 UNITED STATES

5 rows selected.

The following is an example of SELECT statement which uses <result offset clause> and <fetch limit clause>

.

gSQL> SELECT c_name, c_nation FROM customer OFFSET 1 FETCH 2;

C_NAME C_NATION

---------- --------

Customer#2 CANADA

Customer#3 KOREA

2 rows selected.

gSQL> SELECT c_name, c_nation FROM customer OFFSET 1 LIMIT 2;

C_NAME C_NATION

---------- --------

Customer#2 CANADA

Customer#3 KOREA

2 rows selected.

Compatibility

The SQL standard has the following differences compared to GOLDILOCKS.

● ROW or ROWS can not be omitted.

● FIRST or NEXT can not be omitted.

● It supports <fetch first percentage> in <fetch first clause>.

○ <simple value specification> can be any numeric in <fetch first percentage>. (In other words, a nu

mber below decimal point is also allowed.)

○ When <fetch first percentage> is specified, the value is converted to <fetch row count>. The conv

ersion formula is as follows.

■ FRC = CEILING(FFP * LOCT / 100.0E0)

■ FFP: The value of <simple value specification>

■ LOCT: The number of rows in the query results

SELECT | 2,031

■ FRC: The value which is converted to <fetch row count>

● It supports WITH TIES in <fetch first clause>

○ When using <fetch first clause> which specified WITH TIES, <order by clause> should exist.

○ When WITH TIES is specified, a sort key of <order by clause> returns the peers as many as the nu

mber of <fetch row count> based on the peers. The peers are units of rows whose sort keys are s

ame.

Note

OFFSET and LIMIT syntax

● The SQL standard defines OFFSET .. FETCH {FIRST|NEXT} ... syntax.

● IBM DB2 and Postgres provide the same syntax as the SQL standard.

● Postgres and MySQL provide OFFSET .. LIMIT syntax.

● Oracle performs a similar function through ROWNUM column.

Table 16-72 SQL standard compatibility

Feature ID Description Compatibility

F861 Top-level <result offset clause> in <query expression> O

F862 <result offset clause> in subqueries O

F863 Nested <result offset clause> in <query expression> O

F864 Top-level <result offset clause> in views O

F865 dynamic <offset row count> in <result offset clause> X

2,032 | SQL References

set operator

Function

It performs a set operation for results of the subquery.

Syntax

<set operator> ::=

<set operator term>

| <query expression body> UNION [ALL | DISTINCT] <set operator term>

| <query expression body> EXCEPT [ALL | DISTINCT] <set operator term>

| <query expression body> MINUS [ALL | DISTINCT] <set operator term>

<set operator term> ::=

<query term>

| <set operator term> INTERSECT [ALL | DISTINCT] <set operator term>

Invocation and Access Rules

All access privileges for the <query expression> in each <set operator term> are required for using <set op

erator> statement.

Syntax Rules and Parameters

<set operator>

● It specifies the set operations among the subqueries.

● The number of the target in <select list> of each subquery should be same, and all matched targets s

hould belong to the same data type group.

● The representative name of the result target of <set operator> is the target name of <select list> of th

e first subquery.

● If the processing order is not explicitly specified by using parentheses it processes by evaluating specif

ied subqueries from the left to the the right.

● The meaning of each operator in <set operator> is as follows.

○ UNION

■ UNION ALL: It is a union of all subquery results without removing the duplicates.

■ UNION DISTINCT: It is a union of all subquery results, which removed the duplicates.

■ If at least one of ALL and DISTINCT is not specified, it is operated as same as when DISTINCT i

s specified.

○ EXCEPT

SELECT | 2,033

■ EXCEPT ALL: It returns the difference of all rows for the subquery result including all duplicat

es.

■ EXCEPT DISTINCT: It returns the difference of all rows for the subquery result excluding all du

plicates.

■ If at least one of ALL and DISTINCT is not specified, it is operated as same as when DISTINCT i

s specified.

○ MINUS

■ It is an alias of EXCEPT and, it is operated as same as EXCEPT.

○ INTERSECT

■ INTERSECT ALL: It is a intersection of all subquery results without removing the duplicates.

■ INTERSECT DISTINCT: It is a intersection of all subquery results, which removed the duplicates.

■ If at least one of ALL and DISTINCT is not specified, it is operated as same as when DISTINCT i

s specified.

<query term>

It specifies the single subquery.

For more information, refer to query expression.

Description

The Differences between ALL and DISTINCT in <set operator>

For example, if the data of the table R1 and R2 is given as follows, the result of each <set operator > is as

follows.

● TABLE data

○ R1 TABLE = {1, 1, 1, 2, 2, 2, 3, 4, 4, 5}

○ R2 TABLE = {1, 1, 3, 3, 4}

● SELECT * FROM R1 UNION ALL SELECT * FROM R2;

○ result = {1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5}

● SELECT * FROM R1 UNION DISTINCT SELECT * FROM R2;

○ result = {1, 2, 3, 4, 5}

● SELECT * FROM R1 MINUS ALL SELECT * FROM R2;

○ result = {1, 2, 2, 2, 4, 5}

● SELECT * FROM R1 MINUS DISTINCT SELECT * FROM R2;

○ result = {2, 5}

● SELECT * FROM R1 INTERSECT ALL SELECT * FROM R2;

○ result = {1, 1, 3, 4}

● SELECT * FROM R1 INTERSECT DISTINCT SELECT * FROM R2;

○ result = {1, 3, 4}

2,034 | SQL References

Figure 2 SET operation results

Operator Precedence

The operator precedence of <set operator> is as follows.

● Parentheses () has a priority.

● INTERSECT has a priority.

● For UNION and EXCEPT, the precedence is according to an order listed from left to right within an ex

pression.

The Result Type of <set operator>

The i-th column of all subqueries in <set operator> should be a data type of the same family, and its result

type is determined by Result Type Combination Rule.

However, LONG VARCHAR and LONG VARBINARY types can only use UNION ALL.

ORDER BY Clause

When <set operator> is used together with ORDER BY, and the column names are different among subq

ueries, then it can be used as follows.

● ORDER BY indicator

○ It specifies the order of result columns.

SELECT c1 FROM t1

UNION ALL

SELECT | 2,035

SELECT c2 FROM t2

ORDER BY 1;

● ORDER BY left_column_name

○ It specifies the column name of the first subquery.

SELECT c1 FROM t1

UNION ALL

SELECT c2 FROM t2

ORDER BY c1;

Examples

The following is an example of SELECT statement which uses UNION operator.

gSQL> SELECT s_nation nation FROM supplier UNION ALL SELECT c_nation FROM customer;

NATION

FRANCE

KOREA

GERMANY

UNITED STATES

CANADA

KOREA

CANADA

KOREA

GERMANY

UNITED STATES

10 rows selected.

gSQL> SELECT s_nation nation FROM supplier UNION DISTINCT SELECT c_nation FROM customer;

NATION

UNITED STATES

CANADA

KOREA

GERMANY

FRANCE

5 rows selected.

The following is an example of SELECT statement which uses EXCEPT operator.

gSQL> SELECT c_nation nation FROM customer EXCEPT ALL SELECT s_nation FROM supplier;

NATION

2,036 | SQL References

KOREA

1 row selected.

gSQL> SELECT c_nation nation FROM customer EXCEPT DISTINCT SELECT s_nation FROM supplier;

no rows selected.

The following is an example of SELECT statement which uses INTERSECT operator.

gSQL> SELECT c_nation nation FROM customer INTERSECT ALL SELECT s_nation FROM supplier;

NATION

UNITED STATES

CANADA

KOREA

GERMANY

4 rows selected.

gSQL> SELECT c_nation nation FROM customer INTERSECT DISTINCT SELECT s_nation FROM supplier;

NATION

UNITED STATES

CANADA

KOREA

GERMANY

4 rows selected.

Compatibility

<set operator> has the following differences compared to the SQL standard.

● The SQL standard does not support MINUS.

● In the SQL standard, <set operator> can not be used together with ORDER BY indicator.

● In the SQL standard, if ORDER BY column_name is used together with <set operator>, it should be id

entical to the column name of all subqueries.

Table 16-73 SQL standard compatibility

Feature ID Description Compatibility

F302 INTERSECT table operator O

F301 CORRESPONDING X

T551 Optional key words for default syntax O

F304 EXCEPT ALL table operator O

SELECT | 2,037

For More Information

Refer to query expression.

2,038 | SQL References

subquery

Function

It specifies the scalar value, row, table which are derived from <query expression>.

Syntax

<scalar subquery> ::=

<subquery>

<row subquery> ::=

<subquery>

<table subquery> ::=

<subquery>

<subquery> ::=

(<query expression>)

Invocation and Access Rules

The access privilege for <query expression> in <subquery> is required.

Syntax Rules and Parameters

<scalar subquery>

● The number of targets in <query expression> should be one.

● The result value according to the number of rows returned from <query expression> is as follows.

○ If the number of returned rows is zero, the result value is NULL.

○ If the number of returned rows is one, the result value is a value contained in the row.

○ If the number of returned rows is two or more, an exception error occurs.

<row subquery>

● The number of target in <query expression> should be two or more.

● The result value according to the number of rows returned from <query expression> is as follows.

○ If the number of returned rows is zero, the result value is a row all of whose columns are NULL.

○ If the number of returned rows is one, the result value is that row.

○ If the number of returned rows is two or more, an exception error occurs.

SELECT | 2,039

<table subquery>

● The number of target in <query expression> should be one or more.

● The result according to the number of rows returned from <query expression> is as follows.

○ If the number of returned rows is zero, the result value is no rows.

○ If the number of returned rows is one or more, the result value is that row.

Description

<scalar subquery>

<scalar subquery> returns one row which has one column as a result. The target of <scalar subquery> sho

uld be only one, and the result data type depends on the data type of the target.

<scalar subquery> can be used alone in the target of <select list>, and it can be used in the operator whic

h has a single column.

<row subquery>

<row subquery> returns one row which has two or more columns as a result. The targets of <row subque

ry> should be two or more, and the result data type depends on the data type of each target.

<row subquery> can not be used alone in the target of <select list>, and it can only be used in the row op

erator which has two or more columns.

<table subquery>

<table subquery> returns one or more rows which have one or more columns as a result. The targets of <t

able subquery> should be one or more, and the result data type depends on the data type of each target.

<table subquery> can not be used alone in the target of <select list>, but it can be used in the operators s

uch as IN, NOT IN, EXISTS, NOT EXISTS, quantify operator.

Examples

The following is an example of SELECT statement which uses <scalar subquery>.

gSQL> SELECT (SELECT c_name FROM dual) FROM customer;

(SELECT C_NAME FROM DUAL)

Customer#1

Customer#2

Customer#3

Customer#4

2,040 | SQL References

Customer#5

5 rows selected.

gSQL> SELECT c_name, c_nation FROM customer WHERE c_nation = (SELECT 'CANADA' FROM dual);

C_NAME C_NATION

---------- --------

Customer#2 CANADA

1 row selected.

The following is an example of SELECT statement which uses <row subquery>.

gSQL> SELECT p_name, p_brand, p_type FROM part WHERE (p_brand, p_type) = (SELECT 'Brand#1',

'NICKEL' FROM dual);

P_NAME P_BRAND P_TYPE

------ ---------- ------

Part#2 Brand#1 NICKEL

1 row selected.

The following is an example of SELECT statement which uses <table subquery>.

gSQL> SELECT s_name, s_nation FROM supplier WHERE s_nation IN (SELECT c_nation FROM customer);

S_NAME S_NATION

------------------------- -------------

Supplier#2 KOREA

Supplier#3 GERMANY

Supplier#4 UNITED STATES

Supplier#5 CANADA

4 rows selected.

gSQL> SELECT * FROM (SELECT s_name, s_nation FROM supplier);

S_NAME S_NATION

------------------------- -------------

Supplier#1 FRANCE

Supplier#2 KOREA

Supplier#3 GERMANY

Supplier#4 UNITED STATES

Supplier#5 CANADA

5 rows selected.

Compatibility

SELECT | 2,041

Table 16-74 SQL standard compatibility

Feature ID Description Compatibility

F471 Scalar subquery values O

F641 Row and table constructors X

T501 Enhanced EXISTS predicate O

E061-11 Subqueries in IN predicate O

E061-12 Subqueries in quantified comparison predicate O

E061-12 Correlated subqueries O

For More Information

Refer to the followings.

● from clause

● where clause

2,042 | SQL References

hint clause

Function

It specifies a hint to be used for a query execution.

Syntax

<hint clause> ::=

/*+ <hint element> [comment] [[,] <hint element> [comment]] */

<hint element> ::=

<access path hints>

| <join order hints>

| <join operation hints>

| <query transformation hints>

| <other hints>

<access_path_hints> ::=

FULL(table_name)

| INDEX(table_name [,] [index_name [[,] index_name]])

| NO_INDEX(table_name [,] [index_name [[,] index_name]])

| INDEX_ASC(table_name [,] [index_name [[,] index_name]])

| INDEX_DESC(table_name [,] [index_name [[,] index_name]])

| INDEX_COMBINE(table_name [,] [index_name [[,] index_name]])

| ROWID(table_name)

<join order hints> ::=

ORDERED

| ORDERING(table_name [LEFT | RIGHT] [, table_name [LEFT | RIGHT]]

| LEADING(table_name [[,] table_name])

<join operation hints> ::=

USE_HASH(table_name [[,] table_name])

| NO_USE_HASH(table_name [[,] table_name])

| USE_MERGE(table_name [[,] table_name])

| NO_USE_MERGE(table_name [[,] table_name])

| USE_NL(table_name [[,] table_name])

| NO_USE_NL(table_name [[,] table_name])

| USE_INL(table_name [[,] table_name])

| NO_USE_INL(table_name [[,] table_name])

<query transformation hints> ::=

UNNEST

| NO_UNNEST

SELECT | 2,043

| NL_SJ

| NL_ISJ

| MERGE_SJ

| HASH_SJ

| HASH_ISJ

| HASH_AJ

| TRANSITIVE_CLOSURE

| NO_TRANSITIVE_CLOSURE

| MERGE(view_name)

| NO_MERGE(view_name)

| NO_QUERY_TRANSFORMATION

<other hints> ::=

PUSH_SUBQ

| NO_PUSH_SUBQ

Invocation and Access Rules

The privilege for query execution is required to perform <hint clause>.

Syntax Rules and Parameters

The basic syntax rules for <hint clause> are as follows.

● <hint clause> can be specify multiple <hint element> by using a space or ','.

● If two or more <hint element> for the same object exist and they are not applicable simultaneously, o

nly the firstly specified <hint element> is applied.

● When a syntax error occurs for <hint element>, it is ignored by default. If "hint_error" property is set t

o on, <hint clause> is treated as a validation error.

● When a table name is specified in <hint clause>, it should be identical to one of the table names (or t

he alias name if an alias name is specified in the table) in <from clause>.

● The table name can not be specified together with a schema name.

● Even when <hint element> is correctly specified, if it is not applicable, the optimizer ignores the <hint

element>.

<access_path_hints>

FULL

It instructs an optimizer to perform table full scan for the specified table. When this hint is specified, the

optimizer does not take into account the optimization which uses the index scan, rowid scan, index comb

ine.

When specifying FULL hint, the table name is required, and only a single table name should be specified.

2,044 | SQL References

The specified table name should exist in <from clause>.

The following is an example of applying a hint to perform table full scan for the table T1.

• Type 1: The table name is specified in <from clause>.

SELECT /*+ FULL(T1) */ I1

FROM T1;

• Type 2: The alias name is specified in <from clause>.

SELECT /*+ FULL(T1_ALIAS) */ I1

FROM T1 T1_ALIAS;

INDEX

It instructs an optimizer to perform index scan for the specified table. When this hint is specified, the opti

mizer does not take into account the optimization which uses the table scan, index scan by another index,

rowid scan, index combine.

When specifying INDEX hint, the table name should exist in <from clause>, and the index name should be

the name of an index which exists in the table.

One or more index names can be specified or an index name can be omitted. If the index name is omitte

d, all indexes in the table are targeted.

If two or more index names are specified or an index name for the table with two or more indexes is omit

ted, an optimizer calculates scan cost of each index and selects the best index scan method.

The following is an example of applying a hint to perform index scan for the table T1.

• Type 1: Only one index name is specified.

SELECT /*+ INDEX(T1, T1_PK_INDEX) */ I1

FROM T1;

• Type 2: Two or more index names are specified.

SELECT /*+ INDEX(T1, T1_PK_INDEX T1_UNIQUE_INDEX) */ I1

FROM T1;

• Type 3: The index name is omitted.

SELECT /*+ INDEX(T1) */ I1

FROM T1;

SELECT | 2,045

NO_INDEX

It instructs an optimizer not to perform index scan for indexes corresponding to the index name in the sp

ecified table. When this hint is specified, the optimizer does not take into account the optimization which

uses the index scan for the specifies indexes in the table.

When specifying NO_INDEX hint, the table name should exist in <from clause>, and the index name shou

ld be the name of an index which exists in the table.

One or more index names can be specified or an index name can be omitted. If the index name is omitte

d, an optimizer does not take into account the index scan for the table.

If indexes which are not specified in NO_INDEX hint exist, an optimizer calculates index scan cost for the i

ndexes and selects the best scan method including table scan cost and rowid scan cost.

The following is an example of applying NO_INDEX hint to the table T1.

• Type 1: Only one index name is specified.

SELECT /*+ NO_INDEX(T1, T1_PK_INDEX) */ I1

FROM T1;

• Type 2: Two or more index names are specified.

SELECT /*+ NO_INDEX(T1, T1_PK_INDEX T1_UNIQUE_INDEX) */ I1

FROM T1;

• Type 3: The index name is omitted.

SELECT /*+ NO_INDEX(T1) */ I1

FROM T1;

INDEX_ASC

It instructs an optimizer to perform ascending index scan for the specified table. When this hint is specifie

d, the optimizer does not take into account the optimization which uses the table scan, index scan by an

other index, rowid scan, index combine.

If the index of the selected index scan consists of ascending (descending) order, it scans the index in asce

nding (descending) order.

The syntax rule for INDEX_ASC hint is as same as the syntax rule for INDEX hint.

INDEX_DESC

It instructs an optimizer to perform descending index scan for the specified table. When this hint is specifi

ed, the optimizer does not take into account the optimization which uses the table scan, index scan by an

other index, rowid scan, index combine.

2,046 | SQL References

If the index of the selected index scan consists of ascending (descending) order, it scans the index in asce

nding (descending) order.

The syntax rule for INDEX_ DESC hint is as same as the syntax rule for INDEX hint.

INDEX_COMBINE

It instructs an optimizer to separate OR statements and perform index scan for the specified table then to

combine the results. When this hint is specified, the optimizer firstly takes into account the optimization

which uses the index combine. If index combine is not available, it calculates the cost of table scan , index

scan or rowid scan, and selects the best scan method.

When specifying INDEX_COMBINE hint, the table name should exist in <from clause>, and the index nam

e should be the name of an index which exists in the table.

One or more index names can be specified or an index name can be omitted. If the index name is omitte

d, all indexes in the table are targeted.

OR statements should exist in the condition to scan the table to perform INDEX_COMBINE hint. If OR stat

ement does not exist, an optimizer ignores the hint and it calculates the cost of the table scan, index scan

or rowid scan, and chooses the best scan method.

If two or more index names are specified or an index name for the table with two or more indexes is omit

ted, an optimizer calculates index scan cost of each index in each OR statement, then selects the best ind

ex scan method. Therefore, it can selects an index scan which uses each different index for conditions se

parated by OR statements.

The following is an example of applying a hint to perform the index combine for the table T1.

• Type 1: Only one index name is specified.

SELECT /*+ INDEX_COMBINE(T1, T1_PK_INDEX) */ I1

FROM T1

WHERE I1 = 1

OR I1 = 2;

• Type 2: Two or more index names are specified.

SELECT /*+ INDEX_COMBINE(T1, T1_PK_INDEX T1_UNIQUE_INDEX) */ I1

FROM T1

WHERE I1 = 1

OR I2 = 2;

• Type 3: The index name is omitted.

SELECT | 2,047

SELECT /*+ INDEX_COMBINE(T1) */ I1

FROM T1

WHERE I1 = 1

OR I2 = 2;

• Type 4: INDEX_COMBINE hint is not applicable. (An OR statement does not exist.)

SELECT /*+ INDEX_COMBINE(T1, T1_PK_INDEX) */ I1

FROM T1

WHERE I1 = 1;

ROWID

It instructs an optimizer to perform rowid scan for the specified table. When this hint is specified, the opti

mizer takes into account the optimization which uses the rowid scan firstly. If rowid scan is not available, i

t calculates the cost of table scan, index scan, index combine, and selects the best index scan method.

When specifying ROWID hint, the table name is required, and only a single table name should be specifie

d. The specified table name should exist in <from clause>.

To perform ROWID hint, EQUAL condition using ROWID should exist in the condition to scan the table. If

the EQUAL condition does not exist, an optimizer ignores the hint and it calculates the cost of table scan,

index scan, index combine, and selects the best scan method.

The following is an example of applying a hint to perform ROWID scan for the table T1.

• Type 1: The table name is specified in <from clause>.

SELECT /*+ ROWID(T1) */ I1

FROM T1

WHERE ROWID = 'AAAAAAAAADXAACAAAGAlAAA';

• Type 2: The alias name is specified in <from clause>.

SELECT /*+ ROWID(T1_ALIAS) */ I1

FROM T1 T1_ALIAS

WHERE ROWID = 'AAAAAAAAADXAACAAAGAlAAA';

• Type 3: ROWID hint is not applicable. (A rowid condition does not exist.)

SELECT /*+ ROWID(T1) */ I1

FROM T1

WHERE I1 = 1;

2,048 | SQL References

<join_order_hints>

ORDERED

It instructs an optimizer to perform join in an order specified in <from clause> for the tables. This hint is a

pplicable only when tables which are separated by ',' are specified in <from clause> or the tables are speci

fied by inner join.

The following is an example of applying ORDERED hint for joining the tables T1 and T2.

• Type 1: The tables separated by ',' are specified in <from clause>.

SELECT /*+ ORDERED */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: The tables are specified as inner join in <from clause>.

SELECT /*+ ORDERED */ *

FROM T1 INNER JOIN T2 ON T1.I1 = T2.I1;

• Type 3: ORDERED hint is not applicable. (It is outer join.)

SELECT /*+ ORDERED */ *

FROM T1 LEFT OUTER JOIN T2 ON T1.I1 = T2.I1;

ORDERING

It instructs an optimizer to perform join in an order of specified tables in this hint. This hint is applicable o

nly when tables which are separated by ',' are specified in <from clause> or the tables are specified by inn

er join.

ORDERING hint can specify a positioning option for each table. The positioning option can not be specifie

d for the first and second tables but it can be specified since the third table. The position for the first and

second tables can be specified according to the order specified in the ORDERING hint.

The positioning options are LEFT or RIGHT. LEFT locates a table to the left node (outer node) of join, and

RIGHT locates a table to the right node (inner node) of join.

When the positioning option is specified in the table, the table executes join at the fixed position specifie

d by the option. When the positioning option is not specified in the table, the optimizer calculates cost of

positioning the table in the left node(outer node) and right node(inner node), and selects the best join or

der.

The following is an example of applying ORDERING hint for joining the tables T1, T2, T3.

• Type 1: The tables separated by ',' are specified in <from clause>.

SELECT | 2,049

SELECT /*+ ORDERING(T2, T3, T1) */ *

FROM T1, T2, T3

WHERE T1.I1 = T2.I1

AND T2.I2 = T3.I2;

• Type 2: The tables are specified as inner join in <from clause>.

SELECT /*+ ORDERING(T2, T3, T1) */ *

FROM (T1 INNER JOIN T2 ON T1.I1 = T2.I1) INNER JOIN T3 ON T2.I2 = T3.I2;

• Type 3: The positioning option is specified in ORDERING hint.

SELECT /*+ ORDERING(T2, T3, T1 LEFT) */ *

FROM T1, T2, T3

WHERE T1.I1 = T2.I1

AND T2.I2 = T3.I2;

• Type 4: ORDERING hint is not applicable. (It is outer join.)

SELECT /*+ ORDERING(T1, T2) */ *

FROM T1 LEFT OUTER JOIN T2 ON T1.I1 = T2.I1;

• Type 5: The positioning option is misused in the ORDERING hint. (It is used in the first table.)

SELECT /*+ ORDERING(T2 RIGHT, T3, T1) */ *

FROM T1, T2, T3

WHERE T1.I1 = T2.I1

AND T2.I2 = T3.I2;

LEADING

It instructs an optimizer to perform join in an order of specified tables in this hint. This hint is applicable o

nly when tables which are separated by ',' are specified in <from clause> or the tables are specified by inn

er join.

LEADING hint can not specify the position, unlike ORDERING hint, but it can specify the order of the table

participating in join operation. Therefore, the first and second table is determined to be placed in the left

node (outer node) and the right node (inner node) each according to the order.

From the third table, the optimizer calculates cost of positioning the table in the left node (outer node) a

nd right node(inner node), and selects a better position.

The following is an example of applying LEADING hint to join the tables T1, T2, T3.

• Type 1: The tables separated by ',' are specified in <from clause>.

2,050 | SQL References

SELECT /*+ LEADING(T2, T3, T1) */ *

FROM T1, T2, T3

WHERE T1.I1 = T2.I1

AND T2.I2 = T3.I2;

• Type 2: The tables are specified as inner join in <from clause>.

SELECT /*+ LEADING(T2, T3, T1) */ *

FROM (T1 INNER JOIN T2 ON T1.I1 = T2.I1) INNER JOIN T3 ON T2.I2 = T3.I2;

• Type 3: LEADING hint is not applicable. (It is outer join.)

SELECT /*+ LEADING(T1, T2) */ *

FROM T1 LEFT OUTER JOIN T2 ON T1.I1 = T2.I1;

<join operation_hints>

USE_HASH

It instructs an optimizer to perform join by using the hash join method if the table specified in this hint is i

ncluded when performing join. This hint is applicable to all join types.

USE_HASH hint should specify one or more tables, and it can not specify identical tables more than two.

The tables specified in USE_HASH hint are not allowed to be specified in USE_MERGE, USE_NL, USE_INL.

When it is specified, if "hint_error" property is set to on, it is treated as a validation error. If "hint_error" p

roperty is set to off the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node(outer node) is firstly applied.

When the table specified in USE_HASH hint participates in join, the condition which can hash join should

exist in join condition. (The column should be comparable and it should be equi-join) If the condition doe

s not exist, an optimizer ignores the hint and selects the best join operation according to the cost calculat

ion.

The following is an example of applying USE_HASH hint to join the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ USE_HASH(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The order is determined according to ORDERED hint, and the join operation hint (USE_HASH) for

SELECT | 2,051

the table T1 in the left node (outer node) is applied.)

SELECT /*+ ORDERED USE_HASH(T1) USE_MERGE(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 3: USE_HASH hint is not applicable. (A hash join condition does not exist.)

SELECT /*+ USE_HASH(T1, T2) */ *

FROM T1, T2

WHERE T1.I1 < T2.I1;

NO_USE_HASH

It instructs an optimizer to perform join by selecting one of the methods except for the hash join method

if the table specified in this hint is included when performing join. This hint is applicable to all join types.

NO_USE_HASH hint should specify one or more tables, and it can not specify identical tables more than t

wo. The tables specified in NO_USE_HASH hint are allowed to be specified in any other join operation hin

t except for USE_HASH hint.

When the table specified in this hint is specified in USE_HASH hint, if "hint_error" property is set to on, it i

s treated as a validation error. If "hint_error" property is set to off the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node (outer node) is firstly applied.

When tables specified in NO_USE_HASH hint participates in join, an optimizer calculates the cost of other

join operations except for hash join, and selects the best join operation.

The following is an example of applying NO_USE_HASH hint to join of the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ NO_USE_HASH(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The hint specified in table T2 is applied, so the merge join is applied.)

SELECT /*+ NO_USE_HASH(T1) USE_MERGE(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

2,052 | SQL References

USE_MERGE

It instructs an optimizer to perform join by using a merge join method if the table specified in this hint is i

ncluded when performing join. This hint is applicable to all join types.

USE_MERGE hint should specify one or more tables, and it can not specify identical tables more than two.

The tables specified in USE_MERGE hint are not allowed to be specified in USE_HASH, USE_NL, USE_INL.

When it is specified, if "hint_error" property is set to on, it is treated as a validation error. If "hint_error" p

roperty is set to off, the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node(outer node) is firstly applied.

When the table specified in USE_MERGE hint participates in join, the condition which can merge join sho

uld exist in join condition. (The column should be comparable and it should be equi-join) If the condition

does not exist, an optimizer ignores the hint and selects the best join operation according to the cost calc

ulation.

The following is an example of applying USE_MERGE hint to join the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ USE_MERGE(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The order is determined according to ORDERED hint, and the join operation hint

(USE_MERGE) is applied for the table T1 in the left node(outer node))

SELECT /*+ ORDERED USE_MERGE(T1) USE_HASH(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 3: USE_MERGE hint is not applicable. (A hash join condition does not exist.)

SELECT /*+ USE_MERGE(T1, T2) */ *

FROM T1, T2

WHERE T1.I1 < T2.I1;

NO_USE_MERGE

It instructs an optimizer to perform join by selecting one of the methods except for the merge join metho

d if the table specified in this hint is included when performing join. This hint is applicable to all join types.

SELECT | 2,053

NO_USE_MERGE hint should specify one or more tables, and it can not specify identical tables more than

two. The tables specified in NO_USE_MERGE hint are allowed to be specified in any other join operation

hint except for USE_MERGE hint.

When the table specified in this hint is specified in USE_MERGE hint, if "hint_error" property is set to on, i

t is treated as a validation error. If "hint_error" property is set to off the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node(outer node) is firstly applied.

When tables specified in NO_USE_MERGE hint participates in join, an optimizer calculates the cost of oth

er join operations except for merge join, and selects the best join operation.

The following is an example of applying NO_USE_MERGE hint to join the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ NO_USE_MERGE(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The hint specified in table T2 is applied, so the hash join is applied.)

SELECT /*+ NO_USE_MERGE(T1) USE_HASH(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

USE_NL

It instructs an optimizer to perform join by using a nested loops join method if the table specified in this h

int is included when performing join. This hint is applicable to all join types.

USE_NL hint should specify one or more tables, and it can not specify identical tables more than two. The

tables specified in USE_NL hint are not allowed to be specified in USE_HASH, USE_MERGE, USE_INL.

When it is specified, if "hint_error" property is set to on, it is treated as a validation error. If "hint_error" pr

operty is set to off the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node(outer node) is firstly applied.

The nested loops join, unlike the hash join and the merge join, can perform join without any constraints.

The following is an example of applying USE_NL hint to join of the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

2,054 | SQL References

SELECT /*+ USE_NL(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The order is determined according to ORDERED hint, and the join operation hint

(USE_NL) is applied for the table T1 in the left node (outer node))

SELECT /*+ ORDERED USE_NL(T1) USE_HASH(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

NO_USE_NL

It instructs an optimizer to perform join by selecting one of the methods except for the nested loops join

method if the table specified in this hint is included when performing join. This hint is applicable to all joi

n types.

NO_USE_NL hint should specify one or more tables, and it can not specify identical tables more than two.

The tables specified in NO_USE_NL hint are allowed to be specified in any other join operation hint excep

t for USE_NL hint.

When the table specified in this hint is specified in USE_NL hint, if "hint_error" property is set to on, it is tr

eated as a validation error. If "hint_error" property is set to off the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node (outer node) is firstly applied.

When tables specified in NO_USE_NL hint participates in join, an optimizer calculates the cost of other joi

n operations except for nested loops join, and selects the best join operation.

However, if other join operations can not be used because of constraints, the optimizer ignores the hint,

and selects the nested loops join.

The following is an example of applying NO_USE_NL hint to join the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ NO_USE_NL(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The hint specified in table T2 is applied, so the hash join is applied.)

SELECT | 2,055

SELECT /*+ NO_USE_NL(T1) USE_HASH(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 3: NO_USE_NL hint is specified but the join operation such as hash join can not be applied

because of constraints.

(A nested loops join is applied.)

SELECT /*+ NO_USE_NL(T1) */ *

FROM T1, T2

WHERE T1.I1 < T2.I1;

USE_INL

It instructs an optimizer to perform join by using a nested loops join method which uses a sort instant if t

he table specified in this hint is included when performing join.

This hint is applicable only when tables which are separated by ',' are specified in <from clause> or the ta

bles are specified by inner join.

USE_INL hint should specifies one or more tables, and it can not specify identical tables more than two. T

he tables specified in USE_INL hint are not allowed to be specified in USE_HASH, USE_MERGE, USE_NL.

When it is specified, if "hint_error" property is set to on, it is treated as a validation error. If "hint_error" pr

operty is set to off, the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node (outer node) is firstly applied.

The nested loops join using a sort instant creates a sort instance whose sort key is expressions satisfying t

he join condition for the table in the right node (inner node), and performs join using it. In this case, the

sort key should be a type which can perform key compare.

If all expressions satisfying the join condition are a type which can not perform key compare, this method

can not be applied. In this case, an optimizer calculates the cost of other join operations and selects the b

est join operation.

The following is an example of applying USE_INL hint to join the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ USE_INL(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The order is determined according to ORDERED hint, and the join operation hint

2,056 | SQL References

(USE_INL) is applied for the table T1 in the left node (outer node))

SELECT /*+ ORDERED USE_INL(T1) USE_HASH(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

NO_USE_INL

It instructs an optimizer to perform join by selecting one of the methods except for the nested loops join

method which uses a sort instant if the table specified in this hint is included when performing join. This

hint is applicable to all join types.

NO_USE_INL hint should specify one or more tables, and it can not specify identical tables more than two.

The tables specified in NO_USE_INL hint are allowed to be specified in any other join operation hint exce

pt for USE_INL hint.

When the table specified in this hint is specified in USE_INL hint, if "hint_error" property is set to on, it is t

reated as a validation error. If "hint_error" property is set to off the firstly specified hint is applied.

Also, if each different join operation hints are specified for two tables participating in join, the hint specifi

ed in the left node(outer node) is firstly applied.

When tables specified in NO_USE_INL hint participates in join, an optimizer calculates the cost of other jo

in operations except for the nested loops join method which uses a sort instant, and selects the best join

operation..

The following is an example of applying NO_USE_INL hint to join the tables T1, T2.

• Type 1: The join operation hint is specified only for a single table.

SELECT /*+ NO_USE_INL(T1) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

• Type 2: Each different join operation hints are specified for two tables.

(The hint specified in table T2 is applied, so the hash join is applied.)

SELECT /*+ NO_USE_INL(T1) USE_HASH(T2) */ *

FROM T1, T2

WHERE T1.I1 = T2.I1;

<query_transformation_hints>

UNNEST

It instructs an optimizer to change subqueries to the join statement which guarantees the same results. T

herefore, it does not repeatedly perform subqueries by using the method to treat the join with the upper-

SELECT | 2,057

level query instead of separately performing a subquery.

The UNNEST hint can be specified only in <hint clause> of the subquery. It is applied only to the subquery,

and is not applied to subordinate subqueries.

To unnest all subqueries when multiple subqueries exist, the UNNEST hints should be specified for all sub

queries. To unnest a subquery which exist within a subquery, the UNNEST hints should be specified for th

at subquery.

If UNNEST hint is specified together with NO_QUERY_TRANSFORMATION hint, UNNEST hint is ignored d

ue to NO_QUERY_TRANSFORMATION hint.

UNNEST hint can not be used simultaneously with the NO_UNNEST hint. If they are used simultaneously a

nd "hint_error" property is set to on, it is treated as a validation error. If "hint_error" property is set to off t

he firstly specified hint is applied.

The following is an example of applying unnesting to a subquery by using UNNEST hint.

• Type 1: It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ UNNEST */ I1

FROM T2);

• Type 2: UNNEST hint and NO_QUERY_TRANSFORMATION hint are specified.

(The subquery is not unnested due to NO_QUERY_TRANSFORMATION hint.)

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ UNNEST NO_QUERY_TRANSFORMATION */ I1

FROM T2);

NO_UNNEST

It instructs an optimizer to process a subquery as a filter instead of unnesting. This performs subquery wh

enever in need.

NO_UNNEST hint can be specified only in <hint clause> of a subquery. It is applied only to the subquery, a

nd is not applied to subordinate subqueries.

Not to unnest all subqueries when multiple subqueries exist, the NO_UNNEST hints should be specified fo

r all subqueries. Not to unnest a subquery which exist within a subquery, the NO_UNNEST hints should b

e specified for that subquery.

If NO_UNNEST hint is specified together with NO_QUERY_TRANSFORMATION hint, NO_UNNEST hint is i

2,058 | SQL References

gnored due to NO_QUERY_TRANSFORMATION hint.

NO_UNNEST hint can not be used simultaneously with UNNEST hint. If they are used simultaneously and

"hint_error" property is set to on, it is treated as a validation error. If "hint_error" property is set to off, the

firstly specified hint is applied.

The following is an example of applying no unnesting to a subquery by using NO_UNNEST hint.

● It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ NO_UNNEST */ I1

FROM T2);

NL_SJ

It instructs an optimizer to process a subquery by using nested loops semi join. This method changes the s

ubquery to a semi join form which has the same result.

NL_SJ hint can be used in EXISTS, IN, ANY quantify operator and it can not be used in NOT EXISTS, NOT I

N, ALL quantify operator.

The optimizer ignores NL_SJ hint when it is specified in a subquery which can be changed only to anti-se

mi join form because NL_SJ hint changes the subquery to semi join form.

The following is an example of changing a subquery to a join form by using NL_SJ hint.

• Type 1: It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ NL_SJ */ I1

FROM T2);

• Type 2: It is used in EXISTS subquery.

SELECT *

FROM T1

WHERE EXISTS (SELECT /*+ NL_SJ */ I1

FROM T2

WHERE T1.I1 = T2.I1);

• Type 3: It is used in the subquery of a quantify operator.

SELECT | 2,059

SELECT *

FROM T1

WHERE I1 < ANY (SELECT /*+ NL_SJ */ I1

FROM T2);

• Type 4: It is used in NOT IN subquery.

(The hint is ignored because it is an operator which can be changed to anti-semi join)

SELECT *

FROM T1

WHERE I1 NOT IN (SELECT /*+ NL_SJ */ I1

FROM T2);

NL_ISJ

It instructs an optimizer to process a subquery by using nested loops inverted semi join. This method chan

ges the subquery to a inverted semi join form which has the same result.

Inverted semi join creates a sort instant which has a key for a semi join as a unique sort key on the right n

ode (inner node). Then it reversely searches for a record which is identical to the corresponding key from

the left node (outer node).

NL_ISJ hint is more advantageous in case when there are many duplicate right nodes (inner nodes) for ke

ys of semi join and the key in the left node (outer node) can perform the index scan.

The optimizer ignores the hint when the index scan can not be performed in the left node (outer node) f

or the key of semi join. Also, the optimizer ignores the hint when the key compare for the key of semi joi

n can not be performed.

NL_ISJ hint can be used in EXISTS, IN, = ANY quantify operator, and it can not be used in NOT EXISTS, NO

T IN, ALL quantify operator, and ANY quantify operator except for =ANY.

The optimizer ignores NL_ISJ hint when it is specified in a subquery which can be changed only to anti-se

mi join form because NL_ISJ hint changes the subquery to semi join.

The following is an example of changing a subquery to a join form by using NL_ISJ hint.

• Type 1: It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ NL_ISJ */ I1

FROM T2);

• Type 2: It is used in EXISTS subquery.

2,060 | SQL References

SELECT *

FROM T1

WHERE EXISTS (SELECT /*+ NL_ISJ */ I1

FROM T2

WHERE T1.I1 = T2.I1);

• Type 3: It is used in the subquery of a quantify operator.

SELECT *

FROM T1

WHERE I1 = ANY (SELECT /*+ NL_ISJ */ I1

FROM T2);

• Type 4: It is used in NOT IN subquery.

(The hint is ignored because it is an operator which can be changed to anti-semi join)

SELECT *

FROM T1

WHERE I1 NOT IN (SELECT /*+ NL_ISJ */ I1

FROM T2);

MERGE_SJ

It instructs an optimizer to process a subquery by using merge semi join. This method changes the subqu

ery to a semi join form which has the same result.

MERGE_SJ hint can be used in EXISTS, IN, = ANY quantify operator, and it can not be used in NOT EXISTS,

NOT IN, ALL quantify operator, and ANY quantify operator except for =ANY.

The optimizer ignores MERGE_SJ hint when it is specified in a subquery which can be changed only to an

ti-semi join form because MERGE_SJ hint changes the subquery to semi join. Also, the optimizer ignores t

he hint when the key compare for the key of merge semi join can not be performed.

The following is an example of changing a subquery to a join form by using MERGE_SJ hint.

• Type 1: It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ MERGE_SJ */ I1

FROM T2);

• Type 2: It is used in EXISTS subquery.

SELECT | 2,061

SELECT *

FROM T1

WHERE EXISTS (SELECT /*+ MERGE_SJ */ I1

FROM T2

WHERE T1.I1 = T2.I1);

• Type 3: It is used in the subquery of a quantify operator.

SELECT *

FROM T1

WHERE I1 = ANY (SELECT /*+ MERGE_SJ */ I1

FROM T2);

• Type 4: It is used in NOT IN subquery.

(The hint is ignored because it is an operator which can be changed to anti-semi join)

SELECT *

FROM T1

WHERE I1 NOT IN (SELECT /*+ MERGE_SJ */ I1

FROM T2);

HASH_SJ

It instructs an optimizer to process a subquery by using hash semi join. This method changes the subquer

y to a semi join form which has the same result.

HASH_SJ hint can be used in EXISTS, IN, = ANY quantify operator, and it can not be used in NOT EXISTS,

NOT IN, ALL quantify operator, ANY quantify operator except for = ANY.

The optimizer ignores HASH_SJ hint when it is specified in a subquery which can be changed only to anti-

semi join form because HASH_SJ hint changes the subquery to semi join. Also, the optimizer ignores the

hint when the key compare for the key of hash semi join can not be performed.

The following is an example of changing a subquery to a join form by using HASH_SJ hint.

• Type 1: It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ HASH_SJ */ I1

FROM T2);

• Type 2: It is used in EXISTS subquery.

2,062 | SQL References

SELECT *

FROM T1

WHERE EXISTS (SELECT /*+ HASH_SJ */ I1

FROM T2

WHERE T1.I1 = T2.I1);

• Type 3: It is used in the subquery of a quantify operator.

SELECT *

FROM T1

WHERE I1 = ANY (SELECT /*+ HASH_SJ */ I1

FROM T2);

• Type 4: It is used in NOT IN subquery.

(The hint is ignored because it is an operator which can be changed to anti-semi join)

SELECT *

FROM T1

WHERE I1 NOT IN (SELECT /*+ HASH_SJ */ I1

FROM T2);

HASH_ISJ

It instructs an optimizer to process a subquery by using hash inverted semi join. This method changes the

subquery to a inverted semi join form which has the same result.

HASH_ISJ hint is more advantageous in the case that the number of rows of the left node (outer node) is

small, whereas the number of rows of the right node (inner node) is large. The optimizer ignores the hint

when the key compare for the key of semi join can not be performed.

HASH_ISJ hint can be used in EXISTS, IN, = ANY quantify operator, and it can not be used in NOT EXISTS,

NOT IN, ALL quantify operator, ANY quantify operator except for = ANY.

The optimizer ignores HASH_ISJ hint when it is specified in a subquery which can be changed only to anti

-semi join form because HASH_ISJ hint changes the subquery to semi join. Also, the optimizer ignores the

hint when the key compare for the key of hash semi join can not be performed.

The following is an example of changing a subquery to a join form by using HASH_ISJ hint.

• Type 1: It is used in IN subquery.

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ HASH_ISJ */ I1

FROM T2);

SELECT | 2,063

• Type 2: It is used in EXISTS subquery.

SELECT *

FROM T1

WHERE EXISTS (SELECT /*+ HASH_ISJ */ I1

FROM T2

WHERE T1.I1 = T2.I1);

• Type 3: It is used in the subquery of a quantify operator.

SELECT *

FROM T1

WHERE I1 = ANY (SELECT /*+ HASH_ISJ */ I1

FROM T2);

• Type 4: It is used in NOT IN subquery.

(The hint is ignored because it is an operator which can be changed to anti-semi join)

SELECT *

FROM T1

WHERE I1 NOT IN (SELECT /*+ HASH_ISJ */ I1

FROM T2);

HASH_AJ

It instructs an optimizer to process a subquery by using hash anti-semi join. This method changes the sub

query to a anti-semi join form which has the same result.

HASH_AJ hint can be used in NOT EXISTS, NOT IN, != ALL quantify operator, and it can not be used in EX

ISTS, IN, ANY quantify operator, ALL quantify operator except for != ALL.

The optimizer ignores HASH_AJ hint when it is specified in a subquery which can be changed only to sem

i join form because HASH_AJ hint changes the subquery to anti-semi join. Also, the optimizer ignores the

hint when the key compare for the key of hash semi join can not be performed.

The following is an example of changing a subquery to a join form by using HASH_AJ hint.

• Type 1: It is used in NOT IN subquery.

SELECT *

FROM T1

WHERE I1 NOT IN (SELECT /*+ HASH_AJ */ I1

FROM T2);

• Type 2: It is used in NOT EXISTS subquery.

2,064 | SQL References

SELECT *

FROM T1

WHERE NOT EXISTS (SELECT /*+ HASH_AJ */ I1

FROM T2

WHERE T1.I1 = T2.I1);

• Type 3: It is used in the subquery of a quantify operator.

SELECT *

FROM T1

WHERE I1 != ALL (SELECT /*+ HASH_AJ */ I1

FROM T2);

• Type 4: It is used in IN subquery.

(The hint is ignored because it is an operator which can be changed to semi join)

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ HASH_AJ */ I1

FROM T2);

TRANSITIVE_CLOSURE

If A=B and B = C, then A=C. The relation like this is applied to a join predicate.

• 'T1.i1 = T2.i1' and 'T2.i1 = T3.i1' create 'T1.i1 = T3.i1' predicate.

However, if it is not used in a join ordering, then it will be automatically deleted.

SELECT *

FROM T1, T2, T3

WHERE T1.i1 = T2.i1 AND T2.i1 = T3.i1;

In the example above, if the join ordering is ((t1 � t2) � t3), then only one predicate with higher selectivi

ty is selected between 'T2.i1 = T3.i1' and 'T1.i1 = T3.i1'. If the join ordering is ((t1 � t3) � t2), then only

one predicate with higher selectivity is selected between 'T1.i1 = T2.i1' and 'T2.i1 = T3.i1'.

NO_TRANSITIVE_CLOSURE

It does not apply the join transitive closure to a join predicate.

• 'T1.i1 = T2.i1' and 'T2.i1 = T3.i1' does not create 'T1.i1 = T3.i1' predicate.

SELECT | 2,065

SELECT *

FROM T1, T2, T3

WHERE T1.i1 = T2.i1 AND T2.i1 = T3.i1;

The join transitive closure is not applied, so 'T1.i1 = T3.i1' predicate= does not exist. Therefore, the join o

rdering such as ((t1 � t3) � t2) can not occur.

MERGE

It instructs an optimizer to apply a simple view merging to the specified view when it is possible. This hint

should be specified in superordinate query block which includes the specified view.

If MERGE hint is used together with <join order hints>, <join operation hints>, <other hints>, TRANSITIVE

_CLOSURE/NO_TRANSITIVE hint, NO MERGE hint, then the processing is ambiguous.

Therefore, if these hints are used together with MERGE hint, and "hint_error" property is set to on it is tre

ated as a validation error. If "hint_error" property is set to off, the firstly specified hint is applied.

The following is an example of applying simple view merging by using MERGE hint.

• Type 1: If MERGE hint is specified in a single view, then a simple view merging is performed for v1.

SELECT /*+ MERGE(v1) */ *

FROM (SELECT * FROM t1) v1;

• Type 2: If MERGE hint is specified in multiple views, then a simple view merging is performed for

v1 and v2, but it is not applied to v3.

SELECT /*+ MERGE(v1) MERGE(v2) NO_MERGE(v3) */ *

FROM (SELECT i1 FROM t1) v1,

(SELECT i1 FROM t2) v2,

(SELECT i1 FROM t3) v3

WHERE v1.i1 = v2.i1 AND v2.i1 = v3.i1;

• Type 3: If the simple view merging is performed when the hint is specified together with <join

order hints>, then the application order and direction between t3 and t4 is ambiguous.

Therefore, the firstly specified hint is applied only, and the simple view merging is not

performed.

SELECT /*+ ORDERING(t1, t2, v1 RIGHT) MERGE(v1) */ *

FROM t1,

t2,

(SELECT * FROM t3, t4 WHERE t3.i1 = t4.i1) v1

WHERE t1.i1 = t2.i1 AND t2.i1 = v1.i1;

2,066 | SQL References

→

• Type 4: If the simple view merging is performed when the hint is specified together with <join

operation hints>, then the view which is a target of hashing disappears. Therefore, the firstly

specified hint is applied only, and the simple view merging is not performed.

SELECT /*+ USE_HASH(v1) MERGE(v1) */ *

FROM t1,

t2,

(SELECT * FROM t3, t4 WHERE t3.i1 = t4.i1) v1

WHERE t1.i1 = t2.i1 AND t2.i1 = v1.i1;

• Type 5: If the simple view merging is performed when the hint is specified together with <other

hints>, then other hints between the view and the superordinate query conflicts. Therefore,

the firstly specified hint is applied only, and the simple view merging is not performed.

SELECT /*+ PUSH_PRED MERGE(v1) */ *

FROM (SELECT /*+ NO_PUSH_PRED */ * FROM t1 WHERE t1.i1 = 1) v1

WHERE v1.i1 = 1;

• Type 6: If the simple view merging is performed when the hint is specified together with TRANSITIV

E CLOSUE hint, then other hints between the view and the superordinate query conflicts.

Therefore, the firstly specified hint is applied only, and the simple view merging is not

performed.

SELECT /*+ TRANSITIVE_CLOSURE MERGE(v1) */ *

FROM (SELECT /*+ NO_TRANSITIVE_CLOSURE */ *

FROM t1, t2, t3

WHERE t1.i1 = t2.i1 AND t2.i1 = t3.i1) v1;

NO_MERGE

It instructs an optimizer not to apply a simple view merging to the specified view even when it is possible.

This hint should be specified in superordinate query block which includes the specified view.

If NO_MERGE hint is used together with <join order hints>, <join operation hints>, <other hints>, TRANSI

TIVE_CLOSURE/NO_TRANSITIVE hint, MERGE hint, then the processing is ambiguous.

Therefore, if these hints are used together with NO_MERGE hint, and "hint_error" property is set to on it i

s treated as a validation error. If "hint_error" property is set to off, the firstly specified hint is applied.

The following is an example of not applying simple view merging by using NO_MERGE hint.

• Type 1: If NO_MERGE hint is specified in a single view, then a simple view merging is not performed fo

r v1.

SELECT | 2,067

SELECT /*+ NO_MERGE(v1) */ *

FROM (SELECT * FROM t1) v1;

• Type 2: If NO_MERGE hint is specified in multiple views, then a simple view merging is performed

for v1 and v2, but it is not applied to v3.

SELECT /*+ MERGE(v1) MERGE(v2) NO_MERGE(v3) */ *

FROM (SELECT i1 FROM t1) v1,

(SELECT i1 FROM t2) v2,

(SELECT i1 FROM t3) v3

WHERE v1.i1 = v2.i1 AND v2.i1 = v3.i1;

NO_QUERY_TRANSFORMATION

It instructs an optimizer not to change anything for a query. This hint does not perform the process of wh

ich a heuristic optimizer and cost based optimizer changes the query for the best performance.

NO_QUERY_TRANSFORMATION hint can be specified in the top-level query and subquery, and it is applie

d to the specified query and all its subordinate subqueries.

The following is an example of preventing a query being changed by using NO_QUERY_TRANSFORMATI

ON.

• Type 1: NO_QUERY_TRANSFORMATION hint is used in the subquery.

(Only the query in the subquery is not changed.)

SELECT *

FROM T1

WHERE I1 IN (SELECT /*+ NO_QUERY_TRANSFORMATION */ I1

FROM T2);

• Type 2: NO_QUERY_TRANSFORMATION hint is used in the top-level query.

(All queries in the top-level query and its subquery are not changed.)

SELECT /*+ NO_QUERY_TRANSFORMATION */ *

FROM T1

WHERE I1 IN (SELECT I1

FROM T2);

• Type 3: NO_QUERY_TRANSFORMATION hint is used in the top-level query, and the UNNEST

hint is used in the subquery.

(The UNNEST hint for the subquery is ignored.)

2,068 | SQL References

SELECT /*+ NO_QUERY_TRANSFORMATION */ *

FROM T1

WHERE I1 IN (SELECT /*+ UNNEST */ I1

FROM T2);

<other_hints>

PUSH_PRED

It instructs an optimizer to push filters which are applicable to a single table. The hint pushes filters of the

select statement to a single table to which the filters are applicable, then preprocess it.

The hint can be respectively specified to subqueries starting with SELECT, and it is applied only within a bl

ock of each query, but it is not spreaded to a subordinate subquery.

The hint can be independently specified in each subqueries.

If it is not specified, the default value is applied. The default value is PUSH_PRED.

The following is an example of pushing a subquery by using PUSH_PRED hint.

• It pushes T1.i1 = 1 to table T1.

SELECT /*+ PUSH_PRED */ *

FROM T1, T2

WHERE T1.I1 = T2.I1

AND T1.I1 = 1;

NO_PUSH_PRED

It instructs an optimizer not to push filters which are applicable to a single table. The hint prevents pushin

g filters of the select statement to a single table to which the filters are applicable, so that it is not to be p

reprocessed.

The hint can be respectively specified to subqueries starting with SELECT, and it is applied only within a bl

ock of each query, but it is not spreaded to a subordinate subquery.

The hint can be independently specified in each subqueries.

If it is not specified, the default value is applied. The default value is PUSH_PRED.

If the hint is specified, and a join exists in a from statement, then it is processed at the lowest join among

joins which can process the filter. In other words, it prevents preprocessing in a single table which can pr

ocesses the filter.

If the hint is specified, and a view exists in the from statement, then the filter is not pushed to the low-lev

el of the view.

The following is an example of pushing a filter by using NO_PUSH_PRED hint.

SELECT | 2,069

• Type 1: It performs T1.i1 = 1 after joining T1 and T2.

SELECT /*+ NO_PUSH_PRED */ *

FROM T1, T2

WHERE T1.I1 = T2.I1

AND T1.I1 = 1;

• Type 2: It performs A.i1 = 1 after processing view A.

SELECT /*+ NO_PUSH_PRED */ *

FROM (SELECT I1 FROM T1) AS A

WHERE A.I1 = 1;

PUSH_SUBQ

It instructs an optimizer to push a subquery to the lowest applicable node. When the upper level query of

the subquery consists of join, this hint scans a structure of the join nodes, from the top to the bottom, to

find a node which can process the subquery. Then it processes the subquery from the lowest node which

can push the subquery.

PUSH_SUBQ hint can be specified only in the subquery. When multiple subqueries exist, PUSH_SUBQ hint

should be respectively specified in each subquery.

If the PUSH_SUBQ hint is not specified, the optimizer calculates the cost and pushes the subquery to the

node of the best cost.

The following is an example of pushing a subquery by using PUSH_SUBQ hint.

• Type 1: A subquery is pushed to the table T1.

SELECT *

FROM T1, T2

WHERE T1.I1 = T2.I1

AND T1.I1 IN (SELECT /*+ PUSH_SUBQ */ I1

FROM T3);

• Type 2: The subquery can be processed only in the top node.

(The subquery can not be pushed to the subordinate node.)

SELECT *

FROM T1, T2

WHERE T1.I1 = T2.I1

AND T1.I1 IN (SELECT /*+ PUSH_SUBQ */ I1

FROM T3

2,070 | SQL References

WHERE T3.I2 = T1.I2

AND T3.I3 = T2.I3);

NO_PUSH_SUBQ

It instructs the optimizer not to push the subquery to a subordinate node. When a superordinate query of

the subquery consists of join, this hint processes the subquery at the top node of the join node.

NO_PUSH_SUBQ hint can be specified only in the subquery. When multiple subqueries exist, NO_PUSH_S

UBQ hint should be respectively specified in each subquery.

If NO_PUSH_SUBQ hint is not specified, the optimizer calculates the cost and pushes the subquery to the

node of the best cost.

The following is an example of pushing a subquery by using NO_PUSH_SUBQ hint.

• NO_PUSH_SUBQ hint is used for the subquery which can be processed in the table T1.

(After joining the tables T1 and T2, the subquery is processed.)

SELECT *

FROM T1, T2

WHERE T1.I1 = T2.I1

AND T1.I1 IN (SELECT /*+ NO_PUSH_SUBQ */ I1

FROM T3);

USE_GROUP_HASH

When group by clause exists, it instructs an optimizer to use a hash instant for grouping.

USE_GROUP_HASH hint can be specified only in group by clause. When multiple subqueries exist, USE_G

ROUP_HASH hint should be respectively specified in each subquery.

If USE_GROUP_HASH hint is not used and group keys for grouping are sorted from a subordinate node, a

method using the group node is considered.

The following is an example of using USE_GROUP_HASH hint.

• USE_GROUP_HASH is used when the index consisting of group keys in the table T1 exists.

SELECT /*+ USE_GROUP_HASH */ *

FROM T1

GROUP BY I1;

SELECT | 2,071

USE_DISTINCT_HASH

When distinct clause exist, it instructs an optimizer to use a hash instant to perform distinct.

USE_DISTINCT_HASH hint can be specified only in a statement with distinct clause. When multiple subqu

eries exist, USE_DISTINCT_HASH hint should be respectively specified in each subquery.

If USE_DISTINCT_HASH hint is not used and distinct keys are sorted from a subordinate node, a method u

sing the group node is considered.

The following is an example of using USE_DISTINCT_HASH hint.

• USE_DISTINCT_HASH is used when the index consisting of distinct keys is in the table T1 exists.

SELECT /*+ USE_DISTINCT_HASH */ I1, I2

FROM T1;

Description

A hint is a comment which a user directly instructs how to perform an SQL statement to the GOLDILOCKS

optimizer. When GOLDILOCKS optimizer does not determine an appropriate execution plan, the user can

select the execution plan using the hint.

The GOLDILOCKS optimizer preferentially selects the user defined hints to determine an execution plan. If

the user defined hint is not available, the GOLDILOCKS optimizer determines the execution plan.

GOLDILOCKS optimizer operates based on the user defined hint as possible when the user uses a hint. Th

erefore, it is recommended to use the hint only when it is determined that the execution plan of GOLDIL

OCKS optimizer is wrong while the user performs the SQL statement.

Especially, GOLDILOCKS optimizer performs the execution plan according to the user defined hint when r

epeatedly using the same SQL statement by a hint. Therefore, be cautious that the table or view included

in the SQL statement is updated, and the performance of another execution plan may be degraded.

In GOLDILOCKS, the hint can be used in SELECT, INSERT SELECT, DELETE, UPDATE statements. The hint c

an be specified after the keyword of each statement and it is specified between the keywords '/ * + ' and

'* / '.

If a wrong hint is specified, or if hints conflict because two or more hints for the same execution plan are

specified, the hint is ignored or the first hint is applied. To check if the hint is wrong, use the hint after set

ting HINT_ERROR property to on by using ALTER statement.

2,072 | SQL References

Examples

The following is an example of using <hint clause> in INSERT SELECT, DELETE, UPDATE, SELECT statemen

ts.

• It is used in INSERT SELECT statement.

gSQL> INSERT INTO T1 SELECT /*+ INDEX(T1, T1_IDX) */ * FROM T1;

1 row created.

• It is used in SELECT statement.

gSQL> SELECT /*+ INDEX(T1, T1_IDX) */ * FROM T1;

I1

--

1

1

2 rows selected.

• It is used in UPDATE statement.

gSQL> UPDATE /*+ INDEX(T1, T1_IDX) */ T1 SET I1 = 2;

2 rows updated.

• It is used in DELETE statement.

gSQL> DELETE /*+ INDEX(T1, T1_IDX) */ T1 WHERE I1 = 2;

2 rows deleted.

The following is an example of using a wrong hint when HINT_ERROR property is set to on by using ALTE

R statement.

gSQL> ALTER SESSION SET HINT_ERROR = ON;

Session altered.

gSQL> SELECT /*+ INDEX(T2, T1_IDX) */ * FROM T1;

ERR-42000(16058): not applicable hint :

SELECT /*+ INDEX(T2, T1_IDX) */ * FROM T1

*

ERROR at line 1:

SELECT | 2,073

Compatibility

The SQL standard does not define a hint, and the other vendors, such as Oracle support a hint in their ow

n forms.

Most hints of GOLDILOCKS are compatible with hints of Oracle, and the hints of GOLDILOCKS which are

as same as the hints of Oracle are operated in Oracle in the same way. However, Oracle has a different m

eaning for the INDEX_COMBINE hint, and Oracle does not support the ORDERING hint.

For More Information

Refer to query specification.

2,074 | SQL References

16.126 SELECT .. FOR UPDATE

Function

It sets whether or not to update the result set of SELECT statement.

Syntax

<select for update statement> ::=

<query expression> <updatability clause>

;

<updatability clause> ::=

FOR READ ONLY

| FOR UPDATE [OF <column name list>] [<lock wait mode>]

<lock wait mode> ::=

| WAIT

| WAIT second

| NOWAIT

Invocation and Access Rules

The user should satisfy the following conditions to perform <select for update statement>.

● One of the following privileges for all tables used in the statement is required for a user to perform

<query expression>.

○ SELECT(columns) ON TABLE for all columns used in the statement among the table columns

○ (SELECT or CONTROL TABLE) ON TABLE for that table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

● If FOR UPDATE clause is used, one of the following privileges for the tables to be locked is required.

○ (LOCK or CONTROL TABLE) ON TABLE for that table

○ (LOCK TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ LOCK ANY TABLE ON DATABASE

SELECT .. FOR UPDATE | 2,075

Syntax Rules and Parameters

<query expression>

INTO clause should not exist in SELECT statement.

To use FOR UPDATE, the query should identify the row updates of the base table, or it should be an upda

table query which can acquire the lock into the row.

The updatable query should satisfy all of following conditions.

● DISTINCT should not exist in the top-level query.

○ (X) SELECT DISTINCT * FROM t1;

● GROUP BY, HAVING, aggregation function should not exist in the top-level query.

○ (X) SELECT MAX(c1) FROM t1;

● Set operators should not exist.

○ (X) SELECT * FROM t1 UNION ALL SELECT * FROM t2;

● There should be at least one updatable column in the table listed in FROM clause.

○ The column of the table which is not for cross join among the tables included in join is not an up

datable column.

■ OUTER JOIN is not the cross join.

■ NATURAL JOIN is not the cross join.

■ If USING clause is is used in INNER JOIN, it is not the cross join.

○ The column of the following tables is not an updatable column.

■ Dictionary table, fixed table, performance view

○ The column of a view is not an updatable table.

For more information about SELECT statement, refer to query expression.

<updatability clause>

It specifies whether or not to update the row for the result set.

● FOR READ ONLY

○ The read-only query is declared.

● FOR UPDATE

○ The writable query is declared.

○ x lock is acquired for the rows until the end of the transaction to prevent other transactions from

updating the rows when executing the query.

○ <query expression> should be an updatable query.

2,076 | SQL References

FOR UPDATE OF …

It lists the columns relating to acquiring lock when executing the query.

● The column listed in FOR UPDATE OF statement.

○ It should be updatable columns of the table listed in the FROM clause of <query expression>.

○ It acquires a lock for the table of the listed column.

● Only FOR UPDATE is used

○ It means the same as listing all updatable columns of the table in FROM clause of <query expressi

on>.

○ It acquires a lock for the table of all columns.

<lock wait mode>

It is used together with FOR UPDATE statement, and it specifies the lock acquisition method.

● WAIT

○ It acquires a lock for all rows of the query result before obtaining the query result.

○ It waits until acquiring a lock.

● WAIT second

○ It acquires a lock for all rows of the query result before acquiring the query result.

○ If the lock is not acquired for a specified time, an error occurs.

○ The wait time is in seconds and it can use the value between 0 and 1,000,000,000.

● NOWAIT

○ It acquires a lock for all rows of the query result before acquiring the query result.

○ If the lock is not immediately acquired, an error occurs.

● If it is not specified, the default value is WAIT.

Description

SELECT statement keep fetching the rows regardless of whether the transaction ends. However, SELECT ..

FOR UPDATE statement can not fetch the rows when the transaction ends because the statement acquir

es the lock for the rows.

Note

Cursor holdability

SELECT .. FOR UPDATE | 2,077

● WITH HOLD

○ It can keep fetching regardless of whether the transaction ends.

○ It is also known as fetch across commit.

● WITHOUT HOLD

○ When the transaction ends, it can not fetch.

Examples

The following is an example of acquiring a lock for the row by using FOR UPDATE statement.

gSQL> SELECT id, data FROM t1 WHERE id = 3 FOR UPDATE;

ID DATA

-- ------

3 data_3

1 row selected.

The following uses join and ORDER BY clause but it is an updatable query, so FOR UPDATE statement can

be used.

gSQL> SELECT t1.id, t1.name, t2.addr

FROM t1, t2

WHERE t1.id = t2.id

ORDER BY 1

FOR UPDATE;

ID NAME ADDR

-- ------- -------------

1 someone somewhere

2 anyone anywhere

3 unknown N/A

4 leekmo leekmo's home

5 mkkim seoul

5 rows selected.

The following is a non-updatable query, so FOR UPDATE statement can not be used.

2,078 | SQL References

gSQL> SELECT id, COUNT(*)

FROM t1

GROUP BY id

FOR UPDATE;

ERR-42000(16112): query expression is not updatable

Compatibility

In the SQL standard, <select for update statement> is not defined, but it can be defined by using DECLAR

E cursor_name statement.

SELECT .. INTO | 2,079

16.127 SELECT .. INTO

Function

It retrieves a single row by using a query, then obtains the value of retrieved row into the host variable.

Syntax

<select statement: single row> ::=

SELECT [<hint clause>] [<set quantifier>] <select list>

INTO <select target list>

<table expression>

;

<select target list> ::=

variable_name [, ...]

Invocation and Access Rules

One of the following privileges for all tables used in the statement is required for a user to perform <selec

t statement: single row>.

● SELECT(columns) ON TABLE for all columns used in the statement among the table columns

● (SELECT or CONTROL TABLE) ON TABLE for that table

● (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

<hint clause>

It specifies hints for query execution.

For more information, refer to hint clause of SELECT statement.

2,080 | SQL References

<set quantifier>

It specifies whether to remove duplicates from the query result.

For more information, refer to query specification clause.

<select list>

It specifies the columns to be retrieved from the query result.

For more information, refer to select list clause.

INTO <select target list>

The number of the variable specified in INTO clause should be equal to the number of the expression spe

cified in <select list>.

<table expression>

It specifies the query information such as a search condition.

For more information, refer to query specification clause.

Description

The rows to be retrieved should be one or less.

If two or more rows are retrieved, an error occurs.

Differences among SELECT-related Statements

● <select statement>

○ It retrieves multiple rows which satisfy the condition, and the retrieved rows can be retrieved by u

sing API such as SQLFetch ().

○ e.g. SELECT c1 FROM t1 WHERE c1 > 0;

● <select statement: single row>

○ It can retrieve one or less row which satisfies the condition, then obtains the value into the host v

ariable in INTO clause when the retrieved row is a single row.

○ e.g. SELECT c2 INTO :v1 FROM t1 WHERE c1 = 0;

SELECT .. INTO | 2,081

Example

The following is an example of obtaining the value into the host variable by using interactive SQL (gsql).

gSQL> \var v_id INTEGER

gSLQ> \var v_data VARCHAR(128)

gSQL> SELECT id, data INTO :v_id, :v_data FROM t1 WHERE id = 3;

V_ID V_DATA

---- ------

3 data_3

1 row selected.

2,082 | SQL References

16.128 SELECT .. INTO .. FOR UPDATE

Function

It sets whether to update the row by retrieving a single row through the query, then obtains the value of

retrieved row into the host variable.

Syntax

<select for update statement: single row> ::=

SELECT [<hint clause>] [<set quantifier>] <select list>

INTO <select target list>

<table expression> <updatability clause>

;

<select target list> ::=

variable_name [, ...]

<updatability clause> ::=

FOR READ ONLY

| FOR UPDATE [OF <column name list>] [<lock wait mode>]

<lock wait mode> ::=

| WAIT

| WAIT second

| NOWAIT

Invocation and Access Rules

One of the following privileges for all tables used in the statement is required for a user to perform <selec

t statement: single row>.

● SELECT(columns) ON TABLE for all columns used in the statement among the table columns

● (SELECT or CONTROL TABLE) ON TABLE for that table

● (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● SELECT ANY TABLE ON DATABASE

If FOR UPDATE clause is used, one of the following privileges for the tables to be locked is required.

SELECT .. INTO .. FOR UPDATE | 2,083

● (LOCK or CONTROL TABLE) ON TABLE for that table

● (LOCK TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● LOCK ANY TABLE ON DATABASE

Syntax Rules and Parameters

<select for update statement: single row>

To use FOR UPDATE, the query should identify the row updates of the base table, or it should be an upda

table query which can acquire the lock into the row.

The updatable query should satisfy all of following conditions.

● DISTINCT should not exist in the top-level query.

○ (X) SELECT DISTINCT * FROM t1;

● GROUP BY, HAVING, aggregation function should not exist in the top-level query.

○ (X) SELECT MAX(c1) FROM t1;

● Set operators should not exist.

○ (X) SELECT * FROM t1 UNION ALL SELECT * FROM t2;

● There should be at least one updatable column in the table listed in FROM clause.

○ The column of the table which is not for cross join among the tables included in join is not an up

datable column.

■ FULL OUTER JOIN is not the cross join.

■ NATURAL JOIN is not the cross join.

■ If USING clause is is used in INNER JOIN, it is not the cross join.

○ The column of the following tables is not an updatable column.

■ Dictionary table, fixed table, performance view

○ The column of a view is not an updatable table.

<updatability clause>

It specifies whether or not to update the row for the result set.

● FOR READ ONLY

○ The read-only query is declared.

● FOR UPDATE

○ The writable query is declared.

○ x lock is acquired for the rows until the end of the transaction to prevent other transactions from

updating the rows when executing the query.

○ <query expression> should be an updatable query.

2,084 | SQL References

FOR UPDATE OF …

It lists the columns relating to acquiring lock when executing the query.

● The column listed in FOR UPDATE OF statement.

○ It should be updatable columns of the table listed in the FROM clause of <query expression>.

○ It acquires a lock for the table of the listed column.

● Only FOR UPDATE is used

○ It means the same as listing all updatable columns of the table in FROM clause of <query expressi

on>.

○ It acquires a lock for the table of all columns.

<lock wait mode>

It is used together with FOR UPDATE statement, and it specifies the lock acquisition method.

● WAIT

○ It acquires a lock for all rows of the query result before obtaining the query result.

○ It waits until acquiring a lock.

● WAIT second

○ It acquires a lock for all rows of the query result before acquiring the query result.

○ If the lock is not acquired for a specified time, an error occurs.

○ The wait time is in seconds and it can use the value between 0 and 1,000,000,000.

● NOWAIT

○ It acquires a lock for all rows of the query result before acquiring the query result.

○ If the lock is not immediately acquired, an error occurs.

● If it is not specified, the default value is WAIT.

<hint clause>

It specifies hints for query execution.

For more information, refer to hint clause of SELECT statement.

<set quantifier>

It specifies whether to remove duplicates from the query result.

For more information, refer to query specification clause.

SELECT .. INTO .. FOR UPDATE | 2,085

<select list>

It specifies the columns to be retrieved from the query result.

For more information, refer to select list clause.

INTO <select target list>

The number of the variable specified in INTO clause should be equal to the number of the expression spe

cified in <select list>.

<table expression>

It specifies the query information such as a search condition.

For more information, refer to query specification clause.

Description

The rows to be retrieved should be one or less.

If two or more rows are retrieved, an error occurs.

SELECT statement keep fetching the rows regardless of whether the transaction ends. However, SELECT ..

FOR UPDATE statement can not fetch the rows when the transaction ends because the statement acquir

es the lock for the rows.

Note

Cursor holdability

• WITH HOLD

° It can keep fetching regardless of whether the transaction ends.

° It is also known as fetch across commit.

• WITHOUT HOLD

° When the transaction ends, it can not fetch.

2,086 | SQL References

Differences among SELECT-related Statements

● <select for update statement>

○ It retrieves multiple rows which satisfy the condition, sets whether to update them and the retriev

ed rows can be retrieved by using API such as SQLFetch ().

○ e.g. SELECT c1 FROM t1 WHERE c1 > 0 FOR UPDATE;

● <select for update statement: single row>

○ It can retrieve one or less row which satisfies the condition, sets whether to update them then ob

tains the value into the host variable in INTO clause when the retrieved row is a single row.

○ e.g. SELECT c2 INTO :v1 FROM t1 WHERE c1 = 0 FOR UPDATE;

Examples

The following is an example of acquiring a lock for the row by using FOR UPDATE statement, and obtaini

ng the value into the host variable by using interactive SQL (gsql).

gSQL> \var v_id INTEGER

gSQL> \var v_data VARCHAR(128)

gSQL> SELECT id, data INTO :v_id, :v_data FROM t1 WHERE id = 3 FOR UPDATE;

V_ID V_DATA

---- ------

3 data_3

1 row selected.

The following uses join and ORDER BY clause but it is an updatable query, so FOR UPDATE statement can

be used.

gSQL> \var v_id INTEGER

gSQL> \var v_name VARCHAR(128)

gSQL> \var v_addr VARCHAR(128)

gSQL> SELECT t1.id, t1.name, t2.addr

INTO :v_id, :v_name, :v_addr

FROM t1, t2

WHERE t1.id = t2.id

ORDER BY 1

LIMIT 1

FOR UPDATE;

ID NAME ADDR

-- ------- -------------

1 someone somewhere

SELECT .. INTO .. FOR UPDATE | 2,087

1 row selected.

The following is a non-updatable query, so FOR UPDATE statement can not be used.

gSQL> \var v_id INTEGER

gSQL> \var v_count INTEGER

gSQL> SELECT id, COUNT(*)

INTO :v_id, :v_count

FROM t1

GROUP BY id

FOR UPDATE;

ERR-42000(16112): query expression is not updatable

For More Information

Refer to the followings.

● SELECT .. FOR UPDATE

● SELECT .. INTO

2,088 | SQL References

16.129 SET CONSTRAINTS

Function

It sets the check point of deferrable constraint in a transaction to IMMEDIATE or DEFERRED.

Syntax

<set constraints mode statement> ::=

SET { CONSTRAINT | CONSTRAINTS } <constraint name list> { DEFERRED | IMMEDIATE }

;

<constraint name list> ::=

ALL

| <constraint name> [, ...]

Invocation and Access Rules

Any separate access privilege is not required for a user to perform SET CONSTRAINTS.

Caution

It is not supported in the cluster system.

Syntax Rules and Parameters

CONSTRAINT | CONSTRAINTS

CONSTRAINT and CONSTRAINTS are the keywords of the same meaning, and the SQL standard uses CON

STRAINTS.

SET CONSTRAINTS | 2,089

<constraint name list>

It specifies the list of constraint names, or specifies ALL to set all deferrable constraints.

When specifying <constraint name>, it should be the name of the deferrable constraint.

ALL means all deferrable constraints.

DEFERRED | IMMEDIATE

It sets the check point of specified deferrable constraints.

● IMMEDIATE

○ It checks the specified constraints when executing the DML statement.

○ If the transaction violates the constraints, then an error occurs.

● DEFERRED

○ It checks the specified constraints when the transaction is committed.

If the transaction is in progress, the check point of the constraint is set in the current transaction. If the tr

ansaction is not in progress, it is set in the next transaction.

After the transaction ends, it does not affect the next transaction.

Description

Deferrable Constraint

DEFERRABLE constraint can change its check point.

The following is an example of creating a table with a deferrable constraint, and inserting data to the tabl

e.

gSQL> CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128) CONSTRAINT t1_uk UNIQUE

DEFERRABLE INITIALLY IMMEDIATE

);

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

gSQL> INSERT INTO t1 VALUES (2, 'mkkim');

2,090 | SQL References

1 row created.

gSQL> COMMIT;

Commit complete.

In the example above, UNIQUE constraint which is deferrable is created on a name column, and the initial

check point is set as INITIALLY IMMEDIATE. Therefore, the constraint is checked whenever DML statemen

t is executed.

In this case, if the user tries to exchange the name value of two rows as follows, it violates the constraint

because the check point is IMMEDIATE.

gSQL> UPDATE t1 SET name = 'mkkim' WHERE id = 1;

ERR-23000(16057): unique constraint (PUBLIC.T1_UK) violated

gSQL> UPDATE t1 SET name = 'leekmo' WHERE id = 2;

ERR-23000(16057): unique constraint (PUBLIC.T1_UK) violated

If the check point is changed to DEFERRED as follows, the operation as same as above succeeds because

the constraint is checked when the transaction is committed.

gSQL> SET CONSTRAINTS t1_uk DEFERRED;

Constraints set.

gSQL> UPDATE t1 SET name = 'mkkim' WHERE id = 1;

1 row updated.

gSQL> UPDATE t1 SET name = 'leekmo' WHERE id = 2;

1 row updated.

gSQL> COMMIT;

Commit complete.

If the check point is set to DEFERRED, then the constraint is checked when the transaction is committed.

Therefore, if the transaction is committed when the constraint is violated, then the transaction fails and it

is rolled back as follows.

gSQL> SET CONSTRAINTS t1_uk DEFERRED;

Constraints set.

gSQL> INSERT INTO t1 VALUES (3, 'leekmo');

1 row created.

gSQL> COMMIT;

ERR-40002(16291): transaction rollback: integrity constraint violation : PUBLIC.T1_UK(1)

SET CONSTRAINTS | 2,091

Violation of a Deferred Constraint

Executing the following statements when the transaction violates the constraints set to DEFFFERED, then

an error occurs as follows.

● COMMIT

○ An error occurs and the transaction is rolled back.

● SET CONSTRAINTS ALL IMMEDIATE

○ An syntax error occurs.

● DDL

○ An syntax error occurs.

An unexpected ROLLBACK can occur when COMMIT, it is necessary to ensure whether the transaction vi

olates the constraint by using SET CONSTRAINTS ALL IMMEDIATE statement.

gSQL> SET CONSTRAINTS t1_uk DEFERRED;

Constraints set.

gSQL> INSERT INTO t1 VALUES (3, 'leekmo');

1 row created.

gSQL> SET CONSTRAINTS ALL IMMEDIATE;

ERR-23000(16038): integrity constraint violation : PUBLIC.T1_UK(1)

gSQL> SELECT * FROM t1 ORDER BY id;

ID NAME

-- ------

1 mkkim

2 leekmo

3 leekmo

3 rows selected.

gSQL> UPDATE t1 SET name = 'xcom73' WHERE id = 3;

1 row updated.

gSQL> SET CONSTRAINTS ALL IMMEDIATE;

Constraints set.

gSQL> COMMIT;

Commit complete.

Transaction Control Language

SET CONSTRAINTS statement is a transaction control language which is used when the transaction is in p

rogress such as SAVEPOINT savepoint_specifier.

The transaction control such as COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT statement is applied to

SET CONSTRAINTS statement.

2,092 | SQL References

The following is an example of a table with multiple deferrable constraints.

CREATE TABLE t1

(

id1 INTEGER CONSTRAINT t1_uk1 UNIQUE DEFERRABLE INITIALLY IMMEDIATE,

id2 INTEGER CONSTRAINT t1_uk2 UNIQUE DEFERRABLE INITIALLY IMMEDIATE,

id3 INTEGER CONSTRAINT t1_uk3 UNIQUE DEFERRABLE INITIALLY IMMEDIATE

);

If <set constraints mode statement> statement is performed when the transaction is in progress, the chec

k point of deferrable constraints is changed depending on each point as follows.

● result: success

INSERT INTO t1 VALUES (1, 1, 1);

1 row created.

COMMIT;

Commit complete.

● result: success

SAVEPOINT sp1;

Savepoint created.

● result: success

● t1_uk1 constraint is DEFERRED

SET CONSTRAINTS t1_uk1 DEFERRED;

Constraints set.

● result: success

SAVEPOINT sp2;

Savepoint created.

● result: success

● t1_uk1, t1_uk2 constraints are DEFERRED

SET CONSTRAINTS t1_uk2 DEFERRED;

Constraints set.

● result: success

SET CONSTRAINTS | 2,093

SAVEPOINT sp3;

Savepoint created.

● result: success

● ALL constraints are DEFERRED

SET CONSTRAINTS ALL DEFERRED;

Constraints set.

● result: success

SAVEPOINT sp4;

Savepoint created.

● result: success

● ALL constraints are IMMEDIATE

SET CONSTRAINTS ALL IMMEDIATE;

Constraints set.

When the transaction is partially rolled back by using ROLLBACK TO SAVEPOINT statement as follows, SE

T CONSTRAINTS statement is also partially rolled back and the check point is changed.

● result: error

INSERT INTO t1 VALUES (1, 2, 2);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK1) violated

● result: error

INSERT INTO t1 VALUES (3, 1, 3);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK2) violated

● result: error

INSERT INTO t1 VALUES (4, 4, 1);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK3) violated

● result: success

● t1_uk1, t1_uk2 constraints are DEFERRED

2,094 | SQL References

ROLLBACK TO SAVEPOINT sp4;

Rollback complete.

● result: success

INSERT INTO t1 VALUES (1, 2, 2);

1 row created.

● result: success

INSERT INTO t1 VALUES (3, 1, 3);

1 row created.

● result: success

INSERT INTO t1 VALUES (4, 4, 1);

1 row created.

● result: success

● t1_uk1, t1_uk2 constraints are DEFERRED

ROLLBACK TO SAVEPOINT sp3;

Rollback complete.

● result: success

INSERT INTO t1 VALUES (1, 2, 2);

1 row created.

● result: success

INSERT INTO t1 VALUES (3, 1, 3);

1 row created.

● result: success

INSERT INTO t1 VALUES (4, 4, 1);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK3) violated

● result: success

● t1_uk1 constraint is DEFERRED

SET CONSTRAINTS | 2,095

ROLLBACK TO SAVEPOINT sp2;

Rollback complete.

● result: success

INSERT INTO t1 VALUES (1, 2, 2);

1 row created.

● result: error

INSERT INTO t1 VALUES (3, 1, 3);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK2) violated

● result: error

INSERT INTO t1 VALUES (4, 4, 1);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK3) violated

● result: success

● all constraint are IMMEDIATE

ROLLBACK TO SAVEPOINT sp1;

Rollback complete.

● result: error

INSERT INTO t1 VALUES (1, 2, 2);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK1) violated

● result: error

INSERT INTO t1 VALUES (3, 1, 3);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK2) violated

● result: error

INSERT INTO t1 VALUES (4, 4, 1);

ERR-23000(16057): unique constraint (PUBLIC.T1_UK3) violated

● result: 1 row

● 1 1 1

2,096 | SQL References

SELECT * FROM t1;

ID1 ID2 ID3

--- --- ---

1 1 1

1 row selected.

When the transaction is committed or rolled back, the effects of SET CONSTRAINTS statement is also ter

minated, and all deferrable constraints follows the constraints property which is INITIALLY IMMEDIATE or

INITIALLY DEFERRED value.

Examples

The following is an example of changing the check point by specifying the constraint name.

gSQL> SET CONSTRAINTS t1_uk1 DEFERRED;

Constraints set.

The following is an example of changing the check point of all deferrable constraints.

gSQL> SET CONSTRAINTS ALL DEFERRED;

Constraints set.

Compatibility

The SQL standard does not define CONSTRAINT keyword clause.

Table 16-75 SQL standard compatibility

Feature ID Description Compatibility

F721 Deferrable constraints O

For More Information

Refer to the followings.

● Adding constraints

○ CREATE TABLE

○ ALTER TABLE name ADD CONSTRAINT

SET CONSTRAINTS | 2,097

○ ALTER TABLE name ADD COLUMN

○ ALTER TABLE name ALTER COLUMN

● Altering constraints: ALTER TABLE name ALTER CONSTRAINT

● Controlling the check point of constraints: SET CONSTRAINTS

2,098 | SQL References

16.130 SET SESSION AUTHORIZATION user_identif

ier

Function

It sets the session user and current user.

Syntax

<set session user identifier statement> ::=

SET SESSION AUTHORIZATION user_identifier

;

Invocation and Access Rules

ACCESS CONTROL ON DATABASE privilege is required for a logon user to perform <set session user ident

ifier statement>.

The user information is managed in three types as follows.

● Logon user

○ It is a user who performed login, and it is maintained until the connection is closed.

● Session user

○ It is as same as the first logon user, but it can be changed using the SET SESSION AUTHORIZATIO

N statement.

● Current user

○ It is generally as same as the session user, but it is temporarily changed internally in system to con

trol access when using the PSM or view.

○ The session user and current user is similar to the difference between the unix system's real user

and the effective user.

SET SESSION AUTHORIZATION user_identifier | 2,099

Syntax Rules and Parameters

user_identifier

It is the username to be altered.

Description

After performing SET SESSION AUTHORIZATION statement, all statements is performed based on the sess

ion user. Therefore, the privilege for the session user is checked and the owner of when creating objects

also is the session user.

Example

The following is an example that the user test with ACCESS CONTROL ON DATABASE privilege sets the u

ser u1 to the session user.

gSQL> SET SESSION AUTHORIZATION u1;

Session set.

gSQL> SELECT LOGON_USER(), SESSION_USER(), CURRENT_USER FROM dual;

LOGON_USER() SESSION_USER() CURRENT_USER

------------ -------------- ------------

TEST U1 U1

1 row selected.

Compatibility

Table 16-76 SQL standard compatibility

Feature ID Description Compatibility

F321 User authorization O

2,100 | SQL References

16.131 SET SESSION CHARACTERISTICS AS transa

ction_mode

Function

It sets the transaction property of a session.

Syntax

<set session characteristics statement> ::=

SET SESSION CHARACTERISTICS AS TRANSACTION <transaction_mode>

;

<transaction_mode> ::=

{ <transaction_access_mode> | ISOLATION LEVEL < isolation_level > }

<transaction_access_mode> ::=

READ { ONLY | WRITE }

< isolation_level > ::=

{ READ COMMITTED | SERIALIZABLE }

Syntax Rules and Parameters

<transaction_access_mode>

It is ACCESS MODE of the following transactions.

● READ ONLY

● READ WRITE

<isolation_level>

It is ISOLATION LEVEL of the following transactions.

● READ COMMITTED

● SERIALIZABLE

SET SESSION CHARACTERISTICS AS transaction_mode | 2,101

Description

SET SESSION CHARACTERISTICS sets the transaction property of a session. In other words, properties of a

ll transactions created within the session follows these properties.

However, SET TRANSACTION transaction_mode statement sets only the property of a single transaction

which is performed next.

Examples

The following is an example that all transactions to be created within the session are set to READ ONLY.

gSQL> SET SESSION CHARACTERISTICS AS TRANSACTION READ ONLY;

Session set.

The following is an example that the isolation level of all transactions to be created within the session is s

et to READ COMMITTED.

gSQL> SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED;

Session set.

Compatibility

Table 16-77 SQL standard compatibility

Feature ID Description Compatibility

F761 Session management O

For More Information

Refer to SET TRANSACTION transaction_mode.

2,102 | SQL References

16.132 SET TIME ZONE

Function

It sets the TIMEZONE of a session.

Syntax

<set local time zone statement> ::=

SET TIME ZONE <set time zone value>

;

<set time zone value> ::=

{ '[+|-]hh:mm' | LOCAL }

Syntax Rules and Parameters

<set time zone value>

It is the TIMEZONE value to be set.

● hh:mm: It is a GMT OFFSET of the TIMEZONE to be set.

○ The range of the offset value is '-14:00' ~ '+14:00' .

● LOCAL: It is the TIME ZONE at the time of session creation.

○ TIME ZONE at the time of session creation is set to TIME ZONE of the client OS.

Description

Altering the time zone of the session affects the result value of function such as CURRENT_TIME, CURRE

NT_TIMESTAMP.

SET TIME ZONE | 2,103

Example

The following is an example of altering the session time zone to '+09: 00'.

gSQL> SET TIME ZONE '+09:00';

Session set.

Compatibility

Table 16-78 SQL standard compatibility

Feature ID Description Compatibility

F411 Time zone specifications O

2,104 | SQL References

16.133 SET TRANSACTION transaction_mode

Function

It sets the transaction property.

Syntax

<set transaction statement> ::=

SET TRANSACTION <transaction_mode>

;

<transaction_mode> ::=

{ <transaction_access_mode> | ISOLATION LEVEL < isolation_level > }

<transaction_access_mode> ::=

READ { ONLY | WRITE }

< isolation_level > ::=

{ READ COMMITTED | SERIALIZABLE }

Syntax Rules and Parameters

<transaction_access_mode>

It is ACCESS MODE of the following transactions.

● READ ONLY

● READ WRITE

<isolation_level>

It is ISOLATION LEVEL of the following transactions.

● READ COMMITTED

● SERIALIZABLE

SET TRANSACTION transaction_mode | 2,105

Description

SET TRANSACTION sets property of the next transaction, and the property is reset to the default value aft

er the next transaction ends.

Example

The following is an example of setting the next transaction to READ ONLY.

gSQL> SET TRANSACTION READ ONLY;

Transaction set.

Compatibility

Table 16-79 SQL standard compatibility

Feature ID Description Compatibility

T251 SET TRANSACTION statement: LOCAL option X

For More Information

Refer to SET SESSION CHARACTERISTICS AS transaction_mode.

2,106 | SQL References

16.134 TRUNCATE TABLE

Function

It truncates all rows from a table.

Syntax

<truncate table statement> ::=

TRUNCATE TABLE table_name

[RESTART IDENTITY | CONTINUE IDENTITY]

[DROP STORAGE | DROP ALL STORAGE]

;

Invocation and Access Rules

One of the following privileges is required for a user to perform <truncate table statement>.

● The owner of that table

● CONTROL TABLE ON TABLE for the table

● (DROP TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● DROP ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be truncated.

It can define schema to which the table belongs such as schema_name.table_name and if schema_name

is omitted, the default schema name of the user performing the statement is used.

TRUNCATE TABLE | 2,107

[RESTART IDENTITY | CONTINUE IDENTITY]

● RESTART IDENTITY

○ If an identity column which has auto created value in that table exists, it automatically restarts val

ue.

● CONTINUE IDENTITY

○ If an identity column which has auto created value in that table exists, it does not change the exis

ting value.

● If it is not specified, the default value is CONTINUE IDENTITY.

[DROP STORAGE | DROP ALL STORAGE]

● DROP STORAGE

○ It drops allocated extents from the the table excluding the space of MINSIZE.

● DROP ALL STORAGE

○ It drops all extents allocated to the table.

● If it is not specified, the default value is DROP STORAGE.

Description

Data Definition Language (DDL) statement such as TRUNCATE TABLE can be rolled back if it is before wh

en the transaction is committed.

Examples

The following is an example of performing TRUNCATE TABLE statement.

gSQL> TRUNCATE TABLE t1;

Table truncated.

The following is an example of restarting the value of the identity column when performing TRUNCATE T

ABLE.

TRUNCATE TABLE t1 RESTART IDENTITY;

Table truncated.

2,108 | SQL References

Compatibility

The SQL standard does not define [DROP STORAGE | DROP ALL STORAGE] clause.

Table 16-80 SQL standard compatibility

Feature ID Description Compatibility

F200 TRUNCATE TABLE statement O

F202 TRUNCATE TABLE: identity column restart option O

UPDATE | 2,109

16.135 UPDATE

Function

It updates rows in a table.

Syntax

<update statement: searched> ::=

UPDATE table_name [[AS] alias_name]

SET <set clause> [, ...]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

;

<set clause> ::=

column_name = { <value expression> | DEFAULT }

| (column_name [, ...]) = ({ <value expression> | DEFAULT } [, ...])

| (column_name [, ...]) = (<query expression>)

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

Invocation and Access Rules

One of the following privileges is required for a user to perform <update statement: searched>.

● UPDATE(columns) ON TABLE for all columns which are targets to be updated

● (UPDATE or CONTROL TABLE) ON TABLE for the table

2,110 | SQL References

● (UPDATE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

● UPDATE ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be updated.

It can define schema to which the table belongs such as schema_name.table_name and if schema_name

is omitted, the default schema name of the user performing the statement is used.

[AS alias_name]

It is the alias of table_name.

<set clause>

It defines the columns to be updated and its values to be assigned. The number of columns in <set clause

> should be as same as the number of values.

It can be defined as follows.

● column_name = { <value expression> | DEFAULT }

UPDATE table_name

SET column1 = value1, column2 = value2, column3 = value3

● (column_name [, ...]) = ({ <value expression> | DEFAULT } [, ...])

UPDATE table_name

SET (column1, column2, column3) = (value1, value2, value3)

● (column_name [, ...]) = (<query expression>)

UPDATE table_name

SET column1 = (SELECT max(value1) FROM other_table_name)

<query expression> should be a query which creates a single row.

UPDATE | 2,111

If DEFAULT is defined as a column value, the default values (refer to <default clause>) defined when exec

uting CREATE TABLE is used. If it is not defined, NULL value is assigned.

WHERE <search condition>

It updates the rows which satisfy WHERE condition.

If WHERE condition is not specified, all rows are updated.

For more information about WHERE condition, refer to where clause of SELECT.

<result offset clause>

It specifies the number of rows to skip from the query result.

For more information, refer to <result offset clause> of SELECT.

<fetch limit clause>

It specifies the number of rows to fetch in two ways, which are <fetch first clause> and <limit clause>.

● <fetch first clause>

○ It specifies the number of rows to be fetched.

○ For more information, refer to <fetch first clause> of SELECT statement.

● <limit clause>

○ It specifies the number of rows to be fetched, or it simultaneously specifies both the number of r

ows to be skipped and the number of rows to be fetched.

○ For more information, refer to <limit clause> of SELECT statement.

Description

Differences among UPDATE-related Statements

● UPDATE

○ It updates multiple rows which satisfy the condition.

○ e.g. UPDATE t1 SET c2 = c2 + 1 WHERE c1 > 0;

● UPDATE name WHERE CURRENT OF cursor_name

○ It updates the row which the current cursor indicates.

○ e.g. UPDATE t1 WHERE CURRENT OF cursor;

● UPDATE name RETURNING

○ It updates multiple rows which satisfy the conditions, and the updated rows can be retrieved in t

he same way as SELECT statement (API such as SQLFetch ()).

2,112 | SQL References

○ e.g. UPDATE t1 SET c2 = c2 + 1 WHERE c1 > 0 RETURNING c2;

● UPDATE name RETURNING .. INTO

○ It updates row equal to or less than one, and if a single row is updated, it obtains the value to th

e host variable of RETURNING INTO clause.

○ e.g. UPDATE t1 SET c2 = c2 + 1 WHERE c1 = 0 RETURNING c2 INTO :v1;

Examples

The following is an example of updating multiple rows which satisfy the condition.

gSQL> UPDATE lineitem

SET l_shipdate = CURRENT_DATE

WHERE l_returnflag = 'R';

5 rows updated.

The following is an example of updating the value of multiple columns.

gSQL> UPDATE lineitem

SET l_shipdate = CURRENT_DATE

, l_returnflag = 'A'

WHERE l_returnflag = 'R';

5 rows updated.

The following is an example of updating multiple columns by enclosing them with parentheses.

gSQL> UPDATE lineitem

SET (l_shipdate , l_returnflag)

= (CURRENT_DATE, 'A')

WHERE l_returnflag = 'R';

5 rows updated.

The following is an example of updating the column value by using the subquery.

gSQL> UPDATE lineitem

SET l_discount = (SELECT MAX(l_discount) + 0.01 FROM lineitem)

WHERE l_returnflag = 'R';

5 rows updated.

The following is an example of updating part of the rows which satisfy the condition by using OFFSET an

d FETCH clauses.

UPDATE | 2,113

gSQL> UPDATE lineitem

SET l_discount = l_discount + 0.01

WHERE l_returnflag = 'R'

OFFSET 3

FETCH 2;

2 rows updated.

Compatibility

The SQL standard does not define the following clauses in UPDATE statement.

● <result offset clause>

● <fetch limit clause>

Table 16-81 SQL standard compatibility

Feature ID Description Compatibility

F781 Self-referencing operations X

T111 Updatable joins, unions, and columns X

2,114 | SQL References

16.136 UPDATE name RETURNING

Function

It updates rows in a table, and retrieves the rows of before or after the update.

Syntax

<update statement: searched> ::=

UPDATE table_name [[AS] alias_name]

SET <set clause> [, ...]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

<returning clause>

<set clause> ::=

column_name = { <value expression> | DEFAULT }

| (column_name [, ...]) = ({ <value expression> | DEFAULT } [, ...])

| (column_name [, ...]) = (<query expression>)

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

<returning clause> ::=

{ RETURN | RETURNING } [NEW | OLD] { * | { <value expression> [[AS] alias_name] } [,

...] }

UPDATE name RETURNING | 2,115

Invocation and Access Rules

The user should satisfy the following conditions to perform <update returning query statement>.

● One of the following privileges is required to perform UPDATE statement.

○ UPDATE(columns) ON TABLE for all columns which are targets to be updated

○ (UPDATE or CONTROL TABLE) ON TABLE for the table

○ (UPDATE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ UPDATE ANY TABLE ON DATABASE

● One of the following privileges for all columns used in RETURNING clause is required.

○ SELECT(columns) ON TABLE for all columns used in RETURNING clause

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be updated.

[AS alias_name]

It is the alias of table_name.

<set clause>

It defines the columns to be updated and its values to be assigned. The number of columns in <set clause

> should be as same as the number of values.

For more information, refer to UPDATE.

WHERE <search condition>

It updates the rows which satisfy WHERE condition.

If WHERE condition is not specified, all rows are updated.

For more information about WHERE condition, refer to where clause of SELECT.

2,116 | SQL References

<result offset clause>

It specifies the number of rows to skip from the query result.

For more information, refer to <result offset clause> of SELECT.

<fetch limit clause>

It specifies the number of rows to fetch in two ways, which are <fetch first clause> and <limit clause>.

● <fetch first clause>

○ It specifies the number of rows to be fetched.

○ For more information, refer to <fetch first clause> of SELECT statement.

● <limit clause>

○ It specifies the number of rows to be fetched, or it simultaneously specifies both the number of r

ows to be skipped and the number of rows to be fetched.

○ For more information, refer to <limit clause> of SELECT statement.

<returning clause>

It defines the updated rows as a result set, and specifies columns to be retrieved from the result set.

● RETURN and RETURNING are the keywords with the same meaning.

● NEW | OLD

○ NEW: It searches for updated rows based on the row after the update.

○ OLD: It searches for updated rows based on the row before the update.

○ If it is omitted, the default value is NEW.

● <value expression>

○ It is as same as <select list> in SELECT statement, but aggregation can not be used.

● [[AS] alias_name]

○ It can name <value expression> by using AS clause.

Description

For more information, refer to Differences among UPDATE-related Statements.

UPDATE name RETURNING | 2,117

Examples

The following is an example of obtaining values of the updated rows by using RETURNING clause.

gSQL> UPDATE lineitem

SET l_discount = l_discount + 0.01

WHERE l_returnflag = 'R'

RETURNING l_orderkey, l_linenumber, l_discount;

L_ORDERKEY L_LINENUMBER L_DISCOUNT

---------- ------------ ----------

8 1 .07

9 2 .11

12 5 .05

15 1 .03

16 2 .08

5 rows updated.

The following is an example of obtaining values before the update for the updated rows by using RETUR

NING OLD clause.

gSQL> UPDATE lineitem

SET l_discount = l_discount + 0.01

WHERE l_returnflag = 'R'

RETURNING OLD l_orderkey, l_linenumber, l_discount;

L_ORDERKEY L_LINENUMBER L_DISCOUNT

---------- ------------ ----------

8 1 .06

9 2 .1

12 5 .04

15 1 .02

16 2 .07

5 rows updated.

Compatibility

The SQL standard does not define <update returning query statement>.

2,118 | SQL References

16.137 UPDATE name RETURNING .. INTO

Function

It updates a single row of a table, and the updated value is obtained into the host variable.

Syntax

<update statement: searched> ::=

UPDATE table_name [[AS] alias_name]

SET <set clause> [, ...]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

<returning into clause>

;

<set clause> ::=

column_name = { <value expression> | DEFAULT }

| (column_name [, ...]) = ({ <value expression> | DEFAULT } [, ...])

| (column_name [, ...]) = (<query expression>)

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

<returning into clause> ::=

{ RETURN | RETURNING } [NEW | OLD] { * | { <value expression> [[AS] alias_name] } [,

...] } INTO variable_name [, ...]

UPDATE name RETURNING .. INTO | 2,119

Invocation and Access Rules

The user should satisfy the following conditions to perform <update returning query statement>.

● One of the following privileges is required to perform UPDATE statement.

○ UPDATE(columns) ON TABLE for all columns which are targets to be updated

○ (UPDATE or CONTROL TABLE) ON TABLE for the table

○ (UPDATE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ UPDATE ANY TABLE ON DATABASE

● One of the following privileges for all columns used in RETURNING clause is required.

○ SELECT(columns) ON TABLE for all columns used in RETURNING clause

○ (SELECT or CONTROL TABLE) ON TABLE for the table

○ (SELECT TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ SELECT ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a target table whose rows are to be updated.

[AS alias_name]

It is the alias of table_name.

<set clause>

It defines the columns to be updated and its values to be assigned. The number of columns in <set clause

> should be as same as the number of values.

For more information, refer to UPDATE.

WHERE <search condition>

It updates the rows which satisfy WHERE condition.

If WHERE condition is not specified, all rows are updated.

For more information about WHERE condition, refer to where clause of SELECT.

2,120 | SQL References

<result offset clause>

It specifies the number of rows to skip in the query result.

For more information, refer to <result offset clause> of SELECT.

<fetch limit clause>

It specifies the number of rows to fetch in two ways, which are <fetch first clause> and <limit clause>.

● <fetch first clause>

○ It specifies the number of rows to be fetched.

○ For more information, refer to <fetch first clause> of SELECT statement.

● <limit clause>

○ It specifies the number of rows to be fetched, or it simultaneously specifies both the number of r

ows to be skipped and the number of rows to be fetched.

○ For more information, refer to <limit clause> of SELECT statement.

RETURNING .. AS ..

It defines the updated rows as a result set, and specifies columns to be retrieved from the result set.

For more information, refer to <returning clause> of UPDATE name RETURNING.

INTO variable_name [, ...]

The number of variables specified in INTO clause should be equal to the number of the expressions specifi

ed in RETURNING clause.

The row to be updated should be one or less. If two or more rows are updated, an error occurs.

Description

For more information, refer to Differences among UPDATE-related Statements.

Example

The following is an example of obtaining column values of the updated rows into the host variables.

UPDATE name RETURNING .. INTO | 2,121

• Declare the host variable.

gSQL> \VAR v_discount NUMBER

gSQL> UPDATE lineitem

SET l_discount = l_discount + 0.01

WHERE l_orderkey = 12 AND l_linenumber = 5

RETURNING l_discount INTO :v_discount;

V_DISCOUNT

.05

1 row updated.

Compatibility

In the SQL standard, <update returning into statement> statement does not exist.

2,122 | SQL References

16.138 UPDATE name WHERE CURRENT OF curso

r_name

Function

It updates a single row which the current cursor indicates.

Syntax

<update statement: positioned> ::=

UPDATE table_name [[AS] alias_name]

SET <set clause> [, ...]

WHERE CURRENT OF cursor_name

;

Invocation and Access Rules

The user should satisfy the following conditions to perform <update statement: positioned>.

● One of the following privileges is required to perform UPDATE statement.

○ UPDATE(columns) ON TABLE for all columns which are targets to be updated

○ (UPDATE or CONTROL TABLE) ON TABLE for the table

○ (UPDATE TABLE or CONTROL SCHEMA) ON SCHEMA for the schema to which the table belongs

○ UPDATE ANY TABLE ON DATABASE

Syntax Rules and Parameters

table_name

It is the name of a table whose rows are to be updated.

UPDATE nameWHERE CURRENT OF cursor_name | 2,123

[AS alias_name]

It is the alias of table_name.

<set clause>

It defines the columns to be updated and its values to be assigned. The number of columns in <set clause

> should be as same as the number of values.

For more information, refer to UPDATE.

cursor_name

The cursor corresponding to cursor_name should satisfy the following conditions.

● The cursor should be OPEN. (Refer to OPEN cursor_name.)

● Fetched rows by using the cursor should exist. (Refer to FETCH cursor_name.)

● The query used for the cursor should identify table_name. (Refer to DECLARE cursor_name.)

● The cursor should be updatable for table_name. (Refer to DECLARE cursor_name.)

Description

For more information, refer to Differences among UPDATE-related Statements.

Examples

The following is an example that <update statement: positioned> is performed in interactive SQL (gsql) us

ing the cursor.

● Declare the host variable.

gSQL> \VAR v_discount NUMBER

● Declare the cursor.

gSQL> DECLARE update_cursor CURSOR FOR

SELECT l_discount

FROM lineitem

WHERE l_orderkey = 8 AND l_linenumber = 1

2,124 | SQL References

FOR UPDATE;

Cursor declared.

● Open the cursor.

gSQL> OPEN update_cursor;

Cursor is open.

● Fetch the row.

gSQL> FETCH update_cursor INTO :v_discount;

V_DISCOUNT

.06

1 row fetched.

● Update the current row.

gSQL> UPDATE lineitem

SET l_discount = l_discount + 0.01

WHERE CURRENT OF update_cursor;

1 row updated.

● Close the cursor.

gSQL> CLOSE update_cursor;

Cursor closed.

gSQL> COMMIT;

Commit complete.

The following is an example of performing <update statement: positioned> by using the cursor in embed

ded SQL program.

{

...

EXEC SQL BEGIN DECLARE SECTION;

...

double v_discount;

...

EXEC SQL END DECLARE SECTION;

...

EXEC SQL DECLARE update_cursor CURSOR FOR

UPDATE nameWHERE CURRENT OF cursor_name | 2,125

SELECT l_discount

FROM lineitem

WHERE l_orderkey = 8 AND l_linenumber = 1

FOR UPDATE;

...

EXEC SQL OPEN update_cursor;

...

EXEC SQL FETCH NEXT update_cursor INTO :v_discount;

...

EXEC SQL UPDATE lineitem

SET l_discount = l_discount + 0.01

WHERE CURRENT OF update_cursor;

...

EXEC SQL CLOSE update_cursor;

...

EXEC SQL COMMIT WORK;

...

}

Compatibility

Table 16-82 SQL standard compatibility

Feature ID Description Compatibility

F831 Full cursor update O

B031 Basic dynamic SQL O

For More Information

Refer to CLOSE cursor_name.

PSMManual

Part IV.

2,127

2,128 | PSMManual

17. Overview of PSM

17.1 Features of PSM

Closely Interworking with SQL

Improving Performance

Improving Productivity

Portability

Easy Maintenance

17.2 Language Elements

Data Types

Variables

Control Structures

Subprograms

17.3 Processing Transaction in PSM

18. PSM DataTypes

18.1 Built-in Data Types

Numeric Types

CHARACTER STRING Types

BINARY STRING Type

DATE/TIME Type

INTERVAL Type

BOOLEAN Type

ROWID Type

Declaring Built-in Data Type Variables

18.2 Attribute Data Types

%TYPE

%ROWTYPE

Constraint Attributes Inheritance

18.3 User-defined Record Type

18.4 User-defined Collection Type

Associative Array

Assign Values to Collection Variables

Collection Method

18.5 SYS_REFCURSOR

19. PSM Control Statements

19.1 Assignment

Assignment Target

Assigning Expression

Assignment Compatibility

. 2,143

.	 2,144

.	 2,144

.	 2,144

.	 2,144

.	 2,144

.	 2,145

.	 2,146

.	 2,146

.	 2,146

.	 2,146

.	 2,146

.	 2,147

. 2,149

.	 2,150

.	 2,150

.	 2,150

.	 2,151

.	 2,151

.	 2,151

.	 2,151

.	 2,152

.	 2,152

.	 2,153

.	 2,153

.	 2,153

.	 2,154

.	 2,155

.	 2,157

.	 2,157

.	 2,159

.	 2,162

.	 2,165

. 2,167

.	 2,168

.	 2,168

.	 2,168

.	 2,170

| 2,129

19.2 PL Block

PL Block Configuration

19.3 NULL Statement

19.4 Testing Conditions

IF

CASE

19.5 Iterative Control

Basic Loop

FOR Loop

WHILE Loop

19.6 Sequential Control

GOTO

CONTINUE

EXIT

19.7 Error Handling

Errors at Compile Time

Errors at Run-time

Cursor Attributes

EXCEPTION Handling

PRAGMA EXCEPTION_INIT

DBMS_STANDARD.RAISE_APPLICATION_ERROR

20. PSM Cursor Statements

20.1 Declaration

20.2 OPEN

20.3 FETCH

20.4 CLOSE

20.5 EXPLICIT CURSOR ATTRIBUTES

20.6 IMPLICIT_CURSOR_ATTRIBUTES

20.7 CURSOR VARIABLES

OPEN and Close Cursor Variables

Fetching Data With Cursor Variables

Assign Values to Cursor Variables

21. Using PSM Subprograms

21.1 Anonymous PL Block

21.2 Nested Procedure

21.3 Nested Function

21.4 Schema-level Procedure

Creating Schema-level Procedure

Using Schema-level Procedure

.	 2,172

.	 2,172

.	 2,175

.	 2,176

.	 2,176

.	 2,177

.	 2,179

.	 2,179

.	 2,180

.	 2,181

.	 2,182

.	 2,182

.	 2,185

.	 2,186

.	 2,188

.	 2,188

.	 2,190

.	 2,191

.	 2,194

.	 2,199

.	 2,201

. 2,203

.	 2,204

.	 2,208

.	 2,209

.	 2,211

.	 2,212

.	 2,214

.	 2,216

.	 2,218

.	 2,219

.	 2,219

. 2,223

.	 2,224

.	 2,225

.	 2,227

.	 2,228

.	 2,228

.	 2,229

2,130 | PSMManual

Dropping Schema-level Procedure

Recompiling Schema-level Procedure

21.5 Schema-level Function

Creating Schema-level Function

Using Schema-level Function

Dropping Schema-level Function

21.6 Built-in Procedures

22. Using SQLs in PSM

22.1 Static SQLs

SELECT

INSERT

UPDATE

DELETE

RETURNING INTO

COMMIT, ROLLBACK, SAVEPOINT

22.2 Dynamic SQL

EXECUTE IMMEDIATE

OPEN FOR, FETCH and CLOSE

23. PSM Language Element References

23.1 Assignment Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.2 Basic LOOP Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.3 Block (BEGIN .. END)

Function

.	 2,231

.	 2,231

.	 2,233

.	 2,233

.	 2,233

.	 2,234

.	 2,236

. 2,239

.	 2,240

.	 2,240

.	 2,244

.	 2,247

.	 2,248

.	 2,249

.	 2,254

.	 2,258

.	 2,258

.	 2,260

. 2,263

.	 2,264

.	 2,264

.	 2,264

.	 2,264

.	 2,264

.	 2,265

.	 2,265

.	 2,266

.	 2,267

.	 2,268

.	 2,268

.	 2,268

.	 2,268

.	 2,268

.	 2,268

.	 2,269

.	 2,269

.	 2,269

.	 2,270

.	 2,270

| 2,131

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.4 CASE Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.5 CLOSE Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.6 Collection Method Invocation

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

For More Information

23.7 COLLECTION Variable Declaration

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

.	 2,270

.	 2,270

.	 2,271

.	 2,271

.	 2,271

.	 2,272

.	 2,272

.	 2,273

.	 2,273

.	 2,273

.	 2,273

.	 2,274

.	 2,274

.	 2,274

.	 2,275

.	 2,276

.	 2,276

.	 2,276

.	 2,276

.	 2,276

.	 2,276

.	 2,277

.	 2,277

.	 2,277

.	 2,278

.	 2,278

.	 2,278

.	 2,278

.	 2,278

.	 2,279

.	 2,279

.	 2,281

.	 2,282

.	 2,282

.	 2,282

.	 2,282

.	 2,283

.	 2,283

.	 2,283

2,132 | PSMManual

Compatibility

For More Information

23.8 CONTINUE Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.9 Cursor FOR LOOP Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

For More Information

23.10 Cursor Variable Declaration

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

For More Information

23.11 DELETE Statement Extension

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

For More Information

23.12 EXCEPTION_INIT Pragma

Function

Syntax

Invocation and Access Rules

.	 2,285

.	 2,285

.	 2,286

.	 2,286

.	 2,286

.	 2,286

.	 2,286

.	 2,287

.	 2,287

.	 2,288

.	 2,288

.	 2,289

.	 2,289

.	 2,289

.	 2,289

.	 2,290

.	 2,290

.	 2,290

.	 2,292

.	 2,293

.	 2,293

.	 2,293

.	 2,293

.	 2,293

.	 2,293

.	 2,294

.	 2,294

.	 2,295

.	 2,295

.	 2,295

.	 2,296

.	 2,296

.	 2,296

.	 2,296

.	 2,297

.	 2,298

.	 2,298

.	 2,298

.	 2,298

| 2,133

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.13 Exception Declaration

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.14 Exception Handler

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.15 EXECUTE IMMEDIATE Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

23.16 EXIT Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.17 Explicit Cursor Attribute

.	 2,298

.	 2,298

.	 2,299

.	 2,299

.	 2,299

.	 2,300

.	 2,300

.	 2,300

.	 2,300

.	 2,300

.	 2,300

.	 2,300

.	 2,301

.	 2,301

.	 2,302

.	 2,302

.	 2,302

.	 2,302

.	 2,302

.	 2,303

.	 2,303

.	 2,304

.	 2,304

.	 2,305

.	 2,305

.	 2,305

.	 2,305

.	 2,306

.	 2,307

.	 2,308

.	 2,309

.	 2,309

.	 2,309

.	 2,309

.	 2,309

.	 2,309

.	 2,310

.	 2,310

.	 2,311

2,134 | PSMManual

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.18 Explicit Cursor Declaration and Definition

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.19 FETCH Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.20 FOR LOOP Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.21 Function Declaration and Definition

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

.	 2,311

.	 2,311

.	 2,311

.	 2,311

.	 2,311

.	 2,312

.	 2,313

.	 2,314

.	 2,314

.	 2,314

.	 2,314

.	 2,314

.	 2,315

.	 2,316

.	 2,317

.	 2,317

.	 2,318

.	 2,318

.	 2,318

.	 2,318

.	 2,318

.	 2,319

.	 2,319

.	 2,320

.	 2,320

.	 2,321

.	 2,321

.	 2,321

.	 2,321

.	 2,321

.	 2,322

.	 2,322

.	 2,322

.	 2,323

.	 2,324

.	 2,324

.	 2,324

.	 2,324

.	 2,324

| 2,135

Description

Examples

Compatibility

For More Information

23.22 GOTO Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.23 IF Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.24 Implicit Cursor Attribute

Function

Syntax

Invocation and Access Rules

Description

Examples

Compatibility

23.25 INSERT Statement Extension

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.26 NULL Statement

Function

Syntax

.	 2,325

.	 2,325

.	 2,326

.	 2,326

.	 2,327

.	 2,327

.	 2,327

.	 2,327

.	 2,327

.	 2,327

.	 2,328

.	 2,328

.	 2,328

.	 2,329

.	 2,329

.	 2,329

.	 2,329

.	 2,329

.	 2,330

.	 2,330

.	 2,330

.	 2,331

.	 2,331

.	 2,331

.	 2,331

.	 2,331

.	 2,331

.	 2,332

.	 2,333

.	 2,333

.	 2,333

.	 2,333

.	 2,334

.	 2,334

.	 2,334

.	 2,335

.	 2,336

.	 2,336

.	 2,336

2,136 | PSMManual

Invocation and Access Rules

Description

Examples

Compatibility

23.27 OPEN Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.28 OPEN FOR Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.29 Procedure Call

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.30 Procedure Declaration and Definition

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

.	 2,336

.	 2,336

.	 2,336

.	 2,337

.	 2,338

.	 2,338

.	 2,338

.	 2,338

.	 2,338

.	 2,338

.	 2,339

.	 2,339

.	 2,340

.	 2,341

.	 2,341

.	 2,341

.	 2,341

.	 2,341

.	 2,341

.	 2,342

.	 2,343

.	 2,343

.	 2,344

.	 2,344

.	 2,344

.	 2,344

.	 2,344

.	 2,345

.	 2,345

.	 2,346

.	 2,347

.	 2,347

.	 2,347

.	 2,347

.	 2,347

.	 2,348

.	 2,348

.	 2,348

.	 2,348

| 2,137

23.31 RAISE Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

23.32 Record Variable Declaration

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.33 RETURN Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.34 RETURNING INTO clause

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.35 %ROWTYPE Attribute

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

.	 2,349

.	 2,349

.	 2,349

.	 2,349

.	 2,349

.	 2,349

.	 2,350

.	 2,351

.	 2,351

.	 2,352

.	 2,352

.	 2,352

.	 2,352

.	 2,352

.	 2,353

.	 2,353

.	 2,353

.	 2,354

.	 2,354

.	 2,354

.	 2,354

.	 2,354

.	 2,354

.	 2,355

.	 2,355

.	 2,356

.	 2,356

.	 2,356

.	 2,356

.	 2,356

.	 2,356

.	 2,357

.	 2,357

.	 2,358

.	 2,358

.	 2,358

.	 2,358

.	 2,358

.	 2,358

2,138 | PSMManual

Examples

Compatibility

23.36 Scalar Variable Declaration

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.37 SELECT INTO Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.38 SQLCODE Function

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.39 SQLERRM Function

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.40 %TYPE Attribute

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

.	 2,359

.	 2,359

.	 2,360

.	 2,360

.	 2,360

.	 2,360

.	 2,360

.	 2,361

.	 2,361

.	 2,362

.	 2,363

.	 2,363

.	 2,363

.	 2,363

.	 2,363

.	 2,363

.	 2,364

.	 2,364

.	 2,365

.	 2,365

.	 2,365

.	 2,365

.	 2,365

.	 2,365

.	 2,365

.	 2,366

.	 2,367

.	 2,367

.	 2,367

.	 2,367

.	 2,367

.	 2,367

.	 2,367

.	 2,368

.	 2,369

.	 2,369

.	 2,369

.	 2,369

.	 2,369

| 2,139

Description

Examples

Compatibility

23.41 UPDATE Statement Extension

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

23.42 WHILE LOOP Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

24. PSM SQL References

24.1 ALTER FUNCTION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

24.2 ALTER PROCEDURE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

.	 2,369

.	 2,370

.	 2,370

.	 2,371

.	 2,371

.	 2,371

.	 2,372

.	 2,372

.	 2,372

.	 2,372

.	 2,373

.	 2,374

.	 2,374

.	 2,374

.	 2,374

.	 2,374

.	 2,374

.	 2,375

.	 2,375

.	 2,375

. 2,377

.	 2,378

.	 2,378

.	 2,378

.	 2,378

.	 2,378

.	 2,378

.	 2,379

.	 2,379

.	 2,379

.	 2,380

.	 2,380

.	 2,380

.	 2,380

.	 2,380

.	 2,380

.	 2,381

.	 2,381

.	 2,382

2,140 | PSMManual

24.3 CALL Statement

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

24.4 CREATE FUNCTION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

24.5 CREATE PROCEDURE

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

24.6 DROP FUNCTION

Function

Syntax

Invocation and Access Rules

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

24.7 DROP PROCEDURE

Function

Syntax

Invocation and Access Rules

.	 2,383

.	 2,383

.	 2,383

.	 2,383

.	 2,383

.	 2,384

.	 2,384

.	 2,385

.	 2,386

.	 2,386

.	 2,386

.	 2,386

.	 2,387

.	 2,388

.	 2,388

.	 2,389

.	 2,390

.	 2,391

.	 2,391

.	 2,391

.	 2,391

.	 2,392

.	 2,393

.	 2,393

.	 2,394

.	 2,395

.	 2,396

.	 2,396

.	 2,396

.	 2,396

.	 2,396

.	 2,397

.	 2,397

.	 2,397

.	 2,397

.	 2,399

.	 2,399

.	 2,399

.	 2,399

| 2,141

Syntax Rules and Parameters

Description

Examples

Compatibility

For More Information

.	 2,399

.	 2,400

.	 2,400

.	 2,400

.	 2,401

Overview of PSM

17.

2,143

2,144 | Overview of PSM

17.1 Features of PSM

Closely Interworking with SQL

GOLIDILOCKS PSM can closely interworks with GOLDILOCKS SQL.

● It supports all data types supported by GOLDILOCKS SQL.

● It supports an attribute type (%TYPE, %ROWTYPE), so a flexible tables and column types are availabl

e.

● It supports all operators and built-in functions supported by GOLDILOCKS SQL.

● It supports all DML, DCL (COMMIT/ROLLBACK) supported by GOLDILOCKS SQL.

● It supports SQL SELECT statements by declaring a cursor and using OPEN, FETCH, CLOSE statements.

● It supports SQL DDL statements through the dynamic SQL feature.

Improving Performance

GOLDILOCKS PSM is operated only within a server, so it reduces the number of communications between

the user application and the DBMS server. Therefore, the overall performance is improved.

Improving Productivity

The language of GOLDILOCKS PSM is quite similar to that of script, a less effort is required to write a cod

e for the desired feature. The time of writing a client application can be reduced if the procedure and fun

cure is created by modularizing the user's work logic.

Portability

Procedures and functions created by GOLDILOCKS PSM can also be used in ODBC, JDBC, an embedded S

QL, and various development tools in the same way. Also, it can be easily transplanted in a different platf

orm regardless of the platform type of server or a client.

Features of PSM | 2,145

Easy Maintenance

GOLDILOCKS PSM is implemented into a single module in a server from each similar logics in separate cli

ents. Therefore, it is easy to manage, and enable to modify when it is in need even during the module is i

n use.

2,146 | Overview of PSM

17.2 Language Elements

Data Types

GOLDILOCKS PSM provides all built-in data types provided by GOLDILOCKS SQL, and it even supports use

r defined records and collection types.

For more information, refer to PSM DataTypes.

Variables

Required variables declared by a user in GOLDILOCKS PSM can be used in all expressions.

For more information, refer to the followings.

• Declarative Part

• Assignment

Control Structures

GOLDILOCKS PSM supports most of decision branch statements, unconditional branch statements (GOT

O), loop statement for repeated executions which were provided by a general script language.

For more information, refer to PSM Control Statements.

Subprograms

GOLDILOCKS PSM subprogram is a PSM block with a name and it can be repeatedly performed. If a subp

rogramd has an argument, then it can be performed by being given different arguments when each time

it is called.

Subprogram is either in a procedure form or a function form, and the function form has a return value. It

also supports a nested subprogram which is declared in a specific block and used within it.

For more information, refer to Using PSM Subprograms.

Processing Transaction in PSM | 2,147

17.3 Processing Transaction in PSM

A database transaction is a work unit which consists of one or more of SQL statements and it can not be

disassembled. The followings are SQL statements which use transactions in GOLDILOCKS database.

● DML except for SELECT statements

● All DDL

A transaction starts in the following cases.

● When performing SQL which uses a transaction for the first time immediately after the connection.

● When performing SQL which uses a transaction for the first time since COMMIT or ROLLBACK

A transaction ends when a user performs COMMIT or ROLLBACK, or terminates the connection.

A subprogram module created by GOLDILOCKS PSM is a statement which does not uses its own transacti

on, so a new transaction does not occur when the subprogram is called.

However, to guarantee atomicity of the SQL statement, the the available SQL types in a subprogram may

vary depending on the case of calling the subprogram.

● When a user directly calls a subprogram module by using CALL statement, or performs an anonymou

s block

○ A superordinate statement does not exists, so all kinds of SQL can be used within a subprogram

and COMMIT/ROLLBACK is also allowed.

● When a subprogram module is used within a DML statement (INSERT/UPDATE/DELETE) except for S

ELECT

○ A superordinate statement has a transaction, so all kinds of SQL can be used within a subprogra

m. However, to guarantee the atomicity of the superordinate statement, neither COMMIT nor R

OLLBACK is allowed.

● When a subprogram module is called within a SELECT statement

○ A superordinate statement does not use a transaction, so any kind of SQL using a transaction can

not be used even within a called subprogram, nor is COMMIT/ROLLBACK allowed. Only SELECT s

tatement is allowed.

PSM DataTypes

18.

2,149

2,150 | PSM DataTypes

18.1 Built-in Data Types

GOLDILOCKS PSM supports all basic data types provided by GOLDILOCKS SQL in the same way.

The followings are the basic data types.

For more information, refer to Data Type.

Numeric Types

● NUMBER

● NUMERIC

● FLOAT

● NATIVE_INTEGER

● NATIVE_DOUBLE

CHARACTER STRING Types

● CHARACTER (CHAR)

● CHARACTER VARYING (VARCHAR, VARCHAR2)

● CHARACTER LONG VARYING (LONG VARCHAR)

Note

Exceptionally, for the compatibility with other database, GOLDILOCKS PSM provides VARCHAR ty

pes (VARCHAR2, CHAR VARYING, CHARACTER VARYING) whose precision is not specified, and

which is not supported by GOLDILOCKS SQL.

This type can not be used when declaring an ordinary variable, but it can be used only when decla

ring an argument of a subprogram, a return type or an argument of a cursor. If this type is specifie

d, then the argument and the return type is determined as a type with the biggest value among V

ARCHAR types. (precision = 4000)

Built-in Data Types | 2,151

BINARY STRING Type

● BINARY

● BINARY VARYING (VARBINARY)

● BINARY LONG VARYING (LONG VARBINARY)

DATE/TIME Type

● DATE

● TIME [WITH/WITHOUT TIME ZONE]

● TIMESTAMP [WITH/WITHOUT TIME ZONE]

INTERVAL Type

● INTERVAL YEAR

● INTERVAL MONTH

● INTERVAL YEAR TO MONTH

● INTERVAL DAY

● INTERVAL HOUR

● INTERVAL MINUTE

● INTERVAL SECOND

● INTERVAL DAY TO HOUR

● INTERVAL DAY TO MINUTE

● INTERVAL DAY TO SECOND

● INTERVAL HOUR TO MINUTE

● INTERVAL HOUR TO SECOND

● INTERVAL MINUTE TO SECOND

BOOLEAN Type

BOOLEAN

2,152 | PSM DataTypes

ROWID Type

ROWID

Declaring Built-in Data Type Variables

A variable can be declared in each declaration section within an anonymous block, a procedure or a funct

ion.

DECLARE

V_MSG VARCHAR(20) := 'HELLO, WORLD!';

BEGIN

DBMS_OUTPUT.PUT_LINE('My First Message Is : ' || V_MSG);

END;

/

For more information, refer to Built-in Data Type References.

Attribute Data Types | 2,153

18.2 Attribute Data Types

It is a data type which is used when specifying types of other PSM variables, cursors, tables or a specific c

olumn in a table.

If an attribute variable or a target object (table) of a function is altered, then PSM (procedure, function) is

automatically compiled again according to the altered type and it is applied.

%TYPE

It is used when specifying a type of other variables or a column type of a specific table. The following obj

ects can be referenced.

● Scalar type (Including built-in data type) variables

● User defined record type variables

● A specific field of a record type variable

● Collection type variables

● A specific field of a collection type variable

● A specific column of a table

%TYPE is used as follows.

CREATE TABLE EMP (ID INTEGER, NAME VARCHAR(32));

INSERT INTO EMP VALUES (1001, 'Tom Jackson');

COMMIT;

DECLARE

V_NAME EMP.NAME%TYPE;

BEGIN

SELECT NAME INTO V_NAME FROM EMP;

DBMS_OUTPUT.PUT_LINE('EMP.NAME = ' || V_NAME);

END;

/

%ROWTYPE

It is used to specify the structure of a specific table, or the record type as same as the returned type of a s

pecific cursor. It can refer to the following objects.

2,154 | PSM DataTypes

● Table

● Cursor

● Cursor variable

Neither the record type variable nor collection type variable can be a target of %ROWTYPE.

The following is an example of using %ROWTYPE.

DECLARE

V_EMP EMP%ROWTYPE;

BEGIN

SELECT * INTO V_EMP FROM EMP WHERE ID = 1001;

DBMS_OUTPUT.PUT_LINE('Name of ID 1001 Is : ' || V_EMP.NAME);

END;

/

Constraint Attributes Inheritance

The constraint attributes of variables declared as an attribute type inherits the constraint attributes of the

reference target as follows.

Table 18-1 Whether to inherit constraints of the attribute types

Attribute type Reference target NOT NULL Default value

%TYPE

Scalar variable O X

Record type variable O O

A specific field of a record type variable O X

Collection type variable - scalar element O X

Collection type variable - record element O O

A specific field of a collection type variable O X

A specific column of a table X X

%ROWTYPE

Table X X

Cursor X X

Cursor Variable X X

User-defined Record Type | 2,155

18.3 User-defined Record Type

The record type variable is a complex structure type which consists of several fields of each different type.

A record type variable can be created by copying types of other tables or cursors by using %ROWTYPE, o

r by declaring a data structure which is appropriate to a specific purpose by a user.

A user defined record type can be defined by using TYPE keyword in PSM declarative part as follows. Eac

h field can optionally specify a NOT NULL constraint and a default value.

DECLARE

TYPE MY_EMP_TYPE IS RECORD

(

ID INTEGER := 99999,

NAME VARCHAR(32) NOT NULL DEFAULT 'anonymous'

);

V_EMP MY_EMP_TYPE;

BEGIN

SELECT ID, NAME INTO V_EMP.ID, V_EMP.NAME FROM EMP;

DBMS_OUTPUT.PUT_LINE('ID = ' || V_EMP.ID);

DBMS_OUTPUT.PUT_LINE('NAME = ' || V_EMP.NAME);

END;

/

The following is an example of using it in a nested procedure or in a nested function.

DECLARE

TYPE MY_EMP_TYPE IS RECORD

(

ID INTEGER := 99999,

NAME VARCHAR(32) NOT NULL DEFAULT 'anonymous'

);

V_EMP MY_EMP_TYPE;

PROCEDURE SET_EMP(A_EMP IN OUT MY_EMP_TYPE)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('ID = ' || A_EMP.ID);

DBMS_OUTPUT.PUT_LINE('NAME = ' || A_EMP.NAME);

SELECT ID, NAME INTO A_EMP.ID, A_EMP.NAME FROM EMP;

END;

BEGIN

2,156 | PSM DataTypes

SET_EMP(V_EMP);

DBMS_OUTPUT.PUT_LINE('ID = ' || V_EMP.ID);

DBMS_OUTPUT.PUT_LINE('NAME = ' || V_EMP.NAME);

END;

/

A user defined record type can be used as an argument or a returned type of a general regional variable,

a nested procedure, or a nested function. However, it can not be used as an argument or a returned type

of a schema-level procedure or a schema-level function.

User-defined Collection Type | 2,157

18.4 User-defined Collection Type

User defined collection type is a kind of an array structure which stores one or more data. GOLDILOCKS P

SM supports an associative array type which can be stored as key/value pair among collection types.

The following is a basic SYNTAX to declare an associative type.

TYPE <type_name> IS TABLE OF <element_data_type> INDEX BY <index_key_data_type>

● <type_name> is a user defined name for the type.

● <element_data_type> specifies a data type of a value which configures an array.

● <index_key_data_type> specifies a data type of an index key which explores for an element.

For example, if the information corresponding to (number) is in form of (name, age), then a table can be

created and stored in a database as follows.

CREATE TABLE INFO

(

NO INTEGER,

NAME VARCHAR(20),

AGE INTEGER

)

CREATE UNIQUE INDEX IDX_NO ON INFO (NO)

● If the information above is stored as an associative array, then its configuration is as follows.

○ Index_key corresponds to a number (NO).

○ Element_data consists of a name (NAME) and an age (AGE).

An associative array variable to store it is defined within a real PSM as follows.

TYPE rec IS RECORD (NAME VARCHAR(20), AGE INTEGER);

TYPE info IS TABLE OF rec INDEX BY INTEGER;

For more information, refer to COLLECTION Variable Declaration.

Associative Array

An associative array type variable has a data type key specified in an index clause, and it is a PSM variable

which can store a value of element data type specified in TABLE OF clause in one or more values in a key/

value form.

2,158 | PSM DataTypes

● The features of an associative array type of GOLDILOCKS PSM is as follows.

○ It has an exploring key in a data type form specified in INDEX BY clause, and it is automatically so

rted and stored.

○ It consists of elements specified in TABLE OF clause.

○ It provides exploring functions called as collection methods.

○ It is stored in a replace form when storing an element in an existing index key.

○ The maximum storage size is restricted to the available size of MEMORY_TEMP_TBS_SIZE.

The following is an example of declaring an element type as an SQL data type, and inserting data.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> DECLARE

TYPE rec IS TABLE OF VARCHAR(20) INDEX BY VARCHAR(10);

V1 rec;

BEGIN

V1('aa') := 'Dog';

V1('bb') := 'Cat';

INSERT INTO T1 VALUES (V1('aa'), V1('bb'));

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

--- ---

Dog Cat

1 row selected.

The following is an example of having a record type as an element.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> DECLARE

TYPE rec IS TABLE OF T1%ROWTYPE INDEX BY VARCHAR(10);

User-defined Collection Type | 2,159

V1 rec;

BEGIN

V1('person1').C1 := 'seoul';

V1('person1').C2 := '12';

V1('person2').C1 := 'busan';

V1('person2').C2 := '24';

INSERT INTO T1 VALUES V1('person1'), V1('person2');

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

----- --

seoul 12

busan 24

2 rows selected.

● The following is a data type which can be specified in an index key of an associative array of GOLDIL

OCKS PSM.

○ INTEGER

○ LONG

○ CHAR

○ VARCHAR

● The following is a data type which can be used as an element type of an associative array of GOLDILO

CKS PSM.

○ SQL Data Type

○ %TYPE

○ %ROWTYPE

○ User defined Record Type

For more information, refer to Built-in Data Types, %TYPE, %ROWTYPE, User Defined Record Type.

Assign Values to Collection Variables

The following rules are applied when assigning values to collection valuables.

● The rules as same as <Assign Statement> is applied to an element assignment.

● To assign values to the entire collection variable, the types of collection variables should be same.

● When assigning an element of a collection variable, it is operated according to the element data type

as follows.

2,160 | PSM DataTypes

○ Assigning a user defined type element is allowed among same type.

○ Else, it is allowed to assign when data types of a field configuring an element are compatible at a

run-time.

The following is an example of an error due to the assignment of a different type.

DECLARE

TYPE udr1 IS RECORD (F1 INTEGER, F2 VARCHAR(20));

TYPE udr2 IS RECORD (F1 INTEGER, F2 VARCHAR(20));

TYPE rec1 IS TABLE OF udr1 INDEX BY VARCHAR(10);

TYPE rec2 IS TABLE OF udr2 INDEX BY VARCHAR(10);

V1 rec1;

V2 rec2;

BEGIN

V2('person1').F1 := 24;

V2('person1').F2 := 'seoul korea';

V1 := V2;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (14:9): ERR-HY000(17007): invalid expression

In the example above, configuration of each field of an element which consists of user defined type is sa

me. However, the variable types are different, so the assignment fails.

The following is an example of succeeding in an assignment by using the same type.

DECLARE

TYPE udr1 IS RECORD (F1 INTEGER, F2 VARCHAR(20));

TYPE rec1 IS TABLE OF udr1 INDEX BY VARCHAR(10);

V1 rec1;

V2 rec1;

BEGIN

V2('person1').F1 := 24;

V2('person1').F2 := 'seoul korea';

V1 := V2;

END;

/

Anonymous PL block executed.

Assignment of an associative type in an element unit is allowed only when the data types of elements are

compatible.

User-defined Collection Type | 2,161

Refer to the following example.

gSQL> CREATE TABLE T1

(

c1 VARCHAR(20),

c2 VARCHAR(20)

);

Table created.

gSQL> DECLARE

TYPE record_org1 IS RECORD (f1 VARCHAR(20), f2 VARCHAR(20));

TYPE rec1 IS TABLE OF t1%rowtype INDEX BY VARCHAR(10);

TYPE rec2 IS TABLE OF record_org1 INDEX BY VARCHAR(10);

v1 record_org1;

v2 rec1;

v3 rec2;

v4 t1%rowtype;

BEGIN

-- From record_org1 type to %rowtype

V2('first') := v1;

-- From record_org1 type to record_org1 type

V3('first') := v1;

-- From t1%rowtype to record_org1 type

V3('second') := V2('first');

END;

/

Anonymous PL block executed.

An associative type variable is stored in a volatile memory space, and the user accessible TEMP TABLESPA

CE should be extended when the space is insufficient. The following is an example of an error due to the

memory insufficiency.

DECLARE

TYPE rec IS TABLE OF t1%rowtype INDEX BY varchar(20);

v1 rec;

BEGIN

BEGIN

FOR i IN 1 .. 100000

LOOP

v1(i).c1 := i;

2,162 | PSM DataTypes

v1(i).c2 := i;

v1(i).c3 := i;

END LOOP;

EXCEPTION WHEN OTHERS THEN

dbms_output.put_line('error: count=' || v1.count());

dbms_output.put_line('sqlcode=' || SQLCODE);

dbms_output.put_line('sqlmsg =' || SQLERRM);

END;

dbms_output.put_line('v1.count=' || v1.count());

END;

/

error: count=95004

sqlcode=-14015

sqlmsg =[SUNJESOFT][PSM][GOLDILOCKS]there is no extendible datafile in tablespace

'MEM_TEMP_TBS'

v1.count=95004

Anonymous PL block executed.

Collection Method

A collection method is a function or a procedure which is provided to easily operate a collection type vari

able. Associative array provides the following methods.

Table 18-2 Collection method

Method Type
Input

argument
Return type Description

FIRST Function X
Index key data

type
It returns the first index key.

LAST Function X
Index key data

type
It returns the last index key.

COUNT Function X INTEGER It returns the number of elements.

EXISTS Function O BOOLEAN It returns whether an index key exists or not.

PRIOR Function O
Index key data

type
It returns an index key prior to the input index key.

NEXT Function O
Index key data

type
It returns an index key next to the input index key.

DELETE Procedure O N/A
It deletes an element corresponding to the input index

key.

A collection method is used as follows.

User-defined Collection Type | 2,163

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> DECLARE

TYPE rec IS TABLE OF T1%ROWTYPE INDEX BY VARCHAR(10);

V1 rec;

BEGIN

V1('person1').C1 := 'seoul';

V1('person1').C2 := '12';

V1('person2').C1 := 'busan';

V1('person2').C2 := '24';

V1('person3').C1 := 'Daegu';

V1('person3').C2 := '36';

-- First method

DBMS_OUTPUT.PUT_LINE('First Index Key = ' || V1.first());

-- Last method

DBMS_OUTPUT.PUT_LINE('Last Index Key = ' || V1.last());

-- Count method

DBMS_OUTPUT.PUT_LINE('Count of element = ' || V1.count());

-- Prior Method

DBMS_OUTPUT.PUT_LINE('Prior (person1) = ' || V1.prior('person1')); -- return NULL

DBMS_OUTPUT.PUT_LINE('Prior (person3) = ' || V1.prior('person3'));

-- Next Method

DBMS_OUTPUT.PUT_LINE('Next (person1) = ' || V1.next('person1'));

DBMS_OUTPUT.PUT_LINE('Next (person3) = ' || V1.next('person3')); -- return NULL

-- Exists Method

DBMS_OUTPUT.PUT_LINE('Exists (person2) = ' || V1.exists('person2'));

-- Delete Method

V1.delete('person2');

-- Exists Method

DBMS_OUTPUT.PUT_LINE('After delete, Exists (person2) = ' || V1.exists('person2'));

END;

/

First Index Key = person1

Last Index Key = person3

Count of element = 3

Prior (person1) =

Prior (person3) = person2

2,164 | PSM DataTypes

Next (person1) = person2

Next (person3) =

Exists (person2) = TRUE

After delete, Exists (person2) = FALSE

Anonymous PL block executed.

If a delete procedure deleting an element can not find an index key corresponding to the input argument,

then an error occurs as follows.

gSQL> DECLARE

TYPE rec IS TABLE OF T1%ROWTYPE INDEX BY VARCHAR(10);

V1 rec;

BEGIN

V1('person1').C1 := 'seoul';

V1('person1').C2 := '12';

-- Call delete procedure

V1.delete('person2');

END;

/

ERR-HY000(17045): no data found :

V1.delete('person2');

*

ERROR at line 9:

Anonymous PL block executed.

SYS_REFCURSOR | 2,165

18.5 SYS_REFCURSOR

SYS_REFCURSOR is a predefined type for a cursor variable, and it is used to declare a cursor variable.

It is used to declare a cursor variable in the following form.

cursor_variable_name SYS_REFCURSOR;

Cursor variable can be used together with OPEN FOR, FETCH, CLOSE statement as follows.

DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

cv1 SYS_REFCURSOR;

cv2 SYS_REFCURSOR;

BEGIN

OPEN cv1 FOR SELECT * FROM T1;

cv2 := cv1;

FETCH cv2 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

END;

/

V1 = Seoul , V2 = 24

Anonymous PL block executed.

● The variable declared by using SYS_REFCURSOR is used as follows.

○ It is possible to assign each cursor variable among cursor variables. An existing open cursor of the

cursor variable which is on the right of the assign can not be used any more.

○ An explicit cursor can not be assigned to a cursor variable.

○ A variable of a different data type can not be assigned to a cursor variable.

○ A nested function/procedure and schema-level function/procedure can be used as a parameter.

For more information, refer to CURSOR VARIABLES, Cursor Variable Declaration, OPEN FOR Statement.

PSM Control Statements

19.

2,167

2,168 | PSM Control Statements

19.1 Assignment

It inserts the calculation value of the right expression into the left variable by using assignment operators

(':=').

Assignment Target

An assignment target is on the left side of the assignment operator, and the following items may exist on

it.

● Variables (Including an argument of a procedure or a function except for IN type)

● Bind parameter such as '?' or ':V1' (It can be used only in an anonymous PL block.)

Assigning Expression

An expression available on PSM is on the right side of the assignment operator. Expressions available on

a PSM expression is as follows.

● Constant

● All operators, built-in functions or pseudo columns provided by GOLDILOCKS SQL

● Bind parameter bound to IN or IN OUT type (It can be used only in an anonymous PL block.)

● PSM variable

● PSM nested function

● Schema-level function

The following is an example of assignment statement per each type.

CREATE OR REPLACE FUNCTION ADD_TEN(A1 INTEGER)

RETURN INTEGER

IS

BEGIN

RETURN A1 + 10;

END;

/

COMMIT;

DECLARE

FUNCTION ADD_ONE(A1 INTEGER)

Assignment | 2,169

RETURN INTEGER

IS

BEGIN

RETURN A1 + 1;

END;

V_NUM INTEGER;

V_STR VARCHAR(10);

BEGIN

V_NUM := 10; 1 Numeric literal

V_STR := 'ABC'; 2 String literal

:V_PARAM := V_STR || 'DEF'; 3 PSM variable, SQL operator

V_NUM := ADD_ONE(100) + ADD_TEN(1000);

4 Nested function, Schema-level function

END;

/

The following expressions can not be used in an PSM expression.

● Column of a table, view or the corresponding object

● SQL objects such as an index, a sequence or a synonym

● Subquery

● Nested procedure

● Schema-level procedure

The following is an example of an error due to a wrong expression.

gSQL> CREATE SEQUENCE SEQ1;

Sequence created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

V1 INTEGER;

BEGIN

V1 := SEQ1.NEXTVAL;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (4:9): ERR-42000(16074): sequence number not allowed here

To assign an object value of a type which is not available in an PSM expression, use SELECT INTO stateme

nt as follows.

2,170 | PSM Control Statements

gSQL> DECLARE

V1 INTEGER;

BEGIN

SELECT SEQ1.NEXTVAL INTO V1 FROM DUAL;

END;

/

Anonymous PL block executed.

Assignment Compatibility

Even though the statement can use an expression of an assignment statement, it may succeed or fail dep

ending on a target type and the final result type of an expression. The available expression types accordin

g to a target type is as follows.

Table 19-1 Assignment compatibility

Target type Final result type of an expression

Scalar type

● Scalar type variable

● A specific field of a record type variable

● Scalar element of a collection variable with a key

value

It is allowed only when it is a scalar type with a value conve

rsible to a target type.

Attribute record type (%ROWTYPE)

It is allowed only when the number of fields are same and

each field value is conversible to the field of the correspon

ding order of a target.

User defined record type Only the exactly same type is allowed.

Collection type

● Collection type variable whose key value is not sp

ecified

Only the exactly same type is allowed.

Even though the internal structures of user defined record type variables are same, an error occurs if the t

ype names are different.

gSQL> DECLARE

TYPE MY_REC1 IS RECORD (F1 INTEGER := 1, F2 VARCHAR(10) := 'AAA');

TYPE MY_REC2 IS RECORD (F1 INTEGER := 1, F2 VARCHAR(10) := 'AAA');

V1 MY_REC1;

V2 MY_REC2;

BEGIN

V2 := V1;

END;

Assignment | 2,171

/

ERR-HY000(17032): PSM compilation error :

(1) at (7:9): ERR-HY000(17007): invalid expression

Moreover, if a target is an argument variable defined with IN attribute or is a bind parameter bound with

IN attribute, an error occurs.

gSQL> DECLARE

FUNCTION ADD_ONE(A1 IN INTEGER)

RETURN INTEGER

IS

BEGIN

A1 := A1 + 1;

RETURN A1;

END;

V1 INTEGER;

BEGIN

V1 := ADD_ONE(10);

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (6:5): ERR-HY000(17024): (A1) cannot be used as assignment target

Assignment compatibility rules are applied same even when assigning the value of an actual parameter to

a formal parameter variable while calling a function or a procedure.

2,172 | PSM Control Statements

19.2 PL Block

A PL block is a basic unit which configures PSM. A PL block can be nested again in another PL block. Item

s declared within a PL block can be referenced only within the range of its own block (Including subordin

ate blocks)

PL Block Configuration

A single PL block is divided into the following three parts.

For more information, refer to Block (BEGIN .. END).

[DECLARE

1 Declarative part]

BEGIN

2 Statements

[EXCEPTION

3 Handlers]

END;

Declarative Part

A declarative part is an area in which a local item to be used within a PL block is declared. If an item such

as a local variable to be declared does not exist, then a declarative part is not defined, but it starts from a

n executable part.

Local items to be declared in a declarative part is as follows.

● Variable (Refer to PSM DataTypes.)

● User defined type

● Cursor

● Nested function or a procedure (Subprogram)

● User defined exception

All names of items declared in a single PL block should be unique regardless of their types. For example, a

cursor whose name is as same as a name of a variable can not be declared.

gSQL> DECLARE

C1 INTEGER;

CURSOR C1 IS SELECT * FROM DUAL;

PL Block | 2,173

BEGIN

OPEN C1;

FETCH C1 INTO C1;

CLOSE C1;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (3:10): ERR-HY000(17027): duplicated identifier

(2) at (5:8): ERR-HY000(17031): mismatch identifier type

(3) at (6:9): ERR-HY000(17031): mismatch identifier type

(4) at (7:9): ERR-HY000(17031): mismatch identifier type

However, an item in a subordinate PL block whose name is as same as an item in a superordinate PL bloc

k can be declared. In this case, that name means the item found first when exploring from the current loc

ation toward the superordinate block.

gSQL> <<PP>>

DECLARE 1 Parent scope begin

V1 VARCHAR(10) := 'AAA';

BEGIN

<<CC>>

DECLARE 2 Child scope begin

V1 INTEGER := 99;

BEGIN

DBMS_OUTPUT.PUT_LINE('PP.V1 = ' || PP.V1);

DBMS_OUTPUT.PUT_LINE('CC.V1 = ' || CC.V1);

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END; 3 Child scope end

END; 4 Parent scope end

/

PP.V1 = AAA

CC.V1 = 99

V1 = 99

Anonymous PL block executed.

Executable Part

In an executable part, a declared items are manipulated and included statements are performed. Stateme

nts available in an executable parts are as follows.

● Control Statements (Refer to PSM Control Statements.)

2,174 | PSM Control Statements

● Cursor Statements (Refer to PSM Cursor Statements.)

● SQL Statements (static/ dynamic) (Refer to Using SQLs In PSM.)

Exception Handling Part

It defines handlers which handles multiple exceptions occurring during the execution.

If an exception occurs during executing several statements in an executable part, then it explores from th

e location of that PL block to the superordinate PL block to find out whether a handler is registered to ha

ndle the exception. If there is the handler, then it performs the contents of that handle, then initializes th

at exceptional situation.

DECLARE

V1 INTEGER;

BEGIN

SELECT C1 INTO V1 FROM T1 WHERE C1 = 100;

EXCEPTION

WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('SQL%ISOPEN = ' || SQL%ISOPEN);

DBMS_OUTPUT.PUT_LINE('SQL%FOUND = ' || SQL%FOUND);

DBMS_OUTPUT.PUT_LINE('SQL%NOTFOUND = ' || SQL%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('SQL%ROWCOUNT = ' || SQL%ROWCOUNT);

END;

/

If an appropriate handler is not found even after exploring to the top-level PL block, then the occurred ex

ception is returned to a caller, and it is terminated.

gSQL> DECLARE

v1 INTEGER;

BEGIN

v1 := 1/ 0;

END;

/

ERR-HY000(17007): invalid expression :

v1 := 1/ 0;

*

ERROR at line 4:

ERR-22012(12122): divisor is equal to zero

For more information about declaration of user defined exception, built-in handler types or installing a ha

ndler, refer to Error Handling.

NULL Statement | 2,175

19.3 NULL Statement

It is used to specify a statement which does not have any role in PSM such as no-op.

For more information, refer to NULL Statement.

DECLARE

V1 INTEGER := 1;

BEGIN

IF V1 < 10 THEN

V1 := V1 + 1;

ELSE

NULL; -- do nothing

END IF;

END;

/

2,176 | PSM Control Statements

19.4 Testing Conditions

Conditional branch statements perform statements according to true/false of the given condition. GOLDI

LOCKS PSM provides two conditional branch statements, which are IF and CASE.

IF

IF statement performs statements which are true among conditions of the given expression. Conditions o

f an expression can be specified next to IF and ELSIF. If the condition of an expression is true when checki

ng conditions in an order specified when performing, then it performs the statements below THEN clause.

If all IF conditions and ELSIF conditions are false, and ELSE clause is specified, then it performs the statem

ents below ELSE clause.

IF statement always ends with END IF keyword.

For more information, refer to IF Statement.

DECLARE

V1 INTEGER := 1;

BEGIN

-- IF COND

IF V1 > 0 THEN

DBMS_OUTPUT.PUT_LINE('IF COND');

ELSIF V1 = 0 THEN

DBMS_OUTPUT.PUT_LINE('ELSIF COND');

ELSE

DBMS_OUTPUT.PUT_LINE('ELSE COND');

END IF;

-- ELSIF COND

IF V1 = 0 THEN

DBMS_OUTPUT.PUT_LINE('IF COND');

ELSIF V1 > 0 THEN

DBMS_OUTPUT.PUT_LINE('ELSIF COND');

ELSE

DBMS_OUTPUT.PUT_LINE('ELSE COND');

END IF;

-- ELSE COND

IF V1 = 0 THEN

DBMS_OUTPUT.PUT_LINE('IF COND');

Testing Conditions | 2,177

ELSIF V1 < 0 THEN

DBMS_OUTPUT.PUT_LINE('ELSIF COND');

ELSE

DBMS_OUTPUT.PUT_LINE('ELSE COND');

END IF;

END;

/

ELSIF clause and ELSE clause are optional, so it may or may not be specified.

When ELSE statement is not specified and any conditions of IF or ELSIF is not true, then it does not perfor

m any statement, but proceeds to the next statement without causing any exception.

CASE

CASE statement selects a single array among arrays of multiple statements such as IF statement, then per

forms it. CASE statement ends with END CASE keyword, and ELSE clause is optional so it may or may not

be specified.

If WHEN clause with an appropriate condition can not be found and ELSE clause is specified, then it arra

ys statements below ELSE clause. If an appropriate condition does not exist nor is ELSE clause specified, t

hen CASE_NOT_FOUND exception occurs.

For more information, refer to CASE Statement.

WHEN clauses in CASE is evaluated in an specified order, and if an appropriate WHEN clause is found an

d statements of that WHEN clause are arrayed, then all WHEN clauses after that are ignored.

There are two kinds of CASE statements as follows.

● Simple CASE statement

● Searched CASE statement

Simple CASE Statement

A simple CASE statement arrays statements owned by WHEN clause which has the same value as a select

or expression among expressions specified next to WHEN clause by using a selector expression specified

next to CASE keyword. Then it ends.

DECLARE

V1 VARCHAR(1) := '2';

BEGIN

2,178 | PSM Control Statements

CASE V1 WHEN '0' THEN DBMS_OUTPUT.PUT_LINE ('Result = 0');

WHEN '1' THEN DBMS_OUTPUT.PUT_LINE ('Result = 1');

WHEN '2' THEN DBMS_OUTPUT.PUT_LINE ('Result = 2');

ELSE DBMS_OUTPUT.PUT_LINE ('Result = Other');

END CASE;

END;

/

Searched CASE Statement

A searched CASE statement does not have a selector expression, instead a conditional expression which i

s evaluated as boolean type per each WHEN clause is specified. When it is executed, it arrays statements

owned by the first WHEN clause which is TRUE by evaluating expressions of each WHEN clause. Then it e

nds.

DECLARE

V1 VARCHAR(1) := '2';

BEGIN

CASE WHEN V1 = 0 THEN DBMS_OUTPUT.PUT_LINE ('Result = 0');

WHEN V1 = 1 THEN DBMS_OUTPUT.PUT_LINE ('Result = 1');

WHEN V1 = 2 THEN DBMS_OUTPUT.PUT_LINE ('Result = 2');

ELSE DBMS_OUTPUT.PUT_LINE ('Result = OTHER');

END CASE;

END;

/

Iterative Control | 2,179

19.5 Iterative Control

Iterative control statements performs a series of statements several times. GOLDILOCKS PSM provides the

following iterative control statements.

● Basic loop

● FOR loop

● WHILE loop

Basic Loop

A basic loop statement encloses a series of statements which are to be performed several times with LO

OP and END LOOP keywords. This statement indefinitely performs the inner statements, and it can escap

e out of the loop by using EXIT or GOTO statements which are sequential control statements.

For more information, refer to Basic LOOP Statement.

The following is an example of escaping from a basic loop which has the closest scope from that location

by using EXIT WHEN statement.

For more information, refer to EXIT Statement.

gSQL> DECLARE

V1 INTEGER := 1;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

EXIT WHEN V1 > 10; -- Escape Condition

END LOOP;

END;

/

V1 = 1

V1 = 2

V1 = 3

V1 = 4

V1 = 5

V1 = 6

V1 = 7

V1 = 8

V1 = 9

2,180 | PSM Control Statements

V1 = 10

Anonymous PL block executed.

To escape out of a specific loop when multiple loops are nested, specify a label in front of that loop and s

pecify that label as a target label in EXIT statement.

gSQL> DECLARE

V1 INTEGER := 1;

BEGIN

<<OUTER_LOOP>>

LOOP

<<INNER_LOOP>>

LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

EXIT OUTER_LOOP WHEN V1 > 5; -- Escape Condition

END LOOP INNER_LOOP;

DBMS_OUTPUT.PUT_LINE('END OF INNER LOOP');

V1 := V1 + 5;

END LOOP OUTER_LOOP;

DBMS_OUTPUT.PUT_LINE('END OF OUTER LOOP');

END;

/

V1 = 1

V1 = 2

V1 = 3

V1 = 4

V1 = 5

END OF OUTER LOOP

Anonymous PL block executed.

FOR Loop

FOR loop statement repeatedly performs a series of statements as many times as the number of integers

of the given scope.

For more information, refer to FOR LOOP Statement.

A user creates an index variable with the name specified next to FOR keyword, and it sets the beginning v

alue specified on the left side of a scope operator ('..') which is next to IN keyword as an initial value. The

n, it performs a series of statements by increasing by 1 per each loop until it becomes as same as the end

Iterative Control | 2,181

value specified on the right side of a scope operator.

BEGIN

FOR I IN 0 .. 10 LOOP

DBMS_OUTPUT.PUT_LINE('I = ' || I);

END LOOP;

END;

/

When REVERSE keyword is specified in front of the scope, then it performs loop by reducing the value of

an index variable by 1.

BEGIN

FOR I IN REVERSE 10 .. 1 LOOP

DBMS_OUTPUT.PUT_LINE('I = ' || I);

END LOOP;

END;

/

WHILE Loop

WHILE loop statement repeatedly performs a series of statements while the given condition is TRUE.

For more information, refer to WHILE LOOP Statement.

DECLARE

V1 integer := 0;

BEGIN

WHILE V1 < 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

END LOOP;

END;

/

WHILE loop checks given conditions before performing statements of a body so if the condition is FALSE f

rom the beginning, then it may not perform statements of a body at all.

2,182 | PSM Control Statements

19.6 Sequential Control

Sequential control statements move on which a program is performed from the current performing locati

on to another location.

GOLDILOCKS PSM provides the following three sequential control statements.

● GOTO

● CONTINUE

● EXIT

GOTO

GOTO statement moves the performing location to the statement in which the given label is. It can be sp

ecified in front of any statement which is executable within PSM of a label. A target label to which GOT

O moves can exist before and after the GOTO statement. However, only a visible statement can perform

GOTO.

For more information, refer to GOTO Statement.

Conditions for a visible statement is as follows.

● Sibling statements located before and after the current performing location

● A superordinate statement of the current location, and sibling statements located before and after th

at superordinate statement

The following is an example of moving a performing location to a sibling statement of the current locatio

n.

gSQL> BEGIN

<<PARENT_PREV>>

DBMS_OUTPUT.PUT_LINE('PARENT PREV');

<<PARENT>>

IF 1 > 0 THEN

<<SIBLING_PREV>>

DBMS_OUTPUT.PUT_LINE('SIBLING PREV');

<<CURRENT_POSITION>>

GOTO SIBLING_NEXT;

DBMS_OUTPUT.PUT_LINE('SIBLINGS');

DBMS_OUTPUT.PUT_LINE('SIBLINGS');

<<SIBLING_NEXT>>

Sequential Control | 2,183

DBMS_OUTPUT.PUT_LINE('SIBLING NEXT');

ELSE

<<NON_SIBLING>>

DBMS_OUTPUT.PUT_LINE('NON SIBLING');

END IF;

<<PARENT_NEXT>>

DBMS_OUTPUT.PUT_LINE('PARENT NEXT');

END;

/

PARENT PREV

SIBLING PREV

SIBLING NEXT

PARENT NEXT

Anonymous PL block executed.

The following is an example of moving a performing location to a superordinate statement of a current lo

cation.

gSQL> BEGIN

<<PARENT_PREV>>

DBMS_OUTPUT.PUT_LINE('PARENT PREV');

<<PARENT>>

IF 1 > 0 THEN

<<SIBLING_PREV>>

DBMS_OUTPUT.PUT_LINE('SIBLING PREV');

<<CURRENT_POSITION>>

GOTO PARENT_NEXT;

DBMS_OUTPUT.PUT_LINE('SIBLINGS');

DBMS_OUTPUT.PUT_LINE('SIBLINGS');

<<SIBLING_NEXT>>

DBMS_OUTPUT.PUT_LINE('SIBLING NEXT');

ELSE

<<NON_SIBLING>>

DBMS_OUTPUT.PUT_LINE('NON SIBLING');

END IF;

<<PARENT_NEXT>>

DBMS_OUTPUT.PUT_LINE('PARENT NEXT');

END;

/

PARENT PREV

SIBLING PREV

2,184 | PSM Control Statements

PARENT NEXT

Anonymous PL block executed.

The following is an example of moving a performing location to a statement which is not a sibling, so an

error occurs.

gSQL> BEGIN

<<PARENT_PREV>>

DBMS_OUTPUT.PUT_LINE('PARENT PREV');

<<PARENT>>

IF 1 > 0 THEN

<<SIBLING_PREV>>

DBMS_OUTPUT.PUT_LINE('SIBLING PREV');

<<CURRENT_POSITION>>

GOTO NON_SIBLING;

DBMS_OUTPUT.PUT_LINE('SIBLINGS');

DBMS_OUTPUT.PUT_LINE('SIBLINGS');

<<SIBLING_NEXT>>

DBMS_OUTPUT.PUT_LINE('SIBLING NEXT');

ELSE

<<NON_SIBLING>>

DBMS_OUTPUT.PUT_LINE('NON SIBLING');

END IF;

<<PARENT_NEXT>>

DBMS_OUTPUT.PUT_LINE('PARENT NEXT');

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (12:10): ERR-HY000(17010): can not find label name

Likewise, when moving a performing location to a statement which is not a superordinate sibling of the c

urrent statement, then an error occurs.

GOTO is a good tool to make a PSM program logic flexible. However, like in other languages, if it is used

too much, then it may downgrade the readability, so maintenance becomes difficult. Therefore, it is reco

mmended to use loop statements such as FOR or WHILE for an ordinary logics, and use GOTO only when

it is necessary.

Sequential Control | 2,185

CONTINUE

CONTINUE statement terminates the current iteration and starts the next iteration within a loop statemen

t such as FOR or WHILE.

For more information, refer to CONTINUE Statement.

DECLARE

V1 INTEGER := 1;

BEGIN

<<AAA>>

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

IF V1 <= 2 THEN

DBMS_OUTPUT.PUT_LINE('CONTINUE');

CONTINUE;

ELSE

EXIT;

END IF;

DBMS_OUTPUT.PUT_LINE('END-OF-WHILE');

END LOOP AAA;

END;

/

If a target label is specified, it starts the next iteration of a loop which has the corresponding label. If it is

not specified, it starts the next iteration of the closest (inner) loop.

DECLARE

V1 INTEGER := 1;

BEGIN

<<AAA>>

FOR I IN 0..5 LOOP

<<BBB>>

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('I = ' || I);

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

IF V1 <= 2 THEN

CONTINUE BBB;

ELSE

2,186 | PSM Control Statements

EXIT AAA;

END IF;

END LOOP BBB;

END LOOP AAA;

END;

/

WHEN clause can be optionally specified in CONTINUE statement. In this case, it terminates the current it

eration and starts the next iteration, only when an expression next to WHEN clause is TRUE.

DECLARE

V1 INTEGER :=0 ;

BEGIN

LOOP

V1 := V1 + 1;

CONTINUE WHEN V1 < 5;

EXIT;

END LOOP;

END;

/

EXIT

EXIT statement escapes the current loop and performs the next statement.

For more information, refer to EXIT Statement.

DECLARE

V1 INTEGER := 1;

BEGIN

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

IF V1 > 5 THEN

EXIT;

END IF;

V1 := V1 + 1;

END LOOP;

END;

/

If a target loop is specified, then it escapes a loop which has the corresponding label.

Sequential Control | 2,187

DECLARE

V1 INTEGER := 1;

BEGIN

<<AAA>>

FOR I IN 0..5 LOOP

<<BBB>>

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

IF V1 >= 5 THEN

EXIT AAA;

END IF;

V1 := V1 + 1;

END LOOP BBB;

END LOOP AAA;

END;

/

WHEN clause can be optionally specified in EXIT statement, like as in CONTINUE statement. In this case, it

performs EXIT, only when the given condition is TRUE.

DECLARE

V1 INTEGER := 1;

BEGIN

<<AAA>>

FOR I IN 0..5 LOOP

<<BBB>>

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

EXIT AAA WHEN V1 >= 5;

V1 := V1 + 1;

END LOOP BBB;

END LOOP AAA;

END;

/

2,188 | PSM Control Statements

19.7 Error Handling

Errors in PSM are as follows depending on the point of time when it occurs.

● Errors at compile time

● Errors at run time

Errors at Compile Time

A compile error outputs an error which occurs during the validation of PSM statement specified in a proc

edure/function.

A syntax error outputs only the location of the first found syntax error as follows, so a user should compil

e it again to find out if there are any additional errors.

CREATE OR REPLACE PROCEDURE PROC1

IS

BEGIN

V1 = 1;

V2 = 1;

END;

/

ERR-42000(40000): syntax error:

V1 = 1;

.....^

Error at line 4

If a syntax error does not exist, then GOLDILOCKS performs a validation while compiling a PSM statemen

t and the errors occurred in this case are output as follows.

CREATE OR REPLACE PROCEDURE PROC1

IS

BEGIN

V1 := 1;

V2 := 2;

END;

/

ERR-01000(16409): Warning: Routine definition has compilation errors

ERR-HY000(17032): PSM compilation error :

Error Handling | 2,189

(1) at (4:3): ERR-HY000(17006): unknown variable or column name (V1)

(2) at (5:3): ERR-HY000(17006): unknown variable or column name (V2)

Procedure created.

Compile errors output the information of errors within the size which is allowed in the error output buffe

r of GOLDILOCKS. Therefore, some errors may not be output. If so, it is output in the following form to n

otify that there are errors which are not output.

CREATE OR REPLACE PROCEDURE PROC1

IS

BEGIN

V1 := 1;

V2 := 2;

V3 := 2;

V4 := 2;

V5 := 2;

V6 := 2;

V7 := 2;

V8 := 2;

V10 := 2;

END;

/

ERR-01000(16409): Warning: Routine definition has compilation errors

ERR-HY000(17032): PSM compilation error :

(1) at (4:3): ERR-HY000(17006): unknown variable or column name (V1)

(2) at (5:3): ERR-HY000(17006): unknown variable or column name (V2)

(3) at (6:3): ERR-HY000(17006): unknown variable or column name (V3)

(4) at (7:3): ERR-HY000(17006): unknown variable or column name (V4)

(5) at (8:3): ERR-HY000(17006): unknown variable or column name (V5)

(6) at (9:3): ERR-HY000(17006): unknown variable or column name (V6)

(7) at (10:3): ERR-HY000(17006): unknown variable or column name (V7)

2 more errors...

An error message is output in the following form.

(Index) at (Line_Number : Column_Position): ERR-SQLState(Internal_ErrorCode):

Detail_Error_Message

● Index

○ It is a sequence of an error occurrence.

● Line_Number

○ It is a location of a line of source in which an error occurred.

2,190 | PSM Control Statements

● Column_Position

○ It is a location of a column of a source in which an error occurred.

● ERR-SQLState

○ It is a standard SQLState.

● Internal_ErrorCode

○ It is an internal error code.

● Detail_Error_Message

○ It is details of an error message.

Errors at Run-time

An error may occur in a PSM statement for various reasons even when PSM is normally executed. In this c

ase, GOLDILOCKS provides an exception handling to help a user to control the error.

The following is an example of an error occurrence at the time of execution. If an error occurs when exec

uting GOLDILOCKS PMS, then it outputs a location of an error, a PSM error and an internal error togethe

r. In other words, one or more errors may occur, so all errors should be retrieved from the database throu

gh a function such as SQLGetDiagRec if a user wants to find out the exact error message during the devel

opment process such as ODBC.

DECLARE

V1 INTEGER;

BEGIN

V1 := 1 / 0;

END;

/

ERR-HY000(17007): invalid expression :

V1 := 1 / 0;

*

ERROR at line 4:

ERR-22012(12122): divisor is equal to zero

If an error occurs at the time of operation, PSM immediately stops the operation and notifies it to a user.

However, if a user wants to directly control these errors and keep the program running, the user should p

erform the exception handling.

The following is an example of definition to run the user program without interruption by performing the

exception handling on the location of an error.

Error Handling | 2,191

DECLARE

V1 INTEGER;

BEGIN

BEGIN

V1 := 1 / 0;

EXCEPTION WHEN OTHERS

THEN DBMS_OUTPUT.PUT_LINE('SQLCODE = ' || SQLCODE);

DBMS_OUTPUT.PUT_LINE('SQLERRM = ' || SQLERRM);

END;

DBMS_OUTPUT.PUT_LINE('next code');

END;

/

SQLCODE = -12122

SQLERRM = [SUNJESOFT][PSM][GOLDILOCKS]divisor is equal to zero

next code

Anonymous PL block executed.

For more information, refer to EXCEPTION Handling, SQLCODE Function, SQLERRM Function.

Cursor Attributes

Cursor attributes are attributes (variables) which are provided to display the cursor status specified by a us

er or to display the inside of the database, while processing PSM.

● Cursors are specified as follows.

○ Implicit cursor

■ It is a cursor which is OPEN/ FETCH/ CLOSE inside of the database when it is required.

○ Explicit cursor

■ It is a cursor which OPEN/ FETCH /CLOSE after when a user explicitly perform declaration/ de

finition.

Implicit Cursor Attributes

Implicit cursor attributes in PSM is used to find out the processing status of a SQL statement which was p

roximately performed. Each value of attributes can be used in expressions such as a conditional expressio

n, so a user can control it such as branching logics of a program through that value.

For more information about attributes, refer to the following table.

2,192 | PSM Control Statements

Table 19-2 Implicit cursor attributes

Attribute name Return type Description

ISOPEN BOOLEAN It is always FALSE because it is internally closed.

FOUND BOOLEAN
If the data is returned by the previous statement, then it is TRUE.

Otherwise, it is FALSE.

NOTFOUND BOOLEAN It is the opposite value of FOUND.

ROWCOUNT INTEGER It is the number of rows affected by the previous statement.

The syntax is used in the following form.

SQL%Attribute_name

Attribute_name := ISOPEN | FOUND | NOTFOUND | ROWCOUNT

Each attribute can be viewed as the following example.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> BEGIN

UPDATE T1 SET C2 = C2 + 1;

DBMS_OUTPUT.PUT_LINE('ISOPEN = ' || SQL%ISOPEN);

DBMS_OUTPUT.PUT_LINE('FOUND = ' || SQL%FOUND);

DBMS_OUTPUT.PUT_LINE('NOTFOUND = ' || SQL%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('ROWCOUNT = ' || SQL%ROWCOUNT);

END;

/

ISOPEN = FALSE

FOUND = TRUE

NOTFOUND = FALSE

ROWCOUNT = 2

Anonymous PL block executed.

Error Handling | 2,193

Explicit Cursor Attributes

Explicit cursor attributes is used to enquire the status of an explicit cursor.

For more information about attributes, refer to the following table.

Table 19-3 Cursor attributes

Attributes Return type Description

%ISOPEN BOOLEAN
It is TRUE only when a cursor is normally open.

Otherwise, it is FALSE.

%FOUND BOOLEAN
It is NULL before FETCH, and it is TRUE when FETCH is normally performed. I

t is FALSE when data does not exist, and it is NULL after CLOSE.

%NOTFOUND BOOLEAN It is the opposite value of %FOUND.

%ROWCOUNT INTEGER
It is NULL before OPEN, and it is 0 when it is normally OPEN. It increases by

1 whenever FETCH succeeds.

It is used as follows within PSM.

Cursor_Name % Attribute_name

Attribute_name := ISOPEN

| FOUND

| NOTFOUND

| ROWCOUNT

The following is an example of using an explicit cursor attribute.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

CURSOR C1 IS SELECT * FROM T1;

v1 c1%ROWTYPE;

BEGIN

● Check if the cursor is open through ISOPEN.

2,194 | PSM Control Statements

IF C1%ISOPEN = FALSE

THEN

OPEN C1;

END IF;

LOOP

FETCH C1 INTO v1;

● Check if there is any more data through NOTFOUND.

EXIT WHEN C1%NOTFOUND;

● Find out the number of fetched rows through ROWCOUNT.

DBMS_OUTPUT.PUT_LINE('COUNT = ' || C1%ROWCOUNT);

END LOOP;

CLOSE C1;

END;

/

COUNT = 1

COUNT = 2

Anonymous PL block executed.

EXCEPTION Handling

Exceptions within PSM is a definition of various errors occurred while a user is executing PSM. If an error

occurs at the time of operation, PSM immediately stops the operation and returns an error to a user. EXC

EPTION handling is a function provided to a user to control EXCEPTION situation and keep the program r

unning without interruption.

Exception Handler

An error situation can be controlled through an exception handler defined in PSM BLOCK as follows.

DECLARE

V1 INTEGER;

BEGIN

BEGIN

V1 := 1 / 0;

Error Handling | 2,195

● Exception handler

EXCEPTION WHEN OTHERS

THEN DBMS_OUTPUT.PUT_LINE('SQLCODE = ' || SQLCODE);

DBMS_OUTPUT.PUT_LINE('SQLERRM = ' || SQLERRM);

END;

DBMS_OUTPUT.PUT_LINE('next code');

END;

/

SQLCODE = -12122

SQLERRM = [SUNJESOFT][PSM][GOLDILOCKS]divisor is equal to zero

next code

In the example above, the program is stopped by divide by zero at the time of execution. However, if an e

rror occurred by an exception handler, then only the corresponding BLOCK stops, but the processing cont

inues from the next location.

An exception handler is specified as follows.

BEGIN

EXCEPTION WHEN exception_name, [exception_name, ...] THEN pl_statements;

[WHEN exception_name, [exception_name, ...] THEN pl_statements;

END

● Features of an exception handler are as follows.

○ A single exception handler is specified in BLOCK.

○ One or more Exception_Name can be specified and its operation can be defined within an except

ion handler.

○ Exception_name within an exception handler should not be duplicate.

○ It is operated only for an error within PL BLOCK SCOPE in which an exception handler is specified.

○ OTHERS indicating all exceptional situations should be unique, and should be specified at last.

○ If an exception handler is normally completed, the previous errors are cleared. Therefore, a user s

hould store them in a separate PSM variable if in need.

An exception in GOLDILOCKS has the following properties.

Table 19-4 EXCEPTION types

Type Definer Error code Name Raise implicitly Raise explicitly

Pre-defined Database O O O Optionally

User defined User User-defined User defined X O

2,196 | PSM Control Statements

Note

For more information about a predefined exception or a user defined exception provided by GOL

DILOCKS, refer to Exception Declaration.

Propagating Exception

If an appropriate exception handler does not exist in the current BLOCK when an exception occurs, then i

t is propagated to an exception handler of the superordinate BLOCK until the exception is processed.

If an error occurred on LINE_1 in the following code, the result varies upon whether an exception handler

operates.

BEGIN

...

BEGIN

LINE_1

EXCEPTION HANDLER_1

END;

LINE_2

EXCEPTION HANDLER_2

END;

/

● When it is processed in EXCEPTION_HANDLER_1

○ If the handler operation is normally completed, then it is performed from LINE_2.

● When an appropriate handler does not exist in EXCEPTION_HANDLER_1

○ It can not perform LINE_2, and the currently occurred EXCEPTION is propagated to EXCEPTION_

HANDLER_2.

■ When an appropriate handler exists in EXCEPTION_HANDLER_2, if a handler operation is nor

mally completed, then the program ends.

■ If a handler does not exist in EXCEPTION_HANDLER_2, the program stops and the currently

occurred error is returned to a user.

Caution

If an error occurred in an exception handler which was processing an exception, then the error co

de is propagated to a superordinate BLOCK.

Error Handling | 2,197

DECLARE

V1 INTEGER;

E1 EXCEPTION;

E2 EXCEPTION;

BEGIN

BEGIN

RAISE E1;

EXCEPTION WHEN E1 THEN V1 := 1 / 0; 1 A new error occurs.

END;

EXCEPTION WHEN E1

THEN DBMS_OUTPUT.PUT_LINE('User Exception');

WHEN ZERO_DIVIDE

THEN DBMS_OUTPUT.PUT_LINE('Zero divide');

END;

/

Zero divide

Anonymous PL block executed.

User Defined Exception

A user defined exception is an exception used by setting an exception name and an error-code by a user

except for a pre-defined. User defined exception can not implicitly occur, but a user should execute it by

explicitly using a RAISE statment.

The following is an example of causing an exception by using a RAISE statement.

DECLARE

V1 INTEGER;

high EXCEPTION;

low EXCEPTION;

BEGIN

BEGIN

V1 := 10;

IF V1 > 10

THEN

RAISE high;

ELSE

RAISE low;

END IF;

EXCEPTION WHEN high

THEN DBMS_OUTPUT.PUT_LINE('High');

2,198 | PSM Control Statements

WHEN low

THEN DBMS_OUTPUT.PUT_LINE('Low');

END;

END;

/

Low

● A user defined exception is processed depending on the following two cases.

○ When an error-code is set

○ When an error-code is not set

It is operated as follows when a user sets an error code.

DECLARE

V1 INTEGER;

E1 EXCEPTION;

PRAGMA EXCEPTION_INIT(E1, -12122);

BEGIN

BEGIN

V1 := 1 / 0;

EXCEPTION WHEN E1

THEN DBMS_OUTPUT.PUT_LINE('SQLCODE = ' || SQLCODE);

DBMS_OUTPUT.PUT_LINE('SQLERRM = ' || SQLERRM);

END;

END;

/

SQLCODE = -12122

SQLERRM = [SUNJESOFT][PSM][GOLDILOCKS]divisor is equal to zero

The ZERO_DIVIDE predefined exception exists, but a user sets a handler by setting an error code as E1 ex

ception. For the program compatibility between vendors with each different error code as above, an exce

ption handler is available of which a user directly resets an error code.

A user defined exception in which an error-code is not set is set as the following error code and message

in an exception handler.

DECLARE

V1 INTEGER;

E1 EXCEPTION;

BEGIN

BEGIN

RAISE E1;

Error Handling | 2,199

EXCEPTION WHEN E1

THEN DBMS_OUTPUT.PUT_LINE('SQLCODE = ' || SQLCODE);

DBMS_OUTPUT.PUT_LINE('SQLERRM = ' || SQLERRM);

END;

END;

/

SQLCODE = 1

SQLERRM = [SUNJESOFT][PSM][GOLDILOCKS]User-Defined Exception

Anonymous PL block executed.

A propagation process of a user defined exception is as same as that of a predefined exception. However,

if an error-code is not set in a user defined exception, it is propagated as unhandled user exception error

to the superordinate BLOCK.

DECLARE

V1 INTEGER;

E1 EXCEPTION;

E2 EXCEPTION;

BEGIN

BEGIN

RAISE E1;

EXCEPTION WHEN E2

THEN DBMS_OUTPUT.PUT_LINE('SQLCODE = ' || SQLCODE);

DBMS_OUTPUT.PUT_LINE('SQLERRM = ' || SQLERRM);

END;

END;

/

ERR-HY000(17017): Unhandled user exception :

RAISE E1;

*

ERROR at line 7:

An unhandled user exception can be caught by specifying a user defined exception in an exception handl

er or by using OTHERS which is a predefined exception.

PRAGMA EXCEPTION_INIT

It is used for a user sets a specific DBMS error code when using a user defined exception. DBMS error cod

es varies depending on vendors, so it can be used for a compatibility of an exception handler of PSM cod

e.

2,200 | PSM Control Statements

The syntax is as follows.

<PRAGMA EXCEPTION_INIT> ::=

PARAGMA EXCEPTION_INIT (exception_name, internal_errorcode)

● Constraints are as follows.

○ exception_name should be declared in advance.

○ exception_name can not use a predefined exception.

○ Only an internal error-code of GOLDILOCKS is available for internal_errorcode.

○ It can not set 0 which means SUCCESS.

The following is an example of handling an exception of when assigning NULL to V1 (the PSM variable to

which NOT NULL constraints are applied) by using a user defined exception.

DECLARE

V1 VARCHAR(20) NOT NULL := 10;

USER_EXCEPT EXCEPTION;

● Declare the PSM NOT NULL constraint error as a user defined exception.

PRAGMA EXCEPTION_INIT(USER_EXCEPT, -17009);

BEGIN

● Generate a situation of an exception.

V1 := NULL;

EXCEPTION WHEN USER_EXCEPT THEN DBMS_OUTPUT.PUT_LINE('Check Value');

END;

/

Check Value

Anonymous PL block executed.

The following error occurs when setting a value which is not an internal error-code of GOLDILOCKS.

DECLARE

E1 EXCEPTION;

PRAGMA EXCEPTION_INIT(E1, 99999);

BEGIN

NULL;

END;

/

ERR-HY000(17032): PSM compilation error :

Error Handling | 2,201

(1) at (3:30): ERR-HY000(17021): Invalid error number for PRAGMA EXCEPTION_INIT

DBMS_STANDARD.RAISE_APPLICATION_ERROR

It is used to easily generate an exception through an arbitrary user error code and a message, instead of e

xplicitly defining a user exception. It belongs to a DBMS_STANDARD module, and the routines of this mo

dule can be called even when omitting a name of that module.

There are three types of arguments as follows.

Table 19-5 RAISE_APPLICATION_ERROR

Argument Description

error_code IN NATIVE_INT

EGER

It is a value of an error code to be arbitrarily generated. Only the value within the rang

e of -20000 ~ -20999 can be used.

error_message IN VARCHA

R(4000)
It is a message to be stored in SQLERRM when an error occurs.

stack_flag IN BOOLEAN :=

FALSE

It is a flag of whether to stack on the existing errors (TRUE), or to replace with all exist

ing errors (FALSE). The default value is FALSE.

The following is a simple example of using it.

CREATE OR REPLACE PROCEDURE PROC1

IS

BEGIN

RAISE_APPLICATION_ERROR (-20000, 'USER DEFINED ERROR TEST');

END;

/

Procedure created.

BEGIN

PROC1;

EXCEPTION WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('SQLCODE : ' || SQLCODE || ' SQLERRM : ' || SQLERRM);

END;

/

SQLCODE : -20000 SQLERRM : [SUNJESOFT][PSM][GOLDILOCKS]USER DEFINED ERROR TEST

Anonymous PL block executed.

PSM Cursor Statements

20.

2,203

2,204 | PSM Cursor Statements

20.1 Declaration

When retrieving through a PSM statement two or more results can not be returned from the database. T

herefore, to retrieve two or more results, a cursor should be used by declaring and defining it.

● Cursors are specified as follows.

○ Explicit cursor

■ A user explicitly declares it through cursor declaration/ definition.

○ Implicit cursor

■ It is a cursor processed through PSM statement within the database, and they can not be defi

ned nor is it declared by a user.

A cursor should be declared and defined in a PSM declare section before using an explicit cursor. (In the f

ollowing description, a cursor means an explicit cursor.)

● A cursor declaration defines the followings.

○ Cursor name

○ Parameter list owned by a cursor

○ Return type of a cursor

● A cursor definition defines the followings.

○ Cursor name

○ Parameter list owned by a cursor

○ Return type of a cursor

○ SELECT and SELECT .. FOR UPDATE statement which are to be performed by a cursor

● Each item used in a cursor declaration and a cursor definition has the following features.

○ Cursor name

■ A cursor should be unique within the declared SCOPE.

■ The name should be shorter than 128 bytes.

○ Parameter list

■ It is defined when binding a PSM variable or a value in an SQL which is to be performed by a

cursor.

○ Return type

■ It is used to strictly define the result set of validating an SQL statement owned by a cursor.

■ If a definition of the result of SQL statement owned by a cursor is different from a definition

of the return type, then an error occurs.

Declaration | 2,205

Note

A cursor definition should be the same type as the type of the previously declared cursor (name, p

arameter list, return type).

For a cursor declaration/ definition, refer to the followings.

DECLARE

● Declaration

CURSOR C1 RETURN T1%ROWTYPE;

● Declaration & definition

CURSOR C2 IS SELECT * FROM T1;

● Definition for C1

CURSOR C1 RETURN T1%ROWTYPE IS SELECT * FROM T1;

BEGIN

NULL;

END;

/

If the declaration and definition of cursor RETURN TYPE with the same cursor_name are different, then t

he following error may occur.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> DECLARE

TYPE rec IS RECORD (C1 VARCHAR(20), C2 VARCHAR(20));

The following two cursor return types are same, but it is recognized as using different types. Therefore, a

n error caused by using the same cursor name occurs.

2,206 | PSM Cursor Statements

CURSOR C1 RETURN rec;

CURSOR C1 RETURN T1%ROWTYPE IS SELECT * FROM T1;

BEGIN

NULL;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (4:12): ERR-HY000(17033): duplicated cursor name

If the declaration and the definition of items in a parameter list are different, then an error occurs.

DECLARE

● The declaration and the definition of a parameter are different. (Parameter name)

CURSOR C1 (A1 INTEGER, A2 INTEGER DEFAULT 10) RETURN T1%ROWTYPE;

CURSOR C1 (A1 INTEGER, A3 INTEGER DEFAULT 10) RETURN T1%ROWTYPE IS

SELECT * FROM T1;

BEGIN

NULL;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (3:12): ERR-HY000(17033): duplicated cursor name

If an SQL statement defined in a cursor should be performed by referring to a PSM variable at the run-tim

e, then it can be defined with a parameter of a cursor.

DECLARE

cursor c1 (a1 varchar) return t1%rowtype;

cursor c2 (a1 varchar(20)) return t1%rowtype;

BEGIN

NULL;

END;

/

If a DEFAULT clause is defined, the definition of a parameter can be omitted at the time of performing a c

ursor.

The following is an example of performing a cursor by inputting all parameters, and an example of perfor

ming a cursor by omitting the definition of a parameter in a DEFAULT clause.

Declaration | 2,207

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

CURSOR C1 (A1 INTEGER, A2 INTEGER DEFAULT 10)

IS SELECT * FROM T1 WHERE C2 >= A1 AND C2 <= A2;

BEGIN

● Perform a cursor by inputting all parameters.

OPEN C1 (10, 50);

FETCH C1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

CLOSE C1;

● Perform a cursor by omitting a default parameter (A2).

OPEN C1 (10);

FETCH C1 INTO V1, V2;

IF C1%NOTFOUND = TRUE

THEN

DBMS_OUTPUT.PUT_LINE('NO DATA');

END IF;

CLOSE C1;

END;

/

V1 = Seoul , V2 = 24

NO DATA

Anonymous PL block executed.

2,208 | PSM Cursor Statements

20.2 OPEN

A select statement of a cursor can be performed through OPEN statement after declaration/ definition of

the explicit cursor. If it is a SELECT .. FOR UPDATE statement, it locks rows in a result set.

If a cursor OPEN again a CURSOR which is normally OPEN, then an error occurs.

DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

CURSOR C1 IS SELECT * FROM T1;

BEGIN

OPEN C1;

OPEN C1;

END;

/

ERR-HY000(17037): cursor is already open :

OPEN C1;

*

ERROR at line 9:

If an explicit cursor has a parameter, then it is used as follows.

DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

cursor c1 (a1 varchar(20)) return t1%rowtype;

cursor c1 (a1 varchar(20)) return t1%rowtype

is select * from t1 where c1 = a1;

BEGIN

OPEN c1('Seoul');

FETCH c1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

END;

/

V1 = Seoul , V2 = 24

Anonymous PL block executed.

For more information, refer to OPEN Statement.

FETCH | 2,209

20.3 FETCH

If an explicit cursor is normally OPEN, a result can be stored as a PSM variable through a FETCH statement.

● A result is stored in the following PSM variables.

○ SQL data type variable

○ A record type variable which can store a single row

○ An associative array type variable in which a key is specified available to store a single row

The following is an example of fetching by using an SQL data type variable or through %ROWTYPE.

DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

V3 T1%ROWTYPE;

CURSOR C1 IS SELECT * FROM T1;

BEGIN

OPEN C1;

● List of SQL type variables

FETCH C1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

● Single record variables

FETCH C1 INTO V3;

DBMS_OUTPUT.PUT_LINE('V3.C1 = ' || V3.C1 || ' , V3.C2 = ' || V3.C2);

END;

/

V1 = Seoul , V2 = 24

V3.C1 = Pusan , V3.C2 = 44

A record type variable used in FETCH should be separately used, and if it is used together with another va

riable, then an error occurs as follows.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

2,210 | PSM Cursor Statements

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

V3 T1%ROWTYPE;

CURSOR C1 (A1 INTEGER, A2 INTEGER DEFAULT 10)

IS SELECT * FROM T1 WHERE C2 >= A1 AND C2 <= A2;

BEGIN

OPEN C1 (10, 50);

V3 is a record type and a scalar type return result can not be stored in a record type, so an error occurs.

FETCH C1 INTO V1, V3;

CLOSE C1;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (10:23): ERR-HY000(17007): invalid expression

For more information, refer to FETCH Statement.

CLOSE | 2,211

20.4 CLOSE

It closes a cursor which is normally OPEN. Results and cursor-attributes can not be obtained from a closed

cursor. When accessing to a CLOSE cursor and performing fetch, then an INVALID_CURSOR exception.

DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

CURSOR C1 IS SELECT * FROM T1;

BEGIN

OPEN C1;

CLOSE C1;

BEGIN

FETCH C1 INTO V1, V2;

EXCEPTION WHEN INVALID_CURSOR

THEN DBMS_OUTPUT.PUT_LINE('invalid cursor exception');

END;

END;

/

invalid cursor exception

Anonymous PL block executed.

For more information, refer to CLOSE Statement.

2,212 | PSM Cursor Statements

20.5 EXPLICIT CURSOR ATTRIBUTES

Explicit cursor attributes have the information about the current status of an explicit cursor. These attribu

tes can be used both in an expression and a conditional expression.

An explicit cursor attribute is used as the following syntax, and refer to the following table for more infor

mation about attributes.

Cursor_Name % Attribute_name

Attribute_name := ISOPEN

| FOUND

| NOTFOUND

| ROWCOUNT

Table 20-1 Cursor attributes

Attribute Return type Description

%ISOPEN BOOLEAN
It is TRUE only when a cursor is normally open.

Otherwise, it is FALSE.

%FOUND BOOLEAN
It is NULL before FETCH, and it is TRUE when FETCH is normally performed. I

t is FALSE when data does not exist, and it is NULL after CLOSE.

%NOTFOUND BOOLEAN It is the opposite value of %FOUND.

%ROWCOUNT INTEGER
It is NULL before OPEN, and it is 0 when it is normally OPEN. It increases by

1 whenever FETCH succeeds.

The following is an example of displaying how the value is changed by phase for each cursor attribute.

DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

CURSOR C1 IS SELECT * FROM T1;

BEGIN

DBMS_OUTPUT.PUT_LINE('<BEFORE OPEN>');

DBMS_OUTPUT.PUT_LINE('%ISOPEN = [' || C1%ISOPEN || ']');

DBMS_OUTPUT.PUT_LINE('%FOUND = [' || C1%FOUND || ']');

DBMS_OUTPUT.PUT_LINE('%NOTFOUND = [' || C1%NOTFOUND || ']');

DBMS_OUTPUT.PUT_LINE('%ROWCOUNT = [' || C1%ROWCOUNT || ']');

OPEN C1;

DBMS_OUTPUT.PUT_LINE('<AFTER OPEN>');

DBMS_OUTPUT.PUT_LINE('%ISOPEN = [' || C1%ISOPEN || ']');

EXPLICIT CURSOR ATTRIBUTES | 2,213

DBMS_OUTPUT.PUT_LINE('%FOUND = [' || C1%FOUND || ']');

DBMS_OUTPUT.PUT_LINE('%NOTFOUND = [' || C1%NOTFOUND || ']');

DBMS_OUTPUT.PUT_LINE('%ROWCOUNT = [' || C1%ROWCOUNT || ']');

FETCH C1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('<AFTER FETCH>');

DBMS_OUTPUT.PUT_LINE('%ISOPEN = [' || C1%ISOPEN || ']');

DBMS_OUTPUT.PUT_LINE('%FOUND = [' || C1%FOUND || ']');

DBMS_OUTPUT.PUT_LINE('%NOTFOUND = [' || C1%NOTFOUND || ']');

DBMS_OUTPUT.PUT_LINE('%ROWCOUNT = [' || C1%ROWCOUNT || ']');

CLOSE C1;

DBMS_OUTPUT.PUT_LINE('<AFTER CLOSE>>');

DBMS_OUTPUT.PUT_LINE('%ISOPEN = [' || C1%ISOPEN || ']');

DBMS_OUTPUT.PUT_LINE('%FOUND = [' || C1%FOUND || ']');

DBMS_OUTPUT.PUT_LINE('%NOTFOUND = [' || C1%NOTFOUND || ']');

DBMS_OUTPUT.PUT_LINE('%ROWCOUNT = [' || C1%ROWCOUNT || ']');

END;

/

<BEFORE OPEN>

%ISOPEN = [FALSE]

%FOUND = []

%NOTFOUND = []

%ROWCOUNT = []

<AFTER OPEN>

%ISOPEN = [TRUE]

%FOUND = []

%NOTFOUND = []

%ROWCOUNT = [0]

<AFTER FETCH>

%ISOPEN = [TRUE]

%FOUND = [TRUE]

%NOTFOUND = [FALSE]

%ROWCOUNT = [1]

<AFTER CLOSE>>

%ISOPEN = [FALSE]

%FOUND = []

%NOTFOUND = []

%ROWCOUNT = []

Anonymous PL block executed.

2,214 | PSM Cursor Statements

20.6 IMPLICIT_CURSOR_ATTRIBUTES

An implicit cursor is a cursor internally processed in a database through a PSM statement, and it has attri

butes whose name is as same as that of attributes owned by an explicit cursor.

For more information, refer to the following table.

Table 20-2 Implicit cursor attributes

Attribute name Return type Description

ISOPEN BOOLEAN It is always FALSE because it is internally closed.

FOUND BOOLEAN
If the data is returned by the previous statement, then it is TRUE.

Otherwise, it is FALSE.

NOTFOUND BOOLEAN It is the opposite value of FOUND.

ROWCOUNT INTEGER It is the number of rows affected by the previous statement.

The following is an example of implicit cursor attributes.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

V1 INTEGER;

BEGIN

SELECT COUNT(*) INTO V1 FROM T1;

DBMS_OUTPUT.PUT_LINE('COUNT RET = ' || V1);

DBMS_OUTPUT.PUT_LINE('SQL%ISOPEN = ' || SQL%ISOPEN);

DBMS_OUTPUT.PUT_LINE('SQL%FOUND = ' || SQL%FOUND);

DBMS_OUTPUT.PUT_LINE('SQL%NOTFOUND = ' || SQL%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('SQL%ROWCOUNT = ' || SQL%ROWCOUNT);

END;

/

COUNT RET = 2

SQL%ISOPEN = FALSE

SQL%FOUND = TRUE

IMPLICIT_CURSOR_ATTRIBUTES | 2,215

SQL%NOTFOUND = FALSE

SQL%ROWCOUNT = 1

Anonymous PL block executed.

2,216 | PSM Cursor Statements

20.7 CURSOR VARIABLES

A cursor variable is a concept similar to an explicit cursor. However, an explicit cursor is subordinate to a s

ingle statement, a cursor variable plays a role as a point indicating one or more cursor. In other words, it c

an use a cursor by altering N SQL syntaxes by using a single cursor variable.

● The followings are what are different from an explicit cursor.

○ It alters one or more SELECT queries and processes them with a cursor.

○ It is possible to assign each cursor variable among cursor variables.

○ It can be used in an expression.

○ It can be used as a parameter of a subprogram and schema-level procedure/ function.

○ It can not have a parameter.

It is automatically closed if a cursor open through a cursor variable gets out of the SCOPE where the curs

or is declared. However, if it is used as a parameter of a subprogram and schema_level procedure/ functi

on, then it is valid even when that procedure/ function ends until it gets out of the SCOPE where it was c

alled.

Note

To use a cursor variable as a parameter, a binding-mode of that parameter should be declared as

OUT or IN OUT.

A cursor variable can use cursor attributes as same as those of an explicit cursor.

DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

cv1 SYS_REFCURSOR;

BEGIN

DBMS_OUTPUT.PUT_LINE('Before Open');

DBMS_OUTPUT.PUT_LINE('ISOPEN = ' || cv1%ISOPEN);

DBMS_OUTPUT.PUT_LINE('FOUND = ' || cv1%FOUND);

DBMS_OUTPUT.PUT_LINE('NOTFOUND = ' || cv1%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('ROWCOUNT = ' || cv1%ROWCOUNT);

OPEN cv1 FOR SELECT * FROM T1;

DBMS_OUTPUT.PUT_LINE('After Open');

DBMS_OUTPUT.PUT_LINE('ISOPEN = ' || cv1%ISOPEN);

CURSOR VARIABLES | 2,217

DBMS_OUTPUT.PUT_LINE('FOUND = ' || cv1%FOUND);

DBMS_OUTPUT.PUT_LINE('NOTFOUND = ' || cv1%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('ROWCOUNT = ' || cv1%ROWCOUNT);

FETCH cv1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('After fetch');

DBMS_OUTPUT.PUT_LINE('ISOPEN = ' || cv1%ISOPEN);

DBMS_OUTPUT.PUT_LINE('FOUND = ' || cv1%FOUND);

DBMS_OUTPUT.PUT_LINE('NOTFOUND = ' || cv1%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('ROWCOUNT = ' || cv1%ROWCOUNT);

END;

/

Before Open

ISOPEN = FALSE

FOUND =

NOTFOUND =

ROWCOUNT =

After Open

ISOPEN = TRUE

FOUND =

NOTFOUND =

ROWCOUNT = 0

After fetch

ISOPEN = TRUE

FOUND = TRUE

NOTFOUND = FALSE

ROWCOUNT = 1

Anonymous PL block executed.

Cursor variable can be used as a parameter of a subprogram and a schema-level procedure/ function as f

ollows.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

2,218 | PSM Cursor Statements

1 row created.

gSQL> DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

cv1 SYS_REFCURSOR;

PROCEDURE PROC1 (A_CV1 IN OUT SYS_REFCURSOR)

IS

BEGIN

● Open a cursor by using an input parameter cursor variable.

OPEN A_CV1 FOR SELECT * FROM T1;

END;

BEGIN

PROC1(cv1);

● Fetch it by using a cursor variable which was used as a parameter.

FETCH cv1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

END;

/

V1 = Seoul , V2 = 24

Anonymous PL block executed.

For more information, refer to Cursor Variable Declaration.

OPEN and Close Cursor Variables

It can OPEN a cursor through a cursor variable if using an OPEN FOR statement within PSM. Also, it can C

LOSE a cursor of a cursor variable through a CLOSE statement as same as an explicit cursor.

If an already open cursor exists in a cursor variable at the time of performing a cursor through an OPEN F

OR statement, then that cursor is automatically closed and a new cursor is OPEN.

The following is an example of using a cursor variable.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

CURSOR VARIABLES | 2,219

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

cv1 SYS_REFCURSOR;

BEGIN

OPEN cv1 FOR SELECT * FROM T1;

● Fetch with cursor-variable

FETCH cv1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

CLOSE cv1;

END;

/

V1 = Seoul , V2 = 24

Anonymous PL block executed.

For more information, refer to OPEN FOR Statement, CLOSE Statement.

Fetching Data With Cursor Variables

Like as an explicit cursor, it can store the result processed in a database through a fetch statement as a PS

M variable.

For more information, refer to FETCH Statement.

Assign Values to Cursor Variables

It is possible to assign a cursor variable each other if RETURN-TYPEs are same. If it is not a cursor variable

type, then an error occurs.

It is performed with the following assign statement.

2,220 | PSM Cursor Statements

target_cursor_variable := source_cursor_variable

Assigning a cursor variable makes a cursor pointer indicated by target_cursor_variable indicate a cursor h

aving Source_cursor_variable. Therefore, after it is normally assigned, a cursor already open in a target cu

rsor variable is not valid nor is it accessible. Also, a cursor is internally cleared when getting out of the SC

OPE in which a cursor variable is declared.

DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

cv1 SYS_REFCURSOR;

cv2 SYS_REFCURSOR;

BEGIN

● Open cv1

OPEN cv1 FOR SELECT * FROM T1;

● Assign cv1 to cv2

cv2 := cv1;

● Fetch from cv2

FETCH cv2 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

END;

/

V1 = Seoul , V2 = 24

The following is an example of using the same cursor by assigning after each cursor variable performs OP

EN.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

CURSOR VARIABLES | 2,221

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

cv1 SYS_REFCURSOR;

cv2 SYS_REFCURSOR;

v1 t1%ROWTYPE;

BEGIN

● Each cursor variable OPEN a cursor.

OPEN cv1 FOR select * from t1 where c1 = 'Seoul';

OPEN cv2 FOR select * from t1 where c1 = 'Pusan';

● Assign cursor-variable

● A cursor of cv2 is not valid any more.

cv2 := cv1;

● Fetch the result of cv1.

FETCH cv2 INTO v1;

DBMS_OUTPUT.PUT_LINE('C1 = ' || V1.C1 || ' , C2 = ' || V1.C2);

END;

/

C1 = Seoul , C2 = 24

Anonymous PL block executed.

Using PSM Subprograms

21.

2,223

2,224 | Using PSM Subprograms

21.1 Anonymous PL Block

An anonymous PL block is an SQL statement for a one - time execution of a PSM statement instead of st

oring a PSM statement in the database. An anonymous PL block is a one of a regular SQL provided by GO

LDILOCKS, so it is used in the same way as other SQL s in ODBC, JDBC and precompiler which are provide

d by GOLDILOCKS. A syntax is as same as a syntax of a general basic block

For more information, refer to Block (BEGIN .. END).

<<Label>> 1 (optional)

DECLARE 2 (optional)

3 declare items (variables, cursors, types, ...) (optional)

BEGIN 4 (required)

5 PSM statements to execute (required)

EXCEPTION 6 Exception Handling Part (optional)

END;

Refer to the following instructions when using an anonymous PL block.

Interface Instructions for use

in common
A bind parameter can be used unlike a schema-level procedure/ function.

It also supports a prepare-execute method.

ODBC It is used completely same as a general SQL.

JDBC
A CallableStatement class should be used if it has a bind parameter with IN-OUT

or OUT attribute. (Refer to CallableStatement.)

Precompiler (gpec) N/A

Interactive command tool (gsql)
It should notify the end of the statement by entering '/'<Enter> after inputting a

n anonymous PL block.

Nested Procedure | 2,225

21.2 Nested Procedure

A nested procedure is a procedure type subprogram declared within a specific PL block. A nested proced

ure has a scope which can be referenced only on a declared PL block and its subordinates.

For more information, refer to Procedure Declaration and Definition.

DECLARE

PROCEDURE PROC1(A1 INTEGER) 1 Define Nested Procedure

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('A1 = ' || A1);

END;

BEGIN

PROC1(100); 2 Call Nested Procedure

END;

/

The followings are items available within a nested subprogram.

● An argument variable of a nested subprogram

● A PL block in which a nested subprogram is defined, and variables and various items (type, cursor,...)

defined in its superordinate scope.

● A bind parameter when it is an anonymous PL block. (e.g. '?', ':V1')

A nested procedure supports a forward declaration, so it can separately specify a declare statement and a

define statement. By using this, a logic of cross call between two nested procedures can be implemented.

gSQL> DECLARE

PROCEDURE PROC1(A1 INTEGER); 1 Declare proc1

PROCEDURE PROC2(A1 INTEGER) 2 Define proc2

IS

BEGIN

IF A1 > 0 THEN

DBMS_OUTPUT.PUT_LINE('(proc2)A1 = ' || A1);

PROC1(A1 -1); 3 Call proc1

END IF;

END;

PROCEDURE PROC1(A1 INTEGER) 4 Define proc1

IS

BEGIN

IF A1 > 0 THEN

2,226 | Using PSM Subprograms

DBMS_OUTPUT.PUT_LINE('(proc1)A1 = ' || A1);

PROC2(A1 -1); 5 Call proc2

END IF;

END;

BEGIN

PROC1(5); 6 Call proc1

END;

/

(proc1)A1 = 5

(proc2)A1 = 4

(proc1)A1 = 3

(proc2)A1 = 2

(proc1)A1 = 1

Anonymous PL block executed.

GOLDILOCKS PSM limits the maximum subordinate statement depths to 50 to prevent the infinite cross r

eferencing. If it is exceeded, then the following error occurs. (It is also applied same to a nested function,

schema-level procedure/ function.)

gSQL> DECLARE

PROCEDURE PROC1(A1 INTEGER); 1 declare proc1

PROCEDURE PROC2(A1 INTEGER) 2 define proc2

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('A1 = ' || A1);

PROC1(A1 -1);

END;

PROCEDURE PROC1(A1 INTEGER) 3 define proc1

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('A1 = ' || A1);

PROC2(A1 -1);

END;

BEGIN

PROC1(100);

END;

/

ERR-42000(16411): maximum number of recursive SQL levels (50) exceeded.

Nested Function | 2,227

21.3 Nested Function

A nested function is as same as a nested procedure, but it is a subprogram in function form.

For more information, refer to Function Declaration and Definition.

gSQL> DECLARE

V1 INTEGER := 0;

FUNCTION FUNC1(A1 INTEGER)

RETURN INTEGER

IS

BEGIN

RETURN A1 * 10;

END;

BEGIN

V1 := FUNC1(10);

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

V1 = 100

Anonymous PL block executed.

A nested function can be used in all PSM expressions within a visible scope, but is can not be used in an S

QL statement.

gSQL> DECLARE

V1 INTEGER := 0;

FUNCTION FUNC1(A1 INTEGER)

RETURN INTEGER

IS

BEGIN

RETURN A1 * 10;

END;

BEGIN

SELECT FUNC1(10) INTO V1 FROM DUAL;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (10:3): ERR-HY000(17079): a nested function not allowed in executing SQL

2,228 | Using PSM Subprograms

21.4 Schema-level Procedure

A schema-level subprogram is an SQL object which has a name and is stored in a database. A schema-lev

el procedure is a schema-level subprogram in procedure form.

Creating Schema-level Procedure

A schema-level procedure is created as follows. A precision and a scale value should be specified if in nee

d.

For more information, refer to CREATE PROCEDURE.

CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER, A2 INTEGER)

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

The information about a created schema-level procedure can be found with a INFORMATION_SCHEMA.R

OUTINES table.

For more information, refer to ROUTINES.

gSQL> SELECT SPECIFIC_NAME, ROUTINE_DEFINITION

FROM INFORMATION_SCHEMA.ROUTINES

WHERE SPECIFIC_NAME = 'PROC1';

SPECIFIC_NAME ROUTINE_DEFINITION

------------- ---

PROC1 PROCEDURE "PUBLIC"."PROC1" (A1 INTEGER, A2 INTEGER)

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

Schema-level Procedure | 2,229

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

1 row selected.

The information about an argument can be found with a INFORMATION_SCHEMA.PARAMETERS table.

For more information, refer to PARAMETERS.

gSQL> SELECT P.PARAMETER_NAME, P.ORDINAL_POSITION

FROM INFORMATION_SCHEMA.ROUTINES R,

INFORMATION_SCHEMA.PARAMETERS P

WHERE R.SPECIFIC_NAME = 'PROC1'

AND R.SPECIFIC_SCHEMA = P.SPECIFIC_SCHEMA

AND R.SPECIFIC_NAME = P.SPECIFIC_NAME

ORDER BY P.ORDINAL_POSITION;

PARAMETER_NAME ORDINAL_POSITION

-------------- ----------------

A1 1

A2 2

2 rows selected.

Using Schema-level Procedure

A schema-level procedure is used by an inner statement of other PSM or by a CALL statement.

Other PSM statements call a schema-level procedure in the same form of a nested procedure.

gSQL> BEGIN

PROC1(2, 4); 1 Call schema-level procedure

END;

/

V1 = 3

Anonymous PL block executed.

A CALL statement which is an SQL executing the given PSM is executed as follows.

For more information, refer to CALL Statement.

2,230 | Using PSM Subprograms

gSQL> CALL PROC1(2, 4);

V1 = 3

Procedure Call complete.

It supports the following syntax for a procedure to support a procedure call escape sequence used in ODB

C or JDBC.

{ CALL procedure_name(param1, param2, ...) }

A syntax of a procedure call escape sequence is used like as a general SQL.

gSQL> { CALL PROC1(2, 4) };

V1 = 3

Procedure Call complete.

gsql which is an interactive command tool of GOLDILOCKS does not support performing a procedure thr

ough \EXEC which is the tool's own command.

The following options about a privilege of when executing a schema-level procedure can be specified. If a

user except for a definer performs an SQL within PSM according to these options, it may refer to a table

with the same name in different schemas according to the definition of that user's schema-path. (A nam

e of the object used when declaring an item (e.g. T1%ROWTYPE) is always interpreted as a definer.)

● AUTHID DEFINER (default): The user is altered to the user created that procedure, then it is performe

d.

● AUTHID CURRENT_USER: The user is not altered, and it is performed by the current user.

CREATE OR REPLACE PROCEDURE "PROC1"(A1 INTEGER, A2 INTEGER)

AUTHID CURRENT_USER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

Schema-level Procedure | 2,231

Dropping Schema-level Procedure

A schema-level procedure is dropped by the following DROP PROCEDURE statement.

For more information, refer to DROP PROCEDURE.

DROP PROCEDURE PROC1;

It also supports IF EXISTS statement like as other DROP statements of GOLDILOCKS.

DROP PROCEDURE IF EXISTS PROC1;

Recompiling Schema-level Procedure

If an object referenced inside of a schema-level subprogram is altered, then it may affects the correspondi

ng subprogram and should create the execution plan again.

Referenced Object in a Declarative Part or an Argument

If the used object is altered when defining various items in a declarative part or an argument type, then t

he procedure plan is automatically recompiled.

● An object used in %TYPE, %ROWTYPE

● An object used in an explicit cursor definition statement

If the corresponding procedure is performed for the first time after an object is altered, then the plan is a

utomatically recreated according to the following order.

1. Bring the plan of the corresponding procedure from a plan cache.

2. Search for objects which were altered during validating an object list of that plan.

3. Discard the current plan, and create a new plan from a procedure definition statement stored in a di

ctionary.

4. Register a newly created plan on a plan cache.

5. Execute the plan.

Referenced Object in an SQL of the Body

An SQL plan used in the body is not stored in a procedure plan, and only the SQL text is stored. When ex

ecuting a procedure, it creates a plan by compiling the corresponding SQL statement in real time, then ex

ecutes it. Therefore, an SQL object used within a body does not affect the procedure plan itself.

2,232 | Using PSM Subprograms

However, if an object is altered, the number or type of binds which are the existing interfaces of a proced

ure may be altered, or columns may be dropped. Therefore, an error may occur when executing it if the p

rocedure is not appropriately altered.

Schema-level Function | 2,233

21.5 Schema-level Function

A schema-level function is a schema-level subprogram in function form, which is used within an expressio

n.

Creating Schema-level Function

A schema-level function is created as follows. A precision and a scale value of an argument type should b

e specified if in need.

For more information, refer to CREATE FUNCTION.

gSQL> CREATE OR REPLACE FUNCTION FUNC1(A1 INTEGER, A2 INTEGER)

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

RETURN V1;

END;

/

Function created.

Like as a procedure, a created schema-level function is found throughINFORMATION_SCHEMA.ROUTINE

S and INFORMATION_SCHEMA.PARAMETERS table.

Using Schema-level Function

A schema-level function can be used in all expressions in which a general SQL or an SQL object within PS

M can be used.

gSQL> SELECT FUNC1(2, 4) FROM DUAL;

FUNC1(2, 4)

3

2,234 | Using PSM Subprograms

1 row selected.

It is used as follows within PSM.

gSQL> DECLARE

V1 INTEGER;

BEGIN

V1 := FUNC1(2, 4);

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

V1 = 3

Anonymous PL block executed.

It can be performed by using CALL statement as follows.

For more information, refer to CALL Statement.

gSQL> \var V1 INTEGER

gSQL> CALL FUNC1(2, 4) INTO :V1;

Procedure Call complete.

gSQL> \print V1

V1

--

3

Like as a schema-level procedure, a procedure call escape sequence statement is also supported.

{ ? = CALL function_name(param1, param2, ...) }

gSQL> { :V1 = CALL FUNC1(2, 4) };

Procedure Call complete.

gSQL> \print V1

V1

--

3

Dropping Schema-level Function

A schema-level function is dropped by the following DROP FUNCTION statement.

For more information, refer to DROP FUNCTION.

Schema-level Function | 2,235

gSQL> DROP FUNCTION FUNC1;

Function dropped.

2,236 | Using PSM Subprograms

21.6 Built-in Procedures

GOLDILOCKS PSM provides the following built-in procedures to debug or process the exception when m

aterializing the procedure and the function.

Table 21-1 Built-in procedures

Procedure Description

DBMS_OUTPUT.ENABLE(

buffer_size IN NATIVE_INT

EGER := 20000)

It activates a message logging feature to the given buffer size.

If the buffer size is not given it is set to 20000 bytes by default. If the feature is alread

y activatedm then it discards all messages and creates a new buffer.

DBMS_OUTPUT.DISABLE
It deactivates a message logging feature. All messages previously logged are discarde

d.

DBMS_OUTPUT.SET_LOG(

file_path IN VARCHAR(40

00))

It simultaneously outputs on the file in a given path when logging a message. If the gi

ven path is a relative path (its first letter is not /), then it searches for a target file belo

w a directory corresponding to <SYSTEM_LOGGER_DIR> property.

DBMS_OUTPUT.PUT_LINE(

item IN VARCHAR(4000))
It stores a message made with a given expression on a buffer.

DBMS_OUTPUT.GET_LINE(

line OUT VARCHAR(4000),

status OUT NATIVE_INTEG

ER)

It returns the oldest single line which is not read among messages stored on a buffer.

If there is a message, a status returns 0, if there is not any message it returns 1.

DBMS_STANDARD.RAISE_

APPLICATION_ERROR(

error_code IN NATIVE_INT

EGER,

error_message IN VARCHA

R(4000),

stack_flag IN BOOLEAN :=

FALSE)

It generates an arbitrary user exception. and error_code should be the value between

-20000 and -20999. It it is TRUE, the last stack_flag argument stacks a given error on

the existing errors. If it is FALSE, the corresponding error replaces all errors. (It can be

omitted, and the default is FALSE when it is omitted.)

gSQL> DECLARE

V1 VARCHAR(1024);

V2 INTEGER;

BEGIN

DBMS_OUTPUT.ENABLE(2000);

DBMS_OUTPUT.PUT_LINE('TEST MSG');

DBMS_OUTPUT.GET_LINE(V1, V2);

DBMS_OUTPUT.PUT_LINE('V1 = ' || v1);

DBMS_OUTPUT.PUT_LINE('V2 = ' || v2);

END;

/

Built-in Procedures | 2,237

V1 = TEST MSG

V2 = 0

Anonymous PL block executed.

A message logging feature is managed per each section, and gsql (an interactive command tool of GOLD

ILOCKS) can turn on or off the message logging feature with a serveroutput option. If any content remai

ns in a message buffer after performing PSM, all are automatically output.

gSQL> \set serveroutput on

gSQL> \var msg VARCHAR(4000)

gSQL> \var status NATIVE_INTEGER

gSQL> CALL DBMS_OUTPUT.PUT_LINE('aaa');

aaa

Procedure Call complete.

gSQL> CALL DBMS_OUTPUT.PUT_LINE('bbb');

bbb

Procedure Call complete.

gSQL> CALL DBMS_OUTPUT.GET_LINE(:msg, :status);

Procedure Call complete.

gSQL> \print msg

MSG

null

gSQL> \print status

STATUS

1

Using SQLs in PSM

22.

2,239

2,240 | Using SQLs in PSM

22.1 Static SQLs

Static SQLs are SQLs can be used in PSM, and it is classified are follows.

● SELECT

● INSERT

● UPDATE

● DELETE

● RETURNING INTO

● LOCK TABLE

● COMMIT, ROLLBACK, SAVEPOINT

A static SQL is an extended SQL to perform SQL supported by GOLDILOCKS through PSM variable. This c

hapter describes features and precautions of a static SQL available only in PSM.

SELECT

A SELECT statement within PSM receives the result returned from the database, and stores value in a PS

M variable specified in INTO clause. The result set of GOLDILOCKS PSM through SELECT INTO can be stor

ed only in a single row.

It can be specified as follows.

SELECT target_list INTO variable_list FROM table_expression

For more information, refer to Data Query Language.

The following is an example of storing a value in a variable declared as an SQL data type by using SELECT

statement within PSM.

DECLARE

V1 INTEGER;

BEGIN

DBMS_OUTPUT.PUT_LINE('V1 =[' || V1 || ']');

● It stores the result in the variable V1 through SELECT INTO.

SELECT 1 INTO V1 FROM DUAL;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

Static SQLs | 2,241

/

V1 =[]

V1 = 1

The following is an example of storing value in a variable declared as a record type.

DECLARE

TYPE rec is RECORD (F1 INTEGER, F2 INTEGER);

var1 rec;

BEGIN

DBMS_OUTPUT.PUT_LINE('Var1.f1 =[' || Var1.f1 || ']');

DBMS_OUTPUT.PUT_LINE('Var1.f2 =[' || Var1.f2 || ']');

● Store the result in var which is a record type variable.

SELECT 1, 2 INTO var1 FROM DUAL;

DBMS_OUTPUT.PUT_LINE('Var1.f1 = ' || Var1.f1);

DBMS_OUTPUT.PUT_LINE('Var1.f2 = ' || Var1.f2);

END;

/

Var1.f1 =[]

Var1.f2 =[]

Var1.f1 = 1

Var1.f2 = 2

If a result set which has two or more results of SELECT statement is returned form the database, then the

following error occurs. A user can catch the error by using TOO_MANY_ROWS exception among predefi

ned exceptions.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

2,242 | Using SQLs in PSM

BEGIN

BEGIN

SELECT * INTO V1, V2 FROM T1;

EXCEPTION WHEN TOO_MANY_ROWS

THEN DBMS_OUTPUT.PUT_LINE('SQLCODE=' || SQLCODE);

DBMS_OUTPUT.PUT_LINE('SQLERRM=' || SQLERRM);

END;

END;

/

SQLCODE=-16289

SQLERRM=[SUNJESOFT][PSM][GOLDILOCKS]into clause can have only one row

Anonymous PL block executed.

If a result does not exist in SELECT INTO, then an error occurs. A user can catch the error by using NO_DA

TA_FOUND exception among predefined exceptions.

DECLARE

V1 T1%ROWTYPE;

BEGIN

SELECT * INTO V1 FROM T1 WHERE C1 = 'NONE';

END;

/

ERR-HY000(17041): execution fail :

SELECT * INTO V1 FROM T1 WHERE C1 = 'NONE';

*

ERROR at line 4:

ERR-HY000(17045): no data found

Caution

If a result of SELECT INTO statement is stored through a record type in GOLDILOCKS, it can not be

used by mixing together with a different type variable. If they are used being mixed together, the

following error may occur.

DECLARE

TYPE rec is RECORD (F1 INTEGER, F2 INTEGER);

var1 rec;

v1 integer;

BEGIN

Static SQLs | 2,243

DBMS_OUTPUT.PUT_LINE('Var1.f1 =[' || Var1.f1 || ']');

DBMS_OUTPUT.PUT_LINE('Var1.f2 =[' || Var1.f2 || ']');

SELECT 1, 2, 3 INTO Var1, v1 FROM DUAL;

DBMS_OUTPUT.PUT_LINE('Var1.f1 = ' || Var1.f1);

DBMS_OUTPUT.PUT_LINE('Var1.f2 = ' || Var1.f2);

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (9:29): ERR-HY000(17046): variables of record type can not be mixed with other

variables

However, it can be used as follows when a user uses a partial field of a record type by mixing with the SQ

L data type variable.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

v1 t1%ROWTYPE;

v2 VARCHAR(20);

BEGIN

SELECT * INTO V1.C1, V2 FROM T1

WHERE C1 = 'Seoul';

● A value is not stored in V1.c2.

DBMS_OUTPUT.PUT_LINE('V1.c1 = ' || V1.C1 || ' , V1.c2 = ' || V1.C2);

DBMS_OUTPUT.PUT_LINE('V2 = ' || V2);

END;

/

V1.c1 = Seoul , V1.c2 =

V2 = 24

Anonymous PL block executed.

2,244 | Using SQLs in PSM

INSERT

An INSERT statement in PSM provides the following expansion features.

● It can store the data in the database by using a user defined record type variable.

● It can store the data in RETURNING INTO clause by using a record type variable.

In PSM, it can inserts the data in the following form through a record type variable.

INSERT INTO table_name VALUES record_type_variable

For more information, refer to Inserting Data.

The following is an example of storing the record in the database by using PSM variable declared as an S

QL data type.

gSQL>

CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL>

DECLARE

V1 INTEGER;

V2 INTEGER;

BEGIN

V1 := 10;

V2 := 20;

INSERT INTO T1 (C1, C2) VALUES (V1, V2);

COMMIT;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

-- --

10 20

1 row selected.

Static SQLs | 2,245

The following is an example of inserting which uses a record type variable declared with %ROWTYPE.

gSQL>

CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL>

DECLARE

V1 T1%ROWTYPE;

BEGIN

V1.C1 := 10;

V1.C2 := 20;

INSERT INTO T1 VALUES V1;

COMMIT;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

-- --

10 20

1 row selected.

For more information, refer to %ROWTYPE.

The following is an example of storing the record in the database by using a user defined record type vari

able.

gSQL>

CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL>

DECLARE

TYPE rec IS RECORD (F1 INTEGER, F2 INTEGER);

2,246 | Using SQLs in PSM

v1 rec;

BEGIN

V1.F1 := 10;

V1.F2 := 20;

INSERT INTO T1 VALUES V1;

COMMIT;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

-- --

10 20

1 row selected.

For more information, refer to User Defined Record Type.

Caution

If a record type variable is specified in a form other than PSM insert expansion, then the following

error occurs.

gSQL>

DECLARE

TYPE rec IS RECORD (F1 INTEGER, F2 INTEGER);

v1 rec;

v2 INTEGER;

BEGIN

V1.F1 := 10;

V1.F2 := 20;

V2 := 30;

INSERT INTO T1 (c1, c2) VALUES (V1);

COMMIT;

END;

/

ERR-HY000(17032): PSM compilation error :

(1) at (11:3): ERR-42000(16053): not enough values

Static SQLs | 2,247

In the example above, two columns are listed and a variable of a specified VALUES clause is one. Though

it is a record type variable, but the numbes of values to be bound is different, so an error occurs as above.

To use a variable by mixing with a type different from a record type, then it should be specified in a scalar

type as follows.

gSQL>

DECLARE

TYPE rec IS RECORD (F1 INTEGER, F2 INTEGER);

v1 rec;

v2 INTEGER;

BEGIN

V1.F1 := 10;

V1.F2 := 20;

V2 := 30;

INSERT INTO T1 (c1, c2) VALUES (V1.F1, V2);

COMMIT;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

-- --

10 30

1 row selected.

UPDATE

The followings are features expanded from PSM.

● It can alter the database value to a value in a record type variable by using SET ROW clause.

● It can store the value of before/ after the alteration as a PSM variable through RETURNING INTO clau

se.

A record type variable can be used in the following form through an UPDATE expansion feature within P

SM.

UPDATE table_list SET ROW = Record_type_variable [WHERE condition]

For more information, refer to Updating Data.

2,248 | Using SQLs in PSM

The following is an example of altering the record through a PSM record type variable and UPDATE ... SE

T ROW clause.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 T1%ROWTYPE;

BEGIN

V1.C1 := 10;

V1.C2 := 20;

UPDATE T1 SET ROW = V1 WHERE c1 = 1;

COMMIT;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

C1 C2

-- --

10 20

1 row selected.

DELETE

An expansion feature of PSM DELETE is as follows.

● It can store the deleted value as a record type variable through RETURNING INTO.

The following is an example of performing DELETE through PSM variable of SQL data type.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

Static SQLs | 2,249

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 INTEGER;

BEGIN

V1 := 1;

DELETE FROM T1 WHERE C1 = V1;

COMMIT;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

no rows selected.

RETURNING INTO

It can store the result of processing DML (INSERT, UPDATE, DELETE) as a PSM variable by using RETURNI

NG INTO clause.

● It has following restrictions when storing the result in RETURNING INTO of PSM.

○ The result returned to the database can be stored only in a single row. (Two or more results can

not be stored.)

○ It can not be used together with a different type variable when storing as a record type variable.

INSERT RETURNING INTO

INSERT RETURNING INTO clause stores the result value stored in the database as a PSM variable specified

in RETURNING INTO clause.

The following is an example of storing the result of performing insert in a PSM variable.

gSQL>

DECLARE

v1 INTEGER;

v2 INTEGER;

v3 INTEGER;

v4 INTEGER;

2,250 | Using SQLs in PSM

BEGIN

V1 := 10;

V2 := 20;

INSERT INTO T1 (c1, c2) VALUES (V1, V2)

RETURNING * INTO V3, V4;

DBMS_OUTPUT.PUT_LINE('V3 = ' || V3);

DBMS_OUTPUT.PUT_LINE('V4 = ' || V4);

END;

/

V3 = 10

V4 = 20

The following is an example storing the result of a returning into by using a record type variable.

gSQL>

DECLARE

v1 INTEGER;

v2 INTEGER;

v3 T1%ROWTYPE;

BEGIN

V1 := 10;

V2 := 20;

INSERT INTO T1 (c1, c2) VALUES (V1, V2)

RETURNING * INTO V3;

DBMS_OUTPUT.PUT_LINE('V3.C1 = ' || V3.C1);

DBMS_OUTPUT.PUT_LINE('V3.C2 = ' || V3.C2);

END;

/

V3.C1 = 10

V3.C2 = 20

Anonymous PL block executed.

UPDATE RETURNING INTO

UPDATE RETURNING INTO can store the result before/ after the alteration in the database through a PSM

variable specified in RETURNING INTO clause.

It stores the result of RETURNING INTO through an SQL type variable as follows.

Static SQLs | 2,251

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 INTEGER;

V2 INTEGER;

V3 INTEGER;

V4 INTEGER;

BEGIN

V1 := 1;

V2 := 2;

● It stores the result of when before it is altered by UPDATE in V3 and variable V3.

UPDATE T1 SET C2 = V2 WHERE C1 = V1

RETURNING OLD * INTO V3, V4;

DBMS_OUTPUT.PUT_LINE('OLD');

DBMS_OUTPUT.PUT_LINE('V3 = ' || V3);

DBMS_OUTPUT.PUT_LINE('V4 = ' || V4);

ROLLBACK;

● It stores the result of when after it is altered by UPDATE in V3 and variable V3.

UPDATE T1 SET C2 = V2 WHERE C1 = V1

RETURNING NEW * INTO V3, V4;

DBMS_OUTPUT.PUT_LINE('NEW');

DBMS_OUTPUT.PUT_LINE('V3 = ' || V3);

DBMS_OUTPUT.PUT_LINE('V4 = ' || V4);

END;

/

OLD

V3 = 1

V4 = 1

NEW

V3 = 1

V4 = 2

2,252 | Using SQLs in PSM

Anonymous PL block executed.

The following is an example of storing the result of RETURNING INTO by using a record type variable.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 INTEGER;

V2 INTEGER;

V3 T1%ROWTYPE;

BEGIN

V1 := 1;

V2 := 2;

● Store the result in a record type variable (V3).

UPDATE T1 SET C2 = V2 WHERE C1 = V1

RETURNING OLD * INTO V3;

DBMS_OUTPUT.PUT_LINE('OLD');

DBMS_OUTPUT.PUT_LINE('V3.C1 = ' || V3.C1);

DBMS_OUTPUT.PUT_LINE('V3.C2 = ' || V3.C2);

ROLLBACK;

● Store the result in a record type variable (V3).

UPDATE T1 SET C2 = V2 WHERE C1 = V1

RETURNING NEW * INTO V3;

DBMS_OUTPUT.PUT_LINE('NEW');

DBMS_OUTPUT.PUT_LINE('V3.C1 = ' || V3.C1);

DBMS_OUTPUT.PUT_LINE('V3.C2 = ' || V3.C2);

END;

/

OLD

V3.C1 = 1

V3.C2 = 1

NEW

Static SQLs | 2,253

V3.C1 = 1

V3.C2 = 2

Anonymous PL block executed.

DELETE RETURNING INTO

DELETE RETURNING INTO can store the data of a row deleted from the database in a PSM variable.

The following is an example of using SQL type variables.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 INTEGER;

V2 INTEGER;

V3 INTEGER;

BEGIN

V3 := 1;

● Store the data of when before DELETE in the variable V1 and V2.

DELETE FROM T1 WHERE C1 = V3

RETURNING * INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

DBMS_OUTPUT.PUT_LINE('V2 = ' || V2);

END;

/

V1 = 1

V2 = 1

Anonymous PL block executed.

The following is an example of storing the data of when before DELETE through a record type variable.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

2,254 | Using SQLs in PSM

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 T1%ROWTYPE;

V3 INTEGER;

BEGIN

V3 := 1;

● Store the data of when before DELETE in the variable V3.

DELETE FROM T1 WHERE C1 = V3

RETURNING * INTO V1;

DBMS_OUTPUT.PUT_LINE('V1.C1 = ' || V1.C1);

DBMS_OUTPUT.PUT_LINE('V1.C2 = ' || V1.C2);

END;

/

V1.C1 = 1

V1.C2 = 1

Anonymous PL block executed.

COMMIT, ROLLBACK, SAVEPOINT

COMMIT, ROLLBACK, SAVEPOINT statements permanently store the transaction result which occurred wi

thin PSM in the database, or rolls back it to the state of when before the alteration.

COMMIT

COMMIT permanently stores the transaction result in the database. It is used as follows.

CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

INSERT INTO T1 VALUES (1, 1);

1 row created.

Static SQLs | 2,255

DECLARE

V3 INTEGER;

BEGIN

V3 := 1;

DELETE FROM T1 WHERE C1 = V3;

COMMIT;

END;

/

Anonymous PL block executed.

SELECT * FROM T1;

no rows selected.

ROLLBACK

ROLLBACK rolls back the transaction to its previous state. It is used as follows.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

V3 INTEGER;

BEGIN

V3 := 1;

DELETE FROM T1 WHERE C1 = V3;

ROLLBACK;

END;

/

Anonymous PL block executed.

● 		 	Verify if the DELETE ROLLBACK data is normally retrieved in PSM.

2,256 | Using SQLs in PSM

gSQL> SELECT * FROM T1;

C1 C2

-- --

1 1

1 row selected.

SAVEPOINT

SAVEPOINT rolls back a transaction to the user defined location by using ROLLBACK TO SAVEPOINT state

ment.

gSQL> CREATE TABLE T1

(

C1 INTEGER,

C2 INTEGER

);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1);

1 row created.

gSQL> DECLARE

V1 INTEGER;

BEGIN

UPDATE T1 SET C2 = 10 WHERE C1 = 1;

SELECT C2 INTO V1 FROM T1 WHERE C1 = 1;

DBMS_OUTPUT.PUT_LINE('Before delete: V1 = ' || V1);

● Assign the current location as a SAVEPOINT.

SAVEPOINT SV1;

DELETE FROM T1 WHERE C1 = 1;

● ROLLBACK it to the savepoint SV1.

ROLLBACK TO SAVEPOINT SV1;

● Verify if it is normally ROLLBACK to the SAVEPOINT.

SELECT C2 INTO V1 FROM T1 WHERE C1 = 1;

DBMS_OUTPUT.PUT_LINE('After Rollback: V1 = ' || V1);

END;

/

Before delete: V1 = 10

Static SQLs | 2,257

After Rollback: V1 = 10

Anonymous PL block executed.

2,258 | Using SQLs in PSM

22.2 Dynamic SQL

Unlike a static SQL, the syntax of a dynamic SQL is determined at the time of execution.

In PSM, a dynamic SQL created by a user at run-time can be performed through EXECUTE IMMEDIATE or

OPEN FOR statement.

● A dynamic SQL is used in the following cases.

○ When an SQL statement can not be determined when compiling. (e.g. When an SQL statement s

hould be altered according to conditions.)

○ When an SQL which is not supported in a static SQL is performed. (e.g. DDL)

● The syntax of a dynamic SQL is unknown until the time of execution, so a run-time error may occur d

ue to a syntax error, existence of a target object and validation of a user privilege.

● A dynamic SQL can be used in the following PSM statements.

○ EXECUTE IMMEDIATE Statement

○ OPEN FOR Statement

EXECUTE IMMEDIATE

Various dynamic SQLs can be performed in EXECUTE IMMEDIATE. However, a statement in a form of an

SQL extension provided by PSM can not be used.

The statement is provided in the following form.

EXECUTE IMMEDIATE 'dynamic sql' [USING [IN | OUT | INOUT] variable_list] [INTO variable_list]

[RETURNING INTO variable_list]

A value stored in a PSM variable can be applied to a database through USING, INTO, RETURNING INTO st

atements which are provided to an EXECUTE IMMEDIATE statement, or a value can be stored from a dat

abase to a PSM variable. The differences of using each statement are as follows.

● USING

○ It uses an IN-mode when applying a value of PSM variable to an SQL.

○ It uses an OUT-mode when storing the result of SQL processing in a PSM variable.

■ Therefore, if uses an OUT-mode, it should be described with PSM variables. (An expression is

not available.)

○ An IN-mode is applied when a binding type of the variable specified in USING clause is not specifi

ed.

○ It is operated as same as using SELECT INTO clause when a target of SELECT is returned as USING

OUT.

Dynamic SQL | 2,259

○ Only a single row can be returned from the database. If two or more results occurs then an error

occurs.

○ A PSM variable in a USING IN clause can use only a form of scalar type.

○ A PSM variable in a USING OUT clause can use a record type, but it can not use it by mixing with

another type.

● INTO

○ It is used when storing the result of SELECT which is internally processed in a database using an i

mplicit cursor.

○ It can be used only when executing SELECT clause using a dynamic SQL method. (SELECT INTO cl

ause can not be used.)

○ A PSM variable can be a record-type, but it can not be used by mixing with another type.

● RETURING INTO

○ It is used when storing the before/ after of the data processed by INSERT/ UPDATE/ DELETE.

○ It can store only a single row.

○ A PSM variable can be a record-type, but it can not be used by mixing with another type.

The following is an example of outputting the SELECT_INTO statement result by using a dynamic SQL.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

BEGIN

EXECUTE IMMEDIATE 'SELECT * INTO ?, ? FROM T1 WHERE C1 = ''Seoul'''

USING OUT V1, OUT V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

DBMS_OUTPUT.PUT_LINE('V2 = ' || V2);

END;

/

V1 = Seoul

V2 = 24

Anonymous PL block executed.

2,260 | Using SQLs in PSM

The following is an example of performing an altering operation and storing the result of when before th

e alteration in a variable specified in RETURNING INTO.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

V1 VARCHAR(20);

V2 VARCHAR(20);

V3 VARCHAR(20);

V4 VARCHAR(20);

BEGIN

V1 := 'Daegu';

V2 := '50';

EXECUTE IMMEDIATE

'UPDATE T1 SET C1 = ? , C2 = ? WHERE C1 = ''Seoul'' RETURNING OLD * INTO ?, ?'

USING V1, V2 RETURNING INTO V3, V4;

DBMS_OUTPUT.PUT_LINE('V3 = ' || V3);

DBMS_OUTPUT.PUT_LINE('V4 = ' || V4);

END;

/

V3 = Seoul

V4 = 24

Anonymous PL block executed.

For more information. refer to EXECUTE IMMEDIATE Statement.

OPEN FOR, FETCH and CLOSE

When processing a query by using EXECUTE IMMEDIATE, the database can not return one or more result

s. If an SQL to be processed is a dynamic SQL, and two or more result sets should be fetched, like as a cur

sor, then use OPEN FOR.

Dynamic SQL | 2,261

The a dynamic SQL in the following form can be used in OPEN FOR statement.

OPEN Cursor_variable FOR dynamic_sql [USING variable_list]

The following is an example of performing OPEN FOR statement through a dynamic SQL.

gSQL> CREATE TABLE T1

(

C1 VARCHAR(20),

C2 VARCHAR(20)

);

Table created.

gSQL> INSERT INTO T1 VALUES ('Seoul', '24');

1 row created.

gSQL> INSERT INTO T1 VALUES ('Pusan', '44');

1 row created.

gSQL> DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

v3 VARCHAR(20);

cv1 SYS_REFCURSOR;

sqlstr VARCHAR(1024);

BEGIN

sqlstr := 'SELECT * FROM T1 WHERE C1 >= ?';

v3 := 'AAAA';

OPEN cv1 FOR sqlstr USING v3;

FETCH cv1 INTO v1, v2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' , V2 = ' || V2);

CLOSE cv1;

END;

/

V1 = Seoul , V2 = 24

Anonymous PL block executed.

● USING clause in OPEN FOR statement has the following constraints.

○ Binding mode

■ Only IN mode is available.

○ Available items

■ PSM variable

■ Value expression whose result is returned as a scalar type

2,262 | Using SQLs in PSM

For more information, refer to OPEN FOR Statement, FETCH Statement, CLOSE Statement.

PSM Language Element References

23.

2,263

2,264 | PSM Language Element References

23.1 Assignment Statement

Function

Within a PSM block, it stores a value in a variable or in an out-bind parameter.

Syntax

<assignment statement> ::=

<assignment target> := <value expression>

;

<assignment target> ::=

collection_variable (index)

| cursor_variable

| :host_cursor_variable

| out_parameter

| :host_variable [:indicator_variable]

| record_variable . field_name

| scalar_variable

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● collection_variable

○ It is the variable name of COLLECTION type declared in DECLARE section.

● index

○ It is the key value which selects an element among elements of collection_variable.

● cursor_variable

○ It is the cursor name declared in DECLARE section.

● host_variable

Assignment Statement | 2,265

○ It is the name of out/ in-out type client-side variable which is transferred from where calling PSM.

● indicator_variable

○ It is the indicator variable name to check the NULL value of host_variable and to find out the actu

al length of the value.

● record_variable

○ It is the variable name of RECORD type which has already been declared in DECLARE section.

● field_name

○ It is the name of a field among fields included in a RECORD type variable.

● scalar_variable

○ It is the variable name of a general scalar type which has already been declared in DECLARE secti

on.

Description

Targets of assignment statements are classified into an external bind parameter and an internal PSM varia

ble.

● External parameter

○ Host variable

○ Host cursor variable

● Internal variable

○ Out type function argument

○ Internally declared variable

■ Scalar/ record/ multi-set type

■ A specific field of a record type variable

■ A specific element of multi-set type variable

All variables except for a procedure/ function parameter can have a name assigning a scope.

Examples

The following is an example of using an assignment statement.

● Assignment for PSM internal variable

gSQL> DECLARE

V1 INTEGER := 0;

BEGIN

FOR I IN 1..10 LOOP

2,266 | PSM Language Element References

V1 := V1 + I;

END LOOP;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

V1 = 55

Anonymous PL block executed.

● Assignment for a host variable

gSQL> \var P1 INTEGER

gSQL>

BEGIN

:P1 := 100;

END;

/

gSQL> \print P1

P1

100

Anonymous PL block executed.

Compatibility

The differences between an assignment statement of GOLDILOCKS and that of SQL standard are as follo

ws.

● An assignment statement of the SQL standard defines a singleton variable assignment and a multiple

variable assignment, but GOLDILOCKS supports only a singleton variable assignment.

● An assignment statement of the SQL standard starts with SET keyword, but GOLDILOCKS does not us

e SET keyword.

● An assignment statement of the SQL standard uses an equal operator (=) between a target and a val

ue, but GOLDILOCKS uses :=.

Table 23-1 SQL standard compatibility

Feature ID Description Compatibility

P002 Computational completeness X

P006 Multiple assignment X

Assignment Statement | 2,267

For More Information

Refer to the followings.

● Scalar Variable Declaration

● Record Variable Declaration

● COLLECTION Variable Declaration

● Cursor Variable Declaration

2,268 | PSM Language Element References

23.2 Basic LOOP Statement

Function

It repeatedly performs statements within LOOP until the LOOP is terminated by performing GOTO or EXIT.

Syntax

<basic loop statement> ::=

LOOP { <SQL procedure statement> ; }... END LOOP [loop_name]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● loop_name

○ It is the label name of <basic loop statement>.

○ Its role is only a comment, so it does not matter even when it is different from the real label nam

e of <basic loop statement>.

Description

A basic loop statement is repeatedly performs statements within LOOP.

A basic loop statement is a loop-family statement, so it can be a target statement which GOTO, EXIT, and

CONTINUE indicates as a label.

Basic LOOP Statement | 2,269

Examples

DECLARE

V1 INTEGER := 1;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

EXIT WHEN V1 > 2;

END LOOP;

END;

/

V1 = 1

V1 = 2

Anonymous PL block executed.

Compatibility

<basic loop statement> statement is as same as <loop statement> of the SQL standard.

Table 23-2 SQL standard compatibility

Feature ID Description Compatibility

P002 Computational completeness O

For More Information

Refer to the followings.

● CONTINUE Statement

● EXIT Statement

● GOTO Statement

2,270 | PSM Language Element References

23.3 Block (BEGIN .. END)

Function

It creates a new scope and defines a variable, a cursor, a type and an exception.

Syntax

<PSM block> ::=

[DECLARE <declare item>...] BEGIN <SQL procedure statement list> END

;

<declare item> ::=

<variable declaration>

| <explicit cursor declaration>

| <cursor variable declaration>

| <type declaration>

| <exception decalration>

<executable statement list> ::=

[<label list>] { <SQL procedure statement> ; }...

<label list> ::=

{ << identifier >> }...

<SQL procedure statement>

<PSM Static SQL>

| <PSM Dynamic SQL>

| <PSM Control Statement>

Invocation and Access Rules

It can be used only within PROCEDURE, FUNCTION or an anonymous block.

Block (BEGIN .. END) | 2,271

Syntax Rules and Parameters

● Variable declaration

○ It declares scalar/ record/ array type variables which are to be used in a block.

● Cursor variable declaration

○ It declares a cursor variable to be used in a block.

● Cursor declaration

○ It declares a cursor to be used in a block.

● Type declaration

○ It declares user defined types to be used when declaring a variable within a block.

● Exception declaration

○ It defines exceptions to be processed in an exception processing statement.

● Static SQL

○ It indicates Data Manipulation Language (DML) and Data Control Language (DCL) which can be

performed in PSM.

● Dynamic SQL

○ It indicates statements related to dynamic query processing supported by GOLDILOCKS PSM.

● PSM Control Statement

○ It indicates various flow control statements supported by GOLDILOCKS PSM.

Description

<psm block> is a basic component of PSM.

A block can have a declaration part and a exception handling part.

A block can be duplicated, and the duplicated block has a new subordinate variable scope. A superordina

te block can not refer to a variable in a subordinate block.

Examples

gSQL> <<MAIN>>

DECLARE

V1 INTEGER := 1;

BEGIN

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

<<SUB1>>

DECLARE

V1 VARCHAR(10) := 'ABC';

2,272 | PSM Language Element References

BEGIN

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

DBMS_OUTPUT.PUT_LINE('SUB1.V1 = ' || SUB1.V1);

DBMS_OUTPUT.PUT_LINE('MAIN.V1 = ' || MAIN.V1);

END;

END;

/

V1 = 1

V1 = ABC

SUB1.V1 = ABC

MAIN.V1 = 1

Anonymous PL block executed.

Compatibility

<compound statement> of the SQL standard defines ATOMIC /NOT ATOMIC statement which specifies a

new savepoint, but GOLDILOCKS does not support it.

Table 23-3 SQL standard compatibility

Feature ID Description Remarks

P002 Computational completeness It does not support ATOMIC statement.

For More Information

Refer to Overview of PSM.

CASE Statement | 2,273

23.4 CASE Statement

Function

It performs a statement list satisfying conditions which returns TRUE among given conditions.

Syntax

<case statement> ::=

<simple case statement>

| <searched case statement>

;

<simple case statement> ::=

CASE <case operand> <simple case statement when clause>...

[<case statement else clase>]

END CASE

<searched case statement> ::=

CASE <searched case statement when clause>...

[<case statement else clase>]

END CASE

<simple case statement when clause> ::=

WHEN <when operand>

THEN <executable statement list>

<searched case statement when clause> ::=

WHEN <search condition>

THEN <executable statement list>

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

2,274 | PSM Language Element References

Syntax Rules and Parameters

● Case operand

○ They are all expressions which can be evaluated with a scalar value.

○ However, it can not include a subquery statement.

● When operand

○ It is an expression to compare whether it is as same as <case operand>.

○ However, it can not include a subquery statement.

● Search condition

○ It is a conditional expression to be performed when the evaluation result of <searched case state

ment> is TRUE.

○ However, it can not include a subquery statement.

● Executable statement list

○ It is a list of all statements which can be performed within PSM.

Description

It performs statements in WHEN clause returning TRUE by evaluating conditions like as IF statement.

It evaluates conditional expressions in order, and stops evaluating after finding the TRUE conditional clau

se.

If the case satisfying the condition does not exist and ELSE clause is not specified, then an error occurs.

Examples

Using a Simple CASE

gSQL> DECLARE

V1 integer := 0;

BEGIN

SELECT 2 INTO V1 FROM DUAL;

CASE V1 WHEN 0 THEN DBMS_OUTPUT.PUT_LINE ('Result = 0');

WHEN 1 THEN DBMS_OUTPUT.PUT_LINE ('Result = 1');

WHEN 2 THEN DBMS_OUTPUT.PUT_LINE ('Result = 2');

ELSE DBMS_OUTPUT.PUT_LINE ('Result = OTHER');

END CASE;

END;

/

CASE Statement | 2,275

Result = 2

Anonymous PL block executed.

Using a Searched CASE

gSQL> DECLARE

V1 integer := 0;

BEGIN

SELECT 2 INTO V1 FROM DUAL;

CASE WHEN V1 = 0 THEN DBMS_OUTPUT.PUT_LINE ('Result = 0');

WHEN V1 = 1 THEN DBMS_OUTPUT.PUT_LINE ('Result = 1');

WHEN V1 = 2 THEN DBMS_OUTPUT.PUT_LINE ('Result = 2');

ELSE DBMS_OUTPUT.PUT_LINE ('Result = OTHER');

END CASE;

END;

/

Result = 2

Anonymous PL block executed.

Compatibility

CASE statement of the SQL standard defines the comparison of row type (list type) values, but GOLDILOC

KS does not support it.

CASE statement of the SQL standard can define multiple conditions in a list in <when operand> by delimit

ing them with ',', but GODILOCKS does not support it.

Table 23-4 SQL stantard compatibility

Feature ID Description Remarks

P002 Computational completeness It does not support P004, P008.

P004 Extended CASE statement -

P008 Comma-separated predicates in simple CASE statement -

2,276 | PSM Language Element References

23.5 CLOSE Statement

Function

It closes an open cursor.

Syntax

<close statement> ::=

CLOSE cursor_name

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● cursor_name

○ It is the name of a cursor to be closed.

Description

It closes an open cursor.

A closed cursor can be opened again by using an open statement.

CLOSE Statement | 2,277

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER);

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

CURSOR C1 IS SELECT I1 FROM T1;

V1 T1%ROWTYPE;

BEGIN

OPEN C1;

FETCH C1 INTO V1;

CLOSE C1;

END;

/

Anonymous PL block executed.

Compatibility

The SQL standard does not define it.

For More Information

Refer to the followings.

● FETCH Statement

● OPEN Statement

2,278 | PSM Language Element References

23.6 Collection Method Invocation

Function

It provides a method which can explores a collection type variable.

Syntax

<collection method> ::=

variable_name . <method>

;

<method> ::=

first ()

| last ()

| prior (expression)

| next (expression)

| count ()

| exists (expression)

| delete (expression)

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● It can be used only in a variable declared as a collection type.

● FIRST, LAST, COUNT can not have a parameter.

● A parameter should be specified when an object should be specified such as PRIOR, NEXT, EXISTS, D

ELETE.

● DELETE is operated as same as PSM statement, and it can not return a different variable as a result. (I

t can not be used in an expression.)

Collection Method Invocation | 2,279

Description

Refer to the following table.

Table 23-5 Function

Name Function Return value

Whether to

require

an argument

FIRST It returns the smallest key. A key type specified in INDEX OF X

LAST It returns the biggest key. A key type specified in INDEX OF X

PRIOR It returns a key smaller than the input key. A key type specified in INDEX OF O

NEXT It returns a key bigger than the input key. A key type specified in INDEX OF O

COUNT It returns the stored count. INTEGER X

DELETE It deletes a value corresponding to a key. N/A O

EXISTS It returns whether a key exists or not. BOOLEAN O

Examples

DECLARE

TYPE rec IS TABLE OF VARCHAR(20) INDEX BY VARCHAR(20);

v1 rec;

v2 VARCHAR(20);

BEGIN

DBMS_OUTPUT.PUT_LINE('------------------------------------');

DBMS_OUTPUT.PUT_LINE('first = ' || v1.first);

DBMS_OUTPUT.PUT_LINE('last = ' || v1.last);

DBMS_OUTPUT.PUT_LINE('prior = ' || v1.prior('aaa'));

DBMS_OUTPUT.PUT_LINE('next = ' || v1.next('aaa'));

DBMS_OUTPUT.PUT_LINE('count = ' || v1.count());

FOR I IN 1 .. 9

LOOP

v1('a' || to_char(i)) := 'a' || to_char(i);

END LOOP;

DBMS_OUTPUT.PUT_LINE('------------------------------------');

DBMS_OUTPUT.PUT_LINE('first = ' || v1.first);

DBMS_OUTPUT.PUT_LINE('last = ' || v1.last);

DBMS_OUTPUT.PUT_LINE('count = ' || v1.count());

DBMS_OUTPUT.PUT_LINE('------------------------------------');

2,280 | PSM Language Element References

DBMS_OUTPUT.PUT_LINE('Print all from first to last');

v2 := v1.first;

WHILE v2 IS NOT NULL

LOOP

DBMS_OUTPUT.PUT_LINE('Key= ' || v2 || ',Value=' || v1(v2));

v2 := v1.next(v2);

END LOOP;

DBMS_OUTPUT.PUT_LINE('------------------------------------');

DBMS_OUTPUT.PUT_LINE('Print all from last to first');

v2 := v1.last;

WHILE v2 IS NOT NULL

LOOP

DBMS_OUTPUT.PUT_LINE('Key= ' || v2 || ',Value=' || v1(v2));

v2 := v1.prior(v2);

END LOOP;

v1.delete(v1.first());

DBMS_OUTPUT.PUT_LINE('count = ' || v1.count());

DBMS_OUTPUT.PUT_LINE('first = ' || v1.first());

END;

/

first =

last =

prior =

next =

count = 0

first = a1

last = a9

count = 9

Print all from first to last

Key= a1,Value=a1

Key= a2,Value=a2

Key= a3,Value=a3

Key= a4,Value=a4

Key= a5,Value=a5

Key= a6,Value=a6

Key= a7,Value=a7

Key= a8,Value=a8

Key= a9,Value=a9

Collection Method Invocation | 2,281

Print all from last to first

Key= a9,Value=a9

Key= a8,Value=a8

Key= a7,Value=a7

Key= a6,Value=a6

Key= a5,Value=a5

Key= a4,Value=a4

Key= a3,Value=a3

Key= a2,Value=a2

Key= a1,Value=a1

count = 8

first = a2

Anonymous PL block executed.

For More Information

Refer to COLLECTION Variable Declaration.

2,282 | PSM Language Element References

23.7 COLLECTION Variable Declaration

Function

It declares a collection variable.

Syntax

<declare record variable> ::=

variable_name <collectionType>

;

<Collection Type Definition> ::=

TYPE <Type-Name> IS TABLE OF <Element-Type> INDEX BY <Index-Type>

;

<Element-Type> ::=

Built-in SQL Data Type

| User-Defined Type

| %TYPE

| %ROWTYPE

<Index-Type> ::=

INTEGER

| LONG

| CHAR(n)

| VARCHAR(n)

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of a PL block.

COLLECTION Variable Declaration | 2,283

Syntax Rules and Parameters

● Type-name

○ It specifies the name of a collection type to be used by a user.

● Element-type

○ It specifies the type of an element to be stored in a collection variable.

● Index-type

○ It specifies the data type of a key stored in a collection variable.

Description

It declares a collection type.

Examples

gSQL> DECLARE

TYPE rec IS TABLE OF VARCHAR(20) INDEX BY VARCHAR(20);

v1 rec;

v2 VARCHAR(20);

BEGIN

DBMS_OUTPUT.PUT_LINE('first = ' || v1.first);

DBMS_OUTPUT.PUT_LINE('last = ' || v1.last);

DBMS_OUTPUT.PUT_LINE('prior = ' || v1.prior('aaa'));

DBMS_OUTPUT.PUT_LINE('next = ' || v1.next('aaa'));

DBMS_OUTPUT.PUT_LINE('count = ' || v1.count());

FOR I IN 1 .. 10

LOOP

v1('a' || i) := 'a' || i;

END LOOP;

DBMS_OUTPUT.PUT_LINE('first = ' || v1.first);

DBMS_OUTPUT.PUT_LINE('last = ' || v1.last);

DBMS_OUTPUT.PUT_LINE('count = ' || v1.count());

DBMS_OUTPUT.PUT_LINE('Print all from first to last');

v2 := v1.first;

WHILE v2 IS NOT NULL

LOOP

DBMS_OUTPUT.PUT_LINE('Key= ' || v2 || ',Value=' || v1(v2));

2,284 | PSM Language Element References

v2 := v1.next(v2);

END LOOP;

DBMS_OUTPUT.PUT_LINE('Print all from last to first');

v2 := v1.last;

WHILE v2 IS NOT NULL

LOOP

DBMS_OUTPUT.PUT_LINE('Key= ' || v2 || ',Value=' || v1(v2));

v2 := v1.prior(v2);

END LOOP;

END;

/

first =

last =

prior =

next =

count = 0

first = a1

last = a9

count = 10

Print all from first to last

Key= a1,Value=a1

Key= a10,Value=a10

Key= a2,Value=a2

Key= a3,Value=a3

Key= a4,Value=a4

Key= a5,Value=a5

Key= a6,Value=a6

Key= a7,Value=a7

Key= a8,Value=a8

Key= a9,Value=a9

Print all from last to first

Key= a9,Value=a9

Key= a8,Value=a8

Key= a7,Value=a7

Key= a6,Value=a6

Key= a5,Value=a5

Key= a4,Value=a4

Key= a3,Value=a3

Key= a2,Value=a2

Key= a10,Value=a10

Key= a1,Value=a1

COLLECTION Variable Declaration | 2,285

Anonymous PL block executed.

Compatibility

The SQL standard does not define it.

For More Information

Refer to Collection Method Invocation.

2,286 | PSM Language Element References

23.8 CONTINUE Statement

Function

It stops currently performing statement list, and performs the next iteration of a superordinate loop state

ment.

Syntax

<continue statement> ::=

CONTINUE [label_name] [WHEN condition]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

A statement with a target label should be one of the following loop family statements.

• basic loop statement

• for loop statement

• while statement

• forall statement

Syntax Rules and Parameters

● Label name

○ It can have an identifier chain form.

● Condition

○ If it is specified, it returns to a loop statement only when the condition is TRUE.

CONTINUE Statement | 2,287

Description

It stops currently performing statement list, and returns to the superordinate loop statement.

If a label is specified, it returns to the superordinate loop statement of the label name.

If a label is not specified, it returns to the nearest superordinate loop statement.

If multiple superordinate loop statements with the same names exist, then the nearest statement is select

ed.

It can return to a loop statement (exist in a nested scope) which is visible in the current location.

If a condition is specified, then it returns only when the condition is TRUE.

If a condition is not specified, then it definitely returns.

Examples

DECLARE

V1 INTEGER := 1;

BEGIN

<<AAA>>

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

IF V1 <= 2 THEN

DBMS_OUTPUT.PUT_LINE('CONTINUE');

CONTINUE;

ELSE

EXIT;

END IF;

DBMS_OUTPUT.PUT_LINE('END-OF-WHILE');

END LOOP AAA;

END;

/

V1 = 1

CONTINUE

V1 = 2

Anonymous PL block executed.

2,288 | PSM Language Element References

Compatibility

<continue statement> statement is similar to <iterate statement> of the SQL standard.

However, <iterate statement> statement does not provide WHEN condition feature.

For More Information

Refer to the followings.

● EXIT Statement

● GOTO Statement

Cursor FOR LOOP Statement | 2,289

23.9 Cursor FOR LOOP Statement

Function

It performs loops as many times as the number of rows in the result created by a query or a cursor declare

d by a user in PSM.

Syntax

<Cursor For Loop statement> ::=

FOR <Variable_Name> IN <Cursor>

LOOP

{ <SQL procedure statement> ; }...

END LOOP [Label_Name]

;

<Cursor> ::=

< (Implicit_Cursor_Query) >

| < Explicit_Cursor_Name > [([<actual param>])]

<Implicit_Cursor_Query> ::=

SELECT statement

| SELECT_FOR_UPDATE statement

| INSERT_RETURNING_QUERY statement

| UPDATE_RETURNING_QUERY statement

| DELETE_RETURNING_QUERY statement

<actual param> ::=

(expression [, expression] ..)

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body of PSM.

2,290 | PSM Language Element References

Syntax Rules and Parameters

The variable declared within For~Loop is valid only within that loop scope. (The variable can not be refere

nced from outside of that Cursor For Loop Block Scope)

When Using Cursor Name

A cursor should already have been declared before performing LOOP by using a cursor name.

For more information about an actual param, refer to OPEN Statement.

When Using Cursor Query

It can perform only the query which can be internally processed by using an implicit cursor in GOLDILOCK

S such as a select and a returning query.

Description

It performs PSM statements within a loop by turning around loops as many time as the number of results

created by a cursor.

If a cursor becomes invalid (e.g. closed) during LOOP, it does not perform the loop and it processes itas a

n error.

If an explicit cursor name is specified and the corresponding cursor is already opened, then it is processed

as an error.

The variable to which a result of the cursor specified in FOR LOOP clause is returned is automatically creat

ed. (It is created as a row type of the result set to be returned by an execution result of a cursor.)

However, if an alias for a select target expression which is not a column of a specific table among results

of a user cursor query is not specified, then an error may occur.

Examples

Using Explicit Cursor

DECLARE

CURSOR c1 IS SELECT * FROM T1;

BEGIN

Cursor FOR LOOP Statement | 2,291

FOR rec IN C1

LOOP

DBMS_OUTPUT.PUT_LINE('RowCount=' || c1%rowcount || ',C1=' || rec.c1 || ', C2=' ||

rec.c2);

END LOOP;

END;

/

RowCount=1,C1=1, C2=1

RowCount=2,C1=2, C2=2

RowCount=3,C1=3, C2=3

RowCount=4,C1=4, C2=4

RowCount=5,C1=5, C2=5

RowCount=6,C1=6, C2=6

RowCount=7,C1=7, C2=7

RowCount=8,C1=8, C2=8

RowCount=9,C1=9, C2=9

RowCount=10,C1=10, C2=10

Anonymous PL block executed.

Using Cursor Query

BEGIN

FOR rec IN (select * from t1)

LOOP

DBMS_OUTPUT.PUT_LINE('RowCount=' || sql%rowcount || ',C1=' || rec.c1 || ', C2=' ||

rec.c2);

END LOOP;

END;

/

C1=1, C2=1

C1=2, C2=2

C1=3, C2=3

C1=4, C2=4

C1=5, C2=5

C1=6, C2=6

C1=7, C2=7

C1=8, C2=8

C1=9, C2=9

C1=10, C2=10

Anonymous PL block executed.

2,292 | PSM Language Element References

For More Information

Refer to the followings.

● Explicit Cursor Declaration and Definition

● GOTO Statement

● EXIT Statement

Cursor Variable Declaration | 2,293

23.10 Cursor Variable Declaration

Function

It declares a cursor variable in DECLARE section of PSM.

Syntax

<cursor variable declaration> ::=

variable_name <type>

;

<cursor type definition> ::=

TYPE <type_name> IS REF CURSOR [RETURN <return type>]

<return type> ::=

<table_name | view_name | cursor_name | cursor_variable > % ROWTYPE

| <record_variable_name> % TYPE

| <record_type_name>

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of PSM.

Syntax Rules and Parameters

Specifying the initial value of a cursor variable or assigning a cursor variable is allowed only between curs

or variables.

Description

2,294 | PSM Language Element References

A cursor variable is operated like as a pointer indicating a cursor which is not dependent on a specific curs

or.

Examples

DECLARE

TYPE rec IS RECORD (V1 VARCHAR(20), V2 VARCHAR(20));

TYPE cv IS REF CURSOR RETURN rec;

BEGIN

NULL;

END;

/

Anonymous PL block executed.

For More Information

Refer to the followings.

● OPEN Statement

● FETCH Statement

● CLOSE Statement

DELETE Statement Extension | 2,295

23.11 DELETE Statement Extension

Function

It can store the result in RETURNING INTO clause by using a record type variable of PSM.

Syntax

<PSM delete statement extension: searched> ::=

DELETE [FROM] table_name [[AS] alias_name]

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

[<returning into clause>]

;

<delete statement: positioned> ::=

DELETE [FROM] table_name [[AS] alias_name]

WHERE CURRENT OF cursor_name

;

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

<returning into clause> ::=

{ RETURN | RETURNING } { * | { <value expression> [[AS] alias_name] } [, ...] } INTO

variable_name [, ...]

2,296 | PSM Language Element References

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of PSM.

Syntax Rules and Parameters

If a variable to be returned through RETURNING INTO is a record type, then it can not be used by mixing t

ogether with a different variable type.

Description

It can store the result in RETURNING INTO clause by using a record type variable of PSM.

Examples

gSQL> CREATE TABLE T1(C1 VARCHAR(20), C2 VARCHAR(20));

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO T1 VALUES ('AAA', 'BBB'), ('BBB', 'CCC'), ('CCC', 'DDD');

3 rows created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

rec t1%ROWTYPE;

BEGIN

DELETE FROM T1 WHERE C1 = 'AAA' RETURNING * INTO rec;

DBMS_OUTPUT.PUT_LINE('SQL%ROWCOUNT=' || SQL%ROWCOUNT);

DBMS_OUTPUT.PUT_LINE('rec.c1=' || rec.c1 || ', rec.c2=' || rec.c2);

END;

/

SQL%ROWCOUNT=1

rec.c1=AAA, rec.c2=BBB

Anonymous PL block executed.

DELETE Statement Extension | 2,297

For More Information

Refer to Deleting Data.

2,298 | PSM Language Element References

23.12 EXCEPTION_INIT Pragma

Function

It defines an internally defined exception within a PL block.

Syntax

< PRAGMA EXCEPTION_INIT > ::=

PRAGMA EXCEPTION_INIT (<Exception-Name>, <Internal-ErrorCode>)

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of PSM.

Syntax Rules and Parameters

A predefined exception can not be used in an exception name which is used as an argument. (A predefin

ed exception name can not be declared.)

An exception name which is used as an argument in the same PL block DECLARE clause should be declar

ed in advance. (Declaration of an exception name in different BLOCK can not be referenced.)

<Internal-ErrorCode> should be an internal error code existing within DB SYSTEM. (SUCCESS code can no

t be set.

Description

A user explicitly declares an exception name corresponding to an error code of DB SYSTEM.

EXCEPTION_INIT Pragma | 2,299

Examples

gSQL> DECLARE

user_exception_1 EXCEPTION;

PRAGMA EXCEPTION_INIT(user_exception_1, -17001);

BEGIN

RAISE USER_EXCEPTION_1;

EXCEPTION WHEN user_exception_1 THEN DBMS_OUTPUT.PUT_LINE('User Exception_1');

END;

/

User Exception_1

Anonymous PL block executed.

Compatibility

Error codes are different each other according to a vendor, so it is not compatible each other.

For More Information

Refer to the followings.

● Exception Declaration

● Exception Handler

2,300 | PSM Language Element References

23.13 Exception Declaration

Function

It declares an exception name within a PL block.

Syntax

< Exception-Declaration Statement > ::=

<Exception-Name> EXCEPTION

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of PSM.

Syntax Rules and Parameters

It can not declare a predefined exception name.

Duplicated declarations are not allowed in DECLARE clause of the same SCOPE.

Description

A user explicitly declares an exception.

Examples

DECLARE

user_exception_1 EXCEPTION;

Exception Declaration | 2,301

user_exception_2 EXCEPTION;

user_exception_3 EXCEPTION;

BEGIN

RAISE USER_EXCEPTION_2;

EXCEPTION WHEN user_exception_1 THEN DBMS_OUTPUT.PUT_LINE('User Exception_1');

WHEN user_exception_2 THEN DBMS_OUTPUT.PUT_LINE('User Exception_2');

WHEN user_exception_3 THEN DBMS_OUTPUT.PUT_LINE('User Exception_3');

END;

/

User Exception_2

Anonymous PL block executed.

Compatibility

An exception declaration of the standard SQL is as follows, but GOLDILOCKS supports the syntax as abov

e.

<condition declaration> ::=

DECLARE <condition name> CONDITION [FOR <sqlstate value>]

For More Information

Refer to the followings.

● Exception Declaration

● EXCEPTION_INIT Pragma

2,302 | PSM Language Element References

23.14 Exception Handler

Function

It performs an operation defined for an exception which is explicitly occurred by a user or an operation de

fined for an implicit error due to a DB SYSTEM error occurred during performing PL/ SQL.

Syntax

< Exception Handler Statement > ::=

EXCEPTION < Exception_When_List >

;

< Exception_When_List > ::=

WHEN < Exception_Name_List > THEN <excutable statement list> [WHEN OTHERS THEN

<excutable statement list>]

< Exception_Name_List > ::=

<Exception_Name> [{ OR <Exception_Name> }...]

Invocation and Access Rules

It can be used within a PL block.

Syntax Rules and Parameters

OTHERS (predefined exception) can not be specified together with another exception name by using OR.

Duplicated specifying of OTHERS (predefined exception) is not allowed in an exception handler, and OTH

ERS should be specified at the last.

Exception Handler | 2,303

Description

Exception Types

Type Definer Has error Has name Raise implicitly Raise explicitly

Predefined System Yes Yes Yes Optionally

User-defined User If user assign If user assign No Yes

A predefined exception has an exception name and an error code which are specified in advance in GOL

DILOCKS.

Other exceptions are classified into an internally defined exception and a user-defined exception. An inter

nally defined exception is that a user sets the internal error code name of GOLDILOCKS differently from a

predefined exception name, and a user-defined exception is that only the exception name is declared wit

hout specifying a separate error code.

Predefined Exception

Table 23-6 Predefined exception type

Name Description

CASE_NOT_FOUND It can not satisfy all conditions of CASE WHEN, or ELSE clause is not defined.

DUP_VAL_ON_INDEX INDEX duplicated error occurred.

INVALID_CURSOR A cursor status is incorrect.

INVALID_NUMBER It can not be converted to a number.

NO_DATA_FOUND SELECT statement returns zero data.

ROWTYPE_MISMATCH Field types of two RowType variables are different each other.

TOO_MANY_ROWS It returns two or more rows.

VALUE_ERROR It is an error such as type mismatch and invalid casting.

ZERO_DIVIDE It tries dividing by 0.

OTHERS It includes errors which are not defined in a predefined.

Examples

gSQL> DECLARE

V1 INTEGER := 0;

BEGIN

DBMS_OUTPUT.PUT_LINE('Step1');

V1 := 1 / 0;

2,304 | PSM Language Element References

DBMS_OUTPUT.PUT_LINE('Step2');

EXCEPTION WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE('Exception V1=' || V1);

END;

/

Step1

Exception V1=0

Anonymous PL block executed.

Compatibility

It does not support the SQL standard grammar.

For More Information

Refer to the followings.

● EXCEPTION_INIT Pragma

● Exception Declaration

EXECUTE IMMEDIATE Statement | 2,305

23.15 EXECUTE IMMEDIATE Statement

Function

It executes a dynamic SQL within PSM.

Syntax

<EXECUTE IMMEDIATE statement> ::=

EXECUTE IMMEDIATE <dynamic-sql> [<binding-parameters>]

;

<dynamic-sql> ::=

single_quote_string

| psm_variable

<binding-parameters> ::=

<into-clause>

| <using-clause>

| <returning-into-clause>

| <into-clause> <using-clause>

| <using-clause> <returning-into-clause>

<into-clause> ::=

INTO psm_variable [{, psm_variable} ...]

<using-clause> ::=

USING [<Bind-Type>] <expression> [{, [<Bind-Type>] <expression>} ...]

<Bind-Type> ::=

IN

| OUT

| IN OUT

<returing-into-clause> ::=

RETURNING INTO psm_variable [{, psm_variable} ...]

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

2,306 | PSM Language Element References

Syntax Rules and Parameters

Dynamic SQL

● single_quote_string: It is an SQL statement enclosed with a single quote ('). (double_quote_string is r

ecognized as a variable in PSM.)

● Psm-variable: It is an SQL statement stored in a variable which is used in PSM.

The following is an example of expressing a data by using quote(s) in an SQL statement to be performed.

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (''Tom'') '; -- Tom

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (''Tom''''House'') '; -- Tom'House

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (''''''Tom'') '; -- 'Tom

EXECUTE IMMEDIATE 'INSERT INTO t1 VALUES (CHR(39) || ''TOM'') '; -- 'Tom

A marker (? or :V1) is used in a location where a user input a variable in a dynamic SQL.

An SQL statement specified in a dynamic SQL should be valid.

INTO Clause

The result of performing a dynamic SQL exists, and it is not bound through a marker, but the result of pro

cessing an SQL statement is returned. (It is internally a form of an implicit cursor fetch.)

The syntax is as follows.

EXECUTE IMMEDIATE 'SELECT ... FROM .. WHERE ...';

EXECUTE IMMEDIATE 'INSERT ... RETURNING ...';

EXECUTE IMMEDIATE 'UPDATE ... RETURNING ...';

EXECUTE IMMEDIATE 'DELETE ... RETURNING ...';

USING Clause

It lists a variable or an expression in USING clause (IN can be omitted.) as many as the number of input va

riables used in a dynamic SQL.

If the result of performing a dynamic SQL exists, then it lists variables as many as the number of result col

umns in USING OUT clause. (when returning the results to INTO clause)

The result can be returned in the following syntax by using USING OUT.

EXECUTE IMMEDIATE 'SELECT x, y, z INTO :v1, :v2, :v3 ...';

EXECUTE IMMEDIATE 'INSERT INTO ... RETURNING C1, C2 INTO :V1, :V2';

EXECUTE IMMEDIATE 'UPDATE T1 SET .. RETURNING C1, C2 INTO :V1, :V2';

EXECUTE IMMEDIATE Statement | 2,307

EXECUTE IMMEDIATE 'DELETE FROM ... RETURNING C1, C2 INTO :V1, :V2';

RETURNING Clause

If INSERT/UPDATE/DELETE RETURNING INTO statement is used as a dynamic SQL, the result is returned b

y binding a variable specified in USING clause in OUT-mode in GOLDILOCKS.

The same result can be returned by using RETURNING-INTO clause for the compatibility with other DBMS.

Other Rules

● DDL/ DCL can not use any BIND clause. (INTO, USING, RETURNING clause)

● It is used as OUT in INTO clause and RETURNING INTO clause, so a separate bind type can not be spec

ified nor it be simultaneously used together.

● IN BIND type can use only a scalar type variable.

● OUT BIND type can use a record type variable, but a scalar type or a record type can not be listed bein

g mixed together.

● A result can not be returned being divided through INTO clause and USING OUT or RETURNING INTO.

Description

● If a dynamic SQL returns the result as a variable specified in INTO clause

○ A query returning two or more results causes TOO_MANY_ROWS exception.

○ If the result is zero, it causes NO_DATA_FOUND exception.

● If a dynamic SQL returns the result as a variable specified in USING or RETURNING clause

○ If two or more variables which are not ARRAY are returned, it causes TOO_MANY_ROWS excepti

on.

○ If the result is zero, an error does not occur.

● The followings are results of which DDL/ DCL performs implicit cursor SQL%Attribute variables.

○ SQL%ROWCOUNT = 0

○ SQL%ISOPEN = FALSE

○ SQL%FOUND = FALSE

○ SQL%NOTFOUND = TRUE

● Other dynamic SQLs store SQL%Attribute values corresponding to the processing results of that SQL

statement.

2,308 | PSM Language Element References

Examples

gSQL> DECLARE

V1 INTEGER;

V2 VARCHAR(20);

BEGIN

V1 := 1;

V2 := 'abcdef';

DBMS_OUTPUT.PUT_LINE('#INSERT');

EXECUTE IMMEDIATE 'insert into t1 values (:a1, :a2)' USING v1, v2;

EXECUTE IMMEDIATE 'select c1, c2 from t1 where c1 = 1' INTO v1, v2;

DBMS_OUTPUT.PUT_LINE('C1='|| v1 || ', C2=' || v2);

V1 := 1;

V2 := 'xyz';

DBMS_OUTPUT.PUT_LINE('#UPDATE');

EXECUTE IMMEDIATE 'update t1 set c2 = :a1 where c1 = :a2' USING V2, V1;

V1 := 1;

V2 := '';

DBMS_OUTPUT.PUT_LINE('#SELECT');

EXECUTE IMMEDIATE 'select c1, c2 from t1 where c1 = :a1' INTO v1, v2 USING v1;

DBMS_OUTPUT.PUT_LINE('C1='|| v1 || ', C2=' || v2);

V1 := 1;

V2 := '';

DBMS_OUTPUT.PUT_LINE('#DELETE');

EXECUTE IMMEDIATE 'delete from t1 where c1 = :a1' USING v1;

END;

/

#INSERT

C1=1, C2=abcdef

#UPDATE

#SELECT

C1=1, C2=xyz

#DELETE

Anonymous PL block executed.

EXIT Statement | 2,309

23.16 EXIT Statement

Function

It exits a loop statement which has the given label among superordinate loop statements, then performs

the next statement.

Syntax

<exit statement> ::=

EXIT [label_name] [WHEN condition]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Label name

○ It is a label name of a loop statement to be exited.

○ It can be in an identifier chain form.

● Condition

○ If a condition is specified, then it can exit a loop statement only when that condition is TRUE.

Description

● It stops currently performing statement list and exits a superordinate loop statement.

● A statement with a target label should be one of the following loop family statements.

○ basic loop statement

○ for loop statement

2,310 | PSM Language Element References

○ while statement

○ forall statement

● If a label is specified, then it exits a superordinate loop statement which has that label name.

● If a label is not specified, then it exits the nearest superordinate loop statement.

● If multiple superordinate loop statements with the same label names exist, then the nearest statemen

t is selected.

● It can exit only a loop statement (exist in a nested scope) which is visible in the current location.

● If a condition is specified, then it exits only when the condition is TRUE.

● If a condition is not specified, then it definitely exits.

Examples

gSQL> DECLARE

V1 INTEGER := 1;

BEGIN

<<AAA>>

WHILE V1 <= 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

EXIT;

V1 := V1 + 1;

END LOOP AAA;

END;

/

V1 = 1

Anonymous PL block executed.

Compatibility

It does not exist in the SQL standard.

Explicit Cursor Attribute | 2,311

23.17 Explicit Cursor Attribute

Function

It returns the status value of a cursor defined in PSM.

Syntax

<Explicit cursor attribute> ::=

cursor_name '%' { ISOPEN | FOUND | NOTFOUND | ROWCOUNT }

Invocation and Access Rules

It can be used only in the body section of PSM.

Syntax Rules and Parameters

● Cursor_name

○ It is the name of a cursor whose status value is to be obtained.

Description

● It returns the status value of a given cursor.

○ ISOPEN: It is whether the current cursor is OPEN.

○ FOUND: It is whether the data is returned by the recent fetch.

○ NOTFOUND: It is an opposite of FOUND.

○ ROWCOUNT: It is the number of fetched records after the cursor is recently OPEN.

● The following values are returned according to the cursor status.

Table 23-7 Results according to the performing moment

Attribute name Before OPEN After OPEN After FETCH After CLOSE

ISOPEN FALSE TRUE TRUE FALSE

2,312 | PSM Language Element References

FOUND NULL NULL TRUE/FALSE NULL

NOTFOUND NULL NULL TRUE/FALSE NULL

ROWCOUNT NULL NULL N (the number) NULL

Attribute name Before OPEN After OPEN After FETCH After CLOSE

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER);

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

CURSOR C1 IS SELECT * FROM T1;

V1 INTEGER := 0;

V2 INTEGER := 0;

TOTAL INTEGER := 0;

BEGIN

FOR I IN 1..100 LOOP

INSERT INTO T1 VALUES(I);

END LOOP;

COMMIT;

IF NOT C1%ISOPEN THEN

OPEN C1;

END IF;

LOOP

FETCH C1 INTO V1;

EXIT WHEN C1%NOTFOUND;

TOTAL := TOTAL + V1;

V2 := V1;

END LOOP;

DBMS_OUTPUT.PUT_LINE('COUNT = ' || C1%ROWCOUNT || ' TOTAL = ' || TOTAL);

CLOSE C1;

END;

/

COUNT = 100 TOTAL = 5050

Anonymous PL block executed.

Explicit Cursor Attribute | 2,313

Compatibility

It is not defined in the SQL standard.

2,314 | PSM Language Element References

23.18 Explicit Cursor Declaration and Definition

Function

It declares a cursor in DECLARE section of PSM.

Syntax

<cursor declaration> ::=

CURSOR cursor_name [<cursor param spec>] RETURN rowtype

;

<cursor param spec> ::=

(<cursor param decl> [, <cursor param decl>] ..)

<cursor param decl> ::=

param_name [IN] datatype [{ ':=' | DEFAULT } expression]

<cursor definition> ::=

CURSOR cursor_name [<cursor param spec>] [RETURN rowtype]

IS select_statement

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of a PL block.

Syntax Rules and Parameters

Cursor Name

It is a cursor name to be declared.

The length of a cursor name should be shorter than 128 bytes.

It should be a unique name in that scope.

Explicit Cursor Declaration and Definition | 2,315

RowType

It defines a record type of a cursor.

The number of select targets specified when defining a cursor should be same, and the data type should

be compatible.

If a rowtype is not specified, then a rowtype which is appropriate to a SELECT target of select_statement

specified when defining a cursor is automatically specified.

Param Name

It is a name which distinguishes parameters within a specific cursor.

It should be a unique name in that cursor.

If the name is as same as a name of another variable which can be referenced within a scope, then a para

meter of that cursor is preferentially referenced.

DataType

It specifies the data type of the corresponding parameter.

It can use all built-in types provided by GOLDILOCKS and types defined within PSM.

However, a statement which restricts a scope (precision/ scale) can not be specified in a built-in type, but

it is internally specified as the maximum scope of the corresponding data type.

Select Statement

It specifies SELECT or SELECT ... FOR UPDATE statement which is to be performed by a cursor.

It can not use SELECT ... INTO statement.

Description

● <explicit cursor declaration> statement declares or defines a cursor.

○ Cursor declaration: It declares only a name and format of a cursor.

○ Cursor definition: It detailedly defines a name, format of a cursor and SELECT statement to be pe

rformed.

● An explicit cursor is used by defining it after declaration. or it can be used by defining it without a dec

laration.

● When using an explicit cursor by defining it after declaration, then the cursor name, the parameter sp

ecification and the record type definition should exactly match.

● A declaration and a definition of an explicit cursor should exist in the same block.

● An explicit cursor is created when the cursor enters the defined block, and it is automatically CLOSEd

2,316 | PSM Language Element References

and deleted when it exits the block.

● 'MAXIMUM_NAMED_CURSOR_COUNT' property restricts the maximum number of explicit cursors w

hich can be created in a specific time.

● The following variables can be used in SELECT statement performed by an explicit cursor.

○ Parameter of the cursor

○ All PSM variables which can be referenced in a scope at the time of declaration. (It is not a scope

of the time of open.)

○ External bind parameter (in case of an anonymous PL block)

● An explicit cursor performing SELECT statement has the following properties.

○ IN_SENSITIVE (Changes by another transaction do not affect it.)

○ NON_SCROLLABLE (It can not fetch the previous record again.)

○ READ_ONLY (Only a read operation is available.)

○ WITH-HOLD (A cursor is not automatically closed even though COMMIT/ ROLLBACK is performe

d.)

● An explicit cursor performing SELECT ... FOR UPDATE statement has the following properties.

○ IN_SENSITIVE (Changes by another transaction do not affect it.)

○ NON_SCROLLABLE (It can not fetch the previous record again.)

○ UPDATABLE (It can UPDATE/DELETE through a cursor location.)

○ WITHOUT-HOLD (A cursor is automatically closed when COMMIT/ ROLLBACK is performed.)

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER, I2 VARCHAR(10));

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO T1 VALUES(1, 'AAA');

1 row created.

gSQL> INSERT INTO T1 VALUES(2, 'BBB');

1 row created.

gSQL> INSERT INTO T1 VALUES(3, 'CCC');

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

CURSOR C1(A1 INTEGER, A2 VARCHAR) RETURN T1%ROWTYPE IS SELECT * FROM T1 WHERE I1 = A1 AND

I2 = A2;

V1 T1%ROWTYPE;

BEGIN

OPEN C1(2, 'BBB');

Explicit Cursor Declaration and Definition | 2,317

FETCH C1 INTO V1;

DBMS_OUTPUT.PUT_LINE('V1.I1 = ' || V1.I1 || ' V1.I2 = ' || V1.I2);

CLOSE C1;

END;

/

V1.I1 = 2 V1.I2 = BBB

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

For More Information

Refer to the followings.

● OPEN FOR Statement

● FETCH Statement

● CLOSE Statement

2,318 | PSM Language Element References

23.19 FETCH Statement

Function

It fetches a single record of OPEN cursor.

Syntax

<fetch statement> ::=

FETCH cursor_name <into clause>

;

<into clause> ::=

INTO { variable [, variable] .. | record }

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Cursor name

○ It is a cursor name to be fetched.

● Variable

○ It is a scalar type variable or a bind parameter which stores a column value among the fetch resul

ts.

● Record

○ It is a record type variable to store the entire single record of which is the fetch result.

FETCH Statement | 2,319

Description

It fetches a record from an open cursor, then copies the value to a variable specified in INTO clause.

If a cursor is declared only but not defined, then an error occurs.

The cursor should be open.

A variable type given to INTO clause should be compatible with a data type of the fetched record result.

The number of variables given to INTO clause should be as same as the number of the cursor's SELECT tar

gets.

However, if a variable given in INTO clause is a record type, then only a single variable should be specified.

Also, the number of the record variable fields should be as same as the number of SELECT targets.

If a fetch is called when a record to be fetched does not exist, then the value of target variables in INTO cl

ause is not altered.

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER);

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

CURSOR C1 IS SELECT * FROM T1;

V1 INTEGER := 0;

V2 INTEGER := 0;

CNT INTEGER := 0;

TOTAL INTEGER := 0;

BEGIN

FOR I IN 1..100 LOOP

INSERT INTO T1 VALUES(I);

END LOOP;

COMMIT;

OPEN C1;

LOOP

FETCH C1 INTO V1;

CNT := CNT + 1;

TOTAL := TOTAL + V1;

V2 := V1;

EXIT WHEN V1 = 100;

2,320 | PSM Language Element References

END LOOP;

CLOSE C1;

DBMS_OUTPUT.PUT_LINE('CNT = ' || CNT || ' TOTAL = ' || TOTAL);

END;

/

CNT = 100 TOTAL = 5050

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

For More Information

Refer to the followings.

● OPEN Statement

● CLOSE Statement

FOR LOOP Statement | 2,321

23.20 FOR LOOP Statement

Function

As long as an index variable has the given value scope, it performs internal statements by increasing or re

versing the index variable by 1.

Syntax

<for loop statement> ::=

FOR index_variable_name IN [REVERSE] start_value .. last_value

LOOP { <SQL procedure statement> ; }... END LOOP [loop_name]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Index variable name

○ It is a variable name to be used as an index in FOR statement. Internally, NATIVE_BIGINT type vari

able is used.

● Start value

○ It is a start value of an index variable, and it should be an integer type. If a number with a floatin

g point is used, then the number below decimal point is truncated while converting the type.

● Last value

○ It is the last value of an index variable, and it should be an integer type. If a number with a floatin

g point is used, then the number below decimal point is rounded down while converting the type.

2,322 | PSM Language Element References

Description

for loop statement performs an internal statement list by increasing or decreasing the index variable value

from start_value to last_value.

If REVERSE is specified, an index variable value is decreased by 1 from start_value, and it terminates exec

ution of for loop statement when the variable value becomes smaller than last_value.

If REVERSE is not specified, an index variable is increased by 1 from start_value, and it terminates executi

on of for loop statement when the variable value becomes bigger than last_value.

If start_value is bigger than last_value when REVERSE is not specified, or if start_value is smaller than last

_value when REVERSE is specified, then an internal statement list is not performed.

Examples

gSQL> BEGIN

FOR I IN 0 .. 10 LOOP

DBMS_OUTPUT.PUT_LINE('I = ' || I);

END LOOP;

END;

/

2 3 4 5 6 I = 0

I = 1

I = 2

I = 3

I = 4

I = 5

I = 6

I = 7

I = 8

I = 9

I = 10

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

FOR LOOP Statement | 2,323

For More Information

Refer to the followings.

● CONTINUE Statement

● EXIT Statement

● GOTO Statement

2,324 | PSM Language Element References

23.21 Function Declaration and Definition

Function

It defines a nested function.

Syntax

<nested function statement> ::=

FUNCTION func_name [({ param_name [IN|OUT|INOUT] datatype [{ := | DEFAULT } init_expr]

} [, ...])]

RETURN datatype

{ IS | AS } <item_declaration> BEGIN <pl_stmt_list> END

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of a PL block.

Syntax Rules and Parameters

func_name

It is a name of function to be created, and it should be a unique name in a schema.

The length of a function name should be shorter than 128 bytes.

Param Name

It defines a name of an argument to be used in a function.

The name of each argument should be unique in a function.

Function Declaration and Definition | 2,325

Bind Type

It specifies a bind type of each argument.

If it is not specified, the default type is IN.

Item Declaration

It declares items such as a local variable to be used within a function.

It can declare all items which can be declared in a PL block.

PL Stmt List

It is a body section of a function, and it lists PL statements to be performed.

Description

A nested function is a sub program which can be called only within the corresponding procedure.

Other usages are as same as those of a schema-level function.

Examples

gSQL> DECLARE

V1 INTEGER := 0;

FUNCTION FUNC1(A1 INTEGER)

RETURN INTEGER

IS

BEGIN

RETURN A1 * 10;

END;

BEGIN

V1 := FUNC1(10);

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

V1 = 100

Anonymous PL block executed.

2,326 | PSM Language Element References

Compatibility

It is as same as a schema-level function.

For More Information

Refer to CREATE FUNCTION.

GOTO Statement | 2,327

23.22 GOTO Statement

Function

It tries to jump into the nearest statement which has a given label among statements accessible from the

current location.

Syntax

<goto statement> ::=

GOTO label_name

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Label_name

○ It is a label name of a statement in which is to be jumped.

○ It can be in an identifier chain form.

Description

It starts performing by jumping into a statement which has the corresponding label name.

If multiple candidate statements exist, then it jumps into the nearest statement.

It can jump only to a statement (exist in a nested scope) which is visible in the current location.

Both forward jump and backward jump are possible.

2,328 | PSM Language Element References

Examples

gSQL> DECLARE

V1 INTEGER := 0;

BEGIN

<<LABEL1>>

IF V1 > 0 THEN

GOTO LABEL2;

END IF;

V1 := V1 + 1;

DBMS_OUTPUT.PUT_LINE('a');

GOTO LABEL1;

DBMS_OUTPUT.PUT_LINE('b');

<<LABEL2>>

DBMS_OUTPUT.PUT_LINE('c');

END;

/

a

c

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

For More Information

Refer to the followings.

● EXIT Statement

● CONTINUE Statement

IF Statement | 2,329

23.23 IF Statement

Function

It performs a statement list corresponding to the condition returning TRUE among the given conditions.

Syntax

<if statement> ::=

IF <search condition> <if statement then clause>

[<if statement elsif clase>]

[<if statement else clase>]

END IF

;

<if statement then clause> ::=

THEN <executable statement list>

<if statement elsif clause> ::=

ELSIF <search condition> THEN <executable statement list>

<if statement elsif clause> ::=

ELSE <executable statement list>

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Search condition

○ It is an expression which can be finally evaluated as a boolean type.

● Executable statement list

○ It is a list of all statements supported by GOLDILOCKS PSM.

2,330 | PSM Language Element References

Description

Like as CASE statement, it performs statement lists of IF, ELSIF clauses returning TRUE by evaluating condi

tions.

If it can not satisfy any condition and <if statement else clause> exists, then it performs the corresponding

statement.

ELSIF clauses evaluates conditional expressions in order, and stops evaluating after finding the TRUE cond

itional clause.

Examples

gSQL> DECLARE

V1 INTEGER := 10;

BEGIN

IF V1 > 0 THEN

DBMS_OUTPUT.PUT_LINE('POSITIVE');

ELSIF V1 = 0 THEN

DBMS_OUTPUT.PUT_LINE('ZERO');

ELSE

DBMS_OUTPUT.PUT_LINE('NEGATIVE');

END IF;

END;

/

POSITIVE

Anonymous PL block executed.

Compatibility

<if statement> statement is as same as a syntax and an operation of the SQL standard.

Table 23-8 SQL standard compatibility

Feature ID Description Compatibility

P002 Computational completeness O

Implicit Cursor Attribute | 2,331

23.24 Implicit Cursor Attribute

Function

It returns the status value of an implicit cursor defined in PSM.

Syntax

<Implicit cursor attribute> ::=

SQL '%' { ISOPEN | FOUND | NOTFOUND | ROWCOUNT }

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Description

● It stores the result of SQL statement which was executed just before.

○ ISOPEN: It is whether the cursor is OPEN, and it is always set to FALSE.

○ FOUND: It is whether the data is returned by the SQL result of just before.

○ NOTFOUND: It is an opposite of FOUND.

○ ROWCOUNT: It is the number of records affected by the SQL result of just before.

Examples

DECLARE

V1 INTEGER;

BEGIN

SELECT COUNT(*) INTO V1 FROM T1;

DBMS_OUTPUT.PUT_LINE('COUNT RET = ' || V1);

DBMS_OUTPUT.PUT_LINE('SQL%ISOPEN = ' || SQL%ISOPEN);

2,332 | PSM Language Element References

DBMS_OUTPUT.PUT_LINE('SQL%FOUND = ' || SQL%FOUND);

DBMS_OUTPUT.PUT_LINE('SQL%NOTFOUND = ' || SQL%NOTFOUND);

DBMS_OUTPUT.PUT_LINE('SQL%ROWCOUNT = ' || SQL%ROWCOUNT);

END;

/

COUNT RET = 0

SQL%ISOPEN = FALSE

SQL%FOUND = TRUE

SQL%NOTFOUND = FALSE

SQL%ROWCOUNT = 1

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

INSERT Statement Extension | 2,333

23.25 INSERT Statement Extension

Function

It is an extended feature of an insert statement to input data by specifying record type variable supported

in PSM in VALUES clause.

Syntax

<PSM Insert Statement Extension Statement> ::=

INSERT INTO table_name [(column_name [, ...])]

<Insert_source>

[<Returning_into_clause>]

;

<Insert_source> ::=

<value-list>

| <from_subquery>

| <from_default>

<from subquery> ::=

<query_expression>

<from default> ::=

DEFAULT VALUES

<Value-List> ::=

VALUES <Value_item> [, ...]

<value-Item> ::=

PSM-Record-Type-Variable

| ({ <value expression> | DEFAULT } [, ...])

<Returning_into_clause> ::=

[RETURN | RETURNING] { * | { <value_expression> [[AS] alias_name] } [, ...] INTO

variable_name [, ...]

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

2,334 | PSM Language Element References

A PSM insert extension statement can not be used in an original SQL statement of EXECUTE IMMEDIATE.

Syntax Rules and Parameters

It is operated as same as the basic syntax of an insert statement. However, a feature specifying PSM recor

d type variables are added other than a feature consecutively listing existing value expressions in parenthe

ses in value item.

A PSM record type variable should be specified when using a variable without parentheses in Value_Item.

When using it in an insert extension statement form, a variable which is not a record type can not be use

d being mixed.

Description

It stores a record by using a record type variable of PSM other than a general insert statement, or obtains

a result through returning into.

For more information about insert, refer to the following example.

Examples

gSQL> DECLARE

rec t1%ROWTYPE;

BEGIN

rec.i1 := 'AAA';

rec.i2 := 'BBB';

rec.i3 := 'CCC';

INSERT INTO t1 (i1, i2, i3) VALUES rec ;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM t1;

I1 I2 I3

--- --- ---

AAA BBB CCC

INSERT Statement Extension | 2,335

Compatibility

It is not defined in the SQL standard.

2,336 | PSM Language Element References

23.26 NULL Statement

Function

It is a statement without any feature.

Syntax

<null statement> ::=

NULL

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Description

It is a statement without any feature, and used to set a label of a specific location.

Examples

gSQL> BEGIN

FOR i in 1..10 LOOP

DBMS_OUTPUT.PUT_LINE(i);

IF i > 5 THEN

GOTO label1;

END IF;

END LOOP;

<<label1>>

NULL;

NULL Statement | 2,337

END;

/

1

2

3

4

5

6

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

2,338 | PSM Language Element References

23.27 OPEN Statement

Function

It executes SELECT statement of a cursor defined in PSM.

Syntax

<open statement> ::=

OPEN cursor_name [<actual param spec>]

;

<actual param spec> ::=

(expression [, expression] ..)

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Cursor_name

○ It is the name of a cursor to be opened.

Description

It executes SELECT or SELECT ... FOR UPDATE statement of a defined cursor.

If a cursor is declared only but is not defined, then an error occurs.

Values of actual parameters should be compatible with the data type of those parameters.

The number of actual parameters should be same as the number of parameters of a cursor.

If it is smaller than the number of parameters of a cursor, then the default value should be specified in all

OPEN Statement | 2,339

other parameters.

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER, I2 VARCHAR(10));

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO T1 VALUES(1, 'AAA');

1 row created.

gSQL> INSERT INTO T1 VALUES(2, 'BBB');

1 row created.

gSQL> INSERT INTO T1 VALUES(3, 'CCC');

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

CURSOR C1(A1 INTEGER := 1, A2 VARCHAR DEFAULT 'AAA') IS SELECT * FROM T1 WHERE I1 = A1 AND

I2 = A2;

V1 INTEGER;

V2 VARCHAR(10);

BEGIN

OPEN C1(1);

FETCH C1 INTO V1, V2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1 || ' V2 = ' || V2);

CLOSE C1;

END;

/

V1 = 1 V2 = AAA

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

2,340 | PSM Language Element References

For More Information

Refer to the followings.

● CLOSE Statement

● FETCH Statement

OPEN FOR Statement | 2,341

23.28 OPEN FOR Statement

Function

It opens a single cursor by executing SELECT statement through a cursor variable defined in PSM.

Syntax

<open statement> ::=

OPEN cursor_variable_name FOR <select_query>

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Cursor_Variable_name

○ It is a name of cursor_variable.

● Select_query

○ A select query can use both a static SQL and a dynamic SQL.

Description

It executes SELECT or SELECT ... FOR UPDATE statement of a defined cursor variable.

If a cursor previously opened by a cursor variable exists, then that cursor is automatically closed.

2,342 | PSM Language Element References

Examples

gSQL> CREATE TABLE T1 (c1 INTEGER, c2 INTEGER, c3 INTEGER);

Table created.

gSQL> INSERT INTO T1 VALUES (1, 1, 1);

1 row created.

gSQL> INSERT INTO T1 VALUES (2, 2, 2);

1 row created.

gSQL> INSERT INTO T1 VALUES (3, 3, 3);

1 row created.

gSQL> INSERT INTO T1 VALUES (4, 4, 4);

gSQL> DECLARE

cv SYS_REFCURSOR;

rec t1%ROWTYPE;

BEGIN

OPEN cv FOR SELECT * FROM T1;

DBMS_OUTPUT.PUT_LINE('After Open> CV%ISOPEN=' || CV%ISOPEN);

LOOP

FETCH cv INTO rec;

EXIT WHEN CV%NOTFOUND;

DBMS_OUTPUT.PUT_LINE('C1=' || rec.c1 || ', C2=' || rec.c2 || ', c3=' || rec.c3 || ',

RowCount=' || cv%rowcount);

END LOOP;

CLOSE cv;

DBMS_OUTPUT.PUT_LINE('After Close> CV%ISOPEN=' || CV%ISOPEN);

END;

/

After Open> CV%ISOPEN=TRUE

C1=1, C2=1, c3=1, RowCount=1

C1=2, C2=2, c3=2, RowCount=2

C1=3, C2=3, c3=3, RowCount=3

C1=4, C2=4, c3=4, RowCount=4

After Close> CV%ISOPEN=FALSE

Anonymous PL block executed.

OPEN FOR Statement | 2,343

Compatibility

It is not defined in the SQL standard.

For More Information

Refer to the followings.

● Cursor Variable Declaration

● FETCH Statement

● CLOSE Statement

2,344 | PSM Language Element References

23.29 Procedure Call

Function

It calls a user-defined procedure, a built-in procedure or a nested procedure.

Syntax

<Procedure call> ::=

proc_name [(expr { , expr } ...)]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

● The following privileges for the corresponding procedure are required to call the user-defined proced

ure.

○ EXECUTE PROCEDURE

○ (EXECUTE PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the proce

dure belongs

○ EXECUTE ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

● Proc_name

○ It is a name of a procedure to be executed, and it is used in the following format.

Format Syntax Description

Single identifier procedure_name

It calls the procedure of the given name.

It is searched in the following order.

1. nested procedure

Procedure Call | 2,345

2. schema-level procedure

identifier chain

label_name.procedure_name It calls a nested procedure.

schema_name.procedure_name It calls a schema-level procedure.

package_name.procedure_name It calls a built-in procedure.

Format Syntax Description

If the given the number and type of arguments which were given in the procedure found first are wrong

when searching with the given name (proc_name), then it does not search for another procedure but ca

uses an error.

Description

It calls a user-defined procedure, a built-in procedure or a nested procedure which was defined an advan

ce.

The argument value in which the default value is defined can be omitted when calling.

When using a procedure variable or bind parameter (?, :V1) in an argument which were defines as OUT o

r IN-OUT, then the returned value is obtained.

Examples

gSQL> DECLARE

PROCEDURE PROC1(A1 INTEGER)

IS

BEGIN

PUT_LINE('A1 = ' || A1);

END;

BEGIN

PROC1(100);

END;

/

A1 = 100

Anonymous PL block executed.

2,346 | PSM Language Element References

Compatibility

The SQL standard requires to use <call statement>.

Procedure Declaration and Definition | 2,347

23.30 Procedure Declaration and Definition

Function

It defines a nested procedure.

Syntax

<nested procedure statement> ::=

PROCEDURE proc_name [({ param_name [IN|OUT|INOUT] datatype [{ := | DEFAULT }

init_expr] } [, ...])]

{ IS | AS } <item_declaration> BEGIN <pl_stmt_list> END

;

Invocation and Access Rules

It can be used in PSM declaration section.

Syntax Rules and Parameters

● Proc_name

○ It is a name of a procedure to be created, and it should be a unique name in a schema.

○ The length of a procedure name should be shorter than 128 bytes.

● Param_name

○ It defines a name of an argument to be used by a procedure.

○ A name of each argument should be unique in a procedure.

● Bind_type

○ It specifies a bind type of each argument.

○ If it is not specified, the default type is 'IN'.

● Item_declaration

○ It declares items such as a local variable to be used within a procedure.

○ It can declare all items which can be declared in a PL block.

● PL Stmt list

○ It is a body section of a procedure, and it lists PL statements to be performed.

2,348 | PSM Language Element References

Description

A nested procedure is a sub program which can be called only within the corresponding procedure.

Other usages are as same as those of a schema-level procedure.

Examples

gSQL> DECLARE

PROCEDURE PROC1(A1 INTEGER)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('A1 = ' || A1);

END;

BEGIN

PROC1(100);

END;

/

A1 = 100

Anonymous PL block executed.

Compatibility

It is as same as a schema-level procedure.

For More Information

Refer to CREATE PROCEDURE.

RAISE Statement | 2,349

23.31 RAISE Statement

Function

It explicitly generates a user-defined exception.

Syntax

<RAISE Statement> ::=

RAISE <Exception-Name>

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● A name of exception to be raised should be declared in a PL block to which a raise belongs or in DEC

LARE clause of a superordinate PL block. However, a predefined exception can be raised without a de

claration.

● If a raise statement is used within an exception handler, an exception name can be omitted, in this ca

se, the previous exception is spread to the superordinate block.

Description

If it can not be processed in a PL block in which an exception occured, then it is spread to the superordina

te PL block.

If an exception to be raised does not exist in a PL block including RAISE statement, nor does exist in all ex

ception handlers within a superordinate PL block, then an error occurs.

It is spread from a PL block in which RAISE exception occurred to a superordinate PL block until it is proce

2,350 | PSM Language Element References

ssed, and it can not be spread to an exception handler of subordinate PL block.

Table 23-9 Propagating user exception

Raise exception

Exception

handler

SCOPE

Exception

handler

Whether to spread it

to superordinate

User exception without error code Same scope X
It spreads "unhandled exception" err

or to a superordinate scope.

User exception with error code Superordinate scope X It spreads a user exception.

User exception with error code Same scope X Itspreads a user defined error code.

User exception with error code Superordinate scope X Itspreads a user defined error code.

Examples

gSQL> DECLARE

V1 INTEGER;

exception1 EXCEPTION;

exception100 EXCEPTION;

BEGIN

DBMS_OUTPUT.PUT_LINE('Step1');

BEGIN

RAISE exception1;

DBMS_OUTPUT.PUT_LINE('Step2');

EXCEPTION WHEN Exception100 THEN DBMS_OUTPUT.PUT_LINE('in Exception');

END;

DBMS_OUTPUT.PUT_LINE('Step3');

EXCEPTION WHEN Exception1 THEN DBMS_OUTPUT.PUT_LINE('out Exception');

DBMS_OUTPUT.PUT_LINE('Step4');

END;

/

Step1

out Exception

Step4

Anonymous PL block executed.

RAISE Statement | 2,351

Compatibility

The SQL standard specifies <handler declaration> and <condition declaration>, but it does not support th

e syntax.

For More Information

Refer to the followings.

● Exception Handler

● Exception Declaration

2,352 | PSM Language Element References

23.32 Record Variable Declaration

Function

It declares a record type variable in DECLARE section.

Syntax

<declare record variable> ::=

variable_name <recordType>

;

<recordType> ::=

<tableName>%ROWTYPE

| USER_DEFINED_DATA_TYPE

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of a PL block.

Syntax Rules and Parameters

● Variable_name

○ It is a name of variable to be declared.

○ The length of the variable name should be shorter than 128 bytes.

○ It should be a unique name within a scope (PL block body).

○ A variable with the same name can be declared in a PL block body of nested subordinate.

○ It should be used in scope_name.variable_name form to correctly use the variables of duplicated

declaration.

○ When using a variable of duplicated declaration without specifying the scope name, then a varia

ble of the nearest scope is automatically used.

● Record_type

○ It can use %ROWTYPE and user-defined recordType.

○ For more information about the declaration of recordType, refer to User Defined Record Type.

Record Variable Declaration | 2,353

Description

● The declared variable has the following features.

○ It should be a unique name within a scope (PL block body).

○ A variable with the same name can be declared in a PL block body of nested subordinate.

○ It should be used in scope_name.variable_name form to correctly use the variables of duplicated

declaration.

○ When using a variable of duplicated declaration without specifying the scope name, then a varia

ble of the nearest scope is automatically used.

● The declared variable is used in that scope and in its subordinate scope, but ':' is not added unlike an

embedded SQL.

● The used variable is operated as a bind parameter (INOUT) for that SQL or a PSM control statement.

Examples

gSQL> DECLARE

TYPE MY_REC1 IS RECORD (F1 INTEGER, F2 VARCHAR(10));

V1 MY_REC1;

BEGIN

V1.F1 := 1;

V1.F2 := 'AAA';

INSERT INTO T1 VALUES(V1.F1, V1.F2);

END;

/

Anonymous PL block executed.

gSQL> COMMIT;

Commit complete.

gSQL> SELECT * FROM T1;

I1 I2

-- ---

1 AAA

1 row selected.

Compatibility

It is not defined in the SQL standard.

2,354 | PSM Language Element References

23.33 RETURN Statement

Function

It specifies the value of which a function returns, then terminates the function. A procedure does not spe

cify the return value, but terminates the procedure.

Syntax

<return statement> ::=

RETURN [return_value_expr]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Return_value_expr

○ It is an expression of a value to be returned, and it can be specified only when it is a function.

Description

It terminates a currently performing procedure/ function.

For a function, if RETURN statement is terminated without being performed, or if RETURN statement doe

s not have return_value_expr, then an error occurs.

RETURN Statement | 2,355

Examples

gSQL> CREATE OR REPLACE FUNCTION FUNC1(A1 INTEGER, A2 INTEGER)

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

RETURN V1;

END;

/

Function created.

Compatibility

It is specified in the SQL standard, but conformance rules do not exist.

2,356 | PSM Language Element References

23.34 RETURNING INTO clause

Function

The data processed in an insert/ update/ delete is returned to a PSM variable.

Syntax

<Insert, Delete Returning_into_clause> ::=

[RETURN | RETURNING] { * | { <value_expression> [[AS] alias_name] } [, ...] INTO

variable_name [, ...]

<Update returning into clause> ::=

{ RETURN | RETURNING } [NEW | OLD] { * | { <value expression> [[AS] alias_name] } [,

...] } INTO Variable [, ...]

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

A record type variable can not be used being mixed with other types.

Description

It stores before/ after record of processing an insert/ update/ delete statement through returning into.

RETURNING INTO clause | 2,357

Examples

gSQL> DECLARE

rec t1%ROWTYPE;

BEGIN

INSERT INTO t1 VALUES (1, 2, 3) RETURNING * INTO rec ;

UPDATE T1 SET ROW = rec RETURNING * INTO rec;

DELETE FROM T1 RETURNING * INTO rec;

END;

/

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

2,358 | PSM Language Element References

23.35 %ROWTYPE Attribute

Function

When declaring a variable, it defines the structure and type as same as those of a specific table, a specific

cursor or a result set of a cursor variable.

Syntax

<rowtype attribute> ::=

<identifier chain> % ROWTYPE

Invocation and Access Rules

● It can be used only within PSM. (e.g. package, procedure, function)

● It can be used only in the declaration section of a PL block.

● When declaring a variable, it can be used only in <data type> section.

● When declaring a record type field, then it can not be used in <data type> section. (It does not suppo

rt complex data type.)

Syntax Rules and Parameters

● Identifier chains are as follows.

○ The name of table, view, synonym to be referenced, or the name of a cursor or a cursor variable

Description

● Search order of the reference targets

○ Cursor or cursor variable

○ Base table, view, or synonym

● Reference scope

%ROWTYPE Attribute | 2,359

○ When referring by using a row attribute, only name and type of columns in a result set of a table

or a cursor is referenced.

○ Therefore, it does not refer to NOT NULL constraint or DEFAULT value settings.

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER NOT NULL, I2 VARCHAR(10));

Table created.

gSQL> INSERT INTO T1 VALUES(123, '1234567890');

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

V1 T1%ROWTYPE;

BEGIN

SELECT * INTO V1.I1, V1.I2 FROM T1;

DBMS_OUTPUT.PUT_LINE('V1.I1 = ' || V1.I1 || ' V1.I2 = ' || V1.I2);

END;

/

V1.I1 = 123 V1.I2 = 1234567890

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

2,360 | PSM Language Element References

23.36 Scalar Variable Declaration

Function

It declares a scalar variable in the declaration section.

Syntax

<declare scalar variable> ::=

variable_name <data type> [<variable initialize clause>]

;

<variable initialize clause> ::=

[NOT NULL] { DEFAULT | := } <value expression>

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of a PL block.

Syntax Rules and Parameters

● Variable_name

○ It is a name of variable to be declared.

○ The length of the variable name should be shorter than 128 bytes.

○ It should be a unique name within a scope (PL block body).

○ A variable with the same name can be declared in a PL block body of nested subordinate.

○ It should be used in scope_name.variable_name form to correctly use the variables of duplicated

declaration.

○ When using a variable of duplicated declaration without specifying the scope name, then a varia

ble of the nearest scope is automatically used.

● Data_Type

○ It can use all built-in Data Type provided in GOLDILOCKS.

● Value_expression

○ It expresses the initial value to specify in the variable.

Scalar Variable Declaration | 2,361

○ It can use all constants and expressions supported by GOLDILOCKS except for multi-row function

s.

Description

● The declared variable has the following features.

○ It should be a unique name within a scope (PL block body).

○ A variable with the same name can be declared in a PL block body of nested subordinate.

○ It should be used in scope_name.variable_name form to correctly use the variables of duplicated

declaration.

○ When using a variable of duplicated declaration without specifying the scope name, then a varia

ble of the nearest scope is automatically used.

● The declared variable is used in that scope and in its subordinate scope, but ':' is not added unlike an

embedded SQL.

● The used variable is operated as a bind parameter (INOUT) for that SQL or a PSM control statement.

Examples

gSQL> CREATE TABLE T1 (I1 INTEGER, I2 VARCHAR(10));

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> DECLARE

V1 INTEGER := 100;

V2 INTEGER := -100;

V3 VARCHAR(10) := 'ABC';

BEGIN

IF V1 > 50 THEN

INSERT INTO T1 VALUES (V1, V3);

ELSE

INSERT INTO T1 VALUES (V2, V3);

END IF;

END;

/

Anonymous PL block executed.

gSQL> SELECT * FROM T1;

I1 I2

--- ---

2,362 | PSM Language Element References

100 ABC

1 row selected.

Compatibility

● The differences between <declare scalar variable> statement of GOLDILOCKS and that of SQL standar

d are as follows.

○ <SQL variable declaration> of the SQL standard declares a variable in a PL block body (after BEGI

N), but GOLDILOCKS declares a variable in a separate declaration section.

○ The SQL standard can declare multiple variables of the same type by using a single DECLARE stat

ement, but GOLDILOCKS can declare only a single variable by using a single statement.

○ The SQL standard uses only DEFAULT syntax when setting the initial value, but GOLDILOCKS can

use an assign sign (:=).

SELECT INTO Statement | 2,363

23.37 SELECT INTO Statement

Function

A single row is returned through SELECT.

Syntax

<select statement: single row> ::=

SELECT [<hint clause>] [<set quantifier>] <select list>

INTO <select target list>

<table expression>

;

<select target list> ::=

variable_name [, ...]

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

The rules are as same as those of a select statement except the rules for INTO clause.

Description

● SELECT INTO is used to return a single record.

○ If the number of results is zero, "NO_DATA_FOUND" exception occurs.

○ If the number of results are two or more, "TOO_MANY_ROWS" exception occurs.

● The result can be returned through a record type variable of PSM.

○ When using a record type variable, it can not be used being mixed with other type variables

2,364 | PSM Language Element References

Examples

gSQL> CREATE TABLE T1 (c1 VARCHAR(20), c2 VARCHAR(20));

Table created.

gSQL> INSERT INTO T1 VALUES ('AAA', 'BBB'), ('BBB', 'CCC');

2 rows created.

gSQL> DECLARE

v1 VARCHAR(20);

v2 VARCHAR(20);

BEGIN

SELECT * INTO v1, v2 FROM T1 WHERE c1 = 'AAA';

DBMS_OUTPUT.PUT_LINE('V1=' || v1 || ', v2=' || v2);

END;

/

V1=AAA, v2=BBB

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

SQLCODE Function | 2,365

23.38 SQLCODE Function

Function

It returns an error code of a statement which was performed just before in PSM.

Syntax

<SQLCODE function> ::= SQLCODE

Invocation and Access Rules

It can be used only within PSM.

Syntax Rules and Parameters

It does not have a separate argument.

Description

It returns an error code of a statement performed in PL/ SQL.

A user-defined exception which does not assign an error code returns to 1 at the time when it is processe

d by a handler.

When the error is completely processed by an exception handler, it returns to 0.

Examples

gSQL> DECLARE

V1 INTEGER;

BEGIN

2,366 | PSM Language Element References

DBMS_OUTPUT.PUT_LINE('SQLCODE=[' || SQLCODE || ']');

DBMS_OUTPUT.PUT_LINE('SQLERRM=[' || SQLERRM || ']');

END;

/

SQLCODE=[0]

SQLERRM=[[SUNJESOFT][PL/SQL][GOLDILOCKS]successful completion]

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

SQLERRM Function | 2,367

23.39 SQLERRM Function

Function

It returns an error message of a statement which was performed just before in PSM.

Syntax

<SQLERRM function> ::= SQLERRM

Invocation and Access Rules

It can be used only within PSM.

Syntax Rules and Parameters

It does not have a separate argument.

Description

It returns an error message of a statement performed in PL/ SQL.

A user-defined exception which does not assign an error code returns to a user-defined exception at the t

ime when it is processed by a handler.

When the error is completely processed by an exception handler, it outputs successful completion messag

e.

Examples

gSQL> DECLARE

V1 INTEGER;

2,368 | PSM Language Element References

BEGIN

DBMS_OUTPUT.PUT_LINE('SQLCODE=[' || SQLCODE || ']');

DBMS_OUTPUT.PUT_LINE('SQLERRM=[' || SQLERRM || ']');

END;

/

SQLCODE=[0]

SQLERRM=[[SUNJESOFT][PL/SQL][GOLDILOCKS]successful completion]

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

%TYPE Attribute | 2,369

23.40 %TYPE Attribute

Function

When declaring a variable or defining a specific field of RECORD type, it defines the type as same as the c

olumn of a specific table or another variable.

Syntax

<type attribute> ::=

<identifier chain> % TYPE

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the declaration section of a PL block.

It can be used only for <data type> section when declaring a variable or a field of a record type.

Syntax Rules and Parameters

● Identifier_chain

○ It is the name of a table column to be referenced or of the existing declared variable (or a field of

the variable).

Description

Reference scope

The reference scope according to the referenced object types are as follows.

● When the referenced object is a column of a table

○ It refers to the data type of the column.

2,370 | PSM Language Element References

○ It does not refer to a constraint (e.g. NOT NULL) of the column.

○ It does not refer to the default initial value of the column.

● When the referenced object is another variable (or a field of a variable)

○ It refers to the data type of the variable (or a field).

○ It refers to a constraint (NOT NULL) of the variable (or a field).

○ It does not refer to the default initial value of the variable (or a field).

● Search order of the referenced target object is as follows.

1. The name of a variable (or a field)

2. The name of a column

NOT NULL Constraints Variables References

It does not refer to the initial value when referring to NOT NULL attribute variable, so a new initial value s

hould be specified.

Setting an initial value of a field is not supported when using a type attribute for the field of a current rec

ord type variable, so NOT NULL type field can not be referenced.

Examples

gSQL> DECLARE

V1 NUMBER(5,2) := 100.01;

V2 V1%TYPE;

BEGIN

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

DBMS_OUTPUT.PUT_LINE('V2 = ' || V2);

END;

/

V1 = 100.01

V2 =

Anonymous PL block executed.

Compatibility

It is not defined in the SQL standard.

UPDATE Statement Extension | 2,371

23.41 UPDATE Statement Extension

Function

A feature altering a record by using a record type variable is added other than a feature consecutively listi

ng the altering target columns of UNDATE statement in PSM.

It stores the result by using a record type variable in UPDATE (searched) RETURNING INTO clause in PSM.

Syntax

<update Extension statement : searched> ::=

UPDATE table_name [[AS] alias_name]

<target-list>

[WHERE <search condition>]

[<result offset clause>]

[<fetch limit clause>]

[<returning into clause>]

;

<update statement: positioned> ::=

UPDATE table_name [[AS] alias_name]

<Target-List>

WHERE CURRENT OF cursor_name

;

<result offset clause> ::=

OFFSET skip_count [ROW | ROWS]

<fetch limit clause> ::=

<fetch first clause>

| <limit clause>

<fetch first clause> ::=

FETCH [FIRST | NEXT] [row_count] [ROW ONLY | ROWS ONLY]

<limit clause>

LIMIT { fetch_row_count | offset_row_count, fetch_row_count | ALL }

<returning into clause> ::=

{ RETURN | RETURNING } [NEW | OLD] { * | { <value expression> [[AS] alias_name] } [,

...] } INTO Variable [, ...]

<target-List> ::=

SET <set clause> [, ...]

2,372 | PSM Language Element References

| SET ROW = <psm_variable>

<set clause> ::=

column_name = { <value expression> | DEFAULT }

| (column_name [, ...]) = ({ <value expression> | DEFAULT } [, ...])

| (column_name [, ...]) = (<query expression>)

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● <PSM_Variable> to be used in UPDATE SET ROW syntax shoould be a variable declared as a record ty

pe.

● <Variable> to be used in UPDATE RETURNING INTO syntax does not need to be a record type.

○ However, if a record type is specified, then it can not be used being mixed with other data type v

ariables nor can two or more record type variables be listed.

Description

It alters the record or stores the result of RETURNING INTO through a record type variable in PSM.

Examples

gSQL> CREATE TABLE T1 (C1 VARCHAR(20), C2 VARCHAR(20));

Table created.

gSQL> INSERT INTO T1 VALUES ('AAA', 'BBB'), ('BBB', 'CCC'), ('CCC', 'DDD');

3 rows created.

gSQL> DECLARE

v1 t1%ROWTYPE;

v2 t1%ROWTYPE;

BEGIN

v1.c1 := '1';

v1.c2 := '2';

UPDATE Statement Extension | 2,373

UPDATE T1 SET ROW = v1 WHERE c1 = 'AAA' RETURNING * INTO v2;

DBMS_OUTPUT.PUT_LINE('SQL%ROWCOUNT=' || SQL%ROWCOUNT);

DBMS_OUTPUT.PUT_LINE('v2.c1=' || v2.c1 || ', v2.c2=' || v2.c2);

END;

/

SQL%ROWCOUNT=1

v2.c1=1, v2.c2=2

Anonymous PL block executed.

gSQL> SELECT * FROM T1 ORDER BY C1;

C1 C2

--- ---

1 2

BBB CCC

CCC DDD

3 rows selected.

Compatibility

It is not defined in the SQL standard.

2,374 | PSM Language Element References

23.42 WHILE LOOP Statement

Function

It performs internal statements during <search condition> returns TRUE value.

Syntax

<while loop statement> ::=

WHILE <search condition>

LOOP { <SQL procedure statement> ; }... END LOOP [loop_name]

;

Invocation and Access Rules

It can be used only within PSM. (e.g. package, procedure, function)

It can be used only in the body section of a PL block.

Syntax Rules and Parameters

● Search conditions are as follows.

○ It is a conditional expression which continues to circle a while loop.

○ It should finally return a boolean type.

Description

while loop statement performs an internal statement list as long as the evaluation result of <search condit

ion> is TRUE.

WHILE LOOP Statement | 2,375

Examples

gSQL> DECLARE

V1 integer := 0;

BEGIN

WHILE V1 < 10 LOOP

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

V1 := V1 + 1;

END LOOP;

END;

/

V1 = 0

V1 = 1

V1 = 2

V1 = 3

V1 = 4

V1 = 5

V1 = 6

V1 = 7

V1 = 8

V1 = 9

Anonymous PL block executed.

Compatibility

<while loop statement> statement is defined as <while statement> in the SQL standard.

<while statement> of the SQL standard performs loop statement as DO ... END WHILE, but GOLDILOCKS

performs it as LOOP ... END LOOP.

For More Information

Refer to the followings.

● CONTINUE Statement

● EXIT Statement

● GOTO Statement

PSM SQL References

24.

2,377

2,378 | PSM SQL References

24.1 ALTER FUNCTION

Function

It compiles a function again.

Syntax

<alter function statement> ::=

ALTER FUNCTION function_name COMPILE

;

Invocation and Access Rules

One of the following privileges is required to perform <alter function statement>.

● The owner of that function

● (ALTER PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the function belo

ngs

● ALTER ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

● function Name

○ It is the function name to be compiled.

○ It can define the schema to which the function belongs, such as schema_name.func_name. If sch

ema_name is omitted, the default schema name of the user performing the statement is used.

Description

It compiles a specified schema-level function again.

ALTER FUNCTION | 2,379

Examples

gSQL> ALTER FUNCTION FUNC1 COMPILE;

Function altered.

Compatibility

It is a statement altering characteristics specified when performing CREATE in the SQL standard, and asta

tement recreating a plan of a function in GOLDILOCKS.

Table 24-1 SQL standard compatibility

Feature ID Description Compatibility

F381 Extended schema manipulation O

For More Information

Refer to the followings.

● CREATE FUNCTION

● DROP FUNCTION

2,380 | PSM SQL References

24.2 ALTER PROCEDURE

Function

It compiles a procedure again.

Syntax

<alter procedure statement> ::=

ALTER PROCEDURE proc_name COMPILE

;

Invocation and Access Rules

One of the following privileges is required to perform <alter procedure statement>.

● The owner of that procedure

● (ALTER PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the procedure bel

ongs

● ALTER ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

● Proc Name

○ It is the procedure name to be compiled.

○ It can define the schema to which the procedure belongs, such as schema_name.proc_name. If s

chema_name is omitted, the default schema name of the user performing the statement is used.

Description

It compiles a specified schema-level procedure again.

ALTER PROCEDURE | 2,381

Examples

gSQL> CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER)

IS

BEGIN

INSERT INTO T1 VALUES(A1);

END;

/

ERR-01000(16409): Warning: Routine definition has compilation errors

ERR-HY000(17032): PSM compilation error :

(1) at (5:15): ERR-17053: schema or table object does not exist

Procedure created.

gSQL> CALL PROC1(1);

ERR-HY000(17032): PSM compilation error :

(1) at (5:15): ERR-17053: schema or table object does not exist

gSQL> CREATE TABLE T1(I1 INTEGER);

Table created.

gSQL> COMMIT;

Commit complete.

gSQL> ALTER PROCEDURE PROC1 COMPILE;

Procedure altered.

gSQL> COMMIT;

Commit complete.

gSQL> CALL PROC1(2);

Procedure Call complete.

gSQL> SELECT * FROM T1;

I1

--

2

1 row selected.

Compatibility

It is a statement altering characteristics specified when performing CREATE in the SQL standard, and asta

tement recreating a plan of a procedure in GOLDILOCKS.

2,382 | PSM SQL References

Table 24-2 SQL standard compatibility

Feature ID Description Compatibility

F381 Extended schema manipulation O

For More Information

Refer to the followings.

● CREATE PROCEDURE

● DROP PROCEDURE

CALL Statement | 2,383

24.3 CALL Statement

Function

It performs a schema-level procedure or a function.

Syntax

<call statement> ::=

<sql call statement> | <odbc procedure call escape sequence>

;

<sql call statement> ::=

CALL proc_name [(value_expr [, value_expr] ..)] [INTO { '?' | { host_param [

indicator_param] } }]

<odbc procedure call escape sequence> ::=

'{' [? =] CALL proc_name [(value_expr [, value_expr] ..)] '}'

Invocation and Access Rules

One of the following privileges is required to perform <call statement>.

● The EXECUTE privilege for that procedure

● (EXECUTE PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the procedure

belongs

● EXECUTE ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

● proc_name

○ It is a name of a procedure/ function to be executed.

○ It may includes a schema to which the procedure belongs such as Schema_name.Proc_name.

● value_expr

○ It expresses an argument value which were transferred to the procedure. It can use a bind param

eter such as '?' or ':V1'.

2,384 | PSM SQL References

Description

It executes a schema-level SQL procedure or a function by using specified arguments.

A function of <sql call statement> form returns the result value by using a host variable expression or a dy

namic bind parameter (?) after INTO clause.

<odbc procedure call escape sequence> form is a standard statement to call PROCEDURE in ODBC/ JDBC,

and GOLDILOCKS supports this statement in a server. (It can also be used in a tool such as gsql.) A functi

on returns the result value by using assign expressions (? =) at the front.

Examples

Call Procedure

gSQL> CREATE OR REPLACE PROCEDURE PROC1

(

A1 INTEGER

)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('A1=' || A1);

END;

/

Procedure created.

gSQL> \var v1 INTEGER;

gSQL> \exec :v1 := 123;

gSQL> CALL PROC1(:v1);

A1=123

Procedure Call complete.

Call Function

CREATE OR REPLACE FUNCTION FUNC1

(

A1 INTEGER

)

RETURN INTEGER

CALL Statement | 2,385

IS

BEGIN

return A1;

END;

/

Function created.

gSQL> \var v1 INTEGER;

gSQL> \var v2 INTEGER;

gSQL> \exec :v1 := 123;

gSQL> CALL FUNC1(:v1) INTO :v2;

Procedure Call complete.

gSQL> \print v2;

V2

123

Compatibility

The SQL standard allows only the call for a PROCEDURE, so it does not define below [INTO] clause.

2,386 | PSM SQL References

24.4 CREATE FUNCTION

Function

It defines a schema-level function.

Syntax

<create procedure statement> ::=

CREATE [OR REPLACE]

FUNCTION func_name [({ param_name [IN|OUT|INOUT] datatype [{ := | DEFAULT }

init_expr] } [, ...])]

RETURN datatype

[<func_characteristics>]

{ IS | AS } <item_declaration> BEGIN <pl_stmt_list> END

;

<func_characteristics> ::=

DETERMINISTIC | AUTHID CURRENT_USER | AUTHID DEFINER

Invocation and Access Rules

The user should satisfy the following conditions to perform <create function statement>.

● One of the following privileges is required to create a function.

○ (CREATE PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the functio

n belongs

○ CREATE ANY PROCEDURE ON DATABASE

● If a function already exists when using OR REPLACE clause, then one of the following privileges drop

ping the existing function is required.

○ The owner of that function

○ (DROP PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the function b

elongs

○ DROP ANY PROCEDURE ON DATABASE

● The user who performed the statement becomes the owner of the created function.

CREATE FUNCTION | 2,387

Syntax Rules and Parameters

OR REPLACE

It replaces an existing function when the function already exists.

FUNCTION NAME

It is a name of function to be created, and it should be a unique name in a schema.

It can define the schema to which the function belongs, such as schema_name.func_name. If schema_na

me is omitted, the default schema name of the user performing the statement is used.

The length of a function name should be shorter than 128 bytes.

PARAM NAME

It defines a name of an argument to be used in a function.

The name of each argument should be unique in a function.

The length of each argument name should be shorter than 128 bytes.

It does not limit the maximum number of an argument to be used in a single function.

Bind Type

It specifies a bind type of each argument.

If it is not specified, the default type is IN.

Func_Characteristics

It defines options to perform a function. It should be specified only once per a single item.

● DETERMINISTIC: The function always returns the same result value when the same argument values a

re input.

● AUTHID CURRENT_USER: SQLs which are being performed during performing a function are interpre

ted and performed according to an authorization of an invoker.

● AUTHID DEFINER: SQLs which are being performed during performing a function are interpreted and

performed according to an authorization of a definer.

2,388 | PSM SQL References

Item Declaration

It declares items such as a local variable to be used within a function.

It can declare all items which can be declared in a PL block.

PL Stmt List

It is a body section of a function, and it lists PL statements to be performed.

It can not use a bind parameter such as '?' or ':V1'. within a function.

Description

It defines a schema-level SQL function. The created fucntion can be called from all expressions.

The definition of a function can be viewed in ROUTINES table of INFORMATION_SCHEMA. The definition

of a function parameter can be viewed in PARAMETERS table of INFORMATION_SCHEMA.

If a function becomes temporarily unstable due to absences of related objects, then it can try to recreate

a plan by using <alter function> statement.

The created function can be dropped by using <drop function> statement.

The maximum number of functions to be created is not limited. Therefore, they can be created as many a

s the storage space is available.

Examples

gSQL> CREATE OR REPLACE FUNCTION FUNC1(A1 INTEGER, A2 INTEGER)

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

RETURN V1;

END;

/

CREATE FUNCTION | 2,389

Function created.

Compatibility

The SQL standard does not define OR REPLACE clause.

Table 24-3 SQL standard compatibility

Feature ID Description Compatibility

T471 Result sets return value X

T341 Overloading of SQL-invoked functions and SQL-invoked procedures X

S023 Basic structured types X

S241 Transform functions X

S024 Enhanced structured types X

T571 Array-returning external SQL-invoked functions X

T572 Multiset-returning external SQL-invoked functions X

S201 SQL routines on arrays X

S202 SQL-invoked routines on multisets X

T323 Explicit security for external routines X

S231 Structured type locators X

S232 Array locators X

S233 Multiset locators X

T041 Basic LOB data type support X

S027 Create method by specific method name X

T041 Basic LOB data type support X

T324 Explicit security for SQL routines O

T326 Table functions X

T651 SQL-schema statements in SQL routines X

T652 SQL-dynamic statements in SQL routines O

T653 SQL-schema statements in external routines X

T654 SQL-dynamic statements in external routines X

T655 Cyclically dependent routines X

T272 Enhanced savepoint management X

T522 Default values for IN parameters of SQL-invoked procedures O

B121 Routine language Ada X

B122 Routine language C X

B123 Routine language COBOL X

B124 Routine language Fortran X

B125 Routine language MUMPS X

B126 Routine language Pascal X

2,390 | PSM SQL References

B127 Routine language PL/I X

B128 Routine language SQL O

B129 Routine language Ada: VARCHAR and NUMERIC support X

Feature ID Description Compatibility

For More Information

Refer to the followings.

● DROP FUNCTION

● ALTER FUNCTION

CREATE PROCEDURE | 2,391

24.5 CREATE PROCEDURE

Function

It defines a schema-level procedure.

Syntax

<create procedure statement> ::=

CREATE [OR REPLACE]

PROCEDURE proc_name [({ param_name [IN|OUT|INOUT] datatype [{ := | DEFAULT }

init_expr] } [, ...])]

[<proc_characteristics>]

{ IS | AS } <item_declaration> BEGIN <pl_stmt_list> END

;

<proc_characteristics> ::=

AUTHID CURRENT_USER | AUTHID DEFINER

Invocation and Access Rules

The user should satisfy the following conditions to perform <create procedure statement>.

● One of the following privileges is required to create a procedure.

○ (CREATE PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the proced

ure belongs

○ CREATE ANY PROCEDURE ON DATABASE

● If a procedure already exists when using OR REPLACE clause, then one of the following privileges dro

pping the existing procedure is required.

○ The owner of that procedure

○ (DROP PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the procedure

belongs

○ DROP ANY PROCEDURE ON DATABASE

● The user who performed the statement becomes the owner of the created procedure.

2,392 | PSM SQL References

Syntax Rules and Parameters

OR REPLACE

It replaces an existing procedure when the procedure already exists.

PROC NAME

It is a name of procedure to be created, and it should be a unique name in a schema.

It can define the schema to which the procedure belongs, such as schema_name.proc_name. If schema_

name is omitted, the default schema name of the user performing the statement is used.

The length of a procedure name should be shorter than 128 bytes.

PARAM NAME

It defines a name of an argument to be used in a procedure.

The name of each argument should be unique in a procedure.

The length of each argument name should be shorter than 128 bytes.

It does not limit the maximum number of an argument to be used in a single procedure.

Bind Type

It specifies a bind type of each argument.

If it is not specified, the default type is IN.

proc_characteristics

It defines options to perform a procedure. It should be specified only once per a single item.

● AUTHID CURRENT_USER: SQLs which are being performed during performing a procedure are interp

reted and performed according to an authorization of an invoker.

● AUTHID DEFINER: SQLs which are being performed during performing a procedure are interpreted a

nd performed according to an authorization of a definer.

Item Declaration

It declares items such as a local variable to be used within a procedure.

It can declare all items which can be declared in a PL block.

CREATE PROCEDURE | 2,393

PL Stmt List

It is a body section of a procedure, and it lists PL statements to be performed.

It can not use a bind parameter such as '?' or ':V1'. within a procedure.

Description

It defines a schema-level SQL procedure. The created procedure can be called from CALL statement, anon

ymous block, or other procedure/ function.

The definition of a procedure can be viewed in ROUTINES table of INFORMATION_SCHEMA. The definitio

n of a procedure parameter can be viewed in PARAMETERS table of INFORMATION_SCHEMA.

If a procedure becomes temporarily unstable due to absences of related objects, then it can try to recreat

e a plan by using <alter procedure> statement.

The created procedure can be dropped by using <drop procedure> statement.

The maximum number of procedures to be created is not limited. Therefore, they can be created as many

as the storage space is available.

Examples

gSQL> CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER, A2 INTEGER)

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

Procedure created.

2,394 | PSM SQL References

Compatibility

The SQL standard does not define the following clauses.

Table 24-4 SQL standard compatibility

Feature ID Description Compatibility

T471 Result sets return value X

T341 Overloading of SQL-invoked functions and SQL-invoked procedures X

S023 Basic structured types X

S241 Transform functions X

S024 Enhanced structured types X

T571 Array-returning external SQL-invoked functions X

T572 Multiset-returning external SQL-invoked functions X

S201 SQL routines on arrays X

S202 SQL-invoked routines on multisets X

T323 Explicit security for external routines X

S231 Structured type locators X

S232 Array locators X

S233 Multiset locators X

T041 Basic LOB data type support X

S027 Create method by specific method name X

T041 Basic LOB data type support X

T324 Explicit security for SQL routines O

T326 Table functions X

T651 SQL-schema statements in SQL routines X

T652 SQL-dynamic statements in SQL routines O

T653 SQL-schema statements in external routines X

T654 SQL-dynamic statements in external routines X

T655 Cyclically dependent routines X

T272 Enhanced savepoint management X

T522 Default values for IN parameters of SQL-invoked procedures O

B121 Routine language Ada X

B122 Routine language C X

B123 Routine language COBOL X

B124 Routine language Fortran X

B125 Routine language MUMPS X

B126 Routine language Pascal X

B127 Routine language PL/I X

B128 Routine language SQL O

B129 Routine language Ada: VARCHAR and NUMERIC support X

CREATE PROCEDURE | 2,395

For More Information

Refer to the followings.

● DROP PROCEDURE

● ALTER PROCEDURE

2,396 | PSM SQL References

24.6 DROP FUNCTION

Function

It drops a function.

Syntax

<drop function statement> ::=

DROP FUNCTION [IF EXISTS] func_name

;

Invocation and Access Rules

One of the following privileges is required to perform <drop function statement>.

● The owner of that function

● (DROP PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the function belo

ngs

● DROP ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the function does not exist, an error does not occur.

FUNC NAME

It is the function name to be dropped.

It can define the schema to which the function belongs, such as schema_name.func_name. If schema_na

me is omitted, the default schema name of the user performing the statement is used.

DROP FUNCTION | 2,397

Description

It drops a specified schema-level function.

Examples

gSQL> CREATE OR REPLACE FUNCTION FUNC1

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

V1 := 10;

RETURN V1;

END;

/

Function created.

COMMIT;

Commit complete.

gSQL> DROP FUNCTION FUNC1;

Function dropped.

Compatibility

The SQL standard does not define the following clauses.

Table 24-5 SQL standard compatibility

Feature ID Description Compatibility

F032 CASCADE drop behavior X

S024 Enhanced structured types X

For More Information

Refer to the followings.

● CREATE FUNCTION

2,398 | PSM SQL References

● ALTER FUNCTION

DROP PROCEDURE | 2,399

24.7 DROP PROCEDURE

Function

It drops a procedure.

Syntax

<drop procedure statement> ::=

DROP PROCEDURE [IF EXISTS] proc_name

;

Invocation and Access Rules

One of the following privileges is required to perform <drop procedure statement>.

● The owner of that procedure

● (DROP PROCEDURE or CONTROL SCHEMA) ON SCHEMA for the schema to which the procedure bel

ongs

● DROP ANY PROCEDURE ON DATABASE

Syntax Rules and Parameters

IF EXISTS

Even when the procedure does not exist, an error does not occur.

PROC NAME

It is the procedure name to be dropped.

It can define the schema to which the procedure belongs, such as schema_name.proc_name. If schema_

name is omitted, the default schema name of the user performing the statement is used.

2,400 | PSM SQL References

Description

It drops a specified schema-level procedure.

Examples

gSQL> CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER, A2 INTEGER)

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

/

Procedure created.

COMMIT;

Commit complete.

gSQL> DROP PROCEDURE PROC1;

Procedure dropped.

Compatibility

The SQL standard does not define the following clauses.

Table 24-6 SQL standard compatibility

Feature ID Description Compatibility

F032 CASCADE drop behavior X

S024 Enhanced structured types X

DROP PROCEDURE | 2,401

For More Information

Refer to the followings.

● CREATE PROCEDURE

● ALTER PROCEDURE

Developer Manual

Part V.

2,403

2,404 | Developer Manual

25. ODBC

25.1 Overview of GOLDILOCKS ODBC Driver

Concepts of GOLDILOCKS ODBC Driver

Overview of ODBC Components

Using GOLDILOCKS ODBC Driver

25.2 Data Source Configuration

DSN Configuration on UNIX

DSN Configuration on Windows

25.3 GLOBAL CONNECTION

Features

Settings

Processing GLOBAL CONNECTION

Constraints

25.4 Catalog Function

Using Catalog Data

Catalog Function on ODBC

25.5 ODBC API References

SQLAllocConnect

SQLAllocEnv

SQLAllocHandle

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLBrowseConnect

SQLBulkOperations

SQLCancel

SQLCancelHandle

SQLCloseCursor

SQLColAttribute

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLConnect

SQLCopyDesc

SQLDescribeCol

SQLDescribeParam

SQLDisconnect

SQLDriverConnect

SQLEndTran

. 2,411

.	 2,412

.	 2,412

.	 2,412

.	 2,413

.	 2,415

.	 2,415

.	 2,421

.	 2,424

.	 2,424

.	 2,425

.	 2,426

.	 2,428

.	 2,430

.	 2,430

.	 2,431

.	 2,435

.	 2,435

.	 2,436

.	 2,437

.	 2,440

.	 2,441

.	 2,449

.	 2,464

.	 2,465

.	 2,466

.	 2,467

.	 2,468

.	 2,470

.	 2,476

.	 2,477

.	 2,481

.	 2,486

.	 2,488

.	 2,489

.	 2,492

.	 2,494

.	 2,496

.	 2,500

| 2,405

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLFetchScroll

SQLForeignKeys

SQLFreeConnect

SQLFreeEnv

SQLFreeHandle

SQLFreeStmt

SQLGetConnectAttr

SQLGetConnectOption

SQLGetCursorName

SQLGetData

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetEnvAttr

SQLGetFunctions

SQLGetGroupCount

SQLGetGroupIDs

SQLGetGroupName

SQLGetInfo

SQLGetStmtAttr

SQLGetStmtOption

SQLGetSuitableGroupID

SQLGetTypeInfo

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLNumResultCols

SQLParamData

SQLParamOptions

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

.	 2,502

.	 2,503

.	 2,507

.	 2,510

.	 2,511

.	 2,519

.	 2,526

.	 2,532

.	 2,533

.	 2,534

.	 2,536

.	 2,538

.	 2,542

.	 2,543

.	 2,545

.	 2,551

.	 2,568

.	 2,572

.	 2,581

.	 2,584

.	 2,588

.	 2,593

.	 2,595

.	 2,597

.	 2,599

.	 2,611

.	 2,624

.	 2,625

.	 2,627

.	 2,634

.	 2,638

.	 2,639

.	 2,642

.	 2,645

.	 2,647

.	 2,648

.	 2,654

.	 2,659

.	 2,666

2,406 | Developer Manual

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetConnectOption

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetParam

SQLSetPos

SQLSetScrollOptions

SQLSetStmtAttr

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

SQLTransact

25.6 XA API References

Overview

XA Interface

Example

26. JDBC

26.1 Overview of GOLDILOCKS JDBC Driver

Concepts of GOLDILOCKS JDBC Driver

Characteristics

Supporting Versions

Examples

26.2 Feature Specification

Connection

Data Manipulation

Data Retrieval

ResultSet Scroll

Using Other Data Types

Logging

Viewing Plan Text

Connection Failover

Connecting in Direct Attach Mode

26.3 JDBC API References

.	 2,672

.	 2,677

.	 2,680

.	 2,689

.	 2,690

.	 2,693

.	 2,717

.	 2,722

.	 2,726

.	 2,727

.	 2,740

.	 2,741

.	 2,756

.	 2,757

.	 2,764

.	 2,771

.	 2,777

.	 2,783

.	 2,784

.	 2,784

.	 2,785

.	 2,796

. 2,801

.	 2,802

.	 2,802

.	 2,802

.	 2,804

.	 2,805

.	 2,807

.	 2,807

.	 2,812

.	 2,816

.	 2,817

.	 2,819

.	 2,823

.	 2,825

.	 2,826

.	 2,828

.	 2,830

| 2,407

Array

Blob

CallableStatement

Clob

CommonDataSource

Connection

ConnectionPoolDataSource

DatabaseMetaData

DataSource

Driver

NClob

ParameterMetaData

PooledConnection

PreparedStatement

Ref

ResultSet

ResultSetMetaData

RowId

RowSet

RowSetMetaData

Savepoint

SQLData

SQLXML

Statement

Struct

XAConnection

XADataSource

XAResource

GoldilocksInterval

GOLDILOCKS Type

Type Conversion

27. Embedded SQL

27.1 Precompiler

Overview

Building Application

Precompiler Options

27.2 Embedded SQL

Preprocessing

Connection

.	 2,830

.	 2,832

.	 2,834

.	 2,852

.	 2,854

.	 2,859

.	 2,869

.	 2,870

.	 2,904

.	 2,905

.	 2,907

.	 2,909

.	 2,912

.	 2,914

.	 2,927

.	 2,928

.	 2,966

.	 2,971

.	 2,972

.	 2,982

.	 2,985

.	 2,986

.	 2,987

.	 2,989

.	 3,000

.	 3,001

.	 3,002

.	 3,003

.	 3,005

.	 3,016

.	 3,016

. 3,021

.	 3,022

.	 3,022

.	 3,023

.	 3,027

.	 3,032

.	 3,032

.	 3,038

2,408 | Developer Manual

Transaction

Host Variables and Datatypes

Embedded SQL

Options

Host Array

Handling Run-time Errors

27.3 Advanced Topic

Embedded Dynamic SQL

Multithread Application

C++ Application

XA

27.4 Embedded SQL Reference

EXEC SQL AT

EXEC SQL ATOMIC INSERT

EXEC SQL AUTOCOMMIT

EXEC SQL BEGIN DECLARE SECTION

EXEC SQL COMMIT RELEASE

EXEC SQL CONNECT

EXEC SQL CONTEXT ALLOCATE

EXEC SQL CONTEXT FREE

EXEC SQL CONTEXT USE

EXEC SQL DISCONNECT

EXEC SQL END DECLARE SECTION

EXEC SQL FOR

EXEC SQL GET GROUPID INTO

EXEC SQL INCLUDE

EXEC SQL INCLUDE SQLCA

EXEC SQL OPTION

EXEC SQL ROLLBACK RELEASE

EXEC SQL WHENEVER

28. PDO

28.1 Overview of PDO

28.2 Installation /Configuration

Requirement

Installation

28.3 Usage

Data Source Name (DSN)

28.4 Examples

29. PyDBC

.	 3,040

.	 3,042

.	 3,094

.	 3,116

.	 3,117

.	 3,134

.	 3,148

.	 3,148

.	 3,162

.	 3,173

.	 3,174

.	 3,188

.	 3,189

.	 3,190

.	 3,192

.	 3,193

.	 3,194

.	 3,196

.	 3,198

.	 3,200

.	 3,202

.	 3,204

.	 3,205

.	 3,206

.	 3,208

.	 3,210

.	 3,211

.	 3,212

.	 3,213

.	 3,215

. 3,217

.	 3,218

.	 3,218

.	 3,218

.	 3,218

.	 3,220

.	 3,220

.	 3,221

. 3,231

| 2,409

29.1 GOLDILOCKS PyDBC

Overview

Version

Installation

Examples

29.2 API Reference

pygoldilocks Module

Connection

Cursor

Row

29.3 Exception

29.4 Data Type

Transferring Python Parameter to GOLDILOCKS

SQL Value Received from GOLDILOCKS

30. Hibernate

30.1 Overview

30.2 Interworking with Hibernate

Downloading Hibernate

Interworking with GoldilocksDialect Class

30.3 Examples

Configuration

Examples of Application

.	 3,232

.	 3,232

.	 3,232

.	 3,232

.	 3,233

.	 3,235

.	 3,235

.	 3,238

.	 3,240

.	 3,248

.	 3,250

.	 3,251

.	 3,251

.	 3,252

. 3,255

.	 3,256

.	 3,256

.	 3,256

.	 3,256

.	 3,257

.	 3,257

.	 3,259

ODBC

25.

2,411

2,412 | ODBC

25.1 Overview of GOLDILOCKS ODBC Driver

Concepts of GOLDILOCKS ODBC Driver

Open Database Connectivity (ODBC) is a specifications for a database Application Programming Interface

(API). Microsoft ODBC version 3.0 is based on International Standards Organization/ International Electro

mechanical Commission (ISO/ IEC) and the recommended specifications of Call Level Interface (CLI) of X/

open. ODBC supports the SQL statements by using C library functions. The application implements the O

DBC features by calling these functions.

ODBC architecture has four components which perform the following features.

Component Description

Application
It calls ODBC function which communicated with an ODBC data source and sends an

SQL statement and processes the result set.

Driver manager
It manages the communication between an application and all ODBC drivers which ar

e used by the application.

Driver

It processes all ODBC calls from applications, and connects to data source, and submit

s the SQL statement to the data source in the application, and returns results to the a

pplication. If necessary, the driver converts the ODBC SQL sent form the application to

the default SQL which is used in the data source.

Data source It includes all information which the driver needs to access the data in the DBMS.

The following operations can be executed by using ODBC applications.

● Connecting to a data source

● Sending SQL statements to the data source

● Processing the results of an SQL statement in the data source

● Handling errors and messages

● Terminating the connection to the data source

Overview of ODBC Components

GOLDILOCKS ODBC Driver Including Driver Manager

The following is a software architecture of when the driver manager is included in the system. In this case,

the application should be linked to the driver manager library.

Overview of GOLDILOCKS ODBC Driver | 2,413

Figure 1 GOLDILOCKS ODBC driver including the driver manager

GOLDILOCKS ODBC Driver Not Including Driver Manager

The following is an architecture of when the application does not include a driver manager and uses GOL

DILOCKS ODBC driver. In this case, the application should be linked to GOLDILOCKS ODBC driver library.

Figure 2 GOLDILOCKS ODBC driver not including the driver manager

Using GOLDILOCKS ODBC Driver

Header File

goldilocks.h file installed on $GOLDILOCKS_HOME/include should be included to execute GOLDILOCKS

ODBC driver. This file defines constant and type of GOLDILOCKS ODBC driver, and provides a function pr

ototype of GOLDILOCKS ODBC driver function.

Library

The application which does not use a driver manager should be linked to a static or shared version of GO

LDILOCKS ODBC driver library.

2,414 | ODBC

UNIX

Table 25-1 GOLDILOCKS UNIX ODBC driver libraries

File name Description

libgoldilocks.a It is a static version of library including DA and CS.

libgoldilocksa.a It is a static version of DA dedicated library.

libgoldilocksas.so It is a shared version of DA dedicated library.

libgoldilocksc.a It is a static version of CS dedicated library.

libgoldilockscs-ul32.so It is a shared version of 64-bit CS dedicated library recognizing SQLLEN to 4 bytes.

libgoldilockscs-ul64.so It is a shared version of 64-bit CS dedicated library recognizing SQLLEN to 8 bytes.

libgoldilockscs.so It is a shared version of 32-bit CS dedicated library.

libgoldilockss.so It is a shared version of library including DA and CS.

Windows

GOLDILOCKS Windows ODBC driver libraries provide CS libraries only.

Table 25-2 GOLDILOCKS Windows ODBC driver libraries

File name Description

goldilockscs-ul64.dll It is a shared version of 64-bit CS dedicated library recognizing SQLLEN to 8 bytes.

goldilockscs.dll It is a shared version of 32-bit CS dedicated library.

goldilockssetup32.dll It is a setup library for 32-bit ODBC driver manager.

goldilockssetup64.dll It is a setup library for 64-bit ODBC driver manager.

Data Source Configuration | 2,415

25.2 Data Source Configuration

DSN Configuration on UNIX

odbcinst.ini File

odbcinst.ini file is a configuration file for installed ODBC driver.

● unixODBC

% odbcinst -j

unixODBC 2.3.2

DRIVERS............: /etc/odbcinst.ini

SYSTEM DATA SOURCES: /etc/odbc.ini

FILE DATA SOURCES..: /etc/ODBCDataSources

USER DATA SOURCES..: /home/goldilocks/.odbc.ini

SQLULEN Size.......: 8

SQLLEN Size........: 8

SQLSETPOSIROW Size.: 8

● iODBC

% iodbc-config --odbcinstini

/etc/odbcinst.ini

ODBC Driver Specification

ODBC driver specification section in odbcinst.ini file specifies the driver property values and list. The regist

ered information section is under the driver name in each driver installed.

[driver_name]

Description = driver_description

Driver = driver_library_path

Setup = setup_library_path

FileUsage = file_usage

The following table describes keywords in the driver specification section.

Keyword Description

Description It is a string which describes the driver.

2,416 | ODBC

Driver It is a driver library path.

Setup It is a setup library path.

FileUsage It is a character which displays how to directly process the file in DSN by the file-based driver.

Keyword Description

The following is an example of information of GOLDILOCKS ODBC driver specifications.

[GOLDILOCKS ODBC Driver]

Description= GOLDILOCKS ODBC Driver

Driver = /home/goldilocks/home/lib/libgoldilockscs-ul64.so

Setup = /home/goldilocks/home/lib/libgoldilockscs-ul64.so

FileUsage = 0

odbc.ini File

odbc.ini file is the configuration file for the DSN connected by the application, and it is divided into a user

DSN and system DSN. Typically, a user DSN file is ~ / .odbc.ini file, and a system DSN file is /etc/odbc.ini.

● unixODBC

% odbcinst -j

unixODBC 2.3.4

DRIVERS............: /etc/odbcinst.ini

SYSTEM DATA SOURCES: /etc/odbc.ini

FILE DATA SOURCES..: /etc/ODBCDataSources

USER DATA SOURCES..: /home/goldilocks/.odbc.ini

SQLULEN Size.......: 8

SQLLEN Size........: 8

SQLSETPOSIROW Size.: 8

● iODBC

% iodbc-config --odbcini

/etc/odbc.ini

Data Source Specification

Data source specification section of the odbc.ini file describes DSN.

[data_source_name]

Driver = driver_name

PROTOCOL = protocol_type

Data Source Configuration | 2,417

CS_MODE = {default | dedicated | shared}

HOST = host_address

PORT = port_no

CHARSET = {SQL_ASCII | UTF8 | UHC | GB18030}

TCP_NODELAY = {0 | 1}

ALTERNATE_SERVERS = (HOST=ADDRESS1:PORT=PORT1,HOST=ADDRESS2:PORT=PORT2)

CONNECTION_RETRY_COUNT = retry_count

CONNECTION_RETRY_DELAY = retry_delay

FAILOVER_TYPE = {CONNECTION | SESSION}

FAILOVER_GRANULARITY = {0 | 1 | 2}

DATE_FORMAT = date_format_string

TIME_FORMAT = time_format_string

TIME_WITH_TIME_ZONE_FORMAT = timetz_format_string

TIMESTAMP_FORMAT = timestamp_format_string

TIMESTAMP_WITH_TIME_ZONE_FORMAT = timestamptz_format_string

CHAR_LENGTH_UNITS = {BYTE | OCTETS | CHAR | CHARACTERS}

ENABLE_SQLDESCRIBEPARAM = {0 | 1}

ENABLE_SQLBINDPARAMETER_CONSISTENCY_CHECK = {0 | 1}

USE_TARGETTYPE = {0 | 1 | 2}

LOCATOR_DSN = locator_dsn_name

LOCATOR_SERVICE = locator_service_name

LOCALITY_AWARE_TRANSACTION = {0 | 1}

LOCALITY_GROUP_POLICY = {0 | 1 | 2}

LOCALITY_GROUP_PATH = group_name1, group_name2, group_name3

LOCALITY_MEMBER_POLICY = {0 | 1 | 2 | 3 | 4}

LOCALITY_MEMBER_PATH = member_name1,member_name2, member_name3

DB_HOME = database_home_path

PACKET_COMPRESSION_THRESHOLD = packet_compression_threshold

[locator_dsn_name]

FILE = location_file_name

HOST = IP address(v4)

PORT = locator_port

CONNECTION_TIMEOUT = second

ALTERNATE_LOCATORS = (HOST=ADDRESS1:PORT=PORT1,HOST=ADDRESS2:PORT=PORT2)

The following table describes keywords in the data source specification section.

Table 25-3 Keywords in the data source specification section

Keyword Description

data_source_name It is the data source specified in the data source section.

Driver It is a driver name installed on odbcinst.ini.

2,418 | ODBC

PROTOCOL It is a connection type, which is DA or TCP.

CS_MODE

It sets whether to connect as dedicated mode or shared mode.

If it is not set, the default mode is determined depending on the configuration (DEFA

ULT_CS_MODE) of the listener.

HOST It is a host IP address.

PORT It is a connection port number.

TCP_NODELAY It is a socket TCP_NODELAY option.

UID It is a user ID.

PWD It is a user password.

CHARSET It is a client character set.

ALTERNATE_SERVERS

It is a server list which attempts to connect when the failover occurs. Each servers is se

parated by a comma (,).

To disable the failover feature, set ALTERNATE_SERVERS as a white space.

CONNECTION_RETRY_CO

UNT

It is the number of times which the driver attempts to connect to the server when the

connection fails.

CONNECTION_RETRY_DEL

AY
It is the server connection retry interval (in seconds) when the connection fails.

FAILOVER_TYPE

● CONNECTION: When the connection fails, it is connected to ALTERNATE_SERVE

RS.

● SESSION: When the connection fails or the connection is disconnected during op

erating the statement, it is connected to ALTERNATE_SERVERS and the stateme

nt is restored. The statement is executed after the failover if the connection is di

sconnected when a transaction is not in progress.

FAILOVER_GRANULARITY

● 0: The failover proceeds even when an error occurs.

● 1: The failover fails when an error except for SQLExecute (), SQLExecDirect ()occ

urs during the failover).

● 2: The failover fails when an error occurs.

DATE_FORMAT It is a DATE type string.

TIME_FORMAT It is a TIME type string.

TIME_WITH_TIME_ZONE_F

ORMAT
It is a TIME WITH TIME ZONE type string.

TIMESTAMP_FORMAT It is a TIMESTAMP type string.

TIMESTAMP_WITH_TIME_

ZONE_FORMAT
It is a TIMESTAMP WITH TIME ZONE type string.

CHAR_LENGTH_UNITS

It is the unit of ColumnSize when ParameterType in SQLBindParameter() is SQL_CHAR,

SQL_VARCHAR.

● BYTE, OCTETS: Byte unit

● CHAR, CHARACTERS: Character unit

ENABLE_SQLDESCRIBEPA

RAM

It determines whether to enable SQLDescribeParam().

● 0: The driver does not support SQLDescribeParam().

● 1: The driver returns SQL_VARCHAR for all parameters.

ENABLE_SQLBINDPARAM It determines whether to check ColumnSize and DecimalDigits in SQLBindParameter().

Keyword Description

Data Source Configuration | 2,419

ETER_CONSISTENCY_CHE

CK

● 0: It does not check ColumnSize and DecimalDigits.

● 1: It checks ColumnSize and DecimalDigits.

USE_TARGETTYPE

It sets the type information which is to be received together when receiving a column

type through communication.

● 0: It receives only the column type.

● 1: It receives the column type and column name.

● 2: It receives the column type and all information about the column.

LOCATOR_DSN It is Data Source Name (DSN) which specifies a location information.

LOCATOR_SERVICE It gets the connection information from a service hint and glocator.

LOCALITY_AWARE_TRAN

SACTION

It determines whether to use GLOBAL CONNECTION.

● 0: It does not use GLOBAL CONNECTION.

● 1: It uses GLOBAL CONNECTION.

LOCALITY_GROUP_POLIC

Y

It determines how to select a group if neither of groups are available, or two or more

groups are available when using GLOBAL CONNECTION.

● 0: It randomly selects the group.

● 1: It sequentially selects groups which exist in LOCALITY_GROUP_PATH setting. I

f neither of groups in LOCALITY_GROUP_PATH are not available, it randomly sel

ects the group.

● 2: It sequentially selects groups. It always selects groups in an order of they are c

onnected to the driver.

LOCALITY_GROUP_PATH

It defines the list of selected groups when the available group is not a single one whe

n using GLOBAL CONNECTION. Each group is distinguished with comma (,).

e.g. G1,G2,G3

LOCALITY_MEMBER_POLI

CY

It determines how to select a member in the selected group when using GLOBAL CO

NNECTION.

● 0: DML : MASTER / SELECT : MASTER

● 1: DML : ANY / SELECT : ANY

● 2: DML : MASTER / SELECT : ANY

● 3: DML : MASTER / SELECT : SLAVE

● 4: It sequentially selects members which exist in LOCALITY_MEMBER_PATH setti

ng. If neither of members in LOCALITY_MEMBER_PATH are not available, it uses

the MASTER in the selected group.

LOCALITY_MEMBER_PAT

H

It defines the list of members to be used in the selected group when using GLOBAL C

ONNECTION. Each member is distinguished with comma (,).

e.g. G1N1,G2N1,G3N1,G1N2,G2N2,G3N2

DB_HOME
It sets the home directory of the database. The default value uses $GOLDILOCKS_HO

ME environment variable.

PACKET_COMPRESSION_T

HRESHOLD

It compresses the communication data when the size of the communication data to b

e sent to the server is bigger than PACKET_COMPRESSION_THRESHOLD. The range o

f the set value is 32 ~ 2113929216.

Keyword Description

2,420 | ODBC

Table 25-4 Location

Keyword Description

FILE Location file name

HOST glocator ip address

PORT glocator port number

CONNECTION_TIMEOUT Connection timeout with glocator (second)

ALTERNATE_LOCATORS
If glocator does not respond, it gets the connection information by using ALTERNATE

_LOCATORS.

Note

● If properties of FILE, HOST, PORT are all set in LOCATOR_DSN, then the FILE property is prior t

o others. For more information, refer to Location File.

● LOCATOR_SERVICE property enables to connect to a server belonging to LOCATOR_SERVICE.

Servers other than the connected server become ALTERNATE_SERVERS.

If FAILOVER_TYPE is not set, then FAILOVER_TYPE is a session.

If FAILOVER_GRANULARITY is not set, then FAILOVER_GRANULARITY is 1.

For more information, refer to glocator and gloctl.

The following is an example of DSN configuration of GOLDILOCKS.

[GOLDILOCKS]

Driver = GOLDILOCKS ODBC Driver

PROTOCOL = TCP

CS_MODE = SHARED

HOST = 192.168.0.10

PORT = 22581

CHARSET = UTF8

TCP_NODELAY = 1

ALTERNATE_SERVERS = (HOST=192.168.0.11:PORT=22581,HOST=192.168.0.12:PORT=22581)

CONNECTION_RETRY_COUNT = 3

CONNECTION_RETRY_DELAY = 1

FAILOVER_TYPE = SESSION

FAILOVER_GRANULARITY = 0

Data Source Configuration | 2,421

DATE_FORMAT = SYYYY-MM-DD

TIME_FORMAT = HH24:MI:SS.FF6

TIME_WITH_TIME_ZONE_FORMAT = HH24:MI:SS.FF6 TZH:TZM

TIMESTAMP_FORMAT = SYYYY-MM-DD HH24:MI:SS.FF6

TIMESTAMP_WITH_TIME_ZONE_FORMAT = SYYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM

CHAR_LENGTH_UNITS = CHARACTERS

ENABLE_SQLDESCRIBEPARAM = 1

ENABLE_SQLBINDPARAMETER_CONSISTENCY_CHECK = 1

USE_TARGETTYPE = 0

PACKET_COMPRESSION_THRESHOLD = 2113929216

LOCALITY_AWARE_TRANSACTION = 0

LOCALITY_GROUP_POLICY = 0

LOCALITY_GROUP_PATH = G1,G2,G3

LOCALITY_MEMBER_POLICY = 0

LOCALITY_MEMBER_PATH = G1N1,G2N1,G3N1,G1N2,G2N2,G3N2

LOCATOR_DSN = LOCATOR

LOCATOR_SERVICE = S1

[LOCATOR]

FILE = /home/test/.location.ini

HOST = 127.0.0.1

PORT = 42581

ALTERNATE_LOCATORS=(HOST=127.0.0.1:PORT=42582,HOST=127.0.0.1:PORT=42583)

DSN Configuration on Windows

ODBC data source manager can add or set up DSN on Windows.

Figure 3 Creating new data source

2,422 | ODBC

Figure 4 Configuring ODBC driver

The following table describes keywords for DSN configuration.

Table 25-5 Keywords for DSN configuration

Keyword Description

DSN It is a data source name.

HOST It is a host IP address.

PORT It is a connection port number.

UID It is a user ID.

CS_MODE

It sets whether to connect as dedicated mode or shared mode.

If it is not set, the default mode is determined depending on the configuration (DEFA

ULT_CS_MODE) of the listener.

ALTERNATE_SERVERS

It is a server list which attempts to connect when the failover occurs. Each servers is se

parated by a comma (,).

Data Source Configuration | 2,423

To disable the failover feature, set ALTERNATE_SERVERS as a white space.

CONNECTION_RETRY_CO

UNT

It is the number of times which the driver attempts to connect to the server when the

connection fails.

CONNECTION_RETRY_DEL

AY
It is the server connection retry interval (in seconds) when the connection fails.

FAILOVER_TYPE

● CONNECTION: When the connection fails, it is connected to ALTERNATE_SERVE

RS.

● SESSION: When the connection fails or the connection is disconnected during op

erating the statement, it is connected to ALTERNATE_SERVERS and the stateme

nt is restored. The statement is executed after the failover if the connection is di

sconnected when a transaction is not in progress.

FAILOVER_GRANULARITY
● Non-atomic: The failover proceeds even when an error occurs.

● Atomic: The failover fails when an error occurs.

DATE_FORMAT It is a DATE type string.

TIME_FORMAT It is a TIME type string.

TIME_WITH_TIME_ZONE_F

ORMAT
It is a TIME WITH TIME ZONE type string.

TIMESTAMP_FORMAT It is a TIMESTAMP type string.

TIMESTAMP_WITH_TIME_

ZONE_FORMAT
It is a TIMESTAMP WITH TIME ZONE type string.

CHAR_LENGTH_UNITS

It is the unit of ColumnSize when ParameterType in SQLBindParameter() is SQL_CHAR,

SQL_VARCHAR.

● BYTE, OCTETS: Byte unit

● CHAR, CHARACTERS: Character unit

Keyword Description

2,424 | ODBC

25.3 GLOBAL CONNECTION

GLOBAL CONNECTION of which an application selects and performs an appropriate node for a query pro

cessing in cluster environment is supported.

Features

Figure 5 GLOBAL CONNECTION

Hash, range, list sharding method use GLOBAL CONNECTION, and the application does not need to be al

tered at that moment.

When GLOBAL CONNECTION is used, an application connects to all nodes in a cluster system. It automati

cally selects and eecutes an appropriate node dependong on the given shard key value when executing S

QL statement.

Also, the application automatically connects to a new node and operate it when the online scale-out is pe

rformed, so a user does not need to care for a new node.

GLOBAL CONNECTION | 2,425

Figure 6 GLOBAL CONNECTION HA (high availability)

If an error occurs on the selected node when performing SQL, then the SQL is performed through anothe

r node in the same group. If errors occur on all nodes in the selected group, then the SQL is performed th

rough another group.

When a node is recovered from an error, the node is automatically connected online. Moreover, a user ca

n make an application connect again by using the following syntax.

ALTER SYSTEM RECONNECT GLOBAL CONNECTION

Settings

LOCALITY_AWARE_TRANSACTION property should be set together with LOCATOR file or LOCATOR serv

er to use GLOBAL CONNECTION.

● .odbc.ini of when using DSN

[GOLDILOCKS]

HOST = 192.168.0.1

PORT = 22581

UID = TEST

PWD = test

2,426 | ODBC

LOCALITY_AWARE_TRANSACTION = 1

LOCATOR_DSN = LOCATOR

[LOCATOR]

FILE = /home/goldilocks/.location.ini

● Using connection string

SQLDriverConnect(dbc,

NULL,

(SQLCHAR*)"HOST=192.168.0.1;PORT=22581;UID=TEST;PWD=test;LOCALITY_AWARE_TRAN

SACTION=1;LOCATOR_HOST=192.168.0.2;LOCATOR_PORT=42581",

SQL_NTS,

NULL,

0,

NULL,

SQL_DRIVER_NOPROMPT);

Processing GLOBAL CONNECTION

Figure 7 Basic steps of applying GLOBAL CONNECTION

GLOBAL CONNECTION | 2,427

1. SQLAllocHandle (DBC)

It allocates a connection handle.

2. SQLConnect

It connects to a server which was given server information from a user, and obtains the information a

bout the cluster system. Then builds the cluster system information through LOCATOR file or LOCAT

OR server, and connects to all nodes of cluster system.

3. SQLAllocHandle(STMT)

It allocates a statement to each of all connected nodes.

4. SQLPrepare

It prepares to execute SQL in all connected nodes.

5. SQLExecute

If the information about the cluster system is not built, an application builds the information about th

e cluster system through LOCATOR file or LOCATOR server, then connects to all nodes in the cluster s

ystem.

When connecting to a new node by adding a node to cluster, all statements of other nodes are equal

ly created in that node, and prepares to execute SQL.

If the information about a sharding key has already built, an application selects an appropriate node and

performs a query by using the sharding key information.

If the information about a sharding key is not built, an application builds the sharding key information of

the SQL from an arbitrary server, then selects a node and performs a query.

If an error occurs on the selected node, an appropriate node is selected again, then performs a query.

If the information about a sharding key is altered after SQLExecute, then it deletes the built information

about a sharding key

If the information about the cluster system is altered such as adding or deleting a cluster node after SQLE

xecute, then it deletes the built cluster system information.

6. SQLFetch

It brings data from the node on which SQL was executed.

7. SQLCloseCursor

It closes a cursor from the node on which SQL was executed.

8. SQLFreeHandle(STMT)

It releases a statement from all connected nodes.

9. SQLDisconnect

It releases connections with all nodes.

2,428 | ODBC

10. SQLFreeHandle(DBC)

It releases a connection handle.

Constraints

When using global connection, a session dependent object, a session dependent clause or a session depe

ndent function can not be used in SQL statement.

Moreover, if SQLs accessing to multiple cluster nodes exist in a single transaction, SQLs in the transaction

uses in common the cluster node which is selected by a sharding key of the first SQL.

SQLExecDirect is performed in an arbitrary node.

Session Dependent Object

If a session dependent object is used in an SQL statement, then global connection is not supported.

● Global temporary table

Session Dependent Clause

If a session dependent clause is used in an SQL statement, then global connection is not supported.

● All statement related to @domain

Session Dependent Function and Pseudo Column

If the session dependent information is used in an SQL statement, then global connection is not supporte

d.

● CURRVAL(sequence), sequence.CURRVAL

● UUID()

● VERSION()

● SESSION_ID()

● SESSION_SERIAL()

● USER_ID()

● LAST_IDENTITY_VALUE()

● STATEMENT_VIEW_SCN()

● STATEMENT_VIEW_SCN_GCN()

● STATEMENT_VIEW_SCN_DCN()

GLOBAL CONNECTION | 2,429

● STATEMENT_VIEW_SCN_LCN()

● LOCAL_GROUP_ID()

● LOCAL_MEMBER_ID()

● LOCAL_GROUP_NAME()

● LOCAL_MEMBER_NAME()

2,430 | ODBC

25.4 Catalog Function

All databases have schemas of how to store the data in the database. For example, a simple sales order d

atabase will have the schemas shown in the following figure, and the ID columns are used to connect the

tables.

Figure 8 Schema of sales orders

The schema is stored in the set of system tables which is called as a database catalog along with other inf

ormation such as privileges. This is also known as a data dictionary.

Applications can find this schema by calling the catalog functions. Catalog functions return the informati

on to the result set, and typically they are implemented by SELECT statements for the tables in the catalo

g.

Using Catalog Data

Applications use catalog data in various ways. The followings are some common usages.

Catalog Function | 2,431

Configuring SQL statements at the time of execution

The vertical applications such as the order input application include the hard-coded SQL statements. The t

ables and columns used by the application were previously fixed, and the application access these tables.

For example, the ordering application typically has one parameterized statement to add a new order to th

e system.

A general application such as a spreadsheet program using ODBC for collecting the data sometimes confi

gures the SQL statement based on the input from a user at the time of execution. This application may re

quest a user for the format to use tables and columns. However, if the list of tables or columns selected b

y a user is shown to the application, it will be easier to the user. The application will call catalog functions

such as SQLTables and SQLColumns to configure these lists.

Configuring SQL statements during the development

The application development environments allow the developers to create database queries during devel

oping the program. And then the queries are hard-coded and embedded into the application.

These environments can also create a list of what were selected by the developer by using the SQLTables

and SQLColumns. The environments find out and display the relationships among the tables automaticall

y selected by using SQLPrimaryKeys and SQLForeignKeys. Then they find out and emphasize the index fiel

ds by using SQLStatistics, so the developers can create queries effectively.

Configuring a Cursor

The application, driver, middleware which provides a scroll cursor, find out column(s) which is the only co

lumn of identifying a row by using SQLSpecialColumns. The program can configure a keyset including the

values of these columns for the collected rows. The application will use these values to collect the latest d

ata for the rows by scrolling backwards.

Catalog Function on ODBC

ODBC includes the following catalog functions.

Function Description

SQLTables It returns a list of catalogs, schemas, tables or table types in the data source.

SQLColumns It returns a list of columns in one or more tables.

SQLStatistics
It returns a list of statistics for a single table. It also returns a list of indexes linked to the

table.

SQLSpecialColumns
It returns a list of columns which is the only column of identifying a row in a table. Also,

2,432 | ODBC

it returns a list of columns in the table, and they are automatically updated.

SQLPrimaryKeys It returns a list of columns which configure the primary key of a table.

SQLForeignKeys
It returns a list of foreign keys in a table or it returns a list of foreign keys in another tabl

e referring that table.

SQLTablePrivileges It returns a list of privileges associated with one or more tables.

SQLColumnPrivileges It returns a list of privileges associated with one or more columns in a table.

SQLProcedures It is not supported by the driver.

SQLProcedureColumns It is not supported by the driver.

SQLGetTypeInfo
It returns a list of SQL data types supported by the data source. These data types are gen

erally used in CREATE TABLE, ALTER TABLE statements.

Function Description

Data Returning of Catalog Function

Each catalog function returns the data as a result set. The result set is not different from any other result s

et. It is usually hard-coded into the driver, or it is created by the predefined statement such as the parame

terized SELECT statement stored in the procedure of data source.

The result set for each catalog function is described in For More Information paragraph of each function i

n this user manual. The result set can include the columns specified in the driver after the column selecte

d last besides the listed columns. These columns are described in a user manual for the driver.

The applications bind the columns specified in the driver based on the end of result set. They calculate th

e number of columns specified in the driver as the number of last columns which are smaller than the nu

mber of columns after the required column. This saves the trouble of changing the application when a ne

w column is added in future version or ODBC driver. To operate this schema, drives should add the colum

ns specified in the new driver before the columns specified in the old driver to prevent changing the row

number based on the end of result set.

Even when they include special characters, they do not quote the identifiers returned in the result set. For

example, if the Accounts Payable table's identifier quote character which is specified in the driver and ret

urned by SQL GetInfo is a double quotes ("), and the Accounts Payable table has a Customer Name colu

mn, then TABLE_NAME column value in the rows which is returned by SQLColumns is Accounts Payable,

but it is not "Accounts Payable", and COLUMN_NAME column value is Customer Name, but it is not "Cus

tomer Name".

The application collects the names of customers from the Accounts Payable table as follows.

SELECT "Customer Name" FROM "Accounts Payable"

Catalog functions are based on SQL-like model in connection based on the user name and password, and

their data is returned only to the users with the proper privilege. The file password protection which is ina

Catalog Function | 2,433

ppropriate to this model is defined by the drivers.

Most result set returned by the catalog functions can not be updated, and the application should not exp

ect to change the database schema by updating the data in the result set.

Arguments of Catalog Function

Pattern Value Argument

Some arguments in catalog function accept the search pattern, like as TableName argument in SQLTables.

The arguments accept the search pattern if SQL_ATTR_METADATA_ID attribute is set to SQL_FALSE. The

arguments do not accept the search pattern if SQL_ATTR_METADATA_ID attribute is set to SQL_TRUE.

Search pattern letters have the following features.

● An underscore(_) represents any single character.

● Percent sign (%) represents zero or more characters.

● An escape character is specified in the driver and it is used to include the percent sign, underscore, es

cape character as literals. If an escape character is prior to a non-special character, it does not have a

ny special meaning. But if an escape character is prior to a special character, it is a special character. F

or example, "\a" is treated as two characters consisting of "\" and "a", but "\%" refers to "%".

An escape character is returned by using SQL_SEARCH_PATTERN_ESCAPE option in SQLGetInfo. To inclu

de that character as a literal in an argument which accepts search patterns, it should be prior to any unde

rscore, percent sign, or escape character.

The following table describes how to use search patterns.

Search pattern Description

%A% It is all identifiers which contain A.

ABC_ It is all four letter characters which start with ABC.

ABC_ It assumes the escape character a backslash(\), and the identifier is ABC_.

\\%
It assumes the escape character a backslash(\), and the identifier which start with a backslash(\)

.

Caution

Be cautious when using a escape character in an argument which accepts a search pattern. This is

particularly TRUE for the underscore(_) which is generally used as the identifier.

It is a common mistake in the application that the value returned by one catalog function is passe

d to the search pattern argument of another catalog function.

For example, if the application gets MY_TABLE table from the result set of SQLTables and passes i

2,434 | ODBC

t to SQLColumns to retrieve the column list of MY_TABLE, then, the application will get the colum

ns of all tables such as MY_TABLE, MY1TABLE, MY2TABLE instead of getting the columns of MY_

TABLE because they match the search pattern MY_TABLE.

Note

ODBC 2.x driver does not support the search pattern for CatalogName argument of SQL tables.

ODBC 3.x driver supports the search pattern within the argument if the environment attribute SQ

L_ATTR_ODBC_VERSION is set to SQL_OV_ODBC3. The argument does not accept the search patt

ern if this property is set to SQL_OV_ODBC2.

Passing a NULL pointer to the search pattern argument does not force the argument to search. NULL poi

nter and the search patterns % (any character) are equivalent. However, a zero-length search pattern is

matched with an empty string ("").

ODBC API References | 2,435

25.5 ODBC API References

SQLAllocConnect

Conformance

Introduced version: ODBC 1.0

Overview

SQLAllocConnect function is replaced by SQLAllocHandle function in ODBC 3.x.

For more information, refer to SQLAllocHandle.

Syntax

SQLRETURN SQLAllocConnect(

SQLHENV EnvironmentHandle,

SQLHDBC * ConnectionHandlePtr);

Arguments

EnvironmentHandle

[Input] It is the environment handle.

ConnectionHandlePtr

[Output] It is the pointer of the connection handle to be newly allocated.

2,436 | ODBC

SQLAllocEnv

Conformance

Introduced version: ODBC 1.0

Overview

SQLAllocEnv function is replaced by SQLAllocHandle function in ODBC 3.x.

For more information, refer to SQLAllocHandle.

Syntax

SQLRETURN SQLAllocEnv(

SQLHENV * EnvironmentHandlePtr);

Arguments

EnvironmentHandlePtr

[Output] It is the pointer of the environment handle to be newly allocated.

ODBC API References | 2,437

SQLAllocHandle

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLAllocHandle allocates the environment handle, the connection handle, or the statement handle.

Syntax

SQLRETURN SQLAllocHandle(

SQLSMALLINT HandleType,

SQLHANDLE InputHandle,

SQLHANDLE * OutputHandlePtr);

Arguments

HandleType

[Input] It is the handle type allocated by SQLAllocHandle and it should be one of SQL_HANDLE_DB

C, SQL_HANDLE_ENV, SQL_HANDLE_STMT.

InputHandle

[Input] If HandleType is SQL_HANDLE_ENV, it is SQL_NULL_HANDLE.

If HandleType is SQL_HANDLE_DBC, it should be an environment handle.

If it is SQL_HANDLE_STMT, it should be a connection handle.

OutputHandlePtr

[Output] It is the newly allocated handle pointer.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, SQL_ERROR

2,438 | ODBC

Diagnosis

SQLSTATE Error Description

08003
Connection not o

pen

It is not connected and HandleType is one of SQL_HANDLE_STMT and SQL_

HANDLE_DESC.

HY000 General error It is an error which does not have any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY009
Invalid use of null

pointer
OutputHandlePtr argument is a null pointer.

HY010
Function sequenc

e error

HandleType argument is SQL_HANDLE_DBC, and SQLSetEnvAttr is not calle

d for setting SQL_ODBC_VERSION environment attribute.

HY014

Limit on the num

ber of handles ex

ceeded

It limits the number of allocated handles.

HY092
Invalid attribute/

option identifier

HandleType argument is not one of SQL_HANDLE_ENV, SQL_HANDLE_DBC,

SQL_HANDLE_STMT, SQL_HANDLE_DESC.

IM001

Driver does not s

upport this functi

on

HandleType argument is SQL_HANDLE_DESC.

Description

SQLAllocHandle is used to allocate the handle for environment, connection, statement, descriptor. When

using SQLAllocHandle with *OutputHandlePtr, the driver will overwrite the information on the correspoid

ning handle. The driver manager can not verify whether the handle in *OutputHandlePtr is already used,

and it can not know the previously overwritten information.

Allocating Environment Handle

The environment handle provides the global information such as whether the connection handle is valid

or active.

For requesting the environment handle, the application calls SQLAllocHandle whose HandleType is SQL_H

ANDLE_ENV and whose InputHandle is SQL_NULL_HANDLE. The driver allocates memory for the environ

ment information, and passes an allocated handle to *OutputHandle argument. The application passes t

he value of *OutputHandle to the call requiring the environment handle argument.

After allocating the environment handle, the application should set the attribute of SQL_ATTR_ODBC_VE

RSIONby calling SQLSetEnvAttr. If the attribute is not set when calling SQLAllocHandle for allocating the c

onnection handle, SQLSTATE HY010 (Function sequence error) is returned.

ODBC API References | 2,439

Allocating Connection Handle

The connection handle provides the information such as whether the statement is valid, the descriptor ha

ndle is connected, or the transaction currently is opened.

For requesting the connection handle, the application calls SQLAllocHandle whose HandleType is SQL_HA

NDLE_DBC. InputHandler argument is set to the environment handle returned by calling SQLAllocHandle.

The driver allocates memory for the connection information, and passes an allocated handle to *OutputH

andle argument. The application passes the value of *OutputHandle to the call requiring a connection ha

ndle argument.

If the environment attribute of SQL_ATTR_ODBC_VERSION is not set before the calling SQLAllocHandle

which allocates a connection handle, SQLSTATE HY010(Function sequence error) is returned.

Allocating Statement Handle

The statement handle provides the information such as the error message, the cursor name and the SQL s

tatement processing status.

For requesting the statement handle, the application connects to the data source and then calls SQLAlloc

Handle before sending the SQL statement. In this call, HandleType should be set to SQL_HANDLE_STMT a

nd InputHandler should be set to the connection handle returned by calling SQLAllocHandle. The driver al

locates memory for the statement information, and passes the allocated handle to *OutputHandle argum

ent. The application passes the value of *OutputHandle to the call requiring a statement handle argumen

t.

If the statement handle is allocated, the driver automatically allocates four descriptor sets, and these desc

riptor handles are allocated to the statement attribute of SQL_ATTR_APP_ROW_DESC, SQL_ATTR_APP_P

ARAM_DESC, SQL_ATTR_IMP_ROW_DESC and SQL_ATTR_IMP_PARAM_DESC. This is called as implicit d

escriptor allocation.

2,440 | ODBC

SQLAllocStmt

Conformance

Introduced version: ODBC 1.0

Overview

SQLAllocStmt function is replaced by SQLAllocHandle function in ODBC 3.x.

For more information, refer to SQLAllocHandle.

Syntax

SQLRETURN SQLAllocStmt(

SQLHDBC ConnectionHandle,

SQLHSTMT * StatementHandlePtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

StatementHandlePtr

[Output] It is the pointer of the statement handle to be newly allocated.

ODBC API References | 2,441

SQLBindCol

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLBindCol binds the application data buffer to the columns in the result set.

Syntax

SQLRETURN SQLBindCol(

SQLHSTMT StatementHandle,

SQLUSMALLINT ColumnNumber,

SQLSMALLINT TargetType,

SQLPOINTER TargetValuePtr,

SQLLEN BufferLength,

SQLLEN * StrLen_or_Ind);

Arguments

StatementHandle

[Input] It is the statement handle.

ColumnNumber

[Input] It is the column number in the result set to be bound. The number is in ascending order star

ting from 1.

TargetType

[Input] It is the identifier of C data type of *TargetValuePtr buffer. When retrieving data using SQL

Fetch, SQLFetchScroll, SQLSetPos, the driver converts the data into this type.

If TargetType is the interval data type, the default value is the interval leading precision (2), interval

seconds precision (6), and it is set in each field of SQL_DESC_DATETIME_INTERVAL_PRECISION an

d SQL_DESC_PRECISION of ARD. If TargetType argument is SQL_C_NUMERIC, the default value is

precision (38), scale (0), and it is set in each field of SQL_DESC_PRECISION and SQL_DESC_SCALE

of ARD. If the default precision and scale are not appropriate, the application must explicitly set th

e descriptor field by calling SQLSetDescField or SQLSetDescRec.

2,442 | ODBC

TargetValuePtr

[Delayed Input/Output] It is the data buffer pointer to bind to the column. SQLFetch and SQLFetch

Scroll return data to this buffer.

If TargetValuePtr is the null pointer, the driver releases the data buffer binding for the column. The

application may release the binding of all the columns by calling SQLFreeStmt as SQL_BIND option.

The application can release the data buffer binding for the column by setting TargetValuePtr argu

ment as a null pointer and calling SQLBindCol. But if StrLen_or_IndPtr is valid, the length/indicator

buffer for the column is still bound.

BufferLength

[Input] It is the length of *TargetValuePtr buffer in bytes.

The driver uses BufferLength in order to avoid writing beyond the end of *TargetValuePtr buffer w

hen returning the variable-length data such as text or binary data. It should be noted that the drive

r take into account the null terminator when returning the character data in *TargetValuePtr. So, *

TargetValuePtr should include the space for a null terminator, otherwise the drive may drop the da

ta. The driver assumes that the buffer is large enough to store data and it ignores BufferLength wh

en returning a fixed-length data structure such as an integer or date. It is important that the applic

ation allocates the large buffer for the fixed-length data, otherwise the driver can write beyond the

end of the buffer.

StrLen_or_IndPtr

[Delayed Input/Output] It is the pointer to the length/indicator buffer to be bound to the column.

SQLFetch and SQLFetchScroll return the value to this buffer.

SQLFetch and SQLFetchScroll return the length of data for the length/indicator buffer, SQL_NO_TO

TAL and SQL_NULL_DATA. If there are two separate buffers for the length and indicator, the lengt

h buffer may return all values, and the indicator buffer may only return only SQL_NULL_DATA. If St

rLen_or_IndPtr is the null pointer, the value of length/indicator is not used and an error occurs whe

n getting the null data.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, SQL_ERROR

Diagnosis

SQLSTATE Error Description

07006
Restricted data type attribute vi

olation

ColumnNumber argumnet is 0, and TargetType argument is neither S

QL_C_BOOKMARK nor is SQL_C_VARBOOKMARK.

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

HY003 Invalid application buffer type The value of TargetType argument is the invalid data type.

ODBC API References | 2,443

HY010 Function sequence error

After calling SQLExecute and SQLExecDirect, then SQL_NEED_DATA

is returned, and the function is called before sending all data-at-exec

ution variables.

HY090 Invalid string or buffer length The value of BufferLength argument is smaller than 0.

HYC00
Optional feature not implemen

ted

The driver does not support the SQL data type of the column and the

value of TargetType argument and the conversion.

The value of ColumnNumber argument is 0, and the driver does not s

upport bookmarks.

SQLSTATE Error Description

Description

SQLBindCol is used to bind columns in the result set to the data buffer and the length/indicator buffers in

the application. The application calls SQLFetch and SQLFetchScroll to retrieve the data, and the driver ret

urns the bound column data to the specified buffer.

The application does not bind the column, and the data is retrieved by calling SQLGetData.

Binding Column

The application calls SQLBindCol to bind the column, and passes the column number, the type, the addre

ss, the data buffer length and the address of length/indicator buffer.

Though the application binds the buffer by calling SQLBindCol, but the driver accesses them when calling

SQLFetch and SQLFetchScroll, so these buffers are delayed when it is used. Therefore, the application sho

uld make the pointer set in SQLBindCol to be valid until the data is returned. If the application calls after

making the pointer invalid, like when releasing the buffer, the result is not correct.

The binding remains until when it is replaced by a new binding, the column binding is released, or the sta

tement is released.

Releasing Bound Column

To release only one bound column, set the column number to be released as ColumnNumber and call SQ

LBindCol by setting TargetValue to the null pointer in the application. If ColumnNumber is the column nu

mber whose binding is released, SQLBindCol continues returning SQL_SUCCESS.

To release all bound columns, call SQLFreeStmt by setting option to SQL_UNBIND in the application. Or, s

et SQL_DESC_COUNT field of ARD to 0 to release all bound columns.

2,444 | ODBC

Rebinding Column

The application can perform one of two operations to change the binding.

● A new binding is specified for an existing bound column by calling SQLBindCol.

● The offset is added to the specified buffer address by calling SQLBindCol. For more information, refer

to Binding Offsets.

Binding Offsets

Binding offset is the value added to the address before the data and length/indicator buffers (specified in

TargetValuePtr and StrLen_or_IndPtr) are dereferenced.

Using binding offset generally has the same effect as rebinding the column by calling SQLBindCol. Howev

er, the new address of the data and length/indicator buffer are specified when newly calling SQLBindCol,

but binding offset does not change the address, instead it adds only the offsets to the address. The applic

ation can specify a new offset anytime, and the offset is always added to the originally bound address. Es

pecially, if the offset is set to 0 or the statement attribute is set to NULL pointer, the driver uses the origin

ally bound address.

The sum of the originally bound address and the offset should be a valid address, but the offset address t

o be added does not have to be valid.

Binding Array

If the row set size (the value of SQL_ATTR_ROW_ARRAY_SIZE statement attribute) is bigger than 1, the a

pplication binds a buffer array instead of a single buffer.

The application can bind an array in two ways as follows.

● Bind an array to each column. Each data structure (array) contains data for a single column, so it is ca

lled as Column-wise Binding.

● Define as structure containing the entire row data and bind the array of these structures. Each data st

ructure contains data for a single row. so it is called as Row-wise Binding.

Each buffer array should have at least as many elements as the row set size.

Column-wise Binding

The application binds the separate data and length/indicator array to each column in column-wise bindin

g.

The application should set SQL_ATTR_ROW_BIND_TYPE statement attribute to SQL_BIND_BY_COLUMN

(default value) to use the column-wise binding. Then, the application performs the following processes fo

r the columns to be bound.

ODBC API References | 2,445

1. It allocates the data buffer array.

2. It allocates the array of length/indicator buffer.

Note

If the application directly records to the descriptors when using the column-wise binding, the sepa

rate arrays can be used for length and indicator data.

3. It calls SQLBindCol together with the following arguments.

● TargetType is the type of each element of the data buffer array.

● TargetValuePtr is the address of the data buffer array.

● BufferLength is the size of each element of the data buffer array. BufferLength is ignored when the d

ata is fixed length data.

● StrLen_or_IndPtr is the address of the length/indicator array.

Row-wise Binding

The application defines a structure which contains the data and length/indicator buffer of each column t

o be bound in row-wise binding.

The application performs the following processes to use row-wise binding.

1. It defines a structure which contains a row(including both of data and the length/indicator buffer) a

nd allocates an array of the structures.

Note

If the application directly records to the descriptors when using the row-wise binding, the separat

e fields can be used for length and indicator data.

2. SQL_ATTR_ROW_BIND_TYPE statement attribute sets the size of structure including a data row or as

the buffer instance size for the result columns to be bound. The length should include the space and

structure of all bound columns and the padding of the buffer. It should guarantee to point to the sta

rting position in the same column of the next line when the address of the bound column is increase

d by the specified length. ANSI C guarantees it by using the sizeof operator.

3. It calls SQLBindCol together with the following arguments for each column to be bound.

● TargetType is the type of the data buffer member to be bound to the column.

2,446 | ODBC

● TargetValuePtr is the address of the data buffer member in the first array element.

● BufferLength is the size of the data buffer member.

● StrLen_or_IndPtr the address of the length/indicator member to be bound.

Buffer Address

The buffer address is an actual address of the data or the length/indicator buffer. The driver calculates th

e buffer address before writing to the buffer (such as the data collect). It is calculated by the following for

mula, which uses the address, binding offset, row number specified in TargetValuePtr and StrLen_or_Ind

Ptr.

Bound Address + Binding Offset + ((Row Number -1) x Element Size)

The following table describes the definitions the formula's variables.

Table 25-6 Formula's variable

Variable Description

Bound address

The address of data buffer is specified in TargetValuePtr argument of SQLBindCol.

The address of length/indicator buffer is specified in StrLen_of_IndPtr argument of SQ

LBindCol.

If the binding address is 0, the data value is not returned, even though the calculated

address is not 0.

Binding offset

If row-wise binding is used, this value is stored in the address specified with the SQL_

ATTR_ROW_BIND_OFFSET_PTR statement attribute.

If column-wise binding is used or the SQL_ATTR_ROW_BIND_OFFSET_PTR statement

attribute is a NULL pointer, then the binding offset is 0.

Row number
It is 1-based number of the row in the row set.

When fetching a single row, generally the row number is 1.

Element size

It is the element size of binding array.

If column-wise binding is used, it is sizeof (SQLLEN) for the length/indicator buffer. Th

e element size of the data buffer of variable length data type is the value of BufferLen

gth argument of SQLBindCol, and the element size of the data buffer of fixed length

data type is the size of the data type.

If row-wise binding is used, the element size of both the data and the length/indicato

r buffer are the value of the SQL_ATTR_ROW_BIND_TYPE statement.

Descriptors and SQLBindCol

This chapter describes how SQLBindCol interacts with descriptors.

ODBC API References | 2,447

Caution

Calling SQLBindCol for a single statement may affect other statements. It occurs when ARD relate

d to the statement is explicitly allocated and it is related to other statements. The modifications fo

r the descriptor affects all statements related the descriptor because SQLBindCol modifies the desc

riptor. If it is not the required behavior, the application should release the relationship between th

e descriptor and other statements before calling SQLBindCol.

Argument Mapping

Notionally, SQLBindCol performs the following processes in order.

1. It calls SQLGetStmtAttr to obtain ARD handle.

2. It calls SQLGetDescField to obtain the descriptor of SQL_DESC_COUNT field, and if the value in the C

olumnNumber argument exceeds the value of SQL_DESC_COUNT, it calls SQLSetDescField to increas

e the value of SQL_DESC_COUNT to ColumnNumber.

3. It calls SQLSetDescField multiple times to assign values to the following fields of ARD.

● It sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of TargetType.

○ Except when TargetType is one of the concise identifiers of a datetime or interval subtype, it resp

ectively sets SQL_DESC_TYPE to SQL_DATETIME or SQL_INTERVAL. It sets SQL_DESC_CONCISE_

TYPE to the concise identifier; and sets SQL_DESC_DATETIME_INTERVAL_CODE to the correspon

ding datetime or interval subcode.

● It appropriately sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION, SQL_DESC_SCALE,

and SQL_DESC_DATETIME_INTERVAL_PRECISION, for TargetType.

● It sets the SQL_DESC_OCTET_LENGTH field to the value of BufferLength.

● It sets the SQL_DESC_DATA_PTR field to the value of TargetValue.

● It sets the SQL_DESC_INDICATOR_PTR field to the value of StrLen_or_Ind.

● It sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of StrLen_or_Ind.

The variable referenced by StrLen_or_Ind argument is used for both indicator and length information. If t

he value of column when fetching is null, it stores SQL_NULL_DATA in this variable. Otherwise, it stores t

he data length in this variable.

Entering a null pointer, and the value of column when fetching is null, then the fetch fails because it can

not return SQL_NULL_DATA.

If SQLBindCol fails, the contents of the descriptor fields which will be set in ARD are not defined, and the

value of SQL_DESC_COUNT field of ARD is not updated.

2,448 | ODBC

Implicit Initialization of COUNT Field

SQLBindCol sets SQL_DESC_COUNT to the value of the ColumnNumber only when ColumnNumber incre

ase the value of SQL_DESC_COUNT. If the value in the TargetValuePtr argument is a null pointer and the

value in the ColumnNumber argument is equal to SQL_DESC_COUNT (when releasing the highest bound

column), then SQL_DESC_COUNT is set to the number of the highest remaining bound column.

Caution for SQL_DEFAULT

The application should determine the correct length and starting point of the data in the application buff

er to successfully retrieve column data. When the application explicitly specifies an TargetType, applicatio

n errors are easily detected.

However, when the application specifies a TargetType of SQL_DEFAULT, SQLBindCol can be applied to a

column of a different data type from the one data type intended by the application, either from changes

to the metadata or by applying the code to a different column. In this case, the application may not alway

s determine the start or length of the fetched column data. This may lead to unreported data errors or m

emory violations.

ODBC API References | 2,449

SQLBindParameter

Conformance

Introduced version: ODBC 2.0

Standards compliance: ODBC

Overview

SQLBindParameter binds the buffer to the parameter marker of SQL statement.

Syntax

SQLRETURN SQLBindParameter(

SQLHSTMT StatementHandle,

SQLUSMALLINT ParameterNumber,

SQLSMALLINT InputOutputType,

SQLSMALLINT ValueType,

SQLSMALLINT ParameterType,

SQLULEN ColumnSize,

SQLSMALLINT DecimalDigits,

SQLPOINTER ParameterValuePtr,

SQLLEN BufferLength,

SQLLEN * StrLen_or_IndPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

ParameterNumber

[Input] It is the parameter number which is increased sequentially from 1.

InputOutputType

[Input] It is the parameter type.

ValueType

[Input] It is the C data type of the parameter.

2,450 | ODBC

ParameterType

[Input] It is the SQL data type of the parameter.

ColumnSize

[Input] It is the size of column or expression of the parameter marker.

DecimalDigits

[Input] It is the number of decimal point of column or expression of the parameter marker.

ParameterValuePtr

[Delayed Input] It is the data buffer pointer of the parameter.

BufferLength

[Input/Output] It is the byte length of ParameterValuePtr buffer.

StrLen_or_IndPtr

[Delayed Input] It is the pointer to the length/indicator of the parameter.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

Table 25-7 SQLSTATE values

SQLSTATE Error Description

07006
Restricted data type att

ribute violation

ValueType argument data type can not be converted into ParameterType

argument data type.

07009 Invalid descriptor index The value of ParameterNumber argument is smaller than 1.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation erro

r
It is a memory allocation error.

HY003
Invalid application buff

er type
The value of ValueType argument is not a valid C data type.

HY004 Invalid SQL data type The value of ParameterType argument is not a valid SQL data type.

HY009 Invalid argument value

ParameterValuePtr argument and StrLen_or_IndPtr argument are the NUL

L pointer, and InputOutputType argument is not SQL_PARAM_OUTPUT.

InputOutputType argument is SQL_PARAM_OUTPUT, and ParameterValu

ePtr argument is the NULL pointer, and C type is a character or binary, an

d BufferLength is greater than 0.

HY010
Function sequence erro

r

SQL_NEED_DATA is returned after calling SQLExecute, SQLExecDirect, an

d this function is called before sending all data-at-execution variables.

HY021
Inconsistent descriptor i

Descriptor information is inconsistent when the integrity is checked.

ODBC API References | 2,451

nformation

HY090
Invalid string or buffer l

ength
The value of BufferLength is smaller than 0.

HY104
Invalid precision or scal

e value

The value specified in ColumnSize and DecimalDigits is beyond the SQL da

ta support range of ParameterType argument.

HY105 Invalid parameter type The value of InputOutType argument is not valid.

HYC00
Optional feature not im

plemented

The driver does not support the conversion of values of ValueType argum

entand ParameterType argument.

The value of ParameterType argument is valid but the driver does not sup

port.

SQLSTATE Error Description

Description

The application calls SQLBindParameter to bind each parameter marker in an SQL statement. Bindings re

main valid until the application calls SQLBindParameter again, calls SQLFreeStmt with the SQL_RESET_PA

RAMS option, or calls SQLSetDescField to set the SQL_DESC_COUNT header field of the APD to 0.

ParameterNumber Argument

If ParameterNumber is bigger than the value of SQL_DESC_COUNT when calling SQLBindParameter, SQL

SetDescField is called to increase the value of SQL_DESC_COUNT to ParameterNumber.

InputOutputType Argument

The InputOutputType argument specifies the type of the parameter. This argument sets the SQL_DESC_P

ARAMETER_TYPE field of the IPD.

InputOutputType argument is one of the followings.

● SQL_PARAM_INPUT: The parameter marks a parameter in an SQL statement, not in a procedure nor i

n SELECT INTO statement. For example, the parameters in INSERT INTO Employee VALUES (?, ?, ?) ar

e input parameters.

○ When the statement is executed, the driver sends data for the parameter, and the *ParameterVal

uePtr buffer should contain a valid input value, or the *StrLen_or_IndPtr buffer should contain S

QL_NULL_DATA, SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC macro.

● SQL_PARAM_INPUT_OUTPUT: The parameter marks an input/output parameter in a procedure.

○ When the statement is executed, the driver sends data for the parameter and the *ParameterVal

uePtr buffer should contain a valid input value, or the *StrLen_or_IndPtr buffer should contain S

QL_NULL_DATA, SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC macro.

○ After the statement is executed, the driver returns data to the parameter of the application. If the

data source does not return a value to an input/output parameter, the driver sets SQL_NULL_DAT

A in *StrLen_or_IndPtr buffer.

2,452 | ODBC

● SQL_PARAM_OUTPUT: The parameter marks the return value of a procedure, or an output paramete

r in a procedure or SELECT INTO statement. For example, the parameter in SELECT ID INTO ? FROM E

mployee WHERE NAME = 'Paul' is an output parameter which returns the ID.

○ After the statement is executed, the driver returns data to the parameter, if the ParameterValueP

tr and StrLen_or_IndPtr arguments of an application are not null pointers. Otherwise, the driver d

iscards the output value.

○ If the data source can not return a value to an output parameter, the driver sets SQL_NULL_DAT

A in *StrLen_or_IndPtr buffer.

ValueType Argument

ValueType argument specifies C data type of the parameter. It sets the values of SQL_DESC_TYPE, SQL_D

ESC_CONCISE_TYPE, SQL_DESC_DATETIME_INTERVAL_CODE fields of APD.

When the ValueType argument is an interval data type,

● SQL_DESC_TYPE field of APD ParameterNumber record is set to SQL INTERVAL.

● SQL_DESC_CONCISE_TYPE field is set to concise interval data type.

● SQL_DESC_DATETIME_INTERVAL_CODE field is set to subcode of a specific interval data.

● The default value of interval leading precision is (2), and the default value of interval seconds precisio

n is (6), and they are respectively set in SQL_DESC_DATETIME_INTERVAL_PRECISION and SQL_DESC

_PRECISION fields of APD.

● If the default precision or scale is not appropriate, the application should explicitly set the descriptor fi

eld by calling SQLSetDescField or SQLSetDescRec.

When the ValueType argument is a datetime data type,

● SQL_DESC_TYPE field of ParameterNumber record in APD is set to SQL_DATETIME.

● SQL_DESC_CONCISE_TYPE field is set to the concise date C data type.

● SQL_DESC_DATETIME_INTERVAL_CODE field is set to the sub code of the specific datetime data.

When the ValueType argument is an SQL_C_NUMERIC data type,

● The default precision is (38), the default scale is (0), and they are respectively set in SQL_DESC_PRECI

SION, SQL_DESC_SCALE fields of APD.

● If the default precision or scale is not appropriate, the application should explicitly set the descriptor fi

eld by calling SQLSetDescField or SQLSetDescRec.

ParameterType Argument

ParameterType specifies the SQL data type of the parameter. It sets the values of SQL_DESC_TYPE, SQL_

DESC_CONCISE_TYPE, SQL_DESC_DATETIME_INTERVAL_CODE fields of IPD.

When the ParameterType argument is a datetime data type,

ODBC API References | 2,453

● SQL_DESC_TYPE field of IPD is set to SQL_DATETIME.

● SQL_DESC_CONCISE_TYPE field is set to the concise datetime SQL data type.

● SQL_DESC_DATETIME_INTERVAL_CODE field is set to the sub code of the specific datetime data.

When the ParameterType argument is a interval data type,

● SQL_DESC_TYPE field of IPD is set to SQL_INTERVAL.

● SQL_DESC_CONCISE_TYPE field is set to the concise SQL interval data type.

● SQL_DESC_DATETIME_INTERVAL_CODE field is set to the sub code of the specific interval data.

● The interval leading precision is set in SQL_DESC_DATETIME_INTERVAL_PRECISION field of IPD, and t

he interval second precision is set in SQL_DESC_PRECISION field of IPD.

● If the defaults of SQL_DESC_DATETIME_INTERVAL_PRECISION and SQL_DESC_PRECISION are not ap

propriate, the application sets it by calling SQLSetDescField.

When the ParameterType argument is an SQL_NUMERIC data type,

● The default precision is (38), the default scale is (0), and they are respectively set in SQL_DESC_PRECI

SION and SQL_DESC_SCALE fields of IPD.

● If the default precision or scale is not appropriate, the application should explicitly set the descriptors

field by calling SQLSetDescField or SQLSetDescRec.

ColumnSize Argument

ColumnSize argument specifies the size of the column or expression corresponding the parameter marker.

It sets different fields of the IPD depending on SQL data type of ParameterType.

● If ParameterType is SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, SQL_BINARY, SQL_VARBINAR

Y, SQL_LONGVARBINARY, concise SQL datetime, or interval data type, it sets the value of ColumnSiz

e in SQL_DESC_LENGTH field of IPD.

● If ParameterType is SQL_DECIMAL, SQL_NUMERIC, SQL_FLOAT, SQL_REAL, or SQL_DOUBLE, it sets t

he value of ColumnSize in SQL_DESC_PRECISION field of IPD.

● For other data types, ColumnSize argument is ignored.

DecimalDigit Argument

● If ParameterType argument is SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, SQL_INTERVAL_SECOND, S

QL_INTERVAL_DAY_TO_SECOND, SQL_INTERVAL_HOUR_TO_SECOND, or SQL_INTERVAL_MINUTE_

TO_SECOND, it sets the value of DecimalDigits in SQL_DESC_PRECISION field of IPD.

● If ParameterType argument is SQL_NUMERIC or SQL_DECIMAL, it sets the value of DecimalDigits in S

QL_DESC_SCALE field of IPD.

● For other data types, DecimalDigits argument is ignored.

2,454 | ODBC

ParameterValuePtr Argument

When calling SQLExecute and SQLExecDirect, ParameterValuePtr points to the actual data for the param

eter. The data type should be in a form specified by ValueType argument. This argument sets the SQL_DE

SC_DATA_PTR field of the APD.

If *StrLen_or_IndPtr is the result of the SQL_LEN_DATA_AT_EXEC (length) macro or SQL_DATA_AT_EXE

C, then ParameterValuePtr is an application-defined pointer value which is related to the parameter. It is r

eturned to the application through SQLParamData.

For example, ParameterValuePtr might be a non-zero token such as a parameter number, a pointer to da

ta, or a pointer to a structure that the application used to bind input parameters.

If InputOutputType argument is SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT, ParameterValue

Ptr should be a buffer pointer in which the output value is stored.

If the value in the SQL_ATTR_PARAMSET_SIZE statement attribute is bigger than 1, ParameterValuePtr p

oints to an array. A single SQL statement processes the complete array of input values for an input or inp

ut/output parameter and returns an array of output values for an input/output or output parameter.

BufferLength Argument

For character and binary C data, the BufferLength argument specifies the length of the *ParameterValue

Ptr buffer (if the value in the SQL_ATTR_PARAMSET_SIZE statement attribute is 1), or specifies the length

of the element in the *ParameterValuePtr array(if the value in the SQL_ATTR_PARAMSET_SIZE statement

attribute is bigger than 1).

Both when input and output, BufferLength is used to determine the position in the array of *ParameterV

aluePtr for. It sets SQL_DESC_OCTET_LENGTH field of APD.

For an input/output parameter and an out parameter, BufferLength is used to determine whether or not

to truncate the output.

● For character C data, if the number of bytes available to return is equal to or bigger than BufferLengt

h, the data in *ParameterValuePtr is truncated to BufferLength minus 1 bytes and it is null-terminate

d.

● For binary C data, if the number of bytes available to return is equal to or bigger than BufferLength, t

he data in *ParameterValuePtr is truncated to BufferLength bytes.

● For other C data types, the BufferLength argument is ignored.

StrLen_or_IndPtr Argument

The StrLen_or_IndPtr argument contains one of the followings when SQLExecute or SQLExecDirect is call

ed. (This argument sets the SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR of APD.)

ODBC API References | 2,455

● The length of the parameter value stored in *ParameterValuePtr. This is ignored except for character

or binary C data.

● SQL_NTS: The parameter value is a null-terminated string.

● SQL_NULL_DATA: The parameter value is NULL.

● The result of the SQL_LEN_DATA_AT_EXEC(length) macro: The data for the parameter will be sent w

hen performing SQLPutData.

○ If the ParameterType argument is SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long, and S

QL_NEED_LONG_DATA_LEN information of SQLGetInfo returns "Y", then the length is the numb

er of bytes of data to be sent for the parameter

○ If SQL_NEED_LONG_DATA_LEN information of SQLGetInfo is "N", length should be a nonnegativ

e value and is ignored.

○ For example, to specify 10,000 bytes of SQL_LONGVARCAHR parameter data to be sent by callin

g SQLPutData for multiple times, *StrLen_or_IndPtr should be set to SQL_LEN_DATA_AT_EXEC(1

0000).

● SQL_DATA_AT_EXEC: The data for the parameter will be sent when performing SQLPutData.

If StrLen_or_IndPtr is a null pointer, the driver assumes that all input parameter values are non-NULL and

that character and binary data is null-terminated. If InputOutputType is SQL_PARAM_OUTPUT, and Para

meterValuePtr and StrLen_or_IndPtr are both null pointers, the driver discards the output value.

If the InputOutputType argument is SQL_PARAM_INPUT_OUTPUT, SQL_PARAM_OUTPUT, then StrLen_o

r_IndPtr points to SQL_NULL_DATA, the number of bytes available to return in *ParameterValuePtr (exclu

ding the null-termination byte of character data), or SQL_NO_TOTAL (if the number of bytes available to

return cannot be determined).

If the value in the SQL_ATTR_PARAMSET_SIZE statement attribute is greater than 1, StrLen_or_IndPtr poi

nts to an array of SQLLEN values.

Passing Parameter Values

An application can pass the value for a parameter by calling the *ParameterValuePtr buffer or multiple S

QLPutData. Parameters whose data is passed through SQLPutData are known as data-at-execution para

meters. These are typically used to send data for SQL_LONGVARBINARY and SQL_LONGVARCHAR param

eters, and can be mixed with other parameters.

The application should perform the following process to pass the parameter values.

1. It calls SQLBindParameter for each parameter to bind buffers for the parameter's value (ParameterVa

luePtr argument) and length/indicator (StrLen_or_IndPtr argument). For data-at-execution paramete

rs, ParameterValuePtr is an application-defined pointer value such as a parameter number or a point

er to data. The value will be returned later and can be used to identify the parameter.

2. It sets values for an input parameter or an input/output parameter in the *ParameterValuePtr and *S

trLen_or_IndPtr buffers.

2,456 | ODBC

● For normal parameters, the application inputs the parameter value in the *ParameterValuePtr buffer

and the length of that value in the *StrLen_or_IndPtr buffer.

● For data-at-execution parameters, the application inputs the result of the SQL_LEN_DATA_AT_EXEC

(length) macro (when calling an ODBC 2.0 driver) in the *StrLen_or_IndPtr buffer.

3. It calls SQLExecute or SQLExecDirect to execute the SQL statement.

● If data-at-execution parameters do not exist, the process is complete.

● If any data-at-execution parameters exist, the function returns SQL_NEED_DATA.

4. It calls SQLParamData to retrieve the application-defined value specified in the ParameterValuePtr ar

gument of SQLBindParameter for the first data-at-execution parameter to be processed. SQLParamD

ata returns SQL_NEED_DATA.

Note

Although data-at-execution parameters resemble data-at-execution columns, the value returned

by SQLParamData is different for each.

Data-at-execution parameters are parameters in an SQL statement for which data will be sent toS

QLPutData when the statement is executed together with SQLExecDirect or SQLExecute. They are

bound with SQLBindParameter.

The value returned by SQLParamData is a pointer value passed to the ParameterValuePtr argumen

t of SQLBindParameter. Data-at-execution columns are columns in a rowset for which data will be

sent when a row is updated or added with SQLBulkOperations or updated with SQLSetPos. They a

re bound with SQLBindCol. The value returned by SQLParamData is the address of the row in the

TargetValuePtr* buffer (set by a call to **SQLBindCol) which is to be processed.

5. It calls SQLPutData for one or more times to send data for the parameter. One or more calls are requ

ired if the data value is bigger than what is specified in the *ParameterValuePtr buffer of SQLPutDat

a. Multiple SQLPutData calls for the same parameter are allowed only when sending character C dat

a to a column with a character, binary, or data source–specific data type or when sending binary C d

ata to a column with a character, binary, or data source–specific data type.

6. It calls SQLParamData again to signal that all data has been sent for the parameter.

● If one or more data-at-execution parameters exist, SQLParamData returns SQL_NEED_DATA and pro

cesses the application-defined value for the next data-at-execution parameter. The application repeat

s steps 4 and 5.

● If data-at-execution parameter does not exist, the process is complete. If the statement was successf

ully executed, SQLParamData returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. If the execution f

ODBC API References | 2,457

ailed, it returns SQL_ERROR. At this point, SQLParamData can be returned by any SQLSTATE. It can al

so be returned by SQLExecDirect or SQLExecute which is used to execute the statement.

● Output values for any input/output or output parameters are available in the *ParameterValuePtr an

d *StrLen_or_IndPtr buffers after the application retrieves all result sets generated by the statement.

Calling SQLExecute or SQLExecDirect puts the statement in an SQL_NEED_DATA state. At this point, the

application can call only SQLCancel, SQLGetDiagField, SQLGetDiagRec, SQLGetFunctions, SQLParamData,

or SQLPutData together with the statement or the connection handle related to the statement.

If it calls any other function for the statement or the connection related to the statement, the function ret

urns SQLSTATE HY010(Function sequence error). The statement is released from the SQL_NEED_DATA st

ate when SQLParamData or SQLPutData returns an error, SQLParamData returns SQL_SUCCESS or SQL_S

UCCESS_WITH_INFO, or the statement is canceled.

If the application calls SQLCancel while the driver still needs data for data-at-execution parameters, the dr

iver cancels statement execution. Then the application can call SQLExecute or SQLExecDirect again.

Using Parameter Array

An application prepares a statement together with parameter markers and passes it in an array of parame

ters in the following two ways.

● One method is for the driver to rely on the array-processing capabilities, in this case the entire statem

ent with the array of parameters is treated as one atomic unit. Oracle is an example of a data source

which supports array processing capabilities.

● The other method is for the driver to generate a batch of SQL statements. Each set of parameters in t

he parameter array is allocated per an SQL statement and is made into a batch, then the batch is exec

uted. Arrays of parameters can not be used in an UPDATE WHERE CURRENT OF statement.

When processing the parameter array, the number of each result sets/ rows are available per each param

eter set or the number of each result sets/ rows are available in whole. The SQL_PARAM_ARRAY_ROW_

COUNTS option in SQLGetInfo indicates whether the number of rows are available for each set of param

eters(SQL_PARC_BATCH) or only a single row is available (SQL_PARC_NO_BATCH).

The SQL_PARAM_ARRAY_SELECTS option in SQLGetInfo indicates whether a result set is available for ea

ch set of parameters (SQL_PAS_BATCH) or is available only in one result set(SQL_PAS_NO_BATCH). If th

e driver does not allow a result set–generating statement to be executed together with an array of param

eters, SQL_PARAM_ARRAY_SELECTS returns SQL_PAS_NO_SELECT.

For more information, refer to SQLGetInfo.

To support the parameter array, the SQL_ATTR_PARAMSET_SIZE statement attribute is set to specify the

number of values for each parameter. If the field is bigger than 1, the SQL_DESC_DATA_PTR, SQL_DESC_

INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR fields of the APD should point to arrays. The num

ber of elements in each array is equal to the value of SQL_ATTR_PARAMSET_SIZE.

2,458 | ODBC

The SQL_DESC_ROWS_PROCESSED_PTR field of the APD points to a buffer which contains the number o

f sets of parameters which have been processed, including error sets. Like as each processed parameters s

et, the driver stores a new value in the buffer. Any number will not be returned if this is a null pointer.

When arrays of parameters are used, the value pointed to by the SQL_DESC_ROWS_PROCESSED_PTR fiel

d of the APD is generated even when SQL_ERROR is returned by the setting function. If SQL_NEED_DAT

A is returned, the value pointed to by the SQL_DESC_ROWS_PROCESSED_PTR field of the APD is set to t

he set of parameters which is being processed.

Binding Column-wise Parameter

For column-wise binding, the application binds the separate parameter and length/indicator arrays to eac

h parameter.

For column-wise binding, the application firstly sets the SQL_ATTR_PARAM_BIND_TYPE statement attrib

ute to SQL_PARAM_BIND_BY_COLUMN. (It is the default value.) The application performs the following

processes to use column-wise binding.

1. It allocates the parameter buffer array.

2. It allocates the length/indicator buffer array.

Note

If the application directly records to the descriptors when using the column-wise binding, the sepa

rate arrays can be used for length and indicator data.

3. It calls SQLBindParameter together with the following arguments.

● ValueType is the C type of a single element in the parameter buffer array.

● ParameterType is the SQL type of the parameter.

● ParameterValuePtr is the address of the parameter buffer array.

● BufferLength is the size of a single element in the parameter buffer array. The BufferLength argumen

t is ignored when the data is fixed-length data.

Binding Row-wise Parameter

For row-wise binding, the application defines a structure which contains parameter and length/indicator

buffers for each parameter to be bound.

The application performs the following processes to use row-wise binding.

1. It defines a structure to hold a single set of parameters (including both parameter and length/indicat

ODBC API References | 2,459

or buffers) and allocates an array of these structures.

Note

If the application directly records to the descriptors when using the row-wise binding, the separat

e fields can be used for length and indicator data.

2. SQL_ATTR_PARAM_BIND_TYPE statement attribute sets the size of the structure which contains a si

ngle set of parameters or to the size of an instance of a buffer into which the parameters will be bou

nd. The length should include space for all bound parameters. The length should include space for bi

nding parameter and the structure buffer, or should be buffered to ensure the result to point to the

beginning of the next parameter when the address of a bound parameter is incremented to the spec

ified length. ANSI C guarantees it by using the sizeof operator.

3. It calls SQLBindParameter together with the following arguments for each parameter to be bound.

● ValueType is the type of the parameter buffer member to be bound to the column.

● ParameterType is the SQL type of the parameter.

● ParameterValuePtr is the address of the parameter buffer member in the first array element.

● BufferLength is the size of the parameter buffer member.

● StrLen_or_IndPtr is the address of the length/indicator member to be bound.

Error Information

If a driver does not perform parameter arrays as same as batches (the SQL_PARAM_ARRAY_ROW_COUN

TS option is as same as SQL_PARC_NO_BATCH), error situations are handled as if one statement were ex

ecuted.

If the driver performs parameter arrays as batches, an application can use the SQL_DESC_ARRAY_STATU

S_PTR header field of the IPD to determine if a parameter of an SQL statement or a parameter in an array

of parameters caused SQLExecDirect or SQLExecute to return an error.

This field contains status information for each row of parameter values. If the field represents that an erro

r occurs, fields in the diagnostic data structure will represent the row and parameter number of the failed

parameter. The number of columns in the array will be defined by the SQL_DESC_ARRAY_SIZE header fie

ld in the APD, and it can be set by the SQL_ATTR_PARAMSET_SIZE statement attribute.

Note

The SQL_DESC_ARRAY_STATUS_PTR header field in the APD is used to ignore parameters. For m

ore information about ignoring parameters, refer to Ignoring Parameter Set.

2,460 | ODBC

When SQLExecute or SQLExecDirect returns SQL_ERROR, the elements in the array pointed to by the SQL

_DESC_ARRAY_STATUS_PTR field in the IPD contain SQL_PARAM_ERROR, SQL_PARAM_SUCCESS, SQL_

PARAM_SUCCESS_WITH_INFO, SQL_PARAM_UNUSED, or SQL_PARAM_DIAG_UNAVAILABLE.

For each element in this array, the diagnostic data structure contains one or more status records. The SQL

_DIAG_ROW_NUMBER field of the structure represents the row number of the parameter values which c

aused the error. If it is possible to determine the particular parameter in a row of parameters which cause

d the error, the parameter number will be entered in the SQL_DIAG_COLUMN_NUMBER field.

SQL_PARAM_UNUSED is set when a parameter is not used due to an error because SQLExecute or SQLEx

ecDirect forcibly canceled an earlier parameter. For example, if 50 parameters exist and an error occurred

while executing the 40th set of parameters which caused the cancellation by SQLExecute or SQLExecDire

ct, then SQL_PARAM_UNUSED is set in the status array for parameters from 41 to 50.

SQL_PARAM_DIAG_UNAVAILABLE is set when the driver treats arrays of parameters as a single unit, so it

does not generate individual error information of parameter level.

Some errors in the processing of a single set of parameters cause processing of the subsequent sets of pa

rameters in the array to stop. Other errors do not affect the processing of subsequent parameters. The dri

ver defines which errors will stop processing. If processing does not stop, all parameters in the array are p

rocessed, SQL_SUCCESS_WITH_INFO is returned as a result of the error, and the buffer defined by SQL_A

TTR_PARAMS_PROCESSED_PTR is set to the total number of sets of parameters processed which include

s error sets.

Note

ODBC behavior when an error occurs in the processing of an array of parameters is different betw

een ODBC 3.x and ODBC 2.x.

In ODBC 2.x, the function returns SQL_ERROR and stops the processing. The buffer pointed to by

the pirow argument of SQLParamOptions contained the number of the error row.

In ODBC 3.x, the function returns SQL_SUCCESS_WITH_INFO, and it may stop or continue process

ing. If it continues, the buffer specified by SQL_ATTR_PARAMS_PROCESSED_PTR will be set to th

e value of all parameters processed, including those which resulted in an error. This change in beh

avior can cause problems for existing applications.

When SQLExecute or SQLExecDirect returns SQL_ERROR or SQL_NEED_DATA before completing the pro

cessing of all parameter sets in a parameter array, the status array contains statuses for those parameters

which have already been processed.

ODBC API References | 2,461

The location pointed to by the SQL_DESC_ROWS_PROCESSED_PTR field in the IPD contains the row num

ber in the parameter array which caused the SQL_ERROR or SQL_NEED_DATA error code. When an array

of parameters is sent to a SELECT statement, the availability of status array values is defined by the driver.

They are available after the statement is executed or result sets are fetched.

Ignoring Parameter Set

SQL_DESC_ARRAY_STATUS_PTR field of APD can be used to indicate the binding parameter set which sh

ould be ignored in SQL statement. The application should perform the following processes in order that t

he driver directly ignores one or more parameter sets during the execution.

1. It calls SQLSetDescField in order that the header field of SQL_DESC_ARRAY_STATUS_PTR of APD poi

nts to an array of SQLUSMALLINT values including the status information. The field also can be set th

rough SQL_ATTR_PARAM_OPERATION_PTR of Attribute argument in SQLSetStmtAttr, and it allows

to set the field without a descriptor handle which is the application.

2. It sets each element of the array defined by SQL_DESC_ARRAY_STATUS_PTR of APD to one of the f

ollowing two values.

● SQL_PARAM_IGNORE: The row is excluded from the execution of the statement.

● SQL_PARAM_PROCEED: The row is included in the execution of the statement.

3. It calls SQLExecDirect or SQLExecute, and executes the prepared statement. It applies the following r

ules to the array defined by SQL_DESC_ARRAY_STATUS_PTR of APD.

● The pointer is set to NULL by default.

● If the pointer is NULL, all parameter set are used as if all elements are set to SQL_ROW_PROCEED.

● Setting the element to SQL_PARAM_PROCEED does not guarantee that the operation would use the

specific parameter set.

● SQL_PARAM_PROCEED is defines as 0 in the header file.

An application can set SQL_DESC_ARRAY_STATUS_PTR field of APD to refer to the same array as SQL_D

ESC_ARRAY_STATUS_PTR field of IRD. It is very useful when binding the parameters to the row data. The

parameters may be ignored depending on the status of row data.

Along with SQL_PARAM_IGNORE, the following status codes are to ignore the parameter set in the SQL

statement.

● SQL_ROW_DELETED

● SQL_ROW_UPDATED

● SQL_ROW_ERROR

Along with SQL_PARAM_PROCEED, the following status codes are to process the parameter set in the S

QL statement.

2,462 | ODBC

● SQL_ROW_SUCCESS

● SQL_ROW_SUCCESS_WITH_INFO

● SQL_ROW_ADDED

Rebinding Parameter

The application can include many parameters, but if there is a buffer area for calling SQLExecDirect or SQ

LExecute which uses only some parameters, rebinding the parameter is particularly useful. The remaining

space of buffer area can be used to set the next parameter by modifying the existing binding through off

set.

The SQL_DESC_BIND_OFFSET_PTR header field of APD points to the binding offset. If the field is not NUL

L, the driver dereferences to the pointer. If values of SQL_DESC_DATA_PTR, SQL_INDICATOR_PTR do not

exist, and SQL_DESC_OCTET_LENGTH_PTR field is the NULL pointer, then the dereferenced value is adde

d to the fields in the descriptor records during the execution time.

Offset is valid after rebinding. The application can directly modify the offset without calling SQLSetDescFi

eld or SQLSetDescRec to update the descriptor field because SQL_DESC_BIND_OFFSET_PTR field is the po

inter to offset rather than the offset itself. The pointer is NULL by default.

SQL_DESC_BIND_OFFSET_PTR field of ARD can be set by calling SQLSetDescField or through SQL_ATTR_

PARAM_BIND_OFFSET_PTR in Attribute argument of SQLSetStmtAttr. The offset binding always adds the

value directly to SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR and SQL_DESC_OCTET_LENGTH_PT

R. If offset is changed to another value, the new value is continuously added directly to each descriptor fi

eld. The new offset is not added to the previous one.

Descriptor

The way which the parameter is bound is determined by APD and the IPD fields. The arguments in SQLBi

ndParameter are used to set the descriptor fields. It is more effective to use the SQLBindParameter becau

se the application can call SQLBindParameter without obtaining the descriptor handle, but the fields can

also be set by the SQLSetDescField function.

Caution

Calling SQLBindParameter for a single statement may affect other statements. It occurs when ARD

related to the statement is explicitly allocated and it is related to other statements. The modificatio

ns for the field affects all statements related the descriptor because SQLBindParameter modifies th

e fields of ARD. If it is not the required behavior, the application should release the relationship be

tween the descriptor and other statements before calling SQLBindParameter.

ODBC API References | 2,463

Notionally, SQLBindParameter should perform the following processes.

1. It calls SQLGetStmtAttr, and obtains the APD handle.

2. It calls SQLGetDescField, and obtains SQL_DESC_COUNT field of APD is obtained. If the value of Col

umnNumber exceeds the value of SQL_DESC_COUNT, then it calls SQLSetDescField to increase the v

alue of SQL_DESC_COUNT to the value of ColumnNumber.

3. It calls SQLSetDescField multiple times, and sets the values of the following fields of APD.

● It sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of ValueType.

○ It excludes ValueType if ValueType is one of the implied identifiers in datetime or interval sub for

mat. It sets SQL_DESC_TYPE to SQL_DATETIME or SQL_INTERVAL, and it sets SQL_DESC_CONCI

SE_TYPE to the implied identifier, and sets SQL_DESC_DATETIME_INTERVAL_CODE to the corres

ponding datetime or interval subcode.

● It sets SQL_DESC_OCTET_LENGTH field to the value of BufferLength.

● It sets SQL_DESC_DATA_PTR field to the value of ParameterValue.

● It sets SQL_DESC_OCTET_LENGTH_PTR field to the value of StrLen_or_Ind.

● It also sets SQL_DESC_INDICATOR_PTR field to the value of StrLen_or_Ind.

● StrLen_or_Ind specifies both the indicator information and length of parameter value.

4. It calls SQLGetStmtAttr, and obtains the IPD handle.

5. It calls SQLGetDescField, and obtains SQL_DESC_COUNT field of IPD. If the value of ColumnNumber

exceeds the value of SQL_DESC_COUNT, then it calls SQLSetDescField to increase the value of SQL_

DESC_COUNT to the value of ColumnNumber.

6. It calls SQLSetDescField multiple times, and sets the values of following fields of IPD.

● It sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of ParameterType.

○ It excludes ParameterType, if ParameterType is one of the implied identifiers with datetime or int

erval sub format. It sets SQL_DESC_TYPE to SQL_DATETIME or SQL_INTERVAL, and it sets SQL_D

ESC_CONCISE_TYPE to the implied identifier, and sets SQL_DESC_DATETIME_INTERVAL_CODE t

o the corresponding datetime or interval subcode.

● It sets one or more SQL_DESC_LENGTH, SQL_DESC_PRECISION and SQL_DESC_DATETIME_INTERVA

L_PRECISION for ParameterType, properly.

● It sets SQL_DESC_SCALE to the value of DecimalDigits.

If it failed to call SQLBindParameter, the contents of the descriptor fields to be set in APD are not defined

and SQL_DESC_COUNT field of APD is not changed. Additionally, SQL_DESC_LENGTH, SQL_DESC_PRECI

SION, SQL_DESC_SCALE, and SQL_DESC_TYPE fields of the proper record in IPD are not defined and SQL

_DESC_COUNT field of IPD is not changed.

2,464 | ODBC

SQLBrowseConnect

It is not supported.

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLBrowseConnect finds the attribute and its value which are required to connect to the data source, an

d supports a method for the iterative list.

Syntax

SQLRETURN SQLBrowseConnect(

SQLHDBC ConnectionHandle,

SQLCHAR * InConnectionString,

SQLSMALLINT StringLength1,

SQLCHAR * OutConnectionString,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLength2Ptr);

ODBC API References | 2,465

SQLBulkOperations

It is not supported.

Conformance

Introduced version: ODBC 3.0

Standards compliance: ODBC

Overview

SQLBulkOperations performs the massive bookmark operations such as the bulk inserts, and the updates,

deletes, fetches through the bookmark.

Syntax

SQLRETURN SQLBulkOperations(

SQLHSTMT StatementHandle,

SQLUSMALLINT Operation);

2,466 | ODBC

SQLCancel

It is not supported.

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLCancel cancels the statement in progress.

Use SQLCancelHandle function to cancel the connection or statement in progress.

Syntax

SQLRETURN SQLCancel(

SQLHSTMT StatementHandle);

ODBC API References | 2,467

SQLCancelHandle

It is not supported.

Conformance

Introduced version: ODBC 3.8

Standards compliance: It is not available.

Overview

SQLCancelHandle cancels processing of the connection or the statement.

Syntax

SQLRETURN SQLCancelHandle(

SQLSMALLINT HandleType,

SQLHANDLE Handle);

2,468 | ODBC

SQLCloseCursor

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLCloseCursor closes an open cursor on the statement and discards the remaining results.

Syntax

SQLRETURN SQLCloseCursor(

SQLHSTMT StatementHandle);

Arguments

StatementHandle

[Input] It is the statement handle.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

24000
Invalid cursor stat

e
Open cursor does not exist on the statement.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY010
Function sequenc

e error

SQL_NEED_DATA is returned after calling SQLExecute, SQLExecDirect, the f

unction is called before sending all data-at-execution parameters.

ODBC API References | 2,469

Description

If open cursor does not exist, SQLCloseCursor returns SQLSTATE 24000(Invalid cursor state). Calling SQLC

loseCursor is as same as calling SQLFreeStmt with SQL_CLOSE option. However, when open cursor does

not exist, SQLCloseCursor returns SQLSTATE 24000 (Invalid cursor state), but calling SQLFreeStmt does n

ot affect the application.

2,470 | ODBC

SQLColAttribute

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLColAttribute returns the descriptor information for the result set column. The descriptor information i

s returned as a string or integer value.

Syntax

SQLRETURN SQLColAttribute (

SQLHSTMT StatementHandle,

SQLUSMALLINT ColumnNumber,

SQLUSMALLINT FieldIdentifier,

SQLPOINTER CharacterAttributePtr,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLengthPtr,

SQLLEN * NumericAttributePtr);

Arguments

StatementHandle

[Input] It is the statement handle.

ColumnNumber

[Input] It is the record number to retrieve for a field value in IRD. It starts from 1 and corresponds t

o the column number of result data which sequentially increases. The column can be described in r

andom order.

The number 0 column can be specified to ColumnNumber, but the undefined value is returned exc

ept for SQL_DESC_TYPE and SQL_DESC_OCTET_LENGTH.

FieldIdentifier

[Input] It is the descriptor handle. It defines the field retrieved in IRD. (e.g. SQL_COLUMN_TABLE_

NAME)

ODBC API References | 2,471

CharacterAttributePtr

[Output] It is the buffer pointer returning the field value when the value of FieldIdentifier field of th

e ColumnNumber column of IRD is a string. If the field value is not a string, it is not used.

If CharacterAttributePtr is NULL, StringLengthPtr returns the total number of bytes which can be re

turned.(Except for null-termination character)

BufferLength

[Input] It is the length of *CharacterAttributePtr when FieldIdentifier is defined in ODBC and Chara

cterAttributePtr points to a string or binary buffer. If FieldIdentifier is defined in ODBC and *Charac

terAttributePtr is an integer, it is ignored.

StringLengthPtr

[Output] It is the pointer returning the total number of bytes which can be returned in *Character

AttributePtr. (Except for null-termination character for the character data)

For the character data, if the number of bytes which can be returned is equal to or bigger than Buf

ferLength, the description information of *CharacterAttributePtr is truncated to the length of Buff

erLength minus 1, and it is null terminated by the driver.

For other data types, the value of BufferLength is ignored.

NumericAttributePtr

[Output] It is the buffer pointer which returns the field value when the value of FieldIdentifier field

of the ColumnNumber column of IRD is a number such as SQL_DESC_COLUMN_LENGTH. If the fie

ld value is not a number, it is not used.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004 String data, right truncated

*CharacterAttributePtr buffer is not large enough to return the e

ntire string, so the string is truncated. The length of string not tru

ncated is returned to *StringLengthPtr. (The function returns SQL

_SUCCESS_WITH_INFO.)

07005
Prepared statement not a cursor-

specification

The statement does not return the result set, and FieldIdentifier is

not SQL_DESC_COUNT. The column to explain does not exist.

07009
Invalid descriptor

index

The value of ColumnNumber argument is bigger than the number

of columns in the result set.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation

error
It is a memory allocation error.

2,472 | ODBC

HY010
Function sequence

error

This function is called before SQLPrepre, SQLExecDirect, the catal

og function.

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA i

s returned, and this function is called before sending all data-at-e

xecution variables.

HY090 Invalid string or buffer length
*CharacterAttributePtr is a string, BufferLength is smaller than 0

but it is not SQL_NTS.

HY091 Invalid descriptor field identifier The value of FieldIdentifier argument is not defined.

SQLSTATE Error Description

Description

SQLColAttribute returns information to *NumericAttributePtr or *CharacterAttributePtr. Integer informat

ion is returned as SQLLEN value to *NumericAttributePtr. All other data type information is returned to *

CharacterAttributePtr. When information is returned to *NumericAttributePtr, the driver ignores Charact

erAttributePtr, BufferLength, StringLengthPtr. When the information is returned to *CharacterAttributePt

r, the driver ignores NumericAttributePtr.

SQLColAttribute returns the value in the descriptor field of IRD. The value of FieldIdentifier returned to SQ

LColAttribute can be obtained by calling SQLGetDescField with appropriate IRD handle.

The following table is the descriptor types returned to SQLColAttribute. The type of NumericAttributePtr i

s SQLLEN*.

FieldIdentifier
Information

return
Description

SQL_DESC_AUT

O_UNIQUE_VAL

UE (ODBC 1.0)

NumericAttribute

Ptr

● SQL_TRUE: It is an auto increment column.

● SQL_FALSE: It is neither an auto increment column nor a numeric type.

SQL_DESC_BASE

_COLUMN_NAM

E (ODBC 3.0)

CharacterAttribut

ePtr

It is the default column name for the result set columns. If the default colum

n name does not exist(in case of an expression column), the variable will co

ntain an empty string.

This information is returned in the record field of SQL_DESC_BASE_COLUM

N_NAME which is the read-only field of IRD.

SQL_DESC_BASE

_TABLE_NAME

(ODBC 3.0)

CharacterAttribut

ePtr

It is the base table name which contains the column. If the base table name

can not be defined or is not applicable the variable contains an empty string.

This information is returned in the record field of SQL_DESC_BASE_TABLE_

NAME which is the read-only field of IRD.

SQL_DESC_CASE

_SENSITIVE (ODB

C 1.0)

NumericAttribute

Ptr

● SQL_TRUE: The column is case-sensitive for sorting or comparisons.

● SQL_FALSE: The column is neither case-sensitive for sorting or compari

son nor is a character.

ODBC API References | 2,473

SQL_DESC_CATA

LOG_NAME (OD

BC 2.0)

CharacterAttribut

ePtr
It is the catalog of the table containing the column.

SQL_DESC_CON

CISE_TYPE (ODB

C 1.0)

NumericAttribute

Ptr

It is concise data type.

For datetime and interval data, the concise data such as SQL_TYPE_TIME, S

QL_INTERVAL_YEAR is returned.

This information is returned in the record field of SQL_DESC_CONCISE_TYP

E of IRD.

SQL_DESC_COU

NT (ODBC 1.0)

NumericAttribute

Ptr

It is the number of columns which can be used in the result set. If column d

oes not exist in the result set, 0 is returned.

ColumnNumber argument is ignored.

This information is returned in the header field of SQL_DESC_COUNT of IRD.

SQL_DESC_DISPL

AY_SIZE (ODBC

1.0)

NumericAttribute

Ptr
It is the maximum number of characters required to display the column.

SQL_DESC_FIXE

D_PREC_SCALE

(ODBC 1.0)

NumericAttribute

Ptr

● SQL_TRUE: The column has the fixed precision and non-zero scale.

● SQL_FALSE: The column does not have the fixed precision but it has th

e non-zero scale.

SQL_DESC_LABE

L (ODBC 2.0)

CharacterAttribut

ePtr

It is the column label or title. For example, the column name, EmpName, ca

n be displayed as employee name or alias.

If the label doe not exist, the column name is returned. If a label or name is

not specified to the column, an empty string is returned.

SQL_DESC_LENG

TH (ODBC 3.0)

NumericAttribute

Ptr

It is the maximum or actual length of data of the string or binary data type.

A fixed length data type is the maximum character length, and a variable-le

ngth data type is the actual character length. This value always excludes the

null-termination byte of the string at the end.

This information is returned in the record field of SQL_DESC_LENGTH of IRD.

SQL_DESC_LITER

AL_PREFIX (ODB

C 3.0)

CharacterAttribut

ePtr

This VARCHAR (128) record field contains a character or string which the dr

iver recognizes the prefix of the data type. The data type to which a prefix is

not applied contains an empty string.

SQL_DESC_LITER

AL_SUFFIX (ODB

C 3.0)

CharacterAttribut

ePtr

This VARCHAR (128) record field contains a character or string which the dr

iver recognizes the suffix of the data type. The data type to which a suffix is

not applied contains an empty string.

SQL_DESC_LOCA

L_TYPE_NAME

(ODBC 3.0)

CharacterAttribut

ePtr

The VARCHAR (128) record field contains the localized(native language) na

me of data type which is different from the regular name of data type. If the

localized name does not exist, an empty string is returned. This field is only f

or display purposes. The character set of string depends on the locale, and t

he default is usually the character set of the server.

It is the column alias of when the column alias is applied. If the column alias

FieldIdentifier
Information

return
Description

2,474 | ODBC

SQL_DESC_NAM

E (ODBC 3.0)

CharacterAttribut

ePtr

is not applied, the column name is returned. In both cases, SQL_DESC_UNN

AMED is set to SQL_NAMED. If column name or alias does not exist, an em

pty string is returned, and SQL_DESC_UNNAMED is set to SQL_UNNAMED.

This information is returned in the record field of SQL_DESC_NAME of IRD.

SQL_DESC_NULL

ABLE (ODBC 3.0)

NumericAttribute

Ptr

● SQL_NULLABLE: The column can have NULL value.

● SQL_NO_NULLS: The column can not have NULL value.

● SQL_NULLABLE_UNKNOWN: It is unknown whether NULL value is allo

wed for the column.

This information is returned in the record field of SQL_DESC_NULLABLE of I

RD.

SQL_DESC_NUM

_PREC_RADIX (O

DBC 3.0)

NumericAttribute

Ptr

If the data type of SQL_DESC_TYPE field is the approximate numeric data ty

pe, this field contains 2 because SQL_DESC_PRECISION field contains the nu

mber of bits. If the data type of

SQL_DESC_TYPE field is the exact numeric data type, this field contains 10 b

ecause SQL_DESC_PRECISION field contains the number of decimal digits. T

his field is set to 0 for all non-numeric data types.

SQL_DESC_OCTE

T_LENGTH (ODB

C 3.0)

NumericAttribute

Ptr

It is byte length of string or binary data type. For a fixed-length character or

binary data type, it is the actual byte length. For a variable-length character

or binary data type, it is the maximum length in bytes. This value does not in

clude null termination.

This information is returned in the record field of SQL_DESC_OCTET_LENGT

H of IRD.

SQL_DESC_PRECI

SION (ODBC 3.0)

NumericAttribute

Ptr

It is the precision applicable to the numeric data type. For SQL_TYPE_TIME,

SQL_TYPE_TIMESTAMP, all interval data types representing time interval, th

e value is the applicable fractional seconds precision.

This information is returned in the record field of SQL_DESC__PRECISION of

IRD.

SQL_DESC_SCAL

E (ODBC 3.0)

NumericAttribute

Ptr

It is the scale applicable to the numeric data type. For DECIMAL or NUMERI

C data type, the scale is defined, and for all other data types, it is not define

d.

This information is returned in the record field of SQL_DESC_SCALE of IRD.

SQL_DESC_SCHE

MA_NAME (ODB

C 2.0)

CharacterAttribut

ePtr
It is the schema of a table containing a column.

SQL_DESC_SEAR

● SQL_PRED_NONE: The column can not used in WHERE clause. (It is as

same as SQL_UNSEARCHABLE of ODBC 2.x.)

● SQL_PRED_CHAR: The column can be used in WHERE clause but only

FieldIdentifier
Information

return
Description

ODBC API References | 2,475

CHABLE (ODBC 1

.0)

NumericAttribute

Ptr

with the LIKE predicate. (It is as same as SQL_LIKE_ONLY of ODBC 2.x.)

.

● SQL_PRED_BASIC: Any comparison operator except LIKE can be used i

n WHERE clause. (It is as same as SQL_EXCEPT_LIKE of ODBC 2.x.)

● SQL_PRED_SEARCHABLE: The column can be used in WHERE clause to

gether with any comparison operator.

SQL_DESC_TABL

E_NAME (ODBC

2.0)

CharacterAttribut

ePtr

It is the name of table including the column.

If the tabe name is unknown, an empty string is returned.

SQL_DESC_TYPE

(ODBC 3.0)

NumericAttribute

Ptr

It is the numeric value to specify the SQL data type.

For datetime or interval data type, the verbose data type such as SQL_DATE

TIME or SQL_INTERVAL is returned.

This information is returned in the record field of SQL_DESC_TYPE of IRD.

SQL_DESC_TYPE

_NAME (ODBC 1

.0)

CharacterAttribut

ePtr

It is the data type name which is dependent on the data source. (e.g. "CHA

RACTER", "CHARACTER VARYING", "CHARACTER LONG VARYING")

SQL_DESC_UNN

AMED (ODBC 3.

0)

NumericAttribute

Ptr

It is SQL_NAMED or SQL_UNNAMED. If the column alias or column name is

included in the field of SQL_DESC_NAME of IRD, SQL_NAMED is returned,

and if there is not a column name or alias, SQL_UNNAME is returned.

This information is returned in the record field of SQL_DESC_UNNAMED of I

RD.

SQL_DESC_UNSI

GNED (ODBC 1.0

)

NumericAttribute

Ptr

● SQL_TRUE: The column is neither an unsigned nor is a number.

● SQL_FALSE: The column is a signed.

SQL_DESC_UPD

ATABLE (ODBC 1

.0)

NumericAttribute

Ptr

The column can have the value of SQL_ATTR_READONLY, SQL_ATTR_WRIT

E, SQL_ATTR_READWRITE_UNKNOWN.

FieldIdentifier
Information

return
Description

2,476 | ODBC

SQLColAttributes

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLColAttributes function in ODBC 2.0 was replaced with SQLColAttribute function in ODBC 3.x.

For more information, refer to SQLColAttribute.

ODBC API References | 2,477

SQLColumnPrivileges

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLColumnPrivileges returns a list of columns and related privileges for the specified table as a result set.

Syntax

SQLRETURN SQLColumnPrivileges(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3,

SQLCHAR * ColumnName,

SQLSMALLINT NameLength4);

Arguments

StatementHandle

[Input] It is the statement handle.

CatalogName

[Input] It is the catalog name. CatalogName can not include the string search pattern.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, CatalogName is treated a

s a case-insensitive identifier. If it is set to SQL_FALSE, CatalogName is case-sensitive, and it is an or

dinary argument literally processed.

NameLength1

[Input] It is the length of *CatalogName.

2,478 | ODBC

SchemaName

[Input] It is the schema name. SchemaName can not include the string search pattern.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, SchemaName is treated a

s a case-insensitive identifier. If it is set to SQL_FALSE, SchemaName is case-sensitive, and it is an or

dinary argument literally processed.

NameLength2

[Input] It is the length of *SchemaName.

TableName

[Input] It is the table name. This argument can not be a null pointer. TableName can not include th

e string search pattern.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, TableName is treated as a

case-insensitive identifier. If it is set to SQL_FALSE, TableName is case-sensitive, and it is an ordinar

y argument literally processed.

NameLength3

[Input] It is the length of *TableName.

ColumnName

[Input] It is the string search pattern for the column name.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, ColumnName is treated a

s a case-insensitive identifier. If it is set to SQL_FALSE, ColumnName is case-sensitive, and it is a pat

ternvalue literally processed.

NameLength4

[Input] It is the length of *ColumnName.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

08S01 Communication link failure
Before the function processing is completed, the connection betwee

n the driver and the data source is failed.

24000 Invalid cursor state SQLFetch, SQLFetchScroll are called and a cursor is open.

HY000 General error It is an error without specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

HY009 Invalid use of null pointer

TableName argument is the null pointer.

The attribute value of SQL_ATTR_METADATA_ID is SQL_TRUE state

ODBC API References | 2,479

ment, and SchemaName or ColumnName is the null pointer.

HY010 Function sequence error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is r

eturned, and the function is called before sending all data-at-execut

ion variables.

HY090 Invalid string or buffer length
A name length argument value is smaller than 0 but it is not SQL_N

TS.

HYT00 Timeout expired

Before downloading the entire result set from the data source, the q

uery timeout expired. The timeout can be set through SQL_ATTR_Q

UERY_TIMEOUT of SQLSetStmtAttr.

SQLSTATE Error Description

Description

SQLColumnPrivileges returns the standard result set aligned as TABLE_CAT, TABLE_SCHEM, TABLE_NAM

E, COLUMN_NAME, PRIVILEGE.

The following table describes the columns in the result set.

Column na

me

Column

number
Data type Description

TABLE_CAT

(ODBC 1.0)
1 VARCHAR It is the catalog identifier.

TABLE_SCH

EM (ODBC 1

.0)

2 VARCHAR It is the schema identifier.

TABLE_NA

ME (ODBC 1

.0)

3
VARCHAR n

ot NULL
It is the table identifier.

COLUMN_N

AME (ODBC

1.0)

4
VARCHAR n

ot NULL

It is the column name. It returns an empty string for a column which do

es not have a name.

GRANTOR

(ODBC 1.0)
5 VARCHAR It is the grantor name.

GRANTEE

(ODBC 1.0)
6

VARCHAR n

ot NULL
It is the grantee name.

PRIVILEGE

(ODBC 1.0)
7

VARCHAR n

ot NULL

It is the column privilege identifier. It can be one of the followings.

● SELECT: The grantee is allowed to retrieve the column data.

● INSERT: The grantee is allowed to insert the data to the column o

f the associated table.

● UPDATE: The grantee is allowed to update the column data.

● REFERENCES: The grantee is allowed to reference the column in t

he constrains (e.g. unique, referential, table check constraint).

2,480 | ODBC

IS_GRANTA

BLE

(ODBC 1.0)

8 VARCHAR
It checks whether the grantee can grant the privilege to other user, and

it is specified as "YES", "NO".

Column na

me

Column

number
Data type Description

ODBC API References | 2,481

SQLColumns

Conformance

Introduced version: ODBC 1.0

Standards compliance: Open Group

Overview

SQLColumns returns a list of column names in the specified table as a result set.

Syntax

SQLRETURN SQLColumns(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3,

SQLCHAR * ColumnName,

SQLSMALLINT NameLength4);

Arguments

StatementHandle

[Input] It is the statement handle.

CatalogName

[Input] It is the catalog name. CatalogName can not include the string search pattern.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, CatalogName is treated a

s a case-insensitive identifier. If it is set to SQL_FALSE, CatalogName is case-sensitive, and it is an or

dinary argument literally processed.

NameLength1

[Input] It is the length of *CatalogName

SchemaName

[Input] It is the string search pattern for the schema name.

2,482 | ODBC

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, SchemaName is treated a

s a case-insensitive identifier. If it is set to SQL_FALSE, SchemaName is case-sensitive, and it is an or

dinary argument literally processed.

NameLength2

[Input] It is the length of *SchemaName.

TableName

[Input] It is the string search pattern for the table name.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, TableName is treated as a

case-insensitive identifier. If it is set to SQL_FALSE, TableName is case-sensitive, and it is an ordinar

y argument literally processed.

NameLength3

[Input] It is the length of *TableName.

ColumnName

[Input] It is the string search pattern for the column name.

If the SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, ColumnName is treated a

s a case-insensitive identifier. If it is set to SQL_FALSE, ColumnName is case-sensitive, and it is a pat

tern value literally processed.

NameLength4

[Input] It is the length of *ColumnName.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

24000
Invalid cursor stat

e
SQLFetch, SQLFetchScroll are called and a cursor is open.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY009
Invalid use of null

pointer

TableName argument is a null pointer.

The attribute value of SQL_ATTR_METADATA_ID statement is SQL_TRUE, S

chemaName or ColumnName is a null pointer.

HY010
Function sequenc

e error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned,

and the function is called before sending all data-at-execution variables.

ODBC API References | 2,483

HY090
Invalid string or

buffer length
A name length argument value is smaller than 0 but it is not SQL_NTS.

HYT00 Timeout expired

Before downloading the entire result set from the data source, the query ti

meout expired. The timeout can be set through SQL_ATTR_QUERY_TIMEO

UT of SQLSetStmtAttr.

SQLSTATE Error Description

Description

This function is generally used prior to the execution of statement which retrieves information about the

columns of the table or tables in the catalog of the data source. SQLColumns can be used to retrieve all d

ata types returned by SQLTables. By contrast, SQLColAttribute and SQLDescribeCol describe the columns i

n the result set, and SQLNumResultCols returns the number of columns in the result set.

SQLColumns returns the standard result set sorted as TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDIN

AL_POSITION.

The following table describes the columns in the result set.

Column

name

Column

number
Data type Description

TABLE_CAT

(ODBC 1.0)
1 VARCHAR It is the catalog name.

TABLE_SCH

EM (ODBC 1

.0)

2 VARCHAR It is the schema name.

TABLE_NA

ME (ODBC 1

.0)

3
VARCHAR n

ot NULL
It is the table name.

COLUMN_N

AME (ODBC

1.0)

4
VARCHAR n

ot NULL

It is the column name. It returns an empty string for a column which do

es not have a name.

DATA_TYPE

(ODBC 1.0)
5

SMALLINT n

ot NULL

It is SQL data type. For datetime and interval data types, the column ret

urns the concise data type like SQL_TYPE_DATE, SQL_INTERVAL_YEAR

_TO_MONTH.

TYPE_NAM

E (ODBC 1.0

)

6
VARCHAR n

ot NULL

It is the data type name dependent on the data source. (e.g. "CHARAC

TER", "CHARACTER VARYING", "CHARACTER LONG VARYING")

COLUMN_SI

ZE (ODBC 1. 7 INTEGER

If DATA_TYPE is SQL_CHAR or SQL_VARCHAR, the column includes th

e maximum number of characters up to length of the column. If it is da

tetime data column, it is the number of characters needed for converti

ng the value to the character. If it is a numeric data type, it is the total

2,484 | ODBC

0) number of digits of the column NUM_PREC_RADIX or the number of b

its allowed for the column. If it is an interval data type, it is the number

of characters needed to be represented by the interval leading precisio

n.

BUFFER_LEN

GTH (ODBC

1.0)

8 INTEGER
If SQL_C_DEFAULT is specified, it is the byte length of the data to be tr

ansmitted to SQLGetData, SQLFetch, SQLFetchScroll.

DECIMAL_D

IGITS (ODBC

1.0)

9 SMALLINT

For a positive number, it is the number of significant digits on the right

of the decimal point. For a negative number, it is the number of signific

ant digits on the left of the decimal point. For SQL_TYPE_TIME and SQ

L_TYPE_TIMESTAMP, this column is the number of digits of fractional s

econds. For interval data type that contains the second, it is the numbe

r of digits right of the decimal point(fractional seconds). The data type

that DECIMAL DIGITS can not be applied, returns NULL.

NUM_PREC

_RADIX (OD

BC 1.0)

10 SMALLINT

For the numeric data type, it is 2 or 10.

For 2, COLUMN_SIZE and DECIMAL_DIGITS are the number of bits allo

wed in the column. For 10, COLUMN_SIZE and DECIMAL_DIGITS are th

e number of digits allowed in the column.

The data type that NUM_PREC_RADIX can not be applied, returns NUL

L.

NULLABLE

(ODBC 1.0)
11

SMALLINT n

ot NULL

● SQL_NO_NULLS: The column can not have NULL value.

● SQL_NULLABLE: The column can have NULL value.

● SQL_NULLABLE_UNKNOWN: It is unknown whether the column is

allowed to have NULL value.

REMARKS

(ODBC 1.0)
12 VARCHAR It is the description on the column.

COLUMN_D

EF (ODBC 3.

0)

13 VARCHAR
It is the default value of column. If the value is enclosed by the quote, t

he column should be interpreted as a string.

SQL_DATA_

TYPE (ODBC

3.0)

14
SMALLINT n

ot NULL

It is the SQL data type of the record field of SQL_DESC_TYPE of IRD. Th

e column is the same as DATA TYPE except the datetime and interval d

ata types. For datetime and interval data types, the column returns the

nonconcise data type like SQL_DATE, SQL_INTERVAL, and the specific

data type is determined using SQL_DATETIME_SUB column.

SQL_DATETI

ME_SUB (O

DBC 3.0)

15 SMALLINT
It is the sub type code of datetime and interval data types. Other data t

ypes return NULL.

CHAR_OCTE

T_LENGTH

(ODBC 3.0)

16 INTEGER
It is the maximum length in bytes of characters or binary data type colu

mn. Other data types return NULL.

ORDINAL_P

Column

name

Column

number
Data type Description

ODBC API References | 2,485

OSITION (O

DBC 3.0)

17 INTEGER no

t NULL

It is the column position in the table.

IS_NULLABL

E (ODBC 3.0

)

18 VARCHAR

● "NO": The column can not contain NULL.

● "YES": The column can contain NULL.

If it is unknown whether NULL is allowed, It returns a zero-length string.

Column

name

Column

number
Data type Description

2,486 | ODBC

SQLConnect

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLConnect sets a connection between the driver and the data source. The connection handle refers to a

ll information about the connection including status, transaction status and error information.

Syntax

SQLRETURN SQLConnect(

SQLHDBC ConnectionHandle,

SQLCHAR * ServerName,

SQLSMALLINT NameLength1,

SQLCHAR * UserName,

SQLSMALLINT NameLength2,

SQLCHAR * Authentication,

SQLSMALLINT NameLength3);

Arguments

ConnectionHandle

[Input] It is the connection handle.

ServerName

[Input] It is the data source name.

NameLength1

[Input] It is the length of *ServerName.

UserName

[Input] It is the user identifier.

NameLength2

[Input] It is the length of *UserName.

ODBC API References | 2,487

Authentication

[Input] It is the authentication string (typically password).

NameLength3

[Input] It is the length of *Authentication.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, SQL_STILL_EXECUTING

Diagnosis

SQLSTATE Error Description

08001

Client unable to

establish connect

ion

The driver can not set a connection with a data source.

08002
Connection nam

e in use
The specified ConnectionHandle is already connected with the data source.

08004
Server rejected th

e connection

In the state of the setting limits, the data source rejects to establish the con

nection.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

28000
Invalid authorizat

ion specification
The argument value of UserName or Authentication is not correct.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY090
Invalid string or b

uffer length

The value of NameLength1, NameLength2 or NameLength3 is smaller than

0, but it is not SQL_NTS.

HYT00 Timeout expired
Before connecting to the data source, Login timeout expired. The timeout c

an be set through SQL_ATTR_LOGIN_TIMEOUT of SQLSetConnectAttr.

Description

The driver searches for the user DSN information in an order of $HOME/.odbc.ini file and /home/.odbc.ini

file which are files set in $ODBCINI environment variable. If the DSN which was input in the user DSN doe

s not exist, the driver searches for the DSN information in an order of $ODBCSYSINI/odbc.ini file, /etc/od

bc.ini file which is system DSN.

2,488 | ODBC

SQLCopyDesc

It is not supported.

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLCopyDesc copies the descriptor information from one descriptor handle to another descriptor handle.

Syntax

SQLRETURN SQLCopyDesc(

SQLHDESC SourceDescHandle,

SQLHDESC TargetDescHandle);

ODBC API References | 2,489

SQLDescribeCol

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLDescribeCol returns a column name, type, column size, decimal place, information about null permit i

n the result set column. The information can be used in the fields of IRD.

Syntax

SQLRETURN SQLDescribeCol(

SQLHSTMT StatementHandle,

SQLUSMALLINT ColumnNumber,

SQLCHAR * ColumnName,

SQLSMALLINT BufferLength,

SQLSMALLINT * NameLengthPtr,

SQLSMALLINT * DataTypePtr,

SQLULEN * ColumnSizePtr,

SQLSMALLINT * DecimalDigitsPtr,

SQLSMALLINT * NullablePtr);

Arguments

StatementHandle

[Input] It is the statement handle.

ColumnNumber

[Input] It is the column number in the result set which is started from 1 and increased sequentially.

ColumnName

[Output] It is the buffer pointer which is terminated by a null and returns the column name. This va

lue can be read in SQL_DESC_NAME field of IRD. If the column name does not exist or the column

name is unknown, the driver returns an empty string.

If ColumnName is null, NameLengthPtr returns the total number of bytes returnable. (excluding nu

ll-termination character)

2,490 | ODBC

BufferLength

[Input] It is the length of *ColumnName.

NameLengthPtr

[Output] It is the buffer pointer which returns the total number of bytes returnable to *ColumnNa

me (excluding the null-termination character). If the returnable length is equal to or bigger than Bu

fferLength, *ColumnName is truncated to the length of BufferLength minus null.

DataTypePtr

[Output] It is the buffer pointer which returns the SQL type of a column. The value can be read in S

QL_DESC_CONCISE_TYPE of IRD.

ColumnSizePtr

[Output] It is the buffer pointer which returns the column size of the data source.

DecimalDigitsPtr

[Output] It is the buffer pointer which returns the decimal place of the data source.

NullablePtr

[Output] It is the buffer pointer which returns whether the column allows for null. The value can b

e read in SQL_DESC_NULLABLE field of IRD. It is one of the followings.

• SQL_NO_NULLS: The column does not allow NULL.

• SQL_NULLABLE: The column allows NULL.

• SQL_NULLABLE_UNKNOWN: The driver can not determine whether the column allows NULL.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004
String data,

right truncated

*ColumnName is not large enough to return the entire column name, so th

e column name is truncated. The column length not truncated is returned in

*NameLengthPtr. (The function returns SQL_SUCCESS_WITH_INFO.)

07005

Prepared stateme

nt not a cursor-s

pecification

The statement does not return a result set, so there is not a column to be ex

plained.

07009
Invalid descriptor

index

The value of ColumnNumber argument is bigger than the number of colum

ns in the result set.

08S01

Communication l

ink

failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

ODBC API References | 2,491

HY000 General error It is an error without any specific SQLSTATE.

HY001

Memory allocatio

n

failure

It is a memory allocation error.

HY010

Function sequenc

e

error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned,

the function is called before sending all data-at-execution variables.

HY090
Invalid string

or buffer length
The value of BufferLength argument is smaller than 0.

SQLSTATE Error Description

Description

Generally, the application calls SQLDescibeCol before or after calling SQLExecute related after calling SQL

Prepare. Also, the application may call SQLDescribeCol after calling SQLExecDirect.

2,492 | ODBC

SQLDescribeParam

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLDescribeParam returns the description of a parameter marker related to a prepared SQL statement. T

his information can be used in the fields of the IPD.

Syntax

SQLRETURN SQLDescribeParam(

SQLHSTMT StatementHandle,

SQLUSMALLINT ParameterNumber,

SQLSMALLINT * DataTypePtr,

SQLULEN * ParameterSizePtr,

SQLSMALLINT * DecimalDigitsPtr,

SQLSMALLINT * NullablePtr);

Arguments

StatementHandle

[Input] It is the statement handle.

ParameterNumber

[Input] It is the parameter marker number which is started from 1 and increased sequentially.

DataTypePtr

[Output] It is the buffer pointer which returns the SQL type of parameter. The value can be read in

the record field of SQL_DESC_CONCISE_TYPE of IPD.

ParameterSizePtr

[Output] It is the buffer pointer which returns the size of column or expression for the parameter

marker.

DecimalDigitsPtr

[Output] It is the buffer pointer which returns the decimal places of column or expression for the p

arameter marker.

ODBC API References | 2,493

NullablePtr

[Output] It is the buffer pointer which returns whether the parameter allows for null. The value can

be read in SQL_DESC_NULLABLE of IPD. The value is one of the followings.

• SQL_NO_NULLS: The parameter does not allow NULL.

• SQL_NULLABLE: The parameter allows NULL.

• SQL_NULLABLE_UNKNOWN: The driver can not determine whether the parameter allows NULL.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

07009
Invalid descriptor

index

The value of ParameterNumber argument is smaller than 1.

The value of ParameterNumber argument is bigger than the number of para

meters of the related SQL statement.

08S01
Communication

link failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY010
Function sequenc

e error

The function is called before SQLPrepare or SQLExecDirect.

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned,

and the function is called before sending all data-at-execution variables.

Description

SQL_VARCHAR should be returned to *DataTypePtr, 4000 should be returned to *ParameterSizePtr, 0 sh

ould be returned to *DecimalDigitsPtr, and SQL_NULLABLE should be returned to *NullablePtr because t

he driver can not provide the exact information of the parameter using the prepared SQL.

2,494 | ODBC

SQLDisconnect

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLDisconnect closes the connection related to the specific connection handle.

Syntax

SQLRETURN SQLDisconnect(

SQLHDBC ConnectionHandle);

Argument

ConnectionHandle

[Input] It is the connection handle.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, SQL_STILL_EXECUTING

Diagnosis

SQLSTATE Error Description

08003 Connection not open The connection of ConnectionHandle argument is not open.

25000 Invalid transaction state
The transaction is in progress on the connection of ConnectionHandle a

rgument. The transaction remains active.

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

ODBC API References | 2,495

Description

If the application calls SQLDisconnect to the connection handle with an incomplete transaction, the driver

returns SQLSTATE 25000 (Invalid transaction state), the transaction is not changed, and the connection is

open. The incomplete transaction is a transaction which is not committed or rolled back by using SQLEnd

Tran.

If the application calls SQLDisconnect before disconnecting all statements, the driver is disconnected from

the data source, then deletes all statements and the descriptor explicitly assigned to the connection handl

e.

2,496 | ODBC

SQLDriverConnect

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLDriverConnect can replace SQLConnect, and it supports the data source which requires more informa

tion of connection than three arguments of SQLConnect.

SQLDriverConnect establishes the connection by using the connection string which includes other inform

ation required by the data source name, one or more users, one or more passwords and the data sources.

When the connection is established, SQLDriverConnect returns the completed connection string. The app

lication can use this string when requesting the next connection.

Syntax

SQLRETURN SQLDriverConnect(

SQLHDBC ConnectionHandle,

SQLHWND WindowHandle,

SQLCHAR * InConnectionString,

SQLSMALLINT StringLength1,

SQLCHAR * OutConnectionString,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLength2Ptr,

SQLUSMALLINT DriverCompletion);

Arguments

ConnectionHandle

[Input] It is the connection handle.

WindowHandle

[Input] It is the window handle. The application passes the superordinate window handle or a null

pointer, and for the null pointer, SQLDriverConnect does not display the dialog box.

ODBC API References | 2,497

InConnectionString

[Input] It is the full connection string, partial connection string or empty string.

StringLength1

[Input] It is the length of *InConnectionString.

OutConnectionString

[Output] It is the buffer pointer of the completed connection string. If it is successfully connected t

o the target data source, the buffer contains the completed connection string. The application sho

uld allocate a buffer with at least 1,024 characters.

If OutConnectionString is NULL, the total number of returnable characters are returned in StringLe

ngth2Ptr (excluding null termination character).

BufferLength

[Input] It is the length of *OutConnectionString

StringLength2Ptr

[Output] It is the buffer pointer which returns the total number of returnable characters to *OutCo

nnectionString (excluding null termination character). If the returnable length is equal to or bigger

than BufferLength, *OutConnectionString is truncated to the length of BufferLength minus a null-t

ermination character.

DriverCompletion

[Input] It is a flag that indicates whether the driver has to request more information. the value is on

e of SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE, SQL_DRIVER_COMPLETE_REQUIRED, SQL_

DRIVER_NOPROMPT.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, SQL_INVALID_HANDLE, SQL_S

TILL_EXECUTING

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

*OutConnectionString buffer is not large enough to return the entire conne

ction string, so the connection string is truncated. The connection string len

gth not truncated is returned in *StringLength2Ptr. (The function returns S

QL_SUCCESS_WITH_INFO.)

08001

Client unable to

establish connect

ion

The driver can not establish a connection with the data source.

08002
Connection nam

e in use
The specified ConnectionHandle is already connected with a data source.

2,498 | ODBC

08004
Server rejected th

e connection

In the state of the limits of the setting value, the data source rejects to estab

lish the connection.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

28000
Invalid authorizat

ion specification

The user identifier and authentication string of the connection string are not

correct.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY090
Invalid string or b

uffer length

The value of StringLength1 argument is smaller than 0, but it is not SQL_NT

S.

The value of BufferLength argument is smaller than 0.

HY110
Invalid driver com

pletion

The value of DriverCompletion argument is not one of SQL_DRIVER_PROMP

T, SQL_DRIVER_COMPLETE, SQL_DRIVER_COMPLETE_REQUIRED, SQL_DRI

VER_NOPROMPT.

HYC00
Optional feature

not implemented

The driver does not support the ODBC operation which is required by the ap

plication.

HYT00 Timeout expired
Before connecting to the data source, login timeout is expired. The timeout

can be set through SQL_ATTR_LOGIN_TIMEOUT of SQLSetConnectAttr.

SQLSTATE Error Description

Description

The syntax of connection string is as follows.

connection-string ::= empty-string[;] | attribute[;] | attribute; connection-string

empty-string ::=attribute ::= attribute-keyword=attribute-value | DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | PROTOCOL | CS_MODE | HOST | PORT | UID | PWD | ALTERNATE_SERVERS |

FAILOVER_TYPE | FAILOVER_GRANULARITY | DATE_FORMAT | TIME_FORMAT | TIME_WITH_TIME_ZONE_FORMAT

| TIMESTAMP_FORMAT | TIMESTAMP_WITH_TIME_ZONE_FORMAT | CHAR_LENGTH_UNITS | CONN_NAME

attribute-value ::= character-string

character-string is zero or more characters. attribute-keyword is case-insensitive, and attribute-value may

be case-sensitive. The value of DSN keyword does not consist only of white spaces.

The following table describes attribute-keywords.

Keyword Description

DSN It is the data source name.

PROTOCOL It is the connection type (DA, TCP).

CS_MODE

It sets whether to connect with dedicated mode or shared mode.

If the setting is not used, the mode is determined depending on the configuration (DE

ODBC API References | 2,499

FAULT_CS_MODE) of listener.

HOST It is the host IP address.

PORT It is the connection port number.

TCP_NODELAY It is a socket TCP_NODELAY option.

UID It is the user ID.

PWD It is the password for user ID. If password does not exist, it is an empty string (PWD=;).

ALTERNATE_SERVERS

It is a server list which attempts a connection when the failover occurs, and each serve

r is separated with comma (,).

If failover is not used, ALTERNATE_SERVERS is not set.

FAILOVER_TYPE

● CONNECTION: When the connection fails, it is connected to ALTERNATE_SERVE

RS.

● SESSION: When the connection fails or the connection is disconnected during op

erating the statement, it is connected to ALTERNATE_SERVERS and the stateme

nt is restored. The statement is executed after the failover if the connection is di

sconnected when a transaction is not in progress.

FAILOVER_GRANULARITY

● 0: Failover proceeds even when an error occurs during the failover.

● 1: Failover fails when an error occurs except for SQLExeceute(), SQLExecDirect()

during the failover.

● 2: Failover fails when an error occurs during the failover.

DATE_FORMAT It is the DATE type format string.

TIME_FORMAT It is the TIME type format string.

TIME_WITH_TIME_ZONE_F

ORMAT
It is the TIME WITH TIME ZONE type format string.

TIMESTAMP_FORMAT It is the TIMESTAMP type format string.

TIMESTAMP_WITH_TIME_

ZONE_FORMAT
It is the TIMESTAMP WITH TIME ZONE type format string.

CHAR_LENGTH_UNITS

If ParameterType is one of SQL_CHAR or SQL_VARCHAR in SQLBindParameter(), it is

a unit of ColumnSize.

● BYTE, OCTETS: Bytes unit

● CHAR, CHARACTERS: Characters unit

CONN_NAME
It is the connection name used in XA. The specified name is valid only in embedded S

QL program, and is ignored in other programs.

Keyword Description

2,500 | ODBC

SQLEndTran

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLEndTran requests a commit or rollback for active transactions of all statements related to the connecti

on.

Syntax

SQLRETURN SQLEndTran(

SQLSMALLINT HandleType,

SQLHANDLE Handle,

SQLSMALLINT CompletionType);

Arguments

HandleType

[Input] It is the handle identifier. If it is an environment handle it is SQL_HANDLE_ENV, and if it is a

connection handle it is SQL_HANDLE_DBC.

Handle

[Input] It is the handle of HandleType which indicates the transaction range.

CompletionType

[Input] It is SQL_COMMIT or SQL_ROLLBACK.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, SQL_STILL_EXECUTING

Diagnosis

SQLSTATE Error Description

08003
Connection not o

HandleType is SQL_HANDLE_DBC, and a handle is not connected.

ODBC API References | 2,501

pen

HY000 General error It is an error without any specific SQLSTATE.

HY001

Memory allocatio

n

error

It is a memory allocation error.

HY010

Function sequenc

e

error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned,

and the function is called before sending all data-at-execution variables.

HY012

Invalid transactio

n

operation code

The value of CompletionType argument is not one of SQL_COMMIT or SQL_

ROLLBACK.

HY092
Invalid attribute/

option identifier

The value of HandleType argument is not one of SQL_HANDLE_ENV or SQL

_HANDLE_DBC.

SQLSTATE Error Description

Description

If CompletionType is SQL_COMMIT, then SQLEndTran requests the commit for all active transactions of st

atements related to the connection. If CompletionType is SQL_ROLLBACK, then SQLEndTran requests the

rollback for all active transactions of statements related to the connection. If active transaction does not e

xist, SQLEndTran returns SQL_SUCCESS without affecting the data source.

If the driver is a manual commit mode(The SQL_ATTR_AUTOCOMMIT attribute is set to SQL_AUTOCOM

MIT_OFF by calling SQLSetConnectAttr.) and the SQL statement is executed for the current data source, a

new transaction implicitly starts.

SQLEndTran does not affect the open cursor related to the connection when committing. The cursor rem

ains on the row pointed before calling SQLEndTran.

SQLEndTran closes all open cursors on all statements when rolling back. SQLEndTran sets the statement t

o the ready state, and the application does not call SQLPrepare, but it calls SQLExecute.

If an active transaction does not exist, SQLEndTran returns SQL_SUCCESS.

If the driver is an auto commit mode, SQLEndTran always returns SQL_SUCCESS regardless of Completion

Type.

2,502 | ODBC

SQLError

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLError returns an error or status information.

ODBC API References | 2,503

SQLExecDirect

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

If SQLExecDirect has the parameter in the statement, it executs the statement by using the current value

of parameter marker. SQLExecDirect is the fastest way of when the statement is executed only once.

Syntax

SQLRETURN SQLExecDirect(

SQLHSTMT StatementHandle,

SQLCHAR * StatementText,

SQLINTEGER TextLength);

Arguments

StatementHandle

[Input] It is the statement handle.

StatementText

[Input] It is the executed SQL statement.

TextLength

[Input] It is the length of *StatementText.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, SQL_ERROR, SQL

_NO_DATA, SQL_INVALID_HANDLE, SQL_PARAM_DATA_AVAILABLE

2,504 | ODBC

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

The string or binary data returned to the input/output or output parameters

are truncated. The right part of the string is truncated. (The function returns

SQL_SUCCESS_WITH_INFO.)

01S02
Option value

changed

It is temporarily replaced with a similar value because the attribute value of t

he specified statement is not suitable for executing the operation. (SQLGetS

tmtAttr can be called to see which value is temporarily changed.) The replac

ed value is valid until the cursor is closed, and it is changed to the previous v

alue when the cursor is closed.

The statement attributes which can be changed are as follows.

SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE, SQL_ ATTR_KEYSET

_SIZE, SQL_ATTR_MAX_LENGTH, SQL_ATTR_MAX_ROWS, SQL_ ATTR_QUE

RY_TIMEOUT, SQL_ATTR_SIMULATE_CURSOR.

(The function returns SQL_SUCCESS_WITH_INFO.)

07006
Restricted data type

attribute violation

The data value identified by ValueType argument of SQLBindParameter can

not be converted to the data type identified by ParameterType argument of

SQLBindParameter.

The data value returned to the parameter of SQL_PARAM_INPUT_OUTPUT o

r SQL_PARAM_OUTPUT can not be converted to the data type identified by

ValueType argument of SQLBindParameter.

(If one or more rows are successfully returned, the function returns SQL_SU

CCESS_WITH_INFO.)

07007
Restricted parameter

value violation

The parameter type is SQL_PARAM_INPUT_OUTPUT, and *StrLen_or_IndPtr

of SQLBindParameter is not one of SQL_NULL_DATA, SQL_DEFAULT_PARA

M, SQL_LEN_DATA_AT_EXEC(len), or SQL_DATA_AT_EXEC.

08S01
Communication

link failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

22001
String data, right

truncation
The string, or binary data is truncated.

22002

Indicator variable req

uired but not

supplied

NULL data is bound to the output parameter whose of StrLen_or_IndPtr of S

QLBindParameter is the null pointer.

24000
Invalid cursor

state

The cursor is positioned in StatementHandle through SQLFetch, SQLFetchScr

oll.

The cursor is open but it is not positioned in StatementHandle.

*StatementText is the positioned update or delete statement, and the cursor

ODBC API References | 2,505

is positioned before the start or after the end of the result set.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory

allocation error
It is a memory allocation error.

HY009
Invalid use of

null pointer
*StatementText is the null pointer.

HY010
Function sequence er

ror

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

HY090
Invalid string or

buffer length

The argument value of TextLength is smaller than 0, but it is not SQL_NTS.

The parameter value set by SQLBindParameter is the null pointer, and the pa

rameter length is not 0, SQL_NULL_DATA, SQL_DATA_AT_EXEC, SQL_DEFA

ULT_PARAM, or less than SQL_LEN_DATA_AT_EXEC_OFFSET.

The parameter value set by SQLBindParameter is not the null pointer, and C

data type is SQL_C_BINARY or SQL_C_CHAR, and the parameter length is s

maller than 0, but it is not less than SQL_NTS, SQL_NULL_DATA, SQL_DATA

_AT_EXEC, SQL_DEFAULT_PARAM, or equal to or less than SQL_LEN_DATA

_AT_EXEC_OFFSET.

HYT00 Timeout expired

Before returning the result set from the data source, the query timeout is ex

pired. The timeout can be set through SQL_ATTR_QUERY_TIMEOUT of SQLS

etStmtAttr.

SQLSTATE Error Description

Description

The application sends the SQL statement to the data source by calling SQLExecDirect.

The application can include one or more parameter markers in an SQL statement. The application should i

nclude a question mark (?) on the appropriate position of SQL statement to include a parameter marker.

If the SQL statement is the SELECT statement and the application connects the cursor with SQLSetCursor

Name, the driver uses the specified cursor. If the application does not connect the statement and the curs

or, then the driver creates a cursor name.

If the data source is the manual commit mode, and the transaction has not yet been started, the driver st

arts the transaction before sending the SQL statement.

If SQLExecDirect finds the parameter of data-at-execution, it returns SQL_NEED_DATA. The application tr

ansmits data by using SQLParamData and SQLPutData.

If SQLExecDirect executes the statement such as searched update, insert, or delete, but rows have not be

en changed on the data source, then calling SQLExecDirect returns SQL_NO_DATA.

2,506 | ODBC

If the attribute value of SQL_ATTR_PARAMSET_SIZE statement is bigger than 1, and the SQL statement in

cludes at least one parameter marker character, then SQLExecDirect executes the SQL statement once pe

r a parameter set in the array pointed by ParameterValuePtr argument of SQLBindParameter.

ODBC API References | 2,507

SQLExecute

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

If a statement includes a parameter, SQLExecute performs the prepared statement by using the current v

alue of the parameter marker.

Syntax

SQLRETURN SQLExecute(

SQLHSTMT StatementHandle);

Arguments

StatementHandle

[Input] It is the statement handle.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, SQL_ERROR, SQL

_NO_DATA, SQL_INVALID_HANDLE, SQL_PARAM_DATA_AVAILABLE

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

The string or binary data returned to the input/output or output parameters

are truncated. The right part of the string is truncated. (The function returns

SQL_SUCCESS_WITH_INFO.)

01S02
Option value

It is temporarily replaced with a similar value because the attribute value of t

he specified statement is not suitable for executing the operation. (SQLGetS

tmtAttr can be called to see which value is temporarily changed.) The replac

ed value is valid until the cursor is closed, and it is changed to the previous v

alue when the cursor is closed.

2,508 | ODBC

changed

The statement attributes which can be changed are as follows.

SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE, SQL_ ATTR_KEYSET

_SIZE, SQL_ATTR_MAX_LENGTH, SQL_ATTR_MAX_ROWS, SQL_ ATTR_QUE

RY_TIMEOUT, SQL_ATTR_SIMULATE_CURSOR.

(The function returns SQL_SUCCESS_WITH_INFO.)

07006

Restricted data type

attribute

violation

The data value identified by ValueType argument of SQLBindParameter can

not be converted to the data type identified by ParameterType argument of

SQLBindParameter.

The data value returned to the parameter of SQL_PARAM_INPUT_OUTPUT o

r SQL_PARAM_OUTPUT can not be converted to the data type identified by

ValueType argument of SQLBindParameter.

(If one or more rows are successfully returned, the function returns SQL_SU

CCESS_WITH_INFO.)

07007
Restricted parameter

value violation

The parameter type is SQL_PARAM_INPUT_OUTPUT, and *StrLen_or_IndPtr

of SQLBindParameter is not one of SQL_NULL_DATA, SQL_DEFAULT_PARA

M, SQL_LEN_DATA_AT_EXEC(len), or SQL_DATA_AT_EXEC.

08S01
Communication

link failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

22001
String data, right

truncation
The string, or binary data is truncated.

22002

Indicator variable req

uired but not

supplied

NULL data is bound to the output parameter whose of StrLen_or_IndPtr of S

QLBindParameter is the null pointer.

24000
Invalid cursor

state

The cursor is positioned in StatementHandle through SQLFetch, SQLFetchScr

oll.

The cursor is open but it is not positioned in StatementHandle.

*StatementText is the positioned update or delete statement, and the cursor

is positioned before the start or after the end of the result set.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory

allocation error
It is a memory allocation error.

HY009
Invalid use of

null pointer
*StatementText is the null pointer.

HY010
Function sequence er

ror

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

The argument value of TextLength is smaller than 0, but it is not SQL_NTS.

SQLSTATE Error Description

ODBC API References | 2,509

HY090 Invalid string or

buffer length

The parameter value set by SQLBindParameter is the null pointer, and the pa

rameter length is not 0, SQL_NULL_DATA, SQL_DATA_AT_EXEC, SQL_DEFA

ULT_PARAM, or less than SQL_LEN_DATA_AT_EXEC_OFFSET.

The parameter value set by SQLBindParameter is not the null pointer, and C

data type is SQL_C_BINARY or SQL_C_CHAR, and the parameter length is s

maller than 0, but it is not less than SQL_NTS, SQL_NULL_DATA, SQL_DATA

_AT_EXEC, SQL_DEFAULT_PARAM, or equal to or less than SQL_LEN_DATA

_AT_EXEC_OFFSET.

HYT00 Timeout expired

Before returning the result set from the data source, the query timeout is ex

pired. The timeout can be set through SQL_ATTR_QUERY_TIMEOUT of SQLS

etStmtAttr.

SQLSTATE Error Description

Description

SQLExecute executes the statement prepared by SQLPrepare. The application can call SQLExecute again

with the new parameter value after it discards the result of calling SQLExecute.

To execute SELECT statement once or more, the application should call SQLCloseCursor before executing

SELECT statement again.

If the data source is a manual commit mode, and the transaction has not yet been started, the driver start

s the transaction before sending the SQL statement.

If SQLExecute finds a data-at-execution parameter, it returns SQL_NEED_DATA. The application sends da

ta by using SQLParamData and SQLPutData.

If SQLExecute executes the statement such as searched update, insert, or delete, but rows have not been

changed on the data source, calling SQLExecute returns SQL_NO_DATA.

If the attribute value of SQL_ATTR_PARAMSET_SIZE statement is bigger than 1, and the SQL statement in

cludes at least one parameter marker character, then SQLExecute executes the SQL statement once per a

parameter set in the array pointed by ParameterValuePtr argument of SQLBindParameter.

2,510 | ODBC

SQLExtendedFetch

Conformance

Introduced version: ODBC 1.0.

Standards compliance: It is not available.

Overview

SQLExtendedFetch fetches the specified data set from the result set, and returns it to all bound columns.

Syntax

SQLRETURN SQLExtendedFetch(

SQLHSTMT StatementHandle,

SQLUSMALLINT FetchOrientation,

SQLLEN FetchOffset,

SQLULEN * RowCountPtr,

SQLUSMALLINT * RowStatusArray);

ODBC API References | 2,511

SQLFetch

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLFetch fetches the next row set from the result set, and returns it to all columns bound.

Syntax

SQLRETURN SQLFetch(

SQLHSTMT StatementHandle);

Arguments

StatementHandle

[Input] It is the statement handle.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING, SQL_ERROR, SQL_I

NVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

The string, binary data returned for the columns are truncated. The right par

t of the string is truncated.

01S07
Fractional truncat

ion

The data returned for the column is truncated. For numeric data types, the

decimal place is truncated. For time, timestamp, interval data types which c

ontain the period component, the decimal place of time is truncated. (The f

unction returns SQL_SUCCESS_WITH_INFO.)

07006

Restricted data ty

pe attribute viola

tion

The column data value in the result set can not be converted to the data typ

e specified by TargetType of SQLBindCol.

2,512 | ODBC

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

22002

Indicator variable

required but not

supplied

StrLen_or_IndPtr (or SQL_DESC_INDICATOR_PTR set by SQLSetDescField or

SQLSetDescRec) of SQLBindCol fetches NULL data to the column which is th

e null pointer.

22003
Numeric value ou

t of range

The integer part (not the decimal place) of the numerical value returned fro

m one or more columns is truncated.

22007
Invalid datetime f

ormat
The string in the result set is not the valid date, time, timestamp format.

22012 Division by zero The result of the arithmetic expression divided by 0 is returned.

22015
Interval field over

flow

When the interval C type is specified in the exact numeric or interval SQL da

ta type, the significant figures in the leading field is lost.

The value of SQL type can not be expressed to C interval type.

22018

Invalid character

value for cast spe

cification

The character not represented as the character set of C buffer is included in

the character column of the result set.

The C type is the exact or approximate numeric, datetime, interval data type,

and if the SQL type is the character data type, the value of the column boun

d to the C type is not valid.

24000
Invalid cursor stat

e

StatementHandle is executed but the result set related to StatementHandle

does not exist.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY010
Function sequenc

e error

The StatementHandle specified is not at the state of running. The function i

s called without calling SQLExecDirect, SQLExecute, the catalog function.

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

HYT00 Timeout expired

Before returning the result set from the data source, the query timeout is ex

pired. The timeout can be set through SQL_ATTR_QUERY_TIMEOUT of SQL

SetStmtAttr.

SQLSTATE Error Description

Description

SQLFetch returns the next data set from the result set. SQLFetch can be called while the result set exists,

which is after the result set is created and before the cursor is closed. If the column is bound, the data is r

eturned to the column. If the application specifies the pointer to a row status array or specifies the buffer

which returns the number of fetched rows, SQLFetch also returns this information. SQLFetch and SQLFetc

hScroll can be called being mixed together.

ODBC API References | 2,513

Cursor Position

If the result set is generated, the cursor is positioned before the start of result set. SQLFetch fetches the n

ext row set. It is as same as calling SQLFetchScroll which FetchOrientation is set to SQL_FETCH_NEXT.

The attribute of SQL_ATTR_ROW_ARRAY_SIZE statement specifies the number of rows in the row set. If t

he row set fetched by SQLFetch overlaps with the end of result set, SQLFetch returns a partial row set. If S

is the start row of fetched row set, R is the size of row set, L is the last row of result set, S + R - 1 is bigger

than L, then only the first L - S + 1 rows of row set is valid. All remaining rows are empty, and it becomes

the SQL_ROW_NOROW state.

After returning SQLFetch, the current row is the first row of row set.

The rules in the following table describes the cursor position according to the conditions in the second ta

ble of the session after calling SQLFetch.

Status The first row of new row set

Before start 1

CurrRowsetStart <= LastResultRow – RowsetSize[1] CurrRowsetStart + RowsetSize[2]

CurrRowsetStart > LastResultRow - RowsetSize[1] After end

After end After end

[1] If the row set size is changed during fetching, the row set size is the row set size used before fetching.

[2] If the row set size is changed during fetching, the row set size is the row set size used in new fetch.

Notation Description

Before start
The block cursor is positioned before the start of result set. If the first row of new row

set is before the start of result set, SQLFetch returns SQL_NO_DATA.

After end
The block cursor is positioned after the end of result set. If the first row of new row se

t is after the end of result set, SQLFetch returns SQL_NO_DATA.

CurrRowsetStart It is the first row number of the current row set.

LastResultRow It is the last row number of result set.

RowsetSize It is the row set size.

The following is an example of when 100 rows exist in the result set and the row set size is 5, then the fol

lowing table describes the row set and the return code returned by SQLFetch for the different start positi

on.

Current

row set
Return code New row set

The number of

fetched rows

Before start SQL_SUCCESS 1 to 5 5

1 to 5 SQL_SUCCESS 6 to 10 5

52 to 56 SQL_SUCCESS 57 to 61 5

2,514 | ODBC

91 to 95 SQL_SUCCESS 96 to 100 5

93 to 97 SQL_SUCCESS
98 to 100

4,5 rows of the row status array are set to SQL_ROW_NOROW.
3

96 to 100 SQL_NO_DATA None 0

99 to 100 SQL_NO_DATA None 0

After end SQL_NO_DATA None 0

Current

row set
Return code New row set

The number of

fetched rows

Returing the Data in the Bound Column

Like as SQLFetch returns each row, it inserts the data into each bound column in the buffer bound to the

column. If the bound column does not exist, SQLFetch does not return any data, but it does not move the

cursor forward. Data can be continuously fetched through SQLGetData. If the cursor is a multiple row cur

sor (SQL_ATTR_ROW_ARRAY_SIZE is bigger than 1.), SQLGetData can be called when after setting InfoT

ype of SQLGetInfo to SQL_FETDATA_EXTENSIONS, or when returning SQL_GD_BLOCK.

For more information, refer to SQLGetData.

SQLFetch executes the followings for each bound columns in the row.

1. If data is NULL, the length/indicator buffer is set to SQL_NULL_DATA and the next row is processed. I

f the data is NULL and the length/indicator buffer is not bound, SQLFetch returns SQLSTATE 22002

(Indicator variable required but not supplied) for the row and the next row to be processed. For mor

e information about how to determine the address of the length/indicator, refer to Buffer Address o

f SQLBindCol. If the column data is not NULL, SQLFetch executes the process number 2.

2. If the attribute of SQL_ATTR_MAX_LENGTH statement is set to non-zero and the column includes th

e character or binary data, the data is truncated to the length of SQL_ATTR_MAX_LENGTH in bytes.

Note

The attribute of SQL_ATTR_MAX_LENGTH statement is intended to reduce network traffic. It is us

ually implemented by the data source, and the data is truncated before the data is returned from t

he network. Drivers and data sources are not required to support it. Therefore, the application sho

uld specify the size to cbValueMax argument of SQLBindCol and creates the buffer to guarantee t

hat the data is truncated to the specific size.

3. The data is converted to the format specified in TargetType of SQLBindCol.

4. If the data is converted to the variable length data type such as a string or binary, SQLFetch confirms

if the data length exceeds the data buffer length. If the character data (including NULL termination c

ODBC API References | 2,515

haracter) exceeds the data buffer length, SQLFetch truncates the data to the data buffer length whic

h is smaller than NULL termination character length. In this case, the data is terminated by NULL. If t

he binary data length exceeds the data buffer length, SQLFetch truncates the data to the data buffer

length. The data buffer length is specified in BufferLength of SQLBindCol. SQLFetch never truncate t

he data converted to the fixed length data format because the data buffer length is always equal to t

he data type length.

5. The converted data (truncated data if possible) is put in the data buffer. For more information about

how to determine the data buffer address, refer to Buffer Address of SQLBindCol.

6. The data length is put in the length/indicator buffer. If both the length pointer and indicator pointer

are set in the same buffer (by calling SQLBindCol), the valid data length is recorded in the buffer, an

d SQL_NULL_DATA is recorded in the buffer if the data is NULL. If the length/indicator buffer is not b

ound, SQLFetch does not return the length.

● For the character or binary data, it is the data length before truncated after the data is converted bec

ause of too small buffer size. If the driver can not determine the length of too long data after convers

ion, the length is set to SQL_NO_TOTAL. If the data is truncated due to the attribute of SQL_ATTR_M

AX_LENGTH statement, this attribute value is put in the length/indicator buffer instead of the actual l

ength. It is because the attribute is designed to truncate the data in the server before conversion. So,

the driver can not calculate the actual length.

● For all other data types, it is the data length after conversion.

7. If the data is truncated without any lost of significant digits during conversion(for example, the real

number 1.234 is converted into 1 by truncation.), SQLFetch returns SQLSTATE 01S07(Fractional trun

cation) and SQL_SUCCESS_WITH_INFO. If the data is truncated because the data buffer length is too

small (For example the string "abcdef" is put in the buffer of four bytes.), SQLFetch returns SQLSTAT

E 01004 (Data truncated) and SQL_SUCCESS_WITH_INFO. If the data is truncated because of the att

ribute of SQL_ATTR_MAX_LENGTH statement, SQLFetch returns SQL_SUCCESS and it does not retur

n SQLSTATE 01S07(Fractional truncation) nor SQLSTATE 01004(Data truncated). If the significant di

gits of data is truncated while the data is converted (for example, the value of SQL_INTEGER which i

s bigger than 100,000 is converted into SQL_C_TINYINT.), SQLFetch returns SQLSTATE 22003(Nume

ric value out of range), SQL_ERROR (If the row set size is 1.) or SQL_SUCCESS_WITH_INFO (If the ro

w set size is bigger than 1.).

If SQLFetch, SQL_SUCCESS of SQLFetchScroll, or SQL_SUCCESS_WITH_INFO is not returned, then the con

tents of the bound data buffer and the length/indicator buffer are not defined.

Row Status Array

The row status array is used to return the status of each row set. The array address is specified in the attri

bute of SQL_ATTR_ROW_STATUS_PTR statement. The array should assign the elements as many as specif

ied by the attribute of SQL_ATTR_ROW_ARRAY_SIZE statement in the application. The value is set by SQL

Fetch, SQLFetchScroll, SQLBulkOperations or SQLSetPos. If the attribute value of SQL_ATTR_ROW_STATU

S_PTR statement is the null pointer, the function does not return the row status.

2,516 | ODBC

The content of row status buffer is not defined if SQL_SUCCESS or SQL_SUCCESS_WITH_INFO is not retu

rned by SQLFetch, SQLFetchScroll.

The following values are returned to the row status array.

The value of

row status array
Description

SQL_ROW_SUCCESS
The row is successfully fetched, and it is not changed after the last fetch from the resu

lt set.

SQL_ROW_SUCCESS_WIT

H_INFO

The row is successfully fetched, and it is not changed after the last fetch from the resu

lt set. But the warning about the row is returned.

SQL_ROW_ERROR An error occurs while the row is fetched.

SQL_ROW_UPDATED

The row is successfully fetched, and it is changed after the last fetch from the result se

t. If the row is fetched again or it is refreshed by SQLSetPos. Status is changed to the

new row status.

SQL_ROW_DELETED It is deleted after the row is fetched last from the result set.

SQL_ROW_NOROW
The row set is overlapped with the end of result set, and returns that there is not a ro

w.

Row Fetch Buffer

The row fetch buffer is used to return the number of fetched rows. When the data is fetched, the row wi

thout data due to an error is also included. It is the number of rows which is not SQL_ROW_NOROW valu

e in the row status array. This buffer address is specified in the arribute of SQL_ATTR_ROWS_FETCHED_P

TR statement. The buffer is allocated by the application, and it is set by SQLFetch, SQLFetchScroll. If the at

tribute value of SQL_ATTR_ROWS_FETCHED_PTR statement is the null pointer, the function does not ret

urn the number of fetched rows. The application calls SQLGetStmtAttr as the attribute of SQL_ATTR_RO

W_NUMBER to determine the number of current rows in the result set.

The content of row fetch buffer is not defined if SQLFetch, SQLFetchScroll does not return SQL_SUCCESS

or SQL_SUCCESS_WITH_INFO. If SQL_NO_DATA is returned, the value of row fetch buffer is set to 0.

Error Processing

Errors and warnings can be applied to the individual row or the entire function.

Error and Warning for Entire Function

If the error is applied to the entire function, like as SQLSTATE HYT00 (Timeout expired) or SQLSTATE 240

00 (Invalid cursor state), SQLFetch returns SQL_ERROR and the corresponding SQLSTATE. The content of

row buffer is not defined and the cursor position is not changed.

If the warning is applied to the entire function, SQLFetch returns SQL_SUCCESS_WITH_INFO and the corr

esponding SQLSTATE. The warning applied to the entire function is returned before the state is recorded

to each row.

ODBC API References | 2,517

Error and Warning for Individual Row

The error such as SQLSTATE 22012 (division by zero) or the warning such as SQLSTATE 01004 (data trun

cated) is applied to the individual row.

SQLFetch executes the followings.

● It sets the element of row status array to SQL_ROW_ERROR for an error or SQL_ROW_SUCCESS_WIT

H_INFO for a warning.

● It adds one or more records which includes SQLSTATE for the error or warnig.

● It sets the row and column number fields in the status record. If SQLFetch can not determine the row

or column number, it sets each number to SQL_ROW_NUMBER_UNKNOWN or SQL_COLUMN_NUM

BER_UNKNOWN. If the status record is not applied to the specified column, SQLFetch sets the colum

n number to SQL_NO_COLUMN_NUMBER.

If an error occurs in all rows of the row set (excluding the row in SQL_ROW_NOROW status), SQLFetch re

turns SQL_ERROR. If an error occurs in some rows, it returns SQL_SUCCESS_WITH_INFO. If the row set siz

e is 1 and an error occurs in the row, SQLFetch returns SQL_ERROR.

Descriptor and SQLFetch

SQLFetch uses the following descriptor fields.

Descriptor field Descriptor
Field

location
Setting

SQL_DESC_ARRAY_SIZE ARD header
SQL_ATTR_ROW_ARRAY_SIZE statement att

ribute

SQL_DESC_ARRAY_STATUS_PTR IRD header
SQL_ATTR_ROW_STATUS_PTR statement att

ribute

SQL_DESC_BIND_OFFSET_PTR ARD header
SQL_ATTR_ROW_BIND_OFFSET_PTR statem

ent attribute

SQL_DESC_BIND_TYPE ARD header
SQL_ATTR_ROW_BIND_TYPE statement attri

bute

SQL_DESC_COUNT ARD header ColumnNumber argument of SQLBindCol

SQL_DESC_DATA_PTR ARD record TargetValuePtr argument of SQLBindCol

SQL_DESC_INDICATOR_PTR ARD record StrLen_or_IndPtr argument of SQLBindCol

SQL_DESC_OCTET_LENGTH ARD record BufferLength argument of SQLBindCol

SQL_DESC_OCTET_LENGTH_PTR ARD record StrLen_or_IndPtr argument of SQLBindCol

SQL_DESC_ROWS_PROCESSED_

PTR
IRD record

SQL_ATTR_ROWS_FETCHED_PTR statement

attribute

SQL_DESC_TYPE ARD record TargetType argument of SQLBindCol

All descriptor fields can be set through SQLSetDescField.

2,518 | ODBC

Separating Length and Indicator Buffer

The application can bind one or two buffers to store the length and indicator value. If the application call

s SQLBindCOl, SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR field of ARD is set in th

e address passed to StrLen_or_IndPtr argument. The application can set the two fields to another address

es by calling SQLSetDescField or SQLSetDescRec.

SQLFetch determines whether the application specifies a separate length and indicator buffer. If the data

is not NULL, SQLFetch sets the indicator buffer to 0, and returns the length to the length buffer. If the dat

a is NULL, SQLFetch sets the indicator buffer to SQL_NULL_DATA, and it does not modify the length buff

er.

ODBC API References | 2,519

SQLFetchScroll

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLFetchScroll fetches the specified data set from the result set, and returns it to all bound columns.

Syntax

SQLRETURN SQLFetchScroll(

SQLHSTMT StatementHandle,

SQLSMALLINT FetchOrientation,

SQLLEN FetchOffset);

Arguments

StatementHandle

[Input] It is the statement handle.

FetchOrientation

[Input] It is the fetch type: SQL_FETCH_NEXT, SQL_FETCH_PRIOR, SQL_FETCH_FIRST, SQL_FETCH_

LAST, SQL_FETCH_ABSOLUTE, SQL_FETCH_RELATIVE, SQL_FETCH_BOOKMARK

FetchOffset

[Input] It is the number of rows to fetch. The interpretation of this argument depends on the value

of FetchOrientation argument.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING, SQL_ERROR, SQL_I

NVALID_HANDLE

2,520 | ODBC

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

The string, binary data returned for the columns are truncated. The right par

t of the string is truncated.

01S07
Fractional truncat

ion

The data returned for the column is truncated. For numeric data types, the

decimal place is truncated. For time, timestamp, interval data types which c

ontain the period component, the decimal place of time is truncated. (The f

unction returns SQL_SUCCESS_WITH_INFO.)

07006

Restricted data ty

pe attribute viola

tion

The column data value in the result set can not be converted to the data typ

e specified by TargetType of SQLBindCol.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

22002

Indicator variable

required but not

supplied

StrLen_or_IndPtr (or SQL_DESC_INDICATOR_PTR set by SQLSetDescField or

SQLSetDescRec) of SQLBindCol fetches NULL data to the column which is th

e null pointer.

22003
Numeric value ou

t of range

The integer part (not the decimal place) of the numerical value returned fro

m one or more columns is truncated.

22007
Invalid datetime f

ormat
The string in the result set is not the valid date, time, timestamp format.

22012 Division by zero The result of the arithmetic expression divided by 0 is returned.

22015
Interval field over

flow

When the interval C type is specified in the exact numeric or interval SQL da

ta type, the significant figures in the leading field is lost.

The value of SQL type can not be expressed to C interval type.

22018

Invalid character

value for cast spe

cification

The character not represented as the character set of C buffer is included in

the character column of the result set.

The C type is the exact or approximate numeric, datetime, interval data type,

and if the SQL type is the character data type, the value of the column boun

d to the C type is not valid.

24000
Invalid cursor stat

e

StatementHandle is executed but the result set related to StatementHandle

does not exist.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY010
Function sequenc

e error

The StatementHandle specified is not at the state of running. The function i

s called without calling SQLExecDirect, SQLExecute, the catalog function.

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

The value specified to FetchOrientation argument is not valid.

ODBC API References | 2,521

HY106 Fetch type out of

range

The attribute value of SQL_ATTR_CURSOR_TYPE statement is SQL_CURSOR

_FORWARD_ONLY, and the value of FetchOrientation argument is not SQL_

FETCH_NEXT.

The attribute value of SQL_ATTR_CURSOR_SCROLLABLE statement is SQL_

NONSCROLLABLE, and the value of FetchOrientation argument is not SQL_F

ETCH_NEXT.

HYT00 Timeout expired

Before returning the result set from the data source, the query timeout is ex

pired. The timeout can be set through SQL_ATTR_QUERY_TIMEOUT of SQL

SetStmtAttr.

SQLSTATE Error Description

Description

SQLFetchScroll returns the specified row set in the result set. The row set is set as the absolute or relative

position or the bookmark position. SQLFetchScroll can be called while the result set exists, which is after t

he result set is created and before the cursor is closed. If the column is bound, the data is returned to the

column. If the application specifies the pointer to a row status array or specifies the buffer which returns r

ows fetched, SQLFetchScroll also returns this information. SQLFetch and SQLFetchScroll can be called bei

ng mixed together.

Cursor Position

If the result set is created, the cursor is positioned before the start of result set. SQLFetchScroll positions t

he block cursor according to FetchOrientation argument and FetchOffset argument as follows. The follo

wing rules are used to determine the beginning of new row set.

FetchOrientation Description

SQL_FETCH_NEXT
It returns the next row set. it is as same as calling SQLFetch.

SQLFetchScroll ignores the value of FetchOffset.

SQL_FETCH_PRIOR
It returns the previous row set.

SQLFetchScroll ignores the value of FetchOffset.

SQL_FETCH_RELATIVE It returns the row set of FetchOffset at the beginning of current row set.

SQL_FETCH_ABSOLUTE It returns the row set starting at FetchOffset.

SQL_FETCH_FIRST
It returns the first row set in the result set.

SQLFetchScroll ignores the value of FetchOffset.

SQL_FETCH_LAST
It returns the last complete row set in the result set.

SQLFetchScroll ignores the value of FetchOffset.

SQL_FETCH_BOOKMARK
It returns the row set of FetchOffset on the bookmark specified by the attribute of SQ

L_ATTR_FETCH_BOOKMARK_PTR statement.

The attribute of SQL_ATTR_ROW_ARRAY_SIZE statement specifies the number of rows of the row set. If

2,522 | ODBC

the row set fetched by SQLFetchScroll overlaps with the end of result set, SQLFetchScroll returns a partial

row set. If S is the start row of fetched row set, R is the row set size, L is the last row of result set, S + R -

1 is bigger than L, and the first L - S + 1 rows of row set is valid. All remaining rows are empty, and it bec

omes SQL_ROW_NOROW state.

After returning SQLFetchScroll, the current row is the first row of row set.

Cursor Position Rules

The following chapters describe rules for each FetchOrientation. The following notations are used for the

rules.

Notation Meaning

Before start
The block cursor is positioned before the start of result set. If the first row of the new

row set is before the start of the result set, SQLFetchScroll returns SQL_NO_DATA.

After end
The block cursor is positioned after the end of result set. If the first row of the new ro

w set is after the end of the result set, SQLFetchScroll returns SQL_NO_DATA.

CurrRowsetStart It is the first row number of current row set.

LastResultRow It is the last row number of result set.

RowsetSize It is the row set size.

FetchOffset It is the value of FetchOffset argument.

BookmarkRow
It is the row which corresponds to the bookmark specified by the attribute of SQL_AT

TR_FETCH_BOOKMARK_PTR statement.

SQL_FETCH_NEXT

The following rule is applied.

State The first row of the new row set

Before start 1

CurrRowsetStart + RowsetSize[1] <= LastResultRow CurrRowsetStart + RowsetSize[1]

CurrRowsetStart + RowsetSize[1] > LastResultRow After end

After end After end

[1] If the row set size is changed during fetching the row set size is the row set size used before fetching.

SQL_FETCH_PRIOR

The following rule is applied.

State The first row of the new row set

Before start Before start

CurrRowsetStart = 1 Before start

1 < CurrRowsetStart <= RowsetSize[1] 1

ODBC API References | 2,523

CurrRowsetStart > RowsetSize[1] CurrRowsetStart – RowsetSize[1]

After end AND LastResultRow < RowsetSize[1] 1

After end AND LastResultRow >= RowsetSize[1] LastResultRow – RowsetSize + 1[1]

State The first row of the new row set

[1] If the row set size is changed during fetching, the row set size is the row set size used in new fetch.

SQL_FETCH_RELATIVE

The following rule is applied.

State
The first row of

the new row set

(Before start AND FetchOffset > 0) OR (After end AND FetchOffset < 0) __ [1]

BeforeStart AND FetchOffset <= 0 Before start

CurrRowsetStart = 1 AND FetchOffset < 0 Before start

CurrRowsetStart > 1 AND CurrRowsetStart + FetchOffset < 1 AND | FetchOffset | > Ro

wsetSize[2]
Before start

CurrRowsetStart > 1 AND CurrRowsetStart + FetchOffset < 1 AND | FetchOffset | <= R

owsetSize[2]
1

1 <= CurrRowsetStart + FetchOffset <= LastResultRow
CurrRowsetStart + FetchOf

fset

CurrRowsetStart + FetchOffset > LastResultRow After end

After end AND FetchOffset >= 0 After end

[1] SQLFetchScroll returns the row set as same as when FetchOrientation is set to SQL_FETCH_ABSOLUTE

and it is called.

[2] If the row set size is changed during fetching, the row set size is the row set size used in new fetch.

SQL_FETCH_ABSOLUTE

The following rule is applied.

State
The first row of

the new row set

FetchOffset < 0 AND | FetchOffset | <= LastResultRow LastResultRow + FetchOffset + 1

FetchOffset < 0 AND | FetchOffset | > LastResultRow AND | FetchOffset | >

RowsetSize[1]
Before start

FetchOffset < 0 AND | FetchOffset | > LastResultRow AND | FetchOffset |

<= RowsetSize[1]
1

FetchOffset = 0 Before start

1 <= FetchOffset <= LastResultRow FetchOffset

FetchOffset > LastResultRow After end

2,524 | ODBC

[1] If the row set size is changed during fetching, the row set size is the row set size used in new fetch.

SQL_FETCH_FIRST

The following rule is applied.

State The first row of the new row set

Any 1

SQL_FETCH_LAST

The following rule is applied.

State The first row of the new row set

RowsetSize[1]<= LastResultRow LastResultRow – RowsetSize + 1[1]

RowsetSize[1]> LastResultRow 1

[1]If the row set size is changed during fetching, the row set size is the row set size used in new fetch.

SQL_FETCH_BOOKMARK

The following rule is applied.

State The first row of the new row set

BookmarkRow + FetchOffset < 1 Before start

1 <= BookmarkRow + FetchOffset <= LastResultRow BookmarkRow + FetchOffset

BookmarkRow + FetchOffset > LastResultRow After end

Buffer Address

SQLFetchScroll determines the data address and length/indicator buffer address in the same way as SQLF

etch. For more information, refer to Buffer Address of SQLBindCol.

Row Status Array

SQLFetchScroll sets the row status array in the same way as SQLFetch. For more information, refer to Ro

w Status Array of SQLFetch.

Row Fetch Buffer

SQLFetchScroll returns the number of rows fetched in the same way as SQLFetch. For more information, r

efer to Row Fetch Buffer of SQLFetch.

ODBC API References | 2,525

Error Processing

SQLFetchScroll returns the errors and warning in the same way as SQLFetch. For more information, refer t

o Error Processing of SQLFetch.

2,526 | ODBC

SQLForeignKeys

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLForeignKeys returns the followings.

● The foreign key list of the specified table (the column in the specified table which refers to the the pri

mary key of another table)

● The foreign key list of another table which refers to the primary key of the specified table

The driver returns each list as the result set.

Syntax

SQLRETURN SQLForeignKeys(

SQLHSTMT StatementHandle,

SQLCHAR * PKCatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * PKSchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * PKTableName,

SQLSMALLINT NameLength3,

SQLCHAR * FKCatalogName,

SQLSMALLINT NameLength4,

SQLCHAR * FKSchemaName,

SQLSMALLINT NameLength5,

SQLCHAR * FKTableName,

SQLSMALLINT NameLength6);

Arguments

StatementHandle

[Input] It is the statement handle.

ODBC API References | 2,527

PKCatalogName

[Input] It is the primary key table catalog name. PKCatalogName can not include the string search

pattern.

If the attribute of SQL_ATTR_METADATA_ID statement is set to SQL_TRUE, then PKCatalogName i

s treated as a case-insensitive identifier. If it is set to SQL_FALSE, then PKCatalogName is case-sensi

tive, and it is an ordinary argument literally processed.

NameLength1

[Input] It is the length of *PKCatalogName

PKSchemaName

[Input] It is the primary key table schema name. PKSchemaName can not include the string search

pattern.

If the attribute of SQL_ATTR_METADATA_ID statement is set to SQL_TRUE, then PKSchemaName i

s treated as a case-insensitive identifier. If it is set to SQL_FALSE, then PKSchemaName is case-sensi

tive, and it is an ordinary argument literally processed.

NameLength2

[Input] It is the length of *PKSchemaName

PKTableName

[Input] It is the primary key table name. PKTableName can not include the string search pattern.

If the attribute of SQL_ATTR_METADATA_ID statement is set to SQL_TRUE, then PKTableName is t

reated as a case-insensitive identifier. If it is set to SQL_FALSE, then PKTableName is case-sensitive,

and it is an ordinary argument literally processed.

NameLength3

[Input] It is the length of *PKTableName

FKCatalogName

[Input] It is the foreign key table catalog name. FKCatalogName can not include the string search p

attern.

If the attribute of SQL_ATTR_METADATA_ID statement is set to SQL_TRUE, then FKCatalogName i

s treated as a case-insensitive identifier. If it is set to SQL_FALSE, then FKCatalogName is case-sensi

tive, and it is an ordinary argument literally processed.

NameLength4

[Input] It is the length of *FKCatalogName

FKSchemaName

[Input] It is the foreign key table schema name. FKSchemaName can not include the string search p

attern.

If the attribute of SQL_ATTR_METADATA_ID statement is set to SQL_TRUE, FKSchemaName is trea

ted as a case-insensitive identifier. If it is set to SQL_FALSE, FKSchemaName is case-sensitive, and it

is an ordinary argument literally processed.

2,528 | ODBC

NameLength5

[Input] It is the length of *FKSchemaName

FKTableName

[Input] It is the foreign key table name. FKTableName can not include the string search pattern.

If the attribute of SQL_ATTR_METADATA_ID statement is set to SQL_TRUE, then FKTableName is t

reated as a case-insensitive identifier. If it is set to SQL_FALSE, FKTableName is case-sensitive, and i

t is an ordinary argument literally processed.

NameLength6

[Input] It is the length of *FKTableName

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

24000
Invalid cursor stat

e
SQLFetch, SQLFetchScroll are called and a cursor is open.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY009
Invalid use of null

pointer

The PKTableName argument and FKTableName argument are the null point

er.

The attribute value of SQL_ATTR_METADATA_ID statement is SQL_TRUE, a

nd the arguments of PKSchemaName, FKSchemaName, PKTableame or FKT

ableame are the null pointer.

HY010
Function sequenc

e error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

HY090
Invalid string or b

uffer length
A name length argument value is smaller than 0, but it is not SQL_NTS.

HYT00 Timeout expired

Before returning the result set from the data source, the query timeout is ex

pired. The timeout can be set through SQL_ATTR_QUERY_TIMEOUT of SQL

SetStmtAttr.

ODBC API References | 2,529

Description

If *PKTableName includes the table name, SQLForeignKeys returns a result set which includes the primary

key of the specified table and all foreign keys referring it. The foreign key list of another table does not in

clude the foreign key pointing to the unique constraint on the specified table.

If *FKTableName includes the table name, SQLForeignKeys returns the result set which contains the forei

gn key in the specified table pointing to the primary key of another table, and returns its primary key of a

nother table which is referenced by them.

If both *PKTableName and *FKTableName include the table name, SQLForeignKeys returns the foreign k

ey of the table specified in *FKTableName which refers to the primary key of the table specified in *PKTa

bleName. The key should be one.

SQLForeignKeys returns the standard result set. If the foreign key related to the primary key is requested,

the result set is sorted as FKTABLE_CAT, FKTABLE_SCHEM, FKTABLE_NAME, KEY_SEQ. If the primary key

related to the foreign key is requested, the result set is sorted as PKTABLE_CAT, PKTABLE_SCHEM, PKTA

BLE_NAME, KEY_SEQ.

The following table describes the columns of result set.

Column na

me

Column

number
Data type Description

PKTABLE_C

AT (ODBC 1

.0)

1 VARCHAR It is the primary key table catalog name.

PKTABLE_S

CHEM (ODB

C 1.0)

2 VARCHAR It is the primary key table schema name.

PKTABLE_N

AME (ODBC

1.0)

3
VARCHAR n

ot NULL
It is the primary key table name.

PKCOLUMN

_NAME (OD

BC 1.0)

4
VARCHAR n

ot NULL

It is the primary key column name. The driver returns an empty string f

or a column which does not have a name.

FKTABLE_C

AT (ODBC 1

.0)

5 VARCHAR It is the foreign key table catalog name.

FKTABLE_SC

HEM (ODBC

1.0)

6 VARCHAR It is the foreign key table schema name.

FKTABLE_N

AME (ODBC

1.0)

7
VARCHAR n

ot NULL
It is the foreign key table name.

FKCOLUMN
VARCHAR n It is the foreign key column name. The driver returns an empty string fo

2,530 | ODBC

_NAME (OD

BC 1.0)

8 ot NULL r a column which does not have a name.

KEY_SEQ (O

DBC 1.0)
9

SMALLINT n

ot NULL
It is the column sequential number of the key starting from 1.

UPDATE_RU

LE (ODBC 1.

0)

10 SMALLINT

It is the operation applied to the foreign key when the SQL operation is

UPDATE. (The referenced table has the primary key, and the referring t

able has the foreign key.)

● SQL_CASCADE: If the primary key of referencing table is updated,

the foreign key of the referring table is also updated.

● SQL_NO_ACTION: If a row in the referring table does not corresp

onds to the referenced table when updating the primary key of th

e referenced table, the update is rejected. If the foreign key updat

e of the referring table does not exist as the value of the primary

key of the referenced table, the update is rejected.

● SQL_SET_NULL: If one or more rows in the referenced table are u

pdated in a way that one or more components of the primary key

are changed, the components of the foreign key in the referring t

able which corresponds to the changed components of the prima

ry key are set to NULL in all matching rows of the referring table.

● SQL_SET_DEFAULT: If one or more rows in the referenced table ar

e updated in a way that one or more components of the primary

key are changed, the components of the foreign key in the referri

ng table which corresponds to the changed components of the pr

imary key are set to the default value in all matching rows of the r

eferring table.

DELETE_RUL

E (ODBC 1.0

)

11 SMALLINT

It is the operation applied to the foreign key when the SQL operation is

DELETE. (The referenced table has the primary key, and the referring ta

ble has the foreign key.)

● SQL_CASCADE: If the primary key of referenced table is deleted, t

he foreign key of the referring table is also deleted.

● SQL_NO_ACTION: If a row in the referring table does not corresp

onds to the referenced table when deleting the primary key of the

referenced table, the update is rejected.

● SQL_SET_NULL: If one or more rows of the referenced table are d

eleted, each components of the foreign key of the referring table

is set to NULL in all matching rows of the referring table.

● SQL_SET_DEFAULT: If one or more rows of the referenced table a

Column na

me

Column

number
Data type Description

ODBC API References | 2,531

re deleted, each component of the foreign key of the referencing

table is set to the applicable default in all matching rows of the re

ferencing table.

FK_NAME

(ODBC 2.0)
12 VARCHAR It is the foreign key name.

PK_NAME

(ODBC 2.0)
13 VARCHAR It is the primary key name.

DEFERRABIL

ITY (ODBC 3

.0)

14 SMALLINT
SQL_INITIALLY_DEFERRED, SQL_INITIALLY_IMMEDIATE, SQL_NOT_DE

FERRABLE.

Column na

me

Column

number
Data type Description

2,532 | ODBC

SQLFreeConnect

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLFreeConnect function is replaced with SQLFreeHandle function in ODBC 3.x.

For more information, refer to SQLFreeHandle.

ODBC API References | 2,533

SQLFreeEnv

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLFreeEnv function is replaced with SQLFreeHandle function in ODBC 3.x.

For more information, refer to SQLFreeHandle.

2,534 | ODBC

SQLFreeHandle

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLFreeHandle releases the resources related to the specified environment, connection, statement, and d

escriptor handles.

Syntax

SQLRETURN SQLFreeHandle(

SQLSMALLINT HandleType,

SQLHANDLE Handle);

Arguments

HandleType

[Input] It is the handle type to be released by using SQLFreeHandle. It should be one of SQL_HAND

LE_DBC, SQL_HANDLE_DESC, SQL_HANDLE_ENV, SQL_HANDLE_STMT.

If HandleType is not one of the values above, SQLFreeHandle returns SQL_INVALID_HANDLE.

Handle

[Input] It is the handle to be released.

Returns

SQL_SUCCESS, SQL_ERROR, SQL_INVALID_HANDLE.

If SQLFreeHandle returns SQL_ERROR, the handle is still valid.

Diagnosis

SQLSTATE Error Description

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

It is a memory allocation error.

ODBC API References | 2,535

n error

HY010
Function

sequence error

HandleType argument is SQL_HANDLE_ENV, and at least one connection is

assigned or connected. Before calling SQLFreeHandle whose HandleType ar

gument is SQL_HANDLE_ENV, SQLDisconnect and SQLFreeHandle argumen

t whose HandleType argument is SQL_HANDLE_DBC should be called.

HandleType argument is SQL_HANDLE_DBC, the function is called before S

QLDisconnect is called.

HandleType argument is SQL_HANDLE_STMT, after calling SQLExecute, SQL

ExecDirect, then SQL_NEED_DATA is returned and the function is called bef

ore sending all data-at-execution variables.

SQLSTATE Error Description

Description

SQLFreeHandle is used to release the environment, connection, statement, descriptor handles.

After the handle is released, the application can not use the released handle.

Releasing the Environment Handle

Before calling SQLFreeHandle whose HandleType is SQL_HANDLE_ENV, the application should call SQLFr

eeHandle whose HandleType is SQL_HANDLE_DBC for all connection allocated from the environment. Ot

herwise, SQLFreeHandle returns SQL_ERROR, and the environment and active connection remain valid.

Releasing the Connection Handle

Before calling SQLFreeHandle whose HandleType is SQL_HANDLE_DBC, if the handle is connected, the ap

plication should call SQLDisconnect. Otherwise, SQLFreeHandle returns SQL_ERROR, and the connection

remains valid.

Releasing the Statement Handle

SQLFreeHandle whose HandleType is SQL_HANDLE_STMT, releases all resources allocated by calling SQL

AllocHandle whose HandleType is SQL_HANDLE_STMT. If the application calls SQLFreeHandle with the re

maining statement, the remaining result is deleted. When the application releases the statement handle,

the driver releases the four auto allocation descriptors related to the statement.

SQLDisconnect automatically deletes all statements and descriptors which are opened for the connection.

2,536 | ODBC

SQLFreeStmt

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLFreeStmt stops the processing related to the specified statement, closes an open cursor, removes the

remaining result or selectively releases all resources connected to the statement handle.

Syntax

SQLRETURN SQLFreeStmt(

SQLHSTMT StatementHandle,

SQLUSMALLINT Option);

Arguments

StatementHandle

[Input] It is the statement handle.

Option

[Input] It is one of the following options.

• SQL_ CLOSE: It closes the cursor related to StatementHandle, and deletes the remaining result. T

he applications executes SELECT statement with the same or different parameter values, and it can

open cursor again later. If the cursor is not open, this option does not affect the application. SQLCl

oseCursor also closes the cursor.

• SQL_DROP: This option is not used any more.

• SQL_UNBIND: It releases all column buffers bound with SQLBindCol for the specified Statement

Handle, and sets SQL_DESC_COUNT field of ARD to 0.

• SQL_RESET_PARAMS: It releases all parameter buffers set to SQLBindParameter for the specified

StatementHandle, and sets SQL_DESC_COUNT field of APD to 0.

ODBC API References | 2,537

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY010
Function sequenc

e error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

HY092
Option type out

of range

The value of option argument is not SQL_CLOSE, SQL_DROP, SQL_UNBIND,

SQL_RESET_PARAMS.

Description

Calling SQLFreeStmt with SQL_CLOSE option is as same as calling of SQLCloseCursor. However, if an ope

n cursor does not exist, calling SQLFreeStmt with SQL_CLOSE option does not affect the application. SQL

CloseCursor returns SQLSTATE 24000 (Invalid cursor state).

2,538 | ODBC

SQLGetConnectAttr

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetConnectAttr returns the current setting of the connection attribute.

Syntax

SQLRETURN SQLGetConnectAttr(

SQLHDBC ConnectionHandle,

SQLINTEGER Attribute,

SQLPOINTER ValuePtr,

SQLINTEGER BufferLength,

SQLINTEGER * StringLengthPtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

Attribute

[Input] It is the attribute to be searched

ValuePtr

[Output] It is a memory pointer which returns the current setting value of the attribute specified by

Attribute.

If ValuePtr is null, StringLengthPtr returns the total number of bytes returnable (excluding the null-

termination character).

BufferLength

[Input] If Attribute is a defined field in ODBC and ValuePtr points to the string or binary buffer, this

argument should be the length of *ValuePtr. If Attribute is a defined field in ODBC and *ValuePtr i

s an integer, this argument is ignored.

ODBC API References | 2,539

StringLengthPtr

[Output] It is the pointer which returns the total number of bytes returnable in *Value_Ptr (excludi

ng null-termination byte for character data)

For the character data, if the number of returnable bytes is equal to or bigger than BufferLength, *

ValuePtr is truncated to length of BufferLength minus 1, and it is null terminated by the driver.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

The data truncated to the length of BufferLength minus null-termination ch

aracter is returned to *ValuePtr. The length of string not truncated is return

ed to *StringLengthPtr. (The function returns SQL_SUCCESS_WITH_INFO.)

08003
Connection

not open
The Attribute value required on the connection status is specified.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY090
Invalid string or

buffer length

*ValuePtr is a string, and BufferLength is smaller than 0 but it is not SQL_NT

S.

HY092
Invalid attribute/

option identifier
The Attribute argument value is not valid.

HYC00
Optional feature

not implemented
The Attribute argument value is valid but it is not supported by the driver.

Description

If an attribute specifies the attribute which returns the string, ValuePtr should have the pointer to the stri

ng buffer. The maximum length of the returned string including null-termination character is BufferLengt

h in bytes.

Attribute The description of ValuePtr

SQL_ATTR_ACCESS_MOD

E (ODBC 1.0)

It is the SQLUINTEGER value. SQL_MODE_READ_ONLY is used as the indicator of the

connection which does not request the update. This mode is used for the transaction

management, the optimization, and the lock plan of the driver or data source.

2,540 | ODBC

The default value is SQL_MODE_READ_WRITE.

SQL_ATTR_AUTOCOMMIT

(ODBC 1.0)

It is SQLUINTEGER value which specifies whether to use auto commit or manual com

mit.

● SQL_AUTOCOMMIT_ON: It is the default value. The driver uses the auto commit

mode. Each statement is immediately committed after execution. When SQL_AT

TR_AUTOCOMMIT is set to SQL_AUTOCOMMIT_ON, the open transaction is co

mmitted to the connection to change from the manual commit mode to the aut

o commit mode.

● SQL_AUTOCOMMIT_OFF: The driver uses the manual commit mode, and the ap

plication should explicitly commit or rollback with SQLEndTrans.

SQL_ATTR_CHARACTER_S

ET
It is the character set string of the driver.

SQL_ATTR_DATABASE_CH

ARACTER_SET
It is the character set string of the data source.

SQL_ATTR_DATE_FORMAT It is the DATE format string of the driver.

SQL_ATTR_LOGIN_TIMEO

UT (ODBC 1.0)

It is the waiting time (in seconds) for a login request with SQLUINTEGER value. If Valu

ePtr is 0, timeout is not used, and the connection attempt indefinitely wait.

SQL_ATTR_METADATA_ID

(ODBC 3.0)

It is SQLUINTEGER value which determines the string argument of the catalog functio

n.

If it is SQL_TRUE, the string argument of catalog function is treated as an identifier, a

nd it is case-insensitive. If the string is not separated by a delimiter, the driver removes

all leading or trailing spaces and the string is capitalized. If the string is separated by a

delimiter, the driver removes all leading or trailing spaces and the string between deli

miters remains literally. If one of the arguments is set to the null pointer, the function

returns SQL_ERROR and SQLSTATE HY009 (Invalid use of null pointer).

If it is SQL_FALSE, the string argument of catalog function is not treated as an identifi

er. It may or may not include a search string pattern depending on the string argumen

t.

The default value is SQL_FALSE.

SQL_ATTR_METADATA_ID can also be set in the statement level.

SQL_ATTR_TIMESTAMP_F

ORMAT
It is the TIMESTAMP format string of the driver.

SQL_ATTR_TIMESTAMP_W

ITH_TIMEZONE_FORMAT
It is the TIMESTAMP WITH TIME ZONE format string of the driver.

SQL_ATTR_TIMEZONE It is the timezone string of the driver.

SQL_ATTR_TIME_FORMAT It is the TIME format string of the driver.

SQL_ATTR_TIME_WITH_TI
It is the TIME WITH TIME ZONE format string of the driver.

Attribute The description of ValuePtr

ODBC API References | 2,541

MEZONE_FORMAT

SQL_ATTR_TXN_ISOLATIO

N (ODBC 1.0)
It is 32-bit mask which sets the isolation level for the current connection.

Attribute The description of ValuePtr

2,542 | ODBC

SQLGetConnectOption

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLGetConnectOption function is replaced with SQLGetConnectAttr function in ODBC 3.x.

For more information, refer to SQLGetConnectAttr.

ODBC API References | 2,543

SQLGetCursorName

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLGetCursorName returns the specified statement and related cursor name.

Syntax

SQLRETURN SQLGetCursorName(

SQLHSTMT StatementHandle,

SQLCHAR * CursorName,

SQLSMALLINT BufferLength,

SQLSMALLINT * NameLengthPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

CursorName

[Output] It is the buffer pointer which returns the cursor name

If CursorName is NULL, NameLengthPtr returns the returnable byte length (excluding the null-termi

nation character)

BufferLength

[Input] It is the length of *CursorName.

NameLengthPtr

[Output] It is the memory pointer for the length of bytes returnable to *CursorName (excluding th

e null-termination character). If the returnable byte length is equal to or bigger than it, *sCursorNa

me is truncated to the length of BufferLength minus 1.

2,544 | ODBC

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004
String data,

right truncated

*CursorName buffer is not large enough to return the entire cursor name, s

o the cursor name is truncated. The length of cursor name not truncated is r

eturned to *NameLengthPtr. (The function returns SQL_SUCCESS_WITH_IN

FO.)

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory

allocation error
It is a memory allocation error.

HY010
Function

sequence error

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

HY090
Invalid string or b

uffer length
The value of BufferLength argument is smaller than 0.

Description

The cursor name is used only in positioned update and positioned delete statements. (e.g. UPDATE table-

name ...WHERE CURRENT OF cursor-name) If the cursor name is not set with SQLSetCursorName in the a

pplication, the driver generates the cursor name starting with SQL_CUR.

SQLGetCursorName can re-set the cursor name, if the statement is the assigned or ready state.

The cursor name which is explicitly or implicitly set is valid until the related statement is deleted by calling

SQLFreeHandle whose HandleType is SQL_HANDLE_STMT.

ODBC API References | 2,545

SQLGetData

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLGetData retrieves a column data in the result set, and it can be called multiple times to retrieve the va

riable length data.

Syntax

SQLRETURN SQLGetData(

SQLHSTMT StatementHandle,

SQLUSMALLINT Col_or_Param_Num,

SQLSMALLINT TargetType,

SQLPOINTER TargetValuePtr,

SQLLEN BufferLength,

SQLLEN * StrLen_or_IndPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

Col_or_Param_Num

[Input] It is the column number for retrieving the column data from the returned data. Result set c

olumns are numbered in increasing order, starting from 1.

TargetType

[Input] It is the C data type identifier of *TargetValuePtr buffer.

If TargetType is SQL_ARD_TYPE, the driver uses the type identifier specified in SQL_DESC_CONCISE

_TYPE field of ARD.

TargetValuePtr

[Output] It is the buffer pointer to which the data is returned

TargetValuePtr can not be NULL.

2,546 | ODBC

BufferLength

[Input] It is the byte length of *TargetValuePtr buffer.

When the driver returns the variable length data such as string or binary data, it uses BufferLength

to avoid writing beyond the end of *TargetValuePtr buffer. Be cautious when returning character

data to *TargetValuePtr because the driver calculates the null-termination character. Therefore, *T

argetValuePtr should include the space for the null-termination character. Otherwise, the driver ca

n truncate the data.

When the driver returns the fixed length data such as integer or date structure, the driver assumes

that the buffer is large enough to store the data, and it ignores BufferLength. Therefore, the applic

ation should allocate the buffer which is large enough to the fixed length data. If not, the driver ca

n write beyond the end of buffer.

SQLGetData returns SQLSTATE HY090(Invalid string or buffer length), if BufferLength is smaller th

an 0.

StrLen_or_IndPtr

[Output] It is the buffer pointer which returns the length or indicator value. If the argument is the

null pointer, the length and indicator values are not returned, and an error occurs when fetching N

ULL data.

SQLGetData can return SQL_NO_TOTAL, SQL_NULL_DATA, and the data length which can be retu

rned to the length/indicator buffer.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_STILL_EXECUTING, SQL_ERROR, SQL_I

NVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

All data for the column specified as Col_or_Param_Num can not be retrieve

d by a single function call. The length of the remaining data in the specified

column is returned to *StrLen_or_IndPtr before calling SQL_NO_TOTAL or S

QLGetData. (The function returns SQL_SUCCESS_WITH_INFO.)

01S07
Fractional truncat

ion

The data returned for one or more column is truncated. For numeric data ty

pes, the decimal place is truncated. For time, timestamp, interval data types

which contain the period component, the decimal place of time is truncated.

(The function returns SQL_SUCCESS_WITH_INFO.)

07006

Restricted data ty

pe attribute viola

tion

The column data value in the result set can not be converted to the C data t

ype specified by TargetType.

Invalid descriptor Col_or_Param_Num argument value is bigger than the number of columns i

ODBC API References | 2,547

07009 index n the result set.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

22002

Indicator variable

required but not

supplied

StrLen_or_IndPtr is the null pointer, and the returned data is NULL.

22003
Numeric value ou

t of range

The integer part (not the decimal place) of the numerical value returned fro

m one or more columns is truncated.

22007
Invalid datetime f

ormat
The string in the result set is not the valid date, time, timestamp format.

22012 Division by zero The result of the arithmetic expression divided by 0 is returned.

22015
Interval field over

flow

When the interval C type is specified in the exact numeric or interval SQL da

ta type, the significant figures in the leading field is lost.

The value of SQL type can not be expressed to C interval type.

22018

Invalid character

value for cast spe

cification

The character not represented as the character set of C buffer is included in

the character column of the result set.

The C type is the exact or approximate numeric, datetime, interval data type,

and if the SQL type is the character data type, the value of the column boun

d to the C type is not valid.

24000
Invalid cursor stat

e

The function is called without calling SQLFetch or SQLFetchScroll.

StatementHandle is executed but result set related to StatementHandle doe

s not exist.

The cursor is open by calling SQLFetch or SQLFetchScroll, but the cursor is p

ointing to before the start or after the end of result set.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY003
Program type out

of range
TargetType argument value is not valid.

HY009
Invalid use of null

pointer
TargetValuePtr argument is the null pointer.

HY010
Function sequenc

e error

The specified StatementHandle is not in executed state. The function is calle

d without calling SQLExecDirect, SQLExecute, the catalog function.

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is returned

and the function is called before sending all data-at-execution variables.

HY090
Invalid string or b

uffer length
BufferLength argument value is smaller than 0.

SQLSTATE Error Description

2,548 | ODBC

Description

SQLGetData returns the data of the specified column, and it can be called only after one or more rows ar

e fetched from the result set of SQLFetch or SQLFetchScroll. When the variable length data is too large to

be returned with a single call SQLGetData (because of application restrictions), SQLGetData can partially r

etrieve it.

Using SQLGetData

If TargetType argument is the interval data type, the default value is interval leading precision(2), interval

seconds precision(6), and it is set to SQL_DESC_DATETIME_INTERVAL_PRECISION field and SQL_DESC_P

RECISION field of ARD each. If TargetType argument is the SQL_C_NUMERIC data type, the default value

is precision(38), scale(0), and it is set to SQL_DESC_PRECISION field and SQL_DESC_SCALE field of ARD e

ach. If the default precision and scale are not appropriate, the application should explicitly set the descrip

tor field by calling SQLSetDescField or SQLSetDescRec.

Partial Retrieving of Variable Length Data

SQLGetData can partially retrieve the variable length data whose SQL data type is SQL_CHAR, SQL_VARC

HAR, SQL_LONGVARCHAR, SQL_WCHAR, SQL_WVARCHAR, SQL_WLONGVARCHAR, SQL_BINARY, SQL

_VARBINARY, SQL_LONGVARBINARY.

The application continuously calls SQLGetData multiple times for the same column to partially retrieve the

data of the column. SQLGetData returns the next part of the data at each call. The applications should re

assemble the parts, being careful to remove the null-termination character in the middle of the character

data. If more data should be returned, SQLGetData returns SQL_SUCCESS_WITH_INFO, SQLSTATE 01004

(Data truncated). If the last part of data is returned, SQL_SUCCESS is returned.

SQLGetData can not be used for returning the part of fixed length data. If SQLGetData is called once or

more for a column which contains the fixed-length data, SQL_NO_DATA is returned after the first call.

Retrieving Data Using SQLGetData

SQLGetData performs the following processes to return the data for the specified column.

1. If all data is returned to the column, SQL_NO_DATA is returned.

2. If the data is NULL, *StrLen_or_IndPtr is set to SQL_NULL_DATA. If the data is NULL and *StrLen_or_

IndPtr is the null pointer, SQLGetData returns SQLSTATE 22002 (Indicator variable required but not s

upplied).

If the column data is not NULL, SQLGetData performs the third process.

3. If the attribute of SQL_ATTR_MAX_LENGTH statement is set to non-zero value or the column contai

ns the string or binary data or SQLGetData is not called for the column before, then the data is trunc

ated to length of SQL_ATTR MAXLENGTH bytes.

ODBC API References | 2,549

Note

The attribute of SQL_ATTR_MAX_LENGTH statement is used to reduce the network traffic. It is ge

nerally implemented by the data source, and it truncates the data before returning the data via th

e network. The driver and the data source are not required to support it. Therefore, the applicatio

n should allocate a buffer of the proper size, and specify the size of BufferLength argument to gu

arantee that the data is truncated to the specific size.

4. The data is converted to the data type specified in TargetType. The default precision and scale values

for the data type are given to the data. If TargetType is SQL_ARD_TYPE, the data type in SQL_DESC_

CONCISE_TYPE field of ARD is used. The data provides the precision and scale of SQL_DESC_DATETI

ME_INTERVAL_PRECISION field, SQL_DESC_PRECISION field, SQL_DESC_SCALE field of ARD depend

ing on the data type of SQL_DESC_CONCISE_TYPE field. If all default precisions and scales are not a

ppropriate, the application should explicitly set the descriptor field by calling SQLSetDescField or SQL

SetDescRec.

5. If the data is converted to the variable length data type such as the string or binary, SQLGetData che

cks whether the data length exceeds BufferLength (including the null-termination character). If the d

ata length exceeds BufferLength, SQLGetData truncates the data to the length of BufferLength minu

s the null-termination character. If the binary data length exceeds the data buffer length, SQLGetDat

a truncates it to the length of BufferLength bytes.

If the null-termination character is not stored in the provided data buffer, SQLGetData returns SQL_S

UCCESS_WITH_INFO and SQLSTATE 01004.

SQLGetData does not truncate the data converted to the fixed length data type. In this case, the leng

th of *TargetValuePtr is always assumed as the size of the data type.

6. It stores the converted data in *TargetValuePtr. Be cautious that SQLGetData can not return data ou

t of line.

7. The data length is stored in *StrLen_or_IndPtr. If StrLen_or_IndPtr is the null pointer, SQLGetData do

es not return the length.

○ For the string and binary data, it is the length after conversion and before truncated to BufferLen

gth. If the driver can not check the data length after conversion (it can happen when it is a long

data type), it returns SQL_SUCCESS_WITH_INFO, and it sets the length to SQL_NO_TOTAL.(The l

ast call of SQLGetData should return the value of data length which is neither 0 nor is SQL_NO_T

OTAL) If the data is truncated by the attribute of SQL_ATTR_MAX_LENGTH statement, the attrib

ute value is stored in *StrLen_or_IndPtr. It is because the data is designed to be passed on the ser

ver before the attribute is converted, and the driver can not know the actual length. When SQLG

etData is continuously called multiple times for the same column, this is the data length available

at the beginning of the current call. In other words, the length is reduced due to each subsequen

t calls.

○ For all other data types, this is the data length after conversion. In other words, it is the size of th

e type to which data is converted.

2,550 | ODBC

8. If the data is truncated without loss of the default value(for example, the real number 1.234 is trunc

ated to an integer 1 when converted), or if it is truncated because BufferLength is too small (e.g. the

string "abcdef" is stored in the buffer of 4-byte length) during data conversion, then SQLGetData ret

urns SQLSTATE 01004 (Data truncated) and SQL_SUCCESS_WITH_INFO. If the data is truncated with

out loss of the default value due to the attribute of SQL_ATTR_MAX_LENGTH statement, SQLGetDat

a returns SQL_SUCCESS but it does not return SQLSTATE 01004 (Data truncated).

If SQLGetData does not return SQL_SUCCESS nor SQL_SUCCESS_WITH_INFO (When SQLGetData is calle

d for the bound column) the contents of bound data buffer, and the length/indicator buffer are not defin

ed.

If SQLGetData is continuously called, it retrieves the data from the last column requested. The previous of

fset is not valid.

The following is an example.

SQLGetData(icol=n), SQLGetData(icol=m), SQLGetData(icol=n)

The second call SQLGetData(icol=n) retrieves the data starting from the column n. All offsets of the data

are not valid any more due to the previous SQLGetData call.

SQLGetData and Descriptor

SQLGetData does not directly interact with any descriptor field.

If TargetType is SQL_ARD_TYPE, the data type of SQL_DESC_CONCISE_TYPE field of ARD is used. If Targe

tType is SQL_ARD_TYPE or SQL_C_DEFAULT, the precisions and scales of SQL_DESC_DATETIME_INTERV

AL_PRECISION field, SQL_DESC_PRECISION field, and SQL_DESC_SCALE field of ARD are given according

to the data type of SQL_DESC_CONCISE_TYPE field.

ODBC API References | 2,551

SQLGetDescField

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetDescField returns the current setting or value of a single field of descriptor record.

Syntax

SQLRETURN SQLGetDescField(

SQLHDESC DescriptorHandle,

SQLSMALLINT RecNumber,

SQLSMALLINT FieldIdentifier,

SQLPOINTER ValuePtr,

SQLINTEGER BufferLength,

SQLINTEGER * StringLengthPtr);

Arguments

DescriptorHandle

[Input] It is the descriptor handle.

RecNumber

[Input] It is the descriptor record of information which the application tries to find. If FieldIdentifier

argument is the header field, RecNumber is ignored. If RecNumber is equal to or less than SQL_DE

SC_COUNT, and the row does not include the data for the column or parameter, SQLGetDescField

returns the default value of field.

FieldIdentifier

[Input] It is the descriptor field to which the value is returned.

ValuePtr

[Output] It is the buffer pointer which returns the descriptor information. The data type is depende

nt on the value of FieldIdentifier.

If ValuePtr is the integer type, the application should use SQLULEN buffer initialized to 0.

If ValuePtr is null, StringLengthPtr returns the number of the total returnable bytes (excluding null-

2,552 | ODBC

termination character).

BufferLength

[Input] If FieldIdentifier field is defined in ODBC and ValuePtr points to the string or binary buffer, t

he argument should be the length of *ValuePtr. If FieldIdentifier field is defined in ODBC and *Val

uePtr is an integer, the argument is ignored.

StringLengthPtr

[Output] It is the pointer which returns the number of the total returnable bytes from *ValuePtr(ex

cluding null-termination byte for the character data).

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA, SQL_INVALID_HANDLE

If RecNumber is bigger than the number of current descriptor records, SQL_NO_DATA is returned.

If DescriptorHandle is IRD handle and the statement is in the ready state or executing state but associated

cursor does not exist, SQL_NO_DATA is returned.

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is the driver-specific informational message. (The function returns SQL_SUC

CESS_WITH_INFO.)

01004
String data, right tru

ncated

The buffer length of *ValuePtr is shorter than the value length of descriptor fi

eld, so it is truncated. The remaining length of descriptor field is returned in *

StringLengthPtr. (The function returns SQL_SUCCESS_WITH_INFO.)

07009
Invalid descriptor ind

ex

RecNumber argument is set to 0, and the status attribute of SQL_ATTR_USE_

BOOKMARKS is set to SQL_UB_OFF, and DescriptorHandle argument is a IRD

handle.

FieldIdentifier argument is the record field, RecNumber argument is 0, and De

scriptorHandle argument is a IPD handle.

RecNumber argument is smaller than 0.

08S01
Communication link f

ailure

Before the function processing is completed, the connection between the driv

er and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation er

ror
It is a memory allocation error.

HY007
Associated statement

is not prepared

DescriptorHandle is related to a IRD handle, and the related handle is not in t

he preparation state or executing state.

It is the DescriptorHandle related to StatementHandle for the asynchronous p

erformance function which is still being executed while it is called.

ODBC API References | 2,553

HY010 Function sequence er

ror

It is the DescriptorHandle related to StatementHandle which SQLExecute, SQL

ExecDirect, SQLBulkOperations, SQLSetPos are called and SQL_NEED_DATA i

s returned.

The asynchronously executing function is called for the connection handle rel

ated to DescriptorHandle, and it is still being executed even when SQLGetDes

cField is called.

HY013
Memory manageme

nt error

The size of buffer used as an argument is smaller than 0, or it can not access t

he memory.

HY021
Inconsistent descript

or information

SQL_DESC_TYPE and SQL_DESC_DATETIME_INTERVAL_CODE field are not t

he valid format for ODBC SQL type, SQL type of the specific driver (for IPD) or

ODBC C type (for APD or ARD).

HY090
Invalid string or buffe

r length
*Valueptr is the string, and BufferLength is smaller than 0.

HY091
Invalid descriptor fiel

d Identifier

FieldIdentifier is not the field defined in ODBC, and it is not the implemented

value.

FieldIdentifier is not defined for DescriptorHandle.

HY117

Connection is suspen

ded due to unknown

transaction state. Onl

y disconnect and rea

d-only functions are

allowed.

For more information about the suspended state, refer to SQLEndTran.

HYT01
Connection timeout

expired

The connection is expired before the data source responds to the request. Th

e time limit can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStmt

Attr.

IM001
Driver does not supp

ort this function
The driver related to DescriptorHandle does not support the function.

SQLSTATE Error Description

Description

The application can call SQLGetDescField to return a single field value of the descriptor record. Calling SQ

LGetDescField returns the settings for all fields of all descriptor types including the header field, record fie

lds, and bookmarks field. The application can obtain the multiple field settings in an arbitrary order in the

same or another descriptor by repeatedly calling SQLGetDescField. SQLGetDescField can be called to retu

rn the driver definition descriptor field.

For the performance reason, the application should not call SQLGetDescField for IRD before executing th

e statement.

Multiple field settings for the size of name, data type, column or parameter data can be retrieved by callin

g SQLGetDescRec once. SQLGetStmtAttr can be called to return a single field settings in the descriptor he

2,554 | ODBC

ader which is the statement attribute. SQLColAttribute, SQLDescribeCol, SQLDescribeParam return the re

cords or book mark fields.

When the application calls SQLGetDescField to retrieve the undefined field value for a particular descripto

r type, the function returns SQL_SUCCESS but the returned field value is not defined. For example, calling

SQLGetDescField for SQL_DESC_NAME field of APD/ ARD or calling SQLGetDescField for SQL_DESC_NUL

LABLE field returns SQL_SUCCESS, but the field value is not defined.

When the application calls SQLGetDescField to retrieve the field value whose particular descriptor is defin

ed but any settings such as default value are not defined, then the function returns SQL_SUCCESS but th

e returned field value is not defined.

Header Field

Each descriptor consists of the following fields.

SQL_DESC_ALLOC_TYPE[All]

It is the header field which is read-only SQLSMALLINT. It specifies whether the descriptor is automa

tically assigned by the driver or it is explicitly assigned by the application. The application can read t

he field but can not modify it. When the descriptor is automatically allocated by the driver, the field

is set to SQL_DESC_ALLOC_AUTO by the driver.

SQL_DESC_ARRAY_SIZE[Application descriptors]

It is the header field which is SQLULEN in ARD. It specifies the number of rows in the row set. This i

s the number of rows returned by the operation caused by calling SQLFetch, SQLFetchScroll, SQLB

ulkOperations or SQLSetPos.

It is the header field which is SQLULEN in APD. It specifies the number of values of each parameter.

The default value of the field is 1. If SQL_DESC_ARRAY_SIZE is bigger than 1, SQL_DESC_DATA_PT

R, SQL_DESC_INDICATOR_PTR, SQL_DESC_OCTET_LENGTH_PTR of APD or ARD points to the arra

y. The constant of each array is equal to the field value.

This field in ARD can be set by calling SQLSetStmtAttr together with SQL_ATTR_ROW_ARRAY_SIZE

attribute. The field in APD can also be set by calling SQLSetStmtAttr together with SQL_ATTR_PAR

AMSET_SIZE.

SQL_DESC_ARRAY_STATUS_PTR[All]

For each descriptor type, the header field which is SQLUSMALLINT* points to the array of SQLUSM

ALLINT value. The arrays are named as row status array (IRD), parameter status array (IPD), row op

eration array (ARD), parameter operation array (APD).

This header field in IRD points to the row status array which contains the status value after calling S

QLBulkOperations, SQLFetch, SQLFetchScroll, or SQLSetPos. The application allocates SQLUSMALLI

NT array, and this field should point to the array. The field is generally the NULL pointer. The driver

will create an array unless SQL_DESC_ARRAY_STATUS_PTR is set to the NULL pointer.

ODBC API References | 2,555

Caution

If the application sets the elements of row status array pointed by SQL_DESC_ARRAY_STATUS_PT

R field of IRD, then the operation of driver is not defined.

The array is initialized and created by calling SQLBulkOperations, SQLFetch, SQLFetchScroll or SQLSetPos.

If this call does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, then the content of array pointe

d by the field is not defined.

Elements in the array can contain the following values.

● SQL_ROW_SUCCESS: The row is successfully retrieved, and it is not updated since the last retrieving.

● SQL_ROW_SUCCESS_WITH_INFO: The row is successfully retrieved, and it is not updated since the las

t return. However, the warning for the row is returned.

● SQL_ROW_ERROR: An error occurs during retrieving the row.

● SQL_ROW_UPDATED: The row is successfully retrieved, and it is updated since the last retrieving. If th

e row is retrieved again, the state is SQL_ROW_SUCCESS.

● SQL_ROW_DELETED: The row is deleted since the last retrieving.

● SQL_ROW_ADDED: The row is entered by SQLBulkOperations. If the row is retrieved again, the state i

s SQL_ROW_SUCCESS.

● SQL_ROW_NOROW: The row set and the last of result set are overlapped. And a row is not returned

corresponding to the elements of row status array.

This field of IRD can be set by calling SQLSetStmtAttr together with SQL_ATTR_ROW_STATUS_PTR attrib

ute.

SQL_DESC_ARRAY_STATUS_PTR field of IRD is valid only after SQL_SUCCESS or SQL_SUCCESS_WITH_IN

FO is returned. If the return code is not one of these, the thing pointed by SQL_DESC_ROWS_PROCESSE

D_PTR is not defined.

This header field in IPD calls SQLExecute or SQLExecDirect and then points to the parameter status array

which includes each parameter status information. If SQLExecute or SQLExecDirect is called and SQL_SUC

CESS or SQL_SUCCESS_WITH_INFO is not returned, then the content of array pointed by this field is not d

efined. The application allocates SQLUSMALLINT array, and this field should point the array. The driver wil

l create an array if SQL_DESC_ARRAY_STATUS_PTR field is not set to the NULL pointer.

Elements in the array can contain the following values.

● SQL_PARAM_SUCCESS: SQL statement was successfully executed for this parameter set.

● SQL_PARAM_SUCCESS_WITH_INFO: SQL statement was successfully executed for this parameter set,

but there is a warning information available to the diagnostic data structure.

● SQL_PARAM_ERROR: An error occurred when processing the parameter set. Additional error inform

ation is in the diagnostic data structure.

2,556 | ODBC

● SQL_PARAM_UNUSED: An error occurred while processing some previous parameters, or it is not use

d because SQL_PARAM_IGNORE is set in the parameter set of the array pointed by SQL_DESC_ARRA

Y_STATUS_PTR field of APD.

● SQL_PARAM_DIAG_UNAVAILABLE: The diagnostic information can not be used. For example, the dri

ver treats the array of the parameter as one and does not generate the level of the error information.

This field in IPD can be set by calling SQLSetStmtAttr together with SQL_ATTR_PARAM_STATUS_PTR attri

bute.

In ARD, the corresponding field points to the row operation array for the values set by the application to

determine whether or not to ignore the row in SQLSetPos operation.

Elements in the array can contain the following values.

● SQL_ROW_PROCEED: The row is included in the bulk operation which uses SQLSetPos. (This setting

does not guarantee that the operation occurs on the row. If the row has SQL_ROW_ERROR state of t

he row status array of IRD, the driver can not implement the operation for the row.)

● SQL_ROW_IGNORE: The row is excluded from the bulk operation which uses SQLSetPos.

If elements of the array is not set, all rows are included in the bulk operation. If the value of SQL_DESC_A

RRAY_STATUS_PTR field of ARD is the NULL pointer, all rows are included in the bulk operation. It is tran

slated as same as when the pointer points to a valid array and all elements of the array are SQL_ROW_PR

OCEED. When all elements in the array are set to SQL_ROW_IGNORE, the values in the row status array f

or the ignored rows are not updated.

This field in ARD can also be set by calling SQLSetStmtAttr together with SQL_ATTR_ROW_OPERATION_P

TR attribute.

When SQLExecute or SQLExecDirect is called, this header field in APD points to the parameter operation

array of the values set by the application to indicate whether or not to ignore the parameter set.

Elements in the array can contain the following values.

● SQL_PARAM_PROCEED: The parameter set is included in calling SQLExecute or SQLExecDirect.

● SQL_PARAM_IGNORE: The parameter set is not included in calling SQLExecute or SQLExecDirect.

If elements of the array are not set, all parameter sets of the array are used to call SQLExecute or SQLExec

Direct. If the value of SQL_DESC_ARRAY_STATUS_PTR field of APD is the NULL pointer, all parameter set

are used. It is read as same as when the pointer points to the valid array, or the array whose all elements

are SQL_PARAM_PROCEED.

This field in APD can also be set by calling SQLSetStmtAttr together with SQL_ATTR_PARAM_OPERATION

_PTR attribute.

ODBC API References | 2,557

SQL_DESC_BIND_OFFSET_PTR[Application descriptors]

This header field is SQLLEN* and it points to the binding offset. It is set to the NULL pointer by defa

ult. If this field is not the NULL pointer, the driver dereferences the pointer and each value of the d

eferred field which has non-NULL value of the descriptor record (SQL_DESC_DATA_PTR_, SQL_DES

C_INDICATOR_PTR and SQL_DESC_OCTET_LENGTH_PTR) at fetching time, and uses a new pointer

value when binding.

The binding offset is always directly added to SQL_DESC_DATA_PTR field, SQL_DESC_INDICATOR_

PTR field and SQL_DESC_OCTET_LENGTH_PTR field. If the offset value is changed to another value,

the new value is directly and continuously added as each descriptor field value. The new offset is n

ot added to the previous offset value of the field.

It is the deferred field. This field is not used at the time of setting, but it is used by the driver when

the data buffer address is checked.

This field in ARD can be set by calling SQLSsetStmtAttr together with SQL_ATTR_ROW_BIND_OFFS

ET_PTR attribute.

For more information, refer to SQLFetchScroll or SQLBindParameter.

SQL_DESC_BIND_TYPE[Application descriptors]

This header field is SQLUINTEGER and is used to set the binding direction.

This field in ARD specifies the binding direction when SQLFetchScroll or SQLFetch is called on the r

elated statement handle.

This field can be set to SQL_BIND_BY_COLUMN(default) to select the column-wise binding for the

columns.

The field in ARD can be set by calling SQLSetStmtAttr together with SQL_ATTR_ROW_BIND_TYPE

attribute.

The field specifies the binding direction used in the dynamic parameter.

This field may be set to SQL_BIND_BY_COLUMN(default) to select the column-wise binding for the

parameter.

This field can be set by calling SQLSetStmtAttr together with SQL_ATTR_PARAM_BIND_TYPE attrib

ute.

SQL_DESC_COUNT[All]

This header field is SQLSMALLINT and specifies the 1-based index of the top-level record which incl

udes the data. When the driver sets the data structure to the descriptor, SQL_DESC_COUNT should

be set to display the number of important records. It is not required to specify how many space to r

eserve for the record when the application allocates instances of data structure. Like as the applicat

ion specifies the contents of the records, the driver performs the requested operation for the descri

ptor handle to guarantee displaying the sufficient size of the data structure.

It is not the number of all data column or all parameters which SQL_DESC_COUNT is bound to, but

it is the number of top-level records. If the binding of the top-level column or parameter is released,

2,558 | ODBC

SQL_DESC_COUNT is changed to the number of next top-level columns or parameters. If the bindi

ng of the top-level column, the column which is smaller than the parameter, or parameters is relea

sed (if TargetValuePtr argument is set to the NULL pointer, and SQLBindCol is called, or if Paramete

rValuePtr argument is set to the NULL pointer and SQLBindParameter is called), SQL_DESC_COUNT

is not changed. If the added column or parameter is bound with bigger number than the number

of top level records which includes the data, the driver automatically increases the value of SQL_DE

SC_COUNT field. If the binding for all columns is released by calling SQLFreeStmt with the SQL_UN

BIND option, SQL_DESC_COUNT in ARD and IRD is set to 0. If SQLFreeStmt is called with the SQL_

RESET_PARAMS option, SQL_DESC_COUNT fields in APD and IPD is set to 0.

The value of SQL_DESC_COUNT is explicitly set by calling SQLSetDescField in the application. If the

value of SQL_DESC_COUNT is explicitly decreased, the records which have the value bigger than th

e new value of SQL_DESC_COUNT are effectively removed. If the value of SQL_DESC_COUNT field

of ARD is set to 0, all buffers are released except for the bound bookmark column. The number of

records of the field Of ARD does not include the bound bookmark column. The only way to release

the binding of book mark column is to set SQL_DESC_DATA_PTR to NULL pointer.

SQL_DESC_ROWS_PROCESSED_PTR[Implementation descriptors]

This header field is SQLULEN* of IRD, and points to the buffer. The buffer includes the number of r

ows returned after calling SQLFetch or SQLFetchScroll, and the number of rows or number of error

s affected by calling SQLBulkOperations or SQLSetPos and executing the bulk operation.

This header field is SQLUINTEGER* of IPD and points to the buffer which includes the processed pa

rameter set or the number of errors. If it is NULL pointer, the number is not returned.

SQL_DESC_ROWS_PROCESSED_PTR is valid only after calling SQLFetch or SQLFetchScroll(IRD) or a

fter SQL_SUCCESS or SQL_SUCCESS_WITH_INFO is returned by calling SQLExecute, SQLExecDirect

or SQLParamData(IPD). If the functions above do not return SQL_SUCCESS or SQL_SUCCESS_WIT

H_INFO, then the buffer contents are not defined and the buffer value is set to 0 until SQL_NO_DA

TA is returned.

The field in ARD can be set by calling SQLSetStmtAttr together with SQL_ATTR_ROWS_FETCHED_

PTR attribute. APD can be set by calling SQL_ATTR_PARAMS_PROCESSED_PTR.

The buffer pointed by this field is allocated by the application. It is the deferred output buffer defin

ed by the driver. NULL pointer is set by default.

Record Field

Each descriptor includes one or more records consisting of the fields which define the column data or dy

namic parameter depending on the descriptor type. Each record is a complete specification of a single col

umn or parameter.

SQL_DESC_AUTO_UNIQUE_VALUE[IRDs]

This record field is read-only SQLINTEGER. It is SQL_TRUE if the column is automatically increased.

Otherwise, it is SQL_FALSE. The auto-increment column does not need to be read-only.

ODBC API References | 2,559

SQL_DESC_BASE_COLUMN_NAME[IRDs]

This record field is read-only SQLCHAR*. It includs the default column name of the result set colum

n. If the default column name does not exist, the field should include an empty string.

SQL_DESC_TABLE_NAME[IRDs]

This record field is read-only SQLCHAR*. It includes the base table name of the result set column. If

the base table name is not defined or used, the field should include an empty string.

SQL_DESC_CASE_SENSITIVE[Implementation descriptors]

This record field is read-only SQLINTEGER. It includes SQL_TRUE if the column or parameter is case-

sensitive when sorting or comparing columns or parameters, but it includes SQL_FALSE if the colu

mn or parameter is case-insensitive or non-character column.

SQL_DESC_CATALOG_NAME[IRDs]

This record field that is read-only SQLCHAR*. It includes the catalog of the base table which includ

es the column. If the column is an expression or a part of a view, the return value is dependent on

the driver. If the data source does not support the catalog nor does it check the catalog, the field s

hould include an empty string.

SQL_DESC_CONCISE_TYPE[All]

This header field is SQLSMALLINT. It speifies the simple format for the data types which includes da

tetime and interval data types.

The value of SQL_DESC_CONCISE_TYPE field, SQL_DESC_TYPE field and SQL_DESC_DATETIME_IN

TERVAL_CODE field are interdependent. If time is set in one of the fields, it should be set on other

fields as well. SQL_DESC_CONCISE_TYPE can be set by calling SQLBindCol, SQLBindParameter or S

QLSetDescField. SQL_DESC_TYPE is set by calling SQLSetDescField or SQLSetDescRec.

If SQL_DESC_CONCISE_TYPE is set as the simple data types except for the interval or datetime data

type, then SQL_DESC_TYPE field is set to the same value, and SQL_DESC_DATETIME_INTERVAL_C

ODE field is set to 0.

If SQL_DESC_CONCISE_TYPE is set as the simple datetime or interval data type, then SQL_DESC_T

YPE field is set to the detailed type(SQL_DATETIME or SQL_INTERVAL), and SQL_DESC_DATETIME

_INTERVAL_CODE field is set to the proper subcode.

SQL_DESC_DATA_PTR [Application descriptors and IPD]

The SQLPOINTER record field points to the address of a variable that stores either parameter values

(in the case of the APD) or column values (in the case of the ARD). This field is a deferred field, me

aning it is not used at the time it is set, but rather when the driver retrieves the actual data later.

A column specified in the SQL_DESC_DATA_PTR field of the ARD becomes unbound if the TargetV

aluePtr argument is a null pointer when calling SQLBindCol, or if the SQL_DESC_DATA_PTR field of

the ARD is set to a null pointer calling SQLSetDescField or SQLSetDescRec. However, other fields re

main unaffected even if the SQL_DESC_DATA_PTR field is set to a null pointer.

When the buffer pointed to by this field is filled upon calling SQLFetch or SQLFetchScroll, if SQL_S

UCCESS or SQL_SUCCESS_WITH_INFO is not returned, the contents of the buffer remain in an und

2,560 | ODBC

efined state.

Whenever the SQL_DESC_DATA_PTR field of the APD, ARD, or IPD is set, the driver verifies that th

e SQL_DESC_TYPE field contains a valid ODBC C data type or a driver-specific data type. It also che

cks for consistency in other fields related to the data type. In particular, the SQL_DESC_DATA_PTR

field of the IPD is used solely for consistency checks. That is, even if an application sets the SQL_DE

SC_DATA_PTR field of the IPD, calling SQLGetDescField on this field later does not necessarily retur

n the previously set value.

SQL_DESC_DATETIME_INTERVAL_CODE[All]

This record field is SQLSMALLINT. It includes the subcode which specifies the datetime or interval d

ata type when SQL_DESC_TYPE field is SQL_DATETIME or SQL_INTERVAL. It is the same for both S

QL and C support it, the code includes the data type name such as "TYPE" or "C_TYPE" for datetim

e type, "CODE" replaced from "INTERVAL" or "C_INTERVAL" for interval types.

If SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE of the application descriptor are set to SQL_C_

DEFAULT and the descriptor is not related to the statement handle, then the content of SQL_DESC

_DATETIME_INTERVAL_CODE is not defined.

This field can set the datetime data types listed in the following table.

Datetime type DATETIME_INTERVAL_CODE

SQL_TYPE_DATE

SQL_C_TYPE_DATE
SQL_CODE_DATE

SQL_TYPE_TIME

SQL_C_TYPE_TIME
SQL_CODE_TIME

SQL_TYPE_TIME_WITH_TIMEZONE/

SQL_C_TYPE_TIME_WITH_TIMEZONE
SQL_CODE_TIME_WITH_TIMEZONE

SQL_TYPE_TIMESTAMP

SQL_C_TYPE_TIMESTAMP
SQL_CODE_TIMESTAMP

SQL_TYPE_TIMESTAMP_WITH_TIMEZONE/

SQL_C_TYPE_TIMESTAMP_WITH_TIMEZONE
SQL_CODE_TIMESTAMP_WITH_TIMEZONE

This field can set the interval data types listed in the following table.

Interval type DATETIME_INTERVAL_CODE

SQL_INTERVAL_DAY

SQL_C_INTERVAL_DAY
SQL_CODE_DAY

SQL_INTERVAL_DAY_TO_HOUR

SQL_C_INTERVAL_DAY_TO_HOUR
SQL_CODE_DAY_TO_HOUR

SQL_INTERVAL_DAY_TO_MINUTE

SQL_C_INTERVAL_DAY_TO_MINUTE
SQL_CODE_DAY_TO_MINUTE

SQL_INTERVAL_DAY_TO_SECOND

SQL_C_INTERVAL_DAY_TO_SECOND
SQL_CODE_DAY_TO_SECOND

SQL_INTERVAL_HOUR

ODBC API References | 2,561

SQL_C_INTERVAL_HOUR SQL_CODE_HOUR

SQL_INTERVAL_HOUR_TO_MINUTE

SQL_C_INTERVAL_HOUR_TO_MINUTE
SQL_CODE_HOUR_TO_MINUTE

SQL_INTERVAL_HOUR_TO_SECOND

SQL_C_INTERVAL_HOUR_TO_SECOND
SQL_CODE_HOUR_TO_SECOND

SQL_INTERVAL_MINUTE

SQL_C_INTERVAL_MINUTE
SQL_CODE_MINUTE

SQL_INTERVAL_MINUTE_TO_SECOND

SQL_C_INTERVAL_MINUTE_TO_SECOND
SQL_CODE_MONUTE_TO_SECOND

SQL_INTERVAL_MONTH

SQL_C_INTERVAL_MONTH
SQL_CODE_MONTH

SQL_INTERVAL_SECOND

SQL_C_INTERVAL_SECOND
SQL_CODE_SECOND

SQL_INTERVAL_YEAR

SQL_C_INTERVAL_YEAR
SQL_CODE_YEAR

SQL_INTERVAL_YEAR_TO_MONTH

SQL_C_INTERVAL_YEAR_TO_MONTH
SQL_CODE_YEAR_TO_MONTH

Interval type DATETIME_INTERVAL_CODE

SQL_DESC_DATETIME_INTERVAL_PRECISION[All]

This SQLINTEGER record field includes the interval leading precision if SQL_DESC_TYPE field is SQL

_INTERVAL. When SQL_DESC_DATETIME_INTERVAL_CODE field is set to the interval data type, th

e field sets the default interval leading precision.

SQL_DESC_DISPLAY_SIZE[IRDs]

This read-only SQLLEN record field contains the maximum number of characters required to show t

he data from the column.

SQL_DESC_FIXED_PREC_SCALE[Implementation descriptors]

This read-only SQLSMALLINT record field sets SQL_TRUE if the column is the exact numeric column

and it has non-zero scale and the fixed precision. Otherwise, it sets SQL_FALSE.

SQL_DESC_INDICATOR_PTR[Application descriptors]

This SQLLEN* record field in ARD represents the indicator variable. The variable includes SQL_NULL

_DATE if the column value is NULL. For APD, the indicator variable is set to SQL_NULL_DATA to sp

ecify a dynamic factor as NULL, otherwise the variable is zero.

If SQL_DESC_INDICATOR_PTR field of ARD is NULL pointer, the driver prevents the information ret

urned for whether the column is NULL. If the column is NULL and SQL_DESC_INDICATOR_PTR is N

ULL pointer, SQLSTATE 22002(Indicator variable required but not supplied) is returned when the d

river creates the buffer after calling SQLFetch or SQLFetchScroll. If calling SQLFetch or SQLFetchScr

oll does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the buffer content is not defined.

SQL_DESC_INDICATOR_PTR field determines whether to set the field represented by SQL_DESC_O

CTET_LENGTH_PTR. If the column value is NULL, the driver sets the indicator variable to SQL_NULL

2,562 | ODBC

_DATA. The field represented by SQL_DESC_OCTET_LENGTH_PTR is not set at that moment. If NU

LL is not returned while retrieving the data, the buffer represented by SQL_DESC_INDICATOR_PTR

is set to 0, and the buffer represented by SQL_DESC_OCTET_LENGTH_PTR sets the data length.

If SQL_DESC_INDICATOR_PTR field of APD is NULL pointer, the application can not use the descrip

tor record to specify the argument as NULL.

This field is the deferred field. It is not used when the driver is set, but it is used when the driver dis

plays NULL possibility (ARD) or determines the NULL possibility (APD).

SQL_DESC_LABEL[IRDs]

This read-only SQLCHAR* record field includes the label or mark of a column. If the column does n

ot have label, then the variable contains the column name. If the column is not named or it can not

use the label, then the variable includes an empty string.

SQL_DESC_LENGTH[All]

This SQLULEN record field is the maximum length or actual length of the string or binary data in by

tes. It is the maximum length of fixed length data type data or the actual length of variable length

data type data. The value always excludes NULL termination character at the end of string. If its dat

a type is SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP or SQL interval data type, the

field has the string length of when datetime or interval value is rewritten to string.

The field value is different from the value of "length" defined in ODBC 2.x.

SQL_DESC_LITERAL_PREFIX[IRDs]

This read-only SQLCHAR* record field contains characters or the characters recognized as a prefix

by the driver. This variable holds an empty string for data types to which a character prefix cannot

be applied.

SQL_DESC_LITERAL_SUFFIX[IRDs]

This read-only SQLCHAR* record field contains characters or the characters recognized as a suffix b

y the driver. This variable holds an empty string for data types to which a character suffix cannot be

applied.

SQL_DESC_LOCAL_TYPE_NAME[Implementation descriptors]

This read-only SQLCHAR* record field includes the localized name in the data type, and it could be

different from the regular name in the data type. If the localized name does not exist, an empty stri

ng is returned. The field is only for the purpose of displaying.

SQL_DESC_NAME[Implementation descriptor]

This SQLCHAR* record field includes the field alias in the row descriptor. If the column alias is not a

pplied, the column name is returned. In some cases, the driver sets SQL DESC_UNNAMED field to S

QL_NAMED when setting SQL_DESC_NAME field. If neither column name nor column alias existm

the driver returns the empty string of SQL_DESC_NAME field, and sets SQL_DESC_UNNAME field t

o SQL_UNNAMED.

The application can set SQL_DESC_NAME field of IPD for an alias to specify the parameter name or

stored named procedure parameter. SQL_DESC_NAME field of IRD is the read-only field. If the app

ODBC API References | 2,563

lication tries to set this field, SQLSTATE HY091 (invalid descriptor field identifier) will be returned.

For IPD, if the driver does not support the named parameter, the field is not defined. If the driver s

upports the named parameter and specifies the parameter, the name of the parameter is returned

to this field.

SQL_DESC_NULLABLE[Implementation descriptors]

For IRD, this read-only SQLSMALLINT record field is SQL_NULLABLE if the column have NULL, other

wise it is SQL_NO_NULLS. If it is unknown whether the column allows NULL, it is SQL_NULLABLE_U

NKNOWN. The field exists particularly for the column in the result set.

For IPD, The field is always set to SQL_NULLABLE because the dynamic parameter can always be N

ULL and it can not set by the application.

SQL_DESC_NUM_PREC_RADIX[All]

This SQLINTEGER field has the value of 2 when SQL_DESC_TYPE field is the approximate numeric

data type. It is because SQL_DESC_PRECISION field includes the number of bits. The field has the v

alue of 10 when SQL_DESC_TYPE field is the exact numeric data type and SQL_DESC_PRECISION c

ontains the number of decimal places. The field sets 0 for a non-numeric data types.

SQL_DESC_OCTET_LENGTH[All]

This SQLLEN record field includes the length in bytes of a string or binary data type. For the fixed le

ngth character or binary data, it is the actual length in bytes. For the variable length character or bi

nary data, it is the maximum length in bytes. The value does not include the empty string of NULL t

ermination character for the implement descriptor, and it includes the empty string of NULL termin

ation character for the application descriptor. For the application data, the field contains the buffer

size. For APD, the field is defined only for the output or input/output parameters.

SQL_DESC_OCTET_LENGTH_PTR[Application descriptors]

The SQLLEN* record field points to the variable including the total length in bytes of the dynamic a

rgument(parameter descriptor) or the binding column values (row descriptor).

This value is ignored for all arguments excluding the string or binary data in APD. If the field is SQL

_NTS, the dynamic argument should be terminated with NULL. The application sets the variable inc

luding the macro result of SQL_DATA_AT_EXEC or SQL_LEN_DATA_AT_EXEC in this record field o

f APD to indicate that the bound parameter is to be a data parameter at the run-time. If one or mo

re fields exist, SQL_DESC_DATA_PTR can be set as the value which identifies the parameter require

d by the application, and which is helpful to determine the parameter.

If OCTET_LENGTH_PTR field of ARD is NULL pointer, the driver does not return the column length.

If SQL_DESC_OCTET_LENGTH_PTR of APD is NULL pointer, the driver assumes that the string and

binary values are terminated by NULL. (Binary values should not be terminated by NULL, but the len

gth should be given to avoid data interruption.)

If SQLFetch or SQLFetchScroll which fills the buffer pointed by the field does not return SQL_SUCC

ESS or SQL_SUCCESS_WITH_INFO, the buffer content is not defined. It is the deferred field. The fie

ld is not immediately used, but it is used later when the driver displays or determines the data lengt

h in octet.

2,564 | ODBC

SQL_DESC_PARAMETER_TYPE[IPDs]

This SQLSMALLINT record field sets the input parameter to SQL_PARAM_INPUT, the input/output

parameter to SQL_PARAM_INPUT_OUTPUT, the output parameter to SQL_PARAM_OUTPUT, the s

tream input/output parameter to SQL_PARAM_INPUT_OUTPUT_STREAM or the stream output par

ameter to SQL_PARAM_OUTPUT_STREAM. It is set to SQL_PARAM_INPUT by default.

SQL_DESC_PRECISION[All]

This SQLSMALLINT record field includes the number of valid integers for the exact numeric data ty

pes, and it includes the number of bits in mantissa (the binary precision) for the approximate nume

ric data types. Or, it contains the number of valid integer of the fractional seconds parts of the SQL

_TYPE_TIME, SQL_TYPE_TIMESTAMP, or SQL_INTERVAL_SECOND data type. The field is not defin

ed for all other data types.

The field value is different from the "precision" value defined in ODBC 2.x.

SQL_DESC_ROWVER[Implementation descriptors]

This SQLSMALLINT record field indicates whether the column is automatically updated by DBMS w

hen the row is updated(for example, "timestamp" in SQL Server). The record field value is set to SQ

L_TRUE for the row versioning column, otherwise it is set to SQL_FALSE. The column attribute is si

milar to setting and calling SQL_ROWVER in IdentifierType argument of SQLSpecialColumn to dete

rmine whether to automatically update column.

SQL_DESC_SCALE[All]

This SQLSMALLINT record field includes the number of decimal places defined in the decimal and n

umeric data types. The field is not defined for all other data types.

The field value is different from the "scale" value defined in ODBC 2.x.

SQL_DESC_SCHEMA_NAME[IRDs]

This read-only SQLCHAR* record field includes the schema name of the base table that includes th

e column. If the column is an expression or a part of the view, the return value is dependent on the

driver. If the data source does not support the schema or can not identify the schema name, then t

his variable contains an empty string.

SQL_DESC_SEARCHABLE[IRDs]

This read-only SQLSMALLINT record field sets one of the following values.

• If the column can not be used in WHERE clause, it is SQL_PRED_NONE. (It is as same as SQL_UN

SEARCHABLE in ODBC 2.X.)

• If the column can only be used with LIKE predicate in WHERE clause, it is SQL_PRED_CHAR.

• If the column can be used with all comparison operators except for LIKE in WHERE clause, it is S

QL_PRED_BASIC. (It is as same as the value of SQL_EXCEPT_LIKE in ODBC 2.x.)

• If the column can be used with any comparison operator in WHERE clause, it is SQL_PRED_SEAR

CHABLE.

ODBC API References | 2,565

SQL_DESC_TABLE_NAME[IRDs]

This read-only SQLCHAR* record field includes the base table name which includes column. The re

turn value is dependent on the driver if the column is an expression or a part of the view.

SQL_DESC_TYPE[All]

This SQLSMALLINT record field includes an abbreviated SQL data types or C data types for all data t

ypes except for the interval and datetime data types. The field specifies SQL_DATETIME or SQL_INT

ERVAL for datetime and interval data types.

Whenever this field includes SQL_DATETIME or SQL_INTERVAL, SQL_DESC_DATETIME_INTERVAL_

CODE field should include the appropriate subcode in the implied format. For datetime data types,

SQL_DESC_TYPE includes SQL_DATETIME, and SQL_DESC_DATETIME_INTERVAL_CODE field inclu

des the subcode that specifies the datetime data type. For interval data types, SQL_DESC_TYPE incl

udes SQL_INTERVAL, and SQL_DESC_DATETIME_INTERVAL_CODE field includes the subcode that

specifies the interval data type.

The values of SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE field are interdependent. When on

e of the fields is set, the other field should also be set. SQL_DESC_TYPE can be set by calling SQLSe

tDescField or SQLSetDescRec. SQL_DESC_CONCISE_TYPE can be set by calling SQLBindCol, SQLBin

dParameter or SQLSetDescField.

If SQL_DESC_TYPE is set to the implied data type other than the interval or datetime data type, SQ

L_DESC_CONCISE_TYPE field is set to the same value and SQL_DESC_DATETIME_INTERVAL_CODE

is set to 0.

If SQL_DESC_TYPE is set to the long data type of datetime or interval data type (SQL_DATETIME or

SQL_INTERVAL), SQL_DESC_DATETIME_INTERVAL_CODE field is set to the approprieate subcode,

SQL_DESC_CONCISE_TYPE may be set to a value corresponding to the implied data type. If SQL_D

ESC_TYPE is set to one of the implied datetime or interval data type, SQLSTATE HY021 (Inconsiste

nt descriptor information) is returned.

When SQL_DESC_TYPE is set by calling SQLBindCol, SQLBindParameter or SQLSetDescField, the ne

xt fields are set to the default values in the following table. The values of remaining fields in the sa

me record are not defined.

SQL_DESC_TYPE value Setting other fields implicitly

SQL_CHAR,

SQL_VARCHAR,

SQL_C_CHAR,

SQL_C_VARCHAR

SQL_DESC_LENGTH is set to 1.

SQL_DESC_PRECISION is set to 0.

SQL_DATETIME

If SQL_DESC_DATETIME_INTERVAL_CODE is set to SQL_CODE_DATE or SQL_CODE_

TIME, SQL_DESC_PRECISION is set to 0. If SQL_DESC_TIMESTAMP is set, SQL_DESC_

PRECISION is set to 6.

SQL_DECIMAL,

SQL_NUMERIC,

SQL_C_NUMERIC

SQL_DESC_SCALE is set to 0. SQL_DESC_PRECISION is set to the implemented precisi

on of each data type.

2,566 | ODBC

SQL_FLOAT,

SQL_C_FLOAT
SQL_DESC_PRECISION is set to the default precision implemented in SQL_FLOAT.

SQL_INTERVAL

When SQL_DESC_DATETIME_INTERVAL_CODE is set to the interval data type, SQL_D

ESC_DATETIME_INTERVAL_PRECISION is set to 2 (default interval leading precision).

When the interval has the part of seconds, SQL DESC PRECISION is set to 6 (the defau

lt interval seconds precision).

SQL_DESC_TYPE value Setting other fields implicitly

When the application sets the descriptor field by calling not SQLSetDescRec but SQLSetDescField, the app

lication should define the data type firstly. Therefore other fields in the previous table are implicitly set. If i

t is not allowed to implicitly set any value, the application explicitly sets the value by calling SQLSetDescFie

ld or SQLSetDescRec.

SQL_DESC_TYPE_NAME[Implementation descriptors]

This read-only SQLCHAR* record field includes the data source dependent type name ("CHAR", "V

ARCHAR", etc.). If the data type name is unknown, the variable includes an empty string.

SQL_DESC_UNNAMED[Implementation descriptors]

If SQL_DESC_NAME field is set, the SQLSMALLINT record field in the row descriptor is set to one of

SQL_NAME or SQL_UNNAMED by the driver. If SQL_DESC_NAME field does not include the colum

n alias or if the column alias does not apply, the driver sets SQL_DESC_UNNAMED field to SQL_NA

MED. If the application sets SQL_DESC_NAME field of IPD to the parameter name or alias, the driv

er sets SQL_DESC_UNNAMED field of IPD to SQL_NAMED. If neither column name nor does alias e

xist, the driver sets SQL_DESC_UNNAMED field of IPD to SQL_UNNAMED.

The application sets SQL_DESC_UNNAMED field of IPD to SQL_UNNAMED. If the application tries t

o set SQL_DESC_UNANMED field of IPD to SQL_NAMED, the driver returns SQLSTATE HY091 (Inva

lid descriptor field identifier). SQLSTATE HY091 (Invalid descriptor field identifier) is returned if the

read-only application tries to set SQL_DESC_UNNAMED field of IRD.

SQL_DESC_UNSIGNED[Implemetation descriptors]

This read-only SQLSMALLINT record field is set to SQL_TRUE, if the column type is the unsigned or

non-numeric data type. It is set to SQL_FALSE, if the column type is the signed data type.

SQL_DESC_UPDATABLE[IRDs]

The read-only SQLSMALLINT record field is set to one of the following values.

• If the result set column is read-only, it is SQL_ATTR_READ_ONLY.

• If the result set column is read and write, it is SQL_ATTR_WRITE.

• If the updatability for the result set column is unknown, it is SQL_ATTR_READWRITE_UNKNOW

N.

SQL_DESC_UPDATABLE explains the updatability of the result set column (the column is not in the

base table). The updatabilty of the column in the primary table which is a base of the result set col

umns may be different from the value in this field. The updatability is based on the data type, the u

ODBC API References | 2,567

ser privileges and the result set definition. If it is not sure that the column can be updated, SQL_AT

TR_READWITE_UNKNOWN should be returned.

SQL_DESC_CHAR_LENGTH_UNITS[Implemetation descriptors]

This SQLSMALLINT record field indicates the length units of the column whose SQL types are SQL_

CHAR, SQL_VARCHAR and SQL_LONGVARCHAR.

• SQL_CLU_CHARACTERS: The length unit is CHARACTER. For example, the length of data "문자

열" is 3 if the encoding method is UHC(Unified Hangul Code).

• SQL_CLU_OCTETS: The length unit is OCTETS. For example, the length of data "문자열" is 6 if th

e encoding method is UHC(Unified Hangul Code).

• SQL_CLU_NONE: The length unit is undefined. It is the value which is returned for the SQL types

excluding the SQL types listed above.

2,568 | ODBC

SQLGetDescRec

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetDescRec returns the current value or setting for the multiple fields of the descriptor record. The re

turned field describes the name, the data type, the column size or the argument data.

Syntax

SQLRETURN SQLGetDescRec(

SQLHDESC DescriptorHandle,

SQLSMALLINT RecNumber,

SQLCHAR * Name,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLengthPtr,

SQLSMALLINT * TypePtr,

SQLSMALLINT * SubTypePtr,

SQLLEN * LengthPtr,

SQLSMALLINT * PrecisionPtr,

SQLSMALLINT * ScalePtr,

SQLSMALLINT * NullablePtr);

Arguments

DescriptorHandle

[Input] It is the descriptor handle.

RecNumber

[Input] It is the descriptor record of the information which the application wants to retrieve. The re

cord number 0 is set as the bookmark record and the descriptor record starts from 1. If RecNumber

is equal to or smaller than SQL_DESC_COUNT, but the data for the column or parameter is not incl

uded in the row, SQLGetDescField returns the default value of the field.

ODBC API References | 2,569

Name

[Output] It is the buffer pointer which returns SQL_DESC_NAME for the descriptor record. If Name

is NULL, StringLengthPtr returns the buffer length of Name (including null-termination character).

BufferLength

[Input] It is the length of name buffer.

StringLengthPtr

[Output] It is the pointer which returns the number of characters returnable in *Name buffer exclu

ding null-termination character. If the number of characters are equal to or bigger than BufferLeng

th, the data of *Name is truncated to BufferLength minus the length of a null-termination characte

r, and is null-terminated.

TypePtr

[Output] It is the buffer pointer which returns the value of SQL_DESC_TYPE for the descriptor field.

SubTypePtr

[Output] It is the buffer pointer which returns the value of SQL_DESC_DATETIME_INTERVAL_COD

E field for the record of SQL_DATETIME or SQL_INTERAVL type.

LengthPtr

[Output] It is the buffer pointer which returns the value of SQL_DESC_OCTET_LENGTH field for the

descriptor field.

PrecisionPtr

[Output] It is the pointer which returns the value of SQL_DESC_PRECISION field for the descriptor r

ecord.

ScalePtr

[Output] It is the pointer which returns the value of SQL_DESC_SCALE field for the descriptor recor

d.

NullablePtr

[Output] It is the pointer which returns the value of SQL_DESC_NULLABLE field for the descriptor r

ecord.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA, SQL_INVALID_HANDLE

If RecNumber is bigger than the number of current descriptor records, SQL_NO_DATA is returned. If Desc

riptorHandle is the IRD handle and the statement is on the preparation or execution state but related curs

or does not exist, then SQL_NO_DATA is returned.

2,570 | ODBC

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is a specific information message of the driver. (The function returns S

QL_SUCCESS_WITH_INFO.)

01004
String data, right tru

ncated

The length of *ValuePtr buffer is shorter than the length of the descripto

r field value, so the length is truncated. The remaining length of the desc

riptor field is returned to *StringLengthPtr. (The function returns SQL_SU

CCESS_WITH_INFO.)

07009
Invalid descriptor ind

ex

The fieldIdentifier argument is the record field, and the value of RecNum

ber argument is set to 0, and DescriptorHandle argument is the IPD hand

le.

RecNumber argument is set to 0, and SQL_ATTR_USE_BOOKMARKS attr

ibute is set to SQL_UB_OFF, and DescriptorHandle argument is the IRD h

andle.

RecNumber argument is smaller than 0.

08S01
Communication link

failure

Before the function processing is completed, the connection between th

e driver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation e

rror
It is a memory allocation error.

HY007
Associated statemen

t is not prepared

DescriptorHandle is related to the IRD handle, and the related statement

handle is not on the preparation or execution state.

HY010
Function sequence e

rror

StatementHandle related to DescriptorHandle asynchronously executes t

he function and it is still executung the function when called.

After calling SQLExecute, SQLExecDirect, then SQL_NEED_DATA is retur

ned and the function is called before sending all data-at-execution variab

les.

The function for the connetion handle related to DescriptorHandle is call

ed, and it is still executing when SQLGetDescRec is called.

HY013
Memory manageme

nt error

The buffer size used as the argument is smaller than 0, or it can not acce

ss the memory.

HY117

Connection is suspe

nded due to unkno

wn transaction state.

Only disconnect and

read-only functions

are allowed.

For more information about the suspended state, refer to SQLEndTran f

unction.

HYT01
Connection timeout

expired

The connection is expired before the data source responds to the reques

t. The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQL

SetStmtAttr.

IM001
Driver does not supp

ort this function
The driver related to DescriptorHandle does not support the function.

ODBC API References | 2,571

Description

The application can call SQLGetDescRec to retrieve the following descriptor field value for a column or pa

rameter.

● SQL_DESC_NAME

● SQL_DESC_TYPE

● SQL_DESC_DATETIME_INTERVAL_CODE

● SQL_DESC_OCTET_LENGTH

● SQL_DESC_PRECISION

● SQL_DESC_SCALE

● SQL_DESC_NULLABLE

SQLGetDescRec does not retrieve the header field value.

The application can set the argument corresponding to the null pointer field so that it prevents the return

for the field setting.

When the application retrieves the value of the undefined field for the specific descriptor type by calling S

QLGetDescRec, the function returns SQL_SUCCESS, but the return value for the field is not defined. For e

xample, if SQLGetDescRec is called for SQL_DESC_NAME field or SQL_DESC_NULLABLE field of APD or A

RD, then SQL_SUCCESS is returned but the field value is not defined.

When the application calls SQLGetDescRec to retrieve the value of the field which is defined as the specifi

c descriptor type but is not set as the default, the function returns SQL_SUCCESS, but the field value is no

t defined. For more information, refer to Initializing Descriptor Field of SQLSetDescField.

Each field value can be retrieved separately by calling SQLGetDescField. For more information about the d

escriptor header or the fields in the record, refer to SQLSetDescField.

2,572 | ODBC

SQLGetDiagField

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetDiagField returns the current value of the record fields in the diagnostic data structure which cont

ains an error, warning, and status information.

Syntax

SQLRETURN SQLGetDiagField(

SQLSMALLINT HandleType,

SQLHANDLE Handle,

SQLSMALLINT RecNumber,

SQLSMALLINT DiagIdentifier,

SQLPOINTER DiagInfoPtr,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLengthPtr);

Arguments

HandleType

[Input] It is the handle type identifier which requires diagnostics. The identifier should be one of th

e followings.

• SQL_HANDLE_DBC

• SQL_HANDLE_DESC

• SQL_HANDLE_ENV

• SQL_HANDLE_STMT

Handle

[Input] It is the handle for the diagnostic data structure, of the type pointed by HandleType. If Han

dleType is SQL_HANDLE_ENV, the Handle can be the shared or non-shared environment handle.

ODBC API References | 2,573

RecNumber

[Input] It indicates the state record of the information found by the application. The status record s

tarts from 1. If DiagIdentifier points any field of the diagnostic header, RecNumber is ignored. Othe

rwise, RecNumber should be bigger than 0.

DiagIdentifier

[Input] It refers to the diagnostic field whose value is returned. For more information, refer to Diag

Identifier Argument in the Description section.

DiagInfoPtr

[Output] It is the buffer pointer to which return the diagnostic information. The data type depnend

s on the value of DiagIdentifier. If DiagInfoPtr is an integer type, the application should use the SQL

ULEN buffer and initialize it to 0 before calling the function because some drivers record only the lo

wer 32-bits or 16-bits of the buffer and leave the upper bits intact. If DiagInfoPtr is NULL, StringLen

gthPtr returns the total number of returnable bytes excluding null-termination character in the buff

er pointed by DiagInfoPtr.

BufferLength

[Input] If DiagIdentifier is the ODBC defined diagnosis, and DiagInfoPtr points to the string or binar

y buffer, the argument should be the length of DiagInfoPtr. If DiagIdentifier is the ODBC defined di

agnosis field, and DiagInfoPtr is a number, BufferLength is ignored. If the value of DiagInfoPtr is th

e Unicode string (When calling SQLGetDiagFieldW), BufferLength should be an even number. If Di

agIdentifier is a driver defined field, the application refers to the field characteristic to the driver ma

nager by setting BufferLength argument. BufferLength can have the following values.

• If DiagInfoPtr is a string buffer pointer, BufferLength is the string length or SQL_NTS.

• If DiagInfoPtr is a binary buffer pointer, the application stores the macro result of SQL_LENG_BI

NARY_ATTR(length) in BufferLength. A negative number is stored in BufferLength.

• If DiagInfoPtr is not a string or binary buffer pointer, BufferLength should have the value of SQL

_IS_POINTER.

• If *DiagInfoPtr is the fixed length data type, BufferLength is one of SQL_IS_INTEGER, SQL_IS_UI

NTEGER, SQL_IS_SMALLINT, or SQL_IS_USMALLINT.

StringLengthPtr

[Output] It is the buffer pointer which returns the total length of bytes excluding the null-terminati

on character which is returned to DiagInfoPtr for the character data. If the returnable length in byt

es is equal to or bigger than BufferLength, the text in DiagInfoPtr is truncated to the length of Buff

erLength minus null-termination character.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, SQL_NO_DATA

2,574 | ODBC

Diagnosis

SQLGetDiagField does not post the diagnostic record. The result of the return value is used as follows.

● SQL_SUCCESS: The function successfully returns the diagnosis information.

● SQL_SUCCESS_WITH_INFO: The data in the diagnostic field is truncated because *DiagInfoPtr is too s

mall to store the requested diagnosis field. The application should compare BufferLength to the actu

al byte number stored in *StringLengthPtr to check whether the truncation occurred.

● SQL_INVALID_HANDLE: The handle is not valid for a type indicating HandleType.

● SQL_ERROR: One of the followings occurs.

○ DiagIdentifier argument does not have the valid value.

○ DiagIdentifier argument is one of SQL_DIAG_CURSOR_ROW_COUNT, SQL_DIAG_DYNAMIC_FU

NCTION, SQL_DIAG_DYNAMIC_FUNCTION_CODE, SQL_DIAG_ROW_COUNT , and Handle is not

the statement handle.

○ When DiagIdentifier refers to the diagnosis record field, RecNumber is a negative number or 0. R

ecNumber is ignored for the header field.

○ The requested value is a string, and BufferLength is smaller than 0.

○ If an asynchronous notification is used, the asynchronous execution of handle is not completed.

● SQL_NO_DATA: RecNumber is bigger than the number of diagnosis records for the handle specified i

n Handle. If the diagnosis record for handle does not exist, then the function returns SQL_NO_DATA

for RecNumber of any positive number.

Description

The application generally calls SQLGetDiagField for one of the three purposes.

● To obtain specific error or warning information when a function returns SQL_ERROR or SQL_SUCCES

S_WITH_INFO (SQLBrowseConnect function returns SQL_NEED_DATA.)

● To obtain the number of rows in the data source when insert, delete, or update operations were perf

ormed with a call to SQLExecute, SQLExecDirect, SQLBulkOperations or SQLSetPos. Or, to obtain the

number of rows which exist in the current open cursor, if the driver can provide this information.

● To obtain the information of which function is executed by a calling SQLExecDirect or SQLExecute

Whenever the function is called, all ODBC functions can post 0 or more diagnosis records. Therefore, the

application can call SQLGetDiagField after calling all functions. There is no limitation on the number of di

agnosis records which can be stored at a time. SQLGetDiagField retrieves the diagnosis data structure spe

cified in Handle and the most recent related diagnosis information. If the application calls another ODBC

function instead of SQLGetDiagField or SQLGetDiagRec, diagnostic information obtained by the previous

call of the same handle can be lost.

As long as SQLGetDiagField returns SQL_SUCCESS, the application can read the diagnosis record by incre

asing RecNumber. The number of state records is displayed on the header field of SQL_DIAG_NUMBER. C

alling SQLGetDiagField does not affect the header and record field. As long as a function except for the d

ODBC API References | 2,575

iagnostic function is not called, the application can retrieve a record field by calling SQLGetDiagField agai

n using the same handle.

The application can call SQLGetDiagField anytime to return any diagnostic fields. If Handle is not the state

ment handle, SQL_DIAG_CURSOR_ROW_COUNT or SQL_DIAG_ROW_COUNT is excluded because it retu

rns SQL_ERROR. If any diagnosis field is not defined, calling SQLGetDiagField returns SQL_SUCCESS and t

he undefined value.

API call other than the function executed asynchronously causes HY010 (Function sequence error). Howe

ver, the error code is not retrieved before the asynchronous processing is completed.

HandleType Argument

Each handle type has the related diagnosis information, and HandleType argument refers to the handle ty

pe.

Some headers and record fields are not returned for the environment, connection, statement, descriptor

handles. The handles which are not applicable are described in the following Header Fields and Record Fi

elds tables.

If HandleType is SQL_HANDLE_ENV, the handle can be the shared or non-shared environment handle.

A specific header diagnosis field of the driver is not related to the environment handle.

The diagnosis header defined for the descriptor handle is only SQL_DIAG_NUMBER and SQL_DIAG_RETU

RNCODE.

DiagIdentifier Argument

The argument is the field identifier required in the diagnosis data structure. If RecNumber is equal to or bi

gger than 1, the data in the field is the diagnostic information returned by the function. If RecNumber is

0, the field is in the header of the diagnostic data structure, and it has the data related to the function cal

l returning the diagnostic information, not the specific information.

The driver may define a driver-specific header and record fields in the diagnosis data structure.

ODBC 3.x application which uses ODBC 2.x driver can call SQLGetDiagField when DiagIdentifier argumen

t is SQL_DIAG_CLASS_ORIGIN, SQL_DIAG_CLASS_SUBCLASS_ORIGIN, SQL_DIAG_CONNECTION_NAME,

SQL_DIAG_MESSAGE_TEXT, SQL_DIAG_NATIVE, SQL_DIAG_NUMBER, SQL_DIAG_RETURNCODE, SQL_

DIAG_SERVER_NAME, SQL_DIAG_SQLSTATE, and it returns SQL_ERROR for other diagnostic fields.

Header Field

DiagIdentifier Return type Returns

This field contains the number of rows in the cursor. Its meaning depends o

n the information type of SQLGetInfo. The information type is SQL_DYNAMI

2,576 | ODBC

SQL_DIAG_CURS

OR_ROW_COUN

T

SQLLEN C_CURSOR_ATTRIBUTES2, SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2,

SQL_KEYSET_CURSOR_ATTRIBUTES2, SQL_STATIC_CURSOR_ATTRIBUTES2,

and it refers to the number of rows which can be used in each cursor type.

(It is in SQL_CA2_CRC_EXACT and SQL_CA2_CRC_APPROXIMATE bits.)

This field content is defined after calling the statement handle, SQLExecute,

SQLExecDirect, or SQLMoreResults. SQLGetDiagField returns SQL_ERROR if

DiagIdentifier is the statement handle except for SQL_DIAG_CURSOR_ROW

_COUNT.

SQL_DIAG_DYN

AMIC_FUNCTION
SQLCHAR *

It is a string which describes the SQL statements executing the basic functio

n. The field content is defined after calling SQLExecute, SQLExecDirect, or S

QLMoreResults. Calling SQLGetDiagField returns SQL_ERROR if DiagIdentifi

er is the statement handle except for SQL_DIAG_DYNAMIC_FUNCTION.

SQL_DIAG_DYN

AMIC_FUNCTION

_CODE

SQLINTEGER

It is the numeric code which describes the SQL statement executing the basi

c function. The field content is defined after calling SQLExecute, SQLExecDir

ect, or SQLMoreResults. Calling SQLGetDiagField returns SQL_ERROR if Dia

gIdentifier is the statement handle except for SQL_DIAG_DYNAMIC_FUNCTI

ON_CODE.

SQL_DIAG_NUM

BER
SQLINTEGER

It is the number of records which are in the usable state of the specified han

dles.

SQL_DIAG_RETU

RNCODE
SQLRETURN

It is the code returned by the function. The driver does not need to impleme

nt SQL_DIAG_RETURNCODE, and it is implemented by the driver manager.

If the handle is not called by any function, SQL_SUCCESS is returned for SQL

_DIAG_RETURNCODE.

SQL_DIAG_ROW

_COUNT
SQLLEN

It is the number of rows which are affected by the INSERT, DELETE, UPDATE

statement executed by SQLExecute, SQLExecDirect, SQLBulkOperations, or

SQLSetPos. It is defined by the driver after cursor specification is executed. T

he field content is defined only for the statement handle.

Calling SQLGetDiagField returns SQL_ERROR if DiagIdentifier is the stateme

nt handle except for SQL_DIAG_ROW_COUNT. The field data is also returne

d to RowCountPtr of SQLRowCount. The row count returned to SQLRowCo

unt among data of this field remains the same until statement is set back to

the prepared or allocated state, but it is set again after calling the non-diagn

ostic function.

DiagIdentifier Return type Returns

Record Field

DiagIdentifier Return type Returns

SQL_DIAG_CLAS

S_ORIGIN
SQLCHAR *

It is a string representing the document which defines the class of SQLSTAT

E value in this record. This value is ISO 9075 for all SQLSTATE defined by the

Open Group and the ISO call level interface. This value is ODBC 3.0 for the s

ODBC API References | 2,577

pecified ODBC SQLSTATE (for All SQLSTATE classes having IM).

SQL_DIAG_COLU

MN_NUMBER
SQLINTEGER

If SQL_DIAG_ROW_NUMBER is the valid row number in the row set or para

meter set, this field is a value representing the column number of result set

or parameter number of parameter sets. The result set column number alwa

ys starts from 1. If the state record is related to the bookmark column, the fi

eld can be 0. The parameter number starts from 1.

If the state record is not related to the column number or to the parameter

number, the value can be SQL_NO_COLUMN_NUMBER. If the driver can no

t determine the column number or parameter number related to the record,

the field value is SQL_COLUMN_NUMBER_UNKNOWN.

The field content is defined only for the statement handle.

SQL_DIAG_CON

NECTION_NAME
SQLCHAR *

It is the string representing the connection name related to the diagnostic re

cord. The field is the driver definition. The field is a zero-length string for the

diagnosis which is not related to any server and the environment handle rela

ted to the diagnostic data structure.

SQL_DIAG_MESS

AGE_TEXT
SQLCHAR * It is an information message about the error or warning.

SQL_DIAG_NATI

VE
SQLINTEGER

It is the driver/ data source–specific native error code. If native error code do

es not exist, the driver returns 0.

SQL_DIAG_ROW

_NUMBER
SQLLEN

This field contains the row number in the row set or the parameter number

in the parameter set which is related to the state record. The row number a

nd parameter number start from 1. If the state record is not related to the r

ow number or parameter number, the field value is SQL_NO_ROW_NUMBE

R. If the driver can not determine the row number or parameter number rel

ated to the record, the field value is SQL_ROW_NUMBER_UNKNOWN.

The field content is defined only for the statement handle.

SQL_DIAG_SERV

ER_NAME
SQLCHAR *

It is the string representing the server name related to the diagnostic record.

It is as same as the value returned by calling SQLGetInfo with SQL_DATA_S

OURCE_NAME option. The field is a zero-length string for the diagnosis whi

ch is not related to any server and the environment handle related to the dia

gnostic data structure.

SQL_DIAG_SQLS

TATE
SQLCHAR * It is SQLSTATE diagnostic code of the five characters.

SQL_DIAG_SUBC

LASS_ORIGIN
SQLCHAR *

It is the string of the same format and valid value with SQL_DIAG_CLASS_O

RIGIN which is defines the subclass part of the SQLSTATE code.

The specific ODBC SQLSTATE codes in ODBC 3.0 are as follows.

01S00, 01S01, 01S02, 01S06, 01S07, 07S01, 08S01, 21S01, 21S02, 25S01,

25S02, 25S03, 42S01, 42S02, 42S11, 42S12, 42S21, 42S22, HY095, HY09

7, HY098, HY099, HY100, HY101, HY105, HY107, HY109, HY110, HY111,

DiagIdentifier Return type Returns

2,578 | ODBC

HYT00, HYT01, IM001, IM002, IM003, IM004, IM005, IM006, IM007, IM00

8, IM010, IM011, IM012.

DiagIdentifier Return type Returns

Dynamic Function Field Value

SQL statement executed
Value of SQL_DIAG_DYNAMIC_F

UNCTION

Value of SQL_DIAG_DYNAMIC_FUNCTION_

CODE

alter-domain-statement "ALTER DOMAIN" SQL_DIAG_ALTER_DOMAIN

alter-table-statement "ALTER TABLE" SQL_DIAG_ALTER_TABLE

assertion-definition "CREATE ASSERTION" SQL_DIAG_CREATE_ASSERTION

character-set-definition "CREATE CHARACTER SET" SQL_DIAG_CREATE_CHARACTER_SET

collation-definition "CREATE COLLATION" SQL_DIAG_CREATE_COLLATION

create-index-statement "CREATE INDEX" SQL_DIAG_CREATE_INDEX

create-table-statement "CREATE TABLE" SQL_DIAG_CREATE_TABLE

create-view-statement "CREATE VIEW" SQL_DIAG_CREATE_VIEW

cursor-specification "SELECT CURSOR" SQL_DIAG_SELECT_CURSOR

delete-statement-positioned "DYNAMIC DELETE CURSOR" SQL_DIAG_DYNAMIC_DELETE_CURSOR

delete-statement-searched "DELETE WHERE" SQL_DIAG_DELETE_WHERE

domain-definition "CREATE DOMAIN" SQL_DIAG_CREATE_DOMAIN

drop-assertion-statement "DROP ASSERTION" SQL_DIAG_DROP_ASSERTION

drop-character-set-stmt "DROP CHARACTER SET" SQL_DIAG_DROP_CHARACTER_SET

drop-collation-statement "DROP COLLATION" SQL_DIAG_DROP_COLLATION

drop-domain-statement "DROP DOMAIN" SQL_DIAG_DROP_DOMAIN

drop-index-statement "DROP INDEX" SQL_DIAG_DROP_INDEX

drop-schema-statement "DROP SCHEMA" SQL_DIAG_DROP_SCHEMA

drop-table-statement "DROP TABLE" SQL_DIAG_DROP_TABLE

drop-translation-statement "DROP TRANSLATION" SQL_DIAG_DROP_TRANSLATION

drop-view-statement "DROP VIEW" SQL_DIAG_DROP_VIEW

grant-statement "GRANT" SQL_DIAG_GRANT

insert-statement "INSERT" SQL_DIAG_INSERT

ODBC-procedure-extension "CALL" SQL_DIAG_CALL

revoke-statement "REVOKE" SQL_DIAG_REVOKE

schema-definition "CREATE SCHEMA" SQL_DIAG_CREATE_SCHEMA

translation-definition "CREATE TRANSLATION" SQL_DIAG_CREATE_TRANSLATION

update-statement-positioned "DYNAMIC UPDATE CURSOR" SQL_DIAG_DYNAMIC_UPDATE_CURSOR

update-statement-searched "UPDATE WHERE" SQL_DIAG_UPDATE_WHERE

Unknown empty string SQL_DIAG_UNKNOWN_STATEMENT

ODBC API References | 2,579

Sequence of Status Record

The state record is sequentially located according to the row number and diagnostic type. The driver man

ager determines the final step of returning the created state record.

If the diagnostic record is posted by the driver manager and the driver, the driver manager is responsible f

or determining the order of the diagnostic records.

If two or more state records exist, the order of the record is determined first by the row number. The follo

wing rules are applied to determine the order of the diagnostic record by the row.

● The record not corresponding to any row because SQL_NO_ROW_NUMBER is defined as -1, is positio

ned in front of the record corresponding to the particular row.

● The record which does not know the row number because SQL_ROW_NUMBER_UNKNOWN is defin

ed as -2 is positioned in front of all the other records.

● For all record which are related to a particular row, the records are sorted by the value of SQL_DIAG

ROW_NUMBER. All errors and warnings for the first row are listed, and then all the errors and warnin

gs for the next row are sequentially listed.

Note

If SQLSTATE 01S01 is returned by the ODBC 2.x driver, or SQLSTATE 01S01 is returned by the OD

BC 3.x driver when calling SQLExtendedFetch or when calling SQLSetPos for the cursor in SQLExte

ndedFetch, then the ODBC 3.x driver manager does not require the state record in a diagnosis qu

eue.

Within each row, or for all rows which do not correspond to the row or which do not know the row num

ber or which have the row number as same as SQL_NO_ROW_NUMBER, the first record listed is determin

ed by using the set of ordering rules. After the first record, the order of other records which affect the ro

w is not defined. The application can not assume that an error precedes a warning after the first record. T

he application should check the complete diagnostic data structure to get the complete information abou

t the failed function call.

The following rules are used to determine the first record in the row. The highest grade record is the first

record. The record source (driver manager, driver, gateway, etc.) does not affect the determination of the

record ranks.

● Errors state record describing the error has the highest grade. The following rules are applied to align

the errors.

○ The record which refers to the transaction failure or possible transaction failure has a higher grad

e than any other record.

2,580 | ODBC

○ If two or more records describe the same error condition, SQLSTATE defined in the Open Group

CLI specifications(Class 03 ~ HZ) has a higher grade than SQLSTATE defined in ODBC and the dri

ver.

● Implementation-defined No Data Values state record which describes No Data values (class 02) defin

ed by the driver has the second highest rank.

● Warnings state record(class 01) describing the warning has the lowest grade. If two or more records

describe the same error condition, SQLSTATE defined in the Open Group CLI specifications has a high

er grade than SQLSTATE defined in ODBC and the driver.

ODBC API References | 2,581

SQLGetDiagRec

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetDiagRec returns the current value of the record field of the diagnostic data source (related to the

specified handle) which contains an error, warning, state information.

Syntax

SQLRETURN SQLGetDiagRec(

SQLSMALLINT HandleType,

SQLHANDLE Handle,

SQLSMALLINT RecNumber,

SQLCHAR * SQLState,

SQLINTEGER * NativeErrorPtr,

SQLCHAR * MessageText,

SQLSMALLINT BufferLength,

SQLSMALLINT * TextLengthPtr);

Arguments

HandleType

[Input] It is the handle type identifier of which diagnosis is required. The identifier should be one of

the followings.

• SQL_HANDLE_DBC

• SQL_HANDLE_DESC

• SQL_HANDLE_ENV

• SQL_HANDLE_STMT

Handle

[Input] It is the handle for the diagnosis data structure of the type pointed by HandleType. If Handl

eType is SQL_HANDLE_ENV, the handle can be the shared or non-shared environment handle.

2,582 | ODBC

RecNumber

[Input] It indicates the state record of the information found by the application. The number of the

state record starts from 1.

SQLState

[Output] It is the buffer pointer which returns five character SQLSTATE code for the diagnostic rec

ord RecNumber. The first two characters indicate a class and the next three characters indicate a su

bclass. The information is in the SQL_DIAG_SQLSTATE diagnostic field.

NativeErrorPtr

[Output] It is the buffer pointer which returns the specific native error code to the data source. The

information is in the diagnostic field SQL_DIAG_NATIVE.

MessageText

[Output] It is the buffer point which returns the diagnostic message text string. The information is i

n the SQL_DIAG_MESSAGE_TEXT diagnostic field.

If MessageText is NULL, TextLegnthPtr returns the total number of returnable characters (excluding

null-termination character) to the buffer pointed by MessageText.

BufferLength

[Input] It is the length of characters within *MessageText buffer. Diagnostic message text does not

have the maximum length.

TextLegnthPtr

[Output] It is the buffer pointer to which the total number of characters returnable to *MessageTe

xt is returned (excluding null-termination character). If the number of returnable characters is bigg

er than BufferLength, the diagnostic message text of *MessageText is truncated to the length of B

ufferLength minus null-termination character.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLGetDiagRec does not post the diagnostic record. It uses the result of the return value as follows.

● SQL_SUCCESS: The function successfully returns the diagnosis information.

● SQL_SUCCESS_WITH_INFO: *MessageText buffer is too small to store the requested diagnosis messa

ge. The diagnostic record is not generated. The application should compare BufferLength to the actu

al byte number stored in *StringLengthPtr to check whether the truncation occurred.

● SQL_INVALID_HANDLE: The handle is not valid for a type indicating HandleType.

● SQL_ERROR: One of the followings occurs.

○ RecNumber argument is the negative number or 0.

ODBC API References | 2,583

○ BufferLength is smaller than 0.

○ If an asynchronous notification is used, the asynchronous execution of handle is not completed.

● SQL_NO_DATA: RecNumber is bigger than the number of diagnosis records for the handle specified i

n Handle. If the diagnosis record for handle does not exist, then the function returns SQL_NO_DATA

for RecNumber of any positive number.

Description

When the ODBC function returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, generally the application ca

lls SQLGetDiagRec. However, the application can call the SQLGetDiagRec after any function is called beca

use any ODBC function can post zero or more diagnostic records. The application can call SQLGetDiagRec

several times to return some or all records in the diagnostic data structure. ODBC does not have limit on t

he number of diagnostic records which can be stored at a time.

SQLGetDiagRec can not be used to return the header field of the diagnostic data structure.(RecNumber s

hould be bigger than 0.) The application should call SQLGetDiagField instead of SQLGetDiagRec.

SQLGetDiagRec retrieves only the handle specified to Handle and the latest related diagnostic informatio

n. If the application calls any other ODBC function (excluding SQLGetDiagRec, SQLGetDiagField, SQLErro

r), diagnostic information from the previous call of the same handle is lost.

The application can repeatedly retrieve the diagnostic record by increasing RecNumber as long as SQLGet

DiagRec returns SQL_SUCCESS. SQLGetDiagRec call do not affect the header and record fields. If interven

tion of other function does not exist except for SQLGetDiagRec, SQLGetDiagField, SQLError, then the ap

plicatin can call SQLGetDiagRec again to retrieve the field in the record. The application can retrieve the t

otal number of diagnostic records available by calling SQLGetDiagField to retrieve the value of the SQL_DI

AG_NUMBER field, and calling SQLGetDiagRec several times.

HandleType Argument

Each handle type has the related diagnosis information, and HandleType argument refers to the Handle t

ype.

Some header and record fields are not returned for the environment, connection, statement, descriptor h

andles. In the header field and record field table of SQLGetDiagField, the inappropriate handles in the fiel

d are described.

If HandleType is SQL_HANDLE_SENV which indicates the shared environment handle, then calling SQLGe

tDiagRec returns SQL_INVALID_HANLDE. If HandleType is SQL_HANDLE_ENV, then the handle can be the

shared or non-shared environment handle.

2,584 | ODBC

SQLGetEnvAttr

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetEnvAttr returns the current settings of the environment attributes.

Syntax

SQLRETURN SQLGetEnvAttr(

SQLHENV EnvironmentHandle,

SQLINTEGER Attribute,

SQLPOINTER ValuePtr,

SQLINTEGER BufferLength,

SQLINTEGER * StringLengthPtr);

Arguments

EnvironmentHandle

[Input] It is the environment handle.

Attribute

[Input] It is the attribute to be retrieved.

ValuePtr

[Output] It is the buffer pointer in which to return the current attribute value specified by Attribute.

If ValuePtr is NULL, StringLengthPtr returns the total number of bytes returnable to the buffer poin

ted by ValuePtr (excluding null-termination character).

BufferLength

[Input] If ValuePtr points to a string, the argument should be the length of *ValuePtr. If ValuePtr is

an integer, BufferLength is ignored. If *ValuePtr(when SQLGetEnvAttrW is called) is a unicode strin

g, BufferLength should be an even number. If the attribute value is not a string, BufferLength is no

t used.

ODBC API References | 2,585

StringLengthPtr

[Output] It is the buffer pointer to which the total number of bytes to be returned to *ValuePtr (ex

cluding null-termination character) is returned. If ValuePtr is the null pointer, the length is not retur

ned. If the attribute value is a string and the number of bytes returnable is equal to or bigger than

BufferLength, *ValuePtr is truncated to the length of BufferLength minus the length of a null-termi

nation character and is a null-terminated by the driver.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is the driver-specific informational message. (The function returns SQ

L_SUCCESS_WITH_INFO.)

01004
String data, right trunc

ated

The data returned to *ValuePtr is truncated to the length of BufferLen

gth minus null-termination character. The remaining length of string is

returned to *StringLengthPtr. (The function returns SQL_SUCCESS_WI

TH_INFO.)

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation err

or
It is a memory allocation error.

HY010
Function sequence err

or

SQL_ATTR_ODBC_VERSION is not set through SQLSetEnvAttr. If SQLAl

locHandleStd is used, then SQL_ATTR_ODBC_VERSION does not need

to be explicitly set.

HY013
Memory management

error

The size of buffer used as an argument is smaller than 0 or it can not a

ccess the memory.

HY092
Invalid attribute/optio

n identifier

The value specified in attribute argument is not valid for ODBC version

supported by the driver.

HY117

Connection is suspend

ed due to unknown tr

ansaction state. Only d

isconnect and read-onl

y functions are allowe

d.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature not i

mplemented

The value specified in attribute argument is valid for ODBC environme

nt of ODBC version supported by the driver, but it is not supported by t

he driver.

IM001
Driver does not suppor

t this function
The driver related to DescriptorHandle does not support the function.

2,586 | ODBC

Description

The driver-specific environment attributes does not exist. If Attribute specifies the attribute which returns

a string, ValuePtr should be the buffer pointer whose string is returned. The maximum string length inclu

ding the null-termination character is the BufferLength in bytes.

SQLGetEnvAttr can be called at any point between the allocation and release of the environment handle.

All environment attributes successfully allocated by the application for the environment are maintained u

ntil SQLFreeHandle is called with Handletype of SQL_HANDLE_ENV in EnvrionmentHandle. It is recomme

nded to use only one environment handle.

Note

SQL_ATTR_OUTPUT_NTS environment attributes are supported by the application which complies

with standards. If SQLGetEnvAttr is called, ODBC 3.x driver manager always returns SQL_TRUE for

the attribute. SQL_ATTR_OUTPUT_NTS is set to SQL_TRUE only by calling SQLSetEnvAttr.

The following table describes attribute list which can be queried through SQLGetEnvAttr.

Attribute ValuePtr Content

SQL_ATTR_CONNECTION_

POOLING

(ODBC 3.8)

It is not supported by the driver.

SQL_ATTR_CP_MATCH

(ODBC 3.0)
It is not supported by the driver.

SQL_ATTR_ODBC_VERSIO

N

(ODBC 3.0)

It is 32-bit integer which indicates whether a particular feature is operated as ODBC 2.

x or ODBC 3.x. The following values are used to set the attribute.

SQL_OV_ODBC3_80 = The driver manager or driver performs the following ODBC 3.8

behaviors.

● The driver expects and returns ODBC 3.x code values for DATE, TIME, TIMESTA

MP.

● The driver returns ODBC 3.x SQLSTATE codes when SQLError, SQLGetDiagField

or SQLGetDiagRec is called.

● CatalogName argument of SQLTables allows the pattern matching.

SQL_OV_ODBC3 = The driver manager or driver performs the following ODBC 3.x be

haviors.

● The driver expects and returns ODBC 3.x code values for DATE, TIME, TIMESTA

MP.

● The driver returns ODBC 3.x SQLSTATE codes when SQLError, SQLGetDiagField

ODBC API References | 2,587

or SQLGetDiagRec is called.

● CatalogName argument of SQLTables allows the pattern matching.

● The driver manager does not support C data type extensibility.

SQL_OV_ODBC2 = The driver manager or driver performs the following ODBC 2.x be

haviors. It is very helpful when ODBC 2.x applications operate in the ODBC 3.x driver.

● The driver expects and returns ODBC 2.x code values for DATE, TIME, TIMESTA

MP.

● The driver returns ODBC 2.x SQLSTATE codes when SQLError, SQLGetDiagField

or SQLGetDiagRec is called.

● CatalogName argument of SQLTables does not allow the pattern matching.

● The driver manager does not support C data type extensibility.

An application should set this environment attribute before it calls any function which

has an SQLHENV argument or a function which returns SQLSTATE HY010 (Function s

equence error). The driver should specify whether the additional operations for the en

vironmental flag exists.

SQL_ATTR_OUTPUT_NTS

(ODBC 3.0)
It is not supported by the driver.

Attribute ValuePtr Content

2,588 | ODBC

SQLGetFunctions

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLGetFunctions returns information whether the driver supports the given ODBC function. The function

is implemented by the driver manager or the driver. If the driver implements SQLGetFunctions, the driver

manager will call the function in the driver.

Syntax

SQLRETURN SQLGetFunctions(

SQLHDBC ConnectionHandle,

SQLUSMALLINT FunctionId,

SQLUSMALLINT * SupportedPtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

FunctionId

[Input] It is the #define value which identifies the ODBC function related to SQL_API_ODBC3_ALL_

FUNCTIONS or SQL_API_ALL_FUNCTIONS. SQL_API_ODBC3_ALL_FUNCTIONS is used in ODBC 3.x

application to determine to support the function in ODBC 3.x and in earlier version. SQL_API_ALL_

FUNCTIONS is used in ODBC 2.x to determine whether to support the function in ODBC 2.x and in

earlier version.

For more information about the value list of #define which identifies the ODBC function, refer to t

he table in the description section.

SupportedPtr

[Output] If FunctionId identifies the single ODBC, SupportedPtr points to the single SQLUSMALLIN

T value. If the specified function is supported by the driver, it is SQL_TRUE. Otherwise, it is SQL_FA

LSE.

If FunctionId is SQL_API_ODBC3_ALL_FUNCTIONS, SupprtedPtr points to the SQLSMALLINT array

ODBC API References | 2,589

which has the number of elements equal to SQL_API_ODBC3_ALL_FUNCTIONS_SIZE. The array is

managed by the driver manager as 4000-bit bitmap which can be used to determine to support th

e function in ODBC 3.x or in earlier version. SQL_FUNC_EXISTS macro is called to check whether th

e function is supported. ODBC 3.x application can call SQLGetFunctions by using SQL_API_ODBC3

_ALL_FUNCTIONS in preparation for ODBC 2.x or ODBC 3.x.

If FunctionId is SQL_API_ALL_FUNCTIONS, SupportedPtr points to the array with 100 elements. Th

e array is indexed by #define value used by the FunctionId to identify each ODBC function, and sev

eral elements are reserved without being used. If the function in ODBC 2.x or earlier version is supp

orted by the driver, the element is SQL_TRUE. If the ODBC function is not supported by the driver o

r it is not the ODBC function, the element is SQL_FALSE.

The array that is returned to *SupportedPtr uses the 0-based indexing.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is the driver-specific informational message. (The function returns SQL_SUC

CESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between the driv

er and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation er

ror
It is a memory allocation error.

HY010
Function sequence er

ror

SQLGetFunctions is called before SQLConnect, SQLBrowseConnect, SQLDriver

Connect.

SQLBrowseConnect is called for ConnectionHandle, and SQL_NEED_DATA is r

eturned.

SQLGetfunction is called before SQLBrowseConnect returns SQL_SUCCESS_

WITH_INFO or SQL_SUCCESS.

SQLExecute, SQLExecDirect, SQLMoreResults is called for ConnectionHandle,

and SQL_PARAM_DATA_AVAILABLE is returned. The function is called, befor

e the data retrieves all streamed parameters.

HY013
Memory manageme

nt error

The size of buffer used as an argument is smaller than 0, or it can not access t

he memory.

HY095
Function type out of

range
FunctionId value is not valid.

2,590 | ODBC

HY117

Connection is suspen

ded due to unknown

transaction state. Onl

y disconnect and rea

d-only functions are

allowed.

For more information about the suspended state, refer to SQLEndTran.

HYT01
Connection timeout

expired

The connection is expired before the data source response to the request. Th

e connection timeout interval can be set to SQL_ATTR_CONNECTION_TIMEO

UT through SQLSetConnectAttr.

IM001
Driver does not supp

ort this function
The driver related to DescriptorHandle does not support the function.

SQLSTATE Error Description

Description

SQLGetFunctions returns the supported SQLGetFunctions, SQLDataSources, SQLDrivers. This is because t

he function is implemented in the driver manager. If an unicode function exist, the driver manager maps

the ANSI function corresponding to the Unicode function. If an ANSI function exist, the driver manager m

aps the unicode function corresponding to the ANSI function.

The following is the list of valid values for FunctionId for the functions which comply with ISO 92 standar

ds compliance level.

● SQL_API_SQLALLOCHANDLE

● SQL_API_SQLBINDCOL

● SQL_API_SQLCANCEL

● SQL_API_SQLCLOSECURSOR

● SQL_API_SQLCOLATTRIBUTE

● SQL_API_SQLCONNECT

● SQL_API_SQLCOPYDESC

● SQL_API_SQLDATASOURCES

● SQL_API_SQLDESCRIBECOL

● SQL_API_SQLDISCONNECT

● SQL_API_SQLDRIVERS

● SQL_API_SQLENDTRAN

● SQL_API_SQLEXECDIRECT

● SQL_API_SQLEXECUTE

● SQL_API_SQLFETCH

● SQL_API_SQLFETCHSCROLL

● SQL_API_SQLFREEHANDLE

● SQL_API_SQLFREESTMT

ODBC API References | 2,591

● SQL_API_SQLGETCONNECTATTR

● SQL_API_SQLGETCURSORNAME

● SQL_API_SQLGETDATA

● SQL_API_SQLGETDESCFIELD

● SQL_API_SQLGETDESCREC

● SQL_API_SQLGETDIAGFIELD

● SQL_API_SQLGETDIAGREC

● SQL_API_SQLGETENVATTR

● SQL_API_SQLGETFUNCTIONS

● SQL_API_SQLGETINFO

● SQL_API_SQLGETSTMTATTR

● SQL_API_SQLGETTYPEINFO

● SQL_API_SQLNUMRESULTCOLS

● SQL_API_SQLPARAMDATA

● SQL_API_SQLPREPARE

● SQL_API_SQLPUTDATA

● SQL_API_SQLROWCOUNT

● SQL_API_SQLSETCONNECTATTR

● SQL_API_SQLSETCURSORNAME

● SQL_API_SQLSETDESCFIELD

● SQL_API_SQLSETDESCREC

● SQL_API_SQLSETENVATTR

● SQL_API_SQLSETSTMTATTR

The following is the list of valid values for FunctionId for the functions which comply with open group sta

ndard compliance level.

● SQL_API_SQLCOLUMNS

● SQL_API_SQLSPECIALCOLUMNS

● SQL_API_SQLSTATISTICS

● SQL_API_SQLTABLES

The following is the list of valid values for FunctionId for the functions which comply with ODBC standard

s compliance level.

● SQL_API_SQLBINDPARAMETER

● SQL_API_SQLBROWSECONNECT

● SQL_API_SQLBULKOPERATIONS[1]

● SQL_API_SQLCOLUMNPRIVILEGES

● SQL_API_SQLDESCRIBEPARAM

● SQL_API_SQLDRIVERCONNECT

● SQL_API_SQLFOREIGNKEYS

2,592 | ODBC

● SQL_API_SQLMORERESULTS

● SQL_API_SQLNATIVESQL

● SQL_API_SQLNUMPARAMS

● SQL_API_SQLPRIMARYKEYS

● SQL_API_SQLPROCEDURECOLUMNS

● SQL_API_SQLPROCEDURES

● SQL_API_SQLSETPOS

● SQL_API_SQLTABLEPRIVILEGES

[1] When operating with ODBC 2.x driver, SQLBulkOperations is supported and returned only when the b

oth of the followings are true. ODBC 2.x driver supports SQLSetPos, and the SQL_POS_OPERATIONS info

rmation type returns SQL_POS_ADD bit as set.

The valid value of FunctionId for the functions introduced after ODBC 3.8 is SQL_API_SQLCANCELHANDL

E. [2]

[2]SQLCancelHandle is returned only when the driver supports both of SQLCancel and SQLCancelHandle.

If SQLCancel is supported but SQLCancelHandle is not suported, the application can still call SQLCancelHa

ndle for the statement handle, because it is mapped to SQLCancel.

SQL_FUNC_EXISTS Macro

SQL_FUNC_EXISTS (SupportedPtr, FunctionID) macro is used to call SQLGetFunctions to SQL_API_ODBC3

_ALL_FUNCTIONS by using FunctionId argument and to check the function supported in ODBC 3.x or in t

he earlier version. The application uses SQL_FUNC_EXISTS by setting SupportedPtr transferred from SQLG

etFuncions to SupportedPtr argument and by setting the FunctionID argument to the #define for the fun

ction. If the function is supported, SQL_FUNC_EXIST returns SQL_TRUE. Otherwise, it returns SQL_FALSE.

Note

When operating with ODBC 2.x driver, ODBC 3.x driver manager returns SQL_TRUE for SQLAllocH

andle and SQLFreeHandle. It is because SQLAllocHandle is mapped to SQLAllocEnv, SQLAllocConn

ect orSQLAllocStmt, and SQLFreeHandle is mapped to SQLFreeEnv, SQLFreeConnect or SQLFreeSt

mt. However, although SQLFreeHandle returns SQL_TRUE, SQLFreeHandle whose SQL_HANDLE_

DESC is used as HandleType argument is not supported. It is because function mapped to ODBC 2

.x function for this case does not exist.

ODBC API References | 2,593

SQLGetGroupCount

Conformance

Standards compliance: It is not available.

Overview

SQLGetGroupCount returns the number of cluster groups.

Syntax

SQLRETURN SQLGetGroupCount(

SQLHDBC ConnectionHandle,

SQLINTEGER * GroupCountPtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

GroupCountPtr

[Output] It is the number of cluster groups.

Returns

SQL_SUCCESS, SQL_NO_DATA, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

08003
Connection not o

pen
ConnectionHandle is not in a connected state.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY010
Function sequenc

e error

This function should be called only when the connection property SQL_ATT

R_LOCALITY_AWARE_TRANSACTION is set.

2,594 | ODBC

Description

SQLGetGroupCount can be called only when the connection property SQL_ATTR_LOCALITY_AWARE_TR

ANSACTION is set.

ODBC API References | 2,595

SQLGetGroupIDs

Conformance

Standards compliance: It is not available.

Overview

SQLGetGroupIDs returns IDs of cluster groups.

Syntax

SQLRETURN SQLGetGroupIDs(

SQLHDBC ConnectionHandle,

SQLINTEGER * GroupIDArray);

Arguments

ConnectionHandle

[Input] It is the connection handle.

GroupIDArray

[output] It is the array of cluster group IDs.

Returns

SQL_SUCCESS, SQL_NO_DATA, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

08003
Connection not o

pen
ConnectionHandle is not in a connected state.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY010
Function sequenc

e error

This function should be called only when the connection property SQL_ATT

R_LOCALITY_AWARE_TRANSACTION is set.

2,596 | ODBC

Description

SQLGetGroupID can be called only when the connection property SQL_ATTR_LOCALITY_AWARE_TRANS

ACTION is set.

The number of elements of GroupIDArray should be as same as the number of cluster groups which are r

eturned by SQLGetGroupCount.

ODBC API References | 2,597

SQLGetGroupName

Conformance

Standards compliance: It is not available.

Overview

SQLGetGroupName returns the name of the cluster group which corresponds to GroupID.

Syntax

SQLRETURN SQLGetGroupName(

SQLHDBC ConnectionHandle,

SQLINTEGER GroupID,

SQLCHAR * GroupName,

SQLSMALLINT BufferLength,

SQLSMALLINT * NameLengthPtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

GroupID

[Input] It is the cluster group ID.

GroupName

[output] It is the buffer pointer which returns the name of the cluster group which is terminated wi

th null.

BufferLength

[Input] It is the length of *GroupName.

NameLengthPtr

[Output] It is the buffer pointer which returns the total number of bytes returnable to *ColumnNa

me (excluding the null-termination character). If the returnable length is equal to or bigger than Bu

fferLength, *ColumnName is truncated to the length of BufferLength minus null.

2,598 | ODBC

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01004
String data, right

truncated

The size of *GroupName is not large enough to return the name of the clus

ter group, so the name of the cluster group is truncated. The length of the c

luster name which is not truncated is returned in *NameLengthPtr. (The fun

ction returns SQL_SUCCESS_WITH_INFO.)

08003
Connection not o

pen
ConnectionHandle is not in a connected state.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY010
Function sequenc

e error

This function should be called only when the connection property SQL_ATT

R_LOCALITY_AWARE_TRANSACTION is set.

Description

SQLGetGroupIDs can be called only when the connection property SQL_ATTR_LOCALITY_AWARE_TRAN

SACTION is set.

ODBC API References | 2,599

SQLGetInfo

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLGetInfo returns the general information on the connection associated with the driver and the data so

urce.

Syntax

SQLRETURN SQLGetInfo(

SQLHDBC ConnectionHandle,

SQLUSMALLINT InfoType,

SQLPOINTER InfoValuePtr,

SQLSMALLINT BufferLength,

SQLSMALLINT * StringLengthPtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

InfoType

[Input] It is the information type.

InfoValuePtr

[Output] It is the buffer pointer whose information is returned. According to InfoType requested, o

ne of the following information will be returned. Null termination character, SQLUSMALLINT value,

SQLUINTEGER bit mask, SQLUINTEGER flag, SQLUINTEGER binary value, or SQLULEN value.

If InfoType argument is SQL_DRIVER_HDESC or SQL_DRIVER_HSTMT, InfoValuePtr argument is inp

ut and output.

If InfoValuePtr is NULL, StringLengthPtr returns the total number of returnable bytes to the buffer

pointed by InfoValuePtr (null termination character is excluded).

2,600 | ODBC

BufferLength

[Input] It is the length of *InfoValuePtr buffer. If *InfoValuePtr is not a string or InfoValuePtr is the

null pointer, BufferLength argument is ignored. The driver assumes the size of *InfoValuePtr as SQ

LUSMALLINT or SQLUINTEGER according to InfoType. (When SQLGetInfoW is called) if InfoValuePt

r is a unicode string, BufferLength must be an even number. Otherwise SQLSTATE HY090 is return

ed.

StringLengthPtr

[Output] It is the buffer pointer which returns the total number of bytes returnable to *InfoValuePt

r (excluding null-termination character for the character data).

If the number of bytes returnable for the character is equal to or bigger than BufferLength, the inf

ormation in *InfoValuePtr is truncated to the length of BufferLength in byte (excluding null-termin

ation character) and is null terminated by the driver.

BufferLength is ignored for the data of the other data types, and the driver assumes the size of *Inf

oValuePtr as SQLUSMALLINT or SQLUINTEGER according to InfoType.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is the driver-specific informational message. (The function returns SQL_

SUCCESS_WITH_INFO.)

01004
String data, right tr

uncated

The buffer length of *InfoValuePtr is not large enough to return all requir

ed information, so the information is truncated. The length of untruncate

d information is returned to *StringLengthPtr. (The function returns SQL_

SUCCESS_WITH_INFO.)

08003
Connection not ope

n

The connection should be open for the type of information requested in I

nfoType. SQL_ODBC_VER which is the reserved information in ODBC can

be returned without open connection.

08S01
Communication link

failure

Before the function processing is completed, the connection between th

e driver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation

error
It is a memory allocation error.

HY010
Function sequence

error

SQLExecute, SQLExecDirect, or SQLMoreResults is called for StatementHa

ndle, and SQL_PARAM_DATA_AVAILABLE is returned. The function is cal

led, before the data retrieves all streamed parameters.

HY013
Memory manageme

nt error

The size of buffer used as an argument is smaller than 0, or it can not acc

ess the memory.

ODBC API References | 2,601

HY024
Invalid attribute valu

e

The InfoType argument is SQL_DRIVER_HSTMT, and the value pointed by

InfoValuePtr is an invalid statetment handle.

The InfoType argument is SQL_DRIVER_HDESC, the value pointed by Info

ValuePtr is an invalid descriptor handle.

HY090
Invalid string or buff

er length

The value for BufferLength argument is smaller than 0.

The value for BufferLength argument is an odd number, and *InfoValueP

tr is the unicode data type.

HY096
Information type ou

t of range

The value specified in InfoType argument is not valid for ODBC version w

hich is supported by the driver.

HY117

Connection is suspe

nded due to unkno

wn transaction state.

Only disconnect and

read-only functions

are allowed.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional field not i

mplemented

The value specified in InfoType is the specific driver value which is not sup

ported by the driver.

HYT01
Connection timeout

expired

The connection is expired before the data source responds to the request.

The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSet

StmtAttr.

IM001
Driver does not sup

port this function

The driver which is related to DescriptorHandle does not support the func

tion.

SQLSTATE Error Description

Description

The currently defined information types will be described in the following sections. The range of informati

on types is reserved by ODBC. The driver developer should reserve the values for the driver-specific use of

their own from Open Group. SQLGetInfo does not perform unicode conversion or thunking for InfoTypes

defined by the driver. The information type returned to *InfoValuePtr is determined according to InfoTyp

es requested.

SQLGetInfo returns one of the following five types.

● Null-termination string

● SQLUSMALLINT value

● SQLUINTEGER bit mask

● SQLUINTEGER value

● SQLUINTEGER binary value

2,602 | ODBC

The application should cast according to the value returned in *InfoValuePtr.

The driver should return a value for each information type defined in the following table. If the informatio

n type is not applied to the driver or the data source, the driver has to return one of the following values.

Character string ("Y" or "N")

"N"

Character string (not "Y" or "N")

Empty string

SQLUSMALLINT

0

SQLUINTEGER bit mask or SQLUINTEGER binary value

0L

For example, if the data source does not support the procedure, SQLGetInfo returns the following value f

or the value of InfoType related to the procedure.

SQL_PROCEDURES

"N"

SQL_ACCESSIBLE_PROCEDURES

"N"

SQL_MAX_PROCEDURE_NAME_LEN

0

SQL_PROCEDURE_TERM

Empty string

SQLGetInfo returns SQLSTATE HY096 for the value of InfoType which is in the range of information type

reserved for use by ODBD but which is not defined by the ODBC version supported by the driver. The driv

er compiles and calls SQLGetInfo as the SQL_DRIVER_ODBC_VER information type of an application to de

termine the ODBC version. SQLGetInfo returns SQLSTATE HYC00 for the value of InfoType which is in the

range of reserved information type for the separate use of the driver but which is not supported by the dr

iver.

Calling all SQLGetInfo should be open for connection, except for InfoType which returns the driver mana

ger version is SQL_ODBC_VER.

Driver Information

The following values of InfoType argument return ODBC information such as an active statement, data so

urce name, interface standards compliance level.

ODBC API References | 2,603

● SQL_ACTIVE_ENVIRONMENTS

● SQL_ASYNC_DBC_FUNCTIONS

● SQL_ASYNC_MODE

● SQL_ASYNC_NOTIFICATION

● SQL_BATCH_ROW_COUNT

● SQL_BATCH_SUPPORT

● SQL_DATA_SOURCE_NAME

● SQL_DRIVER_AWARE_POOLING_SUPPORTED

● SQL_DRIVER_HDBC

● SQL_DRIVER_HDESC

● SQL_DRIVER_HENV

● SQL_DRIVER_HLIB

● SQL_DRIVER_HSTMT

● SQL_DRIVER_NAME

● SQL_DRIVER_ODBC_VER

● SQL_DRIVER_VER

● SQL_DYNAMIC_CURSOR_ATTRIBUTES1

● SQL_DYNAMIC_CURSOR_ATTRIBUTES2

● SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

● SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

● SQL_FILE_USAGE

● SQL_GETDATA_EXTENSIONS

● SQL_INFO_SCHEMA_VIEWS

● SQL_KEYSET_CURSOR_ATTRIBUTES1

● SQL_KEYSET_CURSOR_ATTRIBUTES2

● SQL_MAX_ASYNC_CONCURRENT_STATEMENTS

● SQL_MAX_CONCURRENT_ACTIVITIES

● SQL_MAX_DRIVER_CONNECTIONS

● SQL_ODBC_INTERFACE_CONFORMANCE

● SQL_ODBC_STANDARD_CLI_CONFORMANCE

● SQL_ODBC_VER

● SQL_PARAM_ARRAY_ROW_COUNTS

● SQL_PARAM_ARRAY_SELECTS

● SQL_ROW_UPDATES

● SQL_SEARCH_PATTERN_ESCAPE

● SQL_SERVER_NAME

● SQL_STATIC_CURSOR_ATTRIBUTES1

● SQL_STATIC_CURSOR_ATTRIBUTES2

2,604 | ODBC

Note

When performing SQLGetInfo, the driver can improve the performance by minimizing the number

of requests or of the number of transmitting information from the server.

DBMS Product Information

The following values of InfoType argument return information on the DBMS product such as DBMS name

and information.

● SQL_DATABASE_NAME

● SQL_DBMS_NAME

● SQL_DBMS_VER

Data Source Information

The following values of InfoType argument return information on the data source such as cursor characte

ristics and transaction features.

● SQL_ACCESSIBLE_PROCEDURES

● SQL_ACCESSIBLE_TABLES

● SQL_BOOKMARK_PERSISTENCE

● SQL_CATALOG_TERM

● SQL_COLLATION_SEQ

● SQL_CONCAT_NULL_BEHAVIOR

● SQL_CURSOR_COMMIT_BEHAVIOR

● SQL_CURSOR_ROLLBACK_BEHAVIOR

● SQL_CURSOR_SENSITIVITY

● SQL_DATA_SOURCE_READ_ONLY

● SQL_DEFAULT_TXN_ISOLATION

● SQL_DESCRIBE_PARAMETER

● SQL_MULT_RESULT_SETS

● SQL_MULTIPLE_ACTIVE_TXN

● SQL_NEED_LONG_DATA_LEN

● SQL_NULL_COLLATION

● SQL_PROCEDURE_TERM

● SQL_SCHEMA_TERM

● SQL_SCROLL_OPTIONS

● SQL_TABLE_TERM

● SQL_TXN_CAPABLE

● SQL_TXN_ISOLATION_OPTION

ODBC API References | 2,605

● SQL_USER_NAME

Supported SQL

The following values of InfoType argument return Information on the SQL statements supported by the d

ata source.

● SQL_AGGREGATE_FUNCTIONS

● SQL_ALTER_DOMAIN

● SQL_ALTER_SCHEMA

● SQL_ALTER_TABLE

● SQL_ANSI_SQL_DATETIME_LITERALS

● SQL_CATALOG_LOCATION

● SQL_CATALOG_NAME

● SQL_CATALOG_NAME_SEPARATOR

● SQL_CATALOG_USAGE

● SQL_COLUMN_ALIAS

● SQL_CORRELATION_NAME

● SQL_CREATE_ASSERTION

● SQL_CREATE_CHARACTER_SET

● SQL_CREATE_COLLATION

● SQL_CREATE_DOMAIN

● SQL_CREATE_SCHEMA

● SQL_CREATE_TABLE

● SQL_CREATE_TRANSLATION

● SQL_DDL_INDEX

● SQL_DROP_ASSERTION

● SQL_DROP_CHARACTER_SET

● SQL_DROP_COLLATION

● SQL_DROP_DOMAIN

● SQL_DROP_SCHEMA

● SQL_DROP_TABLE

● SQL_DROP_TRANSLATION

● SQL_DROP_VIEW

● SQL_EXPRESSIONS_IN_ORDERBY

● SQL_GROUP_BY

● SQL_IDENTIFIER_CASE

● SQL_IDENTIFIER_QUOTE_CHAR

● SQL_INDEX_KEYWORDS

● SQL_INSERT_STATEMENT

● SQL_INTEGRITY

● SQL_KEYWORDS

2,606 | ODBC

● SQL_LIKE_ESCAPE_CLAUSE

● SQL_NON_NULLABLE_COLUMNS

● SQL_SQL_CONFORMANCE

● SQL_OJ_CAPABILITIES

● SQL_ORDER_BY_COLUMNS_IN_SELECT

● SQL_OUTER_JOINS

● SQL_PROCEDURES

● SQL_QUOTED_IDENTIFIER_CASE

● SQL_SCHEMA_USAGE

● SQL_SPECIAL_CHARACTERS

● SQL_SUBQUERIES

● SQL_UNION

SQL Restrictions

The following values of the InfoType argument return restrictions applied to identifiers and clauses in SQL

statements, such as the maximum lengths of identifiers and the maximum number of columns in a select

list. Restriction can be imposed by the driver or data source.

● SQL_MAX_BINARY_LITERAL_LEN

● SQL_MAX_CATALOG_NAME_LEN

● SQL_MAX_CHAR_LITERAL_LEN

● SQL_MAX_COLUMN_NAME_LEN

● SQL_MAX_COLUMNS_IN_GROUP_BY

● SQL_MAX_COLUMNS_IN_INDEX

● SQL_MAX_COLUMNS_IN_ORDER_BY

● SQL_MAX_COLUMNS_IN_SELECT

● SQL_MAX_COLUMNS_IN_TABLE

● SQL_MAX_CURSOR_NAME_LEN

● SQL_MAX_IDENTIFIER_LEN

● SQL_MAX_INDEX_SIZE

● SQL_MAX_PROCEDURE_NAME_LEN

● SQL_MAX_ROW_SIZE

● SQL_MAX_ROW_SIZE_INCLUDES_LONG

● SQL_MAX_SCHEMA_NAME_LEN

● SQL_MAX_STATEMENT_LEN

● SQL_MAX_TABLE_NAME_LEN

● SQL_MAX_TABLES_IN_SELECT

● SQL_MAX_USER_NAME_LEN

ODBC API References | 2,607

Scalar Funtion Information

The following values of InfoType argument return information on the scalar functions supported by the d

ata source or driver.

● SQL_CONVERT_FUNCTIONS

● SQL_NUMERIC_FUNCTIONS

● SQL_STRING_FUNCTIONS

● SQL_SYSTEM_FUNCTIONS

● SQL_TIMEDATE_ADD_INTERVALS

● SQL_TIMEDATE_DIFF_INTERVALS

● SQL_TIMEDATE_FUNCTIONS

Conversion Information

The following values of InfoType argument return the list of SQL data types of which the data source can

be converted to the specified SQL data type with CONVERT scalar function.

● SQL_CONVERT_BIGINT

● SQL_CONVERT_BINARY

● SQL_CONVERT_BIT

● SQL_CONVERT_CHAR

● SQL_CONVERT_DATE

● SQL_CONVERT_DECIMAL

● SQL_CONVERT_DOUBLE

● SQL_CONVERT_FLOAT

● SQL_CONVERT_INTEGER

● SQL_CONVERT_INTERVAL_YEAR_MONTH

● SQL_CONVERT_INTERVAL_DAY_TIME

● SQL_CONVERT_LONGVARBINARY

● SQL_CONVERT_LONGVARCHAR

● SQL_CONVERT_NUMERIC

● SQL_CONVERT_REAL

● SQL_CONVERT_SMALLINT

● SQL_CONVERT_TIME

● SQL_CONVERT_TIMESTAMP

● SQL_CONVERT_TINYINT

● SQL_CONVERT_VARBINARY

● SQL_CONVERT_VARCHAR

2,608 | ODBC

Added Information Type in ODBC 3.x

The following values of InfoType argument are added to ODBC 3.x.

● SQL_ACTIVE_ENVIRONMENTS

● SQL_AGGREGATE_FUNCTIONS

● SQL_ALTER_DOMAIN

● SQL_ALTER_SCHEMA

● SQL_ANSI_SQL_DATETIME_LITERALS

● SQL_ASYNC_DBC_FUNCTIONS

● SQL_ASYNC_MODE

● SQL_ASYNC_NOTIFICATION

● SQL_BATCH_ROW_COUNT

● SQL_BATCH_SUPPORT

● SQL_CATALOG_NAME

● SQL_COLLATION_SEQ

● SQL_CONVERT_INTERVAL_YEAR_MONTH

● SQL_CONVERT_INTERVAL_DAY_TIME

● SQL_CREATE_ASSERTION

● SQL_CREATE_CHARACTER_SET

● SQL_CREATE_COLLATION

● SQL_CREATE_DOMAIN

● SQL_CREATE_SCHEMA

● SQL_CREATE_TABLE

● SQL_CREATE_TRANSLATION

● SQL_CURSOR_SENSITIVITY

● SQL_DDL_INDEX

● SQL_DESCRIBE_PARAMETER

● SQL_DM_VER

● SQL_DRIVER_AWARE_POOLING_SUPPORTED

● SQL_DRIVER_HDESC

● SQL_DROP_ASSERTION

● SQL_DROP_CHARACTER_SET

● SQL_DROP_COLLATION

● SQL_DROP_DOMAIN

● SQL_DROP_SCHEMA

● SQL_DROP_TABLE

● SQL_DROP_TRANSLATION

● SQL_DROP_VIEW

● SQL_DYNAMIC_CURSOR_ATTRIBUTES1

● SQL_DYNAMIC_CURSOR_ATTRIBUTES2

ODBC API References | 2,609

● SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

● SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

● SQL_INFO_SCHEMA_VIEWS

● SQL_INSERT_STATEMENT

● SQL_KEYSET_CURSOR_ATTRIBUTES1

● SQL_KEYSET_CURSOR_ATTRIBUTES2

● SQL_MAX_ASYNC_CONCURRENT_STATEMENTS

● SQL_MAX_IDENTIFIER_LEN

● SQL_PARAM_ARRAY_ROW_COUNTS

● SQL_PARAM_ARRAY_SELECTS

● SQL_STATIC_CURSOR_ATTRIBUTES1

● SQL_STATIC_CURSOR_ATTRIBUTES2

● SQL_XOPEN_CLI_YEAR

Renamed Information Type in ODBC 3.x

The following values of InfoType argument are renamed for ODBC 3.x.

● SQL_ACTIVE_CONNECTIONS: SQL_MAX_DRIVER_CONNECTIONS

● SQL_ACTIVE_STATEMENTS: SQL_MAX_CONCURRENT_ACTIVITIES

● SQL_MAX_OWNER_NAME_LEN: SQL_MAX_SCHEMA_NAME_LEN

● SQL_MAX_QUALIFIER_NAME_LEN: SQL_MAX_CATALOG_NAME_LEN

● SQL_ODBC_SQL_OPT_IEF: SQL_INTEGRITY

● SQL_OWNER_TERM: SQL_SCHEMA_TERM

● SQL_OWNER_USAGE: SQL_SCHEMA_USAGE

● SQL_QUALIFIER_LOCATION: SQL_CATALOG_LOCATION

● SQL_QUALIFIER_NAME_SEPARATOR: SQL_CATALOG_NAME_SEPARATOR

● SQL_QUALIFIER_TERM: SQL_CATALOG_TERM

● SQL_QUALIFIER_USAGE: SQL_CATALOG_USAGE

Deprecated Information Type in ODBC 3.x

The following InfoType argument values are information types which are deprecated in ODBC 3.x driver b

ut are still supported for compatibility with ODBC 2.x applications.

● SQL_FETCH_DIRECTION

● SQL_LOCK_TYPES

● SQL_ODBC_API_CONFORMANCE

● SQL_ODBC_SQL_CONFORMANCE

● SQL_POS_OPERATIONS

● SQL_POSITIONED_STATEMENTS

● SQL_SCROLL_CONCURRENCY

2,610 | ODBC

● SQL_STATIC_SENSITIVITY

ODBC API References | 2,611

SQLGetStmtAttr

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLGetStmtAttr returns the current setting of the statement attribute.

Syntax

SQLRETURN SQLGetStmtAttr(

SQLHSTMT StatementHandle,

SQLINTEGER Attribute,

SQLPOINTER ValuePtr,

SQLINTEGER BufferLength,

SQLINTEGER * StringLengthPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

Attribute

[Input] It is the attribute to be retrieved.

ValuePtr

[Output] It is the buffer pointer in which to return the attribute value specified in Attribute. If Valu

ePtr is NULL, StringLengthPtr returns the total number of bytes returnable to the buffer pointed by

ValuePtr (excluding null-termination character).

BufferLength

[Input] If Attribute is the attribute defined in ODBC and ValuePtr points to a string or binary buffer,

the argument is the length of *ValuePtr. If Attribute is the attribute defined in ODBC and *ValuePt

r is an integer, BufferLength is ignored. If *ValuePtr (when SQLGetStmtAttrW is called) is a unicod

e string, BufferLength should be an even number.

If Attribute is the driver defined attribute, the application displays the attribute characteristic to the

driver manager by setting BufferLength argument. BufferLength has one of the following values.

2,612 | ODBC

• If *ValuePtr is a string pointer, BufferLength is the string length or SQL_NTS.

• If *ValuePtr is a binary buffer pointer, the application stores SQL_LEN_BINARY_ATTR (length) m

acro result in BufferLength. It stores an negative number in BufferLength.

• If *ValuePtr is a pointer of the value other than a string or a binary string, BufferLength has the v

alue of SQL_IS_POINTER.

• If *ValuePtr has the fixed length data type, BufferLength has SQL_IS_INTEGER or SQL_IS_UINTE

GER.

StringLengthPtr

[Output] It is the buffer pointer which returns the total number of bytes returnable to *ValuePtr (e

xcluding null-termination character). If ValuePtr is null, the length is not returned. If the attribute v

alue is a string and the bytes returnable is equal to or bigger than BufferLength, the data in *Value

Ptr is truncated to the length of BufferLength minus the null-termination character, and it is null-te

rminated by the driver).

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns S

QL_SUCCESS_WITH_INFO.)

01004
String data, right trunc

ated

The data returned to *ValuePtr is truncated to the length of BufferLen

gth minus null-termination character. The untruncated string value is r

eturned in *StringLengthPtr. (The function returns SQL_SUCCESS_WIT

H_INFO.)

24000 Invalid cursor state
Attribute argument is SQL_ATTR_ROW_NUMBER, and the cursor is no

t open or the cursor is positioned before or after the result set.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation err

or
It is a memory allocation error.

HY010
Function sequence err

or

The asynchronously executing function is called for the connection ha

ndle related to StatementHandle, and this function is still being execut

ed when SQLGetStmtAttr is called.

The asynchronously executing function is called for StatementHandle,

and is still being executing when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are calle

d for StatementHandle, and SQL_NEED_DATA is returned. This functio

ODBC API References | 2,613

n is called before data is sent for all data-at-execution parameters or c

olumns.

HY013
Memory management

error

The size of buffer used as an argument is smaller than 0, or it can not

access the memory.

HY090
Invalid string or buffer

length

*ValuePtr is a string, and BufferLength is smaller than 0 but it is not eq

ual to SQL_NTS.

HY092
Invalid attribute/

option identifier

The specified value of Attribute argument is not valid for ODBC versio

n supported by the driver.

HY109 Invalid cursor position
Attribute argument is SQL_ATTR_ROW_NUMBER, and the row is delet

ed or can not be retrieved.

HY117

Connection is suspend

ed due to unknown tra

nsaction state. Only dis

connect and read-only

functions are allowed.

For more information about the suspended state, refer to SQLEndTra

n.

HYC00
Optional field not impl

emented

The value specified in attribute argument is valid ODBC statement attri

bute in ODBC version supported by the driver, but it is not supported b

y the driver.

HYT01
Connection timeout ex

pired

The connection is expired before the data source responds to the requ

est. The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of

SQLSetStmtAttr.

IM001
Driver does not suppor

t this function

The driver which is related to DescriptorHandle does not support the f

unction.

SQLSTATE Error Description

Description

SQLGetStmtAttr returns the statement attribute value specified in Attribute to *ValuePtr. The value retur

ned can be the SQLULEN value or null-termination string. If the value is SQLULEN, some drivers write the l

ower 32 bits or 16 bits of the buffer and keep the upper bits as they are. Therefore, the application shoul

d use the buffer of SQLULEN and initialize it to 0 before the function is called. Also BufferLength and Stri

ngLengthPtr are not used. If the value is the null termination string, the application specifies the maximu

m string length of BufferLength argument, and the driver returns the string length to *StringLengthPtr b

uffer.

If an application which is operated with ODBC 2.x driver wants to call SQLGetStmtAttr, SQLGetStmtAttr

should be mapped to the SQLGetStmtOption of the driver manager.

The following statement can be retrieved by SQLGetStmtAttr but it can not set by SQLSetStmtAttr becaus

e the attributes are read-only.

● SQL_ATTR_IMP_PARAM_DESC

2,614 | ODBC

● SQL_ATTR_IMP_ROW_DESC

● SQL_ATTR_ROW_NUMBER

Statement Attributes

The following table describes currently defined attributes and its introduced ODBC version.

Attribute ValuePtr contents

SQL_ATTR_APP_PARAM_

DESC

(ODBC 3.0)

It is the APD handle for the time after calling SQLExecute and SQLExecDirect on the st

atement handle. The initial value of this attribute is the descriptor implicitly allocated

when the statement is initially allocated. If the value of this attribute is set to the descr

iptor which is originally allocated by SQL_NULL_DESC or the handle, an explicitly alloc

ated APD handle which is previously related to the statement handle is detached from

it and the statement handle is returned to the implicitly allocated APD handle.

This attribute can not be set to a descriptor handle which is implicitly allocated for an

other statement, nor set to another descriptor handle which is implicitly allocated for t

he same statement. The implicitly allocated descriptor handles cannot be related to a

statement or a descriptor handle.

SQL_ATTR_APP_ROW_DES

C

(ODBC 3.0)

It is the ARD handle for the next fetches of the statement handle. The initial value of t

he attribute is the descriptor implicitly allocated when the statement is initially allocate

d. If the attribute is set to SQL_NULL_DESC or to the descriptor allocated by the handl

e, ARD handle which is explicitly allocated and related to the previous statement is de

tached and the statement handle is returned to ARD handle implicitly allocated.

The attribute can not be set to a descriptor handle which is implicitly allocated for ano

ther statement, nor set to another descriptor handle which is implicitly set on the sam

e statement. The implicitly allocated descriptor handle can not be related to a stateme

nt or descriptor handle.

SQL_ATTR_ASYNC_ENABL

E

(ODBC 1.0)

It is not supported by the driver.

SQL_ATTR_ASYNC_STMT_

EVENT

(ODBC 3.8)

It is not supported by the driver.

SQL_ATTR_ASYNC_STMT_

PCALLBACK

(ODBC3.8)

It is not supported by the driver.

SQL_ATTR_ASYNC_STMT_

PCONTEXT

(ODBC 3.8)

It is not supported by the driver.

SQL_ATTR_ATOMIC_EXEC

UTION

SQLUSMALLINT: It is whether an atomic insert operation is operable.

● SQL_ATOMIC_EXECUTION_OFF

● SQL_ATOMIC_EXECUTION_ON

● SQLULEN: It is the value which specifies the concurrency of cursor.

ODBC API References | 2,615

SQL_ATTR_CONCURRENC

Y

(ODBC 2.0)

● SQL_CONCUR_READ_ONLY: The cursor is read-only, and the update is not allow

ed.

● SQL_CONCUR_LOCK: The cursor uses the locking of the minimum level which is

enough to complete update the row.

● SQL_CONCUR_ROWVER: The cursor uses the concurrency which controls and co

mpares the row version such as SQLBase ROWID or Sybase TIMESTAMP.

● SQL_CONCUR_VALUES: The cursor uses the concurrency which controls and co

mpares the value.

The default value of SQL_ATTR_CONCURRENCY is SQL_CONCUR_READ_ONLY.

If the Attribute of SQL_ATTR_CURSOR_TYPE is changed to the value not supported b

y SQL_ATTR_CONCURRENCY, then the value of SQL_ATTR_CONCURRENCY is change

d at the execution time, and the warning will be issued when SQLExecDirect or SQLPr

epare is called.

If SQL_ATTR_CONCURRENCY is changed to SQL_CONCUR_READ_ONLY, while the dr

iver supports and executes SELECT FOR UPDATE statement, then an error is returned.

If SQL_ATTR_CONCURRENCY value is changed to SQL_ATTR_CURSOR_TYPE value su

pported by the driver or the value not supported, SQL_ATTR_CURSOR_TYPE value is c

hanged at the execution time, SQLSTATE 01S02 (Option value changed) is issued wh

en SQLExecDirect or SQLPrepare is executed.

If the specified concurrency is not supported in the data source, the driver replaces it

with another concurrency and returns SQLSTATE 01S02 (Option value changed). The

driver replaces SQL_CONCUR_VALUES with SQL_CONCUR_ROWVER, or vice versa. Al

so SQL_CONCUR_LOCK is replaced with SQL_CONCUR_ROWVER, SQL_CONCUR_VA

LUES in order. The validity of the replaced value is not confirmed until the execution ti

me.

SQL_ATTR_CURSOR_HOLD

ABLE

This attribute specifies whether a cursor should be held after the transaction ends, usi

ng a SQLULEN type value.

● SQL_NONHOLDABLE: The cursor is discarded when the transaction ends and can

no longer be used. In other words, the cursor's lifetime is limited to the current t

ransaction.

● SQL_HOLDABLE: The cursor is held after the transaction ends and can still be us

ed. The cursor's lifetime extends beyond the transaction boundary.

The default value is SQL_HOLDABLE. Setting this attribute will affect subsequent calli

ng of SQLExecDirect or SQLExecute.

This attribute specifies the level of cursor support required by the application, using a

Attribute ValuePtr contents

2,616 | ODBC

SQL_ATTR_CURSOR_SCRO

LLABLE

(ODBC 3.0)

SQLULEN type value. Setting this attribute will affect subsequent calling of SQLExecDi

rect and SQLExecute.

● SQL_NONSCROLLABLE: This is the default value. It indicates that a scrollable curs

or is not required for the statement handle. When the application calls SQLFetch

Scroll on this handle, the only valid value for FetchOrientation is SQL_FETCH_NE

XT.

● SQL_SCROLLABLE: This value indicates that a scrollable cursor is required for the

statement handle. When the application calls SQLFetchScroll, it can specify any v

alid value for FetchOrientation, allowing the cursor to move in ways other than s

equential mode.

iSQL_ATTR_CURSOR_SENS

ITIVITY

(ODBC 3.0)

This attribute specifies whether the cursor for the statement handle reflects changes

made to the result set by other cursors (i.e., whether the changes are visible). It uses a

SQLULEN type value. Setting this attribute will affect subsequent calling of SQLExecDi

rect and SQLExecute. The application can read the value of this attribute to check the

initial state or the most recently set state.

● SQL_UNSPECIFIED: This is the default value. It indicates that whether the cursor

reflects changes made to the result set by other cursors is unspecified. The curso

r for this statement handle may or may not reflect changes from other cursors, a

nd may reflect some or all of those changes.

● SQL_INSENSITIVE: This value indicates that the cursor for the statement handle d

isplays data that does not reflect changes made to the result set by other cursors.

An insensitive cursor is read-only. This corresponds to a static cursor with read-o

nly concurrency.

● SQL_SENSITIVE: This value indicates that the cursor for the statement handle dis

plays data that reflects changes made to the result set by other cursors.

SQL_ATTR_CURSOR_TYPE

(ODBC 2.0)

SQL_ATTR_CURSOR_TYPE (ODBC 2.0)

This attribute specifies the type of cursor using a SQLULEN value:

● SQL_CURSOR_FORWARD_ONLY: The cursor can only move forward (forward-on

ly).

● SQL_CURSOR_STATIC: The data in the result set is static.

● SQL_CURSOR_KEYSET_DRIVEN: The driver stores and uses keys for the number

of rows specified by the SQL_ATTR_KEYSET_SIZE statement attribute.

● SQL_CURSOR_DYNAMIC: The driver stores and uses keys for only the rows curre

ntly in the rowset.

The default value is SQL_CURSOR_FORWARD_ONLY. Once a SQL statement is prepar

Attribute ValuePtr contents

ODBC API References | 2,617

ed, this value cannot be changed.

If the specified cursor type is not supported by the data source, the driver will substitu

te it with another cursor type and return SQLSTATE 01S02 (Option value changed). If

mixed or dynamic cursors are not supported, the driver will first attempt to substitute

with a keyset-driven cursor, and if that is also not supported, it will substitute with a s

tatic cursor. Similarly, if keyset-driven cursors are not supported, the driver will substit

ute with a static cursor.

SQL_ATTR_ENABLE_AUTO

_IPD

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_EXPLAIN_PLAN

_OPTION

SQLUSMALLINT: Whether to create the plan information.

● SQL_EXPLAIN_PLAN_OFF: Plan information is not generated.

● SQL_EXPLAIN_PLAN_ON: The SQL statement is performed and plan information

is generated.

● SQL_EXPLAIN_PLAN_ONLY: The SQL statement is not performed and plan infor

mation is generated.

SQL_ATTR_EXPLAIN_PLAN

_TEXT
It is the generated plan string. (read-only)

SQL_ATTR_FETCH_BOOK

MARK_PTR

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_FETCH_FAILOV

ER

SQLUSMALLINT: It is whether to use fetch failover.

● SQL_FETCH_FAILOVER_OFF: It does not use fetch failover.

● SQL_FETCH_FAILOVER_ON: It uses fetch failover.

SQL_ATTR_IMP_PARAM_D

ESC

(ODBC 3.0)

It is the handle of IPD. This attribute value is the descriptor allocated when the statem

ent is initially allocated. The application can not set the attribute.

The attribute can be retrieved by calling SQLGetStmtAttr, but it can not be set via SQL

SetStmtAttr.

SQL_ATTR_IMP_ROW_DES

C

(ODBC 3.0)

It is the handle of IRD. This attribute value is the descriptor allocated when the statem

ent is initially allocated. The application can not set the attribute.

The attribute can be retrieved by calling SQLGetStmtAttr, but it can not be set via SQL

SetStmtAttr.

SQL_ATTR_KEYSET_SIZE

(ODBC 2.0)
It is not supported by the driver.

SQL_ATTR_MAX_LENGTH

(ODBC 1.0)
It is not supported by the driver.

● SQLULEN: It is the value which corresponds to the maximum number of rows w

hich are returned from SELECT statement. If *ValuePtr is equal to 0, the driver re

turns all rows.

Attribute ValuePtr contents

2,618 | ODBC

SQL_ATTR_MAX_ROWS

(ODBC 1.0)

The attribute is intended to reduce the network traffic. Notionally it is applied when t

he result set is generated, it limits the result set of the first ValuePtr row. If the numbe

r of rows in the result set are bigger than ValuePtr, then the result set is reduced.

SQL_ATTR_MAX_ROWS includes those which are applied to all result set of the state

ment and returned by the catalog function.

SQL_ATTR_MAX_ROWS sets the maximum number of the cursor rows.

If SQL_ATTR_MAX_ROWS can not be guaranteed to be correctly implemented (if the

result set size limit can not be implemented in the data source), then the driver should

not imitate SQL_ATTR_MAX_ROWS operation for SQLFetch or SQLFetchScroll.

The driver defines whether to apply SQL_ATTR_MAX_ROWS to the statements except

for SELECT statement(such as the catalog functions).

The attribute can be set in the open cursor. However, it does not immediately bring th

e effect. In this case, the driver returns SQLSTATE 01S02 (Option value changed) and

sets the attribute to its original value.

SQL_ATTR_METADATA_ID

(ODBC 3.0)

● SQLULEN: It is the value which determines how to treat the string arguments of

the catalog functions.

If it is SQL_TRUE, the catalog functions treat the string arguments as the identifiers. In

this case, it is not case sensitive. The driver removes the trailing spaces and converts to

uppercase for the string whose scope is not defined. The driver removes the leading a

nd trailing spaces and literally takes the string between the delimiters for the string w

hose scope is defined. If one of the arguments is set to NULL pointer, the function ret

urns SQL_ERROR and SQLSTATE HY009 (Invalid use of null pointer).

If it is SQL_FALSE, the catalog functions do not treat the string arguments as the ident

ifiers. In this case, it is case sensitive. The arguments may or may not include a string s

earch pattern depending on the argument.

The default value is SQL_FALSE.

The list of values of TableType argument of SQLTables is not affected by the attribute.

SQL_ATTR_METADATA_ID can be set on the connection level.(SQL_ATTR_METADAT

A_ID and SQL_ATTR_ASYNC_ENABLE are unique and they are the statement attribut

es and connection attributes.)

For more information, refer to Arguments of Catalog Function.

SQL_ATTR_NOSCAN

(ODBC 1.0)
It is not supported by the driver.

● SQLULEN*: It is the value which points to the offset to add a pointer to change t

Attribute ValuePtr contents

ODBC API References | 2,619

SQL_ATTR_PARAM_BIND_

OFFSET_PTR

(ODBC 3.0)

he dynamic parameter binding. If the field is not NULL, the driver dereferences t

he pointer, and additionally it dereferences each value of the deferred fields in t

he descriptor record(SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, SQL_D

ESC_OCTET_LENGTH_PTR) and it uses the new pointer values when bound. It is

set to NULL by default.

The bind offset is always directly added to SQL_DESC_DATA_PTR, SQL_DESC_INDICA

TOR_PTR, SQL_DESC_OCTET_LENGTH_PTR fields. If the offset is changed to another

value, the new value is directly added to the descriptor field value. The new offset will

not be added to any previous offset value in the field.

SQL_DESC_BIND TYPE field in APD header is set by setting this statement attribute.

SQL_ATTR_PARAM_BIND_

TYPE

(ODBC 3.0)

● SQLULEN: It is the value which refers to the binding direction used in the dynami

c parameter.

This field is set to SQL_PARAM_BIND_BY_COLUMN which selects the column-wise bi

nding. (default value)

The field is set to the instance of the buffer to be bound to the structure length or dyn

amic parameter set to select the row-wise binding. This length should include the spa

ce for all bound parameters and the structure padding, or the address of the binding

parameter is increased to the specified length, then the result should be buffered to p

oint to the beginning of the next parameter. The sizeof operation of ANSI C guarante

es this behavior.

SQL_DESC_BIND_TYPE field in APD header is set by setting this statement attribute.

SQL_ATTR_PARAM_OPER

ATION_PTR

(ODBC 3.0)

● SQLUSMALLINT*: It is the value which points to the array of SQLSMALLINT value

s used to ignore the parameter while executing the SQL statement. Each value is

SQL_PARAM_PROCEED(to execute the parameter) or SQL_PARAM_IGNORE(to i

gnore the parameter).

The parameter set can be ignored during processing by setting the status value of the

array pointed by SQL_DESC_ARRAY_STATUS_PTR in APD. The parameter set is proces

sed when the status value is SQL_PARAM_PROCEED or the array elements are not set.

The statement attribute can be set to a NULL pointer and the driver does not return th

e status value of the parameter. The attribute can be set at any time but the new valu

e is not used until SQLExecDirect or SQLExecute is called.

The attribute is ignored if bound parameter does not exist.

SQL_DESC_ARRAY_STATUS_PTR field in APD header is set by setting this statement a

ttribute.

● SQLUSMALLINT*: It is the value points to SQLUSMALLINT array which includes t

Attribute ValuePtr contents

2,620 | ODBC

SQL_ATTR_PARAM_STATU

S_PTR

(ODBC 3.0)

he status information value of each row parameter value after calling SQLExecut

e or SQLExecDirect. The field is required only when PARAMSET_SIZE is bigger th

an 1. The status value can include other values.

● SQL_PARAM_SUCCESS: SQL statement is successfully executed for the paramete

r set

● SQL_PARAM_SUCCESS_WITH_INFO: SQL statement is successfully executed for t

he parameter set but the warning information exists in the diagnostic data struct

ure.

● SQL_PARAM_ERROR: An error occurs when processing the parameter set. The a

dditional error information is in the diagnostic data structure.

● SQL_PARAM_UNUSED: The parameter set is not used because some previous pa

rameter set caused an error which interrupts the processing, or the parameter se

t of the array specified by SQL_ATTR_PARAM_OPERATION_PTR is set to SQL_PA

RAM_IGNORE.

● SQL_PARAM_DIAG_UNAVAILABLE: The driver treats the parameter array as a un

iform unit because the error information level is not generated.

The statement attribute can be set to a NULL pointer and the driver does not return th

e status value of the parameter. The attribute can always be set. But the new value is

not used until SQLExecDirect or SQLExecute is called. The attribute may affect the ope

ration that the parameter outputs in the driver.

SQL_DESC_ARRAY_STATUS_PTR field of IPD header is set by setting this statement at

tribute.

SQL_ATTR_PARAMS_PRO

CESSED PTR

(ODBC 3.0)

● SQLULEN*: It is the record field pointing to the buffer in which to return the nu

mber of parameter sets processed and it includes the error set. If it is a NULL poi

nter, any number will not be returned.

SQL_DESC_ROWS_PROCESSED_PTR field of IPD is set by setting this statement attrib

ute.

If SQLExecDirect or SQLExecute which will fill the buffer specified in this attribute doe

s not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the buffer content is not de

fined.

SQL_ATTR_PARAMSET_SIZ

E

(ODBC 3.0)

● SQLULEN: It is the value which specifies the number of each parameter values. If

SQL_ATTR_PARAMSET_SIZE is bigger than 1, then SQL_DESC_DATA_PTR, SQL_

DESC_INDICATOR_PTR, SQL_DESC_OCTET_LENGTH_PTR of APD points to the ar

ray. Each array constant is equal to the field value.

If binding parameter does not exist, this attribute is ignored.

Attribute ValuePtr contents

ODBC API References | 2,621

SQL_DESC_ARRAY_SIZE field of APD header is set by setting the statement attribute.

SQL_ATTR_PREFETCH_RO

WS

This attribute specifies the number of rows the driver will prefetch in a single fetch op

eration, using a SQLULEN type value.

The default value is 1000. Increasing this value can reduce the number of network ro

und-trips, potentially improving performance, but it may increase memory usage. Con

versely, decreasing this value reduces memory usage but may increase the number of

network round-trips.

This attribute can be set after SQLExecute or SQLExecDirect. When SQLFetch or SQLF

etchScroll is called afterward, the driver will prefetch the specified number of rows. Ev

en if a fetch operation has already been performed on the statement handle, the new

setting will be applied starting from the next fetch operation.

SQL_ATTR_QUERY_TIMEO

UT

(ODBC 1.0)

● SQLULEN: It is the value which value in seconds which wait for the SQL stateme

nt to execute before returing to the application. If ValuePtr is 0(default value), t

he timeout does not occur.

If the specified timeout value exceeds the maximum value of the data source or it is s

maller than the minimum value, then SQLSetStmtAttr replaces the value and returns S

QLSTATE 01S02 (Option value changed).

Even if SELECT statement is timed out, SQLCloseCursor does not need to be called wh

en reuse the statement.

It is valid to set the query timeout of the statement attribute for both synchronous an

d asynchronous mode.

SQL_ATTR_RETRIEVE_DAT

A

(ODBC 2.0)

It is not supported by the driver.

SQL_ATTR_ROW_ARRAY_

SIZE

(ODBC 3.0)

● SQLULEN: It is the value which points to the number of rows returned by calling

each SQLFetch or SQLFetchScroll. It is also the number of rows of the bookmark

array used in a bulk bookmark operation in SQLBulkOperations. The default valu

e is 1.

If the specified row set size exceeds the row set size supported by the data source, th

e driver replaces the value and returns SQLSTATE 01S02 (option value changed).

SQL_DESC_ARRAY_SIZE field of ARD header is set by setting this statement attribute.

SQL_ATTR_ROW_BIND_OF

FSET_PTR

(ODBC 3.0)

● SQLULEN: It is the value which points to the offset added to pointers to change

binding of the column data. If the field is not NULL, the driver dereferences the

pointer and adds the value dereferenced to each field of the descriptor record (S

QL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, SQL_DESC_OCTET_LENGTH

_PTR), and it uses the new pointer value when binding occurs. The default value

is NULL.

Attribute ValuePtr contents

2,622 | ODBC

SQL_DESC_BIND_OFFSET_PTR field of ARD header is set by setting the statement attri

bute.

SQL_ATTR_ROW_BIND_TY

PE

(ODBC 1.0)

● SQLULEN: It is the value which sets the binding direction when SQLFetch or SQL

FetchScroll is called in the related statement. If SQL_BIND_BY_COLUMN is set, th

e column-wise binding is selected. If the structure or result column sets the lengt

h for an instance of the buffer bound, then the row-wise binding is selected.

If the length is specified and the address of the all columns and bound columns are in

creased to the specified length, then all columns should include enough space for the

strucure or the buffer padding. The behavior is guaranteed when sizeof operator is us

ed with the structure or union in ANSI C.

The column-wise binding is the default bindng direction of SQLFetch and SQLFetchScr

oll.

SQL_DESC_BIND_TYPE field of ARD header is set by setting this statement attribute.

SQL_ATTR_ROW_NUMBER

(ODBC 2.0)

● SQLULEN: It is the current row order in the entire result set. If the number of the

current rows can not be determined or the the current row does not exist, then

the driver returns 0.

The attribute can be retrieved by calling SQLGetStmtAttr. It can not be set by callingS

QLSetStmtAttr.

SQL_ATTR_ROW_OPERATI

ON_PTR

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_ROW_STATUS_

PTR

(ODBC 3.0)

● SQLUSMALLINT*: It is the value which points to SQLUSMALLINT array containing

the status values after calling SQLFetch or SQLFetchScroll. The array has the ele

ments as many as the number of rows in the row set.

The statement attribute can be set to a NULL pointer, and in this case the driver does

not return the row status value. The attribute can be set at any time but the new valu

e is not used until the next SQLBulkOperations, SQLFetch, SQLFetchScroll or SQLSetPo

s is called.

SQL_DESC_ARRAY_STATUS_PTR field of IRD header is set by setting the statement at

tribute.

The attribute is mapped to rgbRowStatus array of SQLExtendedFetch in ODBC 2.x driv

er.

● SQLULEN*: It points to the buffer which returns the number of collected rows af

ter calling SQLFetch or SQLFetchScroll. The number of rows are determined by c

alling SQLSetPos by setting SQL_REFRESH in operation argument, or determined

Attribute ValuePtr contents

ODBC API References | 2,623

SQL_ATTR_ROWS_FETCHE

D_PTR

(ODBC 3.0)

by processing the bulk operation via SQLBulkOperations. The number of rows in

clude the error rows.

SQL_DESC_ROWS_PROCESSED_PTR field of IRD header is set by setting the statemen

t attribute.

If calling SQLFetch or SQLFetchScroll which fills in the buffer pointed by the attribute

does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the buffer content is no

t defined.

SQL_ATTR_SIMULATE_CU

RSOR

(ODBC 2.0)

It is not supported by the driver.

SQL_ATTR_USE_BOOKMA

RKS

(ODBC 2.0)

It is not supported by the driver.

SQL_ROWSET_SIZE (ODBC

2.0)

This attribute specifies the number of rows returned by a single SQLExtendedFetch cal

l. In other words, it is a 32-bit integer value that determines the size of the rowset.

The default value is 1. Setting this value to a number greater than 1 allows multiple ro

ws to be fetched in a single SQLExtendedFetch call, enabling the application to efficie

ntly handle large volumes of data.

This attribute can be set while the cursor is open.

This attribute applies only to the SQLExtendedFetch function. To specify the rowset si

ze for SQLFetch or SQLFetchScroll, the SQL_ATTR_ROW_ARRAY_SIZE attribute shoul

d be used.

Attribute ValuePtr contents

2,624 | ODBC

SQLGetStmtOption

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

In ODBC 3.x, SQLGetStmtOption function is replaced with SQLGetStmtAttr function.

For more information, refer to SQLGetStmtAttr.

ODBC API References | 2,625

SQLGetSuitableGroupID

Conformance

Standards compliance: It is not available.

Overview

SQLGetSuitableGroupID returns the ID of the cluster group which is the most suitable for the prepared st

atement to perform in cluster system.

Syntax

SQLRETURN SQLGetSuitableGroupID(

SQLHSTMT StatementHandle,

SQLINTEGER * GroupIDPtr);

Arguments

ConnectionHandle

[Input] It is the connection handle.

GroupIDPtr

[Output] It is the ID of the cluster group.

Returns

SQL_SUCCESS, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY010
Function sequenc

e error

This function is called before SQLPrepare.

This function should be called only when the connection property SQL_ATT

R_LOCALITY_AWARE_TRANSACTION is set.

2,626 | ODBC

Description

SQLGetSuitableGroupID can be called only when the connection property SQL_ATTR_LOCALITY_AWARE

_TRANSACTION is set and the statement is prepared.

SQLGetSuitableGroupID returns the ID of the cluster group which is the most suitable for the preparedsta

tement to perform in cluster system by using the current value of the parameter marker when the param

eter exists in the statement. If the cluster group which is the most suitable for the prepared statement to

perform can not be determined, then it returns SQL_INVALID_GROUP_ID(-1).

ODBC API References | 2,627

SQLGetTypeInfo

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLGetTypeInfo returns the information of data type supported by the data source. The driver returns inf

ormation in the form of SQL result set. Data types are used for Data Definition Language (DDL).

Syntax

SQLRETURN SQLGetTypeInfo(

SQLHSTMT StatementHandle,

SQLSMALLINT DataType);

Arguments

StatementHandle

[Input] It is the statement handle for the result set.

DataType

[Input] It is the SQL data type. It is data type or the specified driver SQL data type. SQL_ALL_TYPES

specifies that the information about all data types should be returned.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is the driver-specific informational message. (The function returns SQL

_SUCCESS_WITH_INFO.)

It is temporarily replaced with the similar value because the specified sta

tement attribute is invalid due to implementation working condition. Th

2,628 | ODBC

01S02 Option value changed e replaced value is valid for StatementHandle until the cursor is closed.

The updatable statement attributes are as follows.

SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE,

SQL_ATTR_KEYSET_SIZE, SQL_ATTR_MAX_LENGTH, SQL_ATTR_MAX_

ROWS, SQL_ATTR_QUERY_TIMEOUT, SQL_ATTR_SIMULATE_CURSOR.

(The function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure
Before the function processing is completed, the connection between t

he driver and the data source is failed.

24000 Invalid cursor state

The cursor is open in StatementHandle, and SQLFetch or SQLFetchScroll

is called.

If SQLFetch or SQLFetchScroll returns SQL_NO_DATA, the driver returns

this error. If SQLFetch or SQLFetchScroll does not return SQL_NO_DATA,

the driver manager returns this error.

The result set is open in StatementHandle, but SQLFetch or SQLFetchScr

oll is not called.

40001 Serailization failure
The transaction is rolled back due to a resource deadlock of other trans

actions.

40003
Statement completion unk

nown

The related connection fails during the function execution and the statu

s of the transaction is not able to be checked.

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

HY004 Invalid SQL data type

The value which is specified in DataType argument is neither ODBC SQL

data type identifier supported by the driver nor the driver-specific data t

ype identifier.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCan

cel or SQLCancelHandle is called on StatementHandle before the functi

on is called and completed. Then this function is called again on Statem

entHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from oth

er thread in the multithreaded application before the function is called

and completed.

HY010 Function sequence error

The asynchronously executing function is called for the connection han

dle related to StatementHandle, but it is still being asynchronously exec

uted when SQLGetStmtAttr is called.

The asynchronously executing function is called for the StatementHandl

e, it is still being asynchronously executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called f

SQLSTATE Error Description

ODBC API References | 2,629

or StatementHandle, and SQL_NEED_DATA is returned. This function is

called before data is sent for all data-at-execution parameters or colum

ns.

HY013
Memory management erro

r

The size of buffer used as an argument is smaller than 0, or it can not a

ccess the memory.

HY117

Connection is suspended d

ue to unknown transaction

state. Only disconnect and

read-only functions are allo

wed.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional field not impleme

nted

The combination for the current setting of SQL_ATTR_CONCURRENCY

and SQL_ATTR_CURSOR_TYPE statement attributes is not supported by

the driver or by the data source.

SQL_ATTR_USE_BOOKMARKS statement attribute is not set in SQL_UB

_VARIABLE, and SQL_ATTR_CURSOR_TYPE statement attribute is set to

the cursor type for the bookmarkwhich is not supported by the driver.

HYT00 Timeout expired

Before the data source returns the result set, the query timeout period i

s expired. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT of S

QLSetStmtAttr.

HYT01
Connection timeout expire

d

The connection is expired before the data source responds to the reque

st. The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of S

QLSetStmtAttr.

IM001
Driver does not support thi

s function

The driver which is related to DescriptorHandle does not support the fu

nction.

IM017
Polling is disabled in async

hronous notification mode
Whenever using the notification model, polling can not be used.

Im018

SQLCompleteAsync has no

t been called to complete t

he previous asynchronous

operation on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTIN

G and if the notification mode is activated, then SQLCompleteAsync sh

ould be called for the handle to do post processing and complete the o

peration.

SQLSTATE Error Description

Description

SQLGetTypeInfo returns the same result as the standard result set, and it is sorted to be closely mapped t

o the data types corresponding to the DATA_TYPE, ODBC SQL data type. The data types defined by the d

ata source takes precedence over user defined data types. Therefore, the sorting order can be generalized

in the ascending order and whose first order is DATA TYPE and then TYPE_NAME though the order is no

t always consistent.

For example, if the data source defines an INTEGER and COUNTER data types and COUNTER is automatic

ally increased, and the user defined data type WHOLENUM is defined, then INTEGER, WHOLENUM and C

2,630 | ODBC

OUNTER will be returned in order. The result is because WHOLENUM is closely mapped to SQL_INTEGER

and ODBC SQL data type. On the other hand, even though the automatic increasing data types are suppo

rted by the data source, they are not mapped closely with ODBC SQL data types.

If DataType argument is valid for ODBC version supported by the driver but the driver does not support it,

then an empty result set is returned.

The following column names are changed in ODBC 3.x. The column name change does not affect the co

mpatibility with the previous version because the application is bound by the column number.

ODBC 2.0 column ODBC 3.x column

PRECISION COLUMN_SIZE

MONEY FIXED_PREC_SCALE

AUTO_INCREMENT AUTO_UNIQUE_VALUE

In ODBC 3.x, the following columns are added to the result set returned by SQLGetTypeInfo.

● SQL_DATA_TYPE

● INTERVAL_PRECISION

● SQL_DATETIME_SUB

● NUM_PREC_RADIX

The following table lists the columns in the result set. The additional row after column 19 (INTERVAL_PRE

CISION) is defined by the driver. The applications should get access to a specific driver column by perform

ing the countdown from the end of the result set instead of specifying an explicit ordinal position.

Note

SQLGetTypeInfo may not return for all data types. For example, the driver may not return the user

defined data type. The application can use the valid data types regardless of returning SQLGetTyp

eInfo. Data types returned by SQLGetTypeInfo are supported by the data source. They are intende

d to be used in Data Definition Language (DDL). The driver can return the data types used in the r

esult set other than the data types that returned by SQLGetTypeInfo. The driver may use the data t

ypes which are not supported by the data source in generating the result set for the catalog functi

on.

Column

name

Column

number
Data type Comment

TYPE_NAM

E (ODBC 2.0 1
Varchar not

NULL

It is data source-dependent data type name. For example, it is "CHAR()"

, "VARCHAR()", "MONEY", "LONG VARBINARY", or "CHAR () FOR BIT

DATA". The application should use this name in CREATE TABLE and AL

ODBC API References | 2,631

) TER TABLE statements.

DATA_TYPE

(ODBC 2.0)
2

Smallint not

NULL

It is SQL data type. It can be the ODBC SQL data type or driver specific

SQL data. For DATETIME or INTERVAL data type, the column returns th

e simple data type (such as SQL_TYPE_TIME or SQL_INTERVAL_YEAR_

TO_MOUNT).

COLUMN_SI

ZE (ODBC 2.

0)

3 Integer

It is the maximum column size for the data type supported by the serve

r. For numeric data, it is the maximum precision. For string data, it retu

rns a length of characters. For datetime data types, it returns a length o

f represented characters. For interval data, it returns the length of char

acters in the character representation of the interval literal. NULL is retu

rned for data types whose column size is not applicable.

LITERAL_PR

EFIX (ODBC

2.0)

4 Varchar

A character or string is used as a prefix. For example, a single quote (')

is for a character, 0x, or binary data type. NULL is returned for a data ty

pe which can not be used as a prefix.

LITERAL_SU

FFIX (ODBC

2.0)

5 Varchar

A character or string is used as the termination character. For example,

a single mark (') is for the character data type. NULL is returned for dat

a types that can not be used as a suffix.

CREATE_PA

RAMS (ODB

C 2.0)

6 Varchar

It is a keyword list corresponding to each parameter (separated by com

mas) which is specified by the application in parentheses when the na

me which is returned to TYPE_NAME is used.

The keywords in the list are length, precision, or scale. They appear in t

he order in which the grammar uses these keywords. For example, the

CREATE_PARAMS for NUMBER is 'precision, scale,' and the CREATE_P

ARAMS for VARCHAR is 'length.'

If parameter does not exist for defining data type, NULL is returned (e.

g. INTERGER). The driver provides CREATE_PARAMS text in the langua

ge of the country/region.

NULLABLE

(ODBC 2.0)
7

Smallint not

NULL

It is whether the data type accepts NULL.

SQL_NO_NULLS does not accept NULL as a data type.

SQL_NULLABLE does accept NULL as a data type. SQL_NULLABLE_UNK

NOWN do not know whether the column accepts NULL.

CASE_SENSI

TIVE (ODBC

2.0)

8
Smallint not

NULL

It is whether the character data type is case-sensitive in sorting and co

mparison.

It is SQL_TRUE if the data type is a character data type and it is case-se

nsitive.

It is SQL_FALSE if the data type is not a character data type or it is case-

insensitive.

SEARCHABL
Smallint not

It is how the data type is used in a WHERE clause.

If a column can not be used in WHERE clause, it is SQL_PRED_NONE. (I

t is as same as the value of SQL_UNSEARCHABLE in ODBC 2.x.)

If a column can be used only with LIKE condition in WHERE clause, it is

SQL_PRED_CHAR. (It is as same as the value of SQL_LIKE_ONLY in ODB

Column

name

Column

number
Data type Comment

2,632 | ODBC

E (ODBC 2.0

)

9 NULL C 2.x.)

If a column can be used with all comparison operators except LIKE con

dition in WHERE clause, it is SQL_PRED_BASIC. (It is as same as the val

ue of SQL_ALL_EXCEPT_LIKE in ODBC 2.x.)

If a column can be used with all comparison operators in WHERE claus

e, it is SQL_SEARCHABLE.

UNSIGNED_

ATTRIBUTE

(ODBC 2.0)

10 Smallint

It is whether the data type is signed.

If a data type is unsigned, it is SQL_TRUE.

If a data type is signed, it is SQL_FALSE.

If the attribute can not be used in data type or it is not a numeric data t

ype NULL is returned.

FIXED_PREC

_SCALE (OD

BC 2.0)

11
Smallint not

NULL

It is whether the data type (specific data source) has a predefined fixed

precision and scale.

If the data type has a predefined fixed precision and scale, it is SQL_TR

UE.

If the data type does not have predefined fixed precision and scale, it is

SQL_FALSE.

AUTO_UNIQ

UE_VALUE

(ODBC 2.0)

12 Smallint

It is whether data type is automatically increased.

If the data type is automatically increased, it is SQL_TRUE.

If the data type is not automatically increased, it is SQL_FALSE

If the attribute can not be used in data type or it is not a numeric data t

ype, NULL is returned.

The application can insert the value in the column having this attribute,

but can not typically update the value of the column. When insertion o

ccurs in the automatically increased column, a unique value is inserted i

n the column. The increment is not defined but is data source-specific.

The application should not assume that the auto-increment column sta

rts at a specific point or it is increased by a certain value.

LOCAL_TYP

E_NAME (O

DBC 2.0)

13 Varchar

It is a localized version of the data type name dependent on the data s

ource. If the localized name is not supported by the data source, NULL i

s returned. The name is used for display only, like as a dialog box.

MINIMUM_

SCALE (ODB

C 2.0)

14 Smallint

It is the minimum scale of the data type on the data source. If the data

type is a fixed Scale, MINIMUM_SCALE and MAXIMUM_SCALE column

s have this value. For example, SQL_TYPE_TIMESTAMP column has the

fixed scale for fractional seconds. NULL is returned if scale can not be u

sed.

MAXIMUM_

SCALE (ODB

C 2.0)

15 Smallint

It is the maximum scale of the data type on the data source. If scale ca

n not be used, NULL is returned. If the maximum scale is not separately

defined on the data source, but it is defined as same as the maximum

precision, then the column has the same value as COLUMN_SIZE.

SQL_DATA_

It is the value of SQL data type which appears in SQL_DESC_TYPE field

of the descriptor. The column is as same as DATA_TYPE column except

Column

name

Column

number
Data type Comment

ODBC API References | 2,633

TYPE (ODBC

3.0)

16 Smallint NO

T NULL

for INTERVAL and DATETIME data types. SQL_DATE_TYPE field in the r

esult set returns SQL_INTERVAL or SQL_DATETIME for INTERVAL and D

ATETIME data types, and SQL_DATETIME_SUB field returns the sub-co

de for INTERVAL or DATETIME data types.

SQL_DATETI

ME_SUB (O

DBC 3.0)

17 Smallint

If a value of SQL_DATE_TYPE is SQL_DATETIME or SQL_INTERVAL, this

column has the sub code of DATETIME/ INTERVAL. For other data type

s, the field is NULL.

For INTERVAL or DATETIME data types, SQL_DATE_TYPE of the result s

et returns SQL_INTERVAL or SQL_DATETIME, SQL_DATETIME_SUB fiel

d returns the sub code for INTERVAL or DATETIME data type.

NUM_PREC

_RADIX (OD

BC 3.0)

18 Integer

If the data type is an approximate numeric type, the column has the val

ue 2 to indicate that the COLUMN_SIZE specifies the number of bits. F

or the exact numeric type, the column has the value 10 to indicate that

COLUMN_SIZE specifies decimal values. Otherwise, this column is NULL.

INTERVAL_P

RECISION (O

DBC 3.0)

19 Smallint
For INTERVAL data type, the column has the value of "INTERVAL leadin

g precision". Otherwise, the column has NULL.

Column

name

Column

number
Data type Comment

Attribute information can be applied to a particular column in the result set or the data type. SQLGetType

Info returns information about the attributes related to a data type. SQLColAttribute returns information

about the attributes related to a column in the result set.

2,634 | ODBC

SQLMoreResults

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLMoreResults checks that more results are available in the statements including SELECT, UPDATE, INSE

RT, or DELETE statement, and if so, the processing for the results is initialized.

Syntax

SQLRETURN SQLMoreResults(

SQLHSTMT StatementHandle);

Argument

StatementHandle

[Input] It is the statement handle.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_NO_DATA, SQL_ERROR, SQL_I

NVALID_HANDLE, SQL_PARAM_DATA_AVAILABLE

Diagnosis

SQLSTATE Error Description

01000 General Warning
It is the driver-specific informational message. (The function returns S

QL_SUCCESS_WITH_INFO.)

01S02 Option value changed
The value of the statement attribute is changed while the batch is bei

ng processed. (The function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure
Before the function processing is completed, the connection betwee

n the driver and the data source is failed.

40001 Serailization failure
The transaction is rolled back due to a resource deadlock of other tra

nsactions.

ODBC API References | 2,635

40003
Statement completion unkno

wn

The related connection is failed during the function execution, and th

e status of transaction can not be checked.

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLC

ancel or SQLCancelHandle is called on StatementHandle before the f

unction is called and completed. Then this function is called again on

StatementHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from ot

her thread in the multithreaded application before the function is call

ed and completed.

HY010 Function sequence error

The asynchronously executing function is called for the connection ha

ndle related to StatementHandle, but it is still being asynchronously e

xecuted when SQLMoreResultsr is called.

The asynchronously executing function is called for the StatementHa

ndle, it is still being asynchronously executed when the function is cal

led.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called

for StatementHandle, and SQL_NEED_DATA is returned. This functio

n is called before data is sent for all data-at-execution parameters or

columns.

HY013 Memory management error
The size of buffer used as an argument is smaller than 0, or it can not

access the memory.

HY117

Connection is suspended due

to unknown transaction state.

Only disconnect and read-onl

y functions are allowed.

For more information about the suspended state, refer to SQLEndTra

n.

HYT01 Connection timeout expired

The connection is expired before the data source responds to the req

uest. The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT

of SQLSetStmtAttr.

IM001
Driver does not support this f

unction

The driver which is related to DescriptorHandle does not support the

function.

IM017
Polling is disabled in asynchro

nous notification mode
Whenever using the notification model, polling can not be used.

Im018

SQLCompleteAsync has not b

een called to complete the pr

evious asynchronous operatio

n on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUT

ING and if the notification mode is activated, then SQLCompleteAsyn

c should be called for the handle to do post processing and complete

the operation.

SQLSTATE Error Description

2,636 | ODBC

Description

SELECT statement returns the result set. UPDATE, INSERT, and DELETE statements return the number of r

ows affected.

If one of these statements are batched or an array of parameters are passed or in progress, then multiple

result sets or the number of rows can be returned.

The batch is processed, and the application is positioned in the first result set. The application can call SQ

LBindCol, SQLBulkOperations, SQLFetch, SQLGetData, SQLFetchScroll, SQLSetPos and all the meta data f

unctions as if a single result set exists for the first or subsequent result sets. When SQLMoreResults is exec

uted as the first result set, the application calls SQLMoreResults to move to the next result set. If another r

esult set or its number is available, SQLMoreResults returns SQL_SUCCESS and initializes the result set or

performs the aggregate for the additional operations. If any count row generation statement appears bet

ween the result set generation statements, the row generation statement can be sent to SQLMoreResults

call. If SQLMoreResults is called for UPDATE, INSERT, or DELETE statement, the application can call SQLR

owCount.

If a current result set with unfetched rows exists, SQLMoreResults discards the result set and generates th

e next result set or aggregates it. If all result sets are processed, SQLMoreResults returns SQL_NO_DATA.

For some drivers, the output parameter and the return value can not be used until all result sets and row

aggregation are processed. In this case, the output parameter and return value can be used after SQLMor

eResults returned SQL_NO_DATA.

All bindings made for the previous result set still remains valid. If the column structure is different from th

e result set, then calling SQLFetch or SQLFetchScroll can cause an error or truncation. To prevent it, the a

pplication should call SQLBindCol for the explicit rebinding. The application can call SQLFreeStmt with SQ

L_UNBIND option to release the binding for all column buffers.

The statement attribute values such as the cursor type, cursor concurrency, key set size, or maximum leng

th can be changed while the application calls SQLMoreResults and performs the batch processing. SQLM

oreResults can return SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value has changed).

If SQLCloseCursor or SQLFreeStmt is called with an SQL_CLOSE option, then the number of available row

s such as all the result set and batch processing result is discarded. The statement handle returns one of t

he assigned state and prepared state. When the batch is processed and the statement handle is executed,

then SQLCancel is called to cancel the asynchronously executing function. If SQLCancel is executed succe

ssfully, all asynchronous status results which are generated by the batch processing, and the number of r

ows can be discarded. The statement handle returns one of the assigned state and prepared state.

If the batch or procedure of the statement mixes SELECT, UPDATE, INSERT, DELETE statements with othe

r SQL statements, these statements does not affect SQLMoreReuslt.

ODBC API References | 2,637

If a searched update, insert or delete statement in batch statements does not affect to any row of the dat

a source, SQLMoreResults returns SQL_SUCCESS. It is different from the case of when SQLExecDirect, SQ

LExecute, or SQLParamData returns SQL_NO_DATA. If the application calls SQLRowCount to retrieve the

number of rows after SQLMoreResults does not affect any row, then SQLRowCount may return SQL_NO_

DATA.

Availability of the Number of Rows

If the batch processing includes the statement for consecutive multiple row aggregate generation, the ro

w aggregation can be rolled up to a single row. For example, if a batch includes five INSERT statements, t

he particular data source can return the five individual rows. Some other data sources return a single row

that represents the sum of the total five individual rows.

If a batch processing includes the combination of the result set generation and row aggregate generation

statement, then the number of rows may not be available.

The driver operation for the availability of the number of rows is listed in SQL_BATCH_ROW_COUNT infor

mation type used via SQLGetInfo call. For example, if the batch processing includes two INSERT statemen

ts and SELECT statement followed by the other SELECT statement, then the following cases are available.

● The number of rows corresponding to the two INSERT statements can not be used. The first call of S

QLMoreResults is located in the result set of the second SELECT statement.

● The number of rows corresponding to the two INSERT statements can be individually used.(SQLGetIn

fo does not return SQL_BRC_ROLLED_UP bit for SQL_BATCH_ROW_COUNT information type.) The fi

rst call of SQLMoreResults is located in the number of rows of the first INSERT statement, and the sec

ond call is positioned in the number of rows of the second INSERT statement. The third call may be lo

cated in result set of the second SELECT statement.

● The number of rows corresponding to the two INSERT statements is rolled up to a single available ro

w.(Calling SQLGetInfo returns SQL_BRC_ROLLED_UP bit for SQL_BATCH_ROW_COUNT information t

ype.) The first SQLMoreResults may be located overlapping with the number of rows, and the second

SQLMoreResults may be located in the result set of the second SELECT statement.

A specific driver makes the number of rows available only for the explicit batch processing.

2,638 | ODBC

SQLNativeSql

It is not supported.

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLNativeSql returns the SQL string modified by the driver. SQLNativeSql does not executeSQL statement.

Syntax

SQLRETURN SQLNativeSql(

SQLHDBC ConnectionHandle,

SQLCHAR * InStatementText,

SQLINTEGER TextLength1,

SQLCHAR * OutStatementText,

SQLINTEGER BufferLength,

SQLINTEGER * TextLength2Ptr);

ODBC API References | 2,639

SQLNumParams

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLNumParams returns the number of parameters in the SQL statement.

Syntax

SQLRETURN SQLNumParams(

SQLHSTMT StatementHandle,

SQLSMALLINT * ParameterCountPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

ParameterCountPtr

[Output] It is the buffer pointer to which the number of parameters of the statement is to be retur

ned.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns S

QL_SUCCESS_WITH_INFO.)

08S01 Communication link failure
Before the function processing is completed, the connection between

the driver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

2,640 | ODBC

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCa

ncel or SQLCancelHandle is called on StatementHandle before the fun

ction is called and completed. Then this function is called again on Stat

ementHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from ot

her thread in the multithreaded application before the function is calle

d and completed.

HY010 Function sequence error

The function is called in StatementHandle before calling SQLPrepare or

SQLExecDirect.

The asynchronously executing function is called for the connection ha

ndle related to StatementHandle, but it is still being asynchronously ex

ecuted when SQLNumParams is called.

The asynchronously executing function is called for the StatementHan

dle, it is still being asynchronously executed when the function is calle

d.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called f

or StatementHandle, and SQL_NEED_DATA is returned. This function i

s called before data is sent for all data-at-execution parameters or colu

mns.

HY013 Memory management error
The internal memory can not be accessed or the available memory size

is small.

HY117

Connection is suspended du

e to unknown transaction st

ate. Only disconnect and rea

d-only functions are allowed.

For more information about the suspended state, refer to SQLEndTra

n.

HYT01 Connection timeout expired

The connection is expired before the data source responds to the requ

est. The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of

SQLSetStmtAttr.

IM001
Driver does not support this

function

The driver which is related to StatementHandle does not support the f

unction.

IM017
Polling is disabled in asynchr

onous notification mode
Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync has not

been called to complete the

previous asynchronous oper

ation on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTI

NG and if the notification mode is activated, then SQLCompleteAsync

should be called for the handle to do post processing and complete th

e operation.

SQLSTATE Error Description

ODBC API References | 2,641

Description

SQLNumParams can be called only after SQLPrepare is called.

If the statement related to StatementHandle does not have any parameter, then SQLNumParams sets*Par

ameterCountPtr to 0.

The number of parameters which are returned by SQLNumParams is as same as the value of SQL_DESC_

COUNT field of IPD.

2,642 | ODBC

SQLNumResultCols

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLNumResultCols returns the number of columns in the result set.

Syntax

SQLRETURN SQLNumResultCols(

SQLHSTMT StatementHandle,

SQLSMALLINT * ColumnCountPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

ColumnCountPtr

[Output] It is the buffer pointer to which the number of columns in the result set is to be returned.

The number does not include the bookmark column.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQ

L_SUCCESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between t

he driver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

Memory allocation err

ODBC API References | 2,643

HY001 or It is a memory allocation error.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCan

cel or SQLCancelHandle is called on StatementHandle before the functi

on is called and completed. Then this function is called again on State

mentHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from oth

er thread in the multithreaded application before the function is called

and completed.

HY010
Function sequence err

or

The function is called in StatementHandle, before SQLPrepare or SQLEx

ecDirect is called.

The asynchronously executing function is called for the connection han

dle related to StatementHandle, but it is still being asynchronously exec

uted when SQLNumResultsCols is called.

The asynchronously executing function is called for the StatementHand

le, it is still being asynchronously executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called f

or StatementHandle, and SQL_NEED_DATA is returned. This function is

called before data is sent for all data-at-execution parameters or colum

ns.

HY013
Memory management

error

The internal memory can not be accessed or the available memory size

is small.

HY117

Connection is suspend

ed due to unknown tr

ansaction state. Only

disconnect and read-o

nly functions are allow

ed.

For more information about the suspended state, refer to SQLEndTran.

HYT01
Connection timeout e

xpired

The connection is expired before the data source responds to the requ

est. The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of

SQLSetStmtAttr.

IM001
Driver does not suppo

rt this function

The driver which is related to DescriptorHandle does not support the fu

nction.

IM017

Polling is disabled in a

synchronous notificati

on mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

as not been called to c

omplete the previous

asynchronous operati

If the previous function call for the handle returns SQL_STILL_EXECUTI

NG and if the notification mode is activated, then SQLCompleteAsync s

hould be called for the handle to do post processing and complete the

operation.

SQLSTATE Error Description

2,644 | ODBC

on on this handle.

SQLSTATE Error Description

Description

SQLNumResultCols is successfully called only when the statement is in the prepared, executed, positioned

state.

If the statement related to StatementHandle does not return the column, then SQLNumResultCols sets*C

olumnCountPtr to 0.

The number of rows returned by SQLNumResultCols is as same as the value of SQL_DESC_COUNT field of

IRD.

ODBC API References | 2,645

SQLParamData

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLParamData is used together with SQLPutData to provide the parameters at the statement execution ti

me.

Syntax

SQLRETURN SQLParamData(

SQLHSTMT StatementHandle,

SQLPOINTER * ValuePtrPtr);

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_NO_DATA, SQL_STILL_EXECUTING,

SQL_ERROR, SQL_INVALID_HANDLE, SQL_PARAM_DATA_AVAILABLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY010
Function sequenc

e error

The previous function is not SQLExecute nor is SQLExecDirect which returns

SQL_NEED_DATA.

The previous function is SQLParamData.

HY013
Memory manage

ment error

The internal memory can not be accessed or the available memory size is sm

all.

2,646 | ODBC

HYT01
Connection time

out expired

The connection is expired before the data source responds to the request. T

he timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStm

tAttr.

SQLSTATE Error Description

If SQLParamData is called to transfer the data for a parameter, then it can return SQLSTATE of SQLExecut

e or SQLExecDirect.

Description

The driver returns SQL_NEED_DATA when the application calls SQLExecute or SQLExecDirect which requi

res data-at-execution. The application calls SQLParamData to determine the data to be transferred. If the

driver needs the parameter data, then the value of *ValuePtr entered by the application is returned. The

application can use the value to determine the parameter data requested by the driver.

The application calls SQLPutData as many times as necessary to transfer data-at-execution parameter. Th

e application calls SQLParamData again after all parameter data is transferred. When SQLParamData retu

rns SQL_NEED_DATA again, the application should call SQLPutData to transfer the other parameter data

again. If all parameter data are transferred, then SQLParamData returns SQL_SUCCESS or SQL_SUCCESS_

WITH_INFO and the value of *ValuePtr is not defined and the SQL statement can be executed.

ODBC API References | 2,647

SQLParamOptions

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLParamOptions function in ODBC 2.0 is replace with SQLSetStmtAttr in ODBC 3.x.

2,648 | ODBC

SQLPrepare

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLPrepare prepares the SQL string for execution.

Syntax

SQLRETURN SQLPrepare(

SQLHSTMT StatementHandle,

SQLCHAR * StatementText,

SQLINTEGER TextLength);

Arguments

StatementHandle

[Input] It is the statement handle.

StatementText

[Input] It is the SQL text string.

TextLength

[Input] It is the length of *StatementText in characters.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

It is temporarily replaced with the similar value because the specified statem

ODBC API References | 2,649

01S02 Option value cha

nged

ent attribute is invalid due to implementation working condition. (SQLGetSt

mtAttr can be called to see which value is temporarily changed.) The replace

d value is valid for StatementHandle until the cursor is closed,

and it is changed to the previous value when the cursor is closed.

The updatable statement attributes are as follows.

SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE,

SQL_ATTR_KEYSET_SIZE, SQL_ATTR_MAX_LENGTH, SQL_ATTR_MAX_RO

WS, SQL_ATTR_QUERY_TIMEOUT, SQL_ATTR_SIMULATE_CURSOR. (The fu

nction returns SQL_SUCCESS_WITH_INFO.)

21S01

Insert value list d

oes not match co

lumn list

INSERT statement is in *StatementText, and the number of values to be inse

rted do not match the derived table.

21S02

Degree of derive

d table does not

match column lis

t

CREATE view statement is in *StatementText, and the number of specified

names are not as same as the derived table defined by the query specificatio

ns.

22018

Invalid charcter v

alue for cast spec

ification

The SQL statement which includes a string or parameter is in *StatementTex

t, and the value is not compatible with the data type of related table column.

22019
Invalid escape ch

aracter

StatementText argument includes LIKE predicate such as ESCAPE in WHERE

clause, and a control character length of ESCAPE is not 1.

22025
Invalid escape se

quence

StatementText argument includes "LIKE pattern value ESCAPE escape chara

cter" in WHERE clause, and the pattern value control character is neither "%

" nor is "-".

24000
Invalid cursor stat

e

The cursor is open in StatementHandle, and SQLFetch or SQLFetchScroll is c

alled.

34000
Invalid cursor na

me

*StatementText includes the positioned DELETE or positioned UPDATE, and

the cursor referenced by the prepared statement is not open.

3D000
Invalid catalog na

me
The catalog name specified in StatementText is not valid.

3F000
Invalid schema n

ame
The schema name specified in StatementText is not valid.

42000
Syntax error or ac

cess violation

*StatementText includes an SQL statement which is not preparable or it incl

udes a syntax error.

*StatementText includes a user without required privileges in a statement.

42S01
Base table or vie

w already exists

*StatementText includes CREATE TABLE or CREATE VIEW statement, and th

e specified table name or the view name already exists.

*StatementText includes DROP TABLE or DROP VIEW statement, and the sp

ecified table name or view name does not exists.

*StatementText includes ALTER TABLE statement, and the specified table n

ame does not exist.

SQLSTATE Error Description

2,650 | ODBC

42S02 Base table or vie

w not found *StatementText includes CREATE VIEW statement, and the table name or vi

ew name defined does not exist in the query specifications.

*StatementText includes CREATE INDEX statement, and the specified table

name does not exist.

*StatementText includes GRANT or REVOKE statement, and the specified ta

ble name or view name does not exist.

*StatementText includes SELECT statement, and the table or view name spe

cified does not exist.

*StatementText includes DELETE, INSERT or UPDATE statement, and the sp

ecified table name does not exist.

*StatementText includes CREATE TABLE statement, and the table (refers to

other tables) whose constraint is specified does not exist.

42S11
Index already exis

ts

CREATE INDEX statement is in *StatementText, and the specified INDEX na

me already exists.

42S12 Index not found
DROP INDEX statement is in *StatementText, and the specified INDEX name

does not exist.

42S21
Column already e

xist

ALTER TABLE statement is in *StatementText, and the specified column in A

DD clause is not unique or it identifies the existing column in the base table.

42S22
Column not foun

d

CREATE INDEX statement is in *StatementText, and one or more column na

mes do not exist in the specified column list.

GRANT or REVOKE statement is in *StatementText, and the specified colum

n name does not exist.

SELECT, DELETE or UPDATE statement is in *StatementText, and the specifi

ed column name does not exist.

CREATE TABLE statement is in *StatementText, the column whose constrai

nt is specified does not exist.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY008
Operation cancel

ed

Asynchronous processing for StatementHandle is available and SQLCancel o

r SQLCancelHandle is called on StatementHandle before the function is calle

d and completed. Then, this function is called again on StatementHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from another

SQLSTATE Error Description

ODBC API References | 2,651

thread in the multithreaded application before the function is called and co

mpleted.

HY009
Invalid use of null

pointer
StatementText is a NULL pointer.

HY010
Function sequenc

e error

The function is called in StatementHandle before calling SQLPrepare or SQL

ExecDirect.

The asynchronously executing function is called for the connection handle r

elated to StatementHandle, but it is still being asynchronously executed whe

n SQLPrepare is called.

The asynchronously executing function is called for the StatementHandle, it

is still being asynchronously executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called for St

atementHandle, and SQL_NEED_DATA is returned. This function is called be

fore data is sent for all data-at-execution parameters or columns.

HY013
Memory manage

ment error

The internal memory can not be accessed or the available memory size is sm

all.

HY090
Invalid string or b

uffer length
TextLength is equal to or smaller than 0, or it is not as same as SQL_NTS.

HY117

Connection is sus

pended due to u

nknown transacti

on state. Only dis

connect and read

-only functions ar

e allowed.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature

not implemented

The concurrency set is not valid for the defined cursor type.

SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_UB_VARIAB

LE, and SQL_ATTR_CURSOR_TYPE statement attribute is set to the cursor ty

pe for the bookmark that is not supported by the driver.

HYT00 Timeout expired

The query timeout is expired before getting the result set from the data sour

ce. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT of SQLSetStmt

Attr.

HYT01
Connection time

out expired

The connection is expired before the data source responds to the request. T

he timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStm

tAttr

IM001

Driver does not s

upport this functi

on

The driver which is related to StatementHandle does not support the functio

n.

Polling is disable

d in asynchronou

SQLSTATE Error Description

2,652 | ODBC

IM017 s notification mo

de

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsy

nc has not been

called to complet

e the previous as

ynchronous oper

ation on this han

dle.

If the previous function call for the handle returns SQL_STILL_EXECUTING a

nd if the notification mode is activated, then SQLCompleteAsync should be

called for the handle to do post processing and complete the operation.

SQLSTATE Error Description

Description

The application calls SQLPrepare to send the SQL statements to the data source for preparation. The appli

cation can include one or more parameter markers in the SQL statement. The application describes the q

uestion mark (?) at an appropriate position in the SQL string to include the parameter marker.

Note

If the application uses SQLPrepare to prepare, or uses SQLExecute to submit COMMIT or ROLLBA

CK statement, then it is impossible to interoperate between DBMS products.

The driver can update the statement to use the SQL types used by the data source, and pass it to the data

source for the preparation. Especially, the driver updates the extended bit string which is used to define t

he SQL statement for a particular function. In the driver, the statement handle is similar to the statement i

dentifier in the embedded SQL code. If the data source supports statement identifiers, the driver can send

a statement identifier and parameter values to the data source.

After the statement is prepared, the application uses the statement handle to refer to the statement in th

e later function calls. The prepared statement related to the statement handle can be executed again wit

h calling SQLExecute until the application releases the statement by calling SQLFreeStmt with SQL_DROP

option or the statement handle uses one of SQLPrepare, SQLExecDirect or catalog function(SQLColumns,

SQLTables, etc.). Once the application prepares the statement, information about the format of the result

set may be requested. For some implementations, after SQLPrepare, calling of SQLDescribeCol or SQLDes

cribeParam is not as effective as calling after SQLExecute or SQLExecDirec.

The driver can not return an syntax error or access violation when the application calls SQLPrepare. The dr

iver can handle all syntax errors and access violations, or it can handle only syntax errors, or it can not han

dle all syntax errors nor does return access violations. The application should be able to handle these con

ditions when calling a subsequent related functions (the subsequent functions such as SQLNumResultCol

ODBC API References | 2,653

s, SQLDescribeCol, SQLColAttribute, SQLExecute).

According to the features of the driver and data source, parameter information (such as the data type) ca

n be checked when the statement is prepared (when all parameters are bound) or is executed (when all p

arameters are not bound).

The application should release the binding of all parameters previously applied to the SQL statement befo

re preparing the new SQL statement in the same statement. It can prevent an error whose previous para

meter information is applied to the new statement.

Caution

Committing a transaction by explicitly calling SQLEndTran or by working in autocommit mode, ca

n cause the data source to delete the access plans for all statements on a connection. For more inf

ormation, refer to SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR i

nformation types in SQLGetInfo.

2,654 | ODBC

SQLPrimaryKeys

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLPrimaryKeys returns the column name consists of the primary key of a table. The driver returns inform

ation as a result set. The function does not support returning the primary key from the multiple tables in a

single call.

Syntax

SQLRETURN SQLPrimaryKeys(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3);

Arguments

StatementHandle

[Input] It is the statement handle.

CatalogName

[Input] It is the catalog name. If the driver supports the catalog only for a few tables, an empty stri

ng ("") indicates the table with no catalog. CatalogName can not include the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, CatalogName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, CatalogName is treated as an ordinary argument literal,

and it is case sensitive.

NameLength1

[Input] It is the length of *CatalogName in characters.

ODBC API References | 2,655

SchemaName

[Input] It is the schema name. If the driver supports the schema only for a few tables, an empty stri

ng ("") indicates the table with no schema. SchemaName can not include the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, SchemaName is treated as a pattern value string, and it

is not case sensitive.

NameLength2

[Input] It is the length of *SchemaName in characters.

TableName

[Input] It is the table name. The argument can not be a null pointer. TableName can not include th

e string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, TableName is treated as an identifier, and it is not

case sensitive. If it is set to SQL_FALSE, TableName is treated as an ordinary literal, and it is not cas

e sensitive.

NameLength3

[Input] It is the length of *TableName in characters.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SUC

CESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between the driv

er and the data source is failed.

24000 Invalid cursor state
SQLFetch or SQLFetchScroll is called, and the cursor is open.

SQLFetch or SQLFetchScroll is not called, but the cursor is open.

40001 Serialization failure
The transaction is rolled back due to a resource deadlock of other transaction

s.

40003
Statement completio

n unknown

The related connection fails during the function execution and the status of t

he transaction is not able to be checked.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation er

ror
It is a memory allocation error.

Asynchronous processing for StatementHandle is available and SQLCancel or

SQLCancelHandle is called on StatementHandle before the function is called a

2,656 | ODBC

HY008 Operation canceled nd completed. Then this function is called again on StatementHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from another t

hread in the multithreaded application before this function is called and com

pleted.

HY009
Invalid use of null poi

nter

TableName argument is a null pointer.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and Catal

ogName argument is a null pointer.

SQLGetInfo with the SQL_CATALOG_NAME information type returns that cat

alog names are supported.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and Sche

maName argument is a null pointer.

HY010
Function sequence er

ror

The asynchronously executing function is called for the connection handle rel

ated to StatementHandle, and this function is still being executed when SQLP

rimaryKeys is called.

SQLExecute, SQLExecDirect, or SQLMoreResults is called for StatementHandle,

and SQL_PARAM_DATA_AVAILABLE is returned. This function is called befor

e the data is checked for all connected parameters.

The asynchronously executing function is called for StatementHandle, and is s

till being executed when this function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called for Stat

ementHandle, and SQL_NEED_DATA is returned. This function is called befor

e data is sent for all data-at-execution parameters or columns.

HY013
Memory manageme

nt error

The internal memory can not be accessed or the available memory size is smal

l.

HY090
Invalid string or buffe

r length

A name length argument value is smaller than 0 but it is not as same as SQL_

NTS. The name argument is not a null pointer.

A name length argument value is bigger than the maximum length correspon

ding to the name.

HY117

Connection is suspen

ded due to unknown

transaction state. Onl

y disconnect and rea

d-only functions are

allowed.

For more information about the suspended state, refer to SQLEndTran.

The catalog is specified, but the driver or the data source does not support th

e catalog.

SQLSTATE Error Description

ODBC API References | 2,657

HYC00 Optional feature not

implemented The schema is specified, but the driver or the data source does not support th

e schema.

The combination of current setting of SQL_ATTR_CONCURRENCY and SQL_A

TTR_CURSOR_TYPE statement attributes is not supported by the driver or dat

a source.

SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_UB_VARIABL

E, and SQL_ATTR_CURSOR_TYPE statement attribute is set to the cursor type

for the bookmark that is not supported by the driver.

HYT00 Timeout expired

The query timeout is expired before getting the result set from the data sourc

e. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT of SQLSetStmtAtt

r.

HYT01
Connection timeout

expired

The connection is expired before the data source responds to the request. Th

e timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStmtA

ttr.

IM001
Driver does not supp

ort this function
The driver which is related to StatementHandle does not support the function.

IM017

Polling is disabled in

asynchronous notific

ation mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

as not been called to

complete the previou

s asynchronous oper

ation on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTING an

d if the notification mode is activated, then SQLCompleteAsync should be call

ed for the handle to do post processing and complete the operation.

SQLSTATE Error Description

Description

SQLPrimaryKeys returns the result as the standard result set sorted by TABLE_CAT, TABLE_SCHEM, TABLE

_NAME, and KEY_SEQ. For more information about how to use this information, refer to Using Catalog

Data.

The names in the following columns are changed in ODBC 3.x. The column name change does not affect

compatibility with the previous version because the application binds by the column number.

ODBC 2.0 column ODBC 3.x column

TABLE_QUALIFIER TABLE_CAT

TABLE_OWNER TABLE_SCHEM

SQLGetInfo is called together with SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,

2,658 | ODBC

SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options to determine the actual col

umn length of TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME.

Note

For more information about general use, arguments, and the returned data of the ODBC catalog f

unctions, refer to Catalog Function.

The following table is a column list in the result set. An additional column after the column 6 can be defin

ed by the driver. The application should access the related column by counting down from the end in the

result set rather than by explicitly specifying the position. For more information, refer to Data Returning o

f Catalog Function.

Column

name

Column

number
Data type Description

TABLE_CAT

(ODBC 1.0)
1 Varchar

It is the primary key table catalog name. If it can not be used in the dat

a source, it is NULL. If the driver supports the catalog only for some tabl

es, such as when the drive retrieves the data from another DBMS, it ret

urns an empty string ("") for the table which does not have a catalog.

TABLE_SCH

EM (ODBC 1

.0)

2 Varchar

It is the primary key table schema name. If it can not be used in the dat

a source, it is NULL. If the driver supports the schema only for some tab

le, such as when the drive retrieves the data from another DBMS, it ret

urns an empty string ("") for the table which does not have a schema.

TABLE_NA

ME (ODBC 1

.0)

3
Varchar not

NULL
It is the primary key table name.

COLUMN_N

AME

(ODBC 1.0)

4
Varchar not

NULL

It is the primary key column name. The driver returns an empty string f

or a column which does not have a name.

KEY_SEQ

(ODBC 1.0)
5

Smallint not

NULL
It is the column sequence number of the key (starting from 1).

PK_NAME

(ODBC 2.0)
6 Varchar

It is the primary key name. If it can not be applied to the data source, it

is NULL.

ODBC API References | 2,659

SQLProcedureColumns

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLProcedureColumns returns the list of input output parameters and the columns which configure the r

esult set of the specified procedure. The driver returns information as the result set for the specified state

ment.

Syntax

SQLRETURN SQLProcedureColumns(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * ProcName,

SQLSMALLINT NameLength3,

SQLCHAR * ColumnName,

SQLSMALLINT NameLength4);

Arguments

StatementHandle

[Input] It is the statement handle.

CatalogName

[Input] It is the name of the procedure catalog. If the driver does not support the catalog, it returns

an empty string ("") and the procedure does not include catalog. CatalogName can not include the

string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, CatalogName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, CatalogName is treated as an ordinary argument literal,

and it is case sensitive. For more information, refer to Arguments of Catalog Function.

2,660 | ODBC

NameLength1

[Input] It is the length of *CatalogName in characters.

SchemaName

[Input] It is the name of procedure schema. It is the string search pattern for the schema name. If t

he driver does not support the schema, it returns an empty string ("") and the procedure does not i

nclude the schema. SchemaName can not include the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, SchemaName is treated as a pattern value string argum

ent, and it is case sensitive.

NameLength2

[Input] It is the length of *SchemaName in characters.

ProcName

[Input] It is the procedure name. This argument can not be a null pointer. ProcName can not includ

e the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, ProcName is treated as an identifier, and it is not

case sensitive. If it is set to SQL_FALSE, ProcName is treated as an ordinary literal, and it is not case

sensitive.

NameLength3

[Input] It is the length of *ProcName in characters.

ColumnName

[Input] It is the column name. This argument can not be a null pointer. ColumnName can not inclu

de the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, ColumnName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, ColumnName is treated as an ordinary literal, and it is n

ot case sensitive.

NameLength4

[Input] It is the length of *ColumnName in characters.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SUC

CESS_WITH_INFO.)

ODBC API References | 2,661

08S01
Communication link f

ailure

Before the function processing is completed, the connection between the driv

er and the data source is failed.

24000 Invalid cursor state

The cursor is open in StatementHandle, and SQLFetch or SQLFetchScroll is call

ed.

If SQLFetch or SQLFetchScroll returns SQL_NO_DATA, the driver returns this e

rror. If SQLFetch or SQLFetchScroll does not return SQL_NO_DATA, the driver

manager returns this error.

The result set is open in StatementHandle, but SQLFetch or SQLFetchScroll is

not called.

40001 Serialization failure
The transaction is rolled back due to a resource deadlock of other transaction

s.

40003
Statement completio

n unknown

The related connection fails during the function execution and the status of t

he transaction is not able to be checked.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation er

ror
It is a memory allocation error.

HY009
Invalid use of null poi

nter

TableName argument is a null pointer.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and Catal

ogName argument is a null pointer.

SQLGetInfo with the SQL_CATALOG_NAME information type returns that cat

alog names are supported.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and Sche

maName, ProcName or ColumnName argument is a null pointer.

HY010
Function sequence er

ror

The asynchronously executing function is called for the connection handle rel

ated to StatementHandle, and this function is still executing when SQLProced

ureColumns is called.

SQLExecute, SQLExecDirect, or SQLMoreResults is called for StatementHandle,

and SQL_PARAM_DATA_AVAILABLE is returned. This function is called befor

e the data is checked for all connected parameters.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called for Stat

ementHandle, and SQL_NEED_DATA is returned. This function is called befor

e data is sent for all data-at-execution parameters or columns.

The asynchronously executing function is called for StatementHandle, and is s

till being executed when this function is called.

HY090
Invalid string or buffe

A name length argument value is smaller than 0 but it is not as same as SQL_

NTS.

SQLSTATE Error Description

2,662 | ODBC

r length

A name length argument value is bigger than the maximum length correspon

ding to the name.

HY117

Connection is suspen

ded due to unknown

transaction state. Onl

y disconnect and rea

d-only functions are

allowed.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature not

implemented

The catalog is specified, but the driver or the data source does not support th

e catalog.

The schema is specified, but the driver or the data source does not support th

e schema.

The combination of current setting of SQL_ATTR_CONCURRENCY and SQL_A

TTR_CURSOR_TYPE statement attributes is not supported by the driver or dat

a source.

SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_UB_VARIABL

E, and SQL_ATTR_CURSOR_TYPE statement attribute is set to the cursor type

for the bookmark that is not supported by the driver.

HYT00 Timeout expired

The query timeout is expired before getting the result set from the data sourc

e. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT of SQLSetStmtAtt

r.

HYT01
Connection timeout

expired

The connection is expired before the data source responds to the request. Th

e timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStmtA

ttr.

IM001
Driver does not supp

ort this function
The driver which is related to StatementHandle does not support the function.

IM017

Polling is disabled in

asynchronous notific

ation mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

as not been called to

complete the previou

s asynchronous oper

ation on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTING an

d if the notification mode is activated, then SQLCompleteAsync should be call

ed for the handle to do post processing and complete the operation.

SQLSTATE Error Description

ODBC API References | 2,663

Description

SQLProcedureColumns returns the list of input output parameters and the columns which configure the r

esult set of the specified procedure. The driver returns information as the result set for the specified state

ment.

SQLProcedureColumns returns the results as a standard result set, sorted in an order of PROCEDURE_CAT,

PROCEDURE_SCHEM, PROCEDURE_NAME, COLUMN TYPE. Column names are returned in an order of e

ach parameter name (in call order) and the name of each column in the result set returned by the proced

ure.

SQLGetInfo is called together with SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME, SQL_

MAX_PROCEDURE_NAME_LEN options in an application to determine the actual column length of PROC

EDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, COLUMN_NAME.

The names in the following columns are changed in ODBC 3.x. The column name change does not affect

compatibility with the previous version because the application binds by the column number.

ODBC 2.0 column ODBC 3.x column

PROCEDURE_QUALIFIER PROCEDURE_CAT

PROCEDURE_OWNER PROCEDURE_SCHEM

PRECISION COLUMN_SIZE

LENGTH BUFFER_LENGTH

SCALE DECIMAL_DIGITS

RADIX NUM_PREC_RADIX

In ODBC 3.x, the following columns are added to the result set returned by SQLProcedureColumns.

● COLUMN_DEF

● DATETIME_CODE

● CHAR_OCTET_LENGTH

● ORDINAL_POSITION

● IS_NULLABLE

The following table lists the columns in the result set. The additional row after column 19 (IS_NULLABLE)

is defined by the driver. The applications should get access to a specific driver column by performing the c

ountdown from the end of the result set instead of specifying an explicit ordinal position.

Column

name

Column

number

Data type
Description

PROCEDUR

E_CAT (ODB 1 Varchar

It is the procedure catalog name. If it can not be used in the data sourc

e, it is NULL. If the driver supports the catalog only for some tables, suc

2,664 | ODBC

C 2.0) h as when the drive retrieves the data from another DBMS, it returns a

n empty string ("") for the table which does not have a catalog.

PROCEDUR

E_SCHEM

(ODBC 2.0)

2 Varchar

It is the procedure schema name. If it can not be used in the data sourc

e, it is NULL. If the driver supports the schema only for some table, suc

h as when the drive retrieves the data from another DBMS, it returns a

n empty string ("") for the table which does not have a schema.

PROCEDUR

E_NAME (O

DBC 2.0)

3
Varchar not

NULL

It is the procedure name. If the procedure does not have a name, then i

t returns an empty string.

COLUMN_N

AME (ODBC

2.0)

4
Varchar not

NULL

It is the procedure column name. If the procedure does not have a nam

e, then the driver returns an empty string.

COLUMN_T

YPE (ODBC

2.0)

5
Smallint not

NULL

It defines the procedure types.

● SQL_PARAM_TYPE_UNKNOWN: The procedure column type is no

t known. (ODBC 1.0)

● SQL_PARAM_INPUT: The procedure column is an input parameter.

(ODBC 1.0)

● SQL_PARAM_INPUT_OUTPUT: The procedure column is an input/

output parameter. (ODBC 1.0)

● SQL_PARAM_OUTPUT: The procedure column is an output param

eter. (ODBC 2.0)

● SQL_RETURN_VALUES: The procedure column is a return value of

the procedure. (ODBC 2.0)

● SQL_RESULT_COL: The procedure column is a column of result set.

(ODBC 1.0)

DATA_TYPE

(ODBC 1.0)
6

Smallint not

NULL

It is SQL data type. For datetime and interval data type, this column ret

urns a concise data type such as SQL_TYPE_DATE, SQL_INTERVAL_YEA

R_TO_MONTH.

TYPE_NAM

E (ODBC 2.0

)

7
Varchar not

NULL

It is the name of a data source dependent data type. For example, it is

CHAR(), VARCHAR(), MONEY, LONG VARBINARY or CHAR () FOR BIT

DATA. An application should use this name in CREATE TABLE and ALT

ER TABLE statement.

COLUMN_SI

ZE (ODBC 2.

0)

8 Integer

It is the maximum column size of the data type supported by the server.

The maximum precision is returned for the numeric data type, string da

ta type returns return the character length, DATATIME data type return

s the length of expressed character, INTERVAL data type returns the ch

aracter length of literal INTERVAL character, and the datatype to which

the column size is not applicable returns NULL.

BUFFER_LEN

GTH

(ODBC 1.0)

9 Integer

It is the byte length transferred from SQLGetData or SQLFetch operatio

n when SQL_C_DEFAULT is specified. The size of numeric data can be

different from that of the data stored in the data source. For a string or

a binary data, this value is as same as COLUMN_SIZE column.

Column

name

Column

number

Data type
Description

ODBC API References | 2,665

DECIMAL_D

IGITS

(ODBC 1.0)

10 Smallint
It is the practional digit in a column of the data source. If the decimal pl

ace of the data type can not be applicable, it returns NULL.

NUM_PREC

_RADIX (OD

BC 2.0)

11 Smallint

It is 2 or 10 for a numeric data type.

If it is 2, COLUMN_SIZE and DECIMAL_DIGITS are number of bits allow

ed for a column.

If it is 10, COLUMN_SIZE and DECIMAL_DIGITS are number of digits all

owed for a column.

The data type to which NUM_PREC_RADIX can not be applicable retur

ns NULL.

NULLABLE

(ODBC 2.0)
12

Smallint not

NULL

It is whether the data type allows NULL value.

If it is SQL_NULLABLE, the data type allows NULL value.

If it is SQL_NO_NULLS, the data type does not allow NULL value.

If it is SQL_NULLABLE_UNKNOWN, it is unknown if the column allows

NULL value.

REMAKRS

(ODBC 2.0)
13 Varchar It is a description about the procedure column.

COLUMN_D

EF (ODBC 3.

0)

14 Varchar
It is the default value of a column. If this value is enclosed in double qu

otes, then this column should be interpreted as a string.

SQL_DATA_

TYPE (ODBC

3.0)

15
Smallint not

NULL

It is the SQL data type value appears in the SQL_DESC_TYPE field of a d

escriptor. This column is as same as DATA_TYPE column, except for IN

TERVAL and DATETIME data type. For INTERVAL and DATETIME data t

ypes, SQL_DATE_TYPE field in the result set returns SQL_INTERVAL or

SQL_DATETIME, and SQL_DATETIME_SUB field returns the subcode fo

r INTERVAL or DATETIME data type.

SQL_DATETI

ME_SUB (O

DBC 3.0)

16 Smallint
It is the subtype code ofdatetime and interval data types. It returns NUL

L for other data types.

CHAR_OCTE

T_LENGTH

(ODBC 3.0)

17 Integer
It is the maximum length in byte of character or binary data type colum

n. It returns NULL for other data types.

ORDINAL_P

OSITION (O

DBC 3.0

18
Integer not

NULL
It is the column location in a table.

IS_NULLABL

E (ODBC 3.0

)

19 Varchar

● "YES": A column can include NULL.

● "NO": A column can not include NULL.

● It returns a string whose length is 0 when it is unknown whether

to allow NULL.

Column

name

Column

number

Data type
Description

2,666 | ODBC

SQLProcedures

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLProcedures returns the list of procedure names stored in the specified data source. Procedure is a gen

eral term used to describe a named object which can be called by using the executable object or input an

d output parameter.

Syntax

SQLRETURN SQLProcedures(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * ProcName,

SQLSMALLINT NameLength3);

Arguments

StatementHandle

[Input] It is the statement handle.

CatalogName

[Input] It is the name of the procedure catalog. If the driver does not support the catalog, it returns

an empty string ("") and the procedure does not include catalog. CatalogName can not include the

string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, CatalogName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, CatalogName is treated as an ordinary argument literal,

and it is case sensitive. For more information, refer to Arguments of Catalog Function.

NameLength1

[Input] It is the length of *CatalogName in characters.

ODBC API References | 2,667

SchemaName

[Input] It is the name of procedure schema. The string search pattern for the schema name. If the d

river does not support the schema, it returns an empty string ("") and the procedure does not inclu

de the schema. SchemaName can not include the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier, and it is

not case sensitive. If it is set to SQL_FALSE, SchemaName is treated as a pattern value string argum

ent, and it is case sensitive.

NameLength2

[Input] It is the length of *SchemaName in characters.

ProcName

[Input] It is the procedure name. This argument can not be a null pointer. ProcName can not includ

e the string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, ProcName is treated as an identifier, and it is not

case sensitive. If it is set to SQL_FALSE, ProcName is treated as a pattern value string argument, an

d it is case sensitive.

NameLength3

[Input] It is the length of *ProcName in characters

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDL

E.

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SUC

CESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between the driv

er and the data source is failed.

24000 Invalid cursor state

The cursor is open in StatementHandle, and SQLFetch or SQLFetchScroll is call

ed.

If SQLFetch or SQLFetchScroll returns SQL_NO_DATA, the driver returns this e

rror. If SQLFetch or SQLFetchScroll does not return SQL_NO_DATA, the driver

manager returns this error.

The result set is open in StatementHandle, but SQLFetch or SQLFetchScroll is

not called.

The transaction is rolled back due to a resource deadlock of other transaction

2,668 | ODBC

40001 Serialization failure s.

40003
Statement completio

n unknown

The related connection fails during the function execution and the status of t

he transaction is not able to be checked.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation er

ror
It is a memory allocation error.

HY009
Invalid use of null poi

nter

TableName argument is a null pointer.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and Catal

ogName argument is a null pointer.

SQLGetInfo with the SQL_CATALOG_NAME information type returns that cat

alog names are supported.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and Sche

maName, ProcName or ColumnName argument is a null pointer.

HY010
Function sequence er

ror

The asynchronously executing function is called for the connection handle rel

ated to StatementHandle, and this function is still being executed when SQLP

rocedureColumns is called.

SQLExecute, SQLExecDirect, or SQLMoreResults is called for StatementHandle,

and SQL_PARAM_DATA_AVAILABLE is returned. This function is called befor

e the data is checked for all connected parameters.

The asynchronously executing function is called for StatementHandle, and is s

till being executed when this function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called for Stat

ementHandle, and SQL_NEED_DATA is returned. This function is called befor

e data is sent for all data-at-execution parameters or columns.

HY013
Memory manageme

nt error

The internal memory can not be accessed or the available memory size is smal

l.

HY090
Invalid string or buffe

r length

A name length argument value is smaller than 0 but it is not as same as SQL_

NTS.

A name length argument value is bigger than the maximum length correspon

ding to the name.

HY117

Connection is suspen

ded due to unknown

transaction state. Onl

y disconnect and rea

d-only functions are

allowed.

For more information about the suspended state, refer to SQLEndTran.

The catalog is specified, but the driver or the data source does not support th

SQLSTATE Error Description

ODBC API References | 2,669

HYC00 Optional feature not

implemented

e catalog.

The schema is specified, but the driver or the data source does not support th

e schema.

The combination of current setting of SQL_ATTR_CONCURRENCY and SQL_A

TTR_CURSOR_TYPE statement attributes is not supported by the driver or dat

a source.

SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_UB_VARIABL

E, and SQL_ATTR_CURSOR_TYPE statement attribute is set to the cursor type

for the bookmark that is not supported by the driver.

HYT00 Timeout expired

The query timeout is expired before getting the result set from the data sourc

e. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT of SQLSetStmtAtt

r.

HYT01
Connection timeout

expired

The connection is expired before the data source responds to the request. Th

e timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStmtA

ttr.

IM001
Driver does not supp

ort this function
The driver which is related to StatementHandle does not support the function.

IM017

Polling is disabled in

asynchronous notific

ation mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

as not been called to

complete the previou

s asynchronous oper

ation on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTING an

d if the notification mode is activated, then SQLCompleteAsync should be call

ed for the handle to do post processing and complete the operation.

SQLSTATE Error Description

Description

SQLProcedures lists all procedures in the requested range. A user may or may not have privileges to execu

te these procedures. Refer SQL_ACCESSIBLE_PROCEDURES of SQLGetInfo to check accessibility. If a user

selects the procedure which can not be executed, the application should be able to handle the situation.

SQLProcedures returns the standard result set, and it is sorted in an order of PROCEDURE_CAT, PROCED

URE_SCHEMA, PROCEDURE_NAME

The following column names are changed in ODBC 3.x. The column name change does not affect the co

mpatibility with the previous version because the application binds by the column number.

ODBC 2.0 column ODBC 3.x column

2,670 | ODBC

PROCEDURE_QUALIFIER PROCEDURE_CAT

PROCEDURE_OWNER PROCEDURE_SCHEM

ODBC 2.0 column ODBC 3.x column

SQLGetInfo is called together with SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME, SQL_

MAX_PROCEDURE_NAME_LEN options in an application to determine the actual column length of PROC

EDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, COLUMN_NAME

The following table lists the columns in the result set. The additional row after column 8 (PROCEDURE_T

YPE) is defined by the driver. The applications should get access to a specific driver column by performing

the countdown from the end of the result set instead of specifying an explicit ordinal position.

Column

name

Column

number
Data type Comments

PROCEDUR

E_CAT (ODB

C 2.0)

1 Varchar

It is the procedure catalog name. If it can not be used in the data sourc

e, it is NULL. If the driver supports the catalog only for some tables, suc

h as when the drive retrieves the data from another DBMS, it returns a

n empty string ("") for the table which does not have a catalog.

PROCEDUR

E_SCHEM

(ODBC 2.0)

2 Varchar

It is the procedure schema identifier. If it can not be used in the data so

urce, it is NULL. If the driver supports the schema only for some table, s

uch as when the drive retrieves the data from another DBMS, it returns

an empty string ("") for the table which does not have a schema.

PROCEDUR

E_NAME (O

DBC 2.0)

3
Varchar not

null
It is the procedure identifier.

NUM_INPUT

_PARAMS

(ODBC 2.0)

4 N/A

● reserved

Applications should not depend on the data returned in these result col

umns.

NUM_OUTP

UT_PARAM

S (ODBC 2.0

)

5 N/A

● reserved

Applications should not depend on the data returned in these result col

umns.

NUM_RESU

LT_SETS (O

DBC 2.0)

6 N/A

● reserved

Applications should not depend on the data returned in these result col

umns.

REMARK (O

DBC 2.0)
7 Varchar It is the description on the procedure.

PROCEDUR

E_TYPE (OD

BC 2.0)

8 Smallint

It defines a procedure type.

● SQL_PT_UNKNOWN: Where the procedure returns the value or n

ot is unknown.

● SQL_PT_PROCEDURE: The returned object is a procedure. In other

words, a return value does not exist.

● SQL_PT_FUNCTION: The returned object is a function. In other wo

ODBC API References | 2,671

rds, a return value exists.

Column

name

Column

number
Data type Comments

2,672 | ODBC

SQLPutData

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLPutData allows the application to transfer a parameter to the driver or transfer the data to a column a

t statement execution time.

The function can be used to transfer a character or binary data value in parts to a column with a characte

r, binary, or data source specific data type (For example, the parameter of SQL_LONGVARBINARY or SQL

_LONGVARCHAR types).

Even if the default driver does not support unicode, SQLPutData supports the binding to Unicode C data

types.

Syntax

SQLRETURN SQLPutData(

SQLHSTMT StatementHandle,

SQLPOINTER DataPtr,

SQLLEN StrLen_or_Ind);

Arguments

StatementHandle

[Input] It is the statement handle.

DataPtr

[Input] It is the buffer pointer which includess the actual data for the parameter or column. The da

ta should be the C data types specified by ValueType argument of SQLBindParameter (parameter d

ata) or TargetType argument of SQLBindCol (column data).

StrLen_or_Ind

[Input] It is the length of *DataPtr. It specifies the amount of data transferred to SQLPutData call. T

he amount of data can be varied depending on each call to the given parameter or the column. Str

Len_or_Ind is ignored if one of the following conditions is not satisfied.

• StrLen_or_Ind is SQL_NTS, SQL_NULL_DATA, or SQL_DEFAULT_PARAM.

ODBC API References | 2,673

• The C data type that is specified in SQLBindParameter or SQLBindCol is SQL_C_CHAR or SQL_C_

BINARY.

• The C data type is SQL_C_DEFAULT, and the default C data type for the specified SQL data type

is SQL_C_CHAR or SQL_C_BINARY.

For all other types of C data, if StrLen_or_Ind is not SQL_NULL_DATA or SQL_DEFAULT_PARAM, th

e driver determines that the size of *DataPtr is the size of C data type specified in ValueType or Tar

getType, and transfers the entire data value.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

01004
String data, right

truncated

The string or binary data returned to the input/output or output parameters

are truncated. If a string is truncated, the right part of the string is truncated.

(The function returns SQL_SUCCESS_WITH_INFO.)

07006

Restricted data ty

pe attribute viola

tion

The data value identified by the ValueType argument in SQLBindParameter f

or the bound parameter can not be converted to the data type identified by

the ParameterType argument in SQLBindParameter.

07S01
Invalid use of def

ault parameter

The parameter value set in SQLBindParameter is SQL_DEFAULT_PARAM, an

d the corresponded parameter does not have the default value.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

22001
String data, right

truncation

The string or binary data is truncated.

SQL_NEED_LONG_DATA_LEN information type is "Y" in SQLGetInfo, and m

ore data is transferred for a long parameter than is specified with StrLen_or

_IndPtr argument in SQLBindParameter.

SQL_NEED_LONG_DATA_LEN information type is "Y" in SQLGetInfo, and m

ore data is transferred for a long column than is specified in the buffer lengt

h corresponding to the data rows which are added or updated with SQLBul

kOperation or updated with SQLSetPos.

22003
Numeric value ou

t of range

The bound numeric parameter or the data which is transferred to the colum

n causes the truncation for the numeric value when the related table colum

n is allocated.

The numeric value which is returned for the input/output parameter or outp

ut parameter is truncated.

2,674 | ODBC

22007
Invalid datetime f

ormat

The data sent for a parameter or column which is bound to a date, time, or

timestamp structure is invalid for each type.

An input/output or output parameter is bound to a date, time, or timestam

p C structure, and a value in the returned parameter is invalid for each type.

(The function returns SQL_SUCCESS_WITH_INFO.)

22008
Datetime field ov

erflow

DATETIME expression is not valid for the bound DATE, TIME or TIMESTAMP

C structure.

22012 Division by zero
An arithmetic expression calculated for an input/output or output paramete

r is in divided by zero.

22015
Interval field over

flow

The significant digits are lost due to the data transfer for an exact numeric o

r interval column or parameter to an interval SQL data type.

The data transferred to one or more INTERVAL columns or parameters is co

nverted into a numeric data type, but it can not be expressed as a numeric d

ata type.

The data transferred for the column or parameter data is assigned to INTER

VAL SQL type, but it can not be expressed as the value of C type in INTERVA

L SQL type.

The significant digits of the data transferred for the exact number or the INT

ERVAL C column or parameter are lost.

The data transferred for the column or parameter data is assigned to INTER

VAL C type, but it can not be expressed as INTERVAL data structure.

22018

Invalid character

value for cast spe

cification

The character not represented as the character set of C buffer is included in

the character column of the result set.

The C type is the exact or approximate numeric, datetime, interval data type,

and if the SQL type is the character data type, then the value of the column

bound to the C type is invalid.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

n error
It is a memory allocation error.

HY008
Operation cancel

ed

Asynchronous processing for StatementHandle is available and SQLCancel o

r SQLCancelHandle is called on StatementHandle before the function is calle

d and completed. Then, this function is called again on StatementHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from other th

read in the multithreaded application before this function is called and com

pleted.

HY009
Invalid use of null DataPtr argument is a null pointer, and StrLen_or_Ind argument is neither S

SQLSTATE Error Description

ODBC API References | 2,675

pointer QL_DEFAULT_PARAM nor SQL_NULL_DATA.

HY010
Function sequenc

e error

The previous function is not a call to SQLPutData or SQLParamData.

The asynchronously executing function is called for the connection handle r

elated to StatementHandle, but it is still being asynchronously executed whe

n SQLPrimaryKeys is called.

The asynchronously executing function is called for StatementHandle, but it

is still being asynchronously executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos is called for St

atementHandle, and SQL_NEED_DATA is returned. This function is called be

fore data is sent for all data-at-execution parameters or columns.

HY013
Memory manage

ment error

The internal memory can not be accessed or the available memory size is sm

all.

HY019

Non-character an

d non-binary dat

a sent in pieces

SQLPutData is called for the parameter or column one or more times, and it

is not used to transfer the character C data to a column with the character, t

he binary or the data source-specific data type, or to transfer the binary C d

ata to a column with the character, the binary or the data source-specific da

ta type.

HY020

Attempt to conca

tenate a null valu

e

SQLPutData is called once or more after SQL_NEED_DATA is returned, and

StrLen_or_Ind argument includes SQL_NULL_DATA or SQL_DEFAULT_PARA

M in one of these calls.

HY090
Invalid string or b

uffer length

DataPtr argument is not a null pointer, and StrLen_or_Ind is not equal to SQ

L_NTS or SQL_NULL_DATA, or is smaller than than 0.

HY117

Connection is sus

pended due to u

nknown transacti

on state. Only dis

connect and read

-only functions ar

e allowed.

For more information about the suspended state, refer to SQLEndTran.

HYT01
Connection time

out expired

The connection is expired before the data source responds to the request. T

he timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStm

tAttr.

IM001

Driver does not s

upport this functi

on

The driver related to StatementHandle does not support the function.

IM017

Polling is disable

d in asynchronou

s notification mo

de

Whenever using the notification model, polling can not be used.

SQLCompleteAsy

SQLSTATE Error Description

2,676 | ODBC

IM018 nc has not been

called to complet

e the previous as

ynchronous oper

ation on this han

dle.

If the previous function call for the handle returns SQL_STILL_EXECUTING a

nd if the notification mode is activated, then SQLCompleteAsync should be

called for the handle to do post processing and complete the operation.

SQLSTATE Error Description

Description

SQLPutData can be called to provide data-at-execution data for two uses. One is to use it as parameter d

ata when calling SQLExecute or SQLExecDirect. The other is to use it as column data when updating or a

dding a row by calling SQLBulkOperations, or when updating a row by calling SQLSetPos.

When the application calls SQLParamData to determine which data should be transferred, the driver retur

ns an indicator that the application can use to determine which parameter data to send or where column

data can be found. The function also returns SQL_NEED_DATA which is an indicator to the application th

at it should call SQLPutData to transfer the data. In the DataPtr argument to SQLPutData, the application

passes a pointer to the buffer including the actual data for the parameter or column.

When the driver returns SQL_SUCCESS for SQLPutData, the application calls SQLParamData again. For tra

nsferring more data, SQLParamData returns SQL_NEED_DATA, and the application calls SQLPutData agai

n. If all data-at-execution data are transferred, SQL_SUCCESS is returned. And then the application calls S

QLParamData again. If the driver returns SQL_NEED_DATA and another marker in *ValuePtrPtr, then it re

quests the data for other parameter or column and calls SQLPutData again. If the driver returns SQL_SUC

CESS, then all data-at-execution data are transferred, and the SQL statement can be executed or SQLBulk

Operations or SQLSetPos can be processed.

Note

The application is allowed to use SQLPutData only when the character C data or binary C data is tr

ansferred to the character, binary or data source specific data type. If SQLPutData is called once or

more under different conditions, SQL_ERROR and SQLSTATE HY019 are returned. (Non-character

and non-binary data sent in pieces)

ODBC API References | 2,677

SQLRowCount

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLRowCount returns the number of rows whih are affected by UPDATE, INSERT, or DELETE statement.

(SQL_ADD, SQL_UPDATE_BY_BOOKMARK or SQL_DELETE_BY_BOOKMARK operation in SQLBulkOperat

ions. Or SQL_UPDATE or SQL_DELETE operation in SQLSetPos)

Syntax

SQLRETURN SQLRowCount(

SQLHSTMT StatementHandle,

SQLLEN * RowCountPtr);

Arguments

StatementHandle

[Input] It is the statement handle.

RowCountPtr

[Output] It is the buffer pointer to which the number of rows is to be returned. For UPDATE, INSER

T, DELETE statements, for the SQL_ADD, SQL_UPDATE_BY_BOOKMARK, SQL_DELETE_BY_BOOK

MARK operations in SQLBulkOperations, and for the SQL_UPDATE or SQL_DELETE operations in S

QLSetPos, the value returned to *RowCountPtr is the number of rows affected by the request. Or, i

t is -1 if the number of affected rows is not available.

When SQLExecute, SQLExecDirect, SQLBulkOperations, SQLSetPos or SQLMoreResults is called, SQ

L_DIAG_ROW_COUNT field of the diagnostic data structure is set to the number of rows, and the

number of rows are cached in a way that depends on the implementation. SQLRowCount returns t

he number of cashed rows. The number of cashed rows are valid until when the statement handle

is set again in the prepared or assigned state, or when the statement is executed again or when SQ

LCloseCursor is called. If SQL_DIAG_ROW_COUNT field is set and the function is called, then SQL_

DIAG_ROW_COUNT field is set to 0 by calling any function, and the return value by SQLRowCount

can be different from the value in SQL_DIAG_ROW_COUNT field.

For other statements and functions, the driver can define the value returned in *RowCountPtr. For

2,678 | ODBC

example, some data source can return the number of rows returned by SELECT statement before r

ows are patched.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_S

UCCESS_WITH_INFO.)

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

HY010 Function sequence error

The asynchronously executing function is called for the connection handle

related to StatementHandle, and this function is still being executed when

SQLRowCount is called.

SQLExecute, SQLExecDirect, SQLMoreResults is called for StatementHandl

e, and SQL_PARAM_DATA_AVAILABLE is returned. The function is called

before data is retrieved for all streamed parameters.

The function is called for StatementHandle, before SQLExecute, SQLExecD

irect, SQLBulkOperations, or SQLSetPos is called.

The asynchronously executing function is called for StatementHandle, and

this function is still being executed when this function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called fo

r StatementHandle, and SQL_NEED_DATA is returned. This function is call

ed before data is sent for all data-at-execution parameters or columns.

HY013
Memory management er

ror

The internal memory can not be accessed or the available memory size is s

mall.

HY117

Connection is suspended

due to unknown transac

tion state. Only disconne

ct and read-only functio

ns are allowed.

For more information about the suspended state, refer to SQLEndTran.

HYT00 Timeout expired

The query timeout is expired before getting the entire result set from the

data source. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT of S

QLSetStmtAttr.

HYT01
Connection timeout expi

The connection is expired before the data source responds to the request.

The timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSet

ODBC API References | 2,679

red StmtAttr.

IM001
Driver does not support t

his function

The driver which is related to StatementHandle does not support the func

tion.

SQLSTATE Error Description

Description

If the last SQL statement executed for the statement handle is not UPDATE, INSERT, DELETE, or if an oper

ation argument of the previous SQLBulkOperations call is not SQL_ADD, SQL_UPDATE_BY_BOOKMARK,

SQL_DELETE_BY_BOOKMARK or if an operation argument of the previous SQLSetPos call is not SQL_UP

DATE, SQL_DELETE, then the value of *RowCountPtr is defined by the driver.

2,680 | ODBC

SQLSetConnectAttr

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLSetConnectAttr sets the attribute which controls the connection.

Syntax

SQLRETURN SQLSetConnectAttr(

SQLHDBC ConnectionHandle,

SQLINTEGER Attribute,

SQLPOINTER ValuePtr,

SQLINTEGER StringLength);

Arguments

ConnectionHandle

[Input] It is the connection handle.

Attribute

[Input] It is the attribute for setting.

ValuePtr

[Input] It is the pointer of the value related to attribute. According to the value of attribute, ValueP

tr can be an unsigned integer or it points to a null-termination string. The integer type of attribute

argument may not be the fixed length data type. For more information, refer to the Description sec

tion.

StringLength

[Input] If attribute is the ODBC-defined attribute and ValuePtr points to the string or binary buffer,

then the argument should be the length of *ValuePtr. For string data, the argument should includ

e the number of bytes of the string.

If attribute is the ODBC-defined attribute and ValuePtr is an integer, then StringLength is ignored.

If attribute is the driver-defined attribute, then the application indicates the attribute characteristics

set by StringLength argument to the driver manager. StringLength may have one of the following v

ODBC API References | 2,681

alues:

• If ValuePtr is a string pointer, StringLength is the string length or SQL_NTS.

• If ValuePtr is a binary buffer pointer, the application stores the result of SQL_LEN_BINARY_ATTR

(length) macro which is a negative value in StringLength.

• If ValuePtr is neither string pointer nor binary buffer pointer, StringLength must have SQL_IS_PO

INTER.

• If ValuePtr contains the fixed length value, StringLength is SQL_IS_INTEGER or SQL_IS_UINTEGE

R.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE, SQL_STILL_EXECUTING

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

01S02
Option value cha

nged

The value specified in ValuePtr is not supported by the driver and it is replac

ed with a similar value. (The function returns SQL_SUCCESS_WITH_INFO.)

08002
Connection nam

e in use

Attribute argument is SQL_ATTR_ODBC_CURSORS, and the driver is already

connected to the data source.

08003
Connection not o

pen

Attribute value is assigned to request an open connection, but ConnectionH

andle is not in a connected state.

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

24000
Invalid cursor stat

e

Attribute argument is SQL_ATTR_CURRENT_CATALOG, and the result set is

deferred.

25000

Illegal operation

while in a local tr

ansaction

The local transaction is connected while attempting to connect the distribut

ed transaction by setting of the connection attribute SQL_ATTR_ENLIST_IN_

DTC.

The connection to the distributed transaction is already enlisted.

The connection to the distributed transaction is already enlisted, the local tr

ansaction is started by setting SQL_ATTR_AUTOCOMMIT to SQL_AUTOCO

MMIT_OFF.

3D000
Invalid catalog na

me

Attribute argument is SQL_ATTR_CURRENT_CATALOG and the specified cat

alog name is not valid.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocatio

It is a memory allocation error.

2,682 | ODBC

n error

HY008
Operation cancel

ed

The asynchronous processing is activated for ConnectionHandle. The SQLSe

tConnectAttr function is called, and before it completes execution, the SQL

CancelHandle function is called on the ConnectionHandle, and then the SQ

LSetConnectAttr function is called again on the ConnectionHandle.

Or, SQLSetConnectAttr function is called, and before it completes execution,

SQLCancelHandle is called on the ConnectionHandle from a different thread

in a multithread application.

HY009
Invalid use of null

pointer

Attribute argument identifies the connection attribute which requires the st

ring value, and ValuePtr argument is a null pointer.

HY010
Function sequenc

e error

The asynchronously executing function is called for the statementHandle rel

ated to ConnectionHandle, and this function is still being executed when SQ

LSetConnectAttr is called.

The asynchronously executing function is called for the ConnectionHandle,

and this function is still being executed when this function is called.

SQLExecute, SQLExecDirect, SQLMoreResults is called for one of Statement

Handle related to ConnectionHandle, and SQL_PARAM_DATA_AVAILABLE i

s returned. The function is called before data is retrieved for all streamed pa

rameters.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called for

StatementHandle related to ConnectionHandle, and SQL_NEED_DATA is ret

urned. This function is called before data is sent for all data-at-execution par

ameters or columns.

SQLBrowseConnect is called for ConnectionHandle, and SQL_NEED_DATA i

s returned. The function is called before SQLBrowseConnect returns SQL_SU

CCESS_WITH_INFO or SQL_SUCCESS.

HY011
Attribute cannot

be set now

Attribute argument is SQL_ATTR_TXN_ISOLATION, and the transaction is op

en.

HY013
Memory manage

ment error

The internal memory can not be accessed or the available memory size is sm

all.

HY024
Invalid attribute v

alue

The specified Attribute value is assigned, and the invalid value is specified to

ValuePtr.

Attribute argument is SQL_ATTR_TRACEFILE or SQL_ATTR_TRANSLATE_LIB,

and ValuePtr is an empty string.

HY090
Invalid string or b

uffer length

ValuePtr is a string and StringLength argument is smaller than 0 but it is not

SQL_NTS.

Driver does not s

upport connectio The application tries to activate asynchronous execution with SQL_ATTR_AS

SQLSTATE Error Description

ODBC API References | 2,683

HY114 n-level asynchron

ous function exe

cution

YNC_DBC_FUNCTIONS_ENABLE when the driver does not support asynchro

nous connection.

HY117

Connection is sus

pended due to u

nknown transacti

on state. Only dis

connect and read

-only functions ar

e allowed.

For more information about the suspended state, refer to SQLEndTran.

HY121

Cursor Library an

d Driver-Aware P

ooling cannot be

enabled at the sa

me time

It is not supported by the driver.

HYC00
Optional feature

not implemented

The value specified for Attribute argument is valid for the ODBC connection

or the statement attribute for the version supported by the driver, but it is n

ot supported by the driver.

HYT01
Connection time

out expired

The connection is expired before the data source responds to the request. T

he timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStm

tAttr.

IM001

Driver does not s

upport this functi

on

The driver which is related to ConnectionHandle does not support the functi

on.

IM009
Unable to load tr

anslation DLL

The driver can not load the transaction DDL specified for the connection. Th

e error can be returned only when attribute is SQL_ATTR_TRANSLATE_LIB.

IM017

Polling is disable

d in asynchronou

s notification mo

de

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsy

nc has not been

called to complet

e the previous as

ynchronous oper

ation on this han

dle.

If the previous function call for the handle returns SQL_STILL_EXECUTING a

nd if the notification mode is activated, then SQLCompleteAsync should be

called for the handle to do post processing and complete the operation.

S1118

Driver does not s

upport asynchron

ous notification

SQL_ATTR_ASYNC_DBC_EVENT is set but the asynchronous notification is n

ot supported by the driver.

SQLSTATE Error Description

2,684 | ODBC

Description

The application can call SQLSetConnectAttr at any time between the connection is assigned and released.

All connections and the statement attributes set by the application for connection are maintained until S

QLFreeHandle is called. For example, if an application calls SQLSetConnectAttr before connecting to a dat

a source, the attribute is maintained even when SQLSetConnectAttr fails in the driver when the applicatio

n connects to the data source. If the application sets the driver-specific attribute then the attribute is mai

ntained even when the application connects to a different driver.

Note

The feature to set the statement attribute at the connection level by SQLSetConnectAttr call is not

used in ODBC 3.x. ODBC 3.x application should not set the statement attribute at the connection l

evel. ODBC 3.x application can not set the statement attributes except for SQL_ATTR_METADATA

_ID and SQL_ATTR_ASYNC_ENABLE attributes at the connection level. The two attributes are bot

h the connection attribute and statement attribute and they can be set at the connection level or s

tatement level. If ODBC 3.x driver operates with ODBC 2.x application which sets the ODBC 2.x st

atement option at the connection level, the ODBC 3.x driver is required to support it.

Some connection attributes can be set only before the connection is made, and some other attributes can

be set only after the connection is made. The following table describes these connection attributes.

Attribute Whether it is set before or after connection

SQL_ATTR_ACCESS_MODE Either[1]

SQL_ATTR_ASYNC_DBC_EVENT Either

SQL_ATTR_ASYNC_DBC_FUNCTIONS_ENABLE Either[4]

SQL_ATTR_ASYNC_DBC_PCALLBACK Either

SQL_ATTR_ASYNC_DBC_PCONTEXT Either

SQL_ATTR_ASYNC_ENABLE Either[2]

SQL_ATTR_AUTO_IPD Either

SQL_ATTR_AUTOCOMMIT Either[5]

SQL_ATTR_CONNECTION_DEAD After

SQL_ATTR_CONNECTION_TIMEOUT Either

SQL_ATTR_CURRENT_CATALOG Either[1]

SQL_ATTR_DBC_INFO_TOKEN After

SQL_ATTR_ENLIST_IN_DTC After

SQL_ATTR_LOGIN_TIMEOUT Before

SQL_ATTR_METADATA_ID Either

SQL_ATTR_OLDPWD Before

ODBC API References | 2,685

SQL_ATTR_ODBC_CURSORS Before

SQL_ATTR_PACKET_SIZE Before

SQL_ATTR_QUIET_MODE Either

SQL_ATTR_TRACE Either

SQL_ATTR_TRACEFILE Either

SQL_ATTR_TRANSLATE_LIB After

SQL_ATTR_TRANSLATE_OPTION After

SQL_ATTR_TXN_ISOLATION Either[3]

Attribute Whether it is set before or after connection

[1]SQL_ATTR_ACCESS_MODE and SQL_ATTR_CURRENT_CATALOG can be set before and after the conn

ection according to the driver. But the application which uses multiple drivers should set before the conn

ection because these changes are not supported after the connection depending on the driver.

[2]SQL_ATTR_ASYNC_ENABLE should be set before the statement is activated.

[3]SQL_ATTR_TXN_ISOLATION can be set only when there is not any open transaction on theconnection.

Some connection attributes is supported by replacing with the similar value if the data source does not su

pport the value specified by *ValuePtr. In this case, the driver returns SQL_SUCCESS_WITH_INFO and SQL

STATE 01S02 (Option value changed). For example, if Attribute is SQL_ATTR_PACKET_SIZE and *ValuePt

r exceeds the maximum packet size, the driver replaces it with the maximum packet size, the application

calls SQLSetConnectAttr to check the replaced value.

[4] If SQL_ATTR_ASYNC_DBC_FUNCTIONS_ENABLE is set before the connection is open, the driver mana

ger sets the driver attribute when the driver is loaded while SQLBrowseConnect, SQLConnect, or SQLDriv

erConnect is called. Before SQLBrowseConnect, SQLConnect, or SQLDriverConnect is called, the driver m

anager does not know which driver is connected and does not know whether the driver supports the asy

nchronous operation for connection. Therefore, the driver manager returns SQL_SUCCESS. However if th

e driver does not support the asynchronous operation for connection, then calling SQLBrowseConnect, S

QLConnect, or SQLDriverConnect will fail.

[5] If SQL_ATTR_AUTOCOMMIT is set to FALSE and API returns SQL_ERROR, the application should call S

QLEndTran (SQL_ROLLBACK) to guarantee the transaction consistency.

Information type in *ValuePtr buffer depends on the specified attribute. SQLSetConnectAttr accepts one

of the null-termination character or integer value as attribute information. The character string indicated t

o by the ValuePtr argument of SQLSetConnectAttr has StringLength bytes length.

If the length is defined in the attribute, StringLength argument is ignored as is the case of all attributes in

troduced in ODBC 2.x or the previous version.

Attribute ValuePtr contents

2,686 | ODBC

SQL_ATTR_ACCESS_MOD

E (ODBC 1.0)

It is an SQLUINTEGER value. SQL_MODE_READ_WRITE is the default value. SQL_MO

DE_READ_ONLY is used in the driver or data source as an indicator of which the conn

ection is not requested to support SQL statement which causes update to occur. The

mode can be used to optimize the proper lock strategy, transaction management or o

ther area for the driver or the data source. The driver is not required to prevent such i

nformation which is sent to the data source. The behavior of the driver and data sour

ce when asked to process SQL statements which are not read-only during a read-only

connection is implementation-defined.

SQL_ATTR_ASYNC_DBC_E

VENT (ODBC 3.8)
It is not supported by the driver.

SQL_ATTR_ASYNC_DBC_F

UNCTIONS_ENABLE (ODBC

3.8)

It is not supported by the driver.

SQL_ATTR_ASYNC_DBC_P

CALLBACK (ODBC 3.8)
It is not supported by the driver.

SQL_ATTR_ASYNC_DBC_P

CONTEXT (ODBC 3.8)
It is not supported by the driver..

SQL_ATTR_ASYNC_ENABL

E (ODBC 3.0)
It is not supported by the driver.

SQL_ATTR_AUTO_IPD (OD

BC 3.0)
It is not supported by the driver.

SQL_ATTR_AUTOCOMMIT

(ODBC 1.0)

It is an SQLUINTEGER value which specifies whether to use the auto-commit or manu

al commit mode.

● SQL_AUTOCOMMIT_OFF: The driver uses the manual commit mode, and the ap

plication should explicitly commit or rollback the transaction with SQLEndTran.

● SQL_AUTOCOMMIT_ON: The driver uses the auto-commit mode. Each statemen

t is immediately executed and committed. All open transactions in the connectio

n are committed when SQL_ATTR_AUTOCOMMIT is set to SQL_AUTOCOMMIT_

ON.

Some data sources remove the access plan at the time of when the statement is com

mitted to the connection and close the cursor. It may occur in auto commit mode afte

r each non-query statements are executed or after the cursor is closed for the query. F

or more information, refer to SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_

ROLLBACK_BEHAVIOR information type of SQLGetInfo.

The batch can be executed in auto commit mode in two ways. The entire batch can b

e treated as the automatic processing unit, or each statement in a batch can be treate

d as the automatic processing unit. A particular data source may support both of thes

e ways or it may select one and support it. The driver defines the entire batch or each

statement in the batch processing can be treated as the automatic processing unit.

SQL_ATTR_CONNECTION_
It is not supported by the driver.

Attribute ValuePtr contents

ODBC API References | 2,687

DEAD(ODBC 3.5)

SQL_ATTR_CONNECTION_

TIMEOUT (ODBC 3.0)
It is not supported by the driver.

SQL_ATTR_CURRENT_CAT

ALOG (ODBC 2.0)
It is not supported by the driver.

SQL_ATTR_DBC_INFO_TO

KEN (ODBC 3.8
It is not supported by the driver.

SQL_ATTR_ENLIST_IN_DTC

(ODBC 3.0)
It is not supported by the driver.

SQL_ATTR_LOGIN_TIMEO

UT (ODBC 1.0)

It is SQLUINTERGER value corresponding to a wait time, in seconds, until the login req

uest is completed before returning to the application. The default value depends on t

he driver. If ValuePtr is 0, the time limit is deactivated and the connection attempt will

indefinitely wait.

If the specified login request timeout exceeds the maximum login time limit, then the

driver replaces the value and returns SQLSTATE 01S02 (Option value changed).

SQL_ATTR_METADATA_ID

(ODBC 3.0)

It is SQLUINTEGER value which determines how to handle the string argument of the

catalog function. The default value is SQL_FALSE.

If it is SQL_TRUE, string argument of the catalog function is regarded as an identifier

and it is not case-sensitive. For a non-delimited string, the driver removes all trailing s

paces and changes the string to uppercase. For a delimited string, the driver removes l

eading or trailing spaces and still has the character between delimiters. If one of these

arguments is a null pointer, the function returns SQL_ERROR and SQLSTATE HY009 (I

nvalid use of null pointer).

If it is SQL_FALSE, string argument of the catalog function is not regarded as an identi

fier and it is case-sensitive. So it may be processed as a string pattern according to the

argument, or not.

TableType argument of SQLTables which has the value list is not affected by the attrib

ute.

SQL_ATTR_METADATA_ID can be set in the statement step. (It is the unique connecti

on attribute in the statement attribute.)

For more information, refer to Arguments of Catalog Function.

SQL_ATTR_OLDPWD
It is SQLPOINTER for the previous encrypted string. The value is write only, and it shou

ld be set prior to connecting to the server.

SQL_ATTR_ODBC_CURSO

RS (ODBC 2.0)
It is not supported by the driver.

SQL_ATTR_PACKET_SIZE

(ODBC 2.0)
It is not supported by the driver.

Attribute ValuePtr contents

2,688 | ODBC

SQL_ATTR_QUIET_MODE

(ODBC 2.0)
It is not supported by the driver.

SQL_ATTR_TRACE (ODBC

1.0)
It is not supported by the driver.

SQL_ATTR_TRACEFILE (OD

BC 1.0)
It is not supported by the driver.

SQL_ATTR_TRANSLATE_LI

B (ODBC 1.0)
It is not supported by the driver.

SQL_ATTR_TRANSLATE_O

PTION (ODBC 1.0)
It is not supported by the driver.

SQL_ATTR_TXN_ISOLATIO

N (ODBC 1.0)

It is 32-bit bit mask for setting the transaction isolation level for the current connectio

n. The application should call SQLEndTran by using this option before calling SQLSetC

onnectAttr to commit or rollback all open transactions on connection.

The valid value for ValuePtr can be determined by calling SQLGetInfo with InfoType w

hich is equal to SQL_TXN_ISOLATION_OPTIONS.

For more information about the transaction isolation level, refer to SQL_DEFAULT_TX

N_ISOLATION information type of SQLGetInfo.

Attribute ValuePtr contents

[1] The function can be asynchronously called only when the descriptor is the implementation descriptor,

but not the application descriptor.

ODBC API References | 2,689

SQLSetConnectOption

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

ODBC 2.0 function SQLSetConnectOption is replaced with SQLSetConnectAttr In ODBC 3.x. For more inf

ormation, refer to SQLSetConnectAttr.

2,690 | ODBC

SQLSetCursorName

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLSetCursorName connects the cursor name to the activated statement. If the application does not call

SQLSetCursorName, then the driver generates the cursor name which is necessary to the SQL statement p

rocessing.

Syntax

SQLRETURN SQLSetCursorName(

SQLHSTMT StatementHandle,

SQLCHAR * CursorName,

SQLSMALLINT NameLength);

Arguments

StatementHandle

[Input] It is the statement handle.

CursorName

[Input] It is the cursor name. A cursor name should not contain leading or trailing spaces for efficie

nt processing, and if the cursor name includes a limited identifier, then the delimiter should be posi

tioned on the first letter of the cursor name.

NameLength

[Input] It is the string length of *CursorName.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

ODBC API References | 2,691

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns S

QL_SUCCESS_WITH_INFO.)

01004
String data, right trunc

ated

The cursor name length exceeds the maximum, and only the string of

the maximum allowable number is used.

24000 Invalid cursor state
The statement corresponding to StatementHandle is already running o

r it is in use as the to a positioning cursor.

34000 Invalid cursor name

The cursor name specified in *CursorName exceeds the maximum val

ue of the driver, or it is not valid because it is started with SQLCUR or

SQL_CUR.

3C000 Duplicate cursor name The name specified in *CursorName already exists.

HY000 General error It is an error without any specific SQLSTATE.

HY001
Memory allocation err

or
It is a memory allocation error.

HY009
Invalid use of null point

er
CursorName argument is a NULL pointer.

HY010
Function sequence err

or

The asynchronously executing function is called for the connection ha

ndle related to StatementHandle, and this function is still being execut

ed when SQLSetCursorName is called.

SQLSetCursorName function is called and the asynchronously executin

g function is called for StatementHandle.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are calle

d for StatementHandle, and SQL_NEED_DATA is returned. This functio

n is called before data is sent for all data-at-execution parameters or c

olumns.

HY013
Memory management

error

The internal memory can not be accessed or the available memory size

is small.

HY090
Invalid string or buffer l

ength
NameLength argument is smaller than 0. (It is not SQL_NTS.)

HY117

Connection is suspend

ed due to unknown tra

csaction state. Only dis

connect and read-only

functions are allowed.

For more information about the suspended state, refer to SQLEndTra

n.

HYT01
Connection timeout ex

pired

The connection timeout period is expired before the data source respo

nds to the request. The timeout can be set through SQL_ATTR_CONN

ECTION_TIMEOUT of SQLSetConnectAttr.

IM001
Driver does not suppor

t this function
The driver does not support the function.

2,692 | ODBC

Description

The cursor name is used for positioning update statements and positioning delete statements. (e.g. UPD

ATE table-name ... WHERE CURRENT OF cursor-name). If the application does not define the cursor nam

e by calling SQLSetCursorName in the execution of query statement, then the driver generates the name

which starts with SQL_CUR and does not exceed a length of 18 characters.

All cursor names should be unique within a connection. The maximum length of the cursor name is defin

ed in the driver. For maximum interoperability, it is recommended that the application limit the cursor na

me of more than 18 characters. In ODBC 3.x, if the cursor name is enclosed in double quotes ("), it is con

sidered to be case sensitive and it is not allowed by SQL syntax or it can include the specially treated chara

cters like space or reserved word. The case-sensitive cursor name should be enclosed with double quotes

(") identifier.

The cursor name remains until the related statement is deleted by using SQLFreeHandle. SQLSetCursorNa

me can be called to rename a cursor on a statement when the cursor is in an allocated or prepared state.

ODBC API References | 2,693

SQLSetDescField

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLSetDescField sets the value of a single field of the descriptor record.

Syntax

SQLRETURN SQLSetDescField(

SQLHDESC DescriptorHandle,

SQLSMALLINT RecNumber,

SQLSMALLINT FieldIdentifier,

SQLPOINTER ValuePtr,

SQLINTEGER BufferLength);

Arguments

DescriptorHandle

[Input] It is the descriptor handle.

RecNumber

[Input] It points to the descriptor record including a field which the application seeks to set. The de

scriptor records are numbered from 0 and the record number 0 is the bookmark record. RecNumb

er argument is ignored for the header field.

FieldIdentifier

[Input] It indicates the descriptor field to be set.

ValuePtr

[Input] It describes a buffer which contains the descriptor information or integer value. The data ty

pe depends on the value of FieldIdentifier. If ValuePtr is an integer value, it can be considered to be

8 bytes (SQLLEN), 4 bytes (SQLINTEGER), 2 bytes (SQLSMALLINT) according to the value of FieldIde

ntifier argument.

2,694 | ODBC

BufferLength

[Input] If FieldIdentifier is the ODBC defined field and ValuePtr points to the string or binary buffer,

the argument should be the length of *ValuePTr. The argument should contain the number of byt

es of the string for the string data.

If FieldIdentifier is the ODBC defined field and ValuePtr is an integer, BufferLength is ignored.

If FieldIdentifier is the driver defined field, the application describes the attribute features to the dri

ver manager by setting BufferLength argument. BufferLength can have the following values.

• If ValuePtr is a string buffer pointer, BufferLength is the string length or SQL_NTS.

• If ValuePtr is a binary buffer pointer, the application stores the result of SQL_LEN_BINARY_ATTR

(length) macro in BufferLengfth. BufferLength stores the negative value.

• If ValuePtr includes the fixed length value, BufferLength is one of SQL_IS_INTEGER, SQL_IS_UIN

TEGER, SQL_IS_SMALLINT or SQL_IS_USMALLINT.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 Genaral warning
It is the driver-specific informational message. (The function returns S

QL_SUCCESS_WITH_INFO.)

01S02 Option value changed

The driver does not support the value specified in *ValuePtr (if the val

ue of ValuPtr is an integer.), or *ValuPtr is not valid on the implemen

tation conditions, so the driver replaces it with a similar value. (The fu

nction returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index

When FieldIdentifier argument is a record field, and RecNumber argu

ment is 0, then DescriptorHandle argument refers to IPD handle.

RecNumber argument is smaller than 0, and DescriptorHandle argum

ent refers to ARD or APD.

RecNumber argument is bigger than the maximum of the column or

parameter supported by the data source, and DescriptorHandle argu

ment refers to APD or ARD.

FieldIdentifier argument is SQL_DESC_COUNT, and *ValuePtr argum

ent is smaller than 0.

RecNumber argument is equal to 0, and DescriptorHandle argument

refers to APD which is implicitly assigned. (This error does not occur f

ODBC API References | 2,695

or the explicitly assigned application descriptor because it is unknown

the application descriptor is APD or ARD until the execution time.)

08S01 Communication link failure
Before completing the function processing, the connection between

the driver and the data source is failed.

22001 String data, right truncated
FieldIdentifier argument is SQL_DESC_NAME, and BufferLength argu

ment has the value which is bigger than SQL_MAX_IDENTIFIER_LEN.

HY000 General error It is an error without any specific SQLSTATE.

HY001 Memory allocation error It is a memory allocation error.

HY010 Function sequence error

The asynchronously executing function is called for DescriptorHandle

related to StatementHandle, and this function is still being executed

when SQLSetDescField is called.

SQLExecute, SQLExecDirect, SQLBulkOperations or SQLSetPos is calle

d on StatementHandle related to DescriptorHandle, and SQL_NEED_

DATA is returned.

The function is called before all data of the column or parameter are

sent at the execution time.

The asynchronously executing function is called for connection handl

e related to DescriptorHandle, and this function is still being executed

when SQLSetDescField is called.

SQLExecute, SQLExecDirect or SQLMoreResults is called for one of th

e statement handles related to DescriptorHandle, and SQL_PARAM_

DATA_AVAILABLE is returned. The function is called before retrieving

data for all streamed parameters.

HY013 Memory management error
The internal memory can not be accessed or the available memory siz

e is small.

HY016
Cannot modify an implement

ation row descriptor

DescriptorHandle argument is related to IRD, and FieldIdentifier argu

ment is not SQL_DESC_ARRAY_STATUS_PTR nor SQL_DESC_ROWS_

PROCESSED_PTR.

HY021
Inconsistent descriptor infor

mation

SQL_DESC_TYPE and SQL_DESC_DATETIME_INTERVAL_CODE fields

are not a valid ODBC SQL type, valid driver-specific SQL type or a valid

ODBC C type.

Descriptor information is not consistent when checking the integrity.

HY090 Invalid string or buffer length

*ValuePtr is a string and BufferLength is smaller than 0. (It is not SQL

_NTS.)

When the driver is the ODBC 2.x driver and the descriptor is ARD and

ColumnNumber argument is set to 0, then the value specified in Buff

erLength is not 4.

The value specified in FieldIdentifier argument is not the value of OD

SQLSTATE Error Description

2,696 | ODBC

HY091 Invalid descriptor field identifi

er

BC defined field or the implementation defined value.

FieldIdentifier argument is invalid for DescriptorHandle argument.

FieldIdentifier argument is the ODBC defined field and it is read-only.

HY092
Invalid attribute/option identi

fier

The *ValuePtr value is invalid for FieldIdentifier argument.

FieldIdentifier argument is SQL_DESC_UNNAMED,and ValuePtr is SQ

L_NAMED.

HY105 Invalid parameter type
The value specified in SQL_DESC_PARAMETER_TYPE field is invalid.

(Refer to InputOutputType Argument in SQLBindParameter.)

HY117

Connection is suspended due

to unknown transaction state.

Only disconnect and read-onl

y functions are allowed.

For more information about the suspended state, refer to SQLEndTra

n.

HYT01 Connection timeout expired

The connection timeout period expired before the response to the da

ta request. The connection timeout period be set via SQL_ATTR_CON

NECTION_TIMEOUT of SQLSetConnectAttr.

IM001
Driver does not support this f

unction
The driver does not support the function.

SQLSTATE Error Description

Description

The application can call SQLSetDescField to set any descriptor field one at a time. One call sets a single fiel

d in a single descriptor. The function can be called for setting any field in any descriptor type if the field c

an be set.

Note

If calling SQLSetDescField fails, the descriptor record contents identified by RecNumber argument

is undefined.

Other functions can be called to set multiple descriptor fields with a single call. SQLSetDescRec function c

an set various fields which affect the data type and the binding column or the parameter buffer. (SQL_DE

SC_TYPE, SQL_DESC_DATETIME_INTERVAL_CODE, SQL_DESC_OCTET_LENGTH, SQL_DESC_PRECISION,

SQL_DESC_SCALE, SQL_DESC_DATA_PTR, SQL_DESC_OCTET_LENGTH_PTR, SQL_DESC_INDICATOR_PT

R)

SQLBindCol or SQLBindParameter can be used to completely set the columns and parameters. These func

ODBC API References | 2,697

tions can set a group of descriptor field with a single function call.

SQLSetDescField can be called to change the binding buffer by adding the offset to the binding points. (S

QL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, SQL_DESC_OCTET_LENGTH_PTR) It allows the applic

ation change the binding buffers without calling SQLBindCol or SQLBindParameter like as SQL_DESC_DA

TA_TYPE changes SQL_DESC_DATA_PTR without changing other fields.

If the application calls SQLSetDescField to set any field other than SQL_DESC_COUNT or deferred fields

(SQL_DESC_DATA_PTR, SQL_DESC_OCTET_LENGTH_PTR, SQL_DESC_INDICAITOR_PTR), then the record

binding can be released.

The descriptor header fields is set by calling SQLSetDescField with appropriate FieldIdentifier. Many heade

r fields are the statement attributes, so they can be set by calling SQLSetStmtAttr. It allows the applicatio

n to set the descriptor field first without obtaining the descriptor handle. When the header field is set by

calling SQLSetDescField, RecNumber argument is ignored.

RecNumber which is 0 is used to set the bookmark field.

Note

The statement attribute SQL_ATTR_USE_BOOKMARKS should be set before calling SQLSetDescFie

ld to set the bookmark fields. It is not necessary but is strongly recommended.

Order of Setting Descriptor Fields

When setting the descriptor fields by calling SQLSetDescField, the application should follow the specified

order.

1. The application should preferentially set SQL_DESC_TYPE, SQL_DESC_CONCISE_TYPE or SQL_DESC_

DATETIME_INTERVAL_CODE field.

2. After one of these fields is set, the application can set the attributes of the data types and the driver

can set the data type setting fields to appropriate default values for the data types. Automatic defaul

t setting of the type attribute fields ensures that the descriptor is always ready to use after the applic

ation specifies the data types. When the application explicitly sets the data type attribute, the default

attribute will be overwritten.

3. After setting one of the fields in step 1 and setting the data type attribute, the application can set S

QL_DESC_DATA_PTR. It prompts the consistency check of the descriptor fields. If the application sets

SQL_DESC_DATA_PTR field after changing the data type or attribute, the driver sets SQL_DESC_DAT

A_PTR to a NULL pointer and releases the record binding. It forces the application to sequentially co

mplete the appropriate procedures before the descriptor record is able to be used.

2,698 | ODBC

Initializing Descriptor Field

When a descriptor is allocated, the descriptor fields can be initialized to the default value or it can be initi

alized to the value which does not have default or is not defined in the descriptor type. The following tabl

e describes the initialization of each field of each descriptor type. D refers to the initialization field with th

e default value. ND refers to the initialization field without default. The number refers that the default val

ue of field is a number. The table also indicates whether the field is read/write or read-only.

The field of IRD can have the default value after the statement is prepared or executed and IRD is generat

ed, and it is not when the statement handle or descriptor is allocated. Any access attempt to the IRD field

returns an error until IRD is generated.

Some descriptor fields are defined for one or more, but not for all descriptor types (ARD, IRD, APD, IPD). I

f a field is not defined in the descriptor type, it is not required for the function which uses the descriptor.

The accessible fields by SQLGetDescField are not necessarily possible to be set with SQLSetDescField. The

fields which can be set by SQLSetDescField are listed in the following table.

The following table describes the initialization of the header fields.

Header field name Format R/W Default value

SQL_DESC_ALLOC_T

YPE

SQLSMA

LLINT

ARD: R

APD: R

IRD: R

IPD: R

ARD: SQL_DESC_ALLOC_AUTO for implicit or SQL_DESC_ALL

OC_USER for explicit

APD: SQL_DESC_ALLOC_AUTO for implicit or SQL_DESC_ALL

OC_USER for explicit

IRD: SQL_DESC_ALLOC_AUTO

IPD: SQL_DESC_ALLOC_AUTO

SQL_DESC_ARRAY_S

IZE
SQLULEN

ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD:[1]

APD:[1]

IRD: Unused

IPD: Unused

SQL_DESC_ARRAY_S

TATUS_PTR

SQLUSM

ALLINT*

ARD: R/W

APD: R/W

IRD: R/W

IPD: R/W

ARD: Null ptr

APD: Null ptr

IRD: Null ptr

IPD: Null ptr

SQL_DESC_BIND_OF

FSET_PTR
SQLLEN*

ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD: Null ptr

APD: Null ptr

IRD: Unused

IPD: Unused

SQL_DESC_BIND_TY

PE

SQLINTE

GER

ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD: SQL_BIND_BY_COLUMN

APD: SQL_BIND_BY_COLUMN

IRD: Unused

IPD: Unused

ARD: R/W ARD: 0

ODBC API References | 2,699

SQL_DESC_COUNT SQLSMA

LLINT

APD: R/W

IRD: R

IPD: R/W

APD: 0

IRD: D

IPD: 0

SQL_DESC_ROWS_P

ROCESSED_PTR

SQLULEN

*

ARD: Unused

APD: Unused I

RD: R/W

IPD: R/W

ARD: Unused

APD: Unused

IRD: Null ptr

IPD: Null ptr

Header field name Format R/W Default value

[1]Fields are defined only when IPD is automatically generated by the driver. Otherwise, they are not defin

ed. When the application tries to set the fields, SQLSTATE HY091(Invalid descriptor field identifier) will be

returned.

The following table describes the initialization of the record fields.

Record field name Format R/W Default value

SQL_DESC_AUTO_UNIQUE_VALUE SQLINTEGER

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_BASE_COLUMN_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_BASE_TABLE_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_CASE_SENSITIVE SQLINTEGER

ARD: Unused

APD: Unused

IRD: R

IPD: R

ARD: Unused

APD: Unused

IRD: D

IPD: D[1]

SQL_DESC_CATALOG_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_CHAR_LENGTH_UNITS SQLSMALLINT

ARD: Unused

APD: Unused

IRD: Unused

IPD: W

ARD: Unused

APD: Unused

IRD: ND

IPD: Unused

SQL_DESC_CONCISE_TYPE SQLSMALLINT

ARD: R/W

APD: R/W

IRD: R

ARD: SQL_C_ DEFAULT

APD: SQL_C_ DEFAULT

IRD: D

2,700 | ODBC

IPD: R/W IPD: ND

SQL_DESC_DATA_PTR SQLPOINTER

ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD: Null ptr

APD: Null ptr

IRD: Unused

IPD: Unused[2]

SQL_DESC_DATETIME_INTERVAL_CODE SQLSMALLINT

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_DATETIME_INTERVAL_PRECISIO

N
SQLINTEGER

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_DISPLAY_SIZE SQLLEN

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_FIXED_PREC_SCALE SQLSMALLINT

ARD: Unused

APD: Unused

IRD: R

IPD: R

ARD: Unused

APD: Unused

IRD: D

IPD: D[1]

SQL_DESC_INDICATOR_PTR SQLLEN *

ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD: Null ptr

APD: Null ptr

IRD: Unused

IPD: Unused

SQL_DESC_LABEL SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_LENGTH SQLULEN

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_LITERAL_PREFIX SQLCHAR *

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_LITERAL_SUFFIX SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

ARD: Unused

APD: Unused

ARD: Unused

APD: Unused

Record field name Format R/W Default value

ODBC API References | 2,701

SQL_DESC_LOCAL_TYPE_NAME SQLCHAR * IRD: R

IPD: R

IRD: D

IPD: D[1]

SQL_DESC_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: R/W

ARD: Unused

APD: Unused

IRD: D

IPD: D[1]

SQL_DESC_NULLABLE SQLSMALLINT

ARD: Unused

APD: Unused

IRD:R

IPD: R

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_NUM_PREC_RADIX SQLINTEGER

ARD: R/W

APD: R/W

IRD:R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_OCTET_LENGTH SQLLEN

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_OCTET_LENGTH_PTR SQLLEN *

ARD: R/W

APD: R/W

IRD: Unused

IPD: Unused

ARD: Null ptr

APD: Null ptr

IRD: Unused

IPD: Unused

SQL_DESC_PARAMETER_TYPE SQLSMALLINT

ARD: Unused

APD: Unused

IRD: Unused

IPD: R/W

ARD: Unused

APD: Unused

IRD: Unused

IPD: D=SQL_PARAM_INPU

T

SQL_DESC_PRECISION SQLSMALLINT

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_ROWVER SQLSMALLINT

ARD: Unused

APD: Unused

IRD: R

IPD: R

ARD: Unused

APD: Unused

IRD: ND

IPD: ND

SQL_DESC_SCALE SQLSMALLINT

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_SCHEMA_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

Record field name Format R/W Default value

2,702 | ODBC

SQL_DESC_SEARCHABLE SQLSMALLINT

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_TABLE_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

SQL_DESC_TYPE SQLSMALLINT

ARD: R/W

APD: R/W

IRD: R

IPD: R/W

ARD: SQL_C_DEFAULT

APD: SQL_C_DEFAULT

IRD: D

IPD: ND

SQL_DESC_TYPE_NAME SQLCHAR *

ARD: Unused

APD: Unused

IRD: R

IPD: R

ARD: Unused

APD: Unused

IRD: D

IPD: D[1]

SQL_DESC_UNNAMED SQLSMALLINT

ARD: Unused

APD: Unused

IRD: R

IPD: R/W

ARD: ND

APD: ND

IRD: D

IPD: ND

SQL_DESC_UNSIGNED SQLSMALLINT

ARD: Unused

APD: Unused

IRD: R

IPD: R

ARD: Unused

APD: Unused

IRD: D

IPD: D[1]

SQL_DESC_UPDATABLE SQLSMALLINT

ARD: Unused

APD: Unused

IRD: R

IPD: Unused

ARD: Unused

APD: Unused

IRD: D

IPD: Unused

Record field name Format R/W Default value

[1]Fields are defined only when IPD is automatically generated by the driver. Otherwise, they are not defin

ed. When the application tries to set the fields, SQLSTATE HY091 (Invalid descriptor field identifier) will b

e returned.

[2]SQL_DESC_DATA_PTR field of IPD is set to force check the consistency. In the subsequent SQLGetDesc

Field or SQLGetDescRec call, the driver does not need to return the value which SQL_DESC_DATA_PTR is

set to.

FieldIdentifier Argument

FieldIdentifier argument indicates the descriptor field to be set. Descriptor consists of a descriptor header

and a header field described in the following header field. Descriptor records consists of the record fields

described in the following header field.

ODBC API References | 2,703

Header Field

Each descriptor consists of the following fields.

SQL_DESC_ALLOC_TYPE[All] (read-only)

This read-only SQLSMALLINT header field specifies whether the descriptor is automatically allocate

d by the driver or explicitly allocated by the application. The application can obtain this field but ca

n not update it. The field is set to SQL_DESC_ALLOC_AUTO by the driver when the descriptor is au

tomatically allocated by the driver.

SQL_DESC_ARRAY_SIZE[Application descriptors]

This SQLLEN header field in ARD specifies the number of rows in a row set. This is the number of r

ows to be returned by calling SQLFetch, SQLFetchScroll, or to be operated by calling SQLBulkOpera

tions or SQLSetPos.

The header field in APD, SQLULEN, specifies the number of parameters.

The default value of the field is 1. If SQL_DESC_ARRAY_SIZE is bigger than 1, SQL_DESC_DATA_PT

R, SQL_DESC_INDICATOR_PTR and SQL_DESC_OCTET_LENGTH_PTR of APD or ARD points to an a

rray. The constant of each array is equal to the field value.

The field in ARD can be set by calling SQLSetStmtAttr with SQL_ATTR_ROW_ARRAY_SIZE attribute.

The field in APD can be set by calling SQLSetStmtAttr with SQL_ATTR_PARAMSET_SIZE attribute.

SQL_DESC_ARRAY_STATUS_PTR[All]

SQLSMALLINT* header field for each descriptor type points to an array of SQLUSMALLINT value. Th

e arrays are named such as row status array (IRD), parameter status array (IPD), row operation arra

y (ARD), parameter operation array (APD).

The header field in IRD points to the row status array which includes the status value after calling S

QLBulkOperations, SQLFetch, SQLFetchScroll, or SQLSetPos. The application allocates the SQLUSM

ALLINT array and makes the field to point to the array. The field is a NULL pointer by default. The dr

iver will create an array if SQL_DESC_ARRAY_STATUS_PTR field is not set to a NULL pointer.

Caution

If the application sets the elements of the row status array pointed by SQL_DESC_ARRAY_STATUS

_PTR of IRD, the driver operation is not defined.

The array is initially populated by calling SQLBulkOperations, SQLFetch, SQLFetchScroll or SQLSetPos. If th

e call does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the content of array pointed by the fi

eld is undefined. Elements of the array may contain the following values.

● SQL_ROW_SUCCESS: The row is successfully fetched, and it is not changed since the last fetch.

2,704 | ODBC

● SQL_ROW_SUCCESS_WITH_INFO: The row is successfully fetched, and it is not changed since the last

fetch, but the warning for the row is returned.

● SQL_ROW_ERROR: An error occurs while the row is fetched.

● SQL_ROW_UPDATED: The row is successfully fetched, and it is updated since the last fetch. If the ro

w is fetched again, the state is SQL_ROW_SUCCESS.

● SQL_ROW_DELETED: The row is deleted since the last fetch.

● SQL_ROW_ADDED: The row is inserted by SQLBulkOperations. If the row is fetched again, the state is

SQL_ROW_SUCCESS.

● SQL_ROW_NOROW: The row set is overlapped with the end of the result set. And any row is not retu

rned corresponding to elements of the row status array.

This field of IRD can be set by calling SQLSetStmtAttr with SQL_ATTR_ROW_STATUS_PTR attribute.

SQL_DESC_ARRAY_STATUS_PTR field of IRD is valid after SQL_SUCCESS or SQL_SUCCESS_WITH_INFO is

returned. If the return code is not one of these, anything pointed by SQL_DESC_ROWS_PROCESSED_PTR

is not defined.

This header field in IPD indicates the parameter status array which includes status information of each par

ameter after calling SQLExecute or SQLExecDirect. If SQLExecute or SQLExecDirect is called and SQL_SUC

CESS or SQL_SUCCESS_WITH_INFO is not returned, then the content of the array which is pointed by the

field is not defined. The application allocates SQLUSMALLINT array, the field should point to the array. Th

e driver will create an array if SQL_DESC_ARRAY_STATUS_PTR field is not set to a NULL pointer. Elements

in the array contain the following values.

● SQL_PARAM_SUCCESS: The SQL statement is successfully executed for the parameter set.

● SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement is successfully executed for the parameter se

t, but there is a warning information available to the diagnostic data structure.

● SQL_PARAM_ERROR: An error occurs to process the parameter set. The additional error information i

s in the diagnostic data structure.

● SQL_PARAM_UNUSED: This parameter is not used because some previous parameter set causes an e

rror which aborts further processing, or SQL_PARAM_IGNORE is set to the parameter set in the array

specified by SQL_DESC_ARRAY_STATUS_PTR field of APD.

● SQL_PARAM_DIAG_UNAVAILABLE: The diagnostic information can not be used. For example, the dri

ver does not generate the level of error information by treating the array of the parameter as single o

ne.

This field in IPD can be set by calling SQLSetStmtAttr with SQL_ATTR_PARAM_STATUS_PTR attribute.

In ARD, this field points to the row operation array for the value set by the application to determine whet

her the row is ignored in SQLSetPos operation. Elements of the array may contain the following values.

● SQL_ROW_PROCEED: The row is included in bulk operation using SQLSetPos. (This setting does not

guarantee that the operation occurs on the row. If the row has SQL_ROW_ERROR state of IRD row st

atus array, the driver will not be able to perform the operation for the row.)

● SQL_ROW_IGNORE: The row is excluded from the bulk operation using SQLSetPos.

ODBC API References | 2,705

If an element in the array is not set, all rows are included in the bulk operation. If the value of SQL_DESC_

ARRAY_STATUS_PTR field of ARD is a NULL pointer, all rows are included in the bulk operation. It means

that the pointer points to a valid array and all elements of the array are SQL_ROW_PROCEED. If all eleme

nts in an array are set to SQL_ROW_IGNORE, the values in the row status array are not updated for the ig

nored row.

This field in ARD also can be set by calling SQLSetStmtAttr with SQL_ATTR_ROW_OPERATION_PTR attrib

ute.

This header field in APD indicates the parameter operation array of the values which can be set by the ap

plication to determine whether the parameter set is ignored when SQLExecute or SQLExecDirect is called.

Elements of the array may contain the following values.

● SQL_PARAM_PROCEED: The parameter set is included in SQLExecute or SQLExecDirect call.

● SQL_PARAM_IGNORE: The parameter set is not included in SQLExecute or SQLExecDirect call.

If an element in the array is not set, all parameter sets of the array are used to call SQLExecute or SQLExec

Direct. If the value of SQL_DESC_ARRAY_STATUS_PTR field of APD is a NULL pointer, all parameter sets a

re used. It is interpreted as if the pointer points to the valid array and all elements of the array are SQL_PA

RAM_PROCEED.

This field in APD can be set by calling SQLSetStmtAttr with SQL_ATTR_PARAM_OPERATION_PTR attribut

e.

SQL_DESC_BIND_OFFSET_PTR[Application descriptors]

This SQLLEN* header field indicates the offset of the binding. It is set as a NULL pointer by default.

If the field is not a NULL pointer, the driver dereferences the pointer and adds the dereferenced val

ue to each of the deferred fields which has a non-null value in the descriptor record(SQL_DESC_DA

TA_PTR_, SQL_DESC_INDICATOR_PTR and SQL_DESC_OCTET_LENGTH_PTR), and uses a new poin

ter value when binding.

The binding offset is always directly added to SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR

and SQL_DESC_OCTET_LENGTH_PTR fields. If the offset is changed to the other value, the new val

ue is continuously and directly added as each descriptor field value.

The field is a deferred field. The field is not used at the time to be set and it is used later by the driv

er when the addresses of the data buffers are needed to be checked.

This field in ARD can be set by calling SQLsetStmtAttr with SQL_ATTR_ROW_BIND_OFFSET_PTR att

ribute. This field in ARD can be set by calling SQLsetStmtAttr with SQL_ATTR_PARAM_BIND_OFFS

ET_PTR attribute.

For more information, refer to SQLFetchScroll or SQLBindParameter.

2,706 | ODBC

SQL_DESC_BIND_TYPE[Application descriptors]

This SQLUINTEGER header field is used to set the binding direction.

This field in ARD specifies the binding direction when SQLFetchScroll or SQLFetch is called in the rel

ated statement handle.

This field is set to SQL_BIND_BY_COLUMN(default) to select the column-wise binding for the colu

mn.

This field in ARD can be set by calling SQLSetStmtAttr with SQL_ATTR_ROW_BIND_TYPE attribute.

This field specifies the binding direction to be used in the Dynamic parameters.

This field is set to SQL_BIND_BY_COLUMN(default) to select the column-wise binding for the para

meter.

This field can be set by calling SQLSetStmtAttr with SQL_ATTR_PARAM_BIND_TYPE attribute.

SQL_DESC_COUNT[All]

This header field of SQLSMALLINT specifies a 1-based index of the best record including the data.

When the driver sets the data structure to the descriptor, SQL_DESC_COUNT should be set to displ

ay how many of the important records. The application does not need to specify the amount of sp

ace reserved for the records when allocating instances of the data structure. Like as the application

specifies the contents of the records, the driver performs the requested operation to ensure that th

e descriptor handle indicates the data structure of sufficient size.

SQL_DESC_COUNT is not the number of all bound data columns or the number of parameters but

is the number of highest-numbered records. If the binding of the highest-numbered column or par

ameter is released, SQL_DESC_COUNT is changed to the number of the next highest-numbered co

lumns or parameters. If the binding of column or parameter which is smaller than the number of hi

ghest-numbered columns or parameters is released(when TargetValuePtr argument is set to a NUL

L pointer and SQLBindCol is called, or when ParameterValuePtr argument is set to a NULL pointer a

nd SQLBindParameter is called.) SQL_DESC_COUNT is not changed. If columns or parameters to be

added are bound with the number which is bigger than the highest-numbered record including th

e data, the driver automatically increases the value of SQL_DESC_COUNT field. If the binding for all

columns are released by calling SQLFreeStmt with SQL_UNBIND option, SQL_DESC_COUNT field in

ARD or IRD is set to 0. If SQLFreeStmt is called as SQL_RESET_PARAMS option, SQL_DESC_COUNT

fields in APD and IPD are set to 0.

SQL_DESC_COUNT value can be explicitly set by calling SQLSetDescField in the application. If SQL_

DESC_COUNT value is clearly reduced, all records having a bigger value than the new SQL_DESC_C

OUNT value are effectively deleted. If the value of SQL_DESC_COUNT field of ARD is clearly set to 0,

all buffers are released except for the bound bookmark column. The number of records in the field

of ARD do not include the bound bookmark column. The only way to release the bound bookmark

column is set SQL_DESC_DATA_PTR to a NULL pointer.

ODBC API References | 2,707

SQL_DESC_ROWS_PROCESSED_PTR[Implementation descriptors]

This SQLULEN* header field in IRD points to the buffers which include the number of rows fetched

after SQLFetch or SQLFetchScroll is called, or the number of rows and errors affected in the bulk o

peration performed by calling SQLBulkOperations or SQLSetPos.

This SQLUINTEGER* header field of IPD points to the buffers which include the number of paramet

er set and errors processed. If it is a NULL pointer, it will not return the number.

SQL_DESC_ROWS_PROCESSED_PTR is valid only after SQL_SUCCESS or SQL_SUCCESS_WITH_INF

O has been returned after calling SQLFetch or SQLFetchScroll (for an IRD field) or SQLExecute, SQL

ExecDirect, or SQLParamData (for an IPD field). If the functions does not return SQL_SUCCESS or S

QL_SUCCESS_WITH_INFO, the buffer content is not defined and the buffer value is set to 0 until S

QL_NO_DATA is returned.

This field in ARD can be set by calling SQLSetStmtAttr with SQL_ATTR_ROWS_FETCHED_PTR attrib

ute. This field in APD can be set by calling SQLSetStmtAttr with SQL_ATTR_PARAMS_PROCESSED_

PTR attribute.

The buffer which is pointed by this field is allocated by the application. It is the deferred output buf

fer set by the driver. A NULL pointer is set by default.

Record Field

Each descriptor includes at least one record consisting of the fields which defines one of the columns of d

ata or dynamic parameters depending on the descriptor type. Each record is a complete specification of a

single column or parameter.

SQL_DESC_AUTO_UNIQUE_VALUE[IRDs] (read-only)

This read-only SQLINTEGER record field has SQL_TRUE if it is auto-increment column. Otherwise, it

has the SQL_FALSE. The field is read-only but it does not necessarily need to be read-only, if it is au

to-increment column.

SQL_DESC_BASE_COLUMN_NAME[IRDs] (read-only)

This read-only SQLCHAR* record field includes the base column name of the result set column. If t

he base column name does not exist, the field includes an empty string.

SQL_DESC_TABLE_NAME[IRDs] (read-only)

This read-only SQLCHAR* record field includes the base table name of the result set column. If the

base table name can not be defined or not available, the field includes an empty string.

SQL_DESC_CASE_SENSITIVE[Implementation descriptors] (read-only)

This read-only SQLINTEGER record field is SQL_TRUE if columns or parameters is case-sensitive whe

n sorting and comparing. It is SQL_FALSE if it is case-insensitive or the column with non-character.

SQL_DESC_CATALOG_NAME[IRDs] (read-only)

This read-only SQLCHAR* record field includes the catalog of the base table including the column.

If the column is a part of a expression or view, the return value depends on the driver. If the data s

2,708 | ODBC

ource does not support or the catalog can not be determined, the field includes an empty string.

SQL_DESC_CONCISE_TYPE[All]

This SQLSMALLINT header field specifies a simplified form for all data types including datetime and

interval data types.

The values of SQL_DESC_CONCISE_TYPE, SQL_DESC_TYPE and SQL_DESC_DATETIME_INTERVAL_

CODE fields are interdependent. If time is set in a field, it should be set in others fields as well. SQL

_DESC_CONCISE_TYPE can be set by calling SQLBindCol, SQLBindParameter or SQLSetDescField. S

QL_DESC_TYPE can be set by calling SQLSetDescField or SQLSetDescRec.

If SQL_DESC_CONCISE_TYPE is set to a concise data type except for the interval or datetime data t

ype, SQL_DESC_TYPE field is set to the same value and SQL_DESC_DATETIME_INTERVAL_CODE fi

eld is set to 0.

If SQL_DESC_CONCISE_TYPE is set to a concise interval or datetime data type, SQL_DESC_TYPE fiel

d is set to a detailed data type(SQL_DATETIME or SQL_INTERVAL), and SQL_DESC_DATETIME_INT

ERVAL_CODE field is set to the appropriate sub code.

SQL_DESC_DATA_PTR [Application descriptors and IPD]

The SQLPOINTER record field points to the address of a variable that stores either parameter values

(in the case of the APD) or column values (in the case of the ARD). This field is a deferred field, me

aning it is not used at the time it is set, but rather when the driver retrieves the actual data later.

A column specified in the SQL_DESC_DATA_PTR field of the ARD becomes unbound if the TargetV

aluePtr argument is a null pointer when calling SQLBindCol, or if the SQL_DESC_DATA_PTR field of

the ARD is set to a null pointer calling SQLSetDescField or SQLSetDescRec. However, other fields re

main unaffected even if the SQL_DESC_DATA_PTR field is set to a null pointer.

When the buffer pointed to by this field is filled upon calling SQLFetch or SQLFetchScroll, if SQL_S

UCCESS or SQL_SUCCESS_WITH_INFO is not returned, the contents of the buffer remain in an und

efined state.

Whenever the SQL_DESC_DATA_PTR field of the APD, ARD, or IPD is set, the driver verifies that th

e SQL_DESC_TYPE field contains a valid ODBC C data type or a driver-specific data type. It also che

cks for consistency in other fields related to the data type. In particular, the SQL_DESC_DATA_PTR

field of the IPD is used solely for consistency checks. That is, even if an application sets the SQL_DE

SC_DATA_PTR field of the IPD, calling SQLGetDescField on this field later does not necessarily retur

n the previously set value.

SQL_DESC_DATETIME_INTERVAL_CODE[All]

This SQLSMALLINT record field includes the sub code for specifying datetime or interval data type if

SQL_DESC_TYPE field is SQL_DATETIME or SQL_INTERVAL. It is same for both SQL and C. The cod

e includes the data type name with CODE which is replaced with TYPE or C_TYPE of datetime type

s, INTERVAL or C_INTERVAL of interval types.

If SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE of the application descriptor are set to SQL_C_

DEFAULT and the descriptor is not related to the statement handle, the content of SQL_DESC_DAT

ETIME_INTERVAL_CODE is not defined.

ODBC API References | 2,709

This field can set the datetime data types which is listed in the following table.

Datetime type DATETIME_INTERVAL_CODE

SQL_TYPE_DATE/

SQL_C_TYPE_DATE
SQL_CODE_DATE

SQL_TYPE_TIME/

SQL_C_TYPE_TIME
SQL_CODE_TIME

SQL_TYPE_TIME_WITH_TIMEZONE/

SQL_C_TYPE_TIME_WITH_TIMEZONE
SQL_CODE_TIME_WITH_TIMEZONE

SQL_TYPE_TIMESTAMP/

SQL_C_TYPE_TIMESTAMP
SQL_CODE_TIMESTAMP

SQL_TYPE_TIMESTAMP_WITH_TIMEZONE/

SQL_C_TYPE_TIMESTAMP_WITH_TIMEZONE
SQL_CODE_TIMESTAMP_WITH_TIMEZONE

This field can set the interval data types which is listed in the following table.

Interval type DATETIME_INTERVAL_CODE

SQL_INTERVAL_DAY/

SQL_C_INTERVAL_DAY
SQL_CODE_DAY

SQL_INTERVAL_DAY_TO_HOUR/

SQL_C_INTERVAL_DAY_TO_HOUR
SQL_CODE_DAY_TO_HOUR

SQL_INTERVAL_DAY_TO_MINUTE/

SQL_C_INTERVAL_DAY_TO_MINUTE
SQL_CODE_DAY_TO_MINUTE

SQL_INTERVAL_DAY_TO_SECOND/

SQL_C_INTERVAL_DAY_TO_SECOND
SQL_CODE_DAY_TO_SECOND

SQL_INTERVAL_HOUR/

SQL_C_INTERVAL_HOUR
SQL_CODE_HOUR

SQL_INTERVAL_HOUR_TO_MINUTE/

SQL_C_INTERVAL_HOUR_TO_MINUTE
SQL_CODE_HOUR_TO_MINUTE

SQL_INTERVAL_HOUR_TO_SECOND/

SQL_C_INTERVAL_HOUR_TO_SECOND
SQL_CODE_HOUR_TO_SECOND

SQL_INTERVAL_MINUTE/

SQL_C_INTERVAL_MINUTE
SQL_CODE_MINUTE

SQL_INTERVAL_MINUTE_TO_SECOND/

SQL_C_INTERVAL_MINUTE_TO_SECOND
SQL_CODE_MONUTE_TO_SECOND

SQL_INTERVAL_MONTH/

SQL_C_INTERVAL_MONTH
SQL_CODE_MONTH

SQL_INTERVAL_SECOND/

SQL_C_INTERVAL_SECOND
SQL_CODE_SECOND

SQL_INTERVAL_YEAR/

SQL_C_INTERVAL_YEAR
SQL_CODE_YEAR

SQL_INTERVAL_YEAR_TO_MONTH/

SQL_C_INTERVAL_YEAR_TO_MONTH
SQL_CODE_YEAR_TO_MONTH

2,710 | ODBC

SQL_DESC_DATETIME_INTERVAL_PRECISION[All]

This SQLINTEGER record field includes interval leading precision if SQL_DESC_TYPE field is SQL_INT

ERVAL. When SQL_DESC_DATETIME_INTERVAL_CODE field is set to interval data type, the field is

set to the default interval leading precision.

SQL_DESC_DISPLAY_SIZE[IRDs] (read-only)

This read-only SQLLEN record field includes the maximum number of characters required to display

the data from the column.

SQL_DESC_FIXED_PREC_SCALE[Implementation descriptors] (read-only)

This read-only SQLSMALLINT record field is set to SQL_TRUE if the column is a exact numeric colu

mn and it has the non-zero scale and the fixed precision. Otherwise, it is set to SQL_FALSE.

SQL_DESC_INDICATOR_PTR[Application descriptors]

This SQLLEN* record field in ARD indicates the indicator variable. The variable contains SQL_NULL_

DATE if the column value is NULL. In APD, the indicator variable is set to SQL_NULL_DATA to specif

y a dynamic argument to NULL. Otherwise, the variable is 0.

If SQL_DESC_INDICATOR_PTR field of ARD is a NULL pointer, the driver is prevened from returning

the information about whether the column is NULL. If the column is NULL and SQL_DESC_INDICAT

OR_PTR is a NULL pointer, SQLSTATE 22002(Indicator variable required but not supplied) is returne

d when the driver tries to create a buffer after calling SQLFetch or SQLFetchScroll. If SQLFetch or S

QLFetchScroll call does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the buffer content

is not defined.

SQL_DESC_INDICATOR_PTR field defines whether to set the field indicated by SQL_DESC_OCTET_L

ENGTH_PTR. If the column data value is NULL, the driver sets the indicator variable to SQL_NULL_D

ATA. The field indicated by SQL_DESC_OCTET_LENGTH_PTR is not set at that time. If the NULL val

ue is not encountered during the fetch, the buffer indicated by SQL_DESC_INDICATOR_PTR is set t

o 0, and the buffer indicated by SQL_DESC_OCTET_LENGTH_PTR is set to the data length.

If SQL_DESC_INDICATOR_PTR field of APD is a NULL pointer, the application can not use the descri

ptor record to specify the arguments as NULL.

It is a deferred field. The field is not used when it is set but it is used when the driver describes the

possibility of NULL (for ARD) or determines the possibility of NULL (for APD).

SQL_DESC_LABEL[IRDs] (read-only)

This read-only SQLCHAR* record field includes the column label or cover. If the column does not h

ave its label, the variable includes the column name. If the column is not named or can not use its l

abel, the variable includes an empty string.

SQL_DESC_LENGTH[All]

This SQLULEN record field is a maximum length or actual length of the string, or binary data type i

n bytes. It is the actual length of fixed length data types or the maximum length of variable-length

data types. The value always excludes NULL termination character at the end of the string. If the da

ta type of the value is SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP or SQL interval d

ODBC API References | 2,711

ata type, the field has the length of characters when the datetime or interval value is represented b

y string again.

This field value may be different from the value of the length defined in ODBC 2.x.

SQL_DESC_LITERAL_PREFIX[IRDs] (read-only)

This read-only SQLCHAR* record field contains characters or the characters recognized as a prefix

by the driver. This variable holds an empty string for data types to which a character prefix cannot

be applied.

SQL_DESC_LITERAL_SUFFIX[IRDs] (read-only)

This read-only SQLCHAR* record field contains characters or the characters recognized as a suffix b

y the driver. This variable holds an empty string for data types to which a character suffix cannot be

applied.

SQL_DESC_LOCAL_TYPE_NAME[Implementation descriptors] (read-only)

This read-only SQLCHAR* record field includes a localized name for the data type which may be dif

ferent from the regular name of the data type. If the localized name does not exist, then an empty

string is returned. The field is only for the display purpose.

SQL_DESC_NAME[Implementation descriptor]

This SQLCHAR* record field includes the alias of the field in the row descriptor. If the alias of a colu

mn is not applied, the column name is returned. In either case, the driver sets SQL_DESC_UNNAM

ED field to SQL_NAMED when setting SQL_DESC_NAME. If column name or its alias does not exist,

then the driver returns an empty string of SQL_DESC_NAME field and sets SQL_DESC_UNNAMED f

ield to SQL_UNNAMED.

The application can set SQL_DESC_NAME field of IPD to a parameter name or alias to specify store

d procedure parameters by name. SQL_DESC_NAME field of IRD is a read-only field. If the applicati

on tries to set the field, SQLSTATE HY091 (Invalid descriptor field identifier) is returned.

For IPD, if the driver does not support the named parameters, the field is not defined. If the driver s

upports the named parameters and it can explain the parameters, the parameter name is returned

in this field.

SQL_DESC_NULLABLE[Implementation descriptors] (read-only)

For IRD, if the column of this read-only SQLSMALLINT record field is allowed to be NULL, it is SQL_

NULLABLE. If NULL is not allowed, it is SQL_NO_NULLS. If the column is unknown whether or not t

o allow NULL, it is SQL_NULLABLE_UNKNOWN. The field exists particularly for a column in the resu

lt set.

For IPD, this field is always set to SQL_NULLABLE because the dynamic parameters are always allow

ed to have NULL and can not be set by the application.

SQL_DESC_NUM_PREC_RADIX[All]

This SQLINTEGER record field has the value of 2 when SQL_DESC_TYPE field is the approximate nu

meric data type. Because SQL_DESC_PRECISION field includes the number of the bits. The field has

the value of 10 when SQL_DESC_TYPE field has the exact numeric data type because SQL_DESC_P

2,712 | ODBC

RECISION field includes the number of decimal places. The field sets 0 for a non-numeric data type.

SQL_DESC_OCTET_LENGTH[All]

This SQLLEN record field includes the length in bytes of a string or binary data type. For the fixed le

ngth character or binary data type, it is the actual length (in bytes). For the variable length characte

r or binary data type, it is the maximum length (in bytes). The value does not include a space of nul

l-termination character for the implementation descriptor but it includes a space of null-terminatio

n character for the application descriptor. For the application data, the field contains the buffer siz

e. For APD, the field is defined only for the output or input/output parameters.

SQL_DESC_OCTET_LENGTH_PTR[Application descriptors]

This SQLLEN* record field points to a variable which includes the total length in bytes of the dynam

ic argument (for parameter descriptor) or the bound column value (for row descriptors).

For APD, the value is ignored for all argument except for the string and binary. If the field is SQL_N

TS, the dynamic argument should be null-terminated. The application sets the variable which inclu

des the result of SQL_DATA_AT_EXEC or SQL_LEN_DATA_AT_EXEC macro at execution time in th

e record field of APD to indicate that it is a bound parameter to be data-at-execution parameter. If

one or more of such fields exist, SQL_DESC_DATA_PTR can be set to a value identifying the param

eter to help the application determine which parameter is being requested.

If OCTET_LENGTH_PTR field of ARD is a NULL pointer, the driver does not return the column lengt

h information. If SQL_DESC_OCTET_LENGTH_PTR of APD is a NULL pointer, the driver assumes tha

t the string and binary values are null-terminated. (Binary values should not be null-terminated, but

a length should be given to avoid data interruption.)

If SQLFetch or SQLFetchScroll which fills the buffer pointed by the field does not return SQL_SUCC

ESS or SQL_SUCCESS_WITH_INFO, the buffer content is not defined. It is the deferred field. The fie

ld is not immediately used, but it is used later when the driver indicates or determines the octet len

gth of the data.

SQL_DESC_PARAMETER_TYPE[IPDs]

This SQLSMALLINT record field is set to SQL_PARAM_INPUT for the input parameters, to SQL_PAR

AM_INPUT_OUTPUT for the input/output parameters, to SQL_PARAM_OUTPUT for the output par

ameters, to SQL_PARAM_INPUT_OUTPUT_STREAM for the stream input/output parameters or to S

QL_PARAM_OUTPUT_STREAM for the stream output parameters. The default is SQL_PARAM_INP

UT.

SQL_DESC_PRECISION[All]

This SQLSMALLINT record field includes the number of effective integer for the exact numeric type,

and the number of bits of mantissa (binary precision) for the approximate numeric type. Or, it inclu

des the number of digits in fractional seconds part of SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, or

SQL_INTERVAL_SECOND data type. The field is undefined for all other data types.

The field value may be different from the value of the precision defined in ODBC 2.x.

ODBC API References | 2,713

SQL_DESC_ROWVER[Implementation descriptors] (read-only)

This SQLSMALLINT record field indicates whether the column is automatically updated by DBMS w

hen the row is updated (e.g. timestamp of SQL server). The value of record field is set to SQL_TRUE

if the column is the versioning column. Otherwise, it is set to SQL_FALSE. The column attribute is si

milar to calling SQLSpecialColumns with IdentifierType of SQL_ROWVER to determine whether to a

utomatically update the column.

SQL_DESC_SCALE[All]

This SQLSMALLINT record field includes the number of decimal places defined in the decimal and n

umeric data types. The field is not defined for all other data types.

The field value may be different from the value of the scale defined in ODBC 2.x.

SQL_DESC_SCHEMA_NAME[IRDs] (read-only)

This read-only SQLCHAR* record field includes the schema name of the base table including the co

lumn. The return value is driver-dependent if the column is a part of a expression or view. If the dat

a source does not support the schema or can not identify the schema name, then this variable cont

ains an empty string.

SQL_DESC_SEARCHABLE[IRDs] (read-only)

This read-only SQLSMALLINT record field sets one of the following values.

• It is set to SQL_PRED_NONE if the column can not be used in WHERE clause. (It is as same as SQ

L_UNSEARCHABLE of ODBC 2.X.)

• It is set to SQL_PRED_CHAR if the column can be used in a WHERE clause but only with the LIKE

predicate.

• It is set to SQL_PRED_BASIC if the column can be used with all comparison operators except for

LIKE in WHERE clause. (It is as same as SQL_EXCEPT_LIKE of ODBC 2.x .)

• It is set to SQL_PRED_SEARCHABLE if the column can be used with all comparison operators in

WHERE clause.

SQL_DESC_TABLE_NAME[IRDs] (read-only)

This read-only SQLCHAR* record field includes the base table name containing this column. The re

turn value is driver-dependent if the column is an expression or a part of view.

SQL_DESC_TYPE[All]

This SQLSMALLINT record field includes an abbreviated SQL or C data types for all data types excep

t for the datetime or interval data type. The field specifies SQL_DATETIME or SQL_INTERVAL for da

tetime or interval data type.

Whenever the field includes SQL_DATETIME or SQL_INTERVAL, SQL_DESC_DATETIME_INTERVAL_

CODE field should include the appropriate server code of the concise form. SQL_DESC_TYPE includ

es SQL_DATETIME for the datetime data type, and SQL_DESC_DATETIME_INTERVAL_CODE field in

cludes the sub code specifying the datetime data type. SQL_DESC_TYPE includes SQL_INTERVAL fo

r the interval data type and SQL_DESC_DATETIME_INTERVAL_CODE field includes the sub code sp

ecifying the interval data type.

2,714 | ODBC

The values of SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE fields are interdependent. The othe

r field should be set when one of the fields is set. SQL_DESC_TYPE can be set by calling SQLSetDes

cField or SQLSetDescRec. SQL_DESC_CONCISE_TYPE can be set by calling SQLBindCol, SQLBindPar

ameter or SQLSetDescField.

If SQL_DESC_TYPE is set to the concise data type which is not interval nor datetime data type, SQL

_DESC_CONCISE_TYPE field is set to the same value and SQL_DESC_DATETIME_INTERVAL_CODE

field is set to 0.

If SQL_DESC_TYPE is set to the verbose data type of the datetime or interval data type(SQL_DATE

TIME or SQL_INTERVAL) and SQL_DESC_DATETIME_INTERVAL_CODE field is set to the appropriat

e sub code, SQL_DESC_CONCISE_TYPE field is set to the value corresponding to the concise data t

ype. When trying to set SQL_DESC_TYPE to one of the concise datetime or interval data types, SQL

STATE HY021(Inconsistent descriptor information) will be returned.

If SQL_DESC_TYPE field is set by calling SQLBindCol, SQLBindParameter or SQLSetDescField, the fol

lowing fields are set to the default values described in the following table. The remaining field valu

es of the same record are undefined.

SQL_DESC_TYPE

value
Other fields implicitly set

SQL_CHAR,

SQL_VARCHAR,

SQL_C_CHAR,

SQL_C_VARCHAR

SQL_DESC_LENGTH is set to 1.

SQL_DESC_PRECISION is set to 0.

SQL_DATETIME

When SQL_DESC_DATETIME_INTERVAL_CODE is set to SQL_CODE_DATE or SQL_CO

DE_TIME, SQL_DESC_PRECISION is set to 0. When it is set to SQL_DESC_TIMESTAMP,

SQL_DESC_PRECISION is set to 6.

SQL_DECIMAL,

SQL_NUMERIC,

SQL_C_NUMERIC

SQL_DESC_SCALE is set to 0. SQL_DESC_PRECISION is set to the implementation-defi

ned precision for each data type.

SQL_FLOAT,

SQL_C_FLOAT
SQL_DESC_PRECISION is set to the implementation-defined precision for SQL_FLOAT.

SQL_INTERVAL

If SQL_DESC_DATETIME_INTERVAL_CODE is set to interval data type, SQL_DESC_DA

TETIME_INTERVAL_PRECISION is set to 2 (default interval leading precision). When int

erval has the part of seconds, SQL_DESC_PRECISION is set to 6 (default interval secon

ds precision).

When the application sets the field of the descriptor by calling SQLSetDescField not SQLSetDescRec, the a

pplication should firstly define the data type. When doing like this, the other fields described in the table

above are implicitly set. If any value is not allowed to set implicitly, the application can call SQLSetDescFiel

d or SQLSetDescRec to set the value explicitly.

ODBC API References | 2,715

SQL_DESC_TYPE_NAME[Implementation descriptors] (read-only)

This read-only SQLCHAR* record field includes the data source dependent type name (CHAR, VAR

CHAR etc.). If the data type name is unknown, the variable contains an empty string.

SQL_DESC_UNNAMED[Implementation descriptors]

If SQL_DESC_NAME field is set, the SQLSMALLINT record field in the row descriptor is set to one of

SQL_NAME or SQL_UNNAMED by the driver. If SQL_DESC_NAME field includes the column alias or

the column alias is not used, the driver sets SQL_DESC_UNNAMED field to SQL_NAMED. If the app

lication sets SQL_DESC_NAME field of IPD to the parameter name or alias, the driver sets SQL_DES

C_UNNAMED of IPD to SQL_NAMED. If column name or alias does not exist, the driver sets SQL_D

ESC_UNNAMED field to SQL_UNNAMED.

The application sets SQL_DESC_UNNAMED field of IPD to SQL_UNNAMED. If the application tries t

o set SQL_DESC_UNANMED field of IPD to SQL_NAMED, the driver returns SQLSTATE HY091 (Inva

lid descriptor field identifier). If the application tries to set SQL_DESC_UNNAMED field of IRD (read

-only), SQLSTATE HY091 (Invalid descriptor field identifier) will be returned.

SQL_DESC_UNSIGNED[Implementation descriptors] (read-only)

The read-only SQLSMALLINT record field is set to SQL_TRUE if the column type is the unsigned or n

on-numeric, or it is set to SQL_FALSE if the column type is signed.

SQL_DESC_UPDATABLE[IRDs] (read-only)

This read-only SQLSMALLINT record field is set to one of the following values.

• It is set to SQL_ATTR_READ_ONLY if the result set column is read-only.

• It is set to SQL_ATTR_WRITE if the result set column is read and write.

• It is set to SQL_ATTR_READWRITE_UNKNOWN if the updatability of the result set column is unk

nown.

SQL_DESC_UPDATABLE describes the updatability of the column (It is not the column in the base t

able.) in the result set. The updatability of the column in the base table whose result set columns ar

e based on can be different from the value in the field. The updatability of the column is based on t

he definition of the data type, user privilege and result set itself. If the updatability of the column is

unsure, SQL_ATTR_READWITE_UNKNOWN should be returned.

SQL_DESC_CHAR_LENGTH_UNITS[Implemetation descriptors] (read-only)

This SQLSMALLINT record field indicates the length unit of the column whose SQL type is SQL_CH

AR, SQL_VARCHAR and SQL_LONGVARCHAR.

• SQL_CLU_CHARACTERS: The length unit is CHARACTER. For example, data of "문자열" refers to

the length of 3, if the encoding type is UHC(Unified Hangul Code).

• SQL_CLU_OCTETS: The length unit is OCTETS. For example, data of "문자열" refers to the length

of 6, if the encoding type is UHC(Unified Hangul Code).

• SQL_CLU_NONE: The length unit is undefined. It is the value returned for SQL type except for th

e SQL types listed above.

2,716 | ODBC

Consistency Check

Concurrency check is automatically implemented by the driver each time the application passes the value

to SQL_DESC_DATA_PTR of ARD, APD, or IPD. If anything of the fields is inconsistent with other fields, S

QLSetDescField will return SQLSTATE HY021(Inconsistent descriptor information). For more information,

refer to Consistency Check of SQLSetDescRec.

ODBC API References | 2,717

SQLSetDescRec

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLSetDescRec function sets the multiple descriptor fields affecting the buffer bound to a data type or co

lumn or parameter data.

Syntax

SQLRETURN SQLSetDescRec(

SQLHDESC DescriptorHandle,

SQLSMALLINT RecNumber,

SQLSMALLINT Type,

SQLSMALLINT SubType,

SQLLEN Length,

SQLSMALLINT Precision,

SQLSMALLINT Scale,

SQLPOINTER DataPtr,

SQLLEN * StringLengthPtr,

SQLLEN * IndicatorPtr);

Arguments

DescriptorHandle

[Input] It is the descriptor handle. IRD handle can not be set.

RecNumber

[Input] It indicates the descriptor record including the fields to be set. The descriptor record starts f

rom 0, and the 0 record is a bookmark record. The argument should be equal to or bigger than 0. I

f RecNumber is bigger than SQL_DESC_COUNT, then SQL_DESC_COUNT is changed to RecNumbe

r value.

Type

[Input] It is the value which sets SQL_DESC_TYPE field for the descriptor record.

2,718 | ODBC

SubType

[Input] It is the value which sets SQL_DESC_DATETIME_INTERVAL_CODE field for a record type of

SQL_DATETIME or SQL_INTERVAL.

Length

[Input] It is the value which sets SQL_DESC_OCTET_LENGTH field for the descriptor record.

Precision

[Input] It is the value which sets SQL_DESC_PRECISION field for the descriptor record.

Scale

[Input] It is the value which sets SQL_DESC_SCALE field for the descriptor record.

DataPtr

[Deferred Input or Output] It is the value which sets SQL_DESC_DATA_PTR field for the descriptor r

ecord. DataPtr can be set to a NULL pointer.

DataPtr argument can be set to a NULL pointer to set SQL_DESC_DATA_PTR field to a NULL pointe

r. If the handle in DescriptorHandle argument is related to ARD, it unbinds the column.

StringLengthPtr

[Deferred Input or Output] It is the value which sets SQL_DESC_OCTET_LENGTH_PTR field for the

descriptor record. StringLengthPtr can be set to a NULL pointer to set SQL_DESC_OCTET_LENGTH_

PTR field to a NULL pointer.

IndicatorPtr

[Deferred Input or Output] It is the value which sets SQL_DESC_INDICATOR_PTR field of the descri

ptor record. IndicatorPtr can be set to a NULL pointer to set SQL_DESC_INDICATOR_PTR to a NULL

pointer.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

07009
Invalid descriptor

index

RecNumber argument is set to 0, and DescriptorHandle refers to the IPD ha

ndle.

RecNumber argument is bigger than the maximum number of columns or p

arameters supported by the data source, and DescriptorHandle argument is

APD, IPD or ARD.

ODBC API References | 2,719

RecNumber argument is 0, and DescriptorHandle argument refers to the im

plicitly allocated APD. (The error does not occur for the explicitly assigned a

pplication descriptor. This is because it is unknown whether the explicitly all

ocated application descriptor is APD or ARD until the execution time.)

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

HY000 General error

It is an error without specific SQLSTATE, and the error message returned by

SQLGetDiagRec in *MessageText buffer describes error message and its cau

se.

HY001
Memory allocatio

n error

The driver can not allocate the memory required for execution or completio

n of the function.

HY010
Function sequenc

e error

The asynchronously executing function is called for StatementHandle relate

d to DescriptorHandle, and this function is still being executed when SQLSet

DescRec is called.

HY013
Memory manage

ment error

The function is not executed because the underlying memory object can not

be accessed because of the low memory condition.

HY016

Cannot modify a

n implementatio

n row descriptor

DescriptorHandle argument is related to IRD.

HY021

Inconsistent desc

riptor informatio

n

The Type field, or other field related to SQL_DESC_TYPE field of the descript

or is not valid or consistent.

HY090
Invalid string or b

uffer length

The driver is set to ODBC 2.x driver, and the descriptor is set to ARD, and Co

lumnNumber argument is set to 0 and the value specified in BufferLength ar

gument is not 4.

HY117

Connection is sus

pended due to u

nknown transacti

on state. Only dis

connect and read

-only functions ar

e allowed

For more information about the suspended state, refer to SQLEndTran.

HYT01
Connection time

out expired

The connection timeout period is expired before the data source response t

o the request. The connection timeout interval can be set via SQL_ATTR_CO

NNECTION_TIMEOUT of SQLSetConnectAttr.

IM001

Driver does not s

upport this functi

on

The driver does not support the function.

SQLSTATE Error Description

2,720 | ODBC

Description

The application can call SQLSetDescRec to set the following fields for a column or parameter.

● SQL_DESC_TYPE

● SQL_DESC_DATETIME_INTERVAL_CODE (For the record of SQL_DATETIME or SQL_INTERVAL type)

● SQL_DESC_OCTET_LENGTH

● SQL_DESC_PRECISION

● SQL_DESC_SCALE

● SQL_DESC_DATA_PTR

● SQL_DESC_OCTET_LENGTH_PTR

● SQL_DESC_INDICATOR_PTR

Note

If calling SQLSetDescRec fails, the content of the descriptor record identified by RecNumber argu

ment is not defined.

When binding a column or parameter, SQLSetDescRec allows to change the multiple fields which affect t

he binding without calling SQLBindCol, SQLBindParameter or calling SQLSetDescField multiple times. SQL

SetDescRec can set the descriptor fields which are not related to the current statement. SQLBindParamet

er can set more fields than SQLSetDescRec, and it can set the fields of APD and IPD with a single call and

it does not require a descriptor handle.

Note

The SQL_ATTR_USE_BOOKMARKS statement attribute should be set before calling SQLSetDescRe

c with RecNumber argument of 0 to set bookmark fields. It is not necessary but is strongly recom

mended.

Consistency Check

The consistency check is automatically implemented by the driver whenever the application sets SQL_DES

C_DATA_PTR field of APD, ARD, or IPD. If any of the fields is not consistent with other fields, SQLSetDesc

Rec will return SQLSTATE HY021. (Inconsistent descriptor information)

Whenever the application sets SQL_DESC_DATA_PTR field of APD, ARD or IPD, the driver checks the valu

e of SQL_DESC_TYPE field, and checks if the values applicable to that SQL_DESC_TYPE field is valid and c

onsistent. The check is implemented when SQLBindParameter or SQLBindCol is called or whenever SQLSe

ODBC API References | 2,721

tDescRec is called to APD, ARD or IPD. The consistency check includes the following descriptor fields.

● SQL_DESC_TYPE field should be one of the valid ODBC C, SQL type or the driver-specific SQL type. S

QL_DESC_CONCISE_TYPE field should be one of the valid ODBC C, SQL Type or the driver-specific SQ

L type, and it includes the simplified datetime and interval types.

● If SQL_DESC_TYPE record field is SQL_DATETIME or SQL_INTERVAL, SQL_DESC_DATETIME_INTERVA

L_CODE field should be one of the valid datetime or interval codes. (For more information refer to th

e description of SQL_DESC_DATETIME_INTERVAL_CODE field in SQLSetDescField.)

● If SQL_DESC_TYPE field is a NUMERIC type, SQL_DESC_PRECISION and SQL_DESC_SCALE fields are c

hecked whether they are valid.

● If SQL_DESC_CONCISE_TYPE field is the time or timestamp data type an interval type with a seconds

component, or one of the interval data types with a time component, SQL_DESC_PRECISION field is c

hecked whether it is a valid second precision.

● If SQL_DESC_CONCISE_TYPE is an interval data type, SQL_DESC_DATETIME_INTERVAL_PRECISION fi

eld is checked to be a valid interval leading precision value.

SQL_DESC_DATA_PTR field of IPD is not generally set. The application can do so to force the consistency

check for the IPD fields. Consistency check can not be executed in IRD. The value of SQL_DESC_DATA_PT

R field of IPD is not actually stored and it can not be retrieved via SQLGetDescField or SQLGetDescRec. Th

e setting is made only to force the consistency check.

2,722 | ODBC

SQLSetEnvAttr

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLSetEnvAttr sets the environment management attributes.

Syntax

SQLRETURN SQLSetEnvAttr(

SQLHENV EnvironmentHandle,

SQLINTEGER Attribute,

SQLPOINTER ValuePtr,

SQLINTEGER StringLength);

Arguments

EnvironmentHandle

[Input] It is the environment handle.

Attribute

[Input] They are listed in Description.

ValuePtr

[Input] It is a pointer to the value which is related to an attribute. Depending on the value of Attrib

ute, ValuePtr points to a 32 bit integer value or null-terminated character.

StringLength

[Input] If ValuePtr points to the string or binary buffer, the argument should be the length of *Valu

ePtr. The argument should include the number of bytes in string for the character string data.

If ValuePtr is an integer, StringLength is ignored.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

ODBC API References | 2,723

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns S

QL_SUCCESS_WITH_INFO.)

01S02 Option value changed

The driver does not support the value specified in ValuePtr and replac

es it with a similar value. (The function returns SQL_SUCCESS_WITH_I

NFO.)

HY000 General error

It is an error without specific SQLSTATE, and the error message return

ed by SQLGetDiagRec in *MessageText buffer describes error messag

e and its cause.

HY001
Memory allocation erro

r

The driver can not allocate the memory required for execution or com

pletion of the function.

HY009
Invalid use of null point

er

The attribute argument identifies an environment attribute which req

uires a string value, and ValuePtr argument is a NULL pointer.

HY010
Function sequence erro

r

The connection handle is allocated to EnvironmentHandle.

SQL_ATTR_ODBC_VERSION is not set to SQLSetEnvAttr, Attribute is d

ifferent from SQL_ATTR_ODBC_VERSION. If SQLAllocHandleStd is use

d, SQL_ATTR_ODBC_VERSION does not need to be explicitly specified.

HY013
Memory management

error

The function is not executed because the underlying memory object c

an not be accessed because of the low memory condition.

HY024 Invalid attribute value
Considering the specified attribute value, the value of ValuePtr is not

valid.

HY090
Invalid string or buffer l

ength
StringLength argument is smaller than 0. (It is not SQL_NTS.)

HY092
Invalid attribute/option

identifier

The specified value of attribute argument is not valid in ODBC version

supported by the driver.

HY117

Connection is suspende

d due to unknown trasa

ction state. Only discon

nect and read-only func

tions ard allowed

For more information about the suspended state, refer to SQLEndTra

n.

HYC00
Optional feature not im

plemented

The specified value of attribute argument is valid fot the ODBC enviro

nment attribute supported by the driver but it is not supported by the

driver.

An attribute argument is SQL_ATTR_OUTPUT_NTS, and ValuePtr is S

QL_FALSE.

2,724 | ODBC

Description

The application can call SQLSetEnvAttr only when connection handle allocated to the environment handl

e does not exist. The environment attributes which is set by the application persist until SQLFreeHandle is

called to the environment handle. It is recommended to allocate and use only one environment handle.

The information format set through ValuePtr is dependent on the specified attribute. SQLSetEnvAttr acce

pts one attribute information of two different formats which are the null-termination string or 32 bits int

eger value. Each attribute format is described in the description of the attribute.

The driver-specific environment attributes does not exist.

The connection attribute can not be set with SQLSetEnvAttr. If it is tried, SQLSTATE HY092 (Invalid attrib

ute/option identifier) will be returned.

Attribute ValuPtr contents

SQL_ATTR_CONNECTION_

POOLING

(ODBC 3.8)

It is not supported by the driver.

SQL_ATTR_CP_MATCH

(ODBC 3.0)
It is not supported by the driver.

SQL_ATTR_ODBC_VERSIO

N

(ODBC 3.0)

32-bit integer which indicates whether a particular feature is operated as ODBC 2.x or

ODBC 3.x. The following values are used to set the attribute.

● SQL_OV_ODBC3_80: The driver manager and driver exhibit the following ODBC

3.8 behaviors.

○ The driver expects and returns ODBC 3.x code value for DATE, TIME, TIMES

TAMP.

○ The driver returns ODBC 3.x SQLSTATE codes when SQLError, SQLGetDiagFi

eld or SQLGetDiagRec is called.

○ CatalogName argument of SQLTables allows the pattern search.

● SQL_OV_ODBC3: The driver manager and driver exhibit the following ODBC 3.x

behaviors.

○ The driver expects and returns ODBC 3.x code value for DATE, TIME, TIMES

TAMP.

○ The driver returns ODBC 3.x SQLSTATE codes when SQLError, SQLGetDiagFi

eld or SQLGetDiagRec is called.

○ CatalogName argument of SQLTables allows the pattern search.

○ The driver manager does not support the extensibility of C data types.

● SQL_OV_ODBC2: The driver manager and driver exhibit the following ODBC 2.x

behaviors. It is very useful when the ODBC 2.x application operates in ODBC 3.x.

○ The driver expects and returns ODBC 2.x code value for DATE, TIME, TIMES

TAMP.

○ The driver returns ODBC 2.x SQLSTATE codes when SQLError, SQLGetDiagFi

ODBC API References | 2,725

eld or SQLGetDiagRec is called.

○ CatalogName argument of SQLTables does not allow the pattern search.

○ The driver manager does not support the extensibility of C data types.

The application should set the environment attribute value before calling any function

which has SQLHENV argument, or it returns SQLSTATE HY010 (Function sequence err

or). It is driver-specific whether additional behavior exists for these environmental flag

s.

SQL_ATTR_OUTPUT_NTS

(ODBC 3.0)
It is not supported by the driver.

Attribute ValuPtr contents

2,726 | ODBC

SQLSetParam

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

ODBC 1.0 function SQLSetParam is replaced with ODBC 2.0 function SQLBindParameter. For more infor

mation, refer to SQLBindParameter.

ODBC API References | 2,727

SQLSetPos

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLSetPos sets the cursor position in the row set and allows the application to update the data in the ro

w set or to update or delete the data in the result set.

Syntax

SQLRETURN SQLSetPos(

SQLHSTMT StatementHandle,

SQLSETPOSIROW RowNumber,

SQLUSMALLINT Operation,

SQLUSMALLINT LockType);

Arguments

StatementHandle

[Input] It is the statement handle.

RowNumber

[Input] It is the row position in the row set which is specified with Operation argument to impleme

nt the operation. If RowNumber is 0, the operation is applied to all rows in the row set.

For more information, refer to Description section.

Operation

[Input] The operations to perform are SQL_POSITION, SQL_REFRESH, SQL_UPDATE, SQL_DELETE.

SQL_ADD value of Operation argument is not used in ODBC 3.x any more. The ODBC 2.x driver wil

l be required to support SQL_ADD for the backward compatibility. This feature is replaced by callin

g SQLBulkOperaions with operation of SQL_ADD. When ODBC 3.x application is performed with O

DBC 2.x driver, the driver manager maps a call of SQLBulkOperations with an operation of SQL_AD

D to a call of SQLSetPos with an operation of SQL_ADD.

For more information, refer to Description section.

2,728 | ODBC

LockType

[Input] The way to lock the row is specified after implementing the operation specified in Operatio

n argument.

SQL_LOCK_NO_CHANGE, SQL_LOCK_EXCLUSIVE, SQL_LOCK_UNLOCK

For more information, refer to Description section.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING, SQL_ERROR, SQL

_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

01001
Cursor operation

conflict

Operation argument is SQL_DELETE or SQL_UPDATE. One or more rows are

deleted/ updated, or any row is not deleted/ updated.

Operation argument is SQL_DELETE or SQL_UPDATE, and optimistic concur

rency causes the operation failure. (The function returns SQL_SUCCESS_WIT

H_INFO.)

01004
String data, right

truncation

Operation argument is SQL_REFRESH, and string or binary data returned for

a column(s) with a data type of SQL_C_CHAR or SQL_C_BINARY truncates n

on white space character or non-NULL binary data.

01S01 Error in row

RowNumber argument is 0, and an error occurred in one or more rows whil

e the operation which is specified in operation argument is executed.

(If an error occurs on one or more, but not all, rows of a multirow operation,

SQL_SUCCESS_WITH_INFO is returned. If an error occurs on a single row op

eration, SQL_ERROR is returned)

(If the driver is ODBC 2.x and the cursor library is not used, then this SQLST

ATE occurs only when SQLSetPos is called after SQLExtendedFetch.)

01S07
Fractional truncat

ion

If an operation argument is SQL_REFRESH and the buffer type of the applica

tion is not SQL_C_CHAR or SQL_C_BINARY, and the data returned to the ap

plication buffer for one or more columns are truncated. For the numeric dat

a types, the fractional parts of the number are truncated. For time, timesta

mp, and interval data types including a time component, the fractional parts

of the time are truncated.

07006

Restricted data ty

pe attribute viola
The column data value of the result set can not be converted to the data typ

e specified in TargetType when SQLBindCol is called.

ODBC API References | 2,729

tion

07009
Invalid descriptor

index

Operation argument is SQL_REFRESH or SQL_UPDATE, and the column valu

e which is bigger than the number of columns in the result set is bound.

21S02

Degree of derive

d table does not

match column lis

t

Operation argument is SQL_UPDATE, and updatable column does not exist

because all bound column are released, read-only or the value in bound len

gth/indicator buffer is SQL_COLUMN_IGNORE.

22001
String data, right

truncation

Operation argument is SQL_UPDATE, and the assignment of a character or

binary value to a column causes the truncation of a non empty string (for ch

aracter), or non-null string (for binary) or bytes.

22003
Numeric value ou

t of range

Operation argument is SQL_UPDATE, and the assignment of a numeric valu

e to a column in the result set causes the truncation of whole part of the nu

mber.

Operation argument is SQL_REFRESH, and returning the numeric value for o

ne or more bound column causes the loss of significant digits.

22007
Invalid datetime f

ormat

Operation argument is SQL_UPDATE, and the assignment of date or timesta

mp value to a column in the result set causes the year, month, day field to b

e out of range.

Operation argument is SQL_REFRESH, and returning date or timestamp valu

e for one or more bound column causes the year, month, day field to be out

of range.

22008
Date/time field o

verflow

Operation argument is SQL_UPDATE, and the performance of datetime arit

hmetic on data being sent to a column in the result set causes a datetime fie

ld (the year, month, day, hour, minute, or second field) of the result being o

utside the permissible range of values for the field, or being invalid based on

the Gregorian calendar's natural rules for datetimes.

Operation argument is SQL_REFRESH, and the performance of datetime arit

hmetic on data being retrieved from the result set causes a datetime field (t

he year, month, day, hour, minute, or second field) of the result being outsi

de the permissible range of values for the field, or being invalid based on th

e Gregorian calendar's natural rules for datetimes.

22015
Interval field over

flow

The Operation argument is SQL_UPDATE, and assigning an exact numeric o

r interval C type to an interval SQL data type causes a loss of significant digit

s.

The Operation argument is SQL_UPDATE, and when assigning to an interva

l SQL type, representation of the value of the C type does not exist in the int

erval SQL type.

The Operation argument is SQL_REFRESH, and assigning from an exact nu

SQLSTATE Error Description

2,730 | ODBC

meric or interval SQL type to an interval C type causes a loss of significant di

gits in the leading field.

The Operation argument is SQL_ REFRESH, and when assigning to an interv

al C type, representation of the value of the SQL type does not exist in the in

terval C type.

22018

Invalid character

value for cast spe

cification

Operation argument is SQL_REFRESH, and C type is the exact or approximat

e numeric, datetime or interval data types. The SQL type of the column is a c

haracter data type. And the column value is not a valid character for the bo

und C type.

Operation argument is SQL_UPDATE, and the SQL type is the exact or appro

ximate numeric, datetime or interval data type. The C type of the column is

SQL_C_CHAR. And the column value is not a valid character for the bound

SQL type.

23000
Intergrity constrai

nt violation

Operation argument is SQL_DELETE or SQL_UPDATE, and it violates the inte

grity constraints.

24000
Invalid cursor stat

e

StatementHandle is in the executed state but the result is not related to Stat

ementHandle.

The cursor is open to StatementHandle, but SQLFetch or SQLFetchScroll is n

ot called.

The cursor is open to StatementHandle and SQLFetch or SQLFetchScroll is ca

lled. But the cursor is positioned before the starting point of the result set or

after the end of the result set.

Operation argument is SQL_DELETE, SQL_REFRESH or SQL_UPDATE.

40001
Serialization failu

re

The transaction is rolled back due to a resource deadlock with another trans

actions.

40003
Statement compl

etion unknown

The connection is failed during the function execution, and the status of tra

nsaction can not be determined.

42000
Syntax error or ac

cess violation

The driver can not lock the rows as needed to implement the operation req

uested in the operation argument.

The driver can not lock the rows as requested in the LockType argument.

44000
WITH CHECK OP

TION violation

Operation argument is SQL_UPDATE, and update on a viewed table or the t

able derived from the viewed table which was created by specifying WITH_C

HECK OPTION is performed to prevent the existence of one or more rows af

fected by the update in the viewed table.

HY000 General error

It is an error without specific SQLSTATE, and the error message returned by

SQLGetDiagRec in *MessageText buffer describes error message and its cau

se.

SQLSTATE Error Description

ODBC API References | 2,731

HY001
Memory allocatio

n error

The driver can not allocate the memory required for execution or completio

n of the function.

HY008
Operation cancel

ed

The asynchronous processing is activated for StatementHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle before the fu

nction is called and completed, and the function is called again on Stateme

ntHandle.

The function is called, and before it completed execution, SQLCancel or SQL

CancelHandle is called on the StatementHandle from a different thread in a

multithread application.

HY010
Function sequenc

e error

The asynchronously executing function is called for the StatementHandle w

hen SQLSetPos was executed, and this function is still being executed when

SQLSetPos is called.

SQLExecute, SQLExecDirect or SQLMoreResults is called for StatementHandl

e, and SQL_PARAM_DATA_AVAILABLE is returned, and the function is calle

d before the data was retrieved from the streamed parameters.

The asynchronously executing function is called for the StatementHandle, a

nd this function is still being executed when this function is called.

SQLExecute, SQLExecDirect or SQLMoreResults is executed in StatementHa

ndle, and SQL_NEED_DATA is returned, and the function is executed before

all data is sent.

The driver is ODBC 2.x, and SQLSetPos is called in StatementHandle after S

QFetch is called.

HY011
Attribute cannot

be set now

The driver version is ODBC 2.x, SQL_ATTR_ROW_STATUS_PTR statement att

ribute is set, and SQLSetPos is called before SQLFetch, SQLFetchScroll or SQ

LExtendedFetch is called at the time.

HY013
Memory manage

ment error

The function is not executed because the underlying memory object can not

be accessed because of the low memory condition.

HY090
Invalid string or b

uffer length
Operation argument is SQL_UPDATE.

HY092
Invalid attribute i

dentifier

The value which is specified in Operation argument is not valid.

The value which is specified in LockType argument is not valid.

Operation argument is SQL_UPDATE or SQL_DELETE, and SQL_ATTR_CONC

URRENCY statement attribute is SQL_ATTR_CONCUR_READ_ONLY.

HY107
Row value out of

range

The value which is specified in RowNumber argument is bigger than the nu

mber of rows in the row set.

The cursor can not be positioned in the row set because the cursor which is

SQLSTATE Error Description

2,732 | ODBC

HY109 Invalid cursor pos

ition

related to StatementHandle is set to forward-only. For more information, ref

er to the description of SQL_ATTR_CURSOR_TYPE attribute of SQLSetStmtA

ttr.

Operation argument is SQL_UPDATE, SQL_DELETE or SQL_REFRESH, and th

e row which is identified by RowNumber argument is deleted or returned.

RowNumber argument is 0, and operation argument is SQL_POSITION.

SQLSetPos is called after SQLBulkOperations is called and before SQLFetchS

croll or SQLFetch is called.

HY117

Connection is sus

pended due to u

nknown transacti

on state. Only dis

connect and read

-only functions ar

e allowed.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature

not implemented

The driver or data source does not support the operation requested in opera

tion argument or LockType argument.

HYT00 Timeout expired

The query timeout period is expired before returning the entire result set fro

m the data source. The timeout can be set via SQL_ATTR_QUERY_TIMEOUT

of SQLSetStmtAttr.

HYT01
Connection time

out expired

The connection is expired before the data source responds to the request. T

he timeout can be set via SQL_ATTR_CONNECTION_TIMEOUT of SQLSetStm

tAttr.

IM001

Driver does not s

upport this functi

on

The driver which is related to StatementHandle does not support the functio

n.

IM017

Polling is disable

d in asynchronou

s notification mo

de

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsy

nc has not been

called to complet

e the previous as

ynchronous oper

ation on this han

dle.

If the previous function call for the handle returns SQL_STILL_EXECUTING a

nd if the notification mode is activated, SQLCompleteAsync should be called

for the handle to do post processing and complete the operation.

SQLSTATE Error Description

ODBC API References | 2,733

Description

RowNumber Argument

RowNumber argument specifies the number of rows in the row set affected by the operation implementa

tion specified in Operation argument. If RowNumber is 0, it is applied to all rows in the row set. RowNum

ber should be from 0 up to the number of rows in the row set.

The array is 0-based 0 in C language but the RowNumber is 1-based. For example, when updating the fift

h row in the row set, the application updates the row set buffer of the array index 4, but RowNumber sp

ecifies to 5.

All operations position the cursor on the row specified by RowNumber. The following operation requires

the cursor position.

● Positioned update or delete statements

● Calling SQLGetData

● Calling SQLSetPos with the SQL_DELETE, SQL_REFRESH or SQL_UPDATE option

Operation Argument

Operation argument supports the following operations. The application calls SQLGetInfo with the inform

ation type of SQL_DYNAMIC_CURSOR_ATTRIBUTES1, SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1, S

QL_KEYSET_CURSOR_ATTRIBUTES1 or SQL_STATIC_CURSOR_ATTRIBUTES1 (depending on the cursor ty

pe.) to verify the options supported by the data source.

Operation

argument
Operation

SQL_POSITION

The driver positions the cursor at the row specified in RowNumber.

The content of row status array which is pointed by SQL_ATTR_ROW_OPERATION_PT

R statement attribute is ignored by SQL_POSITION.

SQL_REFRESH It is not supported by the driver.

SQL_UPDATE It is not supported by the driver.

SQL_DELETE It is not supported by the driver.

LockType Argument

LockType argument provides the method for the application to control the concurrency. In most case, the

data source which provides the concurrency level and transaction supports SQL_BLOCK_NO_CHANGE val

ue to LockType argument.

LockType argument specifies the lock state of rows after executing SQLSetPos. If the driver can not lock t

he row either to perform the requested operation or to satisfy the LockType argument, it returns SQL_ER

ROR and SQLSTATE 42000(Syntax error or access violation).

2,734 | ODBC

Although LockType argument is specified in a statement, it is applied to all statements of the same privile

ges on the connection. The special lock which is acquired by a statements on the connection can be unlo

cked by another statement on the same connection.

A row locked through SQLSetPos remains locked until the application calls SQLSetPos for the row with Lo

ckType set to SQL_LOCK_UNLOCK, or until the application calls SQLFreeHandle for the statement or SQLF

reeStmt with the SQL_CLOSE option. When the driver supports the transaction, the row lock through SQ

LSetPos is unlocked when the application commits or rolls back the transaction on the connection by calli

ng SQLEndTran. (If the cursor is closed when a transaction is committed or rolled back as indicated by the

of SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR information types retur

ned by SQLGetInfo.)

LockType argument supports the following lock types. The application calls SQLGetInfo with the SQL_DY

NAMIC_CURSOR_ATTRIBUTES1, SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1, SQL_KEYSET_CURSOR

_ATTRIBUTES1 or SQL_STATIC_CURSOR_ATTRIBUTES1 information type to verify the lock supported by t

he data source.

LockType

argument
Lock type

SQL_LOCK_NO_CHANGE

The driver or data source ensures the locking or unlocking of the same row as it was b

efore SQLSetPos is called. The value of LockType does not allow explicit row-level locki

ng so that any lock required by the current concurrency and transaction isolation level

s can be used.

SQL_LOCK_EXCLUSIVE
The driver or data source performs the exclusive lock on a row. The statement on oth

er connection or in other application can not be used to acquire any locks on the row.

SQL_LOCK_UNLOCK The driver or data source releases the lock.

When the update and delete operations are performed in SQLSetPos, the application uses the following L

ockType argument.

● An application calls SQLSetPos with operation set to SQL_REFRESH, and LockType set to SQL_LOCK_

EXCLUSIVE to guarantee that the row is not updated after it is retrieved.

● If the application sets LockType to SQL_LOCK_NO_CHANGE, the driver guarantees the update or del

ete operation only when the application specifies SQL_CONCUR_LOCK for SQL_ATTR_CONCURRENC

Y statement attribute.

● If the application specifies SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES for SQL_ATTR_CONCU

RRENCY statement attribute, the driver compares the version or value of the row and denies the oper

ation when the row is changes since the application fetched the row.

● If the application specifies SQL_CONCUR_READ_ONLY for SQL_ATTR_CONCURRENCY statement attr

ibute, the driver denies any update or delete operation.

For more information about SQL_ATTR_CONCURRENCY statement attribute, refer to SQLSetStmtAttr.

ODBC API References | 2,735

Status and Operation Array

The following status and operation arrays are used when SQLSetPos is called.

● The row status array includes the status value of each row data in the row set. The driver sets the stat

us value in the array after calling SQLFetch, SQLFetchScroll, SQLBulkOperations or SQLSetPos. The arr

ay is pointed to by SQL_ATTR_ROW_STATUS_PTR statement attribute.

● The row operation array includes each row value in the row set which indicates whether SQLSetPos c

all for the bulk operation is ignored or performed. Each element in the array sets one of SQL_ROW_P

ROCEED or SQL_ROW_IGNORE. The array is pointed to by SQL_ATTR_ROW_OPERATION_PTR statem

ent attribute.

The number of elements in the status and operation array should be equal to the number of rows in the r

ow set (as defined by the SQL_ATTR_ROW_ARRAY_SIZE statement attribute).

For more information about the row status array, refer to SQLFetch.

For more information about the row operation array, refer to Ignoring Rows in the Bulk Operation.

Using SQLSetPos

The application should perform the following steps before using SQLSetPos.

1. If the application calls SQLSetPos with operation set to SQL_UPDATE, call SQLBindCol (or SQLSetDes

cRec) for each column to specify its data type and bind buffers for the column's data and length.

2. If the application calls SQLSetPos with operation set to SQL_DELETE or SQL_UPDATE, call SQLColAttr

ibute to make sure that the columns to be deleted or updated are updatable.

3. The result set is generated by calling SQLExecDirect, SQLExecute or the catalog function.

4. The data is retrieved by calling SQLFetch or SQLFetchScroll.

Deleing Data Using SQLSetPos

An application calls SQLSetPos with RowNumber set to the number of the row to delete and calls operati

on set to SQL_DELETE, to delete data by using SQLSetPos.

After the data is deleted, the driver changes the value in the implementation row status array for the app

ropriate row to SQL_ROW_DELETED (or SQL_ROW_ERROR).

Updating Data Using SQLSetPos

The application can pass the data to the column through one of the bound buffer or once or more SQLPu

tData calls. Columns whose data is passed with SQLPutData are known as data-at-execution columns. Us

ually it may be used to transfer data to SQL_LONGVARBINARY and SQL_LONGVARCHAR and it can be m

ixed with other columns.

2,736 | ODBC

Updating Data Using SQLSetPos in Application

1. Place value in the data and length/indicator buffer bound with SQLBindCol.

● For general columns, the application positions the new column value in *TargetValuPtr buffer and th

e value length in *StrLen_or_IndPtr buffer. If the row should not be updated, the application position

s SQL_ROW_IGNORE in the row element in the row operation array.

● For data-at-execution columns, the application positions an application-defined value, such as the col

umn number, in the *TargetValuePtr buffer. The value can be used later to identify the column.

The application positions the macro result of SQL_LEN_DATA_AT_EXEC(length) in *StrLen_or IndPtr

buffer. If the SQL data type of the column is SQL_LONGVARBINARY, SQL_LONGVAR_CHAR or the so

urce-defined long data type and the driver returns Y to SQL_NEED_LONG_DATA information type of

SQLGetInfo, length is the number of bytes to be sent to the parameter. Otherwise, it is not a negative

and it should be ignored.

2. Call SQLSetPos with the operation argument set to SQL_UPDATE to update the row of data.

● If data-at-execution columns do not exist, the processing is completed.

● If data-at-execution columns exist, the function returns SQL_NEED_DATA and proceeds the step 3.

3. Call SQLParamData to retrieve the address of *TargetValuePtr buffer for the first data-at-execution c

olumn to be processed. SQLParamData returns SQL_NEED_DATA. The application retrieves the appli

cation-defined value in *TargetValuPtr buffer.

Note

● Though data-at-execution parameter is similar to the data-at-execution column, but each valu

e which is returned by SQLParamData is different.

● Data-at-execution parameters are parameters in an SQL statement for which data will be sent

with SQLPutData when the statement is executed with SQLExecDirect or SQLExecute. They ar

e bound to SQLBindParameter or SQLSetDescRec by setting the descriptors. The value which i

s returned by SQLParamData is the 32 bits value and it is sent to SQLBindParameter of Parame

terValuePtr argument.

● Data-at-execution columns are columns in a row set for which data will be sent with SQLPutD

ata when a row is updated with SQLSetPos. They are bound with SQLBindCol. The value retur

ned by SQLParamData is the address of the row in the *TargetValuePtr buffer which is being

ODBC API References | 2,737

processed.

4. Call SQLPutData once or more times to transfer data to the column. If all data values can not be retu

rned in *TargetValuePtr buffer specified in SQLPutData, multiple calls are needed. Only when the ch

aracter data of C language is sent to the column with a character, binary or a data source data type,

or when the binary data of C language is sent to to the column with a character, binary or a data so

urce data type, then multiple calls of SQLPutData are allowed for the same column.

5. Call SQLParamData again to indicate all data are sent to the column.

● If more data-at-execution columns exist, then SQLParamData returns SQL_NEED_DATA and the addr

ess of the TargetValuePtr buffer for the next data-at-execution column to be processed. The applicati

on repeats the steps 4 and 5.

● If data-at-execution columns do not exist any more, then the processing is completed. If the stateme

nt is successfully executed, SQLParamData returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. If ex

ecution is failed, SQL_ERROR is returned. At this point, SQLParamData returns any SQLSTATE which c

an be returned by SQLSetPos.

If the data is updated, the driver changes the value in the implementation row status array for the approp

riate row to SQL_ROW_UPDATED.

If the operation is canceled or an error occurs in SQLParamData or SQLPutData, after SQLSetPos returns S

QL_NEED_DATA and before data is transferred for all data-at-execution columns, the application can call

only SQLCancel, SQLGetDiagField, SQLGetDiagRec, SQLGetFunctions, SQLParamData, or SQLPutData for

the statement or the connection related to the statement. At this point, if another function is called, SQL

_ERROR and SQLSATATE HY010 (Function sequence error) are returned.

If the application calls SQLCancel while the driver still needs the data of data-at-execution columns, the d

river cancels the operation. The application can call SQLSetPos again later. Cancellation does not affect th

e cursor state or the current cursor position.

When SELECT-list of the query specification related to the cursor includes one or more references in the s

ame column, the driver defines whether an error occurs or the driver ignores the duplicated reference an

d implements the requested operation.

Executing the Bulk Operation

If the RowNumber argument is 0, the driver performs the operation specified in the operation argument f

or every row in the rowset which has a value of SQL_ROW_PROCEED in its field in the row operation arra

y pointed to by SQL_ATTR_ROW_OPERATION_PTR statement attribute. This is a valid value of the RowNu

mber argument for an operation argument of SQL_DELETE, SQL_REFRESH, or SQL_UPDATE, but not SQL

_POSITION. SQLSetPos with an operation of SQL_POSITION and a RowNumber equal to 0 will return SQL

STATE HY109 (Invalid cursor position).

2,738 | ODBC

If an error occurs in the entire row set, such as SQLSTATE HYT00 (Timeout expired), the driver returns SQ

L_ERROR and the appropriate SQLSTATE. The contents of the row set buffers are undefined, and the curs

or position is unchanged.

If an error occurs in a single row, the driver performs the followings.

● It sets the row element in the row status array pointed by SQL_ATTR_ROW_STATUS_PTR statement a

ttribute to SQL_ROW_ERROR.

● It adds one or more SQLSTATE to an error in the error queue, and sets SQL_DIAG_ROW_NUMBER fie

ld of the diagnostic data structure.

If the driver completes the remaining row operation in the row set after an error or warning is processed,

SQL_SUCCESS_WITH_INFO is returned. Therefore, the error queue includes zero or more SQLSTATE for t

he rows which return the errors. The driver stops the operation after processing an error or warning and r

eturns SQL_ERROR.

If the driver returns a warning such as SQLSTATE 01004 (Data truncated), then the driver returns a warni

ng applied to the entire row set or unknown rows in the row set before returning the error information w

hich is applied to a specific row. It returns warnings for specific rows together with other error informatio

n about those rows.

If RowNumber is 0 and operation is SQL_UPDATE, SQL_REFRESH or SQL_DELETE, then the number of ro

ws on which SQLSetPos operates is set by SQL_ATTR_ROWS_FETCHED_PTR statement attribute.

If RowNumber is 0 and the operation is SQL_DELETE, SQL_REFRESH or SQL_UPDATE, then the current ro

w after the operation is as same as the row before the operation.

Ignoring Rows in the Bulk Operation

The row operation array can be used to specify the row which should be ignored in the current row set d

uring the bulk operation with SQLSetPos. The application should perform the following steps to make the

driver ignore one or more rows in the driver during the bulk operation.

1. It calls SQLSetStmtAttr to set the SQL_ATTR_ROW_OPERATION_PTR statement attribute to point to

an array of SQLUSMALLINTs. This field can also be set by calling SQLSetDescField to set the SQL_DES

C_ARRAY_STATUS_PTR header field of the ARD, which requires that an application obtains the desc

riptor handle.

2. It sets each element in the row operation array to one of the following values.

● Setting to SQL_ROW_IGNORE it indicates that the row is excluded in the bulk operation.

● Setting to SQL_ROW_PROCEED it indicates that the row is included in the bulk operation.

3. It performs the bulk operation by calling SQLSetPos.

The following rules are applied to the row operation array.

ODBC API References | 2,739

● SQL_ROW_IGNORE and SQL_ROW_PROCEED affect only bulk operations using SQLSetPos with an o

peration of SQL_DELETE or SQL_UPDATE. They do not affect calling SQLSetPos with an operation of

SQL_REFRESH or SQL_POSITION.

● The pointer is set to NULL by default.

● If the pointer is NULL, then all rows are updated like as all elements are set to SQL_ROW_PROCEED.

● Setting the element to SQL_ROW_PROCEED does not guarantee occurrance of the operation in a par

ticular row. If a certain row in the row set has the SQL_ROW_ERROR status, the driver can not updat

e that row regardless of whether the application specified SQL_ROW_PROCEED. The application sho

uld always check the row status array to see whether the operation was successful.

● SQL_ROW_PROCEED is defined as 0 in the header file. The application can initialize the row operatio

n array to 0 to process all rows.

● If the n-th element of the row status array is set to SQL_ROW_IGNORE and the bulk update or delete

operation is executed by calling SQLSetPos, the n-th row in the row set remains unchanged after calli

ng SQLSetPos.

● The application should automatically set a read-only column to SQL_ROW_IGNORE.

Ignoring Columns in the Bulk Operation

The application can set the value in the bound length/indicator buffer to SQL_COLUMN_IGNORE so that i

t can avoid unnecessary processing diagnostics caused by attempting to update one or more read-only co

lumns. For more information, refer to SQLBindCol.

2,740 | ODBC

SQLSetScrollOptions

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLSetScrollOptions function in ODBC 2.0 is replaced with calling SQLGetInfo and SQLSetStmtAttr in OD

BC 3.x.

Note

When the driver manager maps SQLSetScrollOptions for the application which operates with ODB

C 3.x driver which does not support SqlSetScrollOptions, the driver manager sets SQL_ROW_SET_

SIZE statement option, not the SQL_ATTR_ROW_ARRAY_SIZE statement attribute in RowsetSize a

rgument of SQLSetScrollOptins. As a result, SQLSetScrollOptions can not be used by an applicatio

n when fetching multiple rows by calling SQLFetch or SQLFetchScroll, and it can be used only whe

n fetching multiple rows by calling SQLExtendedFetch.

ODBC API References | 2,741

SQLSetStmtAttr

Conformance

Introduced version: ODBC 3.0

Standards compliance: ISO 92

Overview

SQLSetStmtAttr sets the attributes related to the statements.

Syntax

SQLRETURN SQLSetStmtAttr(

SQLHSTMT StatementHandle,

SQLINTEGER Attribute,

SQLPOINTER ValuePtr,

SQLINTEGER StringLength);

Arguments

StatementHandle

[Input] It is the statement handle.

Attribute

[Input] It is the option to be set. For more information, refer to the Description section.

ValuePtr

[Input] It is the value which is related to the attribute. ValutPtr can be one of the followings accordi

ng to the attribute value.

• ODBC descriptor handle

• SQLUINTEGER value

• SQLULEN value

• One of the following pointers

° Null-termination character string

° Binary buffer

° SQLLEN, SQLULEN, SQLUSMALLINT values or the array of values

° Driver-defined value

2,742 | ODBC

If Attribute argument is the driver-specific value, ValuePtr may be an integer.

StringLength

[Input] If an attribute is an ODBC-defined attribute and ValuePtr points to a string or binary buffer,

the argument is the length of *ValuePtr. If Attribute is a ODBC-defined attribute and ValuePtr is an

integer, the argument is ignored. StringLength may have one of the following values.

If Attribute is a driver-defined attribute, the application indicates the nature of the attribute to the

driver manager by setting StringLength argument.

• If ValuePtr is a string pointer, Stringlength is the string length or SQL_NTS.

• If ValuePtr is a binary buffer, the application stores SQL_LEN_BINARY_ATTR (length) macro resul

t in StringLength. StringLength has a negative value.

• If ValuePtr is a pointer of a different value other than a string or a binary buffer, StringLength m

ust have SQL_IS_POINTER value.

• If ValuePtr includes a fixed length value, StringLength is SQL_IS_INTEGER or SQL_IS_UINTEGER.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQL_SU

CCESS_WITH_INFO.)

01S02
Option value cha

nged

It is temporarily replaced with a similar value because the driver does not su

pport the value specified in ValuePtr or the value specified in ValuePtr is inva

lid due to the implementation working conditions. (SQLGetStmtAttr can be

called to see which value is temporarily replaced.) The replaced value is valid

for the StatementHandle until the cursor is closed, and it is changed to the

previous value when the cursor is closed. The statement attributes which ca

n be changed are as follows.

SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE, SQL_ATTR_KEYSET

_SIZE, SQL_ATTR_MAX_LENGTH, SQL_ATTR_MAX_ROWS, SQL_ATTR_QUE

RY_TIMEOUT, SQL_ATTR_ROW_ARRAY_SIZE, SQL_ATTR_SIMULATE_CURS

OR.

(The function returns SQL_SUCCESS_WITH_INFO.)

08S01
Communication l

ink failure

Before the function processing is completed, the connection between the dr

iver and the data source is failed.

24000
Invalid cursor stat

e

Attribute is SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE, SQL_A

TTR_SIMULATE_CURSOR or SQL_ATTR_USE_BOOKMARKS, and the cursor i

s open.

ODBC API References | 2,743

HY000 General error

It is an error without specific SQLSTATE, and the error message returned by

SQLGetDiagRec in *MessageText buffer describes error message and its cau

se.

HY001
Memory allocatio

n error

The driver can not allocate the memory required for execution or completio

n of the function.

HY009
Invalid use of null

pointer

The statement attribute which is identified by Attribute argument requires t

he string attribute, and ValuePtr argument is a NULL pointer.

HY010
Function sequenc

e error

The asynchronously executing function is called for the connection handle r

elated to StatementHandle, and this function is still being executed when S

QLSetStmtAttr is called.

SQLExecute, SQLExecDirect or SQLMoreResults are called for StatementHan

dle, and SQL_PARAM_DATA_AVAILABLE is returned. This function is called

before the data is returned for the streamed parameters.

The asynchronously executing function is called for StatementHandle, and is

still being executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called for

StatementHandle, and SQL_NEED_DATA is returned. This function is called

before data is sent for all data-at-execution parameters or columns.

HY011
Attribute cannot

be set now

Attribute is SQL_ATTR_CONCURRENCY, SQL_ATTR_CURSOR_TYPE, SQL_A

TTR_SIMULATE_CURSOR or SQL_ATTR_USE_BOOKMARKS, and the statem

ent is prepared.

HY013
Memory manage

ment error

The function is not executed because the underlying memory object can not

be accessed because of the low memory condition.

HY017

Invalid use of an

automatically allo

cated descriptor

handle

Attribute argument is SQL_ATTR_IMP_ROW_DESC or SQL_ATTR_IMP_PAR

AM_DESC.

Attribute argument is SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PAR

AM_DESC, and the value in ValuePtr is an implicitly allocated descriptor han

dle other than the handle originally allocated for the ARD or APD.

HY024
Invalid attribute v

alue

Considering the specified Attribute value, the value in ValuePtr is invalid. (T

he driver manager returns this SQLSTATE only for the statement attribute an

d connection which allows the separate set such as SQL_ATTR_ACCESS_M

ODE or SQL_ATTR_ASYNC_ENABLE. The driver should verify the value in Val

uePtr for other connection and statement attribute.)

Attribute argument is SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PAR

AM_DESC, and ValuePtr is an explicitly allocated descriptor handle which is

not on the same connection as the StatementHandle argument.

HY090
Invalid string or b

uffer length
*ValuePtr is a string and StringLength is smaller than 0. (It is not SQL_NTS.)

SQLSTATE Error Description

2,744 | ODBC

HY092
Invalid attribute/

option identifier

The value specified for the Attribute argument is invalid for the version of O

DBC supported by the driver.

The value which is specified in Attribute is the read-only attribute.

HY117

Connection is sus

pended due to u

nknown tracsacti

on state. Only dis

connect and read

-only functions ar

e allowed

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature

not implemented

The value which is specified in Attribute argument is valid in ODBC version s

upported by the driver but it is not supported by the driver.

Attribute argument is SQL_ATTR_ASYNC_ENABLE. When SQLGetInfo is call

ed in InforType with SQL_ASYNC_MODE, then SQL_AM_CONNECTION is re

turned.

Attribute argument is SQL_ATTR_ENABLE_AUTO_IPD, and the value of SQL

_ATTR_AUTO_IPD connection attribute is SQL_FALSE.

HYT01
Connection time

out expired

The connection timeout period is expired before the data source response t

o the request. The connection timeout period can be set via SQLSetConnect

Attr of SQL_ATTR_CONNECTION_TIMEOUT.

IM001

Driver does not s

upport this functi

on

The driver does not support the function.

S1118

Driver does not s

upport asynchron

ous notification

When calling SQLSetStmtAttr to set SQL_ATTR_ASYNC_STMT_EVENT the d

river does not support the asynchronous notification.

SQLSTATE Error Description

Description

The statement attribute is updated by calling SQLSetStmtAttr or it remains effective until the statement is

deleted by SQLFreeHandle. Calling SQLFreeStmt with SQL_CLOSE, SQL_UNBIND or SQL_RESET_PARAMS

option does not reset the statement attribute.

Some statements attributes is replaces with a similar value if the driver does not support the value specifie

d in ValuePtr. The driver returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed

) for these cases. For example, if attribute is SQL_ATTR_CONCURRENCY and ValuePtr is SQL_CONCUR_R

OWVER and the data source does not support it, the driver replace it with SQL_CONCUR_VALUES and ret

urns SQL_SUCCESS_WITH_INFO. The application calls SQLGetStmtAttr to obtain the replaced value.

The format of information set with ValuePtr depends on the value specified in Attribute. SQLSetStmtAttr

ODBC API References | 2,745

accepts one of attribute information types such as a different character string or integer. Each type is des

cribed in the description of the attribute. The type is applied to the information returned for each attribut

e in SQLGetStmtAttr. The length of the character string pointed to by the ValuePtr argument of SQLSetSt

mtAttr is StringLength.

Note

● The feature whose statement attribute is set at the connection level by calling SQLSetConnect

Attr may disappear in ODBC 3.x. The ODBC 3.x application should not set the statement attrib

ute at the connection level. The ODBC 3.x statement attribute can not be set at the connectio

n level except for SQL_ATTR_METADATA_ID, and SQL_ATTR_ASYNC_ENABLE attribute is bot

h the connection attribute and the statement attribute, and it can be set at the connection lev

el and the statement level.

● ODBC 3.x driver requires the option feature which sets the driver version to ODBC 2.x at the c

onnection level if the driver should operate with the ODBC 2.x application.

Statement Attribute to Set the Descriptor Field

Many statement attributes correspond to the header fields of the descriptor. Setting these attributes is th

e same result with setting the descriptor fields. Setting fields by calling SQLSetStmtAttr rather than calling

SQLSetDescField has the advantage that a descriptor handle does not have to be obtained for the functio

n call.

Caution

Calling SQLSetStmtAttr in a single statement may affect other statements. It happens when APD o

r ARD is explicitly assigned to the statement and it is related to other statements. SQLSetStmtAttr i

s applied to all statements related to this descriptor because it modifies APD or ARD. If it is not req

uired operation, the application should separate this descriptor with other statements (by calling S

QLSetStmtAttr to set the SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC field to a

different descriptor handle) before calling SQLSetStmtAttr again.

When the descriptor field is set as a result of the corresponding statement attribute being set, the field is

2,746 | ODBC

set only for the applicable descriptors which are currently related to the statement identified by the State

mentHandle argument, and the attribute setting does not affect any descriptor of the related statement i

n the future. When the descriptor field which is related to the statement handle is set to SQLSetDescField,

the corresponding statement attribute is also set. If an explicitly allocated descriptor is dissociated from a

statement, a statement attribute which corresponds to a header field will revert to the value of the field i

n the implicitly allocated descriptor.

When the statement is allocated, four descriptor handles are automatically allocated and is related to the

statement. Explicitly allocated descriptor handles can be associated with the statement by calling SQLAllo

cHandle with an HandleType of SQL_HANDLE_DESC to allocate a descriptor handle and then calling SQLS

etStmtAttr to associate the descriptor handle with the statement.

The following is the statement attributes corresponding to the descriptor header field.

Statement attribute Header field Description

SQL_ATTR_PARAM_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR APD

SQL_ATTR_PARAM_BIND_TYPE SQL_DESC_BIND_TYPE APD

SQL_ATTR_PARAM_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR APD

SQL_ATTR_PARAM_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IPD

SQL_ATTR_PARAMS_PROCESSED_PTR SQL_DESC_ROWS_PROCESSED_PTR IPD

SQL_ATTR_PARAMSET_SIZE SQL_DESC_ARRAY_SIZE APD

SQL_ATTR_ROW_ARRAY_SIZE SQL_DESC_ARRAY_SIZE ARD

SQL_ATTR_ROW_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR ARD

SQL_ATTR_ROW_BIND_TYPE SQL_DESC_BIND_TYPE ARD

SQL_ATTR_ROW_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR ARD

SQL_ATTR_ROW_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IRD

SQL_ATTR_ROWS_FETCHED_PTR SQL_DESC_ROWS_PROCESSED_PTR IRD

Statement Attributes

The following table describes currently defined attributes and the version of ODBC in which they were int

roduced.

Attribute ValuePtr contents

SQL_ATTR_APP_PARAM_

DESC

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_APP_ROW_DES

C

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_ASYNC_ENABL

E

(ODBC 1.0)

It is not supported by the driver.

ODBC API References | 2,747

SQL_ATTR_ASYNC_STMT_

EVENT

(ODBC 3.8)

It is not supported by the driver.

SQL_ATTR_ASYNC_STMT_

PCALLBACK

(ODBC3.8)

It is not supported by the driver.

SQL_ATTR_ASYNC_STMT_

PCONTEXT

(ODBC 3.8)

It is not supported by the driver.

SQL_ATTR_ATOMIC_EXEC

UTION

SQLUSMALLINT: It is whether an atomic insert operation is operable.

● SQL_ATOMIC_EXECUTION_OFF

● SQL_ATOMIC_EXECUTION_ON

SQL_ATTR_CONCURRENC

Y

(ODBC 2.0)

The default value of SQL_ATTR_CONCURRENCY is SQL_CONCUR_READ_ONLY.

● SQLULEN: It is the value which specifies the cursor concurrency.

○ SQL_CONCUR_READ_ONLY: The cursor is read-only and the update is not a

llowed.

○ SQL_CONCUR_LOCK: The cursor uses the minimum level locking enough to

completely update the row.

○ SQL_CONCUR_ROWVER: The cursor uses the concurrency to control and co

mpare the row version, such as SQLBase ROWID or Sybase TIMESTAMP.

○ SQL_CONCUR_VALUES: The cursor uses the concurrency to control and co

mpare the values.

If SQL_ATTR_CURSOR_TYPE attribute is changed to the value which is not supported

in SQL_ATTR_CONCURRENCY, the value of SQL_ATTR_CONCURRENCY may be chan

ged at the execution time and a warning may occur when SQLExecDirect or SQLPrepa

re is called.

While the driver supports SELECT FOR UPDATE statement and the statement is execut

ed, an error occurs if SQL_ATTR_CONCURRENCY is changed to SQL_CONCUR_READ_

ONLY. If SQL_ATTR_CONCURRENCY value is changed to SQL_ATTR_CURSOR_TYPE v

alue which is supported by the driver, or to the value not supported by the driver, SQL

_ATTR_CURSOR_TYPE value is changed at the execution time, and SQLSTATE 01S02

(Option value changed) may be returned when SQLExecDirect or SQLPrepare is execu

ted.

If the specified concurrency is not supported by the data source, the driver replaces it

with other concurrency and returns SQLSTATE 01S02 (Option value changed). The dri

ver replaces SQL_CONCUR_VALUES with SQL_CONCUR_ROWVER, or reverse. Also, S

QL_CONCUR_LOCK is replaced with SQL_CONCUR_ROWVER, SQL_CONCUR_VALUE

S order. The validity of the replaced value is not confirmed until the execution time.

This attribute specifies whether a cursor should be held after the transaction ends, usi

Attribute ValuePtr contents

2,748 | ODBC

SQL_ATTR_CURSOR_HOLD

ABLE

ng a SQLULEN type value.

● SQL_NONHOLDABLE: The cursor is discarded when the transaction ends and can

no longer be used. In other words, the cursor's lifetime is limited to the current t

ransaction.

● SQL_HOLDABLE: The cursor is held after the transaction ends and can still be us

ed. The cursor's lifetime extends beyond the transaction boundary.

The default value is SQL_HOLDABLE. Setting this attribute will affect subsequent calli

ng of SQLExecDirect or SQLExecute.

SQL_ATTR_CURSOR_SCRO

LLABLE

(ODBC 3.0)

This attribute specifies the level of cursor support required by the application, using a

SQLULEN type value. Setting this attribute will affect subsequent calling of SQLExecDi

rect and SQLExecute.

● SQL_NONSCROLLABLE: This is the default value. It indicates that a scrollable curs

or is not required for the statement handle. When the application calls SQLFetch

Scroll on this handle, the only valid value for FetchOrientation is SQL_FETCH_NE

XT.

● SQL_SCROLLABLE: This value indicates that a scrollable cursor is required for the

statement handle. When the application calls SQLFetchScroll, it can specify any v

alid value for FetchOrientation, allowing the cursor to move in ways other than s

equential mode.

SQL_ATTR_CURSOR_SENSI

TIVITY

(ODBC 3.0)

This attribute specifies whether the cursor for the statement handle reflects changes

made to the result set by other cursors (i.e., whether the changes are visible). It uses a

SQLULEN type value. Setting this attribute will affect subsequent calling of SQLExecDi

rect and SQLExecute. The application can read the value of this attribute to check the

initial state or the most recently set state.

● SQL_UNSPECIFIED: This is the default value. It indicates that whether the cursor

reflects changes made to the result set by other cursors is unspecified. The curso

r for this statement handle may or may not reflect changes from other cursors, a

nd may reflect some or all of those changes.

● SQL_INSENSITIVE: This value indicates that the cursor for the statement handle d

isplays data that does not reflect changes made to the result set by other cursors.

An insensitive cursor is read-only. This corresponds to a static cursor with read-o

nly concurrency.

● SQL_SENSITIVE: This value indicates that the cursor for the statement handle dis

plays data that reflects changes made to the result set by other cursors.

SQL_ATTR_CURSOR_TYPE (ODBC 2.0)

This attribute specifies the type of cursor using a SQLULEN value:

Attribute ValuePtr contents

ODBC API References | 2,749

SQL_ATTR_CURSOR_TYPE

(ODBC 2.0) ● SQL_CURSOR_FORWARD_ONLY: The cursor can only move forward (forward-on

ly).

● SQL_CURSOR_STATIC: The data in the result set is static.

● SQL_CURSOR_KEYSET_DRIVEN: The driver stores and uses keys for the number

of rows specified by the SQL_ATTR_KEYSET_SIZE statement attribute.

● SQL_CURSOR_DYNAMIC: The driver stores and uses keys for only the rows curre

ntly in the rowset.

The default value is SQL_CURSOR_FORWARD_ONLY. Once a SQL statement is prepar

ed, this value cannot be changed.

If the specified cursor type is not supported by the data source, the driver will substitu

te it with another cursor type and return SQLSTATE 01S02 (Option value changed). If

mixed or dynamic cursors are not supported, the driver will first attempt to substitute

with a keyset-driven cursor, and if that is also not supported, it will substitute with a s

tatic cursor. Similarly, if keyset-driven cursors are not supported, the driver will substit

ute with a static cursor.

SQL_ATTR_ENABLE_AUTO

_IPD

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_EXPLAIN_PLAN

_OPTION

SQLUSMALLINT: Whether to create the plan information.

● SQL_EXPLAIN_PLAN_OFF: Plan information is not generated.

● SQL_EXPLAIN_PLAN_ON: The SQL statement is performed and plan information

is generated.

● SQL_EXPLAIN_PLAN_ONLY: The SQL statement is not performed and plan infor

mation is generated.

SQL_ATTR_EXPLAIN_PLAN

_TEXT
It is the generated plan string. (read-only)

SQL_ATTR_FETCH_BOOK

MARK_PTR

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_FETCH_FAILOV

ER

SQLUSMALLINT: It is whether to use fetch failover.

● SQL_FETCH_FAILOVER_OFF: It does not use fetch failover.

● SQL_FETCH_FAILOVER_ON: It uses fetch failover.

SQL_ATTR_IMP_PARAM_D

ESC

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_IMP_ROW_DES

C

(ODBC 3.0)

It is not supported by the driver.

Attribute ValuePtr contents

2,750 | ODBC

SQL_ATTR_KEYSET_SIZE

(ODBC 2.0)
It is not supported by the driver.

SQL_ATTR_MAX_LENGTH

(ODBC 1.0)
It is not supported by the driver.

SQL_ATTR_MAX_ROWS

(ODBC 1.0)

● SQLULEN: It is the value corresponding to the maximum number of rows returne

d by SELECT statement. If *ValuePtr is equal to 0, the driver returns all rows.

The purpose of this attribute is to reduce the network traffic. Notionally, it is applied

when the result set is generated, and it limits the result set of the first ValuePtr rows. I

f the number of rows in the result set are bigger than ValuePtr, the result set is reduce

d.

SQL_ATTR_MAX_ROWS is applied to all result set of the statement including those w

hich are returned by the catalog functions. SQL_ATTR_MAX_ROWS sets the maximu

m number of cursor rows.

If it is not sure if the SQL_ATTR_MAX_ROWS is to be properly implemented (If the lim

it of the result set size can not be implemented in the data source), the driver should

not emulate the SQL_ATTR_MAX_ROWS operation for SQLFetch or SQLFetchScroll.

The driver defines whether SQL_ATTR_MAX_ROWS is applied to the statements exce

pt for SELECT statement (such as the catalog functions).

The attribute value is set on the cursor which is open. But it would not be immediately

effective. In this case, the driver returns SQLSTATE 01S02 (Option value changed) and

sets the attribute to its original value.

SQL_ATTR_METADATA_ID

(ODBC 3.0)

● SQLULEN: It is the value which specifies the way to process the string arguments

of the catalog functions.

If it is SQL_TRUE, catalog functions treats a string argument as an identifier. It is not c

ase-sensitive. The driver removes the trailing spaces of the string whose range is not d

etermined and converts them to uppercase. The driver removes the leading and trailin

g spaces of the strings whose range is determined and takes the string literally betwe

en delimiters. If one of the argument is set to a NULL pointer, the function returns SQ

L_ERROR and SQLSTATE HY009. (Invalid use of null pointer).

If it is SQL_FALSE, catalog functions does not treat a string argument as an identifier. I

t is case-sensitive. They can either include a string search pattern or not, depending o

n the argument.

The default value is SQL_FALSE.

It is the TableType argument of SQLTables which takes a list of values, is not affected

by this attribute.

Attribute ValuePtr contents

ODBC API References | 2,751

SQL_ATTR_METADATA_ID can be set in the connection level. (SQL_ATTR_METADAT

A_ID and SQL_ATTR_ASYNC_ENABLE are unique, and they are the statement attribut

es and at the same time they are the connection attributes.)

For more information, refer to Arguments of Catalog Function.

SQL_ATTR_NOSCAN

(ODBC 1.0)
It is not supported by the driver.

SQL_ATTR_PARAM_BIND_

OFFSET_PTR

(ODBC 3.0)

● SQLULEN*: It is the value which indicates the offset added to a pointer to chang

e the binding of the dynamic parameters. If the field is not NULL, the driver dere

ferences the pointer and adds the dereferenced value to each of the deferred fie

lds in the descriptor record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR,

and SQL_DESC_OCTET_LENGTH_PTR), and it uses a new pointer value when bin

ding. The default value is set to NULL.

The bind offset is always directly added to SQL_DESC_DATA_PTR, SQL_DESC_INDICA

TOR_PTR, SQL_DESC_OCTET_LENGTH_PTR fields. If the offset is changed to a differe

nt value, the new value is still directly added to the descriptor field value. A new offset

is not added to the field value plus previous offsets.

Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR field in the AP

D header.

SQL_ATTR_PARAM_BIND_

TYPE

(ODBC 3.0)

● SQLULEN: It represents the binding direction used for the dynamic parameter.

The field is set to SQL_PARAM_BIND_BY_COLUMN which is for the column-wise bind

ing. (The default value)

To select the row-wise binding, the field is set to the structure length or the buffer ins

tance which is bound to the dynamic parameter set . If the length includes the space f

or the padding of all the bound parameter and structure or the address of the bound

parameter is increased to the specified length, the result should be buffered to point t

o the beginning of the next parameter. Using sizeof operator of ANSI C guarantees th

is operation.

Setting this statement attribute sets the SQL_DESC_BIND_TYPE field in the APD head

er.

SQL_ATTR_PARAM_OPER

ATION_PTR

● SQLUSMALLINT*: It is the value which points to an array of SQLUSMALLINT valu

es used to ignore the parameter while executing the SQL statement. Each value i

s SQL_PARAM_PROCEED (to execute the parameter) or SQL_PARAM_IGNORE (t

o ignore the parameter).

The parameter set can be ignored during the process if it sets the status value of the a

rray pointed by SQL_DESC_ARRAY_STATUS_PTR in APD. The parameter set is process

Attribute ValuePtr contents

2,752 | ODBC

(ODBC 3.0) ed only if the status value is SQL_PARAM_PROCEED or the the array element is not se

t.

The statement attribute can be set to a NULL pointer. In this case, the driver does not

return the parameter status value. The attribute can be set at any time, but a new val

ue is not used until the next SQLExecDirect or SQLExecute is called.

If the bound parameter does not exist, the attribute is ignored.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR field in the

APD header.

SQL_ATTR_PARAM_STATU

S_PTR

(ODBC 3.0)

● SQLUSMALLINT*: It is the value which points to SQLUSMALLINT array value inclu

ding the status information value of each of the rows of the parameter value aft

er calling SQLExecute or SQLExecDirect. The field is required only when PARAMS

ET_SIZE is bigger than 1. The status value may include the following values.

○ SQL_PARAM_SUCCESS: The SQL statement is successfully executed for the

parameter set.

○ SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement is successfully exec

uted for the parameter set, but warning information is in the diagnostic dat

a structure.

○ SQL_PARAM_ERROR: An error occurs when processing the parameter set.

Additional error information is in the diagnostic data structure.

○ SQL_PARAM_UNUSED: The parameter set is not used because some previo

us parameter set caused an error which aborted further processing, or beca

use SQL_PARAM_IGNORE is set for the parameter set in the array specified

by the SQL_ATTR_PARAM_OPERATION_PTR.

○ SQL_PARAM_DIAG_UNAVAILABLE: The driver treats the parameter arrays in

a monolithic unit because it does not generate the error information level.

The statement attribute can be set to a NULL pointer, and the driver does not return t

he status value of the parameter. The attribute can be set at any time. But a new valu

e is not used until the next SQLExecDirect or SQLExecute is called. Setting the attribut

e can affect the operation that outputs the parameter to the driver.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR field in the I

PD header.

SQL_ATTR_PARAMS_PRO

CESSED PTR

(ODBC 3.0)

● SQLULEN*: It is the record field which points to the buffer returning the number

of parameter sets processed and it includes the error set. If it is a NULL pointer, i

t is not returned.

Setting this statement attribute sets SQL_DESC_ROWS_PROCESSED_PTR field of IPD

header.

If SQLExecDirect or SQLExecute that fills the buffer specified in the attribute does not

Attribute ValuePtr contents

ODBC API References | 2,753

return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the buffer content is not defined.

SQL_ATTR_PARAMSET_SIZ

E

(ODBC 3.0)

● SQLULEN: It is the value which specifies the number of each of the parameter va

lues. If SQL_ATTR_PARAMSET_SIZE is bigger than 1, SQL_DESC_DATA_PTR, SQL

_DESC_INDICATOR_PTR, SQL_DESC_OCTET_LENGTH_PTR of APD point to the a

rray. Each array constant is equal to the value of the field.

If the bound parameter does not exist, the attribute is ignored.

Setting this statement attribute sets SQL_DESC_ARRAY_SIZE field of APD header.

SQL_ATTR_PREFETCH_RO

WS

This attribute specifies the number of rows the driver will prefetch in a single fetch op

eration, using a SQLULEN type value.

The default value is 1000. Increasing this value can reduce the number of network ro

und-trips, potentially improving performance, but it may increase memory usage. Con

versely, decreasing this value reduces memory usage but may increase the number of

network round-trips.

This attribute can be set after SQLExecute or SQLExecDirect. When SQLFetch or SQLF

etchScroll is called afterward, the driver will prefetch the specified number of rows. Ev

en if a fetch operation has already been performed on the statement handle, the new

setting will be applied starting from the next fetch operation.

SQL_ATTR_QUERY_TIMEO

UT

(ODBC 1.0)

● SQLULEN: The value of seconds that waits before the SQL statement is executed

and returned to the application. If ValuePtr is 0 (the default value), timeout does

not occur.

If the specified time out value exceeds the maximum value of the data source or small

er than the minimum value of the data source, SQLSetStmtAttr replaces the value and

returns SQLSTATE 01S02 (Option value changed).

Even if SELECT statement is timeout the application does not need to call SQLCloseCu

rsor to reuse the statement.

Setting the query timeout of the statement attribute is valid for both synchronous and

asynchronous modes.

SQL_ATTR_RETRIEVE_DAT

A

(ODBC 2.0)

It is not supported by the driver.

SQL_ATTR_ROW_ARRAY_

SIZE

(ODBC 3.0)

● SQLULEN: It is the value which specifies the number of rows returned by calling

SQLFetch or SQLFetchScroll. It is also the number of rows of the bookmark array

which is used in the bulk bookmark operation of SQLBulkOperations. The defaul

t value is 1.

If the specified row set size exceeds the maximum row set size supported by the data

Attribute ValuePtr contents

2,754 | ODBC

source, the driver replaces the value and returns SQLSTATE 01S02 (Option value chan

ged).

Setting this statement attribute sets SQL_DESC_ARRAY_SIZE field of ARD header.

SQL_ATTR_ROW_BIND_OF

FSET_PTR

(ODBC 3.0)

● SQLULEN: It is the value which points the added offset value to indicate the cha

nge of the column data binding. If the field is not NULL, the driver dereferences

the pointer and adds the dereference value to each field in the descriptor record

(SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, SQL_DESC_OCTET_LENGT

H_PTR) and uses a new pointer value when it is bound. The default value is NUL

L.

Setting this statement attribute sets SQL_DESC_BIND_OFFSET_PTR field of ARD head

er.

SQL_ATTR_ROW_BIND_TY

PE

(ODBC 1.0)

● SQLULEN: It is the value which sets the binding direction when SQLFetch or SQL

FetchScroll is called in the related statement. If SQL_BIND_BY_COLUMN value is

set, the column-wise binding is selected. If the value to length of a structure or a

n instance of a buffer into which result columns will be bound is set, the row-wi

se binding is selected.

If a length is specified, they should include space for all bound columns and any paddi

ng of the structure or buffer to ensure that when the address of a bound column is in

creased as the specified length, the result will point to the beginning of the same colu

mn in the next row. Using sizeof operator with the structure or union of ANSI C guara

ntees this operation.

The column-wise binding is the default binding direction of SQLFetch and SQLFetchSc

roll.

Setting this statement attribute sets SQL_DESC_BIND_TYPE field of ARD header.

SQL_ATTR_ROW_NUMBER

(ODBC 2.0)
It is not supported by the driver.

SQL_ATTR_ROW_OPERATI

ON_PTR

(ODBC 3.0)

It is not supported by the driver.

SQL_ATTR_ROW_STATUS_

PTR

(ODBC 3.0)

● SQLUSMALLINT*: It is the value which points to the SQLUSMALLINT array includi

ng the row status values after calling SQLFetch or SQLFetchScroll. The array has t

he elements as many as the number of rows included in the row set.

The statement attribute can be set to a NULL pointer, and the driver does not return t

he row status values in this case. The attribute can be set at any time, but a new value

is not used until the next call of SQLBulkOperations, SQLFetch, SQLFetchScroll or SQL

SetPos.

Attribute ValuePtr contents

ODBC API References | 2,755

Setting this statement attribute sets SQL_DESC_ARRAY_STATUS_PTR of IRD header.

The attribute is mapped to rgbRowStatus array of SQLExtendedFetch in ODBC 2.x driv

er.

SQL_ATTR_ROWS_FETCHE

D_PTR

(ODBC 3.0)

● SQLULEN*: It points to the buffer which returns the number of rows fetched aft

er calling SQLFetch or SQLFetchScroll. It is the number of rows affected by a bul

k operation performed by a call to SQLSetPos with an operation argument of SQ

L_REFRESH, or it is the number of rows affected by a bulk operation performed

by SQLBulkOperations. The number of rows includes the error rows.

Setting this statement attribute sets SQL_DESC_ROWS_PROCESSED_PTR field of the I

RD header.

When SQLFetch or SQLFetchScroll is called to fill the buffer pointed by the attribute, t

he contents of the buffer are not defined if SQL_SUCCESS or SQL_SUCCESS_WITH_IN

FO is not returned.

SQL_ATTR_SIMULATE_CU

RSOR

(ODBC 2.0)

It is not supported by the driver.

SQL_ATTR_USE_BOOKMA

RKS

(ODBC 2.0)

It is not supported by the driver.

SQL_ROWSET_SIZE (ODBC

2.0)

This attribute specifies the number of rows returned by a single SQLExtendedFetch cal

l. In other words, it is a 32-bit integer value that determines the size of the rowset.

The default value is 1. Setting this value to a number greater than 1 allows multiple ro

ws to be fetched in a single SQLExtendedFetch call, enabling the application to efficie

ntly handle large volumes of data.

This attribute can be set while the cursor is open.

This attribute applies only to the SQLExtendedFetch function. To specify the rowset si

ze for SQLFetch or SQLFetchScroll, the SQL_ATTR_ROW_ARRAY_SIZE attribute shoul

d be used.

Attribute ValuePtr contents

2,756 | ODBC

SQLSetStmtOption

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLSetStmtOption function in ODBC 2.0 is replaced with SQLSetStmtAttr in ODBC 3.x.

For more information, refer to SQLSetStmtAttr.

ODBC API References | 2,757

SQLSpecialColumns

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is open group.

Overview

SQLSpecialColumns function retrieves the following information for a column in the specified table.

• The optimal column set that uniquely identifies a row in the table

• The columns which are automatically updated when a row value is updated by the transaction

Syntax

SQLRETURN SQLSpecialColumns(

SQLHSTMT StatementHandle,

SQLSMALLINT IdentifierType,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3,

SQLSMALLINT Scope,

SQLSMALLINT Nullable);

Arguments

StatementHandle

[Input] It is the statement handle.

IdentifierType

[Input] It is the column type to return. It should be one of the following values.

• SQL_BEST_ROWID: It returns the optimal column or set of columns that, by retrieving values fro

m the column(s), allows any row in the specified table to be uniquely identified. The column may b

e a pseudo column for the special purpose (ROWID of ORACLE, TID of INGRES), a general column

or a column of a unique index on the table.

2,758 | ODBC

• SQL_ROWVER: It returns the column or columns in the specified table, if any, which are automa

tically updated by the data source when any value in the row is updated by any transaction.(such a

s in SQLBase ROWID or Sybase TIMESTAMP).

CatalogName

[Input] It is the table catalog. If the driver does not support the catalog, an empty string ("") is retur

ned and the tables do not have a catalog. The catalog name can not include a string search patter

n.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, CatalogName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, CatalogName is generally treated as an string argument

and it is case-sensitive. For more information, refer to Arguments of Catalog Function.

NameLength1

[Input] It is the length of *CatalogName string.

SchemaName

[Input] It is name of the table schema. It is the string search pattern for the schema name. If the dri

ver does not support the schema, it returns an empty string ("") and the tables do not have a sche

ma. SchemaName can not include a string search pattern .

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, SchemaName is an ordinary argument, it is treated literal

ly and it is case-sensitive.

NameLength2

[Input] It is the length of *SchemaName string.

TableName

[Input] It is name of the table. The argument can not be a NULL pointer. The table name can not in

clude a string search pattern.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, TableName is treated as an identifier and it is not

case-sensitive. If it is set to SQL_FALSE, TableName is an ordinary argument, it is treated literally, an

d it is case-sensitive.

NameLength3

[Input] It is the length of *TableName string.

Scope

[Input] It is minimum required scope of the rowid. The returned ROWID scope may be of a bigger s

cope. The value should be one of the followings.

• SQL_SCOPE_CURROW: The rowid is guaranteed to be valid only while it is positioned on that ro

w. If it is updated or deleted by another transaction, the used ROWID is not retrieved.

• SQL_SCOPE_TRANSACTION: The rowid is guaranteed to be valid while the current transaction is

maintained.

• SQL_SCOPE_SESSION: The rowid is guaranteed to be valid while the session is maintained. (It ac

ross the transaction boundaries.)

ODBC API References | 2,759

Nullable

[Input] It checks that the particular column can have NULL value. It should be one of the followings.

• SQL_NO_NULLS: A particular column can not have NULL value. Some drivers do not support SQL

_NO_NULLS and they will return an empty result set if SQL_NO_NULLS is specified. The application

should be prepared this case and request SQL_NO_NULLS only if it is required.

• SQL_NULLABLE: A particular column can have NULL value.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQ

L_SUCCESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between t

he driver and the data source is failed.

24000 Invalid cursor state

A cursor is open on the StatementHandle, and SQLFetch or SQLFetchSc

roll had been called.

This error is returned by the Driver Manager if SQLFetch or SQLFetchScr

oll does not return SQL_NO_DATA, and is returned by the driver if SQL

Fetch or SQLFetchScroll returns SQL_NO_DATA.

A cursor is open on the StatementHandle, but SQLFetch or SQLFetchSc

roll is not called.

40001 Serialization failure
The transaction is rolled back due to a resource deadlock of other trans

actions.

40003
Statement completion

unknown

The related connection is failed while executing this function, and the s

tate of the transaction cannot be determined.

HY000 General error

It is an error without specific SQLSTATE, and the error message returne

d by SQLGetDiagRec in *MessageText buffer describes error message a

nd its cause.

HY001
Memory allocation err

or

The driver can not allocate the required memory for execution or comp

letion of the function.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCan

cel or SQLCancelHandle is called on StatementHandle before the functi

on is called and completed. Then this function is called again on State

mentHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from oth

2,760 | ODBC

er thread in the multithreaded application before the function is called

and completed.

HY009
Invalid use of null poin

ter

The TableName argument is a null pointer.

The SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE,

the CatalogName argument is a null pointer, and the SQL_CATALOG_

NAME InfoType returns that catalog names are supported.

The SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE,

and the SchemaName argument is a null pointer.

HY010
Function sequence err

or

The asynchronously executing function is called for the connection han

dle related to StatementHandle, and this function is still being execute

d when SQLSpecialColumns is called.

SQLExecute, SQLExecDirect, SQLMoreResults is called for StatementHa

ndle, and SQL_PARAM_DATA_AVAILABLE is returned. The function is

called, before the data is retrieved for all streamed parameters.

The asynchronously executing function is called for StatementHandle, a

nd is still being executed when this function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called

for StatementHandle, and SQL_NEED_DATA is returned. This function i

s called before data is sent for all data-at-execution parameters or colu

mns.

HY013
Memory management

error

The function is not executed because the underlying memory object ca

n not be accessed because of the low memory condition.

HY090
Invalid string or buffer

length

The value of a length arguments is smaller than 0 but it is not SQL_NTS.

The value of a length arguments exceeds the maximum length value f

or the corresponding name.

HY097
Column type out of ra

nge
An invalid IdentifierType value is specified.

HY098
Scope type out of ran

ge
An invalid scope value is specified.

HY099
Nullable type out of ra

nge
An invalid nullable value is specified.

HY117

Connection is suspend

ed due to unknown tr

ansaction state. Only

disconnect and read-o

nly functions are allow

ed.

For more information about the suspended state, refer to SQLEndTran.

SQLSTATE Error Description

ODBC API References | 2,761

HYC00
Optional feature not i

mplemented

A catalog is specified, and the driver or data source does not support c

atalogs.

A schema is specified, and the driver or data source does not support s

chemas.

A string search pattern is specified, and all or one of the catalog name,

table schema, table name, data source does not support it.

The combination of the current settings of the SQL_ATTR_CONCURRE

NCY and SQL_ATTR_CURSOR_TYPE statement attributes is not support

ed by the driver or data source.

The SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_U

B_VARIABLE, and the SQL_ATTR_CURSOR_TYPE statement attribute is

set to a cursor type for which the driver does not support bookmarks.

HYT00 Timeout expired

The query timeout period is expired before the data source returns the

requested result. The time limit can be set via SQLSetStmtAttr of SQL_

ATTR_CONNECTION_TIMEOUT.

HYT01
Connection timeout e

xpired

The connection timeout period is expired before the data source respo

nds to the request. The connection time limit can be set via SQLSetCon

nectAttr of SQL_ATTR_CONNECTION_TIMEOUT.

IM001
Driver does not suppo

rt this function
The driver does not support the function.

IM017

Polling is disabled in a

synchronous notificati

on mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

ad not been called to

complete the previous

asynchronous on this

handle.

If the previous function call for the handle returns SQL_STILL_EXECUTI

NG and if the notification mode is activated, then SQLCompleteAsync s

hould be called for the handle to do post processing and complete the

operation.

SQLSTATE Error Description

Description

If IdentifierType argument is SQL_BEST_ROWID, SQLSpecialColumns returns a column or the column whi

ch uniquely identifies each row of the table. The column can be used in select-list or WHERE clause. SQLC

olumns returns various information of the table column, but it is not necessary to return the column whic

h uniquely identifies each row nor does return a column automatically updated when any value in a row i

s updated by the transaction. For example, SQLColumns does not return ROWID which is the pseudo colu

mn of Oracle. It is the reason that SQLSpecialColumns is used to return information of particular column.

For more information, refer to Using Catalog Data.

2,762 | ODBC

Note

For more information about the general use, arguments, and returned data of ODBC catalog func

tions, refer to Catalog Function.

If column to uniquely identify each row in the table does not exist, SQLSpecialColumns does not return a

ny column. Then, SQL_NO_DATA is returned when SQLFetch or SQLFetchScroll is called in the statement.

The characteristics which are specified in IdentifierType, scope, nullable arguments are not supported by t

he data source, SQLSpecialColumn returns an empty result set.

If SQL_ATTR_METADATA_ID attribute is set to SQL_TRUE, then CatalogName, SchemaName, TableName

arguments are treated as identifiers and they can not use a NULL pointer. (For more information, refer to

Arguments of Catalog Function.)

SQLSpecialColumns function returns a standard result set which is sorted by SCOPE.

The following columns are renamed in ODBC 3.x. Changing column name does not affect the backward

compatibility because applications bind by column number.

ODBC 2.0 column ODBC 3.x column

PRECISION COLUMN_SIZE

LENGTH BUFFER_LENGTH

SCALE DECIMAL_DIGITS

SQLGetInfo function can be called with SQL_MAX_COLUMN_NAME_LEN option in the application to det

ermine the actual length of COLUMN_NAME column.

The following table lists the columns in the result set. The additional columns beyond the column 8(PSEU

DO_COLUMN) can be defined by the driver. The application should count from the end of the result set r

ather than specifying an explicit position to access the columns defined by the driver. For more informatio

n, refer to Data Returning of Catalog Function.

Column

name

Column

number

Data

type
Description

SCOPE

(ODBC 1.0)
1 Smallint

It is the actual scope of ROWID. It includes one of SQL_SCOPE_CURRO

W, SQL_SCOPE_TRANSACTION, or SQL_SCOPE_SESSION.

If IdentifierType is SQL_ROWVER, NULL is returned.

For more information about each value, refer to scope in Syntax.

COLUMN_N

AME

(ODBC 1.0)

2
Varchar not

NULL

It is the column name. If the column does not have a name, the driver r

eturns an empty string.

It is SQL data type. It may be the ODBC SQL data type or the SQL data t

ODBC API References | 2,763

DATA_TYPE

(ODBC 1.0)

3 Smallint not

NULL

ype specified in the driver. All ODBC SQL data types are valid. For more

information about SQL data types specified in the driver, refer to the d

ocumentation of the driver.

TYPE_NAM

E

(ODBC 1.0)

4
Varchar not

NULL

It is name of the data source-dependent data type. e.g. CHAR, VARCH

AR, MONEY, LONG VARBINARY, CHAR() FOR BIT DATA, etc.

COLUMN_SI

ZE

(ODBC 1.0)

5 Integer It is the column size in the data source.

BUFFER_LEN

GTH

(ODBC 1.0)

6 Integer

It is the length in bytes of data transferred on an SQLGetData or SQLFe

tch operation if SQL_C_DEFAULT is specified. The numeric data may be

different from the size of the data stored in the data source. The value i

s as same as COLUMN_SIZE for a string or binary data.

DECIMAL_D

IGITS

(ODBC 1.0)

7 Smallint
It is the number of decimal places of the column in the data source. NU

LL is returned if the number of decimal places can not be applied.

PSEUDO_C

OLUMN

(ODBC 2.0)

8 Smallint

It displays whether the column is the pseudo-column such as Oracle RO

WID.

● SQL_PC_UNKNOWN

● SQL_PC_NOT_PSEUDO

● SQL_PC_PSEUDO

The pseudo-column is not allowed to quote an identifier in quotation

marks returned in SQLFetInfo for maximum interoperability.

Column

name

Column

number

Data

type
Description

After the application retrieves the SQL_BEST_ROWID value. The application can use the retrieved values t

o reselect the row within the defined scope. It guarantees that SELECT statement returns either no rows

or one row.

If the application does not find the row when the row is re-queried based on ROWID or the column, it is

assumed that the row is deleted or the ROWID column is changed. Although ROWID is not changed, the

other column of the row may be updated.

The columns which are returned for the column type SQL_BEST_ROWID are very useful when the applicat

ion need to move forward or backward within a result set to retrieve the most recent data among the ro

w set. The column(s) of ROWID are not updated while it is positioned on that row.

The ROWID columns remain valid even when the cursor is not positioned on the row. The application can

determine it by checking the SCOPE column in the result set.

2,764 | ODBC

SQLStatistics

Conformance

Introduced version: ODBC 1.0

Standards compliance: ISO 92

Overview

SQLStatistics retrieves a list of statistics about a single table and the indexes related to the table. The drive

r returns the information as a result set.

Syntax

SQLRETURN SQLStatistics(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3,

SQLUSMALLINT Unique,

SQLUSMALLINT Reserved);

Arguments

StatementHandle

[Input] It is the statement handle.

CatalogName

[Input] It is the catalog name. If the driver does not support the catalog, an empty string ("") is retu

rned and the tables do not have a catalog. The catalog name can not include a string search patter

n .

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, CatalogName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, CatalogName is treated as an ordinary argument, it is tre

ated literally, and it is case-sensitive. For more information, refer to Arguments of Catalog Functio

n.

ODBC API References | 2,765

NameLength1

[Input] It is the length of *CatalogName string.

SchemaName

[Input] It is the schema name. If the driver does not support the schema, an empty string ("") is ret

urned and the tables do not have a schema.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, SchemaNameis treated as an ordinary argument, it is tre

ated literally, and it is case-sensitive.

NameLength2

[Input] It is the length of *SchemaName string.

TableName

[Input] It is the table name. The argument can not be a NULL pointer. TableName does not include

a string search pattern .

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, SchemaName is treated as an ordinary argument, it is tre

ated literally, and it is case-sensitive.

NameLength3

[Input] It is the length of *TableName string.

Unique

[Input] It is the index type. It can be SQL_INDEX_UNIQUE or SQL_INDEX_ALL.

Reserved

[Input] The importance of CARDINALITY and PAGES columns is displayed in the result set. The foll

owing options affect only the results of CARDINALITY and PAGES columns. The index information

is returned even when CARDINALITY and PAGES are not returned.

• SQL_ENSURE: It requests the driver to unconditionally search for statistics. (The driver which co

mplies with Open Group standards, but does not support the ODBC extension can not support SQ

L_ENSURE.)

• SQL_QUICK: If it is readily available from the server, it requests the driver to unconditionally sear

ch for CARDINALITY and PAGES. The driver does not guarantee that the retrieved value is the curr

ent value. (The application which is registered in Open Group will always get SQL_QUICK from OD

BC 3.x-compliant drivers.)

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

2,766 | ODBC

Diagnosis

SQLSTATE Error Description

01000 Genera warning
It is the driver-specific informational message. (The function returns SQ

L_SUCCESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between t

he driver and the data source is failed.

24000 Invalid cursor state

The cursor is open in StatementHandle, and SQLFetch or SQLFetchScrol

l is called.

If SQLFetch or SQLFetchScroll does not return SQL_NO_DATA, the driv

er manager returns this error. If SQLFetch or SQLFetchScroll returns SQ

L_NO_DATA, the driver returns this error.

The cursor is open in StatementHandle, but SQLFetch or SQLFetchScrol

l is not called.

40001 Serialization failure
The transaction is rolled back due to a resource deadlock of other trans

actions.

40003
Statement completion

unknown

The related connection fails during the function execution and the stat

us of the transaction is not able to be checked.

HY000 General error

It is an error without specific SQLSTATE, and the error message returne

d by SQLGetDiagRec in *MessageText buffer describes error message a

nd its cause.

HY001
Memory allocation err

or

The driver can not allocate the memory required for execution or comp

letion of the function.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCan

cel or SQLCancelHandle is called on StatementHandle before the functi

on is called and completed. Then this function is called again on State

mentHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from oth

er thread in the multithreaded application before the function is called

and completed.

HY009
Invalid use of null poin

ter

TableName argument is the null pointer.

The SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE,

the CatalogName argument is a null pointer, and the SQL_CATALOG_

NAME InfoType returns that catalog names are supported.

The SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE,

and the SchemaName argument is a null pointer.

The asynchronously executing function is called for the connection han

dle related to StatementHandle, and this function is still being execute

d when SQLStatistics is called.

ODBC API References | 2,767

HY010 Function sequence err

or SQLExecute, SQLExecDirect, SQLMoreResults is called for StatementHa

ndle, and SQL_PARAM_DATA_AVAILABLE is returned. The function is

called, before the data retrieves all streamed parameters.

The asynchronously executing function is called for StatementHandle, a

nd is still being executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called

for StatementHandle, and SQL_NEED_DATA is returned. This function i

s called before data is sent for all data-at-execution parameters or colu

mns.

HY013
Memory management

error

The function is not executed because the underlying memory object ca

n not be accessed because of the low memory condition.

HY090
Invalid string or buffer

length

A name length argument value is smaller than 0, but it is not SQL_NTS.

A single value of the name length arguments exceeds the maximum le

ngth.

HY100
Uniqueness option typ

e out of range
The invalid unique value is specified.

HY101
Accuracy option type

out of range
The invalid reserved value is specified.

HY117

Connection is suspend

ed due to unknown tr

ansaction state. Only

disconnect and read-o

nly functions are allow

ed.

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature not i

mplemented

A catalog is specified, and the driver or data source does not support c

atalogs.

A schema is specified, and the driver or data source does not support s

chemas.

A string search pattern is specified, and the catalog name, table schem

a, table name, data source does not support it.

The combination of the current settings of the SQL_ATTR_CONCURRE

NCY and SQL_ATTR_CURSOR_TYPE statement attributes is not support

ed by the driver or data source.

The SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_U

B_VARIABLE, and the SQL_ATTR_CURSOR_TYPE statement attribute is

SQLSTATE Error Description

2,768 | ODBC

set to a cursor type for which the driver does not support bookmarks.

HYT00 Timeout expired

The query timeout period is expired before the data source returns the

requested result. The time limit can be set via SQLSetStmtAttr of SQL_

ATTR_CONNECTION_TIMEOUT.

HYT01
Connection timeout e

xpired

The connection timeout period is expired before the data source respo

nds to the request. The connection time limit can be set via SQLSetCon

nectAttr of SQL_ATTR_CONNECTION_TIMEOUT.

IM001
Driver does not suppo

rt this function
The driver does not support the function.

IM017

Polling is disabled in a

synchronous notificati

on mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

as not been called to c

omplete the previous

asynchronous operati

on on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTI

NG and if the notification mode is activated, then SQLCompleteAsync s

hould be called for the handle to do post processing and complete the

operation.

SQLSTATE Error Description

Description

SQLStatistics returns information of a table as a standard result set sorted by NON_UNIQUE, TYPE, INDEX

_QUALIFIER, INDEX_NAME, ORDINAL_POSITION. The result set combines the table statistics information

(CARDINALITY and PAGES row of the result set) along with information for each index. For more informa

tion, refer to Using Catalog Data.

SQLGetInfo is called with SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN, SQL_MA

X_TABLE_NAME_LEN, SQL_MAX_COLUMN_NAME_LEN to determine the actual length of TABLE_CAT, T

ABLE_SCHEM, TABLE_NAME, COLUMN_NAME rows in the application.

Note

For more information about the general use, arguments, and returned data of ODBC catalog func

tions, refer to Catalog Function.

The following columns are renamed in ODBC 3.x. Changing column name does not affect the backward

compatibility because applications bind by column number.

ODBC 2.0 column ODBC 3.x column

TABLE_QUALIFIER TABLE_CAT

ODBC API References | 2,769

TABLE_OWNER TABLE_SCHEM

SEQ_IN_INDEX ORDINAL_POSITION

COLLATION ASC_OR_DESC

ODBC 2.0 column ODBC 3.x column

The following table lists the columns in the result set. The additional columns beyond the column 13 (FILT

ER_CONDITION) can be defined by the driver. The application should count from the end of the result set

rather than specifying an explicit position to access the columns defined by the driver. For more informati

on, refer to Data Returning of Catalog Function.

Column

name

Column

number
Data type Description

TABLE_CAT

(ODBC 1.0)
1 Varchar

It is the catalog name. If the data source can not be converted, it is NU

LL. If the driver does not support the catalog, an empty string ("") is ret

urned and the tables do not have the catalog.

TABLE_SCH

EM

(ODBC 1.0)

2 Varchar

It is the schema name. If it is not applicable to the data source, it is NUL

L. If the driver does not support the schema, an empty string ("") is retu

rned and the tables do not have the schema.

TABLE_NA

ME

(ODBC 1.0)

3
Varchar not

NULL
It is the table name to which the statistics or index is applied.

NON_UNIQ

UE

(ODBC 1.0)

4 Smallint

It indicates whether the duplication of the index value is allowed.

● SQL_TRUE: The index values may not be unique.

● SQL_FALSE: The index values should be unique.

If TYPE is SQL_TABLE_STAT, NULL is returned.

INDEX_QUA

LIFIER

(ODBC 1.0)

5 Varchar

It is an identifier which executes DROP INDEX and specifies the index n

ame.

If it is the data source which does not support the index rules or TYPE i

s SQL_TABLE_STAT, then NULL is returned. If a non-NULL value is retur

ned in the row, the value is used to define the index identified in DROP

INDEX. Otherwise, the TABLE_SCHEM should be used to qualify the in

dex name.

INDEX_NA

ME

(ODBC 1.0)

6 Varchar It is the index name. If TYPE is SQL_TABLE_STAT, NULL is returned.

TYPE

(ODBC 1.0)
7

Smallint not

NULL

It is the information type to be returned.

● SQL_TABLE_STAT: It indicates statistics for the table. (in CARDINA

LITY or PAGES row)

● SQL_INDEX_BTREE: It indicates B-Tree index.

● SQL_INDEX_CLUSTERED: It indicates the cluster index.

● SQL_INDEX_CONTENT: It indicates the content of the index.

2,770 | ODBC

● SQL_INDEX_HASHED: It indicates the hash index.

● SQL_INDEX_OTHER: It indicates other types of index.

ORDINAL_P

OSITION

(ODBC 1.0)

8 Smallint
It is the row order on the index (starting from 1). If TYPE is SQL_TABLE

_STAT, NULL is returned.

COLUMN_N

AME

(ODBC 1.0)

9 Varchar

It is the column name. If the row is an expression such as SALARY + BE

NEFITS, the expression is returned. If the expression is unknown, an em

pty string is returned. If TYPE is SQL_TABLE_STAT, NULL is returned.

ASC_OR_DE

SC

(ODBC 1.0)

10 Char(1)

It is the column sorting sequence. A is ascending, and D is descending.

If the row sorting sequence is not supported in the data source or TYPE

is SQL_TABLE_STAT, then NULL is returned.

CARDINALIT

Y

(ODBC 1.0)

11 Integer

The cardinality of the table or index. If TYPE is SQL_TABLE_STAT, it is t

he number of rows of the table. If TYPE is not SQL_TABLE_STAT, it is t

he number of unique values of the index. If the value can not be used f

rom the data source, NULL is returned.

PAGES

(ODBC 1.0)
12 Integer

It is the number of pages stored in the index or table. If TYPE is SQL_TA

BLE_STAT, it is the number of pages of the table. If TYPE is not SQL_TA

BLE_STAT, it is the number of pages of the index. If the value of the da

ta source can not be used or converted, then NULL is returned.

FILTER_CON

DITION

(ODBC 2.0)

13 Varchar

If the index is the filtered index such as SALARY> 30000, it is the filter c

ondition. If the filter condition can not be determined, it is an empty str

ing. If it is not an index, the filtered index can not be determined or TY

PE is SQL_TABLE_STAT.

Column

name

Column

number
Data type Description

If the row in the result set corresponds to the table, the driver sets TYPE to SQL_TABLE_STAT, and sets N

ON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME, ORDINAL_POSITION, COLUMN and ASC_OR_DESC to N

ULL. If CARDINALITY or PAGES can not be used in the data source, the driver sets them to NULL.

ODBC API References | 2,771

SQLTablePrivileges

Conformance

Introduced version: ODBC 1.0

Standards compliance: ODBC

Overview

SQLTablePrivileges returns the table list and the privileges related to each table. The driver returns the inf

ormation in the form of the result set in the specified statement.

Syntax

SQLRETURN SQLTablePrivileges(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3);

Arguments

StatementHandle

[Input] It is the statement handle for the search results.

CatalogName

[Input] It is the table catalog. If the driver does not support the catalog, an empty string ("") is retur

ned and the tables do not have a catalog. The catalog name can not include a string search patter

n .

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, CatalogName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, CatalogNameis treated as an ordinary argument, it is tre

ated literally, and it is case-sensitive. For more information, refer to Arguments of Catalog Functio

n.

NameLength1

[Input] It is the string length of *CatalogName.

2,772 | ODBC

SchemaName

[Input] It is a string search pattern for the schema name. If the driver does not support the schema,

an empty string ("") is returned and the tables do not have a schema.

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, SchemaName is treated as an identifier and it is n

ot case-sensitive. If it is set to SQL_FALSE, SchemaName is treated as a pattern value string argume

nt and it is case-sensitive.

NameLength2

[Input] It is the string length of *SchemaName.

TableName

[Input] It is table name string search pattern .

If SQL_ATTR_METADATA_ID is set to SQL_TRUE, TableName is treated as an identifier and it is not

case-sensitive. If it is set to SQL_FALSE, TableName is treated as a pattern value string argument an

d it is case-sensitive.

NameLength3

[Input] It is the string length of *TableName.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General warning
It is the driver-specific informational message. (The function returns SQ

L_SUCCESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between t

he driver and the data source is failed.

24000 Invalid curosr state

A cursor is open on the StatementHandle, and SQLFetch or SQLFetchSc

roll had been called.

This error is returned by the driver manager if SQLFetch or SQLFetchScr

oll does not return SQL_NO_DATA, and is returned by the driver if SQL

Fetch or SQLFetchScroll returns SQL_NO_DATA.

A cursor is open on the StatementHandle, but SQLFetch or SQLFetchSc

roll is not called.

40001 Serialization failure
The transaction is rolled back due to a resource deadlock of other trans

actions.

40003
Statement completion

unknown

The related connection fails during the function execution and the stat

us of the transaction is not able to be checked.

ODBC API References | 2,773

HY000 General error

It is an error without specific SQLSTATE, and the error message returne

d by SQLGetDiagRec in *MessageText buffer describes error message a

nd its cause.

HY001
Memory allocation err

or

The driver can not allocate the memory required for execution or comp

letion of the function.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCan

cel or SQLCancelHandle is called on StatementHandle before the functi

on is called and completed. Then this function is called again on State

mentHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from oth

er thread in the multithreaded application before the function is called

and completed.

HY009
Invalid use of null poin

ter

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and

CatalogName argument is a null pointer. SQL_CATALOG_NAME InfoTy

pe returns that catalog names are supported.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and

SchemaName or TableName argument is a null pointer.

HY010
Function sequence err

or

The asynchronously executing function is called for the connection han

dle related to StatementHandle, and this function is still being execute

d when SQLTablePrevileges is called.

SQLExecute, SQLExecDirect or SQLMoreResults are called for Statemen

tHandle, and SQL_PARAM_DATA_AVAILABLE is returned. This functio

n is called before data is retrieved for all streamed parameters.

The asynchronously executing function is called for StatementHandle, a

nd is still being executed when the function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called

for StatementHandle, and SQL_NEED_DATA is returned. This function i

s called before data is sent for all data-at-execution parameters or colu

mns.

HY013
Memory management

error

The function is not executed because the underlying memory object ca

n not be accessed because of the low memory condition.

HY090
Invalid string or buffer

length

The value of a length arguments is smaller than 0 but it is not SQL_NTS.

The value of a length arguments exceeds the maximum length value fo

r the corresponding name.

HY117

Connection is suspend

ed due to unknown tr

ansaction state. Only
For more information about the suspended state, refer to SQLEndTran.

SQLSTATE Error Description

2,774 | ODBC

disconnect and read-o

nly functions are allow

ed.

HYC00
Optional feature not i

mplemented

A catalog is specified, and the driver or data source does not support c

atalogs.

A schema is specified, and the driver or data source does not support s

chemas.

A string search pattern is specified, and the catalog name, table schem

a, table name, data source does not support it.

The combination of the current settings of the SQL_ATTR_CONCURRE

NCY and SQL_ATTR_CURSOR_TYPE statement attributes is not support

ed by the driver or data source.

The SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_U

B_VARIABLE, and the SQL_ATTR_CURSOR_TYPE statement attribute is

set to a cursor type for which the driver does not support bookmarks.

HYT00 Timeout expired

The query timeout period is expired before the data source returns the

requested result. The time limit can be set via SQLSetStmtAttr of SQL_

ATTR_CONNECTION_TIMEOUT.

HYT01
Connection timeout e

xpired

The connection timeout period is expired before the data source respo

nds to the request. The connection time limit can be set via SQLSetCon

nectAttr of SQL_ATTR_CONNECTION_TIMEOUT.

IM001
Driver does not suppo

rt this function
The driver does not support the function.

IM017

Polling is disabled in a

synchronous notificati

on mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteAsync h

as not been called to c

omplete the previous

asynchronous operati

on on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTI

NG and if the notification mode is activated, then SQLCompleteAsync s

hould be called for the handle to do post processing and complete the

operation.

SQLSTATE Error Description

Description

SchemaName and TableName arguments accept search patterns. For more information about valid searc

h patterns, refer to Pattern Value Argument.

SQLTablePrivileges returns the result as a standard result set sorted by TABLE_CAT, TABLE_SCHEM, TABL

E_NAME, PRIVILEGE, GRANTEE.

ODBC API References | 2,775

SQLGetInfo function is called with SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN,

SQL_MAX_TABLE_NANE_LEN to determine the actual length of TABLE_CAT, TABLE_SCHEM, TABLE_NA

ME columns in the application.

Note

For more information about the general use, arguments, and returned data of ODBC catalog func

tions, refer to Catalog Function.

The following columns are renamed in ODBC 3.x. Changing column name does not affect the backward

compatibility because applications bind by column number.

ODBC 2.0 column ODBC 3.x column

TABLE_QUALIFIER TABLE_CAT

TABLE_OWNER TABLE_SCHEM

The following table lists the columns in the result set. The additional columns beyond the column 7 (IS_G

RANTABLE) can be defined by the driver. The application should count from the end of the result set rath

er than specifying an explicit position to access the columns defined by the driver. For more information, r

efer to Data Returning of Catalog Function.

Column

name

Column

number
Data type Description

TABLE_CAT

(ODBC 1.0)
1 Varchar

It is the catalog name. If the data source can not be converted, it is NU

LL. If the driver does not support the catalog, an empty string ("") is ret

urned and the tables do not have the catalog.

TABLE_SCH

E

(ODBC 1.0)

2 Varchar

It is the schema name. If it is not applicable to the data source, it is NUL

L. If the driver does not support the schema, an empty string ("") is retu

rned and the tables do not have the schema.

TABLE_NA

ME

(ODBC 1.0)

3
Varchar not

NULL
It is the table name.

GRANTOR

(ODBC 1.0)
4 Varchar

It is the user name who grants the privilege. If it is not applicable to the

data source, it is NULL.

For all rows in which the value in the GRANTEE column is the owner of

the object, the GRANTOR column is _SYSTEM.

GRANTEE

(ODBC 1.0)
5

Varchar not

NULL
It is the user name to whom the privilege is granted.

The table privilege. It is one of the followings or the a data source-speci

fic privilege.

2,776 | ODBC

PRIVILEGE

(ODBC 1.0)

6 Varchar not

NULL ● SELECT: Grantee is allowed to retrieve one or more columns in a t

able.

● INSERT: Grantee is allowed to insert new rows containing data for

one or more columns into a table.

● UPDATE: Grantee is allowed to update one or more columns in a

table.

● DELETE: Grantee is allowed to delete the data of a table.

● REFERENCES: Grantee is allowed to refer to one or more columns

in a table within constraints. (e.g. unique, referential, Table constr

aints check)

The scope of action allowed to grantee who is given the table privilege

depends on the data source. For example, the UPDATE privilege permit

s the grantee to update all columns in a table on one data source and

only the columns for which the grantor has the UPDATE privilege on a

nother data source.

IS_GRANTA

BLE

(ODBC 1.0)

7 Varchar

It indicates whether GRANTEE can give other user the privilege and it is

YES or NO. If it is not applicable to the data source or unknown, it is N

ULL.

The privilege is grantable or not grantable, and it can not be both of th

em.

The result set that SQLColumnPrivileges returns does not include the t

wo rows which all columns except for IS_GRANTABLE have the same v

alue.

Column

name

Column

number
Data type Description

ODBC API References | 2,777

SQLTables

Conformance

Introduced version: ODBC 1.0

Standards compliance: Open group

Overview

SQLTables returns the table list, catalog, or schema name, table type stored in the specified data source.

The driver returns the information as a result set.

Syntax

SQLRETURN SQLTables(

SQLHSTMT StatementHandle,

SQLCHAR * CatalogName,

SQLSMALLINT NameLength1,

SQLCHAR * SchemaName,

SQLSMALLINT NameLength2,

SQLCHAR * TableName,

SQLSMALLINT NameLength3,

SQLCHAR * TableType,

SQLSMALLINT NameLength4);

Arguments

StatementHandle

[Input] It is the statement handle for the search results.

CatalogName

[Input] It is the catalog name. If SQL_ODBC_VERSION environment attribute is SQL_OV_ODBC3, C

atalogName argument accepts a search pattern. If the driver supports catalogs only for a few table

s, for example, the driver retrieves the data from another DBMS, an empty string ("") indicates that

the table does not have a catalog.

If SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, CatalogName is treated as an

identifier and it is not case-sensitive. If it is set to SQL_FALSE, CatalogName is a pattern value argu

ment, it is treated literally and it is case-sensitive. For more information, refer to Arguments of Cat

alog Function.

2,778 | ODBC

NameLength1

[Input] It is the string length of *CatalogName.

SchemaName

[Input] It is the string search pattern for the schema name. An empty string ("") such as CatalogNa

me indicates that the table does not have schema. The argument processing depends on SQL_ATT

R_METADATA_ID statement attribute such as CatalogName.

NameLength2

[Input] It is the character length of *SchemaName.

TableName

[Input] It is the string search pattern for the table name. Also, the argument processing depends o

n SQL_ATTR_METADATA_ID statement attribute such as CatalogName.

NameLength3

[Input] It is the character length of *TableName.

TableType

[Input] It is the matched table type list.

SQL_ATTR_METADATA_ID statement attribute does not affect TableType argument. TableType is t

he value list argument, regardless of setting of SQL_ATTR_METADATA_ID.

NameLength4

[Input] It is the character length of *TableType.

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, SQL_INVALID_HANDLE

Diagnosis

SQLSTATE Error Description

01000 General waring
It is the driver-specific informational message. (The function returns SQ

L_SUCCESS_WITH_INFO.)

08S01
Communication link f

ailure

Before the function processing is completed, the connection between t

he driver and the data source is failed.

24000 Invalid cursor state

A cursor is open on the StatementHandle, and SQLFetch or SQLFetchSc

roll had been called.

This error is returned by the Driver Manager if SQLFetch or SQLFetchScr

oll does not return SQL_NO_DATA, and is returned by the driver if SQL

Fetch or SQLFetchScroll returns SQL_NO_DATA.

A cursor is open on the StatementHandle, but SQLFetch or SQLFetchSc

ODBC API References | 2,779

roll is not called.

40001 Serialization failure
The transaction is rolled back due to a resource deadlock of other trans

actions.

40003
Statement completion

unknown

The related connection is failed while executing this function, and the s

tate of the transaction cannot be determined.

HY000 General error

It is an error without specific SQLSTATE, and the error message returne

d by SQLGetDiagRec in *MessageText buffer describes error message a

nd its cause.

HY001
Memory allocation err

or

The driver can not allocate the required memory for execution or compl

etion of the function.

HY008 Operation canceled

Asynchronous processing for StatementHandle is available and SQLCan

cel or SQLCancelHandle is called on StatementHandle before the functi

on is called and completed. Then this function is called again on State

mentHandle.

SQLCancel or SQLCancelHandle is called on StatementHandle from oth

er thread in the multithreaded application before the function is called

and completed.

HY009
Invalid use of null poi

nter

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and

CatalogName argument is a null pointer. SQL_CATALOG_NAME InfoTy

pe returns that catalog names are supported.

SQL_ATTR_METADATA_ID statement attribute is set to SQL_TRUE, and

SchemaName or TableName argument is a null pointer.

HY010
Function sequence err

or

The asynchronously executing function is called for the connection han

dle related to StatementHandle, and this function is still being executed

when SQLTables is called.

SQLExecute, SQLExecDirect, SQLMoreResults is called for StatementHa

ndle, and SQL_PARAM_DATA_AVAILABLE is returned. The function is

called, before the data for all streamed parameters is retrieved.

The asynchronously executing function is called for StatementHandle, a

nd is still being executed when SQLTables function is called.

SQLExecute, SQLExecDirect, SQLBulkOperation or SQLSetPos are called

for StatementHandle, and SQL_NEED_DATA is returned. This function i

s called before data is sent for all data-at-execution parameters or colu

mns.

HY013
Memory management

error

The function is not executed because the underlying memory object ca

n not be accessed because of the low memory condition.

HY090
Invalid string or buffer

length

The value of a length arguments is smaller than 0 but it is not SQL_NTS.

SQLSTATE Error Description

2,780 | ODBC

The value of a length arguments exceeds the maximum length value fo

r the corresponding name.

HY117

Connection is suspen

ded due to unknown

transaction state. Onl

y disconnect and read

-only functions are all

owed

For more information about the suspended state, refer to SQLEndTran.

HYC00
Optional feature not i

mplemented

A catalog is specified, and the driver or data source does not support c

atalogs.

A schema is specified, and the driver or data source does not support s

chemas.

A string search pattern is specified, and the catalog name, table schem

a, table name, data source does not support it.

The combination of the current settings of the SQL_ATTR_CONCURRE

NCY and SQL_ATTR_CURSOR_TYPE statement attributes is not support

ed by the driver or data source.

The SQL_ATTR_USE_BOOKMARKS statement attribute is set to SQL_U

B_VARIABLE, and the SQL_ATTR_CURSOR_TYPE statement attribute is

set to a cursor type for which the driver does not support bookmarks.

HYT00 Timeout expired

The query timeout period is expired before the data source returns the

requested result. The time limit can be set via SQLSetStmtAttr of SQL_A

TTR_CONNECTION_TIMEOUT.

HYT01
Connection timeout e

xpired

The connection timeout period is expired before the data source respo

nds to the request. The connection time limit can be set via SQLSetCon

nectAttr of SQL_ATTR_CONNECTION_TIMEOUT.

IM001
Driver does not suppo

rt this function
The driver does not support the function.

IM017

Polling is disabled in a

synchronous notificati

on mode

Whenever using the notification model, polling can not be used.

IM018

SQLCompleteASync h

as not been called to

complete the previous

asynchronous operati

on on this handle.

If the previous function call for the handle returns SQL_STILL_EXECUTI

NG and if the notification mode is activated, then SQLCompleteAsync s

hould be called for the handle to do post processing and complete the

operation.

SQLSTATE Error Description

ODBC API References | 2,781

Description

SQLTables lists all tables in the requested scope. The user may have the SELECT privilege on the tables, or

not. The application checks the accessibility as follows.

● SQL_ACCESSIBLE_TABLES information type is checked by calling SQLGetInfo.

● The privilege on each table is checked by calling SQLTablePrivileges.

Otherwise, the application should deal with the situation that the user performs a select statement witho

ut SELECT privilege.

SchemaName and TableName arguments can use the search pattern. If SQL_ODBC_VERSION is SQL_OV_

ODBC3, then CatalogName argument can also use the search pattern. For more information about valid s

earch pattern, refer to Pattern Value Argument.

Note

For more information about the general use, arguments, and returned data of ODBC catalog func

tions, refer to Catalog Function.

The particular meaning of CatalogName, SchemaName, TableName, TableType arguments of SQLTables i

s defined as follows to support the enumeration of catalog, schema, and table types.

● If CatalogName is SQL_ALL_CATALOGS and SchaemaName and TableName are the empty string, the

result set includes a valid catalog for the data source. (All columns except for TABLE_CAT column incl

ude NULL.)

● If SchemaName is SQL_ALL_SCHEMAS and CatalogName and TableName are the empty string, the r

esult set includes a valid schema for the data source. (All columns except for TABLE_SCHE column inc

lude NULL.)

● If TableType is SQL_ALL_TABLE_TYPES and CatalogName, SchemaName, and TableName are the em

pty string, the result set includes a valid table type for the data source. (All columns except for TABLE

_TYPE column include NULL.)

If TableType is not an empty string, it should include a list of comma-separated values for the types of int

erest. Each value can be enclosed in single quote (') or unquoted such as 'TABLE', 'VIEW' or TABLE, VIEW.

An application should always specify the table type in uppercase. The driver should convert the table type

to whatever case is needed by the data source. If the data source does not support the specified table typ

e, SQLTables does not return any data result for that type.

SQLTables returns the result as a standard result set ordered by TABLE_TYPE, TABLE_CAT, TABLE_SCHE,

TABLE_NAME. For more information, refer to Using Catalog Data.

2,782 | ODBC

SQLGetInfo is called with SQL_MAX_CATALOG_NAME_LEN, SQL_MAX_SCHEMA_NAME_LEN, SQL_MA

X_TABLE_NAME_LEN to determine the actual length of TABLE_CAT, TABLE_SCHEM, TABLE_NAME colu

mn in the application.

The following columns are renamed in ODBC 3.x. Changing column name does not affect the backward

compatibility because applications bind by column number.

ODBC 2.0 column ODBC 3.x column

TABLE_QUALIFIER TABLE_CAT

TABLE_OWNER TABLE_SCHEM

The following table lists the columns in the result set. The additional columns beyond the column 5 (REM

ARKS) can be defined by the driver. The application should count from the end of the result set rather tha

n specifying an explicit position to access the columns defined by the driver.

For more information, refer to Data Returning of Catalog Function.

Column

name

Column

number
Data type Description

TABLE_CAT

(ODBC 1.0)
1 Varchar

It is the catalog name. If it is not applicable to the data source, it is NUL

L. If the driver does not support the catalog, an empty string ("") is retu

rned and the tables do not have the catalog.

TABLE_SCH

EM

(ODBC 1.0)

2 Varchar

It is the schema name. If it is not applicable to the data source, it is NUL

L. If the driver does not support the schema, an empty string ("") is retu

rned and the tables do not have the schema.

TABLE_NA

ME

(ODBC 1.0)

3 Varchar It is the table name.

TABLE_TYPE

(ODBC 1.0)
4 Varchar

It is the table type name. It is one of "TABLE", "VIEW", "SYSTEM TABLE"

, "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS", "SYNONYM

" or the name specified in the data source.

The meaning of "ALIAS" and "SYNONYM" is driver-specific.

REMARKS

(ODBC 1.0)
5 Varchar It is the description for the table.

ODBC API References | 2,783

SQLTransact

Conformance

Introduced version: ODBC 1.0

Standards compliance: It is not available.

Overview

SQLTransact function in ODBC 2.x is replaced with SQLEndTran in ODBC 3.x.

For more information, refer to SQLEndTran.

2,784 | ODBC

25.6 XA API References

Overview

X/Open XA is the standards for distributed transaction processing defined in X/Open. Typically, it prescrib

es the interface between a multi-transaction manager and a local resource manager. XA describes what i

s needed for the resource manager to process the transaction.

GOLDILOCKS XA is implemented based on X/Open CAE document, Distributed Transaction Processing: T

he XA Specification (http://www.opengroup.org/public/catalog/c193.htm).

X/Open DTP (Distributed Transaction Processing) model defines the transaction management between di

fferent heterogeneous computer databases.

● Application Program (AP): It defines the work consisting of transactions.

● Resource Managers (RM): It manages the shared resources accessed by a distributed transaction. It m

eans a database management system, such as GOLDILOCKS.

● Transaction Manager (TM): It assigns ID(XID) of a distributed transaction, and manages the progress

of a distributed transaction, and has the responsibility for the termination and recovery of a distribute

d transaction.

AP is a program developed by using the precompiler or ODBC. AP does not directly use the XA interface,

and it uses the native interface of RM, or it controls the transaction by using TX interface provided by TM.

https://www2.opengroup.org/ogsys/catalog/c193

XA API References | 2,785

XA Interface

XA interface is the interface specification between RM and TM. GOLDILOCKS does not provide a separate

library for XA interface, and it is included in the ODBC libraries provided by GOLDILOCKS.

switch_t Structure

It is a structure which includes information about the entry point for XA interface and information about

RM.

xa_switch_t provided by GOLDILOCKS is goldilocks_xa_switch.

Variable name Description

char name[RMNAMESZ] It is RM name.

long flags

It is the option provided in RM.

● MIGRATE option is not supported. (It is set to TMNOMIGRA

TE.)

long version It is RM version.

int (*xa_open_entry)(char *, int, long); It is xa_open function pointer.

int (*xa_close_entry)(char *, int, long); It is xa_close function pointer.

int (*xa_start_entry)(XID *, int, long); It is xa_start function pointer.

int (*xa_end_entry)(XID *, int, long); It is xa_end function pointer.

int (*xa_rollback_entry)(XID *, int, long); It is xa_rollback function pointer.

int (*xa_prepare_entry)(XID *, int, long); It is xa_prepare function pointer.

int (*xa_commit_entry)(XID *, int, long); It is xa_commit function pointer.

xint (*xa_recover_entry)(XID *, long, int, long); It is xa_recover function pointer.

int (*xa_forget_entry)(XID *, int, long); It is xa_forget function pointer.

int (*xa_complete_entry)(int *, int *, int, long);
It is xa_complete function pointer.

● It is not provided in GOLDILOCKS.

2,786 | ODBC

ODBC Functions Related to XA

It describes the functions which are added to use the XA interface besides the standard ODBC.

SQLGetXaSwitch

It gets xa_switch_t provided by ODBC function.

xa_switch_t * SQLGetXaSwitch(void);

Return

It returns a pointer to sw_switch_t structure provided by ODBC. NULL can not be returned.

SQLGetXaConnectionHandle

It gets the connection handle related to the current XA session.

SQLHANDLE SQLGetXaConnectionHandle(void);

Return

If the connected XA session exist at the corresponding thread, it returns the related connection handle. O

therwise, it returns NULL.

XA API References | 2,787

XA Functions

It describes the details for XA related functions of xa_switch_t structure.

xa_open

It connects to RM.

Note

It is ignored if it is already connected in the thread which called xa_open.

int xa_open(

char * xa_info,

int rmid,

long flags);

Arguments

xa_info

[Input] It is a string which includes the access information, and the maximum length is 256 bytes. F

or more information, refer to InConnectionString of SQLDriverConnect.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is connection flag. It should be set to TMNOFLAGS.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when RM can not be used.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XAER_INVAL It occurs when passing the abnormal argument.

2,788 | ODBC

xa_close

It terminates the connection of RM, and releases the connection handle.

int xa_close(

char * xa_info,

int rmid,

long flags);

Arguments

xa_info

[Input] It is a string which includes the access information, and the argument is ignored.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the termination flag. The argument is ignored.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when RM can not be used.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XAER_INVAL It occurs when passing the abnormal argument.

XA API References | 2,789

xa_start

It creates a new transaction branch or starts the existing transaction branch.

int xa_start(

XID * xid,

int rmid,

long flags);

Arguments

xid

[Input] It is the transaction ID to be started.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the start flag.

flags can use the following values.

● TMASYNC: It starts a transaction branch in asynchronous mode. (It is not supported.)

● TMNOFLAGS: FLAG is not used and the appropriate flag should be specified if flag is not used.

● TMNOWAIT: If the specified transaction branch is used by another session, XA_RETRY error is returne

d without waiting.

● TMRESUME: The previously suspended transaction branch is continued. It can not be used with TMJ

OIN.

● TMJOIN: It is connected to an existing transaction branch. It can not be used with TMRESUME.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XAER_PROTO It occurs when the execution order does not fit into XA protocol.

XAER_INVAL It occurs when passing the abnormal argument.

XAER_DUPID The transaction branch with the same XID already exists.

XAER_NOTA
The transaction branch specified as XID does not exist. It may occur when TMRESUME

or TMJOIN is used.

XA_RETRY
It occurs when the specified transaction branch is already used by another session. It

may occur when using TMNOWAIT.

XAER_OUTSIDE The local transaction is already in progress in the session.

2,790 | ODBC

XA_RBROLLBACK The transaction branch is set to rollback-only.

Return value Description

XA API References | 2,791

xa_end

It terminates the transaction branch operation.

int xa_end(

XID * xid,

int rmid,

long flags);

Arguments

xid

[Input] It is the transaction ID to be terminated.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the job termination flag.

flags can use the following values.

● TMFAIL: It indicates that the operation failed. It can not be used with TMSUSPEND or TMSUCCESS, a

nd it changes the status of the transaction branch to rollback-only.

● TMMIGRATE: It is restarted in connection with another branch. (It is not supported.)

● TMSUCCESS: It indicates that the operation is successfully terminated. It can not be used with TPSUS

PEND or TMFAIL.

● TMSUSPEND: The transaction branch is suspended and terminated.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XA_NOMIGRATE MIGRATE flag is not supported.

XAER_PROTO It occurs when the execution order does not fit into XA protocol.

XAER_INVAL It occurs when passing the abnormal argument.

XAER_NOTA The transaction branch specified as XID does not exist.

2,792 | ODBC

xa_prepare

It prepares to commit the transactions corresponding to XID. It is the first phase of Two-phase Commit Pr

otocol (2PC).

int xa_prepare(

XID * xid,

int rmid,

long flags);

Arguments

xid

[Input] It is the transaction ID to be prepared.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the prepare flag. TMNOFLAGS should be set.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XA_PROTO It occurs when the execution order does not fit into XA protocol.

XA_RDONLY The transaction branch is the read-only transaction.

XAER_NOTA The transaction branch specified as XID does not exist.

XA_RBROLLBACK The transaction branch is set to rollback-only.

XA API References | 2,793

xa_commit

It commits the transactions corresponding to XID. It is the second phase of Two-phase Commit Protocol

(2PC).

int xa_commit(

XID * xid,

int rmid,

long flags);

Arguments

xid

[Input] It is the transaction ID to be committed.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the commit flag.

flags can use the following values.

● TMNOFLAGS: It means that FLAG is not used, and if any flag is not used, the appropriate flag should

be specified.

● TMONEPHASE: It performs One Phase Commit (1PC).

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XA_PROTO It occurs when the execution order does not fit into XA protocol.

XA_RDONLY The transaction branch is the read-only transaction.

XAER_NOTA The transaction branch specified as XID does not exist.

XA_RBROLLBACK The transaction branch is set to rollback-only.

2,794 | ODBC

xa_rollback

It rolls back the transaction corresponding to XID.

int xa_rollback(

XID * xid,

int rmid,

long flags);

Arguments

xid

[Input] It is the transaction ID to be rolled back.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is rollback flag. TMNOFLAGS should be set.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XA_HEURRB The transaction branch is already rolled back heuristically. (heuristic rollback)

XA_HEURCOM The transaction branch is already committed heuristically. (heuristic commit)

XAER_NOTA The transaction branch specified as XID does not exist.

XA API References | 2,795

xa_recover

It gets a list of transactions which are heuristically committed or rolled back.

int xa_recover(

XID * xids,

long count,

int rmid,

long flags);

Arguments

xids

[Output] It is the list of transactions which are heuristically committed or rolled back.

count

[Input] It refers to the array size of xids.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the recover flag.

flags can use the following values.

● TMSTARTSCAN: It starts to scan, or it starts again from the beginning.

● TMENDSCAN: It terminates the scan.

● TMNOFLAGS: If it is used after TMSTARTSCAN, the following list is obtained. XA_PROTO error occurs

if TMNOFLAGS is used from the beginning.

Diagnosis

Return value Description

>= 0 It is the number of returned XIDs. (The array size that is valid in xids.)

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XA_PROTO It occurs when the execution order does not fit into XA protocol.

2,796 | ODBC

xa_forget

It deletes the information about transactions which are heuristically committed or rolled back.

int xa_forget(

XID * xid,

int rmid,

long flags);

Arguments

xid

[Input] It is the transaction ID to be deleted.

rmid

[Input] It is the unique ID of RM to be connected. The argument is ignored.

flags

[Input] It is the delete flag. TMNOFLAGS should be set.

Diagnosis

Return value Description

XA_OK The operation is normally performed.

XAER_RMFAIL It occurs when the session in use is abnormally terminated.

XAER_RMERR RM can not perform the operation in a transaction branch due to lack of resources.

XAER_PROTO It occurs when the execution order does not fit into XA protocol.

XAER_INVAL It occurs when passing the abnormal argument.

XAER_NOTA The transaction branch specified by XID does not exist.

Example

The following is a simple example of connecting to GOLDILOCKS and performing Two-phase Commit aft

er inserting/ retrieving/ updating/ deleting the record. The complete code for the following example is in

$GOLDILOCKS_HOME/sample/ODBC/SAMPLE_XA.c.

1. SQLGetXaSwitch()

Obtain xa switch_t structure for using XA interface.

2. SQLAllocHandle()

Obtain ODBC environment handle.

XA API References | 2,797

3. xa_open()

Connect to the server with the given connection string.

Use the existing connection if it is already connected to the server. Otherwise, try a new connection.

4. SQLGetXaConnectionHandle()

Obtain XA connection handle related to the corresponding thread.

5. xa_start()

Start the transaction branch.

6. Perform the transaction by using standard ODBC functions.

7. xa_end()

Terminate the transaction.

8. xa_prepare()

Prepare to commit the transaction, and which is the first phase of 2PC.

9. xa_commit()

Commit the transaction, and which is the second phase of 2PC.

10. xa_close()

Terminate the connection and release the connection handle.

SQLDisconnect() and SQLFreeHandle() which are the ODBC standard functions, may be used.

11. SQLFreeHandle()

Release ODBC environment handle.

int main(int aArgc, char** aArgv)

{

SQLHENV sEnv = NULL;

SQLHDBC sDbc = NULL;

SQLINTEGER sState = 0;

xa_switch_t * sXaSwitch;

XID sXid;

sXaSwitch = SQLGetXaSwitch();

• If a user calls SQLAllocEnv() which is included in GOLDILOCKS ODBC

GOLDILOCKS_SQL_TRY(SQLAllocHandle(SQL_HANDLE_ENV,

NULL,

&sEnv));

sState = 1;

2,798 | ODBC

• SQLSetEnvAttr sets attributes which govern aspects of environments.

GOLDILOCKS_SQL_TRY(SQLSetEnvAttr(sEnv,

SQL_ATTR_ODBC_VERSION,

(SQLPOINTER)SQL_OV_ODBC3,

0));

if((sXaSwitch->xa_open_entry)(

"DSN=GOLDILOCKS;UID=test;PWD=test",

0,

TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 2;

sDbc = SQLGetXaConnectionHandle();

sXid.formatID = 0;

sXid.gtrid_length = 2;

sXid.bqual_length = 1;

memcpy(sXid.data,

"100",

sXid.gtrid_length + sXid.bqual_length);

if((sXaSwitch->xa_start_entry)(&sXid, 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

• If SQL_SUCCESS which is an insert function succeeds

GOLDILOCKS_SQL_TRY(testInsert(sDbc));

• If SQL_SUCCESS which is a select function succeeds

GOLDILOCKS_SQL_TRY(testSelect(sDbc));

• If SQL_SUCCESS which is an update function succeeds

GOLDILOCKS_SQL_TRY(testUpdate(sDbc));

• If SQL_SUCCESS which is a delete function succeeds

XA API References | 2,799

GOLDILOCKS_SQL_TRY(testDelete(sDbc));

if((sXaSwitch->xa_end_entry)(&sXid, 0, TMSUCCESS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

if((sXaSwitch->xa_prepare_entry)(&sXid, 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

if((sXaSwitch->xa_commit_entry)(&sXid, 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 1;

if((sXaSwitch->xa_close_entry)("", 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sDbc = NULL;

• SQLFreeHandleEnv releases resources which are related to an environment.

sState = 0;

GOLDILOCKS_SQL_TRY(SQLFreeHandle(SQL_HANDLE_ENV,

sEnv));

sEnv = NULL;

return EXIT_SUCCESS;

GOLDILOCKS_FINISH;

if(sDbc != NULL)

{

PrintDiagnosticRecord(SQL_HANDLE_DBC, sDbc);

}

if(sEnv != NULL)

{

PrintDiagnosticRecord(SQL_HANDLE_ENV, sEnv);

}

switch(sState)

2,800 | ODBC

{

• Case 2: SQLDisconnect closes the connection which is related to a specific connection handle.

(void)(sXaSwitch->xa_close_entry)("", 0, TMNOFLAGS);

• Case 1: SQLFreeHandleEnv releases resources which are related to an environment.

(void)SQLFreeHandle(SQL_HANDLE_ENV, sEnv);

sEnv = NULL;

default:

break;

}

return EXIT_FAILURE;

}

JDBC

26.

2,801

2,802 | JDBC

26.1 Overview of GOLDILOCKS JDBC Driver

Concepts of GOLDILOCKS JDBC Driver

GOLDILOCKS provides GOLDILOCKS JDBC driver (excluding some features) which complies with standard

JDBC 4.0 based on TCP/IP connection. The user can use various transaction features and data query featu

res by using GOLDILOCKS JDBC driver and connecting to GOLDILOCKS in Java program. GOLDILOCKS JD

BC driver is written and built based on JDK 1.6. Therefore, it supports JDBC 4.0 features. The driver can b

e used by adding $GOLDILOCKS_HOME/lib/goldilocks6.jar file to the class path.

For a user who uses the lower versions of Java (JDK 1.4, JDK 1.5), goldilocks4 and goldilocks5.jar which a

re the implementation of JDBC 3.0 are also supported. The number after goldilocks refers to the JDK versi

on. For more information, refer to Supporting Versions.

GOLDILOCKS JDBC complies with most of JDBC standard specifications, and it also supports non-standar

d API methods and classes to provide some unique features. For more information about non-standard m

ethods, refer to each class API of JDBC API References or Using Other Data Types.

Characteristics

• Type-4 JDBC Driver

GOLDILOCKS JDBC is a JDBC Type-4 type which is implemented only with pure Java. A user can use a JDB

C driver only with jar file without any additional libraries. Also, it is faster and reliable than JDBC-ODBC Bri

dge type, and it has better portability than Type-2 using Native API.

• JDBC Standard Compliance

GOLDILOCKS JDBC can recycle most of other existing JDBC programs without changing because it compli

es with the JDBC standard. The connection, various statements and ResultSet features can be used witho

ut modifying. However, the connection URL and property name, the name of driver class to be loaded sh

ould be changed to suit GOLDILOCKS. And the non-standard features and types are usable with the sepa

rate classes and methods API.

• Supporting Various Java Versions

GOLDILOCKS JDBC driver supports four files such as goldilocks7.jar, goldilocks6.jar, goldilocks5.jar, goldil

ocks4.jar, so that a user can select and use the file appropriate for user's Java run-time environment. Beca

use each jar file was built based on JDK 1.7, JDK 1.6, JDK 1.5, JDK 1.4, it complies with each JDBC 4.1, JD

Overview of GOLDILOCKS JDBC Driver | 2,803

BC 4.0, JDBC 3.0, JDBC 3.0 specifications.

• Flexible Version Compatibility with the Server

Refer to the protocol version for the compatibility with the server and the JDBC driver. If the protocol vers

ion of server is higher than that of the JDBC driver, it can be connected.

• API Support for Connection Pooling

JDBC connection object is a resource which is expensive to generate. Therefore, the JDBC standard define

a pooling system for it, and ConnectionPoolDataSource and PooledConnection are its interfaces. GOLDIL

OCKS JDBC implements these interfaces and provides the pooling facility in third party middleware produ

cts.

• Supporting XA API

A user can perform the global transaction work by implementing XA interface which is the global transac

tion standard. And a user can perform the various XA features complying with a standard by using XARes

ource which is JDBC interface.

• GOLDILOCKS-specific Data Type

GOLDILOCKS uses the data types which are not provided by the JDBC standard. For example, they are Int

erval related type, the type with time zone information such as Timestamp with time zone, etc. The driver

provides a way to obtain or insert these types to DB.

• Server-based Powerful Cursor Scroll Feature

Other JDBC drivers cache the row set in the driver for ResultSet scroll, so uses excessively memory of a clie

nt application program. For example, if the cursor is open by scroll insensitive and the rows are patched u

p to the last, all rows are cached in the driver, and the entire table resides in the client memory. It causes t

he out of memory error and the excessive use of client memory resource.

However, GOLDILOCKS supports the cursor scroll feature within the server, and clients may have lightwei

ght, fast and reliable performance.

• Efficient Use of Resources

Because GOLDILOCKS minimizes the memory which maintains the row information compared to other JD

BC drivers and it does not use Java objects as possible. It can avoid the excessive garbage collection, and

perform fast and reliable table scanning with less memory.

2,804 | JDBC

• Accurate and Extensive Metadata

Because DatabaseMetaData interface of JDBC standard is faithfully and accurately implemented, it is easy

to be linked with various DB tools. In addition, the usability is increased by retrieving DB meta information

through various system views.

• Powerful Logging

Various logging features are provided to monitor the usual JDBC API calls and network usage as well as t

he problem. If the logging-related features are specified in the connection URL, a user can leave a the con

tent log to the console or files. Three types of logging exist, which are logging for JDBC method call recor

ding, logging for protocol sending and receiving, logging for the SQL statement used.

• Connection Failover

Connection failover is supported on JDBC driver level to continuously use an existing connection by auto

matically reconnecting to the previously registered alternate server when the connection with the executi

on GOLDILOCKS server fails or is disconnected. A user can use connection failover feature as an existing J

DBC program without any exception handling in preparation for the broken connection.

• Connectivity between server and direct attach

Other than TCP/IP based connection, it can be connected with direct attach method interworking with a

process as same as the server. Like as ODBC connection supports direct attach method and Client/ Server

method, GOLDILOCKS JDBC driver also provides both methods. JDBC program connected with direct atta

ch does not communicate with TCP/IP, but it can use the server features in jvm by directly interworking w

ith the server process. The perfomance is doubled or more than the JDBC program connected with TCP/ I

P.

Supporting Versions

GOLDILOCKS JDBC versions

GOLDILOCKS JDBC version information can be viewed when executing goldilocks6.jar file as follows.

shell>java -jar goldilocks6.jar

GOLDILOCKS JDBC Driver 1.0 Procotol-1.3.1, JDBC4.0 compiled with JDK1.6

The examples above describe that current GOLDILOCKS JDBC Driver version is 1.0, and the protocol versi

on is 1.3.1, and JDBC standard version is 4.0 and it is built in JDK 1.6. The driver version is displayed apart

from GOLDILOCKS product version, and it goes up whenever the function is strengthened. For more infor

mation about JDBC driver version, refer to getDriverMajorVersion, getDriverMinorVersion, getDriverVer

Overview of GOLDILOCKS JDBC Driver | 2,805

sion of DatabaseMetaData.

Protocol version determines compatibility with the server, and the driver can interwork with the server if t

he protocol version is equal to or lower than the server protocol version. The server supports all clients AP

I of the lower protocol version.

goldilocks6.jar was built in JDK 1.6 which complies with JDBC 4.0 standard. Therefore, if the user's java e

nvironment is higher than JDK 1.6, goldilocks6.jar is used. However, if Java JDK 1.7 or higher is used, gol

dilocks6.jar can be used but API or classes of JDBC 5.0 can not be used.

goldilocks5.jar or goldilocks4.jar should be used if Java of JDK 1.5 or 1.4 environment is used. Both of the

m comply with JDBC 3.0 standard.

Examples

Setting Class Path

CLASSPATH should be set to use GOLDILOCKS JDBC driver.

export CLASSPATH=.:$GOLDILOCKS_HOME/lib/goldilocks6.jar

Or, add a suitable jar file for the user's Java execution environment to the path.

Loading Driver Class

The driver class can be loaded as follows.

Class.forName("sunje.goldilocks.jdbc.GoldilocksDriver");

The example above is the conventional method of using JDBC, and it is the method of dynamically loadin

g the driver class and registering in DriverManager and getting the connection. Nowadays, the way to get

the connection through DataSource is used more. For more information, refer to the corresponding class

in JDBC API References.

Getting Connection

The following code is used to get the connection.

Connection con = DriverManager.getConnection(

"jdbc:goldilocks://127.0.0.1:22581/test", "TEST", "test");

The connection URL should be started with "jdbc:goldilocks:" to use GOLDILOCKS JDBC. The next is the I

2,806 | JDBC

P address and port number of the server and "/test" which is the final part of URL is the DB name. The cur

rent GOLDILOCKS does not specifically check the DB name because it does not support multi DB. A user c

onnected URL may be obtained again through DatabaseMetaData.getURL().

It connects in Direct Attach (D/A) mode when setting IP to 0.0.0.0, and a port to 0. Or, the connecting pr

otocol, da, can be used instead of ip:port. In other words, both of the following two URL enables connect

ing in D/A mode.

"jdbc:goldilocks://0.0.0.0:0/test"

"jdbc:goldilocks:da/test"

Username and password should respectively use the account and password for DB.

Using Statement and ResultSet

Statement and ResultSet are used in the same way as other JDBC programs.

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT NAME, ADDRESS FROM EMP");

while (rs.next())

{

System.out.println("name = " + rs.getString(1));

System.out.println("address = " + rs.getString(2));

}

rs.close();

stmt.close();

Feature Specification | 2,807

26.2 Feature Specification

Connection

Connection Using DriverManager

The traditional way to get a connection is to use DriverManager.

Connection con = DriverManager.getConnection(url_string, user_name, password);

url_string has the following three types.

jdbc:goldilocks://[ip address]:[port_no]/[db_name]

jdbc:goldilocks:da/[db_name]

jdbc:goldilocks:locator//[ip address]:[port_no][, [ip address]:[port_no]]*/[db_name]

Both of IPv4, IPv6 are available for IP address, and port_no refers to the port number set. db_name is not

used for the current connection so it can have any name. However, it can not be omitted. The following i

s an example of URL.

String url_string = "jdbc:goldilocks://127.0.0.1:22581/test";

IP "0.0.0.0" and port 0 are used as a special address for D/A connection. For more information about D/A

mode, refer to Connecting in Direct Attach Mode.

user_name and password refer to GOLDILOCKS account.

The following method is used for various property settings except for the getConnection() method above.

Properties prop = new Properties();

prop.setProperty("user", user_name);

prop.setProperty("password", password);

Connection con = DriverManager.getConnection(url_string, prop);

A locator keyword can be added to url_string to obtain the server connection information from glocator

instead of using the connection property. In this case, ip address and port_no is considered as the connec

tion information of glocator.

The following is an example of using the locator keyword to the connection statement.

2,808 | JDBC

String url_string =

"jdbc:goldilocks:locator//127.0.0.1:42581,127.0.0.1:42582/test?locator_service=S1";

The first connection information (127.0.0.1:42581) is the connection information of glocator, and the lat

ter connection information is processed as ALTERNATE_LOCATORS property such as 127.0.0.1:42582.

The following is the property setting which has the meaning as same as the url_string above.

String url_strng = "jdbc:goldilocks://0.0.0.0:0/test";

Properties prop = new Properties();

prop.setProperty("locator_host", "127.0.0.1");

prop.setProperty("locator_port", "42581");

prop.setProperty("alternate_locators", "127.0.0.1:42582");

prop.setProperty("locator_service", "S1");

Connection con = DriverManager.getConnection(url_string, prop);

The property list which can be used for the connection is known through getPropertyInfo() method of Go

ldilocksDriver. For more information, refer to Table 26-1 Connection property.

The login timeout of the connection object which is created by DriverManager and the logger uses the va

lue registered in DriverManager. The logger is used by all JDBC interfaces generated from the connection

object. Each connection object is not allowed to have an individual logger.

Connection Using DataSource

The JDBC standard recommends to use DataSource rather than the previous DriverManager. It is because

DataSource is a single interface to access any data source, and it can individually set the values related to

the various data sources, and may remotely send a DataSource object literally.

A connection object can be obtained through DataSource as follows.

import sunje.goldilocks.jdbc.GoldilocksDataSource;

GoldilocksDataSource ds = new GoldilocksDataSource();

ds.setServerName("127.0.0.1");

ds.setPortNumber(22581);

ds.setDatabaseName("test");

ds.setUser("TEST");

ds.setPassword("test");

Connection con = ds.getConnection();

GoldilocksDataSource classes should be used to create a DataSource object.

Then, various connection information should use setter method which is not DataSource standard API.Fo

r more information, refer to DataSource.

Feature Specification | 2,809

When using DriverManager, the login timeout and the logger should be globally set. However, when usin

g DataSource, the login timeout and the logger can be individually set.

ds.setLoginTimeout(10);

ds.setLogWriter(out);

Interworking with Middleware

It is necessary to know the name of the class which implements XADataSource, ConnectionPoolDataSour

ce interface to interwork with middleware such as Weblogic, JBoss, etc. GOLDILOCKS provides Goldilocks

XADataSource, GoldilocksConnectionPoolDataSource for sunje.goldilocks.jdbc package. Both classes offe

r the various setter methods such as GoldilocksDataSource.

import sunje.goldilocks.jdbc.GoldilocksXADataSource;

GoldilocksXADataSource ds = new GoldilocksXADataSource();

ds.setServerName("127.0.0.1");

ds.setPortNumber(22581);

ds.setDatabaseName("test");

ds.setUser("TEST");

ds.setPassword("test");

XAConnection con = ds.getXAConnection();

Connection Property

Table 26-1 Connection property

Name
Mandatory/

optional
Valid value Description

alternate_serve

rs
Optional

IP:PORT[,IP:PO

RT]+

It is the list of alternate servers for failover. It is delimited by co

mma (,).

batch_count Optional Any integer

It is the number of the batch jobs which can be processed in a

single protocol transmission and reception. The default value i

s 1,000. If the value is too small, too much frequent network c

ommunication causes poor performance of the batch processi

ng. If the value is too large, the server memory is increased be

cause the session stacks the execution results.

connection_ret

ry_count
Optional Any integer

It stores the number of retrials to connect. The default value is

0, then it does not retry to connect.

connection_ret

ry_delay
Optional Any integer

It stores the delay before the connection retrial in seconds wh

en trying to connect again. The default value is 3.

date_format Optional Any string
It is the character format which is used to interconvert

between date and string inside the driver.

2,810 | JDBC

da_buffer_size Optional Any integer

It sets the size of a buffer which sends and receives data when

fetching and binding while connected in direct attach mode. T

he default value is 100000.

decoding_repla

cement
Optional Any string

It is the character replacing a byte value which can not be dec

oded when decoding a byte array into a string. The default val

ue is ?.

failover_granul

arity
Optional {"0", "1", "2"}

It determines whether failover is successful. non-atomic(0), at

omic(1), 2 are not yet supported. When an error occurs for th

e existing prepared statements in the prepare process during f

ailover, if it is 0, then it proceeds the failover, and if it is 1, it d

etermines that the failover fails. The default value is 0.

failover_type Optional
{"connection",

"session"}

It determines the failover types.

● Connection: Failover is used only when connecting to ser

ver.

● Session: Failover is used when connecting to server as we

ll as communicating with the server like execution.

The default value is session.

format_gramm

ar
Optional {"db", "java"}

It determines whether the property string such as date_format

is the GOLDILOCKS syntax or the syntax used in SimpleDateFo

rmat of java. The default value is db.

global_logger Optional {"console"}

It specifies the logging target.

Currently only console is available. Only the first specified one i

s valid.

home_dir Optional Any string
It specifies a home directory of a cluster server. The default val

ue is null.

keep_alive Optional {"on", any}

It determines whether to set the keep_alive as the socket prop

erty of the connection. Using the property, the connection re

mains by periodically sending and receiving ack inside TCP soc

ket. LAN cable error detection can forcibly cut off the connecti

on.

locator_connec

tion_timeout
Optional Any integer It is the time of waiting for receiving a packet from glocator.

locator_file Optional Any string It is a location file.

locator_host Optional IP address It is host address of glocator.

locator_port Optional Port no It is port of glocator.

locator_service Optional Any string
It is the service name to obtain the server connection informati

on.

lzeros Optional Any integer

When a numeric is expressed as a string and the number of ze

ros following the decimal point exceeds this value, it is express

ed in exponent notation. The default value is 15.

new_password Optional Any string
It can change the account password by using old_password pr

Name
Mandatory/

optional
Valid value Description

Feature Specification | 2,811

operty together.

old_password Optional Any string
It can change the account password by using new_password

property together.

packet_compre

ssion_threshold
Optional Any integer

It compresses the communication data to be sent to the server

when the data size is bigger than packet_compression_thresh

old. The property range is 32 ~ 2113929216.

password Mandatory Any string It is user account password.

program Optional Any string It is program description.

protocol_log Optional {"on", any}
It determines whether to log sending and receiving a protocol.

The default value is "" (not).

query_log Optional {"on", any}
It determines whether to log a query.

The default value is "" (not).

role Optional
{"", "SYSDBA",

"ADMIN"}
It specifies the account role. The default value is "".

session_type Optional

{"1", "2", "3"}

or

{"dedicate", "sh

ared", "default"

}

It is one of dedicated/ shared/ default.

(It is selected by DB when it is set to default.)

time_format Optional Any string
It is the character format which is used to interconvert betwee

n time and string inside the driver.

timestamp_for

mat
Optional Any string

It is the character format which is used to interconvert betwee

n timestamp and string inside the driver.

timetz_format Optional Any string
It is the character format which is used to interconvert betwee

n time with timezone and string inside the driver.

timestamptz_f

ormat
Optional Any string

It is the character format which is used to interconvert betwee

n timestamp with timezone and string inside the driver.

trace_log Optional {"on", any}
It determines whether to log the trace. The default value is ""

(not).

tzeros Optional Any integer

When a numeric is expressed as a string and the number of ze

ros in digit goes beyond this value, it is expressed in exponent

notation. The default value is 15.

user Mandatory Any string It is user account name.

use_targettype Optional {"0", "1", "2"}

It is the information which is to be received together when rec

eiving a column type through communication.

● 0: none

● 1: name

● 2: all

Name
Mandatory/

optional
Valid value Description

2,812 | JDBC

Note

● locator_file is applied prior to locator_host and locator_port. For more information about loca

tor_file, refer to Location File.

● locator_service property enables the access to the server belonging to locator_service. For mor

e information, refer to glocator and gloctl.

Data Manipulation

Data Manipulation Using Statement

Various SQL statements can be executed by using statement objects. Statement object can be obtained fr

om the connection object as follows.

Connection con = DriverManager.getConnection(...);

Statement stmt = con.createStatement();

Various DML or DDL statements can be executed by using the execute method of the created statement

object, and the executeUpdate method.

stmt.executeUpdate("create table emp (id varchar(20), name varchar(30), age integer)");

stmt.executeUpdate("insert into emp values ('1234560000', 'Yuna', 24)");

int updated = stmt.executeUpdate("delete from emp where age > " + age);

The difference between execute and executeUpdate methods is only the return values. The execute meth

od indicates whether the executed SQL statement returns ResultSet. The executeUpdate method returns

the number of updated rows. The execute method can be used for both of DML and SELECT statements,

but it throws SQLException if the executeUpdate method is used for SELECT statement.

Note

Direct-execution refers to execution of SQL statement by using statement. It is the method of perf

orming the prepare operation(parsing, validation, optimization) and execution for the SQL statem

ent at a time. On the other hand, prepare-execution refers to the method of preparing the operati

on, then repeating the execution. Direct-execution repeatedly performs prepare and execution op

eration every time it is performed, so prepare-execution is more efficient when repeatedly perfor

ming the SQL statement.

Feature Specification | 2,813

Data Manipulation Using PreparedStatement

The JDBC standard provides PreparedStatement interface which can use a parameter for data manipulati

on, and it enables a user to run it more efficiently. In addition, PreparedStatement quickly perform the re

peated operation of the SQL statement because performs the prepare operation for the SQL statement o

nly once.

Connection con = DriverManager.getConnection(...);

PreparedStatement pstmt = con.prepareStatement(

"insert into emp values (?, ?, ?)");

pstmt.setString(1, "55544123000");

pstmt.setString(2, "Gildong");

pstmt.setInt(3, 32);

pstmt.executeUpdate();

pstmt.setString(1, "1357924680");

pstmt.setString(2, "Dooli");

pstmt.setInt(3, 41);

pstmt.executeUpdate();

After preparing the SQL statement as shown in the lines 2-3, the data is bound and performed. Prepared

Statement which is prepared once, can bind and execute repeatedly.

If the binding is omitted and execute() is performed, the previously bound values are used.

pstmt.setString(1, "333555777000");

pstmt.setString(2, "Kang");

pstmt.setInt(3, 55);

pstmt.executeUpdate();

pstmt.setString(1, "245778884440");

pstmt.executeUpdate();

When the value is not bound to the second, third parameters as shown in line 6 but immediately execute

d, the value, "Kang" and 55, which was previously bound, is used. If the previously bound value does not

exist, it throws SQLException.

All bound values are deleted by using clearParameters().

pstmt.setString(1, "333555777000");

pstmt.setString(2, "Kang");

pstmt.setInt(3, 55);

pstmt.executeUpdate();

pstmt.clearParameters();

pstmt.setString(1, "245778884440");

2,814 | JDBC

pstmt.executeUpdate();

After deleting parameters in line 5, if the value is bound only to the first parameter and executed (line 7),

then it throws SQLException.

The main reason to use PreparedStatement is because it can bind the data of various types. It is inconveni

ent to handle the data of the type such as binary or timestamp because the value can be expressed only i

n the character string when using Statement. Therefore, it is more convenient to bind all types by using P

reparedStatement.

pstmt.setTimestamp(1,

new Timestamp(Calendar.getInstance().getTimeInMillis()));

pstmt.setCharacterStream(2, new StringReader(BIG_STRING));

pstmt.setObject(3, someObj, Types.LONGVARCHAR);

pstmt.setObject(4, otherObj);

In the sample above, lines 1 ~ 2 binds java.sql.Timestamp object. The binding type (It is GOLDILOCKS typ

e of the data when the data is sent to the server) is TIMESTAMP. For more information about the binding

type which is determined by the various setter methods, refer to the corresponding API of PreparedState

ment.

Line 3 binds a reader object, and it is bound as LONG VARCHAR type internally.

Line 4 binds the object of Java object type, and explicitly notifies that the type is LONG VARCHAR. For mo

re information about GOLDILOCKS type which is mapped to the type of Types, refer to Table 26-3 SQL ty

pes → GOLDILOCKS types.

Line 5 literally binds the Java object type, and it is bound to the corresponding GOLDILOCKS data type ac

cording to the class type. For more information about mapping between class types and GOLDILOCKS da

ta types, refer to Table 26-2 Java objects → GOLDILOCKS types.

Batch Execution Using Statement

The different SQL statements can be executed as the batch job by using addBatch() and executeBatch() o

f Statement.

stmt.addBatch("insert into emp values ("12345", "Jake", 22)");

stmt.addBatch("insert into salary values ("12345", 5000)");

stmt.addBatch("update members set total_count=total_count+1 where age=22");

stmt.executeBatch();

Likewise, different SQL statements may be performed through a single executeBatch () method. However,

this does not mean that the method call executes three statements in the server, gathers the results, send

s the results to the JDBC driver with a single protocol. Internally, three times of protocol transmission, exe

Feature Specification | 2,815

cution in the server and result transmission are performed. In other words, it does not have a big perform

ance advantage.

After performing executeBatch, all registered jobs are deleted.

Even if an error occurs during execution, all registered jobs are performed until it is completed. Whether

an error occurs or not can be known by the value of the returned int [] type. In other words, if int [] has E

XECUTE_FAILED value, it means that the job is failed.

Batch Execution Using PreparedStatement

More powerful batch operation can be performed by using addBatch() and executeBatch() methods of Pr

eparedStatement.

PreparedStatement pstmt = con.prepareStatement("insert into emp values (?, ?, ?)");

pstmt.setString(1, "12345000");

pstmt.setString(2, "John");

pstmt.setInt(3, 33);

pstmt.addBatch();

pstmt.setString(1, "222333555");

pstmt.setString(2, "Henry");

pstmt.setInt(3, 24);

pstmt.addBatch();

int[] inserted = pstmt.executeBatch();

The example above is a process of inserting two rows. The values configuring the two rows are bound thr

ough addBatch (), and then if executeBatch () is called, the bound value and the protocol for execution a

re sent to the server and executed. It is more efficient than the batch execution of Statement and the perf

ormance is faster because communication occurs only when executeBatch() is called.

The new value should be bound to execute executeBatch() again because the bound values are deleted a

fter executing executeBatch(). clearBatch() does not be to be explicitly called to delete the registered job

after execution.

Even if an error occurs during execution, all registered jobs are performed until it is completed. Whether

an error occurs or not can be known by the value of the returned int [] type. In other words, if int [] has E

XECUTE_FAILED value, it means that the job is failed.

GOLDILOCKS JDBC provides a separate method which is executeBatchAtomic() in addition to executeBat

ch(). executeBatch () performs the execution as many as the number of the registered jobs in the server,

but the response time is fast because executeBatchAtomic() performs the execution at once with the regi

stered job (the bound values). However, if any one fails, everything fails as it can be seen from the name

which is atomic. Therefore, the return type is not int[], but int.

2,816 | JDBC

...

int inserted = ((GoldilocksPreparedStatement)pstmt).executeBatchAtomic();

Data Retrieval

Getting Column Values

The data can be retrieved through ResultSet object which is obtained by executeQuery () of the Statemen

t or PreparedStatement.

...

ResultSet rs = pstmt.executeQuery();

while(rs.next())

{

String id = rs.getString(1);

String name = rs.getString(2);

int age = rs.getInt(3);

...

}

The contents of the column can be obtained through various getter methods in the ResultSet after retriev

ing the data in the table. The data in the table is sent to JDBC drivers in the original form of GOLDILOCKS

data type, and it is converted to an appropriate Java data type according to the types of getter methods c

alled by a user and it is transmitted to the user. For more information about type conversion mapping of

GOLDILOCKS data type and getter method, refer to Table 26-4 Whether supporting getter method for G

OLDILOCKS type - 1 .

If GOLDILOCKS data type can not be converted to the type of getter, it throws SQLException.

Closing ResultSet

The ResultSet which is used up can release the resources through close(). Even if a user does not explicitly

call close(), the followings bring the result as same as when calling close() of ResultSet.

● When superordinate statement is closed

● When superordinate connection is closed

● When executeQuery() of Statement is called again

● When an error occurs during fetching

The two ResultSets which are created from a single statement can not be remained simultaneously in the

Feature Specification | 2,817

third case above. Only the ResultSet object which is created by the last executeQuery() is valid.

Fetch Size

JDBC can specify the number of rows fetched at once from the server through setFetchSize(int rows) of S

tatement. The default value of the ResultSet property of GOLDILOCKS is 0. 0 automatically determines th

e number of rows fetched by the server. For forward only, it is the maximum number of rows fetched in a

communication packet. For scrollable, it is fixed to 100. If the value is too large, the amount of memory u

sed by JDBC ResultSet becomes large. If the value is too small, the communication is frequently executed.

The value is mainly used in a scrollable ResultSet because it is not sensitive even when it is scroll sensitive

while moving within the row cache of ResultSet. If the value is set too large, the latest information about

the changes of rows can not be known.

Field Size Limit

JDBC may limit the maximum length of the column through setMaxFieldSize(int size) of statement. The

maximum length can be limited for the types of CHAR, VARCHAR, LONG VARCHAR, BINARY, VARBINAR

Y, and LONG VARBINARY. The data bigger than the length is truncated. The default value is 0, and the m

aximum length is not limited in this case.

This property is ignored for other types such as INTEGER, DATE, etc..

ResultSet Scroll

Getting Scrollable ResultSet

There are two kinds of scrollable ResultSet, which are scroll sensitive and scroll insensitive. Scroll sensitive

is the cursor type which can view the values changed by the transaction itself or other transaction while tr

aversing the ResultSet, but scroll insensitive is not. GOLDILOCKS server supports both of the scroll types, a

nd those facilities can be used by JDBC.

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ResultSet rs = stmt.executeQuery("select id, name, age from emp");

If the ResultSet type is TYPE_SCROLL_INSENSITIVE when creating statement as line 1, ResultSet which is c

reated from the statement object is scroll sensitive cursor. However, the current GOLDILOCKS does not su

pport the updatable ResultSet.

The type should be set to TYPE_SCROLL_INSENSITIVE to obtain scroll insensitive ResultSet. The default val

2,818 | JDBC

ue is TYPE_FORWARD_ONLY.

However, even it is a scroll sensitive ResultSet, a user can not know the latest value or whether it is chang

ed, when moving within the row cache of ResultSet. The row should be fetched again from the server to

find out the latest value or whether it is changed.

Scrolling

JDBC API provides the following methods to scroll the cursor.

public boolean next() throws SQLException;

public boolean previous() throws SQLException;

public boolean first() throws SQLException;

public boolean last() throws SQLException;

public boolean absolute(int rows) throws SQLException;

public boolean relative(int rows) throws SQLException;

public void beforeFirst() throws SQLException;

public void afterLast() throws SQLException;

next() is the method which can be used for forward only or scrollable ResultSet, and it sets the cursor pos

ition to the next row. If the row can be read at the moved position, it is true. Otherwise, it is false. Other

methods can be used only for scrollable ResultSet.

previous() moves the cursor to the previous row, first() moves the cursor to the first row, last() moves the

cursor to the last row, absolute() moves the cursor to the absolute position and relative() moves the curso

r to the relative position from the current position. beforeFirst() moves the cursor to before the first row.

afterLast()moves the cursor to after the last row.

rs.afterLast();

while (rs.previous())

{

String id = rs.getString(1);

String name = rs.getString(2);

int age = rs.getInt(3);

...

}

The code above will query backwards from the last row to the first row.

The current cursor position can be known by the following method.

Feature Specification | 2,819

public int getRow() throws SQLException;

Scrolling Principle

The ResultSet scroll is easy to use, but it may cause poor performance without knowing internal operatin

g principles. Scrolling is performed in result cache within ResultSet of JDBC driver, but it is performed on t

he server in case when the range exceeds the cache, so the communication may occur. Therefore, it shou

ld be used carefully to prevent the poor performance.

The internal default value of the fetch size of scrollable ResultSet is 100 (the external default value is 0 an

d it can be changed through setFetchSize() method). It means that the number of rows that are fetched t

o JDBC driver at once are 100. The row cache of ResultSet consists of 100 rows, and the cursor position o

f ResultSet should be changed if the row position to be moved is in the cache. However, if it is not in the

cache, the row at the position where to be moved should be got from the server. At this time, it is necess

ary to know how to get the row set including the row to be moved.

For example, if the ResultSet has rows from 1 to 100 and the current cursor position is at 100, calling nex

t () will fetch rows 101 through 200 from the server because the next row does not exist in the cache. On

the other hand, the rows from 101 to 200 are in ResultSet cache, and it is not appropriate to fetch rows f

rom 100 to 199 from the server by calling previous() if the current cursor position is 101 row. When this

approach is used, row should be fetched from the server whenever previous() is called. However, GOLDIL

OCKS fetches the rowset which includes the corresponding last row from the server when it is required to

fetch the row from the server due to calling previous () to prevent this inefficiency. For example, when it i

s necessary to fetch row of the number 100 by calling previous(), GOLDILOCKS fetches the rows from 1 t

o 100. Then it is fetched in favor of previous ().

The rule is generalized as follows.

● If the position to be moved is after the current position, 100 rows (the fetch size) after that position a

re fetched.

● If the position to be moved is before the current position, 100 rows before that position are fetched.

● When moved with first(), the first 100 rows are fetched.

● When moved with last(), the last 100 rows are fetched.

When moved backward, the fetch is performed in favor of next(). When moved forward, the fetch is perf

ormed in favor of previous(). This is also applied to absolute () and relative ().

Using Other Data Types

2,820 | JDBC

Interval Type

GOLDILOCKS supports the following 13 types related to interval.

● interval year

● interval month

● interval year to month

● interval day

● interval hour

● interval minute

● interval second

● interval minute to second

● interval hour to minute

● interval hour to second

● interval day to hour

● interval day to minute

● interval day to second

sunje.goldilocks.jdbc.GoldilocksInterval object is created and the insert operation is executed by setObjec

t() of PreparedStatement to insert the interval data into a table using JDBC.

GoldilocksInterval object can be created by using createIntervalXXX which is the static method of Goldilo

cksInterval.

import sunje.goldilocks.jdbc.GoldilocksInterval;

...

GoldilocksInterval interval = GoldilocksInterval.createIntervalDayToSecond(2, 6, "2

08:23:54.560843");

PreparedStatement pstmt = con.prepareStatement("insert into interval_table values (?,?)");

pstmt.setString(1, someId);

pstmt.setObject(2, interval);

pstmt.executeUpdate();

For more information about createIntervalXXX method, refer to GoldilocksInterval. Likewise, GoldilocksIn

terval is created and it is bound via setObject. Or, a type is explicitly specified as follows.

import sunje.goldilocks.jdbc.GoldilocksTypes;

...

pstmt.setObject(2, interval, GoldilocksTypes.INTERVAL_DAY_TO_SECOND);

The data may be inserted by using a character string without GoldilocksInterval object.

Feature Specification | 2,821

pstmt.setObject(2, "2 08:23:54.560843", GoldilocksTypes.INTERVAL_DAY_TO_SECOND);

In this case, a GoldilocksInterval object is created within JDBC driver and bound to a host variable. Or it m

ay be bound as a string by using setString() method.

pstmt.setString(2, "2 08:23:54.560843");

The string is literally sent to the server when using this method, and the string is converted to Interval day

to second type and inserted in the server.

getObject() or getString() of ResultSet queries the Interval type from the DB.

import sunje.goldilocks.jdbc.GoldilocksInterval;

ResultSet rs = stmt.executeQuery("select interval_value from some_table");

while (rs.next())

{

GoldilocksInterval interval = (GoldilocksInterval)rs.getObject(1);

System.out.println("type = " + interval.getTypeName() +

", value = " + interval.toString());

}

The data of GoldilocksInterval type can be retrieved via getObject() of ResultSet. GoldilocksInterval class p

rovides getter like getYear(), getHour(), etc. that return various time data. For more information about ge

tter API, refer to GoldilocksInterval.

Time with Time Zone and Timestamp with Time Zone Types

Concerning time, GOLDILOCKS provides not only SQL standard types such as Date, Time, Timestamp but

also Time with time zone and Timestamp with time zone types.

CREATE TABLE SAMPLE_TABLE (C1 TIME WITH TIME ZONE,

C2 TIMESTAMP WITH TIME ZONE);

GOLDILOCKS JDBC provides setTimeTimeZone(int colIndex, Time time, Calendar timezone) method and s

etTimestampTimeZone(int colIndex, Timestamp time, Calendar timezone) method in GoldilocksPreparedS

tatement class to insert the data of Time with time zone and Timestamp with time zone types. For more i

nformation about specifications refer to setTimeTimeZone and setTimestampTimeZone.

The data can be inserted via existing setTime() and setTimestamp() methods, but the time zone value of t

he column is unconditionally set to the local time zone of Java execution environment. Therefore, setTime

TimeZone() or setTimestampTimeZone should be used to insert various time zone information.

Time, Timestamp data can be inserted with the given time zone value via setTimeTimeZone and setTimest

2,822 | JDBC

ampTimeZone.

import sunje.goldilocks.jdbc.GoldilocksPreparedStatement;

PreparedStatement pstmt = con.prepareStatement(

"INSERT INTO SAMPLE_TABLE VALUES (?,?,?,?)");

Calendar now = Calendar.getInstance();

Calendar usNow = Calendar.getInstance(TimeZone.getTimeZone("GMT-8"));

Time t = new Time(now.getTimeInMillis());

Timestamp ts = new Timestamp(now.getTimeInMillis());

pstmt.setTime(1, t);

pstmt.setTimestamp(2, ts);

pstmt.executeUpdate();

((GoldilocksPreparedStatement)pstmt).setTimeTimeZone(1, t, now);

((GoldilocksPreparedStatement)pstmt).setTimestampTimeZone(2, ts, now);

pstmt.executeUpdate();

((GoldilocksPreparedStatement)pstmt).setTimeTimeZone(1, t, usNow);

((GoldilocksPreparedStatement)pstmt).setTimestampTimeZone(2, ts, usNow);

pstmt.executeUpdate();

Line 11, 12 binds the column to time type and timestamp type. Each value of t and ts is sent to the server

and the default time zone value is inserted to DB column in the server.

On the other hand, line 15, 16 binds the column to time with time zone type and timestamp with time zo

ne type, and is sent to the server together with time zone information. As a result, if the time zone settin

gs of a server and a client are same, the rows which are inserted by lines 11~13 and 15~17 are same.

Line 19, 20 inserts time zone information of GMT-8 time zone.

There are two ways to query data, which are time with time zone and timestamp with time zone. One is t

he way to get data as char from the server, and the other is the way to get data of the corresponding typ

e by JDBC and to obtain as time or as timestamp object.

ResultSet rs = stmt.executeQuery("select c1, cast(c1 as char(33)), c2, cast(c2 as char(33))

from sample_table");

while (rs.next())

{

System.out.println("c1 = " + rs.getTime(1).toString());

System.out.println("c1 as char = " + rs.getString(2));

System.out.println("c2 = " + rs.getTimestamp(3).toString());

System.out.println("c2 as char = " + rs.getString(4));

}

When executing the code above, the results are as follows.

Feature Specification | 2,823

c1 = 12:35:26

c1 as char = 12:35:26.052000 +09:00

c2 = 2014-03-27 12:35:26.052

c2 as char = 2014-03-27 12:35:26.052000 +09:00

c1 = 12:35:26

c1 as char = 12:35:26.052000 +09:00

c2 = 2014-03-27 12:35:26.052

c2 as char = 2014-03-27 12:35:26.052000 +09:00

c1 = 12:35:26

c1 as char = 19:35:26.052000 -08:00

c2 = 2014-03-27 12:35:26.052

c2 as char = 2014-03-26 19:35:26.052000 -08:00

Logging

Logging Types

When developing a project by using JDBC, it is helpful in many ways for JDBC driver to leave various logs.

GOLDILOCKS provides the facility to log the useful information even during operation, as well as the proj

ect development.

There are three types of log, which are trace log, protocol log and query log.

Trace log leaves information every time when JDBC API is called. It can be known which JDBC API is called.

Protocol log shows the situation to send and receive communication packets between JDBC driver and G

OLDILOCKS server. Query log records the SQL statement to be executed, when PreparedStatement or Sta

tement is executed.

Logging by Using DriverManager

First, the logging is left by using DriverManager. The logging media can be determined by using setLogW

riter() method in DriverManager, and the type of logging to be left can be specified in connection url.

DriverManager.setLogWriter(new PrintWriter(System.out));

String url = "jdbc:goldilocks://localhost:22581/test?trace_log=on&query_log=on";

Connection con = DriverManager.getConnection(url, "TEST", "test");

Line 1 defines the logging media. All logging is output to the console. Line 2 defines the connection url, a

nd the property can be defined after ? character. It means to using trace_log, query_log.

Likewise, these properties can be specified in URL, or they can be defined with properties object.

2,824 | JDBC

Properties prop = new Properties();

prop.put("trace_log", "on");

prop.put("query_log", "on");

prop.put("protocol_log", "on");

prop.put("user", "TEST");

prop.put("password", test");

Connection con = DriverManager.getConnection(url, prop);

The connection properties which can be used in GOLDILOCKS are defined in Table 26-1 Connection prop

erty.

Sometimes it is difficult to call setLogWriter() of DriverManager. When using the middleware, the code lik

e that can not be added. For such a case, GOLDILOCKS JDBC provides a global property called global_log

ger. Other general properties are limited to a single connection, but this property is global. In other words,

if the property is set, it does not have to call DriverManager.setLogWriter ().

String url = "jdbc:goldilocks://localhost:22581/test?" +

"global_logger=console&trace_log=on&query_log=on";

Connection con = DriverManager.getConnection(url, "TEST", "test");

global_logger property is applied only once initially, and it is ignored if log writer is already set in DriverM

anager. Only the current console is applicable as the property value. Other value does not cause any oper

ation.

Logging by Using DataSource

Unlike DriverManager, DataSource can set the log writer by each object. If the log writer is set for a DataS

ource object, all connections which are generated from the DataSource are logged by the log writer. The

following describes how to set the logging in the DataSource.

import sunje.goldilocks.jdbc.GoldilocksDataSource;

...

GoldilocksDataSource ds = new sunje.goldilocks.jdbc.GoldilocksDataSource();

ds.setServerName("localhost");

ds.setDatabaseName("test");

ds.setUser("TEST");

ds.setPassword("test");

ds.setPortNumber(22581);

ds.setLogTarget("console");

ds.setTraceLog("on");

ds.setQueryLog("on");

ds.setProtocolLog("on");

Feature Specification | 2,825

Connection con = ds.getConnection();

Likewise, the logging feature is set by using setLogTarget(), setTraceLog(), setQueryLog() and setProtocol

Log() methods. setLogWriter() of DataSource can be called instead of setLogTarget(). When using the mi

ddleware, the method such as setLogWriter() can not be directly called, so it should be controlled with th

e property. In this case, if logTarget, traceLog, queryLog and protocolLog properties are defined, the mid

dleware automatically calls the methods.

Viewing Plan Text

Usage

The plan text can be obtained by using GOLDILOCKS JDBC like as the plan text of the executed statement

is obtained by using GOLDILOCKS ODBC. It can be configured to generate a plan text by using non-stand

ard API method in GoldilocksStatement class, or obtain the plan text which is already generated.

Connection con = ...

GoldilocksStatement stmt = (GoldilocksStatement)con.createStatement();

stmt.setExplainPlanOption(GoldilocksStatement.EXPLAIN_PLAN_OPTION_ON);

ResultSet rs = stmt.executeQuery("select * from t1");

System.out.println(stmt.getExplainPlan());

For example, when querying a simple table, the plan text is output as follows.

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 0 |

==

1 - READ COLUMNS : A

Option Types

GOLDILOCKS provides the following four properties about the plan text generation.

● EXPLAIN_PLAN_OPTION_OFF: It does not generate the plan text as the default value of the property r

elated to the plan text of statement.

● EXPLAIN_PLAN_OPTION_ON: It generates the plan text when executing or fetching.

2,826 | JDBC

● EXPLAIN_PLAN_OPTION_ON_VERBOSE: It generates more detailed plan text such as execution time

when executing or fetching.

● EXPLAIN_PLAN_OPTION_ONLY: It generates the plan text like as EXPLAIN_PLAN_OPTION_ON when

executing or fetching but it is not actually executed.

These properties are set by using GoldilocksStatement.setExplainPlanOption(int) method, and the proper

ty which is set once is continuously maintained. A constant value of the property is defined in GoldilocksS

tatement.

Note

The plan text for non-SELECT DML statements or other SQL statements is generated at run-time,

but the plan text for the SELECT statements is generated when the SELECT statement is fetched a

nd the cursor is positioned at the end in the server. The plan text should be obtained after all rows

are traversed with ResultSet for the SELECT statement. The plan text can be obtained when there

are few rows in a table because the cursor can traverse until the end in the server without fetchin

g all rows.

Connection Failover

GOLDILOCKS supports the connection failover of the client level (JDBC, ODBC). The application which acc

esses with client/ server mode by using the JDBC or ODBC to GOLDILOCKS, may perform connection to t

he alternative server automatically when the connection fails or disconnected. This allows a user to use hi

gh availability applications which utilize multiple servers. In particular, when a user registers the main serv

er URL and the alternative server URL through the connection property under interworking web server en

vironment, it can safely use the connection object obtained from the connection pool without worrying a

bout the interruption. Failover is performed entirely automatically inside the driver and the user does not

need to worry about the reconnection logics.

alternate_servers property should be given to use failover. IP and port of the alternative server are given f

or this property, and it may indicate the multiple alternative servers by using the comma (,).

Class.forName("sunje.goldilocks.jdbc.GoldilocksDriver");

String url = "jdbc:goldilocks://192.168.0.101:22581/test";

Property prop = new Properties();

prop.setProperty("user", "TEST");

prop.setProperty("password", "test");

prop.setProperty("alternate_servers", "192.168.0.201:22581");

Connection con = DriverManager.getConnection(url, prop); 1

Feature Specification | 2,827

Statement stmt = con.createStatement();

stmt.executeUpdate("insert into time_tab values (sysdate)"); 2

...

For example, if 1 fails to connect to the main server (192.168.0.101), it will automatically connect to an

alternative server (192.168.0.201) and returns a connection object. Any error is not returned to the user.

If it can not communicate with the server because the connection is broken at 2 during executeUpdate

() or before then, it automatically connects to the alternative server inside the driver and continues to use

the existing connection object and returns SQLException. Users can continue to use the existing connecti

on object after processing SQLException.

Whether failover or not can be viewed through getWarnings() of connection object.

A failover feature of GOLDILOCKS JDBC is that a user can continue to use statement object or PreparedSt

atement object created from connection object. (ResultSet can not continue to be used.)

In particular, a user can continue to use the object because PreparedStatements perform the prepare ope

rations internally again in the alternative server if a failover occurs.

Connection con = DriverManager.getConnection(url, prop);

PreparedStatement pstmt =

con.prepareStatement("insert into t1 values (?,?)");

...

try

{

pstmt.setInt(1, 100);

pstmt.setString(2, "John");

pstmt.executeUpdate();

}

catch (SQLException sException)

{

if (sException.getErrorCode() == 21012)

{

● Failover occurs due to the communication link failure error.

● A user can continue to use the pstmt object.

pstmt.executeUpdate();

}

else

{

...

}

2,828 | JDBC

}

GOLDILOCKS JDBC driver provides some properties related to failover. These can help a user to decide th

e failover type, connection order and simple policy used for failover.

failover_type

The property is used to select the failover type. In the example above, the failover at 1 is the connection

failover and the failover at 2 is the session failover. If the property value is connection, only the connecti

on failover is used, and if it is session, both of the connection failover and session failover can be used. Th

e default value is session.

failover_granularity

When failover occurs, the prepare operation is performed after the PreparedStatement objects which are

generated from the current connection object are connected to the alternative server. If the prepare oper

ation fails in the alternative server (An error may occur due to the different server environment.), the pro

perty is used to determine whether to consider the failover failed or to ignore the prepare error. The prop

erty value is either 0 or 1. If the property value is 0, the prepare error is ignored and the failover continuo

usly proceeds. If the property value is 1, the failover is failed. The default value is 0. If the value is 0 and th

e prepare operation is failed, PreparedStatement object can not continue to be used and the user should

directly create the PreparedStatement object again.

Connecting in Direct Attach Mode

Since JDBC 1.1, Goldilocks provides the connection in direct attach mode (D/A mode) besides the existin

g connection in Client/ Server mode (C/S mode) based on TCP/ IP. Like as ODBC D/A connection mode, t

his is operated directly interworking with the server process. so the server module interworks within a sin

gle process (in a process same as jvm). Therefore, the remote host can not connect in D/A mode.

D/A mode is designed to utilize the merit of an in-memory DB GOLDILOCKS, which is a fast processing. T

CP/ IP based connection offsets the fast processing of GOLDILOCKS by expensive cost, so an alternative

method is required when a fast processing is required. Though it is restricted to be operated within the h

ost which is same as the host of GOLDILOCKS server, this D/A mode connection is a good solution.

JDBC program connecting in D/A mode can directly call the server feature by loading GOLDILOCKS jni libr

ary when DB connection is created first within jvm. A server module can be directly called through native

interface in jvm without network cost, it enables faster processing than the existing C/S mode.

Feature Specification | 2,829

Connecting Method

Use 0.0.0.0:0 instead of existing ip:port in the connection URL to connect in D/A mode. The existing URL

can be literaly used and using a special ip:port address (0.0.0.0:0) can minimize changing exisiting applic

ations. Or, use a special protocol (da) to connect in D/A mode.

Connection con =

DriverManager.getConnection("jdbc:goldilocks://0.0.0.0:0/test","TEST","test");

or,

Connection con =

DriverManager.getConnection("jdbc:goldilocks:da/test", "TEST", "test");

Features of D/A Connection

GOLDILOCKS server module can be directly called in jvm when connecting in D/A mode. It is called throu

gh JNI (Java Native Interface) between JDBC program and GOLDILOCKS server module. It uses the server

module with minimum call cost considering that it is expensive to call JNI, so it is faster double than the J

DBC based on existing TCP/ IP.

When using the connection based on the existing TCP/ IP, it uses only goldilocks6.jar file. However, when

using the connection based on D/A mode, it uses libgoldilocksjni.so file and libgoldilocksas.so file in $GO

LDILOCKS_HOME/lib by dynamically loading them. Therefore, an error occurs when connecting if those t

wo library files do not exist. However, the location of the library files need not to be separately specified

when operating java program. Because it searches for those two library files and loads them as long as it i

s in the directory as same as the directory of goldilocks6.jar file.

2,830 | JDBC

26.3 JDBC API References

Array

The class is not implemented.

free

void free() throws SQLException

getArray

Object getArray() throws SQLException

Object getArray(Map<String,Class<?>> map) throws SQLException

Object getArray(long index, int count) throws SQLException

Object getArray(long index, int count, Map<String,Class<?>> map) throws SQLException

getBaseType

int getBaseType() throws SQLException

getBaseTypeName

String getBaseTypeName() throws SQLException

getResultSet

ResultSet getResultSet() throws SQLException

ResultSet getResultSet(Map<String,Class<?>> map) throws SQLException

JDBC API References | 2,831

ResultSet getResultSet(long index, int count) throws SQLException

ResultSet getResultSet(long index, int count, Map<String,Class<?>> map) throws SQLException

2,832 | JDBC

Blob

The class is not implemented.

free

void free() throws SQLException

getBinaryStream

InputStream getBinaryStream() throws SQLException

InputStream getBinaryStream(long pos, long length) throws SQLException

getBytes

byte[] getBytes(long pos, int length) throws SQLException

length

long length() throws SQLException

position

long position(byte[] pattern, long start) throws SQLException

long position(Blob pattern, long start) throws SQLException

setBinaryStream

OutputStream setBinaryStream(long pos) throws SQLException

setBytes

JDBC API References | 2,833

int setBytes(long pos, byte[] bytes) throws SQLException

int setBytes(long pos, byte[] bytes, int offset, int len) throws SQLException

truncate

void truncate(long len) throws SQLException

2,834 | JDBC

CallableStatement

getArray

Array getArray(int parameterIndex) throws SQLException

● Operation: It does not support an array type.

● Exception: It always returns SQLFeatureNotSupportedException.

Array getArray(String parameterName) throws SQLException

● Operation: It does not support an array type.

● Exception: It always returns SQLFeatureNotSupportedException.

getBigDecimal

BigDecimal getBigDecimal(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in BigDecimal type. For more inform

ation about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter

method for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

BigDecimal getBigDecimal(int parameterIndex, int scale) throws SQLException

● Operation: It is not implemented. (It is a deprecated method.)

● Exception: It always throws SQLFeatureNotSupportedException.

BigDecimal getBigDecimal(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getBlob

Blob getBlob(int parameterIndex) throws SQLException

● Operation: It does not support blob type.

● Exception: It always returns SQLFeatureNotSupportedException.

JDBC API References | 2,835

Blob getBlob(String parameterName) throws SQLException

● Operation: It does not support blob type.

● Exception: It always returns SQLFeatureNotSupportedException.

getBoolean

boolean getBoolean(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in boolean type. For more informati

on about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter met

hod for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

boolean getBoolean(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getByte

byte getByte(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in byte type. For more information a

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

byte getByte(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getBytes

byte[] getBytes(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in byte[] type. For more information

about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter metho

2,836 | JDBC

d for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

byte[] getBytes(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getCharacterStream

Reader getCharacterStream(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in reader type. For more information

about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Reader getCharacterStream(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getClob

Clob getClob(int parameterIndex) throws SQLException

● Operation: It does not support clob type.

● Exception: It always returns SQLFeatureNotSupportedException.

Clob getClob(String parameterName) throws SQLException

● Operation: It does not support clob type.

● Exception: It always returns SQLFeatureNotSupportedException.

getDate

Date getDate(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in date type. For more information a

JDBC API References | 2,837

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 . It uses local time zone and locale when creating a date object.

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Date getDate(int parameterIndex, Calendar cal) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in date type. For more information a

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 . It uses time zone and locale of cal when creating a date object.

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Date getDate(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

Date getDate(String parameterName, Calendar cal) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getDouble

double getDouble(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in double type. For more informatio

n about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter meth

od for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

double getDouble(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getFloat

2,838 | JDBC

float getFloat(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in float type. For more information a

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

float getFloat(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getInt

int getInt(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in int type. For more information ab

out whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method f

or GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

int getInt(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getLong

long getLong(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in long type. For more information a

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

long getLong(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,839

getNCharacterStream

Reader getNCharacterStream(int parameterIndex) throws SQLException

● Operation: Currently, it does not support NCHAR-family type.

● Exception: It always throws SQLFeatureNotSupportedException.

Reader getNCharacterStream(String parameterName) throws SQLException

● Operation: Currently, it does not support NCHAR-family type.

● Exception: It always throws SQLFeatureNotSupportedException.

getNClob

NClob getNClob(int parameterIndex) throws SQLException

● Operation: Currently, it does not support NClob-family type.

● Exception: It always throws SQLFeatureNotSupportedException.

NClob getNClob(String parameterName) throws SQLException

● Operation: Currently, it does not support NClob-family type.

● Exception: It always throws SQLFeatureNotSupportedException.

getNString

String getNString(int parameterIndex) throws SQLException

● Operation: Currently, it does not support NCHAR-family type.

● Exception: It always throws SQLFeatureNotSupportedException.

String getNString(String parameterName) throws SQLException

● Operation: Currently, it does not support NCHAR-family type.

● Exception: It always throws SQLFeatureNotSupportedException.

getObject

Object getObject(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in Java object type. For more inform

2,840 | JDBC

ation about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter

method for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Object getObject(int parameterIndex, Map<String,Class<?>> map) throws SQLException

● Operation: It is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

Object getObject(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

Object getObject(String parameterName, Map<String,Class<?>> map) throws SQLException

● Operation: It is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

getRef

Ref getRef(int parameterIndex) throws SQLException

● Operation: It does not support ref type.

● Exception: It always returns SQLFeatureNotSupportedException.

Ref getRef(String parameterName) throws SQLException

● Operation: It does not support ref type.

● Exception: It always returns SQLFeatureNotSupportedException.

getRowId

RowId getRowId(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in rowid type. For more information

about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

JDBC API References | 2,841

RowId getRowId(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getShort

short getShort(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in short type. For more information

about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

short getShort(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getSQLXML

SQLXML getSQLXML(int parameterIndex) throws SQLException

● Operation: It does not support SQLXML type.

● Exception: It always returns SQLFeatureNotSupportedException.

SQLXML getSQLXML(String parameterName) throws SQLException

● Operation: It does not support SQLXML type.

● Exception: It always returns SQLFeatureNotSupportedException.

getString

String getString(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in string type. For more information

about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

2,842 | JDBC

String getString(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getTime

Time getTime(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in time type. For more information a

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 . It uses local time zone when creating a time object.

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Time getTime(int parameterIndex, Calendar cal) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in time type. For more information a

bout whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter method

for GOLDILOCKS type - 1 . It uses time zone of cal when creating a time object.

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Time getTime(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

Time getTime(String parameterName, Calendar cal) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getTimestamp

Timestamp getTimestamp(int parameterIndex) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in timestamp type. For more inform

ation about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter

method for GOLDILOCKS type - 1 . It uses local time zone when creating a timestamp object.

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

JDBC API References | 2,843

Timestamp getTimestamp(int parameterIndex, Calendar cal) throws SQLException

● Operation: It obtains column data at parameterIndex-th position in timestamp type. For more inform

ation about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supporting getter

method for GOLDILOCKS type - 1 . It uses time zone of cal when creating a timestamp object.

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLException.

Timestamp getTimestamp(String parameterName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

Timestamp getTimestamp(String parameterName, Calendar cal) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getURL

URL getURL(int parameterIndex) throws SQLException

● Operation: It does not support URL type.

● Exception: It always returns SQLFeatureNotSupportedException.

URL getURL(String parameterName) throws SQLException

● Operation: It does not support URL type.

● Exception: It always returns SQLFeatureNotSupportedException.

registerOutParameter

void registerOutParameter(int parameterIndex, int sqlType) throws SQLException

● Operation: It registers out parameters positioned in parameterIndex as sqlType. All out parameters sh

ould be registered before executing the stored procedure. JDBC type of out parameter specified as sq

lType determines Java type which is used in a get method to read parameter parameter value. For mo

re information about whether it supports GOLDILOCKS types, refer to Table 26-4 Whether supportin

g getter method for GOLDILOCKS type - 1 .

● Exception: If the parameterIndex is invalid, database is not accessible, or CallableStatement is already

closed, then it throws SQLFeatureNotSupprtedException.

2,844 | JDBC

void registerOutParameter(int parameterIndex, int sqlType, int scale) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void registerOutParameter(int parameterIndex, int sqlType, String typeName) throws

SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void registerOutParameter(String parameterName, int sqlType) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void registerOutParameter(String parameterName, int sqlType, int scale) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void registerOutParameter(String parameterName, int sqlType, String typeName) throws

SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setAsciiStream

void setAsciiStream(String parameterName, InputStream x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setAsciiStream(String parameterName, InputStream x, int length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setAsciiStream(String parameterName, InputStream x, long length) throws SQLException

● Operation: It is not implemented.

JDBC API References | 2,845

● Exception: It always throws SQLFeatureNotSupportedException.

setBigDecimal

void setBigDecimal(String parameterName, BigDecimal x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setBinaryStream

void setBinaryStream(String parameterName, InputStream x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setBinaryStream(String parameterName, InputStream x, int length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setBinaryStream(String parameterName, InputStream x, long length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setBlob

void setBlob(String parameterName, Blob x) throws SQLException

● Operation: It does not support blob type.

● Exception: It always returns SQLFeatureNotSupportedException.

void setBlob(String parameterName, InputStream inputStream) throws SQLException

● Operation: It does not support blob type.

● Exception: It always returns SQLFeatureNotSupportedException.

void setBlob(String parameterName, InputStream inputStream, long length) throws SQLException

● Operation: It does not support blob type.

2,846 | JDBC

● Exception: It always returns SQLFeatureNotSupportedException.

setBoolean

void setBoolean(String parameterName, boolean x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setByte

void setByte(String parameterName, byte x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setBytes

void setBytes(String parameterName, byte[] x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setCharacterStream

void setCharacterStream(String parameterName, Reader reader) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setCharacterStream(String parameterName, Reader reader, int length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setCharacterStream(String parameterName, Reader reader, long length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,847

setClob

void setClob(String parameterName, Clob x) throws SQLException

● Operation: It does not support clob type.

● Exception: It always returns SQLFeatureNotSupportedException.

void setClob(String parameterName, Reader reader) throws SQLException

● Operation: It does not support clob type.

● Exception: It always returns SQLFeatureNotSupportedException.

void setClob(String parameterName, Reader reader, long length) throws SQLException

● Operation: It does not support clob type.

● Exception: It always returns SQLFeatureNotSupportedException.

setDate

void setDate(String parameterName, Date x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setDate(String parameterName, Date x, Calendar cal) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setDouble

void setDouble(String parameterName, double x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setFloat

void setFloat(String parameterName, float x) throws SQLException

● Operation: It is not implemented.

2,848 | JDBC

● Exception: It always throws SQLFeatureNotSupportedException.

setInt

void setInt(String parameterName, int x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setLong

void setLong(String parameterName, long x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setNCharacterStream

void setNCharacterStream(String parameterName, Reader value) throws SQLException

● Operation: It does not support NChar.

● Exception: It always throws SQLFeatureNotSupportedException.

void setNCharacterStream(String parameterName, Reader value, long length) throws SQLException

● Operation: It does not support NChar.

● Exception: It always throws SQLFeatureNotSupportedException.

setNClob

void setNClob(String parameterName, NClob value) throws SQLException

● Operation: It does not support NClob.

● Exception: It always throws SQLFeatureNotSupportedException.

void setNClob(String parameterName, Reader reader) throws SQLException

● Operation: It does not support NClob.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,849

void setNClob(String parameterName, Reader reader, long length) throws SQLException

● Operation: It does not support NClob.

● Exception: It always throws SQLFeatureNotSupportedException.

setNString

void setNString(String parameterName, String value) throws SQLException

● Operation: It does not support NChar.

● Exception: It always throws SQLFeatureNotSupportedException.

setNull

void setNull(String parameterName, int sqlType) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setNull(String parameterName, int sqlType, String typeName) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setObject

void setObject(String parameterName, Object x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setObject(String parameterName, Object x, int targetSqlType) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setObject(String parameterName, Object x, int targetSqlType, int scale) throws

SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

2,850 | JDBC

setRowId

void setRowId(String parameterName, RowId x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setShort

void setShort(String parameterName, short x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setSQLXML

void setSQLXML(String parameterName, SQLXML xmlObject) throws SQLException

● Operation: It does not support SQLXML type.

● Exception: It always returns SQLFeatureNotSupportedException.

setString

void setString(String parameterName, String x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setTime

void setTime(String parameterName, Time x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setTime(String parameterName, Time x, Calendar cal) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,851

setTimestamp

void setTimestamp(String parameterName, Timestamp x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setTimestamp(String parameterName, Timestamp x, Calendar cal) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setURL

void setURL(String parameterName, URL val) throws SQLException

● Operation: It does not support URL type.

● Exception: It always throws SQLFeatureNotSupportedException.

wasNull

boolean wasNull()

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

isWrapperFor

boolean isWrapperFor(Class<?> iface)

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

unwrap

boolean isWrapperFor(Class<?> iface)

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

2,852 | JDBC

Clob

The class is not implemented.

free

void free() throws SQLException

getAsciiStream

InputStream getAsciiStream() throws SQLException

getCharacterStream

Reader getCharacterStream() throws SQLException

Reader getCharacterStream(long pos, long length) throws SQLException

getSubString

String getSubString(long pos, int length) throws SQLException

length

long length() throws SQLException

position

long position(Clob searchstr, long start) throws SQLException

long position(String searchstr, long start) throws SQLException

setAsciiStream

JDBC API References | 2,853

OutputStream setAsciiStream(long pos) throws SQLException

setCharacterStream

Writer setCharacterStream(long pos) throws SQLException

setString

int setString(long pos, String str) throws SQLException

int setString(long pos, String str, int offset, int len) throws SQLException

truncate

void truncate(long len) throws SQLException

2,854 | JDBC

CommonDataSource

getLoginTimeout

int getLoginTimeout() throws SQLException

● Operation: It returns the login timeout setting value. Login timeout is used as a timeout value when p

erforming socket connection to the server. If the value is not set, 0 is returned. 0 means infinite stand

by.

● Exception: It does not occur.

getLogWriter

PrintWriter getLogWriter() throws SQLException

● Operation: It returns the log writer which is set in the DataSource. If it is not set, null is returned. Log

writer refers to PrintWriter to write various trace logs. For more information about logging, refer to L

ogging.

● Exception: It does not occur.

setLoginTimeout

void setLoginTimeout(int seconds) throws SQLException

● Operation: It sets the login timeout value. Login timeout is used as a timeout value when performing

socket connection to the server. 0 means infinite standby.

● Exception: It does not occur.

setLogWriter

void setLogWriter(PrintWriter out) throws SQLException

● Operation: It sets the log writer in DataSource. If the value is not set, the default value is null. Log wri

ter refers to PrintWriter to write various trace logs. If the value is set, trace log, query log, and protoc

ol log are written according to the options, and connection object which is created from DataSource

and all objects which are created from connection object such as Statement, ResultSet, perform loggi

ng. Trace log, query log, protocol log options can be specified in the connection url or property. For

more information about logging, refer to Logging.

● Exception: It does not occur.

JDBC API References | 2,855

setDataSourceName

void setDataSourceName(String aDataSourceName)

● Operation: It sets the data source name. It is not the mandatory information required for the connecti

on. It is the information charged separately to distinguish objects.

● Exception: It does not occur.

setServerName

void setServerName(String aServerName)

● Operation: It sets the server name, which is the connection URL. It is the mandatory information requi

red for the connection.

● Exception: It does not occur.

setDatabaseName

void setDatabaseName(String aDBName)

● Operation: It sets the database name. It is the mandatory information required for the connection.

● Exception: It does not occur.

setNetworkProtocol

void setNetworkProtocol(String aProtocol)

● Operation: It is the network protocol information. It is not the mandatory information required for th

e connection.

● Exception: It does not occur.

setUser

void setUser(String aUser)

● Operation: It sets the connection account name. It is the mandatory information required for the con

nection.

● Exception: It does not occur.

2,856 | JDBC

setPassword

void setPassword(String aPassword)

● Operation: It sets the connection account password. It is the mandatory information required for the

connection.

● Exception: It does not occur.

setPortNumber

void setPortNumber(int aPort)

● Operation: It sets the port number used when connecting to the server. It is the mandatory informati

on required for the connection.

● Exception: It does not occur.

void setPortNumber(String aPort)

● Operation: It sets the port number used when connecting to the server. It is the mandatory informati

on required for the connection.

● Exception: It does not occur.

setRoleName

void setRoleName(String aRoleName)

● Operation: It specifies the role of when connecting to server. It is not mandatory information required

for the connection, but it is the connection related information. One of "", "ADMIN", "SYSDBA" is spe

cified.

● Exception: It does not occur.

setDescription

void setDescription(String aDescription)

● Operation: It sets the description about the data source. It is not used for the connection.

● Exception: It does not occur.

JDBC API References | 2,857

setConnectionProperties

void setConnectionProperties(Properties aProps)

● Operation: It defines the properties which can be used in various connections.

● Exception: It does not occur.

setURL

void setURL(String aURL) throws SQLException

● Operation: It specifies the serverName, portNumber, and database Name in URL form. It has URL as s

ame as the URL of when connecting via DriverManager.

● Exception: If it is the wrong format, it throws SQLException.

void setUrl(String aUrl) throws SQLException

It is as same as setURL (String aURL).

setLogTarget

void setLogTarget(String aTarget)

● Operation: If setLogWriter can not be called, the log writer is set by this method. Currently, it is supp

orted only when aTarget is "console", other values are ignored. If it is set to "console", all loggings bel

ow the connection object which is generated from the DataSource are output to the console.

● Exception: It does not occur.

setTraceLog

void setTraceLog(String aMode)

● Operation: It sets the trace log. If aMode is on, the trace logging is on.

● Exception: It does not occur.

setQueryLog

void setQueryLog(String aMode)

● Operation: It sets the query log. If aMode is on, the query logging is on.

2,858 | JDBC

● Exception: It does not occur.

setProtocolLog

void setProtocolLog(String aMode)

● Operation: It sets the protocol log. If aMode is on, the protocol logging is on.

● Exception: It does not occur.

JDBC API References | 2,859

Connection

clearWarnings

void clearWarnings() throws SQLException

● Operation: It clears the warning object(s) owned by the current connection object.

● Exception: It does not occur.

close

void close() throws SQLException

● Operation: It breaks the connection with GOLDILOCKS not to use anymore the current connection an

d closes all statement objects created from the object. If already closed, any operation is not perform

ed.

● Exception: It may happen when an error occurs from the server or it does not respond.

commit

void commit() throws SQLException

● Operation: For non-auto commit mode, the commit is executed for the current connection.

● Exception: If it is already closed or is on the auto-commit mode, it throws SQLException.

createArrayOf

Array createArrayOf(String typeName, Object[] elements) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

createBlob

Blob createBlob() throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

http://docs.oracle.com/javase/6/docs/api/java/sql/SQLException.html
http://docs.oracle.com/javase/6/docs/api/java/sql/SQLException.html

2,860 | JDBC

createClob

Clob createClob() throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

createNClob

NClob createNClob() throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

createSQLXML

SQLXML createSQLXML() throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

createStatement

Statement createStatement() throws SQLException

● Operation: It creates statement object. The ResultSet type created by the statement is ResultSet.TYPE

_FORWARD_ONLY, and concurrency is ResultSet.CONCUR_READ_ONLY, and holdability is ResultSet.

HOLD_CURSORS_OVER_COMMIT.

● Exception: If it is already closed, it throws SQLException.

Statement createStatement(int resultSetType, int resultSetConcurrency) throws SQLException

● Operation: It creates statement object which creates ResultSet including the user defined resultset ty

pe and resultset concurrency. The holdability of ResultSet which are generated from the statement o

bject is as same as the holdability of the connection type. The default holdability of connection is Res

ultSet.HOLD_CURSORS_OVER_COMMIT.

● Exception: If it is already closed, it throws SQLException.

Statement createStatement(int resultSetType, int resultSetConcurrency, int

resultSetHoldability) throws SQLException

JDBC API References | 2,861

● Operation: It creates a statement object which creates ResultSet including the user defined resultset t

ype, resultset concurrency and holdability.

● Exception: If it is already closed, it throws SQLException.

createStruct

Struct createStruct(String typeName, Object[] attributes) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getAutoCommit

boolean getAutoCommit() throws SQLException

● Operation: It returns the current auto commit mode. If setAutoCommit() has not been called, it retur

ns true.

● Exception: It does not occur.

getCatalog

String getCatalog() throws SQLException

● Operation: It gets the current catalog name of the database.

● Exception: If an error occurs from the server or it does not respond, then it throws SQLException.

getClientInfo

Properties getClientInfo() throws SQLException

● Operation: It returns client information set by the user. If setting information does not exist, It returns

null.

● Exception: It does not occur.

String getClientInfo(String name) throws SQLException

● Operation: It returns specific client information set by the user. If the corresponding information does

not exist, it returns null.

● Exception: It does not occur.

2,862 | JDBC

getHoldability

int getHoldability() throws SQLException

● Operation: It returns the default holdability value of statements created by this object. The default val

ue is ResultSet.HOLD_CURSORS_OVER_COMMIT.

● Exception: It does not occur.

getMetaData

DatabaseMetaData getMetaData() throws SQLException

● Operation: It gets a DatabaseMetaData object which can be queried for metadata information from t

his object. It always returns the same object.

● Exception: If it is already closed, it throws SQLException.

getTransactionIsolation

int getTransactionIsolation() throws SQLException

● Operation: It gets the transaction isolation level which is set on the current session (connection). The

default value which is set on the server is Connection.TRANSACTION_READ_COMMITTED.

● Exception: If an error occurs from the server, it throws SQLException.

getTypeMap

Map<String,Class<?>> getTypeMap() throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getWarnings

SQLWarning getWarnings() throws SQLException

● Operation: It returns a warning which the server responds to connection object until now. If a warnin

g does not exist or clearWarnings() is already performed, it returns null.

● Exception: It does not occur.

JDBC API References | 2,863

isClosed

boolean isClosed() throws SQLException

● Operation: It queries whether close() is successfully called. If close() is successfully performed, it retur

ns true. Otherwise, it returns false.

● Exception: It does not occur.

Note

This method does not inform a user whether the connection to a physical server is broken. Even if

the actual connection is broken it returns true when close () has never been called.

isReadOnly

boolean isReadOnly() throws SQLException

● Operation: If the session(connection) is read only mode, it returns true. Otherwise, it returns false. Th

e default value is false. Communication with the server occurs.

● Exception: If an error occurs from the server or it does not respond, it throws SQLException.

isValid

boolean isValid(int timeout) throws SQLException

● Operation: If isClosed() returns true or the heart beat query is sent to the server and response is not s

uccessfully received, it returns false. Otherwise, it returns true.

● Exception: It does not occur.

nativeSQL

String nativeSQL(String sql) throws SQLException

● Operation: It returns the native SQL recognized by the server for the given user SQL statement. GOLD

ILOCKS always return the value as same as given by the user because the server recognizes the user's

SQL statement literally.

● Exception: It does not occur.

http://docs.oracle.com/javase/6/docs/api/java/sql/SQLException.html
http://docs.oracle.com/javase/6/docs/api/java/sql/SQLException.html
http://docs.oracle.com/javase/6/docs/api/java/sql/SQLException.html
http://docs.oracle.com/javase/6/docs/api/java/sql/SQLException.html

2,864 | JDBC

prepareCall

CallableStatement prepareCall(String sql) throws SQLException

● Operation: It returns CallableStatement object for calling stored procedures. ResultSet type created fr

om this CallableStatement is ResultSet.TYPE_FORWARD_ONLY, the concurrency is ResultSet.CONCU

R_READ_ONLY, and the holdability is ResultSet.HOLD_CURSORS_OVER_COMMIT.

● Exception: If it is already closed or the SQL statement is wrong, then it throws SQLException.

CallableStatement prepareCall(String sql, int resultSetType, int resultSetConcurrency) throws

SQLException

● Operation: It creates CallableStatement object which creates ResultSet with the resultset type and the

resultset concurrency specified by the user. The holdability of ResultSet created from this CallableStat

ement is as same as that of the connection. The default holdability value of the connection is ResultS

et.HOLD_CURSORS_OVER_COMMIT.

● Exception: If it is already closed or the SQL statement is wrong, then it throws SQLException.

CallableStatement prepareCall(String sql, int resultSetType, int resultSetConcurrency, int

resultSetHoldability) throws SQLException

● Operation: It creates CallableStatement object which creates ResultSet with the resultset type, the res

ultset concurrency and the holdability specified by the user.

● Exception: If it is already closed or the SQL statement is wrong, then it throws SQLException.

prepareStatement

PreparedStatement prepareStatement(String sql) throws SQLException

● Operation: It sends the SQL statement to the server and prepares (parsing, validation, optimization),

and it returns the PreparedStatement object which controls the prepared statement to the user. The t

ype of ResultSet generated by the PreparedStatement is ResultSet.TYPE_FORWARD_ONLY, and conc

urrency is ResultSet. CONCUR_READ_ONLY, and holdability is ResultSet.HOLD_CURSORS_OVER_CO

MMIT.

● Exception: If it is already closed or the SQL statement is wrong, it throws SQLException.

PreparedStatement prepareStatement(String sql, int autoGeneratedKeys) throws SQLException

● Operation: If autoGeneratedKeys is Statement.NO_GENERATED_KEYS, it operates in the same way a

s prepareStatement(String sql) method. Otherwise, it throws an exception.

● Exception: If it is already closed, the SQL statement is wrong or autoGeneratedKeys value is neither St

atement.NO_GENERATED_KEYS nor Statement.RETURN_GENERATED_KEYS, then it throws SQLExce

ption. If autoGeneratedKeys is Statement.RETURN_GENERATED_KEYS, it throws SQLFeatureNotSupp

JDBC API References | 2,865

ortedException.

PreparedStatement prepareStatement(String sql, int[] columnIndexes) throws SQLException

● Operation: If columnIndexes is null, it operates in the same way as the prepareStatement(String sql)

method. Otherwise, it throws an exception.

● Exception: If it is already closed or the SQL statement is wrong, it throws SQLException. If columnInd

exes is not null, it throws SQLFeatureNotSupportedException.

PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency)

throws SQLException

● Operation: It sends the SQL statement to the server and prepares (parsing, validation, optimization). I

t returns the PreparedStatement object which controls the prepared statement to the user. It creates

the PreparedStatement object generating ResultSet which includes the user defined result set type an

d result set concurrency. The holdability of ResultSet which is generated by PreparedStatement is as s

ame as the holdability of connection. The default holdability value of connection is ResultSet.HOLD_C

URSORS_OVER_COMMIT.

● Exception: If it is already closed or the SQL statement is wrong, it throws SQLException.

PreparedStatement prepareStatement(String sql, int resultSetType, int resultSetConcurrency,

int resultSetHoldability) throws SQLException

● Operation: It sends the SQL statement to the server and prepares (parsing, validation, optimization). I

t returns the PreparedStatement object which controls the prepared statement to the user. It creates

the PreparedStatement object generating ResultSet which includes the user defined result set type an

d result set concurrency and holdability.

● Exception: If it is already closed or the SQL statement is wrong, it throws SQLException.

PreparedStatement prepareStatement(String sql, String[] columnNames) throws SQLException

● Operation: If columnNames is null, it operates in the same way as prepareStatement(String sql) meth

od. Otherwise, it throws an exception.

● Exception: If it is already closed or the SQL statement is wrong, it throws SQLException. If columnNa

mes is not null, it throws SQLFeatureNotSupportedException.

releaseSavepoint

void releaseSavepoint(Savepoint savepoint) throws SQLException

● Operation: It removes the savepoint from the server. It also removes all savepoints after this savepoint.

● Exception: If it is already closed or the savepoint object was already released or it is not the GOLDILO

CKS savepoint object, it throws SQLException.

2,866 | JDBC

rollback

void rollback() throws SQLException

● Operation: If it is non auto commit mode, it rolls back the current transaction.

● Exception: If it is already closed or it is the auto commit mode or an error is returned from the server,

it throws SQLException.

void rollback(Savepoint savepoint) throws SQLException

● Operation: If it is non auto commit mode, it performs partial rollback to the savepoint for the current

transaction.

● Exception: If it is already closed or it is the auto commit mode or an error is returned from the server

or the savepoint is not valid, it throws SQLException.

setAutoCommit

void setAutoCommit(boolean autoCommit) throws SQLException

● Operation: It changes the auto commit mode for the current connection. If the performed transactio

n exists and the non auto commit mode is changed to the auto commit, it performs commit.

● Exception: It is as same as the exception which may occur during the commit process.

setCatalog

void setCatalog(String catalog) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setClientInfo

void setClientInfo(Properties properties) throws SQLException

● Operation: It sets the user defined client information. Existing client information is eliminated. It does

not affect the server.

● Exception: It does not occur.

void setClientInfo(String name, String value) throws SQLException

● Operation: It adds the user defined client information. Existing client information is retained.

JDBC API References | 2,867

● Exception: It does not occur.

setHoldability

void setHoldability(int holdability) throws SQLException

● Operation: It sets the ResultSet holdability which is generated by the statement generated from this o

bject. If the method is not called, the default value is ResultSet.HOLD_CURSORS_OVER_COMMIT.

● Exception: It does not occur.

setReadOnly

void setReadOnly(boolean readOnly) throws SQLException

● Operation: It sets the read only property of the current session (connection). The default value is false.

● Exception: If it is already closed or an error is returned from the server, it throws SQLException.

setSavepoint

Savepoint setSavepoint() throws SQLException

● Operation: If it is the non auto commit mode, it sets the savepoint for the current transaction. The sa

vepoint name is internally determined.

● Exception: If it is already closed or it is the auto commit mode or an error is returned from the server,

it throws SQLException.

Savepoint setSavepoint(String name) throws SQLException

● Operation: If it is the non auto commit mode, it sets the savepoint whose name is specfied by the use

r for the current transaction.

● Exception: If it is already closed or it is the auto commit mode or an error is returned from the server,

it throws SQLException.

setTransactionIsolation

void setTransactionIsolation(int level) throws SQLException

● Operation: It changes the transaction isolation for the current session (connection). The supported va

lue is Connection.TRANSACTION_READ_COMMITED, Connection.TRANSACTION_READ_UNCOMMIT

TED, and Connection.TRANSACTION_SERIALIZABLE. Connection.READ_UNCOMMITTED is set to Con

nection.TRANSACTION_READ_COMMITED, and Connection.TRANSACTION_REPEATABLE_READ is s

2,868 | JDBC

et to Connection.TRANSACTION_SERIALIZABLE.

● Exception: If it is already closed or the level has the wrong value, it throws SQLException.

setTypeMap

void setTypeMap(Map<String,Class<?>> map) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

isWrapperFor

void isWrapperFor(Class<?> iface) throws SQLException

● Operation: It queries whether this object is a class which implements the iface interface. If it is, it retu

rns true. Otherwise, it returns false. It does not determine the presence of the wrapper but it only qu

eries only whether the given argument class type is implemented because GOLDILOCKS connection o

bject is not the wrapper of any other class.

● Exception: It does not occur.

unwrap

<T> T unwrap(Class<T> iface) throws SQLException

● Operation: It eventually returns itself, even when it is unwrapped because GOLDILOCKS connection is

not the wrapper of any other class. It returns itself after casting it to the corresponding type. If iface is

an argument of isWrapperFor() method and false is returned, the method throws an exception.

● Exception: If iface is not the type of this object (if this object returns the unimplemented type), it thro

ws SQLException.

JDBC API References | 2,869

ConnectionPoolDataSource

getPooledConnection

PooledConnection getPooledConnection() throws SQLException

● Operation: It creates the PooledConnection object. Various connection information, such as user na

me, password, connection URL should be set through the setter method in advance.

● Exception: If the connection fails, it throws SQLException.

PooledConnection getPooledConnection(String user, String password) throws SQLException

● Operation: It creates the PooledConnection object. Username and password shall comply with the ar

gument. Other connection information should be set to the setter method in advance.

● Exception: If the connection fails, it throws SQLException.

2,870 | JDBC

DatabaseMetaData

allProceduresAreCallable

boolean allProceduresAreCallable() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

allTablesAreSelectable

boolean allTablesAreSelectable() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

autoCommitFailureClosesAllResultSets

boolean autoCommitFailureClosesAllResultSets() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

dataDefinitionCausesTransactionCommit

boolean dataDefinitionCausesTransactionCommit() throws SQLException

● Operation: It always returns false because it does not automatically commit DDL statements at run-ti

me.

● Exception: It does not occur.

dataDefinitionIgnoredInTransactions

boolean dataDefinitionIgnoredInTransactions() throws SQLException

● Operation: It always returns false, because DDL statements are included in a transaction.

● Exception: It does not occur.

JDBC API References | 2,871

deletesAreDetected

boolean deletesAreDetected(int type) throws SQLException

● Operation: If type is ResultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

doesMaxRowSizeIncludeBlobs

boolean doesMaxRowSizeIncludeBlobs() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

getAttributes

ResultSet getAttributes(String catalog, String schemaPattern, String typeNamePattern, String

attributeNamePattern) throws SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

getBestRowIdentifier

ResultSet getBestRowIdentifier(String catalog, String schema, String table, int scope, boolean

nullable) throws SQLException

● Operation: It returns a ResultSet including one row consisting with rowid information because the ro

wid type is supported for all tables. If the table does not exist, it returns an empty ResultSet.

● Exception: If the table is null or an error is returned from the server, it throws SQLException.

getCatalogs

ResultSet getCatalogs() throws SQLException

● Operation: It returns a ResultSet which has the catalog name in a column.

● Exception: If an error is returned from the server, it throws SQLException.

2,872 | JDBC

getCatalogSeparator

String getCatalogSeparator() throws SQLException

● Operation: It returns a catalog separator character.

● Exception: If an error is returned from the server, it throws SQLException.

getCatalogTerm

String getCatalogTerm() throws SQLException

● Operation: It returns a catalog term character.

● Exception: If an error is returned from the server, it throws SQLException.

getClientInfoProperties

ResultSet getClientInfoProperties() throws SQLException

● Operation: It returns a ResultSet including client information.

● Exception: If an error is returned from the server, it throws SQLException.

getColumnPrivileges

ResultSet getColumnPrivileges(String catalog, String schema, String table, String

columnNamePattern) throws SQLException

● Operation: It returns a ResultSet including column privilege information of the column in the table. If

the table or the column corresponding to the column name pattern does not exist, it returns an empt

y ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

getColumns

ResultSet getColumns(String catalog, String schemaPattern, String tableNamePattern, String

columnNamePattern) throws SQLException

● Operation: It returns a ResultSet including all column information of the table. If the table or the colu

mn corresponding to the column name pattern does not exist, it returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

JDBC API References | 2,873

getConnection

Connection getConnection() throws SQLException

● Operation: It returns the connection object which created the DatabaseMetaData object.

● Exception: It does not occur.

getCrossReference

ResultSet getCrossReference(String parentCatalog, String parentSchema, String parentTable,

String foreignCatalog, String foreignSchema, String foreignTable) throws SQLException

● Operation: It returns a ResultSet including information of the foreign keys which refers to the given p

arent table in the given foreign key table. If reference relationship does not exist, it returns an empty

ResultSet.

● Exception: If the foreign table or parent table is null or an error is returned from the server, it throws

SQLException.

getDatabaseMajorVersion

int getDatabaseMajorVersion() throws SQLException

● Operation: It returns the major version of the product.

● Exception: If an error is returned from the server, it throws SQLException.

getDatabaseMinorVersion

int getDatabaseMinorVersion() throws SQLException

● Operation: It returns the minor version of the product.

● Exception: If an error is returned from the server, it throws SQLException.

getDatabaseProductName

String getDatabaseProductName() throws SQLException

● Operation: It returns the product name.

● Exception: If an error is returned from the server, it throws SQLException.

2,874 | JDBC

getDatabaseProductVersion

String getDatabaseProductVersion() throws SQLException

● Operation: It returns the product version.

● Exception: If an error is returned from the server, it throws SQLException.

getDefaultTransactionIsolation

int getDefaultTransactionIsolation() throws SQLException

● Operation: It returns the default transaction isolation. The default value which is set on the server is C

onnection.TRANSACTION_READ_COMMITTED.

● Exception: If an error is returned from the server, it throws SQLException.

getDriverMajorVersion

int getDriverMajorVersion() throws SQLException

● Operation: It returns the major version of GOLDILOCKS JDBC driver.

● Exception: It does not occur.

getDriverMinorVersion

int getDriverMinorVersion() throws SQLException

● Operation: It returns the minor version of GOLDILOCKS JDBC driver.

● Exception: It does not occur.

getDriverName

String getDriverName() throws SQLException

● Operation: It returns "GOLDILOCKS JDBC Driver".

● Exception: It does not occur.

JDBC API References | 2,875

getDriverVersion

String getDriverVersion() throws SQLException

● Operation: It returns GOLDILOCKS JDBC driver version string. It includes the protocol version.

● Exception: It does not occur.

getExportedKeys

ResultSet getExportedKeys(String catalog, String schema, String table) throws SQLException

● Operation: It returns a ResultSet including foreign key information referring to the column in the give

n table.

● Exception: If an error is returned from the server, it throws SQLException.

getExtraNameCharacters

String getExtraNameCharacters() throws SQLException

● Operation: It returns "-$".

● Exception: It does not occur.

getFunctionColumns

ResultSet getFunctionColumns(String catalog, String schemaPattern, String functionNamePattern,

String columnNamePattern) throws SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

getFunctions

ResultSet getFunctions(String catalog, String schemaPattern, String functionNamePattern)

throws SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

2,876 | JDBC

getIdentifierQuoteString

String getIdentifierQuoteString() throws SQLException

● Operation: It returns an identifier quote character. The value that is set on the server is ".

● Exception: If an error is returned from the server, it throws SQLException.

getImportedKeys

ResultSet getImportedKeys(String catalog, String schema, String table) throws SQLException

● Operation: It returns a ResultSet including parent key information to which the foreign key column in

the given table refers.

● Exception: If an error is returned from the server, it throws SQLException.

getIndexInfo

ResultSet getIndexInfo(String catalog, String schema, String table, boolean unique, boolean

approximate) throws SQLException

● Operation: It returns a ResultSet including index information of the given table. If unique is true, only

unique index information is displayed. The approximate argument is ignored.

● Exception: If an error is returned from the server, it throws SQLException.

getJDBCMajorVersion

int getJDBCMajorVersion() throws SQLException

● Operation: It returns JDBC major version of GOLDILOCKS JDBC driver. It can vary depending on the ja

r file in use.

● Exception: It does not occur.

getJDBCMinorVersion

int getJDBCMinorVersion() throws SQLException

● Operation: It returns JDBC minor version of GOLDILOCKS JDBC driver. It can vary depending on the ja

r file in use.

● Exception: It does not occur.

JDBC API References | 2,877

getMaxBinaryLiteralLength

int getMaxBinaryLiteralLength() throws SQLException

● Operation: It gets the maximum binary length from the server. 0 refers that the maximum length is in

finite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxCatalogNameLength

int getMaxCatalogNameLength() throws SQLException

● Operation: It gets the maximum length of the catalog name from the server. 0 refers that the maxim

um length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxCharLiteralLength

int getMaxCharLiteralLength() throws SQLException

● Operation: It gets the maximum literal length from the server. 0 refers that the maximum length is inf

inite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxColumnNameLength

int getMaxColumnNameLength() throws SQLException

● Operation: It gets the maximum length of the column name from the server. 0 refers that the maxim

um length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxColumnsInGroupBy

int getMaxColumnsInGroupBy() throws SQLException

● Operation: It gets the maximum number of columns available to use in group by clause from the serv

er. 0 refers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

2,878 | JDBC

getMaxColumnsInIndex

int getMaxColumnsInIndex() throws SQLException

● Operation: It gets the maximum number of columns available to use as the index from the server. 0 r

efers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxColumnsInOrderBy

int getMaxColumnsInOrderBy() throws SQLException

● Operation: It gets the maximum number of columns available to use in order by clause from the serve

r. 0 refers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxColumnsInSelect

int getMaxColumnsInSelect() throws SQLException

● Operation: It gets the maximum number of columns available to use in select target clause from the s

erver. 0 refers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxColumnsInTable

int getMaxColumnsInTable() throws SQLException

● Operation: It gets the maximum number of columns available to use in the table from the server. 0 re

fers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxConnections

int getMaxConnections() throws SQLException

● Operation: It gets the maximum number of connection to the server from the server. 0 refers that the

maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

JDBC API References | 2,879

getMaxCursorNameLength

int getMaxCursorNameLength() throws SQLException

● Operation: It gets the maximum length of the cursor name from the server. 0 refers that the maximu

m length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxIndexLength

int getMaxIndexLength() throws SQLException

● Operation: It gets the maximum size for a single index key from the server.

● Exception: If an error is returned from the server, it throws SQLException.

Caution

The JDBC specification defines that the available maximum size of a single index is returned in byt

es, but its value is meaningless, because index size does not have limit. It operates in this way for i

t to have the same meaning as ODBC.

getMaxProcedureNameLength

int getMaxProcedureNameLength() throws SQLException

● Operation: It gets the maximum length of the procedure name from the server. 0 refers that the maxi

mum length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxRowSize

int getMaxRowSize() throws SQLException

● Operation: It gets the maximum number of rows in a table from the server. 0 refers that the maximu

m number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

2,880 | JDBC

getMaxSchemaNameLength

int getMaxSchemaNameLength() throws SQLException

● Operation: It gets the maximum length of the schema name from the server. 0 refers that the maxim

um length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxStatementLength

int getMaxStatementLength() throws SQLException

● Operation: It gets the maximum string length of an SQL statement from the server. 0 refers that the

maximum length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxStatements

int getMaxStatements() throws SQLException

● Operation: It gets the maximum number of statements which can be open at once from the server. 0

refers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxTableNameLength

int getMaxTableNameLength() throws SQLException

● Operation: It gets the maximum string length of the table name from the server. 0 refers that the ma

ximum length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getMaxTablesInSelect

int getMaxTablesInSelect() throws SQLException

● Operation: It gets the maximum number of tables which can be used in the select statement from th

e server. 0 refers that the maximum number is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

JDBC API References | 2,881

getMaxUserNameLength

int getMaxUserNameLength() throws SQLException

● Operation: It gets the maximum string length of the user name from the server. 0 refers that the max

imum length is infinite.

● Exception: If an error is returned from the server, it throws SQLException.

getNumericFunctions

String getNumericFunctions() throws SQLException

● Operation: It gets a list of numeric-related functions corresponding to SQL standard from the server.

Each function name is distinguished by comma (,).

● Exception: If an error is returned from the server, it throws SQLException.

getPrimaryKeys

ResultSet getPrimaryKeys(String catalog, String schema, String table) throws SQLException

● Operation: It returns a ResultSet including all primary keys in a given table.

● Exception: If an error is returned from the server, it throws SQLException.

getProcedureColumns

ResultSet getProcedureColumns(String catalog, String schemaPattern, String

procedureNamePattern, String columnNamePattern) throws SQLException

● Operation: It returns a ResultSet including column information corresponding to the given name patt

ern for a given procedure.

● Exception: If an error is returned from the server, it throws SQLException.

getProcedures

ResultSet getProcedures(String catalog, String schemaPattern, String procedureNamePattern)

throws SQLException

● Operation: It returns a ResultSet including procedure information of a given name pattern.

● Exception: If an error is returned from the server, it throws SQLException.

2,882 | JDBC

getProcedureTerm

String getProcedureTerm() throws SQLException

● Operation: It gets the keyword which refers to the procedure from the server.

● Exception: If an error is returned from the server, it throws SQLException.

getResultSetHoldability

int getResultSetHoldability() throws SQLException

● Operation: It returns the default holdability property of ResultSet. It is ResultSet.HOLD_CURSORS_OV

ER_COMMIT.

● Exception: It does not occur.

getRowIdLifetime

RowIdLifetime getRowIdLifetime() throws SQLException

● Operation: It always returns RowIdLifetime.ROWID_VALID_FOREVER.

● Exception: It does not occur.

getSchemas

ResultSet getSchemas() throws SQLException

● Operation: It returns a ResultSet including information about all schemas in the server.

● Exception: If an error is returned from the server, it throws SQLException.

ResultSet getSchemas(String catalog, String schemaPattern) throws SQLException

● Operation: It returns a ResultSet including information for all schemas which meet the pattern of a gi

ven schema name. The catalog is ignored.

● Exception: If an error is returned from the server, it throws SQLException.

getSchemaTerm

String getSchemaTerm() throws SQLException

● Operation: It gets the keyword which refers to the schema from the server.

JDBC API References | 2,883

● Exception: If an error is returned from the server, it throws SQLException.

getSearchStringEscape

String getSearchStringEscape() throws SQLException

● Operation: It returns the escape characters used in like clause as a string.

● Exception: If an error is returned from the server, it throws SQLException.

getSQLKeywords

String getSQLKeywords() throws SQLException

● Operation: It returns the keywords which can not be used in SQL statement, separated by comma (,).

● Exception: If an error is returned from the server, it throws SQLException.

getSQLStateType

int getSQLStateType() throws SQLException

● Operation: It always returns DatabaseMetaData.sqlStateSQL99.

● Exception: It does not occur.

getStringFunctions

String getStringFunctions() throws SQLException

● Operation: It gets a list of functions which handle the strings and corresponds to SQL standard. Each

function name is distinguished by comma (,).

● Exception: If an error is returned from the server, it throws SQLException.

getSuperTables

ResultSet getSuperTables(String catalog, String schemaPattern, String tableNamePattern) throws

SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

2,884 | JDBC

getSuperTypes

ResultSet getSuperTypes(String catalog, String schemaPattern, String typeNamePattern) throws

SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

getSystemFunctions

String getSystemFunctions() throws SQLException

● Operation: It gets a list of system functions corresponding to SQL standard. Each function name is se

parated by the comma (,).

● Exception: If an error is returned from the server, it throws SQLException.

getTablePrivileges

ResultSet getTablePrivileges(String catalog, String schemaPattern, String tableNamePattern)

throws SQLException

● Operation: It returns a ResultSet including privilege information of all tables which satisfy the conditio

n.

● Exception: If an error is returned from the server, it throws SQLException.

getTables

ResultSet getTables(String catalog, String schemaPattern, String tableNamePattern, String[]

types) throws SQLException

● Operation: It returns a ResultSet including information of all tables which satisfy the condition.

● Exception: If an error is returned from the server, it throws SQLException.

getTableTypes

ResultSet getTableTypes() throws SQLException

● Operation: It returns a ResultSet containing information of all table types.

● Exception: If an error is returned from the server, it throws SQLException.

JDBC API References | 2,885

getTimeDateFunctions

String getTimeDateFunctions() throws SQLException

● Operation: It gets functions which are related to time and date and corresponds to SQL standard. Eac

h function name is separated by the comma(,).

● Exception: If an error is returned from the server, it throws SQLException.

getTypeInfo

ResultSet getTypeInfo() throws SQLException

● Operation: It returns a ResultSet including information of the data type.

● Exception: If an error is returned from the server, it throws SQLException.

getUDTs

ResultSet getUDTs(String catalog, String schemaPattern, String typeNamePattern, int[] types)

throws SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

getURL

String getURL() throws SQLException

● Operation: It returns the URL used to connect to the server.

● Exception: It does not occur.

getUserName

String getUserName() throws SQLException

● Operation: It returns the current user name which maintains a session.

● Exception: If an error is returned from the server, it throws SQLException.

2,886 | JDBC

Caution

A user name may be different from the user name used to connect firstly because the user can be

changed during a session.

getVersionColumns

ResultSet getVersionColumns(String catalog, String schema, String table) throws SQLException

● Operation: It returns an empty ResultSet.

● Exception: If an error is returned from the server, it throws SQLException.

insertsAreDetected

boolean insertsAreDetected(int type) throws SQLException

● Operation: It always returns false regardless of the type.

● Exception: It does not occur.

isCatalogAtStart

boolean isCatalogAtStart() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

isReadOnly

boolean isReadOnly() throws SQLException

● Operation: It gets the information whether the current connection is the read only mode from the ser

ver.

● Exception: If an error is returned from the server, it throws SQLException.

locatorsUpdateCopy

JDBC API References | 2,887

boolean locatorsUpdateCopy() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

nullPlusNonNullIsNull

boolean nullPlusNonNullIsNull() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

nullsAreSortedAtEnd

boolean nullsAreSortedAtEnd() throws SQLException

● Operation: It always returns false. It does not separately sort null.

● Exception: It does not occur.

nullsAreSortedAtStart

boolean nullsAreSortedAtStart() throws SQLException

● Operation: It always returns false. It does not separately sort null.

● Exception: It does not occur.

nullsAreSortedHigh

boolean nullsAreSortedHigh() throws SQLException

● Operation: It always returns true. Null is positioned at last by default.

● Exception: It does not occur.

nullsAreSortedLow

boolean nullsAreSortedLow() throws SQLException

● Operation: It always returns false. Null is positioned at last by default.

● Exception: It does not occur.

2,888 | JDBC

othersDeletesAreVisible

boolean othersDeletesAreVisible(int type) throws SQLException

● Operation: If the type is ResultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

othersInsertsAreVisible

boolean othersInsertsAreVisible(int type) throws SQLException

● Operation: It always returns false regardless of the type.

● Exception: It does not occur.

othersUpdatesAreVisible

boolean othersUpdatesAreVisible(int type) throws SQLException

● Operation: If the type is ResultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

ownDeletesAreVisible

boolean ownDeletesAreVisible(int type) throws SQLException

● Operation: If the type is ResultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

ownInsertsAreVisible

boolean ownInsertsAreVisible(int type) throws SQLException

● Operation: It always returns false regardless of the type.

● Exception: It does not occur.

ownUpdatesAreVisible

JDBC API References | 2,889

boolean ownUpdatesAreVisible(int type) throws SQLException

● Operation: If the type is ResultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

storesLowerCaseIdentifiers

boolean storesLowerCaseIdentifiers() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

storesLowerCaseQuotedIdentifiers

boolean storesLowerCaseQuotedIdentifiers() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

storesMixedCaseIdentifiers

boolean storesMixedCaseIdentifiers() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

storesMixedCaseQuotedIdentifiers

boolean storesMixedCaseQuotedIdentifiers() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

storesUpperCaseIdentifiers

boolean storesUpperCaseIdentifiers() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

2,890 | JDBC

storesUpperCaseQuotedIdentifiers

boolean storesUpperCaseQuotedIdentifiers() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsAlterTableWithAddColumn

boolean supportsAlterTableWithAddColumn() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsAlterTableWithDropColumn

boolean supportsAlterTableWithDropColumn() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsANSI92EntryLevelSQL

boolean supportsANSI92EntryLevelSQL() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsANSI92FullSQL

boolean supportsANSI92FullSQL() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsANSI92IntermediateSQL

JDBC API References | 2,891

boolean supportsANSI92IntermediateSQL() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsBatchUpdates

boolean supportsBatchUpdates() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsCatalogsInDataManipulation

boolean supportsCatalogsInDataManipulation() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsCatalogsInIndexDefinitions

boolean supportsCatalogsInIndexDefinitions() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsCatalogsInPrivilegeDefinitions

boolean supportsCatalogsInPrivilegeDefinitions() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsCatalogsInProcedureCalls

boolean supportsCatalogsInProcedureCalls() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

2,892 | JDBC

supportsCatalogsInTableDefinitions

boolean supportsCatalogsInTableDefinitions() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsColumnAliasing

boolean supportsColumnAliasing() throws SQLException

● Operation: It gets information whether to support the column aliasing from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsConvert

boolean supportsConvert() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsConvert

boolean supportsConvert(int fromType, int toType) throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsCoreSQLGrammar

boolean supportsCoreSQLGrammar() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsCorrelatedSubqueries

JDBC API References | 2,893

boolean supportsCorrelatedSubqueries() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsDataDefinitionAndDataManipulationTransactions

boolean supportsDataDefinitionAndDataManipulationTransactions() throws SQLException

● Operation: It always returns true. It can perform DML and DDL with a single transaction.

● Exception: It does not occur.

supportsDataManipulationTransactionsOnly

boolean supportsDataManipulationTransactionsOnly() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsDifferentTableCorrelationNames

boolean supportsDifferentTableCorrelationNames() throws SQLException

● Operation: It gets information whether the table correlation name should be different from the table

name from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsExpressionsInOrderBy

boolean supportsExpressionsInOrderBy() throws SQLException

● Operation: It gets information whether the calculation can be used in order by clause from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsExtendedSQLGrammar

boolean supportsExtendedSQLGrammar() throws SQLException

● Operation: It always returns true.

2,894 | JDBC

● Exception: It does not occur.

supportsFullOuterJoins

boolean supportsFullOuterJoins() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsGetGeneratedKeys

boolean supportsGetGeneratedKeys() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsGroupBy

boolean supportsGroupBy() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsGroupByBeyondSelect

boolean supportsGroupByBeyondSelect() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsGroupByUnrelated

boolean supportsGroupByUnrelated() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

JDBC API References | 2,895

supportsIntegrityEnhancementFacility

boolean supportsIntegrityEnhancementFacility() throws SQLException

● Operation: It gets information whether to support SQL integrity enhancing feature from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsLikeEscapeClause

boolean supportsLikeEscapeClause() throws SQLException

● Operation: It gets information whether to support escape clause in like statement from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsLimitedOuterJoins

boolean supportsLimitedOuterJoins() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsMinimumSQLGrammar

boolean supportsMinimumSQLGrammar() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsMixedCaseIdentifiers

boolean supportsMixedCaseIdentifiers() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsMixedCaseQuotedIdentifiers

2,896 | JDBC

boolean supportsMixedCaseQuotedIdentifiers() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsMultipleOpenResults

boolean supportsMultipleOpenResults() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsMultipleResultSets

boolean supportsMultipleResultSets() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsMultipleTransactions

boolean supportsMultipleTransactions() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsNamedParameters

boolean supportsNamedParameters() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsNonNullableColumns

boolean supportsNonNullableColumns() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

JDBC API References | 2,897

supportsOpenCursorsAcrossCommit

boolean supportsOpenCursorsAcrossCommit() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsOpenCursorsAcrossRollback

boolean supportsOpenCursorsAcrossRollback() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsOpenStatementsAcrossCommit

boolean supportsOpenStatementsAcrossCommit() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsOpenStatementsAcrossRollback

boolean supportsOpenStatementsAcrossRollback() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsOrderByUnrelated

boolean supportsOrderByUnrelated() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsOuterJoins

2,898 | JDBC

boolean supportsOuterJoins() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsPositionedDelete

boolean supportsPositionedDelete() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsPositionedUpdate

boolean supportsPositionedUpdate() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsResultSetConcurrency

boolean supportsResultSetConcurrency(int type, int concurrency) throws SQLException

● Operation: It returns true for all ResultSet types and all concurrency. It returns false for the invalid arg

uments.

● Exception: It does not occur.

supportsResultSetHoldability

boolean supportsResultSetHoldability(int holdability) throws SQLException

● Operation: If the holdability is ResultSet.CLOSE_CURSORS_AT_COMMIT or ResultSet.HOLD_CURSOR

S_OVER_COMMIT, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

supportsResultSetType

boolean supportsResultSetType(int type) throws SQLException

JDBC API References | 2,899

● Operation: If the type is ResultSet.TYPE_FORWARD_ONLY, ResultSet.TYPE_SCROLL_INSENSITIVE or R

esultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

supportsSavepoints

boolean supportsSavepoints() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSchemasInDataManipulation

boolean supportsSchemasInDataManipulation() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSchemasInIndexDefinitions

boolean supportsSchemasInIndexDefinitions() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSchemasInPrivilegeDefinitions

boolean supportsSchemasInPrivilegeDefinitions() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSchemasInProcedureCalls

boolean supportsSchemasInProcedureCalls() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

2,900 | JDBC

supportsSchemasInTableDefinitions

boolean supportsSchemasInTableDefinitions() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSelectForUpdate

boolean supportsSelectForUpdate() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsStatementPooling

boolean supportsStatementPooling() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsStoredFunctionsUsingCallSyntax

boolean supportsStoredFunctionsUsingCallSyntax() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

supportsStoredProcedures

boolean supportsStoredProcedures() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSubqueriesInComparisons

JDBC API References | 2,901

boolean supportsSubqueriesInComparisons() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSubqueriesInExists

boolean supportsSubqueriesInExists() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSubqueriesInIns

boolean supportsSubqueriesInIns() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsSubqueriesInQuantifieds

boolean supportsSubqueriesInQuantifieds() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsTableCorrelationNames

boolean supportsTableCorrelationNames() throws SQLException

● Operation: It gets information whether to support the table correlation name from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsTransactionIsolationLevel

boolean supportsTransactionIsolationLevel(int level) throws SQLException

● Operation: It gets information whether to support the transaction isolation level from the server.

● Exception: If an error is returned from the server, it throws SQLException.

2,902 | JDBC

supportsTransactions

boolean supportsTransactions() throws SQLException

● Operation: It always returns true.

● Exception: It does not occur.

supportsUnion

boolean supportsUnion() throws SQLException

● Operation: It gets information whether to support the union operation from the server.

● Exception: If an error is returned from the server, it throws SQLException.

supportsUnionAll

boolean supportsUnionAll() throws SQLException

● Operation: It gets information whether to support the union all operation from the server.

● Exception: If an error is returned from the server, it throws SQLException.

updatesAreDetected

boolean updatesAreDetected(int type) throws SQLException

● Operation: If the type is ResultSet.TYPE_SCROLL_SENSITIVE, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

usesLocalFilePerTable

boolean usesLocalFilePerTable() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

usesLocalFiles

JDBC API References | 2,903

boolean usesLocalFiles() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

2,904 | JDBC

DataSource

getConnection

Connection getConnection() throws SQLException

● Operation: It opens and returns a new connection object. The information required for connection sh

ould be set through a separate non-standard method in advance.

● Exception: If the connection to the server fails, it throws SQLException.

Connection getConnection(String username, String password) throws SQLException

● Operation: It opens and returns a new connection object with the username and password. Other inf

ormation required for the connection should be set through a separate non-standard method in adva

nce.

● Exception: If the connection to the server fails, it throws SQLException.

isWrapperFor

boolean isWrapperFor(Class<?> iface) throws SQLException

● Operation: This class is not implemented as the wrapper of any other class. If the object is an instance

of iface, it returns true. Otherwise, it returns false.

● Exception: It does not occur.

unwrap

<T> T unwrap(Class<T> iface) throws SQLException

● Operation: It returns this because this class is not implemented as the wrapper of any other class.

● Exception: If the object is not an instance of iface, it throws SQLException.

JDBC API References | 2,905

Driver

acceptsURL

boolean acceptsURL(String url) throws SQLException

● Operation: If the url is not null and it starts with "jdbc:goldilocks:", it returns true. Otherwise, it return

s false.

● Exception: It does not occur.

connect

Connection connect(String url, Properties info) throws SQLException

● Operation: It creates and returns a new connection object. The url should include the server address,

DB name and port.

● Exception: If the url is invalid or the connection from the server fails, it throws SQLException.

getMajorVersion

int getMajorVersion() throws SQLException

● Operation: It returns the major version of GOLDILOCKS JDBC driver.

● Exception: It does not occur.

getMinorVersion

int getMinorVersion() throws SQLException

● Operation: It returns the minor version of GOLDILOCKS JDBC driver.

● Exception: It does not occur.

getPropertyInfo

DriverPropertyInfo[] getPropertyInfo(String url, Properties info) throws SQLException

● Operation: It gets the list of available property when GOLDILOCKS JDBC driver is connected.

● Exception: It does not occur.

2,906 | JDBC

jdbcCompliant

boolean jdbcCompliant() throws SQLException

● Operation: It always returns false.

● Exception: It does not occur.

JDBC API References | 2,907

NClob

This class is not implemented.

free

void free() throws SQLException

getAsciiStream

InputStream getAsciiStream() throws SQLException

getCharacterStream

Reader getCharacterStream() throws SQLException

Reader getCharacterStream(long pos, long length) throws SQLException

getSubString

String getSubString(long pos, int length) throws SQLException

length

long length() throws SQLException

position

long position(Clob searchstr, long start) throws SQLException

long position(String searchstr, long start) throws SQLException

setAsciiStream

2,908 | JDBC

OutputStream setAsciiStream(long pos) throws SQLException

setCharacterStream

Writer setCharacterStream(long pos) throws SQLException

setString

int setString(long pos, String str) throws SQLException

int setString(long pos, String str, int offset, int len) throws SQLException

truncate

void truncate(long len) throws SQLException

JDBC API References | 2,909

ParameterMetaData

ParameterMetaData object is returned by PreparedStatement.getParameterMetaData(). The parameterM

etaData of the GOLDILOCKS JDBC does not use the actual DB information but it is based on the basic typ

e varchar for other information (such as type, etc.) except for in/out. It is because in/out is the only infor

mation got from the server on the parameter after prepared. For example, if it is prepared with the query

statement which is "Select * from t1 where a =?", the parameter type used in the condition clause is not

determined. The server generally assumes it a varchar type.

getParameterClassName

String getParameterClassName(int param) throws SQLException

● Operation: It returns java.lang.String. The parameter type is regarded as varchar.

● Exception: If the param value exceeds the range of the number of parameters, it throws SQLExceptio

n.

getParameterCount

int getParameterCount() throws SQLException

● Operation: It returns the number of parameters. It is also the number of ? used in the query statemen

t.

● Exception: It does not occur.

getParameterMode

int getParameterMode(int param) throws SQLException

● Operation: It returns the in/out mode of the param-th parameter. It returns one of ParameterMetaDa

ta.parameterModeIn, ParameterMetaData.parameterModeInOut, ParameterMetaData.parameterMo

deOut, or ParameterMetaData.parameterModeUnknown. The case of returning parameterModeUnk

nown value does not exist until now.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

getParameterType

2,910 | JDBC

int getParameterType(int param) throws SQLException

● Operation: It returns Types.VARCHAR for all parameters.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

getParameterTypeName

String getParameterTypeName(int param) throws SQLException

● Operation: It returns "VARCHAR" for all parameters.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

getPrecision

int getPrecision(int param) throws SQLException

● Operation: It returns 4000 for all parameters. The parameter is regarded as varchar(4000) by default.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

getScale

int getScale(int param) throws SQLException

● Operation: It returns 0 for all parameters. The parameter is regarded as varchar(4000) by default.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

isNullable

int isNullable(int param) throws SQLException

● Operation: It always returns ParameterMetaData.parameterNullableUnknown.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

isSigned

boolean isSigned(int param) throws SQLException

● Operation: It always returns false.

● Exception: If the param value exceeds range of the number of parameters, it throws SQLException.

JDBC API References | 2,911

isWrapperFor

boolean isWrapperFor(Class<?> iface) throws SQLException

● Operation: It enquires if it the object is an instance of iface. If so, it returns true. Otherwise, it returns

false.

● Exception: It does not occur.

unwrap

<T> T unwrap(Class<T> iface) throws SQLException

● Operation: If the object is an instance of iface, it casts this object to iface type and returns it.

● Exception: If the object is not an instance of iface, it throws SQLException.

2,912 | JDBC

PooledConnection

addConnectionEventListener

void addConnectionEventListener(ConnectionEventListener listener) throws SQLException

● Operation: It registers the ConnectionEventListener object. After then, if close() of the connection obj

ect (logical connection) which is returned from PooledConnection is called or the actual connection is

broken, ConnectionEvent is generated to the registered listeners.

● Exception: It does not occur.

addStatementEventListener

void addStatementEventListener(StatementEventListener listener) throws SQLException

● Operation: It does not perform any operation. GOLDILOCKS JDBC driver does not implement the met

hod. Statement pooling feature is performed by the external middleware.

● Exception: It does not occur.

close

void close() throws SQLException

● Operation: It calls close() of the physical connection that the object has.

● Exception: It may occur in close() of physical connection.

getConnection

Connection getConnection() throws SQLException

● Operation: It returns logical connection owned by the object.

● Exception: It does not occur.

removeConnectionEventListener

void removeConnectionEventListener(ConnectionEventListener listener) throws SQLException

● Operation: It removes the registered ConnectionEventListener. After then, ConnectionEvent is not tra

nsferred to this listener.

JDBC API References | 2,913

● Exception: It does not occur.

removeStatementEventListener

void removeStatementEventListener(StatementEventListener listener) throws SQLException

● Operation: It does not perform any operation.

● Exception: It does not occur.

2,914 | JDBC

PreparedStatement

addBatch

void addBatch() throws SQLException

● Operation: It registers the currently bound data as batch job. If any of this batch job is registered, an

error occurs when performing execute (), executeUpdate (), executeQuery () execution. If any one is

not bound for the parameter, an error occurs. After addBatch if another addBatch is performed again

at the state without binding with the method of setXXX () type, it registers the batch job as the previ

ously bound value.

● Exception: If a parameter which has never been bound exists, it throws an exception.

clearParameters

void clearParameters() throws SQLException

● Operation: It removes all of currently bound data and information. But if at least one batch job is regi

stered, operation is not performed.

● Exception: It does not occur.

execute

boolean execute() throws SQLException

● Operation: It executes the prepared statement based on the bound data to the current parameter. If t

he executed statement is the select statement, it returns true and gets a ResultSet from the object. O

therwise, it returns false.

● Exception: If the batch job is registered, the bound parameters are insufficient or an error occurs on t

he server when executing, it throws an exception.

executeQuery

ResultSet executeQuery() throws SQLException

● Operation: It executes the prepared statement based on the bound data to the current parameter an

d fetches, then creates and returns a ResultSet object.

● Exception: If the batch job is registered or the bound parameters are insufficient or an error occurs o

n the server when executing, it throws an exception.

JDBC API References | 2,915

executeUpdate

int executeUpdate() throws SQLException

● Operation: It executes the prepared statement based on the bound data to the current parameter. It r

eturns the number of updated records. If updated record with DDL statements does not exist, it retur

ns 0.

● Exception: If the batch job is registered or the statement is not a select statement or the bound para

meters are insufficient or an error occurs on the server when executing, it throws an exception.

getMetaData

ResultSetMetaData getMetaData() throws SQLException

● Operation: It gets ResultSetMetaData object. If the prepared statement is not the select statement (It

is the statement which does not return ResultSet), it returns an empty ResultSetMetaData. The meth

od can be called before executing.

● Exception: If an error occurs on the server, it throws an exception.

getParameterMetaData

ParameterMetaData getParameterMetaData() throws SQLException

● Operation: It gets the ParameterMetaData object. It can be called before executing. However, all par

ameters are assumed to be varchar(4000) because information about the exact parameter type is not

known to the server.

● Exception: If an error occurs on the server, it throws an exception.

setArray

void setArray(int parameterIndex, Array x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setAsciiStream

void setAsciiStream(int parameterIndex, InputStream x) throws SQLException

● Operation: It binds the InputStream object to the parameter index as LONG VARCHAR type. It does n

2,916 | JDBC

ot execute the encoding operation because the input data is a binary form. It does not consider the c

haracter set and assumes it as ascii data.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

Caution

The cost of conversion to VARCHAR occurs in the server because it is bound to LONG VARCHAR. I

f the length can be known, it is recommended to use void setAsciiStream(int parameterIndex, Inp

utStream x, int length).

void setAsciiStream(int parameterIndex, InputStream x, int length) throws SQLException

● Operation: It binds the InputStream object to the parameter index as LONG VARCHAR type. It does n

ot execute the encoding operation because the input data is a binary form. It does not consider the c

haracter set and and assumes it as ascii data. If English data is inserted or the server client character s

et environment is identical, this method is faster than setCharacterStream or setString when inserting

the string as varchar.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setAsciiStream(int parameterIndex, InputStream x, long length) throws SQLException

● Operation: It binds the InputStream object to the parameter index as LONG VARCHAR type. It does n

ot execute the encoding operation because the input data is a binary form. It does not consider the c

haracter set and assumes it as ascii data. If English data is inserted or the server client character set en

vironment is identical, this method is faster than setCharacterStream or setString when inserting the s

tring as varchar.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setBigDecimal

void setBigDecimal(int parameterIndex, BigDecimal x) throws SQLException

● Operation: It binds the BigDecimal object to the parameter index as NUMBER type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setBinaryStream

void setBinaryStream(int parameterIndex, InputStream x) throws SQLException

● Operation: It binds the InputStream object to the parameter index as LONG VARBINARY type.

JDBC API References | 2,917

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setBinaryStream(int parameterIndex, InputStream x, int length) throws SQLException

● Operation: It binds the InputStream object to the parameter index as LONG VARBINARY type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setBinaryStream(int parameterIndex, InputStream x, long length) throws SQLException

● Operation: It binds the InputStream object to the parameter index as LONG VARBINARY type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setBlob

void setBlob(int parameterIndex, Blob x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setBlob(int parameterIndex, InputStream inputStream) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setBlob(int parameterIndex, InputStream inputStream, long length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setBoolean

void setBoolean(int parameterIndex, boolean x) throws SQLException

● Operation: It binds the data x to the parameter index as BOOLEAN type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setByte

void setByte(int parameterIndex, byte x) throws SQLException

● Operation: It binds the data x to the parameter index as NATIVE_SMALLINT type.

2,918 | JDBC

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setBytes

void setBytes(int parameterIndex, byte[] x) throws SQLException

● Operation: It binds the data x to the parameter index as VARBINARY or LONG VARBINARY type. If th

e length of x is equal to or smaller than 4000, it is bound as VARBINARY, and if it is bigger than 4000,

it is bound as LONG VARBINARY type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setCharacterStream

void setCharacterStream(int parameterIndex, Reader reader) throws SQLException

● Operation: It binds the reader object to the parameter index as LONG VARCHAR type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setCharacterStream(int parameterIndex, Reader reader, int length) throws SQLException

● Operation: It binds the reader object to the parameter index as LONG VARCHAR type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setCharacterStream(int parameterIndex, Reader reader, long length) throws SQLException

● Operation: It binds the reader object to the parameter index as LONG VARCHAR type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setClob

void setClob(int parameterIndex, Clob x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setClob(int parameterIndex, Reader reader) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,919

void setClob(int parameterIndex, Reader reader, long length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setDate

void setDate(int parameterIndex, Date x) throws SQLException

● Operation: It binds the data x to the parameter index as DATE type. It is equivalent to calling setDate

(parameterIndex, x, Calendar.getInstance()). The local timezone is applied.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setDate(int parameterIndex, Date x, Calendar cal) throws SQLException

● Operation: It binds the data x to the parameter index as DATE type. Date x is regarded as timezone of

cal.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setDouble

void setDouble(int parameterIndex, double x) throws SQLException

● Operation: It binds the data x to the parameter index as NATIVE_DOUBLE type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setFloat

void setFloat(int parameterIndex, float x) throws SQLException

● Operation: It binds the data x to the parameter index as NATIVE_REAL type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setInt

void setInt(int parameterIndex, int x) throws SQLException

● Operation: It binds the data x to the parameter index as NATIVE_INTEGER type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

2,920 | JDBC

setLong

void setLong(int parameterIndex, long x) throws SQLException

● Operation: It binds the data x to the parameter index as NATIVE_BIGINT type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setNCharacterStream

void setNCharacterStream(int parameterIndex, Reader value) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setNCharacterStream(int parameterIndex, Reader value, long length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setNClob

void setNClob(int parameterIndex, NClob value) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setNClob(int parameterIndex, Reader reader) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

void setNClob(int parameterIndex, Reader reader, long length) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setNString

void setNString(int parameterIndex, String value) throws SQLException

● Operation: It is not implemented.

JDBC API References | 2,921

● Exception: It always throws SQLFeatureNotSupportedException.

setNull

void setNull(int parameterIndex, int sqlType) throws SQLException

● Operation: It binds null to the parameter index as GOLDILOCKS type corresponding to sqlType. For m

ore information about GOLDILOCKS type mapped to sqlType, refer to Table 26-3 SQL types → GOLDI

LOCKS types.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setNull(int parameterIndex, int sqlType, String typeName) throws SQLException

● Operation: It binds null to the parameter index as GOLDILOCKS type corresponding to sqlType type. F

or more information about GOLDILOCKS type mapped to sqlType, refer to Table 26-3 SQL types → G

OLDILOCKS types. The third argument, typeName, is ignored because REF or the user type is not sup

ported.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setObject

void setObject(int parameterIndex, Object x) throws SQLException

● Operation: It binds the data x to the parameter index as the mapped GOLDILOCKS type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

Table 26-2 Java objects → GOLDILOCKS types

Java class GOLDILOCKS type

null VARCHAR

Boolean BOOLEAN

Byte NATIVE_SMALLINT

Short NATIVE_SMALLINT

Integer NATIVE_INTEGER

Long NATIVE_BIGINT

Float NATIVE_REAL

Double NATIVE_DOUBLE

BigInteger NATIVE_BIGINT

BigDecimal NUMBER

String VARCHAR or LONG VARCHAR

byte[] VARBINARY or LONG VARBINARY

Date DATE

2,922 | JDBC

Time TIME

Timestamp TIMESTAMP

Blob N/A

Clob N/A

InputStream LONG VARBINARY

Reader LONG VARCHAR

GoldilocksInterval Corresponding INTERVAL type

RowId ROWID

Others N/A

Java class GOLDILOCKS type

void setObject(int parameterIndex, Object x, int targetSqlType) throws SQLException

● Operation: It binds the data x to the parameter index as GOLDILOCKS type corresponding to targetSq

lType. For more information about GOLDILOCKS type mapped to targetSqlType, refer to Table 26-3 S

QL types → GOLDILOCKS types.

● Exception: It occurs if parameterIndex is smaller than 0 or it is greater than the number of parameters.

void setObject(int parameterIndex, Object x, int targetSqlType, int scaleOrLength) throws

SQLException

● Operation: It binds the data x to the parameter index as GOLDILOCKS type corresponding to targetSq

lType. For more information about GOLDILOCKS type mapped to targetSqlType, refer to Table 26-3 S

QL types → GOLDILOCKS types. If x is InputStream or Reader then scaleOrLength indicates the data le

ngth. For other types this value is ignored.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setRef

void setRef(int parameterIndex, Ref x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setRowId

void setRowId(int parameterIndex, RowId x) throws SQLException

● Operation: It binds the data x to the parameter index as ROWID type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

JDBC API References | 2,923

setShort

void setShort(int parameterIndex, short x) throws SQLException

● Operation: It binds the data x to the parameter index as NATIVE_SMALLINT type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setSQLXML

void setSQLXML(int parameterIndex, SQLXML xmlObject) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

setString

void setString(int parameterIndex, String x) throws SQLException

● Operation: It binds the data x to the parameter index as VARCHAR or LONG VARCHAR type. If the le

ngth of x is equal to or smaller than 4000, it is bound as VARCHAR, and if it is bigger than 4000, it is

bound as LONG VARCHAR type.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setTime

void setTime(int parameterIndex, Time x) throws SQLException

● Operation: It binds the data x to the parameter index as TIME type. It is equivalent to calling setTime

(parameterIndex, x, Calendar.getInstance()). The local timezone is applied.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setTime(int parameterIndex, Time x, Calendar cal) throws SQLException

● Operation: It binds the data x to the parameter index as TIME type. Time x is regarded as timezone of

cal.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

2,924 | JDBC

setTimestamp

void setTimestamp(int parameterIndex, Timestamp x) throws SQLException

● Operation: It binds the data x to the parameter index as TIME type. It is equivalent to calling setTimes

tamp(parameterIndex, x, Calendar.getInstance()). The local timezone is applied.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

void setTimestamp(int parameterIndex, Timestamp x, Calendar cal) throws SQLException

● Operation: It binds the data x to the parameter index as TIMESTAMP type. Timestamp x is regarded a

s timezone of cal.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

setUnicodeStream

void setUnicodeStream(int parameterIndex, InputStream x, int length) throws SQLException

● Operation: It is not implemented. (It is a deprecated method.)

● Exception: It always throws SQLFeatureNotSupportedException.

setURL

void setURL(int parameterIndex, URL x) throws SQLException

● Operation: It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

isWrapperFor

boolean isWrapperFor(Class<?> iface) throws SQLException

● Operation: It queries whether this object is the class implementing the iface interface. If so, it returns

true. Otherwise, it returns false. It does not determine the presence of the wrapper and it queries onl

y whether the given argument class type is implemented because GOLDILOCKS PreparedStatement o

bject is not the wrapper of any other class.

● Exception: It does not occur.

JDBC API References | 2,925

unwrap

<T> T unwrap(Class<T> iface) throws SQLException

● Operation: It eventually returns itself even when it is unwrapped because GOLDILOCKS PreparedStat

ement is not the wrapper of any other class. It returns after casting to that type. If iface is an argume

nt of isWrapperFor() method and false is returned, the method throws an exception.

● Exception: If iface is not this object type (The type which is not implemented by this object is given), i

t throws SQLException.

executeBatchAtomic

boolean executeBatchAtomic() throws SQLException

● Operation: It is identical to executeBatch(), but it is atomically executed. The batch job is either entirel

y succeeded or failed. It is performed faster than executeBatch(). If the executed statement is the sele

ct statement, it returns true, otherwise, it returns false.

● Exception: If batch job is not registered or an error occurs on the server, it throws SQLException.

Note

It is GOLDILOCKS JDBC-specific feature, and PreparedStatement object can be used after it is cast

ed as GoldilocksPreparedStatement.

e.g. ((GoldilocksPreparedStatement)pstmt).executeBatchAtomic();

setTimeTimeZone

void setTimeTimeZone(int parameterIndex, Time x, Calendar cal) throws SQLException

● Operation: It binds the data x to the parameter index as TIME WITH TIME ZONE type. Time x is regard

ed as timezone of cal. Timezone information for DB column refers to timezone of cal.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

Note

It is GOLDILOCKS JDBC-specific feature, and PreparedStatement object can be used after it is cast

ed as GoldilocksPreparedStatement.

e.g. ((GoldilocksPreparedStatement)pstmt).setTimeTimeZone(1, aTime, aCalendar);

2,926 | JDBC

setTimestampTimeZone

void setTimestampTimeZone(int parameterIndex, Timestamp x, Calendar cal) throws SQLException

● Operation: It binds the data x to the parameter index as TIMESTAMP WITH TIME ZONE type. Timesta

mp x is regarded as timezone of cal. Timezone information for DB column refers to timezone of cal.

● Exception: It occurs if parameterIndex is smaller than 0 or it is bigger than the number of parameters.

Note

It is GOLDILOCKS JDBC-specific feature, and PreparedStatement object can be used after it is cast

ed as GoldilocksPreparedStatement.

e.g. ((GoldilocksPreparedStatement)pstmt).setTimestampTimeZone(1, aTimestamp, aCalendar);

JDBC API References | 2,927

Ref

The class is not implemented.

getBaseTypeName

String getBaseTypeName() throws SQLException

getObject

Object getObject() throws SQLException

Object getObject(Map<String,Class<?>> map) throws SQLException

setObject

void setObject(Object value) throws SQLException

2,928 | JDBC

ResultSet

absolute

boolean absolute(int row) throws SQLException

● Operation: The fetched row cursor position is at the row-th. The first row is 1. 0 points to the previou

s first row. If it is a negative number, it points to the last row. -1 points to the last row, and -2 points

to the second row from the last row. If the cursor can be positioned within the fetched row cache, o

nly the position information is changed within the cache. If it is not within the cache, it is fetched fro

m the server again. If the row exceeds the range, the cursor is positioned before first or after last, and

it returns false. Otherwise, the cursor is positioned at the corresponding row and it returns true.

● Exception: If ResultSet is closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or an error

occurs from the server when fetching, it throws an exception.

Note

If it is not in the cache, it should be fetched again. If the row is behind the current position, the nu

mber of rows(n) from row position are fetched from the server in favor of next(). If the row is prio

r to the current position, the number of n rows from the position(row-n+1) are fetched from the s

erver in favor of previous().

afterLast

void afterLast() throws SQLException

● Operation: The row cursor is positioned at after last. If the row cache is the last row set (It is a part of

the entire result set), only the cursor position is changed. Otherwise, it fetches the last row set (The t

otal number of rows-n + 1 to n rows, n is the number of rows fetched from the server), then position

s the cursor at after last.

● Exception: If ResultSet is closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or an error

occurs from the server when fetching, it throws an exception.

beforeFirst

void beforeFirst() throws SQLException

● Operation: The row cursor is positioned at before first. If the row cache is the first row set (It is a part

of the entire result set), only the cursor position is changed. Otherwise, it fetches the first row set (1 t

JDBC API References | 2,929

o n rows, n is the number of rows fetched from the server), then positions the cursor at before first.

● Exception: If ResultSet is closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or an error

occurs from the server when fetching, it throws an exception.

cancelRowUpdates

void cancelRowUpdates() throws SQLException

● Operation: Cursor update feature has not been implemented. If ResultSet concurrency is ResultSet.C

ONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it throws SQLF

eatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

clearWarnings

void clearWarnings() throws SQLException

● Operation: It clears all SQLWarning objects which is owned by ResultSet object.

● Exception: It does not occur.

close

void close() throws SQLException

● Operation: If the cursor is open on the server, it closes the cursor (If the cursor is already closed on th

e server, this operation is not performed. Namely, the protocol is not transferred.), and the current st

ate of the ResultSet object is changed to be closed. If it is already closed, then any operation is not pe

rformed.

● Exception: If an error occurs on the server, it throws SQLException.

deleteRow

void deleteRow() throws SQLException

● Operation: Cursor update feature is not implemented. If ResultSet concurrency is ResultSet.CONCUR_

READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it throws SQLFeatureN

otSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

2,930 | JDBC

findColumn

int findColumn(String columnLabel) throws SQLException

● Operation: It returns the index of the column name. The index of the first column is 1.

● Exception: If it is already closed or the column name is not found, it throws SQLException.

first

boolean first() throws SQLException

● Operation: It positions the row cursor at the first (the first row). If the row cache is the first row set (It

is a part of the entire result set), only the cursor position is changed. Otherwise, it fetches the first ro

w set (1 to n rows, n is the number of rows fetched from the server), then positions the cursor at the

first. If the row exists, it returns true. Otherwise, it returns false.

● Exception: If ResultSet is closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or an error

occurs from the server when fetching, it throws an exception.

getArray

Array getArray(int columnIndex) throws SQLException

● Operation: Array type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

Array getArray(String columnLabel) throws SQLException

● Operation: Array type is not supported. For more information about GOLDILOCKS type-specific supp

ort, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS type - 1 .

● Exception: It always throws SQLFeatureNotSupportedException.

getAsciiStream

InputStream getAsciiStream(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as InputStream type. For more information about

GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDI

LOCKS type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to InputStream, it throws SQLException.

JDBC API References | 2,931

InputStream getAsciiStream(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as InputStream type. For more inform

ation about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter meth

od for GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to InputStream, it throws SQLException.

getBigDecimal

BigDecimal getBigDecimal(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as BigDecimal type. For more information about

GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDI

LOCKS type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to BigDecimal, it throws SQLException.

BigDecimal getBigDecimal(int columnIndex, int scale) throws SQLException

● Operation: This is a deprecated method. It operates in the same way as getBigDecimal(int columnInd

ex). The scale is ignored.

● Exception: For more information, refer to getBigDecimal(int columnIndex).

BigDecimal getBigDecimal(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as BigDecimal type. For more informa

tion about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to BigDecimal, it throws SQLException.

BigDecimal getBigDecimal(String columnLabel, int scale) throws SQLException

● Operation: This is a deprecated method. It operates in the same way as getBigDecimal(String column

Label). The scale is ignored.

● Exception: For more information, refer to getBigDecimal(String columnLabel).

getBinaryStream

2,932 | JDBC

InputStream getBinaryStream(int columnIndex) throws SQLException

● Operation: It is as same as getAsciiStream(int columnIndex).

● Exception: For more information, refer to getAsciiStream(int columnIndex).

InputStream getBinaryStream(String columnLabel) throws SQLException

● Operation: It is as same as getAsciiStream(String columnLabel).

● Exception: For more information, refer to getAsciiStream(String columnLabel).

getBlob

Blob getBlob(int columnIndex) throws SQLException

● Operation: It does not support blob type currently.

● Exception: It always throws SQLFeatureNotSupportedException.

Blob getBlob(String columnLabel) throws SQLException

● Operation: It does not support blob type currently.

● Exception: It always throws SQLFeatureNotSupportedException.

getBoolean

boolean getBoolean(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as Boolean type. For more information about GO

LDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILO

CKS type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to Boolean, it throws SQLException.

boolean getBoolean(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as Boolean type. For more informatio

n about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method f

or GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to Boolean, it throws SQLException.

JDBC API References | 2,933

getByte

byte getByte(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as byte type. For more information about GOLDIL

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to byte, it throws SQLException.

byte getByte(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as byte type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to byte, it throws SQLException.

getBytes

byte[] getBytes(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as byte[] type. For more information about GOLDI

LOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCK

S type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range, it throws SQLExceptio

n.

Note

If getBytes is performed for all GOLDILOCKS data types, it gets the binary form stored in DB.

byte[] getBytes(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as byte[] type. For more information

about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist, it throws S

QLException.

2,934 | JDBC

Note

If getBytes is performed for all GOLDILOCKS data types, it gets the binary form stored in DB.

getCharacterStream

Reader getCharacterStream(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as reader type. For more information about GOLD

ILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCK

S type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to reader, it throws SQLException.

Reader getCharacterStream(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as reader type. For more information

about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to reader, it throws SQLException.

getClob

Clob getClob(int columnIndex) throws SQLException

● Operation: It does not support clob type currently.

● Exception: It always throws SQLFeatureNotSupportedException.

Clob getClob(String columnLabel) throws SQLException

● Operation: It does not support clob type currently.

● Exception: It always throws SQLFeatureNotSupportedException.

getConcurrency

int getConcurrency() throws SQLException

● Operation: It returns concurrency of the current ResultSet object. It supports only ResultSet.CONCUR

_READ_ONLY currently.

JDBC API References | 2,935

● Exception: It does not occur.

getCursorName

String getCursorName() throws SQLException

● Operation: It gets the cursor name of the server pointed by the ResultSet. The communication with th

e server occurs.

● Exception: If ResultSet is already closed or an error occurs on the server, it throws SQLException.

getDate

Date getDate(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as date type. For more information about GOLDIL

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 . When creating the date object, local timezone is used.

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to date, it throws SQLException.

Date getDate(int columnIndex, Calendar cal) throws SQLException

● Operation: It gets the columnIndex-th column data as date type. For more information about GOLDIL

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 . When creating the date object, local timezone of cal is used.

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to date, it throws SQLException.

Date getDate(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as date type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 . When creating the date object, the local timezone is used.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to date, it throws SQLException.

Date getDate(String columnLabel, Calendar cal) throws SQLException

● Operation: It gets the column data whose name is columnLabel as date type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 . When creating the date object, the local timezone of cal is used.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

2,936 | JDBC

can not be converted to date, it throws SQLException.

getDouble

double getDouble(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as double type. For more information about GOL

DILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOC

KS type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to double, it throws SQLException.

double getDouble(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as double type. For more information

about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to double, it throws SQLException.

getFetchDirection

int getFetchDirection() throws SQLException

● Operation: It always returns ResultSet.FETCH_FORWARD. The backward fetch is not supported.

● Exception: If ResultSet is already closed, it throws SQLException.

getFetchSize

int getFetchSize() throws SQLException

● Operation: It gets the number of rows fetched from the server at once. If it is 0, it calculates the maxi

mum number of rows included in a communication packet per transmission. The default value is 0.

● Exception: If ResultSet is already closed, it throws SQLException.

getFloat

float getFloat(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as float type. For more information about GOLDIL

JDBC API References | 2,937

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to float, it throws SQLException.

float getFloat(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as float type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to float, it throws SQLException.

getHoldability

int getHoldability() throws SQLException

● Operation: It returns the holdability of the current ResultSet. It is the value determined when the Resu

ltSet object is created, and it can not be changed in the meantime. The default value is ResultSet.HOL

D_CURSOR_OVER_COMMIT.

● Exception: If ResultSet is already closed, it throws SQLException.

getInt

int getInt(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as int type. For more information about GOLDILO

CKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS ty

pe - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to int, it throws SQLException.

int getInt(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as int type. For more information abo

ut GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GO

LDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to int, it throws SQLException.

2,938 | JDBC

getLong

long getLong(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as long type. For more information about GOLDIL

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to long, it throws SQLException.

long getLong(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as long type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to long, it throws SQLException.

getMetaData

ResultSetMetaData getMetaData() throws SQLException

● Operation: It creates and returns the ResultSetMetaData object getting detailed information on the c

olumn.

● Exception: If ResultSet is already closed or an error occurs while detailed information on the column i

s fetched from the server, it throws SQLException.

getNCharacterStream

Reader getNCharacterStream(int columnIndex) throws SQLException

● Operation: NCHAR family types are not supported currently.

● Exception: It always throws SQLFeatureNotSupportedException.

Reader getNCharacterStream(String columnLabel) throws SQLException

● Operation: NCHAR family types are not supported currently.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,939

getNClob

NClob getNClob(int columnIndex) throws SQLException

● Operation: NCHAR family types are not supported currently.

● Exception: It always throws SQLFeatureNotSupportedException.

NClob getNClob(String columnLabel) throws SQLException

● Operation: NCHAR family types are not supported currently.

● Exception: It always throws SQLFeatureNotSupportedException.

getNString

String getNString(int columnIndex) throws SQLException

● Operation: NCHAR family types are not supported currently.

● Exception: It always throws SQLFeatureNotSupportedException.

String getNString(String columnLabel) throws SQLException

● Operation: NCHAR family types are not supported currently.

● Exception: It always throws SQLFeatureNotSupportedException.

getObject

Object getObject(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as the most appropriate Java object type. For mor

e information about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting gett

er method for GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range, it throws SQLExceptio

n.

Object getObject(int columnIndex, Map<String,Class<?>> map) throws SQLException

● Operation: It is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

Object getObject(String columnLabel) throws SQLException

2,940 | JDBC

● Operation: It gets the column data whose name is columnLabel as the most appropriate Java object t

ype. For more information about GOLDILOCKS type-specific support, refer to Table 26-4 Whether su

pporting getter method for GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist, it throws S

QLException.

Object getObject(String columnLabel, Map<String,Class<?>> map) throws SQLException

● Operation: It is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

getRef

Ref getRef(int columnIndex) throws SQLException

● Operation: REF type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

Ref getRef(String columnLabel) throws SQLException

● Operation: REF type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

getRow

int getRow() throws SQLException

● Operation: It returns the cursor position of the current ResultSet object. The first row is 1. If it is befor

e first, it returns 0.

● Exception: If ResultSet is already closed, it throws SQLException.

getRowId

RowId getRowId(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as Rowld type. For more information about GOLD

ILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCK

S type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to Rowld, it throws SQLException.

JDBC API References | 2,941

RowId getRowId(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as Rowld type. For more information

about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to Rowld, it throws SQLException.

getShort

short getShort(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as short type. For more information about GOLDI

LOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCK

S type - 1 .

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to short, it throws SQLException.

short getShort(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as short type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 .

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to short, it throws SQLException.

getSQLXML

SQLXML getSQLXML(int columnIndex) throws SQLException

● Operation: SQLXML type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

SQLXML getSQLXML(String columnLabel) throws SQLException

● Operation: SQLXML type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

2,942 | JDBC

getStatement

Statement getStatement() throws SQLException

● Operation: It returns the statement object which created the ResultSet object.

● Exception: If ResultSet is already closed, it throws SQLException.

getString

String getString(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as string type. For more information about GOLDI

LOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCK

S type - 1 . If getString() is performed for BINARY, VARBINARY, LONG VARBINARY, the string of hex

code is returned.

● Exception: If ResultSet is already closed or the columnIndex exceeds the range, it throws SQLExceptio

n.

String getString(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as string. For more information abou

t GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOL

DILOCKS type - 1 . If getString() is performed for BINARY, VARBINARY, LONG VARBINARY, it returns

the string of hex code.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist, it throws S

QLException.

getTime

Time getTime(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as time type. For more information about GOLDIL

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 . When creating the time object, local timezone is used.

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to time, it throws SQLException.

Time getTime(int columnIndex, Calendar cal) throws SQLException

● Operation: It gets the columnIndex-th column data as time type. For more information about GOLDIL

OCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDILOCKS

type - 1 . When creating the time object, local timezone of cal is used.

JDBC API References | 2,943

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to time, it throws SQLException.

Time getTime(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as time type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 . When creating the time object, the local timezone is used.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to time, it throws SQLException.

Time getTime(String columnLabel, Calendar cal) throws SQLException

● Operation: It gets the column data whose name is columnLabel as time type. For more information a

bout GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for

GOLDILOCKS type - 1 . When creating the time object, the local timezone is used.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to time, it throws SQLException.

getTimestamp

Timestamp getTimestamp(int columnIndex) throws SQLException

● Operation: It gets the columnIndex-th column data as timestamp type. For more information about G

OLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDIL

OCKS type - 1 . When creating the timestamp object, local timezone is used.

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to timestamp, it throws SQLException.

Timestamp getTimestamp(int columnIndex, Calendar cal) throws SQLException

● Operation: It gets the columnIndex-th column data as timestamp type. For more information about G

OLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter method for GOLDIL

OCKS type - 1 . When creating the timestamp object, local timezone of cal is used.

● Exception: If ResultSet is already closed or the columnIndex exceeds the range or the type can not be

converted to timestamp, it throws SQLException.

Timestamp getTimestamp(String columnLabel) throws SQLException

● Operation: It gets the column data whose name is columnLabel as timestamp type. For more informa

tion about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 . When creating the timestamp object, the local timezone is used.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

2,944 | JDBC

can not be converted to timestamp, it throws SQLException.

Timestamp getTimestamp(String columnLabel, Calendar cal) throws SQLException

● Operation: It gets the column data whose name is columnLabel as timestamp type. For more informa

tion about GOLDILOCKS type-specific support, refer to Table 26-4 Whether supporting getter metho

d for GOLDILOCKS type - 1 . When creating the timestamp object, the local timezone of cal is used.

● Exception: If ResultSet is already closed or the corresponding columnLabel does not exist or the type

can not be converted to timestamp, it throws SQLException.

getType

int getType() throws SQLException

● Operation: It returns the current ResultSet type. It returns one of ResultSet.TYPE_FORWARD_ONLY, R

esultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.TYPE_SCROLL_SENSITIVE.

● Exception: If ResultSet is already closed, it throws SQLException.

getUnicodeStream

InputStream getUnicodeStream(int columnIndex) throws SQLException

● Operation: It is a deprecated method. It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

InputStream getUnicodeStream(String columnLabel) throws SQLException

● Operation: It is a deprecated method. It is not implemented.

● Exception: It always throws SQLFeatureNotSupportedException.

getURL

URL getURL(int columnIndex) throws SQLException

● Operation: URL type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

URL getURL(String columnLabel) throws SQLException

● Operation: URL type is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

JDBC API References | 2,945

getWarnings

SQLWarning getWarnings() throws SQLException

● Operation: It returns a list of SQLWarning accumulated on the object so far. If it gets a warning from

the server, it creates SQLWarning. If clearWarning is not performed, it continues to be accumulated. I

f a warning does not occur, null is returned.

● Exception: It does not occur.

insertRow

void insertRow() throws SQLException

● Operation: Cursor update feature has not yet been implemented. If ResultSet concurrency is ResultSe

t.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it throws S

QLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

isAfterLast

boolean isAfterLast() throws SQLException

● Operation: It queries whether the current cursor position is at after last. If so, it returns true. Otherwis

e, it returns false.

● Exception: If ResultSet is already closed, it throws SQLException.

isBeforeFirst

boolean isBeforeFirst() throws SQLException

● Operation: It queries whether the current cursor position is at before first. If so, it returns true. Other

wise, it returns false.

● Exception: If ResultSet is already closed, it throws SQLException.

isClosed

boolean isClosed() throws SQLException

● Operation: It queries whether the current ResultSet is closed. If closed, it returns true. Otherwise, it re

turns false. Even if the user does not call the close, ResultSet can be closed by closing the cursor of th

2,946 | JDBC

e server. It is when, for example, the statement which created the ResultSet is closed, or the transacti

on is committed when the holdability is ResultSet.CLOSE_CURSOR_AT_COMMIT mode, or an error o

ccurs from the server during fetching.

● Exception: It does not occur.

isFirst

boolean isFirst() throws SQLException

● Operation: It queries whether the current cursor position is at first (the first row). If so, it returns true.

Otherwise, it returns false.

● Exception: If ResultSet is already closed, it throws SQLException.

isLast

boolean isLast() throws SQLException

● Operation: It queries whether the current cursor position is at last (the last row). If so, it returns true.

Otherwise, it returns false.

● Exception: If ResultSet is already closed, it throws SQLException.

last

boolean last() throws SQLException

● Operation: The row cursor is positioned at last (the last row). If the row cache is the last row set (It is

a part of the entire result set), only the cursor position is changed. Otherwise, the row cursor is positi

oned at last after the last row set is fetched (row from last-n+1 to the last row, n is the number of ro

ws fetched from the server). If the row exists, it returns true. Otherwise, it returns false.

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or a

n error occurs from the server when fetching, it throws an exception.

moveToCurrentRow

void moveToCurrentRow() throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

JDBC API References | 2,947

moveToInsertRow

void moveToInsertRow() throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

next

boolean next() throws SQLException

● Operation: The row cursor is positioned at the next to the current row. If the current row is the last ro

w of the row cache, the next row cache is fetched from the server. If the row exists, it returns true. O

therwise, it returns false.

● Exception: If ResultSet is already closed or an error occurs from the server when fetching, it throws a

n exception.

previous

boolean previous() throws SQLException

● Operation: The row cursor is positioned at the row before the current position. If the current row is t

he first row of the row cache, the previous row cache(n rows from x-n to x-1, x is the current row ind

ex) is fetched from the server. If the row exists, it returns true. Otherwise, it returns false.

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or a

n error occurs from the server during fetching, it throws an exception.

refreshRow

void refreshRow() throws SQLException

● Operation: If ResultSet type is ResultSet.SCROLL_SENSITIVE, the current row cache is fetched from th

e server. If any row is changed (by the same transaction or other transactions), it is reflected. If Result

Set type is ResultSet.Scroll_INSENSITIVE, any operation is not performed.

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or a

n error occurs from the server during fetching, it throws an exception.

2,948 | JDBC

relative

boolean relative(int rows) throws SQLException

● Operation: It moves the row cursor from the current cursor position to the position apart as many as t

he number of rows. If it can be moved within the current row cache, only the cursor position is chang

ed. Otherwise, the cursor is moved after the row cache is fetched from the server. If the position to b

e moved is backward from the current position (next direction), the row cache is fetched from rows t

o rows+n-1 (in favor of next). If the position to be moved is forward from the current position(previo

us direction), the row cache is fetched from rows-n+1 to rows (in favor of previous).

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY or a

n error occurs from the server when fetching, it throws an exception.

rowDeleted

boolean rowDeleted() throws SQLException

● Operation: It queries whether the row of the current cursor position is deleted (by the same transacti

on or other transactions). If deleted, it returns true. Otherwise, it returns false.

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY, it t

hrows an exception.

rowInserted

boolean rowInserted() throws SQLException

● Operation: It queries whether the row of the current cursor position is inserted (by the same transacti

on or other transactions). If inserted, it returns true. Otherwise, it returns false.

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY, it t

hrows an exception.

rowUpdated

boolean rowUpdated() throws SQLException

● Operation: It queries whether the row of the current cursor position is updated (by the same transacti

on or other transactions). If updated, it returns true. Otherwise, it returns false.

● Exception: If ResultSet is already closed or the ResultSet type is ResultSet.TYPE_FORWARD_ONLY, it t

hrows an exception.

JDBC API References | 2,949

setFetchDirection

void setFetchDirection(int direction) throws SQLException

● Operation: The backward fetch is not supported by the server. Therefore, only ResultSet.FETCH_FOR

WARD is available. SQLWarning occurs if other values are inserted.

● Exception: If ResultSet is already closed or the argument does not have the defined value, it throws a

n exception.

setFetchSize

void setFetchSize(int rows) throws SQLException

● Operation: It specifies the number of rows fetched from the server at once. 0 refers that the server de

termines it. If it is 0, it refers to the number of rows of which a communication packet can include at

once for the forward only cursor. It is specified as 100 for the scrollable cursor.

● Exception: If ResultSet is already closed, it throws an exception.

updateArray

void updateArray(int columnIndex, Array x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateArray(String columnLabel, Array x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateAsciiStream

void updateAsciiStream(int columnIndex, InputStream x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

2,950 | JDBC

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateAsciiStream(int columnIndex, InputStream x, int length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateAsciiStream(int columnIndex, InputStream x, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateAsciiStream(String columnLabel, InputStream x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateAsciiStream(String columnLabel, InputStream x, int length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateAsciiStream(String columnLabel, InputStream x, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateBigDecimal

void updateBigDecimal(int columnIndex, BigDecimal x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

JDBC API References | 2,951

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBigDecimal(String columnLabel, BigDecimal x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateBinaryStream

void updateBinaryStream(int columnIndex, InputStream x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBinaryStream(int columnIndex, InputStream x, int length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBinaryStream(int columnIndex, InputStream x, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBinaryStream(String columnLabel, InputStream x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBinaryStream(String columnLabel, InputStream x, int length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

2,952 | JDBC

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBinaryStream(String columnLabel, InputStream x, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateBlob

void updateBlob(int columnIndex, Blob x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBlob(int columnIndex, InputStream inputStream) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBlob(int columnIndex, InputStream inputStream, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBlob(String columnLabel, Blob x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBlob(String columnLabel, InputStream inputStream) throws SQLException

JDBC API References | 2,953

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBlob(String columnLabel, InputStream inputStream, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateBoolean

void updateBoolean(int columnIndex, boolean x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBoolean(String columnLabel, boolean x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateByte

void updateByte(int columnIndex, byte x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateByte(String columnLabel, byte x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

2,954 | JDBC

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateBytes

void updateBytes(int columnIndex, byte[] x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateBytes(String columnLabel, byte[] x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateCharacterStream

void updateCharacterStream(int columnIndex, Reader x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateCharacterStream(int columnIndex, Reader x, int length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateCharacterStream(int columnIndex, Reader x, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

JDBC API References | 2,955

void updateCharacterStream(String columnLabel, Reader reader) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateCharacterStream(String columnLabel, Reader reader, int length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateCharacterStream(String columnLabel, Reader reader, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateClob

void updateClob(int columnIndex, Clob x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateClob(int columnIndex, Reader reader) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateClob(int columnIndex, Reader reader, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

2,956 | JDBC

void updateClob(String columnLabel, Clob x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateClob(String columnLabel, Reader reader) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateClob(String columnLabel, Reader reader, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateDate

void updateDate(int columnIndex, Date x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateDate(String columnLabel, Date x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateDouble

void updateDouble(int columnIndex, double x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

JDBC API References | 2,957

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateDouble(String columnLabel, double x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateFloat

void updateFloat(int columnIndex, float x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateFloat(String columnLabel, float x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateInt

void updateInt(int columnIndex, int x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateInt(String columnLabel, int x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

2,958 | JDBC

updateLong

void updateLong(int columnIndex, long x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateLong(String columnLabel, long x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateNCharacterStream

void updateNCharacterStream(int columnIndex, Reader x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNCharacterStream(int columnIndex, Reader x, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNCharacterStream(String columnLabel, Reader reader) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNCharacterStream(String columnLabel, Reader reader, long length) throws

SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

JDBC API References | 2,959

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateNClob

void updateNClob(int columnIndex, NClob nClob) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNClob(int columnIndex, Reader reader) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNClob(int columnIndex, Reader reader, long length) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNClob(String columnLabel, NClob nClob) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNClob(String columnLabel, Reader reader) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNClob(String columnLabel, Reader reader, long length) throws SQLException

2,960 | JDBC

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateNString

void updateNString(int columnIndex, String nString) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNString(String columnLabel, String nString) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateNull

void updateNull(int columnIndex) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateNull(String columnLabel) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateObject

void updateObject(int columnIndex, Object x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

JDBC API References | 2,961

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateObject(int columnIndex, Object x, int scaleOrLength) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateObject(String columnLabel, Object x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateObject(String columnLabel, Object x, int scaleOrLength) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateRef

void updateRef(int columnIndex, Ref x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateRef(String columnLabel, Ref x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

2,962 | JDBC

updateRow

void updateRow() throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateRowId

void updateRowId(int columnIndex, RowId x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateRowId(String columnLabel, RowId x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateShort

void updateShort(int columnIndex, short x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateShort(String columnLabel, short x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

JDBC API References | 2,963

updateSQLXML

void updateSQLXML(int columnIndex, SQLXML xmlObject) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateSQLXML(String columnLabel, SQLXML xmlObject) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateString

void updateString(int columnIndex, String x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateString(String columnLabel, String x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateTime

void updateTime(int columnIndex, Time x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

2,964 | JDBC

void updateTime(String columnLabel, Time x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

updateTimestamp

void updateTimestamp(int columnIndex, Timestamp x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

void updateTimestamp(String columnLabel, Timestamp x) throws SQLException

● Operation: The cursor update feature has not yet been implemented. If ResultSet concurrency is Resu

ltSet.CONCUR_READ_ONLY, it throws SQLException. If it is ResultSet.CONCUR_UPDATABLE, it thro

ws SQLFeatureNotSupportedException.

● Exception: If it is already closed, it throws SQLException. Otherwise, refer to the operation.

wasNull

boolean wasNull() throws SQLException

● Operation: It queries whether the column value which was read last is NULL. If it is NULL, it returns tr

ue. Otherwise, it returns false.

● Exception: If ResultSet is already closed or the column value never has been read, it throws SQLExcep

tion.

isWrapperFor

boolean isWrapperFor(Class<?> iface)

● Operation: It queries whether this object is the class which implemented the iface interface. If it so, it

returns true. Otherwise, it returns false. It does not determine the presence of the wrapper and it que

ries only whether the given argument class type is implemented because GOLDILOCKS ResultSet obje

ct is not the wrapper of any other class.

● Exception: It does not occur.

JDBC API References | 2,965

unwrap

<T> T unwrap(Class<T> iface)

● Operation: It eventually returns itself even when it is unwrapped because GOLDILOCKS ResultSet is n

ot the wrapper of any other class. It returns after casting to that type. If iface is an argument of isWra

pperFor() method and false is returned, then the method throws an exception.

● Exception: If iface is not this object type (when this object type is not implemented.), it throws SQLEx

ception.

2,966 | JDBC

ResultSetMetaData

getCatalogName

String getCatalogName(int column) throws SQLException

● Operation: It returns the catalog name of the column.

● Exception: If the column value is wrong, it throws SQLException.

getColumnClassName

String getColumnClassName(int column) throws SQLException

● Operation: It returns the name of Java class which is the most appropriate to the column type. It is sp

ecified such as java.math.BigDecimal, and it refers to getName() method in Java. For binary type, it re

fer to byte[].class.getName(), so it can be specified such as '[B'.

● Exception: If the column value is wrong, it throws SQLException.

getColumnCount

int getColumnCount() throws SQLException

● Operation: It returns the number of columns that the ResultSet has.

● Exception: It does not occur.

getColumnDisplaySize

int getColumnDisplaySize(int column) throws SQLException

● Operation: It returns the maximum width when the column value is displayed.

● Exception: If the column value is wrong, it throws SQLException.

getColumnLabel

String getColumnLabel(int column) throws SQLException

● Operation: It gets the label of the column. For example, the label is "C1 + 1" and the name is "" for th

e query statement such as "select C1 + 1 from t1".

● Exception: If the column value is wrong, it throws SQLException.

JDBC API References | 2,967

getColumnName

String getColumnName(int column) throws SQLException

● Operation: It returns the alias name of the column. The original column name, not the alias name is d

efined to be returned in JDBC specification. However, it is recommended to use the alias name becau

se some view names are meaningless or complicated. For example, both the name and label are "C2"

for the query statement such as "select C1 as C2 from t1". For more information about the case of w

hen name and label are different, refer to getColumnLabel.

● Exception: If the column value is wrong, it throws SQLException.

getColumnType

int getColumnType(int column) throws SQLException

● Operation: It returns the type of the column. The return value is defined in types. Types.OTHERS is ret

urned for GOLDILOCKS interval family types. The constant values of the corresponding types are retur

ned for the other types.

● Exception: If the column value is wrong, it throws SQLException.

getColumnTypeName

String getColumnTypeName(int column) throws SQLException

● Operation: It returns GOLDILOCKS column type name of the column.

● Exception: If the column value is wrong, it throws SQLException.

getPrecision

int getPrecision(int column) throws SQLException

● Operation: It returns the precision of the column. It returns 0 for the type without any precision.

● Exception: If the column value is wrong, it throws SQLException.

getScale

int getScale(int column) throws SQLException

● Operation: It returns the scale of the column. It returns 0 for the type without any scale.

● Exception: If the column value is wrong, it throws SQLException.

2,968 | JDBC

getSchemaName

String getSchemaName(int column) throws SQLException

● Operation: It returns the schema name of the column.

● Exception: If the column value is wrong, it throws SQLException.

getTableName

String getTableName(int column) throws SQLException

● Operation: It returns the table name of the column.

● Exception: If the column value is wrong, it throws SQLException.

isAutoIncrement

boolean isAutoIncrement(int column) throws SQLException

● Operation: It returns whether it is the column which is automatically given the unique value. If so, it r

eturns true. Otherwise, it returns false.

● Exception: If the column value is wrong, it throws SQLException.

isCaseSensitive

boolean isCaseSensitive(int column) throws SQLException

● Operation: It returns whether the column is case sensitive. If it is case sensitive, it returns true. Other

wise, it returns false.

● Exception: If the column value is wrong, it throws SQLException.

isCurrency

boolean isCurrency(int column) throws SQLException

● Operation: It always returns false because the currency of the column can not be determined by the s

erver.

● Exception: If the column value is wrong, it throws SQLException.

JDBC API References | 2,969

isDefinitelyWritable

boolean isDefinitelyWritable(int column) throws SQLException

● Operation: It returns whether the column is updatable. GOLDILOCKS does not support the definitely

writable. It always returns the value as same as isUpdatable().

● Exception: If the column value is wrong, it throws SQLException.

isNullable

int isNullable(int column) throws SQLException

● Operation: It returns whether the column has nullable. It returns either columnNullable or columnNo

Nulls.

● Exception: If the column value is wrong, it throws SQLException.

isReadOnly

boolean isReadOnly(int column) throws SQLException

● Operation: It returns whether the column is read only. It always returns the opposite value of isUpdat

able().

● Exception: If the column value is wrong, it throws SQLException.

isSearchable

boolean isSearchable(int column) throws SQLException

● Operation: It returns whether the column can be used in the conditional clause. It always returns true

because all target columns in GOLDILOCKS can be used in the conditional clause.

● Exception: If the column value is wrong, it throws SQLException.

isSigned

boolean isSigned(int column) throws SQLException

● Operation: It returns whether the column has a sign. If it has a sign, it returns true. Otherwise, it retur

ns false.

● Exception: If the column value is wrong, it throws SQLException.

2,970 | JDBC

isWritable

boolean isWritable(int column) throws SQLException

● Operation: It returns whether the column is updatable.

● Exception: If the column value is wrong, it throws SQLException.

isWrapperFor

boolean isWrapperFor(Class<?> iface)

● Operation: It queries whether the object is a class implementing the iface interface. If so, it returns tr

ue. Otherwise, it returns false. It does not determine the presence of the wrapper and it queries only

whether the given argument class type is implemented because GOLDILOCKS ResultSetMetaData obj

ect is not the wrapper of any other class.

● Exception: It does not occur.

unwrap

<T> T unwrap(Class<T> iface)

● Operation: It eventually returns itself, even when it is unwrapped because GOLDILOCKS ResultSetMet

aData is not the wrapper of any other class. It returns after casting to that type. If iface is an argumen

t of isWrapperFor() method and false is returned, the method throws an exception.

● Exception: If iface is not the type of the object (if this object returns the unimplemented type), it thro

ws SQLException.

JDBC API References | 2,971

RowId

equals

boolean equals(Object obj) throws SQLException

● Operation: If RowId of this object is as same as RowId of obj, it returns true. Otherwise, it returns fals

e.

● Exception: It does not occur.

getBytes

byte[] getBytes() throws SQLException

● Operation: It returns the byte array value of RowId.

● Exception: It does not occur.

hashCode

int hashCode() throws SQLException

● Operation: It returns the hash code value.

● Exception: It does not occur.

toString

String toString() throws SQLException

● Operation: It returns a base-64 string of RowId value.

● Exception: It does not occur.

2,972 | JDBC

RowSet

The class is not implemented

addRowSetListener

void addRowSetListener(RowSetListener listener) throws SQLException

clearParameters

void clearParameters() throws SQLException

execute

void execute() throws SQLException

getCommand

String getCommand() throws SQLException

getDataSourceName

String getDataSourceName() throws SQLException

getEscapeProcessing

boolean getEscapeProcessing() throws SQLException

getMaxFieldSize

int getMaxFieldSize() throws SQLException

JDBC API References | 2,973

getMaxRows

int getMaxRows() throws SQLException

getPassword

String getPassword() throws SQLException

getQueryTimeout

int getQueryTimeout() throws SQLException

getTransactionIsolation

int getTransactionIsolation() throws SQLException

getTypeMap

Map<String,Class<?>> getTypeMap() throws SQLException

getUrl

String getUrl() throws SQLException

getUsername

String getUsername() throws SQLException

isReadOnly

boolean isReadOnly() throws SQLException

removeRowSetListener

2,974 | JDBC

void removeRowSetListener(RowSetListener listener) throws SQLException

setArray

void setArray(int i, Array x) throws SQLException

setAsciiStream

void setAsciiStream(int parameterIndex, InputStream x) throws SQLException

void setAsciiStream(int parameterIndex, InputStream x, int length) throws SQLException

void setAsciiStream(String parameterName, InputStream x) throws SQLException

void setAsciiStream(String parameterName, InputStream x, int length) throws SQLException

setBigDecimal

void setBigDecimal(int parameterIndex, BigDecimal x) throws SQLException

void setBigDecimal(String parameterName, BigDecimal x) throws SQLException

setBinaryStream

void setBinaryStream(int parameterIndex, InputStream x) throws SQLException

void setBinaryStream(int parameterIndex, InputStream x, int length) throws SQLException

void setBinaryStream(String parameterName, InputStream x) throws SQLException

void setBinaryStream(String parameterName, InputStream x, int length) throws SQLException

setBlob

void setBlob(int i, Blob x) throws SQLException

JDBC API References | 2,975

void setBlob(int parameterIndex, InputStream inputStream) throws SQLException

void setBlob(int parameterIndex, InputStream inputStream, long length) throws SQLException

void setBlob(String parameterName, Blob x) throws SQLException

void setBlob(String parameterName, InputStream inputStream) throws SQLException

void setBlob(String parameterName, InputStream inputStream, long length) throws SQLException

setBoolean

void setBoolean(int parameterIndex, boolean x) throws SQLException

void setBoolean(String parameterName, boolean x) throws SQLException

setByte

void setByte(int parameterIndex, byte x) throws SQLException

void setByte(String parameterName, byte x) throws SQLException

setBytes

void setBytes(int parameterIndex, byte[] x) throws SQLException

void setBytes(String parameterName, byte[] x) throws SQLException

setCharacterStream

void setCharacterStream(int parameterIndex, Reader reader) throws SQLException

void setCharacterStream(int parameterIndex, Reader reader, int length) throws SQLException

void setCharacterStream(String parameterName, Reader reader) throws SQLException

void setCharacterStream(String parameterName, Reader reader, int length) throws SQLException

2,976 | JDBC

setClob

void setClob(int i, Clob x) throws SQLException

void setClob(int parameterIndex, Reader reader) throws SQLException

void setClob(int parameterIndex, Reader reader, long length) throws SQLException

void setClob(String parameterName, Clob x) throws SQLException

void setClob(String parameterName, Reader reader) throws SQLException

void setClob(String parameterName, Reader reader, long length) throws SQLException

setCommand

void setCommand(String cmd) throws SQLException

setConcurrency

void setConcurrency(int concurrency) throws SQLException

setDataSourceName

void setDataSourceName(String name) throws SQLException

setDate

void setDate(int parameterIndex, Date x) throws SQLException

void setDate(int parameterIndex, Date x, Calendar cal) throws SQLException

void setDate(String parameterName, Date x) throws SQLException

void setDate(String parameterName, Date x, Calendar cal) throws SQLException

JDBC API References | 2,977

setDouble

void setDouble(int parameterIndex, double x) throws SQLException

void setDouble(String parameterName, double x) throws SQLException

setEscapeProcessing

void setEscapeProcessing(boolean enable) throws SQLException

setFloat

void setFloat(int parameterIndex, float x) throws SQLException

void setFloat(String parameterName, float x) throws SQLException

setInt

void setInt(int parameterIndex, int x) throws SQLException

void setInt(String parameterName, int x) throws SQLException

setLong

void setLong(int parameterIndex, long x) throws SQLException

void setLong(String parameterName, long x) throws SQLException

setMaxFieldSize

void setMaxFieldSize(int max) throws SQLException

setMaxRows

void setMaxRows(int max) throws SQLException

2,978 | JDBC

setNCharacterStream

void setNCharacterStream(int parameterIndex, Reader value) throws SQLException

void setNCharacterStream(int parameterIndex, Reader value, long length) throws SQLException

void setNCharacterStream(String parameterName, Reader value) throws SQLException

void setNCharacterStream(String parameterName, Reader value, long length) throws SQLException

setNClob

void setNClob(int parameterIndex, NClob value) throws SQLException

void setNClob(int parameterIndex, Reader reader) throws SQLException

void setNClob(int parameterIndex, Reader reader, long length) throws SQLException

void setNClob(String parameterName, NClob value) throws SQLException

void setNClob(String parameterName, Reader reader) throws SQLException

void setNClob(String parameterName, Reader reader, long length) throws SQLException

setNString

void setNString(int parameterIndex, String value) throws SQLException

void setNString(String parameterName, String value) throws SQLException

setNull

void setNull(int parameterIndex, int sqlType) throws SQLException

void setNull(int paramIndex, int sqlType, String typeName) throws SQLException

void setNull(String parameterName, int sqlType) throws SQLException

JDBC API References | 2,979

void setNull(String parameterName, int sqlType, String typeName) throws SQLException

setObject

void setObject(int parameterIndex, Object x) throws SQLException

void setObject(int parameterIndex, Object x, int targetSqlType) throws SQLException

void setObject(int parameterIndex, Object x, int targetSqlType, int scaleOrLength) throws

SQLException

void setObject(String parameterName, Object x) throws SQLException

void setObject(String parameterName, Object x, int targetSqlType) throws SQLException

void setObject(String parameterName, Object x, int targetSqlType, int scale) throws

SQLException

setPassword

void setPassword(String password) throws SQLException

setQueryTimeout

void setQueryTimeout(int seconds) throws SQLException

setReadOnly

void setReadOnly(boolean value) throws SQLException

setRef

void setRef(int i, Ref x) throws SQLException

2,980 | JDBC

setRowId

void setRowId(int parameterIndex, RowId x) throws SQLException

void setRowId(String parameterName, RowId x) throws SQLException

setShort

void setShort(int parameterIndex, short x) throws SQLException

void setShort(String parameterName, short x) throws SQLException

setSQLXML

void setSQLXML(int parameterIndex, SQLXML xmlObject) throws SQLException

void setSQLXML(String parameterName, SQLXML xmlObject) throws SQLException

setString

void setString(int parameterIndex, String x) throws SQLException

void setString(String parameterName, String x) throws SQLException

setTime

void setTime(int parameterIndex, Time x) throws SQLException

void setTime(int parameterIndex, Time x, Calendar cal) throws SQLException

void setTime(String parameterName, Time x) throws SQLException

void setTime(String parameterName, Time x, Calendar cal) throws SQLException

setTimestamp

JDBC API References | 2,981

void setTimestamp(int parameterIndex, Timestamp x) throws SQLException

void setTimestamp(int parameterIndex, Timestamp x, Calendar cal) throws SQLException

void setTimestamp(String parameterName, Timestamp x) throws SQLException

void setTimestamp(String parameterName, Timestamp x, Calendar cal) throws SQLException

setTransactionIsolation

void setTransactionIsolation(int level) throws SQLException

setType

void setType(int type) throws SQLException

setTypeMap

void setTypeMap(Map<String,Class<?>> map) throws SQLException

setURL

void setURL(int parameterIndex, URL x) throws SQLException

setUrl

void setUrl(String url) throws SQLException

setUsername

void setUsername(String name) throws SQLException

2,982 | JDBC

RowSetMetaData

The class is not implemented

setAutoIncrement

void setAutoIncrement(int columnIndex, boolean property) throws SQLException

setCaseSensitive

void setCaseSensitive(int columnIndex, boolean property) throws SQLException

setCatalogName

void setCatalogName(int columnIndex, String catalogName) throws SQLException

setColumnCount

void setColumnCount(int columnCount) throws SQLException

setColumnDisplaySize

void setColumnDisplaySize(int columnIndex, int size) throws SQLException

setColumnLabel

void setColumnLabel(int columnIndex, String label) throws SQLException

setColumnName

void setColumnName(int columnIndex, String columnName) throws SQLException

JDBC API References | 2,983

setColumnType

void setColumnType(int columnIndex, int SQLType) throws SQLException

setColumnTypeName

void setColumnTypeName(int columnIndex, String typeName) throws SQLException

setCurrency

void setCurrency(int columnIndex, boolean property) throws SQLException

setNullable

void setNullable(int columnIndex, int property) throws SQLException

setPrecision

void setPrecision(int columnIndex, int precision) throws SQLException

setScale

void setScale(int columnIndex, int scale) throws SQLException

setSchemaName

void setSchemaName(int columnIndex, String schemaName) throws SQLException

setSearchable

void setSearchable(int columnIndex, boolean property) throws SQLException

setSigned

2,984 | JDBC

void setSigned(int columnIndex, boolean property) throws SQLException

setTableName

void setTableName(int columnIndex, String tableName) throws SQLException

JDBC API References | 2,985

Savepoint

getSavepointId

int getSavepointId() throws SQLException

● Operation: It returns the id value which is automatically assigned.

● Exception: It throws SQLException because it does not have an ID if the savepoint object is created by

giving its name.

getSavepointName

String getSavepointName() throws SQLException

● Operation: It returns the name specified at the time of when a savepoint object is created.

● Exception: If the savepoint created with an automatic id value, it throws SQLException.

2,986 | JDBC

SQLData

The class is not implemented.

getSQLTypeName

String getSQLTypeName() throws SQLException

readSQL

void readSQL(SQLInput stream, String typeName) throws SQLException

writeSQL

void writeSQL(SQLOutput stream) throws SQLException

JDBC API References | 2,987

SQLXML

The class is not implemented.

free

void free() throws SQLException

getBinaryStream

InputStream getBinaryStream() throws SQLException

getCharacterStream

Reader getCharacterStream() throws SQLException

getSource

<T extends Source> T getSource(Class<T> sourceClass) throws SQLException

getString

String getString() throws SQLException

setBinaryStream

OutputStream setBinaryStream() throws SQLException

setCharacterStream

Writer setCharacterStream() throws SQLException

2,988 | JDBC

setResult

<T extends Result> T setResult(Class<T> resultClass) throws SQLException

setString

void setString(String value) throws SQLException

JDBC API References | 2,989

Statement

addBatch

void addBatch(String sql) throws SQLException

● Operation: The SQL statement is added to the batch job.

● Exception: It does not occur.

cancel

void cancel() throws SQLException

● Operation: It is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

clearBatch

void clearBatch() throws SQLException

● Operation: It clears all registered batch jobs. If registered batch job does not exist, any operation is no

t performed.

● Exception: It does not occur.

clearWarnings

void clearWarnings() throws SQLException

● Operation: It clears all SQLWarning objects which is owned by the statement object.

● Exception: It does not occur.

close

void close() throws SQLException

● Operation: The current statement object is closed, and it is released if the statement related informati

on assigned to the server exists. If the ResultSet created by the object exists, it is closed. The object is

removed from the connection object which created the statement object.

● Exception: If an error occurs when statement information is released from the server, it throws an exc

2,990 | JDBC

eption.

execute

boolean execute(String sql) throws SQLException

● Operation: It executes the SQL statement. If the executed SQL statement has the ResultSet, it returns

true. Otherwise, it returns false.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting from the server, it throws an exception.

boolean execute(String sql, int autoGeneratedKeys) throws SQLException

● Operation: It executes the SQL statement. If the executed SQL statement has the ResultSet, it returns

true. Otherwise, it returns false. Auto key generation is not supported.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting from the server, it throws an exception. If autoGeneratedKeys is not Statement.NO_GENERA

TED_KEYS, it throws SQLFeatureNotSupportedException.

boolean execute(String sql, int[] columnIndexes) throws SQLException

● Operation: It executes the SQL statement. If the executed SQL statement has the ResultSet, it returns

true. Otherwise, it returns false. Auto key generation is not supported.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting from the server, it throws an exception. If the columnIndexes are not null, it throws SQLFeatu

reNotSupportedException.

boolean execute(String sql, String[] columnNames) throws SQLException

● Operation: It executes the SQL statement. If the executed SQL statement has the ResultSet, it returns

true. Otherwise, it returns false. Auto key generation is not supported.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting from the server, it throws an exception. If the columnNames are not null, it throws SQLFeatur

eNotSupportedException.

executeBatch

int[] executeBatch() throws SQLException

● Operation: It executes the registered batch job in turn. The communication with the server occurs per

each batch job. It returns the array of the number of rows in which the update reflected after executi

ng each batch job.

● Exception: If the statement is already closed or any batch job is not registered or an error occurs whe

JDBC API References | 2,991

n executing from the server, it throws an exception.

Note

It does not have definite advantage over the normal execute() because the batch jobs are not tran

smitted and executed at once. Use a batch execution of the PreparedStatement for fast processin

g.

executeQuery

ResultSet executeQuery(String sql) throws SQLException

● Operation: It executes the given SQL statement and gets part of results and creates the ResultSet.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting on the server or the SQL statement is not the select statement, it throws an exception.

Caution

Its operation is a bit different from execute(). The communicate with the server occurs twice if get

ResultSet() is performed for the same SQL statement after performing execute(). The execution co

mmand is performed when performing execute(), and the fetch related command is performed w

hen performing getResultSet(). On the other hand, executeQuery() assumes that the SQL stateme

nt is the select statement, and it executes all with a single communication until fetch.

executeUpdate

int executeUpdate(String sql) throws SQLException

● Operation: It executes the SQL statement. It returns the number of rows updated by the execution.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting on the server or the SQL statement is the select statement, it throws an exception.

int executeUpdate(String sql, int autoGeneratedKeys) throws SQLException

● Operation: It executes the SQL statement. It returns the number of rows updated by the execution. T

he auto key generation feature is not supported.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting on the server or the SQL statement is the select statement, it throws an exception. If autoGen

2,992 | JDBC

eratedKeys is not Statement.NO_GENERATED_KEYS, it throws SQLFeatureNotSupportedException.

int executeUpdate(String sql, int[] columnIndexes) throws SQLException

● Operation: It executes the SQL statement. It returns the number of rows updated by the execution. T

he auto key generation feature is not supported.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting on the server or the SQL statement is the select statement, it throws an exception. If the colu

mnIndexes are not null, it throws SQLFeatureNotSupportedException.

int executeUpdate(String sql, String[] columnNames) throws SQLException

● Operation: It executes the SQL statement. It returns the number of rows updated by the execution. T

he auto key generation feature is not supported.

● Exception: If the statement is already closed or the batch job is registered or an error occurs when ex

ecuting from the server or the SQL statement is the select statement, it throws an exception. If the co

lumnNames are not null, it throws SQLFeatureNotSupportedException.

getConnection

Connection getConnection() throws SQLException

● Operation: It returns the connection object which created the object. If statement object is created w

ith logical connection via the PooledConnection, the user gets the logical connection, not the physica

l connection via the method.

● Exception: If the statement is already closed, it throws an exception.

getExplainPlan

String getExplainPlan() throws SQLException

● Operation: It is non-standard method, and it is the unique method of GoldilocksStatement. It gets th

e generated plan text. It should set for generating the plan text via setExplainPlanOption to use the

method. For more information about the detailed usage, refer to Viewing Plan Text.

● Exception: If the statement is already closed or an error occurs on the server, it throws an exception.

getExplainPlanOption

int getExplainPlanOption() throws SQLException

● Operation: It is non-standard method, and it is the unique method of GoldilocksStatement. It gets th

e option for the generating the plan text which is currently set. The return value is one of the followin

JDBC API References | 2,993

gs and the default value is GoldilocksStatement.EXPLAIN_PLAN_OPTION_OFF.

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_OFF

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_ON

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_ON_VERBOSE

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_ONLY

● Exception: It does not occur.

getFetchDirection

int getFetchDirection() throws SQLException

● Operation: It always returns ResultSet.FETCH_FORWARD.

● Exception: If the statement is already closed, it throws an exception.

getFetchSize

int getFetchSize() throws SQLException

● Operation: It returns the default fetch size of ResultSet which is got from the statement object. The d

efault value is 0, and 0 refers that the server determines the number of fetched rows. For more infor

mation, refer to getFetchSize of ResultSet.

● Exception: If the statement is already closed, it throws an exception.

getGeneratedKeys

ResultSet getGeneratedKeys() throws SQLException

● Operation: It is not supported.

● Exception: It always throws SQLFeatureNotSupportedException.

getMaxFieldSize

int getMaxFieldSize() throws SQLException

● Operation: It returns the max field size. The value limits the maximum length of the column. If the col

umn value is bigger than this length when fetching, the rest of the data is truncated. The default valu

e is 0, and 0 refers that the maximum length is infinite.

● Exception: If the statement is already closed, it throws an exception.

2,994 | JDBC

getMaxRows

int getMaxRows() throws SQLException

● Operation: It returns the max rows. The max rows refer to the maximum number of rows of ResultSe

t which is got from the statement. The rows more than the maximum number of rows are ignored. T

he default value is 0, and 0 means infinity.

● Exception: If the statement is already closed, it throws an exception.

getMoreResults

boolean getMoreResults() throws SQLException

● Operation: It always returns false because a user can only have a single ResultSet per one execution, c

urrently. The current ResultSet is closed.

● Exception: If the statement is already closed, it throws an exception.

boolean getMoreResults(int current) throws SQLException

getQueryTimeout

int getQueryTimeout() throws SQLException

● Operation: It gets the value of the query timeout. The value is the timeout value which the sever appli

es at execution. The execution is canceled and the user gets the error related to timeout if the executi

on time exceeds the time. The unit is seconds and it applies the default value of the session if the use

r does not specifically set it. The default value of the session is 0 if it is not set with the property, and i

t refers to the infinite wait.

● Exception: If the statement is already closed, it throws an exception.

getResultSet

ResultSet getResultSet() throws SQLException

● Operation: It performs the fetch for the currently execution, and it gets part of fetched results, and cr

eates and returns the ResultSet. JDBC specification defines to call this method once per the execution,

but it is implemented to return the same object for several calls of the method.

● Exception: If the statement is already closed, it throws an exception. If an error occurs on the server

when fetching, it throws an exception.

JDBC API References | 2,995

getResultSetConcurrency

int getResultSetConcurrency() throws SQLException

● Operation: It returns the ResultSet concurrency. The value determines the concurrency of ResultSet g

enerated from the object. The default value is ResultSet.CONCUR_READ_ONLY. The updatable curso

r is not yet supported.

● Exception: If the statement is already closed, it throws an exception.

getResultSetHoldability

int getResultSetHoldability() throws SQLException

● Operation: It returns the ResultSet holdability. The value determines the holdability of ResultSet gener

ated from the object. The default value is ResultSet.HOLD_CURSORS_OVER_COMMIT.

● Exception: If the statement is already closed, it throws an exception.

getResultSetType

int getResultSetType() throws SQLException

● Operation: It returns the ResultSet type. The value determines the type of ResultSet generated from t

he object. The default value is ResultSet.TYPE_FORWARD_ONLY.

● Exception: If the statement is already closed, it throws an exception.

getUpdateCount

int getUpdateCount() throws SQLException

● Operation: It returns the number of rows in which the update for the last execution is reflected. If the

last executed SQL statement is not UPDATE statement nor is INSERT statement, it returns -1.

● Exception: It does not occur.

getUpdateRowCount

long getUpdateRowCount() throws SQLException

● Operation: It is as same as getUpdateCount, but the returned type is long. It is non-standard method,

and the type casting to GoldilocksStatement should be performed to use it.

● Exception: It does not occur.

2,996 | JDBC

getWarnings

SQLWarning getWarnings() throws SQLException

● Operation: It returns SQLWarning accumulated on the object. If it does not exist, it returns null.

● Exception: It does not occur.

isClosed

boolean isClosed() throws SQLException

● Operation: It returns whether the statement is closed. If it is closed, it returns true. Otherwise, it retur

ns false. It can be closed not only by the explicit call of close() but also by the server or the connection

object.

● Exception: It does not occur.

isPoolable

boolean isPoolable() throws SQLException

● Operation: Statement pooling is not supported. It always returns false.

● Exception: It does not occur.

setCursorName

void setCursorName(String name) throws SQLException

● Operation: It sets a name for the cursor created by the currently executed statement.

● Exception: If an error occurs on the server when setting the cursor name, it throws an exception.

setEscapeProcessing

void setEscapeProcessing(boolean enable) throws SQLException

● Operation: JDBC can not ban the feature because the escape processing of the SQL statement is perf

ormed in the server parser. Any operation is not performed.

● Exception: If the statement is already closed, it throws an exception.

JDBC API References | 2,997

setExplainPlanOption

void setExplainPlanOption(int option) throws SQLException

● Operation: It is non standard method, but it is the GoldilocksStatement unique method. It specifies th

e plan text generation options. The option should be set to one of the followings, and each meaning

is as follows.

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_OFF: The plan text is not generated.

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_ON: The plan text is generated when executing.

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_ON_VERBOSE: Detailed plan text is generated wh

en executing.

○ GoldilocksStatement.EXPLAIN_PLAN_OPTION_ONLY: The plan text is generated when executing,

but the actual execution is not performed.

● Exception: When setting a value other than four values above, it throws an exception.

setFetchDirection

void setFetchDirection(int direction) throws SQLException

● Operation: It sets the fetch direction. If the direction is not ResultSet.FETCH_FORWARD, it throws an

exception because GOLDILOCKS supports only the forward fetch.

● Exception: If the statement is already closed or the direction is not FETCH_FORWARD, it throws an ex

ception.

setFetchSize

void setFetchSize(int rows) throws SQLException

● Operation: It sets the default fetch size of ResultSet which is got from the statement object. The defa

ult value is 0, and 0 refers that the server determines the number of fetched rows. For more informati

on, refer to setFetchSize of ResultSet.

● Exception: If the statement is already closed, it throws an exception.

setMaxFieldSize

void setMaxFieldSize(int max) throws SQLException

● Operation: It sets the max field size. The value limits the maximum length of the column. If the colum

n value is bigger than this length when fetching, the rest of the data is truncated. The default value is

0, 0 refers that the maximum length is infinity. It is valid for CHAR, VARCHAR, LONG VARCHAR, BIN

ARY, VARBINARY, LONG VARBINARY types.

2,998 | JDBC

● Exception: If the statement is already closed, it throws an exception.

setMaxRows

void setMaxRows(int max) throws SQLException

● Operation: It sets the max rows. The max rows refers to the maximum number of rows of ResultSet

which is got from the statement. The rows more than the maximum number of rows are ignored. Th

e default is 0, and 0 means infinity.

● Exception: If the statement is already closed, it throws an exception.

setPoolable

void setPoolable(boolean poolable) throws SQLException

● Operation: Statement pooling is not supported. Any operation is not performed.

● Exception: It does not occur.

setQueryTimeout

void setQueryTimeout(int seconds) throws SQLException

● Operation: It sets the value of query timeout. The value is the timeout value which the sever applies a

t the execution, and the execution is canceled and the user gets the error related to timeout if the ex

ecution time exceeds the time. The unit is seconds and it applies the default value of the session if th

e user idoes not specifically set it. The default value of the session is 0 if it is not set with the property,

and 0 refers to the infinite wait.

● Exception: If the statement is already closed, it throws an exception.

isWrapperFor

boolean isWrapperFor(Class<?> iface) throws SQLException

● Operation: It queries whether the object is a class which implements the iface interface. If so, it retur

ns true. Otherwise, it returns false. It does not determine the presence of the wrapper but it only que

ries only whether the given argument class type is implemented because GOLDILOCKS statement obj

ect is not the wrapper of any other class.

● Exception: It does not occur.

JDBC API References | 2,999

unwrap

<T> T unwrap(Class<T> iface) throws SQLException

● Operation: It eventually returns itself, even when it is unwrapped because GOLDILOCKS statement is

not the wrapper of any other class. It returns after casting to that type. If iface is an argument of isWr

apperFor() method and false is returned, the method throws an exception.

● Exception: If iface is not the type of the object (when this object returns the unimplemented type), it

throws SQLException.

3,000 | JDBC

Struct

The class is not implemented.

getAttributes

Object[] getAttributes() throws SQLException

getAttributes

Object[] getAttributes(Map<String,Class<?>> map) throws SQLException

getSQLTypeName

String getSQLTypeName() throws SQLException

JDBC API References | 3,001

XAConnection

getXAResource

XAResource getXAResource() throws SQLException

● Operation: It returns XAResource object which can perform XA command. When the method is calle

d for several times, the same result is continuously returned.

● Exception: It does not occur.

3,002 | JDBC

XADataSource

getXAConnection

XAConnection getXAConnection() throws SQLException

● Operation: It creates XAConnection object and returns it. The information required for the connectio

n should be set as the separate non-standard methods in advance.

● Exception: When connection to the server is failed, it throws SQLException.

XAConnection getXAConnection(String user, String password) throws SQLException

● Operation: It opens and returns a new XAConnection object with the username and password. Other

information required for the connection should be set as the separate non-standard methods in adva

nce.

● Exception: When connection to the server is failed, it throws SQLException.

JDBC API References | 3,003

XAResource

commit

void commit(Xid xid, boolean onePhase) throws XAException

● Operation: It performs the XA commit command for the global transaction xid. If onePhase is set to t

rue, one phase commit is performed.

● Exception: If the execution result error occurs, it throws XAException.

end

void end(Xid xid, int flags) throws XAException

● Operation: It performs the XA end command for the global transaction xid. The flags may be one of T

MSUCCESS, TMFAIL, or TMSUSPEND.

● Exception: If the execution result error occurs, it throws XAException.

forget

void forget(Xid xid) throws XAException

● Operation: It performs the XA forget command for the global transaction xid.

● Exception: If the execution result error occurs, it throws XAException.

getTransactionTimeout

int getTransactionTimeout() throws XAException

● Operation: GOLDILOCKS does not support the transaction timeout. It always return 0.

● Exception: It does not occur.

isSameRM

boolean isSameRM(XAResource xares) throws XAException

● Operation: It has the unique rmid when XAResource object is created. Whether it is the same XAReso

urce object is determined with this rmid.

● Exception: It does not occur.

3,004 | JDBC

prepare

int prepare(Xid xid) throws XAException

● Operation: It performs the XA prepare command for the global transaction xid.

● Exception: If the execution result error occurs, it throws XAException.

recover

Xid[] recover(int flag) throws XAException

● Operation: It performs XA recover command with the given flag, and the array of the prepared trans

action branches is returned. The flag may be one of TMSTARTRSCAN, TMENDRSCAN, TMNOFLAGS.

● Exception: If the execution result error occurs, it throws XAException.

rollback

void rollback(Xid xid) throws XAException

● Operation: It performs the XA rollback command for the global transaction xid.

● Exception: If the execution result error occurs, it throws XAException.

setTransactionTimeout

boolean setTransactionTimeout(int seconds) throws XAException

● Operation: GOLDILOCKS does not support the transaction timeout. Any operation is not performed.

● Exception: It does not occur.

start

void start(Xid xid, int flags) throws XAException

● Operation: It starts the global transaction with the given flag. The flag may be one of TMNOFLAGS, T

MJOIN, TMRESUME.

● Exception: If the execution result error occurs, it throws XAException.

JDBC API References | 3,005

GoldilocksInterval

To give value to a column of GOLDILOCKS by using a GoldilocksInterval object, refer to Using Other Data

Types.

createIntervalYear

public static GoldilocksInterval createIntervalYear(int yearPrecision, boolean sign, int year)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given year value. The yearPrecision refers to th

e number of digits which the year can have. The value of year should be equal to or bigger than 0. If t

he time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given year value exceeds yearPrecision, an error occurs.

public static GoldilocksInterval createIntervalYear(int yearPrecision, String year) throws

SQLException

● Operation: It creates GoldilocksInterval object with the given year value. The yearPrecision refers to th

e number of digits which the year can have. The value of year should be an integer equal to or bigger

than 0.

● Exception: If the given year value exceeds yearPrecision, an error occurs.

createIntervalMonth

public static GoldilocksInterval createIntervalMonth(int monthPrecision, boolean sign, int

month) throws SQLException

● Operation: It creates GoldilocksInterval object with the given month value. The monthPrecision refers

to the number of digits which the month can have. The value of month should be an integer equal to

or bigger than 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given month value exceeds monthPrecision, an error occurs.

public static GoldilocksInterval createIntervalMonth(int monthPrecision, String month) throws

SQLException

● Operation: It creates GoldilocksInterval object with the given month value. The monthPrecision refers

to the number of digits which the month can have. The value of month should be an integer equal to

or bigger than 0.

● Exception: If the given month value exceeds monthPrecision, an error occurs.

3,006 | JDBC

createIntervalYearToMonth

public static GoldilocksInterval createIntervalYearToMonth(int yearPrecision, boolean sign,

int year, int month) throws SQLException

● Operation: It creates GoldilocksInterval object with the given year, month value. The yearPrecision ref

ers to the number of digits which the year can have. The value of year, month should be equal to or

bigger than 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given year value exceeds yearPrecision, an error occurs.

public static GoldilocksInterval createIntervalYearToMonth(int yearPrecision, String

yearToMonth) throws SQLException

● Operation: It creates GoldilocksInterval object with the given yearToMonth value. The yearPrecision r

efers to the number of digits which the year can have. yearToMonth should satisfy "yy-mm" pattern.

● Exception: If the given year value exceeds yearPrecision, an error occurs.

createIntervalDay

public static GoldilocksInterval createIntervalDay(int dayPrecision, boolean sign, int day)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given day value. The dayPrecision refers to the

number of digits which the day can have. The value of day should be equal to or bigger than 0. If the

time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given day value exceeds dayPrecision, an error occurs.

public static GoldilocksInterval createIntervalDay(int dayPrecision, String day) throws

SQLException

● Operation: It creates GoldilocksInterval object with the given day value. The dayPrecision refers to the

number of digits which the day can have. The value of day should be an integer equal to or bigger th

an 0.

● Exception: If the given day value exceeds dayPrecision, an error occurs.

createIntervalHour

public static GoldilocksInterval createIntervalHour(int hourPrecision, boolean sign, int hour)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given hour value. The hourPrecision refers to t

he number of digits which the hour can have. The value of hour should be equal to or bigger than 0.

JDBC API References | 3,007

If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given hour value exceeds hourPrecision, an error occurs.

public static GoldilocksInterval createIntervalHour(int hourPrecision, String hour) throws

SQLException

● Operation: It creates GoldilocksInterval object with the given hour value. The hourPrecision refers to t

he number of digits which the hour can have. The value of hour should be an integer equal to or big

ger than 0.

● Exception: If the given hour value exceeds hourPrecision, an error occurs.

createIntervalMinute

public static GoldilocksInterval createIntervalMinute(int minutePrecision, boolean sign, int

minute) throws SQLException

● Operation: It creates GoldilocksInterval object with the given minute value. The minutePrecision refer

s to the number of digits which the minute can have. The value of minute should be equal to or bigg

er than 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given minute value exceeds minutePrecision, an error occurs.

public static GoldilocksInterval createIntervalMinute(int minutePrecision, String minute)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given minute value. The minutePrecision refer

s to the number of digits which the minute can have. The value of minute should be an integer equal

to or bigger than 0.

● Exception: If the given minute value exceeds minutePrecision, an error occurs.

createIntervalSecond

public static GoldilocksInterval createIntervalSecond(int secondPrecision, int

fractionalPrecision, boolean sign, int second, int microsecond) throws SQLException

● Operation: It creates GoldilocksInterval object with the given second value. The secondPrecision refer

s to the number of digits of second, and the fractionalPrecision refers to the number of digits of micr

osecond. The value of second and microsecond should be equal to or bigger than 0. If the time is a p

ositive number, sign is true. If it is a negative number, sign is false.

● Exception: If the given second value exceeds secondPrecision or the given microSecond value exceed

s fractionalPrecision, an error occurs.

3,008 | JDBC

public static GoldilocksInterval createIntervalSecond(int secondPrecision, int

fractionalPrecision, boolean sign, int day, int hour, int minute, int second, int microsecond)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given day, hour, minute, second, microsecond

value. The secondPrecision refers to the number of digits of second when day, hour, minute, second i

s converted to second. The fractionalPrecision refers to the number of digits of microsecond. The valu

e of day, hour, minute, second, microsecond should be equal to or bigger than 0. If the time is a posi

tive number, sign is true. If it is a negative number, sign is false.

● Exception: If the converted second value exceeds the secondPrecision or the microSecond value exce

eds the fractionalPrecision, an error occurs.

public static GoldilocksInterval createIntervalSecond(int secondPrecision, int

fractionalPrecision, String second) throws SQLException

● Operation: It creates GoldilocksInterval object with the given second string. The secondPrecision refer

s to the number of digits of second. The fractionalPrecision refers to the number of digits of microsec

ond. The second string should be one of "dd hh:mm:ss.ffffff" or "dd hh:mm:ss", "dd hh:mm", "dd hh"

, "hh:mm", "ss.ffffff", "ss" patterns.

● Exception: If the converted second value exceeds the secondPrecision or the microSecond value exce

eds the fractionalPrecision, an error occurs. If the string does not conform to the prescribed format, a

n error occurs.

createIntervalDayToHour

public static GoldilocksInterval createIntervalDayToHour(int dayPrecision, boolean sign, int

day, int hour) throws SQLException

● Operation: It creates GoldilocksInterval object with the given day, hour value. The dayPrecision refers

to the number of digits of day. The value of day, hour should be equal to or bigger than 0. If the time

is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the day value exceeds dayPrecision, an error occurs.

public static GoldilocksInterval createIntervalDayToHour(int dayPrecision, String dayToHour)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given dayToHour string. The dayPrecision refe

rs to the number of digits of day. dayToHour should satisfy "dd hh" format. Or, if its format is "dd hh:

mm:ss", all should be 0 except for dd, hh.

● Exception: If the day value exceeds dayPrecision or the given string does not satisfy the format, an err

or occurs.

JDBC API References | 3,009

createIntervalDayToMinute

public static GoldilocksInterval createIntervalDayToMinute(int dayPrecision, boolean sign, int

day, int hour, int minute) throws SQLException

● Operation: It creates GoldilocksInterval object with the given day, hour, minute value. The dayPrecisio

n refers to the number of digits of day. The value of day, hour, minute should be equal to or bigger t

han 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the day value exceeds dayPrecision, an error occurs.

public static GoldilocksInterval createIntervalDayToMinute(int dayPrecision, String

dayToMinute) throws SQLException

● Operation: It creates GoldilocksInterval object with the given dayToMinute string. The dayPrecision re

fers to the number of digits of day. dayToMinute should satisfy "dd hh:mm" format. Or, if its format i

s "dd hh:mm:ss", all should be 0 except for dd, hh, mm.

● Exception: If the day value exceeds dayPrecision or the given string does not satisfy the format, an err

or occurs.

createIntervalDayToSecond

public static GoldilocksInterval createIntervalDayToSecond(int dayPrecision, int

fractionalPrecision, boolean sign, int day, int hour, int minute, int second, int microsecond)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given day, hour, minute, second, microsecond

value. The dayPrecision refers to the number of digits of day. The fractionalPrecision refers to the nu

mber of digits of microsecond. The value of day, hour, minute, second, microsecond should be equal

to or bigger than 0. If the time is a positive number, sign is true. If it is a negative number, sign is fals

e.

● Exception: If the day value exceeds dayPrecision or the microsecond value exceeds the fractionalPreci

sion, an error occurs.

public static GoldilocksInterval createIntervalDayToSecond(int dayPrecision, String

dayToSecond) throws SQLException

● Operation: It creates GoldilocksInterval object with the given dayToSecond string. The dayPrecision re

fers to the number of digits of day. The fractionalPrecision refers to the number of digits of microsec

ond. dayToSecond should satisfy one of "dd hh:mm:ss.ffffff", "dd hh:mm:ss", "hh:mm:ss", "hh:mm" f

ormats.

● Exception: If the day value or the converted day value exceeds dayPrecision or the microsecond value

exceeds the fractionalPrecision or the given string does not satisfy the format, an error occurs.

3,010 | JDBC

createIntervalHourToMinute

public static GoldilocksInterval createIntervalHourToMinute(int hourPrecision, boolean sign,

int hour, int minute) throws SQLException

● Operation: It creates GoldilocksInterval object with the given hour, minute value. The hourPrecision r

efers to the number of digits of hour. The value of hour, minute should be equal to or bigger than 0.

If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the hour value exceeds hourPrecision, an error occurs.

public static GoldilocksInterval createIntervalHourToMinute(int hourPrecision, boolean sign,

int day, int hour, int minute) throws SQLException

● Operation: It creates GoldilocksInterval object with the given day, hour, minute value. The hourPrecisi

on refers to the number of digits of hour. The value of day, hour, minute should be equal to or bigge

r than 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the hour value or the converted hour value exceeds hourPrecision, an error occurs.

public static GoldilocksInterval createIntervalHourToMinute(int hourPrecision, String

hourToMinute) throws SQLException

● Operation: It creates GoldilocksInterval object with the given hourToMinute string. The hourPrecision

refers to the number of digits of hour. hourToMinute must satisfy "hh:mm" format. The value of ss or

ffffff should be 0 for other formats.

● Exception: If the hour value or the converted hour value exceeds hourPrecision, an error occurs. If the

given string does not satisfy the format, an error occurs.

createIntervalHourToSecond

public static GoldilocksInterval createIntervalHourToSecond(int hourPrecision, int

fractionalPrecision, boolean sign, int hour, int minute, int second, int microsecond) throws

SQLException

● Operation: It creates GoldilocksInterval object with the given hour, minute, second, microsecond valu

e. The hourPrecision refers to the number of digits of hour. The fractionalPrecision refers to the num

ber of digits of microsecond. The value of hour, minute, second, microsecond should be equal to or b

igger than 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the hour value exceeds hourPrecision or the microsecond value exceeds the fractionalPr

ecision, an error occurs.

public static GoldilocksInterval createIntervalHourToSecond(int hourPrecision, int

fractionalPrecision, boolean sign, int day, int hour, int minute, int second, int microsecond)

throws SQLException

JDBC API References | 3,011

● Operation: It creates GoldilocksInterval object with the given day, hour, minute, second, microsecond

value. The hourPrecision refers to the number of digits of hour. The fractionalPrecision refers to the n

umber of digits of microsecond. The value of day, hour, minute, second, microsecond should be equ

al to or bigger than 0. If the time is a positive number, sign is true. If it is a negative number, sign is fa

lse.

● Exception: If the hour value or the converted hour value exceeds hourPrecision or the microsecond va

lue exceeds the fractionalPrecision, an error occurs.

public static GoldilocksInterval createIntervalHourToSecond(int hourPrecision, int

fractionalPrecision, String hourToSecond) throws SQLException

● Operation: It creates GoldilocksInterval object with the given hourToSecond string. The hourPrecision

refers to the number of digits of hour. The fractionalPrecision refers to the number of digits of micros

econd. hourToSecond should satisfy "hh:mm:ss.ffffff", "hh:mm:ss", or "hh:mm" format. If dd is includ

ed, the value of converted hour should not exceed hourPrecision.

● Exception: If the hour value or the converted hour value exceeds hourPrecision or the microsecond va

lue exceeds the fractionalPrecision, or the given string does not satisfy the format, an error occurs.

createIntervalMinuteToSecond

public static GoldilocksInterval createIntervalMinuteToSecond(int minutePrecision, int

fractionalPrecision, boolean sign, int minute, int second, int microsecond) throws

SQLException

● Operation: It creates GoldilocksInterval object with the given minute, second, microsecond value. The

minutePrecision refers to the number of digits of minute. The fractionalPrecision refers to the numbe

r of digits of microsecond. The value of minute, second, microsecond should be equal to or bigger th

an 0. If the time is a positive number, sign is true. If it is a negative number, sign is false.

● Exception: If the minute value exceeds the minutePrecision or the microsecond value exceeds the frac

tionalPrecision, an error occurs.

public static GoldilocksInterval createIntervalMinuteToSecond(int minutePrecision, int

fractionalPrecision, boolean sign, int day, int hour, int minute, int second, int microsecond)

throws SQLException

● Operation: It creates GoldilocksInterval object with the given day, hour, minute, second, microsecond

value. The minutePrecision refers to the number of digits of minute. The fractionalPrecision refers to t

he number of digits of microsecond. The value of day, hour, minute, second, microsecond should be

equal to or bigger than 0. If the time is a positive number, sign is true. If it is a negative number, sign

is false.

● Exception: If the minute value or the converted minute value exceeds minutePrecision or the microse

cond value exceeds the fractionalPrecision, an error occurs.

3,012 | JDBC

public static GoldilocksInterval createIntervalMinuteToSecond(int minutePrecision, int

fractionalPrecision, String minuteToSecond) throws SQLException

● Operation: It creates GoldilocksInterval object with the given minuteToSecond string. The minutePrec

ision refers to the number of digits of minute. The fractionalPrecision refers to the number of digits o

f microsecond. minuteToSecond should satisfy "mm:ss.ffffff" or "mm:ss" format. If dd or hh is include

d, the value of the converted minute should not exceed minutePrecision.

● Exception: If the minute value or the converted minute value exceeds the minutePrecision or the micr

osecond value exceeds the fractionalPrecision or the given string does not satisfy the format, an error

occurs.

getSign

public int getSign()

● Operation: If the time is a positive number, 1 is returned. If the time is a negative number, -1 is return

ed.

● Exception: It does not occur.

getYear

public int getYear()

● Operation: It returns the year value. Whether the interval object is a negative number is not returned

through getYear().

● Exception: It does not occur.

getMonth

public int getMonth()

● Operation: It returns the month value. Whether the interval object is a negative number is not return

ed through getMonth().

● Exception: It does not occur.

getAccumulatedMonth

public int getAccumulatedMonth()

● Operation: It converts the value of year and month to the value of month, and returns the result.

JDBC API References | 3,013

● Exception: It does not occur.

getDay

public int getDay()

● Operation: It returns the day value. Whether the interval object is a negative number is not returned t

hrough getDay().

● Exception: It does not occur.

getHour

public int getHour()

● Operation: It returns the hour value. Whether the interval object is a negative number is not returned

through getHour().

● Exception: It does not occur.

getAccumulatedHour

public int getAccumulatedHour()

● Operation: It converts the value of day and hour to the value of hour, and returns the result.

● Exception: It does not occur.

getMinute

public int getMinute()

● Operation: It returns the minute value. Whether the interval object is a negative number is not return

ed through getMinute().

● Exception: It does not occur.

getAccumulatedMinute

public int getAccumulatedMinute()

● Operation: It converts the value of day, hour and minute to the value of minute, and returns the resul

t.

● Exception: It does not occur.

3,014 | JDBC

getSecond

public int getSecond()

● Operation: It returns the second value. Whether the interval object is a negative number is not return

ed through getSecond().

● Exception: It does not occur.

getAccumulatedSecond

public int getAccumulatedSecond()

● Operation: It converts the value of day, hour, minute and second to the value of second, and returns

the result.

● Exception: It does not occur.

getMicroSecond

public int getMicroSecond()

● Operation: It returns the microsecond value. Whether the interval object is a negative number is not r

eturned through getMicroSecond().

● Exception: It does not occur.

getAccumulatedMicroSecond

public long getAccumulatedMicroSecond()

● Operation: It converts the value of day, hour, minute, second and microsecond to the value of micros

econd, and returns the result.

● Exception: It does not occur.

getTypeName

public String getTypeName()

● Operation: The type name is returned.

● Exception: It does not occur.

JDBC API References | 3,015

getSqlType

public int getSqlType()

● Operation: The type of this object is returned as the type constant defined in GoldilocksTypes.

● Exception: It does not occur.

toString

public String toString()

● Operation: The interval value which is indicated by this object is returned as a string value.

● Exception: It does not occur.

3,016 | JDBC

GOLDILOCKS Type

Constant Definition

public static final int INTERVAL_YEAR;

public static final int INTERVAL_MONTH;

public static final int INTERVAL_DAY;

public static final int INTERVAL_HOUR;

public static final int INTERVAL_MINUTE;

public static final int INTERVAL_SECOND;

public static final int INTERVAL_YEAR_TO_MONTH;

public static final int INTERVAL_DAY_TO_HOUR;

public static final int INTERVAL_DAY_TO_MINUTE;

public static final int INTERVAL_DAY_TO_SECOND;

public static final int INTERVAL_HOUR_TO_MINUTE;

public static final int INTERVAL_HOUR_TO_SECOND;

public static final int INTERVAL_MINUTE_TO_SECOND;

public static final int TIME_WITH_TIME_ZONE;

public static final int TIMESTAMP_WITH_TIME_ZONE;

These constants are used like as the constants of java.sql.Types. In other words, they are used when speci

fying the types in setObject of PreparedStatement or the types in getObject of ResultSet. These types are

separately provided by GoldilocksTypes because they are not defined in the JDBC standard.

Type Conversion

The following tables describe how to convert types.

Table 26-3 SQL types → GOLDILOCKS types

SQL type GOLDILOCKS type

Types.BIGINT NATIVE_BIGINT

Types.BINARY BINARY(2000)

Types.BIT BOOLEAN

Types.BOOLEAN BOOLEAN

Types.BLOB N/A

Types.CHAR CHAR(2000)

Types.CLOB N/A

Types.DATE DATE

JDBC API References | 3,017

Types.DECIMAL DECIMAL

Types.DOUBLE NATIVE_DOUBLE

Types.FLOAT FLOAT

Types.NUMERIC NUMBER

Types.INTEGER NATIVE_INTEGER

Types.LONGVARBINARY LONG VARBINARY

Types.LONGVARCHAR LONG VARCHAR

Types.REAL NATIVE_REAL

Types.ROWID ROWID

Types.SMALLINT NATIVE_SMALLINT

Types.TIME TIME

Types.TIMESTAMP TIMESTAMP

Types.VARBINARY VARBINARY(4000)

Types.VARCHAR VARCHAR(4000)

GoldilocksTypes.INTERVAL_YEAR INTERVAL YEAR

GoldilocksTypes.INTERVAL_MONTH INTERVAL MONTH

GoldilocksTypes.INTERVAL_YEAR_TO_MONTH INTERVAL YEAR TO MONTH

GoldilocksTypes.INTERVAL_DAY INTERVAL DAY

GoldilocksTypes.INTERVAL_HOUR INTERVAL HOUR

GoldilocksTypes.INTERVAL_MINUTE INTERVAL MINUTE

GoldilocksTypes.INTERVAL_SECOND INTERVAL SECOND

GoldilocksTypes.INTERVAL_DAY_TO_HOUR INTERVAL DAY TO HOUR

GoldilocksTypes.INTERVAL_DAY_TO_MINUTE INTERVAL DAY TO MINUTE

GoldilocksTypes.INTERVAL_DAY_TO_SECOND INTERVAL DAY TO SECOND

GoldilocksTypes.INTERVAL_HOUR_TO_MINUTE INTERVAL HOUR TO MINUTE

GoldilocksTypes.INTERVAL_HOUR_TO_SECOND INTERVAL HOUR TO SECOND

GoldilocksTypes.INTERVAL_MINUTE_TO_SECOND INTERVAL MINUTE TO SECOND

Types.OTHER N/A

Types.ARRAY N/A

Types.DATALINK N/A

Types.DISTINCT N/A

Types.NCHAR N/A

Types.NCLOB N/A

Types.NVARCHAR N/A

Types.JAVA_OBJECT N/A

Types.REF N/A

Types.SQLXML N/A

Types.STRUCT N/A

SQL type GOLDILOCKS type

3,018 | JDBC

Table 26-4 Whether supporting getter method for GOLDILOCKS type - 1

NATIVE_SMALLI

NT
NATIVE_INTEGER NATIVE_BIGINT NATIVE_REAL NATIVE_DOUBLE

getByte O O O O O

getShort O O O O O

getInt O O O O O

getLong O O O O O

getFloat O O O O O

getDouble O O O O O

getBigDecimal O O O O O

getBoolean
Avaliable only for

0,1

Avaliable only for

0,1

Avaliable only for

0,1

Avaliable only for

0,1

Avaliable only for

0,1

getString O O O O O

getBytes raw data raw data raw data raw data raw data

getDate X X X X X

getTime X X X X X

getTimestamp X X X X X

getAsciiStream raw data raw data raw data raw data raw data

getBinaryStream raw data raw data raw data raw data raw data

getCharacterStre

am
X X X X X

getClob X X X X X

getBlob X X X X X

getArray X X X X X

getRef X X X X X

getURL X X X X X

getObject Short Integer Long Float Double

getRowId X X X X X

Table 26-5 Whether supporting getter method for GOLDILOCKS Type - 2

BOOLEAN
FLOAT/

NUMBER

CHAR/

VARCHAR/

LONG VARCHAR

BINARY/

VARBINARY/LON

G VARBINARY

ROWID

getByte 0 or 1 O
Available only for

numeric
X X

getShort 0 or 1 O
Available only for

numeric
X X

getInt 0 or 1 O
Available only for

numeric
X X

getLong 0 or 1 O
Available only for

numeric
X X

JDBC API References | 3,019

getFloat 0 or 1 O
Available only for

numeric
X X

getDouble 0 or 1 O
Available only for

numeric
X X

getBigDecimal 0 or 1 O
Available only for

numeric
X X

getBoolean O
Available only for

0,1

Available only for

"t", "f", "true", "f

alse", "y", "n", "y

es", "no", "on",

"off", "1", "0" (ca

se-insensitive)

X X

getString
"TRUE" or "FALSE

"
O O O O

getBytes raw data raw data raw data O raw data

getDate X X
Available only for

date format
X X

getTime X X
Available only for

time format
X X

getTimestamp X X

Available only for

timestamp forma

t

X X

getAsciiStream raw data raw data raw data O raw data

getBinaryStream raw data raw data raw data O raw data

getCharacterStre

am
X X O X X

getClob X X X X X

getBlob X X X X X

getArray X X X X X

getRef X X X X X

getURL X X X X X

getObject Boolean BigDecimal String byte[] RowId

getRowId X X X X O

BOOLEAN
FLOAT/

NUMBER

CHAR/

VARCHAR/

LONG VARCHAR

BINARY/

VARBINARY/LON

G VARBINARY

ROWID

Table 26-6 Whether supporting getter method for GOLDILOCKS Type - 3

DATE

TIME/

TIME WITH TIME ZO

NE

TIMESTAMP/

TIMESTAMP

WITH TIME ZONE

INTERVAL

getByte X X X
Available only for a si

3,020 | JDBC

ngle item type

getShort X X X
Available only for a si

ngle item type

getInt X X X
Available only for a si

ngle item type

getLong X X X
Available only for a si

ngle item type

getFloat X X X
Available only for a si

ngle item type

getDouble X X X
Available only for a si

ngle item type

getBigDecimal X X X
Available only for a si

ngle item type

getBoolean X X X X

getString O O O O

getBytes raw data raw data raw data raw data

getDate O O O X

getTime O O O X

getTimestamp O O O X

getAsciiStream raw data raw data raw data raw data

getBinaryStream raw data raw data raw data raw data

getCharacterStream X X X X

getClob X X X X

getBlob X X X X

getArray X X X X

getRef X X X X

getURL X X X X

getObject Date Time Timestamp GoldilocksInterval

getRowId X X X X

DATE

TIME/

TIME WITH TIME ZO

NE

TIMESTAMP/

TIMESTAMP

WITH TIME ZONE

INTERVAL

Embedded SQL

27.

3,021

3,022 | Embedded SQL

27.1 Precompiler

Overview

GOLDILOCKS precompiler is a programming development tool which enables a user to use embedded SQ

L in the high-level programming language. Currently, GOLDILOCKS supports the precompiler only for the

language such as C/ C++, and it is called as gpec.

Developing Embedded SQL Applications

As described in Figure 1 Developing the embedded SQL applications, the user creates a C source program

including embedded SQL, and converts it via gpec precompiler. Then, the pure C code is created of which

the embedded SQL on the source code is converted to the contents calling the library of GOLDILOCKS. Th

is C code uses C compiler of the system to perform compile as object code and link it with libgoldilockses

ql.a which is an embedded SQL library provided by GOLDILOCKS, then completes the final application.

Figure 1 Developing the embedded SQL applications

Configuring Embedded SQL Application Development Tool

Embedded SQL application of GOLDILOCKS consists of the following elements.

Directory or File Description

\bin\gpec GOLDILOCKS precompiler embedded SQL for C

\include\goldilocksesql.h
It is an embedded SQL library header file. Precompiler automatically inserts it, s

o the user does not have to do any extra work.

\include\sqlca.h It is the SQLCA data structure related header file.

\lib\libgoldilocksesql.a, \lib\

libgoldilocksesqls.so
It is the embedded SQL run-time library.

\lib\libgoldilocks.a, \lib\libg

oldilockss.so
It is the GOLDILOCKS DA/ CS mixed mode library.

Precompiler | 3,023

\lib\libgoldilocksa.a, \lib\lib

goldilocksas.so
It is the GOLDILOCKS DA mode library.

\lib\libgoldilocksc.a, \lib\lib

goldilockscs.so
It is the GOLDILOCKS CS mode library.

\sample\EmbeddedSQL It is a sample program.

Directory or File Description

Building Application

This chapter describes the process to build an embedded SQL source program of GOLDILOCKS and make

the application.

Precompile

Description

The user precompiles the C/ C ++ source code which was written by using embedded SQL, and generates

the pure C/ C ++ source code. The core of this process is converting the user-created embedded SQL to t

he library call provided by GOLDILOCKS, and the C/ C++ source code is not modified except for embedde

d SQL.

Usage

The name of GOLDILOCKS precompiler is gpec, and it is located in $GOLDILOCKS_HOME/bin/.

gpec is used as follows.

$ gpec [OPTION]... <input file>

<input file> is input to gpec, and gpec generates the C/ C++ source code after precompile process. The e

xtension of <input file> is *.gc, and it can be omitted. If <input file> does not have *.gc extension, the file

name with the extension should be required.

For more information about options given to gpec, refer to Precompiler Options.

Example

$ gpec sample1

FileName: sample1

Pre-compile sample1.gc -> sample1.c

3,024 | Embedded SQL

Compile

C/ C++ source code is generated after precompile process. The source code generates the object code by

using the C/ C++ compiler provided in the platform. For more information about this process refer to the

C/ C++ compiler manual which is provided by the user platform.

Link

The application is generated by linking the object codes generated through the process above, and GOLD

ILOCKS supports libgoldilocksesql.a for an embedded SQL. The library includes the GOLDILOCKS APIs whi

ch is converted from the embedded SQL by the precompiler, so it is prerequisite when making the embed

ded SQL application.

Additionally, the required library varies upon the various operation modes of GOLDILOCKS, and the requi

red library is selected and linked according to the operation mode of the current application as follows.

Operation mode Static library Shared object

DA dedicated libgoldilocksa.a libgoldilocksas.so

CS dedicated libgoldilocksc.a libgoldilockscs.so

DA/ CS mixed libgoldilocks.a libgoldilockss.so

Other link processes are as same as the process of generating the common C/ C++ application so refer to

the linker manual provided by the user platform.

Example

make is used a lot to easily perform the precompile, compile, link process above. The following is an exa

mple of Makefile to create the sample program. Refer to the following example to make the Makefile wh

ich is suitable for the user environment.

CC = gcc

CFLAGS = -g -Wall

INC = -I$(GOLDILOCKS_HOME)/include

LFLAGS = -L$(GOLDILOCKS_HOME)/lib

LIB = -lgoldilocksesql -lpthread -lm -lrt

ifeq ($(CSMODE), 1)

LIB += -lgoldilocksc

else

ifeq ($(MIXMODE), 1)

Precompiler | 3,025

LIB += -lgoldilocks

else

LIB += -lgoldilocksa

endif

endif

GPEC = gpec

GPECFLAGS =

#GPECFLAGS = --unsafe-null --no-prompt

BINS = overview sample1 sample2 sample3 sample4 sample5 dyn1 dyn2 number date_time thread1

fetch_struct_array

ifneq ($(MAKECMDGOALS), clean)

ifneq ($(MAKECMDGOALS), all)

TARGET = $(MAKECMDGOALS)

OBJECT = $(TARGET).o

C_SRC = $(TARGET).c

endif

endif

● Implicit rules

.SUFFIXES: .gc .c .o

.gc.c:

$(GPEC) $(GPECFLAGS) $^ 1 Precompile

.c.o:

$(CC) $(CFLAGS) -c $(INC) $^ 2 Compile

● Build rules

NoTarget :

@echo "Syntax : make {all | sample_name | clean}"

@echo "sample_name is one of '$(BINS)'"

all :

for target in $(BINS); do \

$(MAKE) $$target; \

done

$(OBJECT) : $(C_SRC)

$(TARGET) : $(OBJECT)

$(CC) -o $@ $^ $(LFLAGS) $(LIB) 3 Link

3,026 | Embedded SQL

clean :

rm -rf $(BINS) *.o *.c *~ core

Sample

GOLDILOCKS provides a simple embedded SQL sample code to help to create an embedded SQL applicati

on. The sample code is in $GOLDILOCKS_HOME/sample/EmbeddedSQL directory, and sample.sql which i

s in the same directory should be executed first to execute the samples.

$ cd $GOLDILOCKS/sample/EmbeddedSQL

$ gsql test test -i sample.sql

$ make

Syntax : make {all | sample_name | clean}

sample_name is one of 'overview sample1 sample2 sample3 sample4 sample5 dyn1 dyn2 number

date_time thread1 fetch_struct_array'

If make all is executed, all samples are built. Execute make <sample_name> to build a particular sample al

one. For <Sample_name>, refer to the message above. If sample2 is built and executed, and the result is

as follows.

$ make sample2

gpec sample2.gc

FileName: sample2.gc

Pre-compile sample2.gc -> sample2.c

gcc -g -Wall -c -I/home/mycomman/work/product/Gliese/home/include sample2.c

gcc -o sample2 sample2.o -L/home/mycomman/work/product/Gliese/home/lib -lgoldilocksesql

-lpthread -lm -lrt -lgoldilocksa

$./sample2

Connect goldilocks ...

EMPNO ENAME JOB SALARY

====== ==================== ========== ========

2854 Park RND 800

2098 Kim SALESMAN 1600

2175 Choi SALESMAN 1250

2306 Lee SUPPORT 2975

2122 Lyu SALESMAN 1250

2999 Ohn SUPPORT 2850

2012 Cheon SUPPORT 2450

2168 Sohn RND 3000

2836 Seo CEO 5000

Precompiler | 3,027

2022 Song SALESMAN 1500

2232 Jeong RND 1100

2676 Kang RND 950

2714 Cho RND 3000

2441 Yoon RND 1300

====== ==================== ========== ========

Record Count = 14

====== ==================== ========== ========

SUCCESS

############################

Precompiler Options

This chapter describes the options of gpec.

--no-prompt, -n

Description

It does not output the version information.

Example

$ gpec --no-prompt sample2

FileName: sample2

Pre-compile sample2.gc -> sample2.c

$

--version, -v

Description

It outputs only the version information, then exits.

Example

$ gpec --version

$

3,028 | Embedded SQL

--help, -h

Description

It outputs the help message. It performs the same operation even when an option or <input file> does no

t exist in gpec.

Example

$ gpec --help

gpec is the GOLDILOCKS embedded SQL precompiler for C programs.

Usage:

gpec [OPTION]... <input file>

Options:

--no-prompt No Print version information

--version Print version information and exit

--help Print help message

--output Describe output filename

--unsafe-null Allow a NULL fetch without indicator variable

--include-path Describe header file path

--no-lineinfo Exclude line information

--char_map Mapping of character arrays (CHARZ | STRING)

$

--output, -o

Description

It specifies the name of precompile result file. If this option is not given, the file name as same as <input fi

le> is created with the extension of .c.

Example

● When an output is not used.

$ gpec sample2.gc

FileName: sample2.gc

Pre-compile sample2.gc -> sample2.c

$ ls

sample2.c sample2.gc

Precompiler | 3,029

● When an output is used.

$ gpec --output outfile.cpp sample2.gc

FileName: sample2.gc

Pre-compile sample2.gc -> outfile.cpp

$ ls

outfile.cpp sample2.gc

--unsafe-null

Description

Even if it does not use the host indicator variable, It succeeds when NULL fetch occurs. It means that the

operation is successful, but it does not mean that the NULL value can be fetched.

Example

$ gpec --unsafe-null sample2

FileName: sample2

Option : --unsafe-null

Pre-compile sample2.gc -> sample2.c

$

--include-path, -I

Description

It describes the path of the header file to refer when performing the precompile. Other header files are fo

und by using EXEC SQL INCLUDE statement when performing the precompile. First, it searches in the dire

ctory where the current file is located. If it can not find any file, then it searches in the directories where t

he option is described in turn.

Example

The following is an example of when the header file is in include directory.

● When an error occurs.

$ gpec sample.gc

FileName: sample.gc

Pre-compile sample.gc -> sample.c

ERR-42000(41000): syntax error

3,030 | Embedded SQL

Error at line 12, in file sample.gc

ERR-42000(41004): "decl.h": file not exist

ERR-42000(41000): syntax error

rsEmpRecord gRecord[] = {

^

Error at line 15, in file sample.gc

● When -I option is used.

$ gpec -Iinclude sample.gc

FileName: sample.gc

Pre-compile sample.gc -> sample.c

$

--no-lineinfo

Description

When gc file is converted to c file by default, GPEC adds #liine information to enable debugging with gc f

ile. However, if this option is used, It does not add the line information through #line preprocessor when

creating c file.

Example

$ gpec --no-lineinfo sample2

FileName: sample2

Pre-compile sample2.gc -> sample2.c

$

--char_map, -c

Description

It sets to which type the char type data declared in a DECLARE SECTION is mapped. The default value is

'STRING', and it is null-terminated data type. 'CHARZ' is space padded and null-terminated data type.

Example

$ gpec --char_map=STRING overview

FileName: overview

Pre-compile overview.gc -> overview.c

Precompiler | 3,031

$ gpec --char_map=CHARZ overview

FileName: overview

Pre-compile overview.gc -> overview.c

--define, -D

Description

It is a define name used in gpec and it is set to 1.

Example

$ gpec --define=AAA preprocess

FileName: preprocess

Pre-compile preprocess.gc -> preprocess.c

$ gpec -D BBB preprocess

FileName: preprocess

Pre-compile preprocess.gc -> preprocess.c

ERR-42000(41028): 'BBB' macro is already defined at line 45, in file preprocess.gc

3,032 | Embedded SQL

27.2 Embedded SQL

Preprocessing

Overview

It performs the preprocessing before precompiling in gpec.

gpec supports the preprocess statements such as #if, #ifdef, #if defined, #ifndef #else, #elif, #endif, #defi

ne, #undef.

It can use a predefine by using a --define option of gpec. It is defined as 1 when it is predefined with a gp

ec option.

e.g. gpec --define=_DEV_ Test.gc is as same as #define _DEV_ (1) in Test.gc file.

Applicable Range

The host variable of SQL precompiler feature for gpec is applied only within a declare section and the feat

ure is used in the EXEC SQL statement. (The host variable outside of the declare section can not be used i

n the host EXEC SQL statement.)

gpec preprocessor are applied all over the source.

Only the header file declared with EXEC SQL INCLUDE is applied to an include file.

#define _DEV1_

EXEC SQL BEGIN DECLARE SECTION;

#define _DEV2_

char username[10];

char password[10];

#ifdef _DEV1_

VARCHAR conn_str[20]; 1

#elif defined _DEV2_

VARCHAR conn_str[30]; 2

#endif

EXEC SQL END DECLARE SECTION;

Note

1 _DEV1_ is defined irrespective of the position of DECLARE SECTION, so it is processed as a hos

t variable in gpec.

Embedded SQL | 3,033

2 _DEV1_ is defined, so its location becomes false, so is processed as a white space in gpec.

When creating c file from the file above using gpec, conn_str[20] is converted and #ifdef, #elif, #endif pr

eprocessor statements and conn_str[30] are converted into white spaces as follows.

/* EXEC SQL BEGIN DECLARE SECTION; */

#define _DEV2_

char username[10];

char password[10];

/* VARCHAR conn_str[20]; */

struct { int len; char arr[20]; } conn_str; 1

2

/* EXEC SQL END DECLARE SECTION; */

Note

1 _DEV1_ is defined irrespective of the position of DECLARE SECTION, so it is processed as a hos

t variable in gpec.

2 _DEV1_ is defined, so its location becomes false, so is processed as a white space in gpec.

Types

#if

● Syntax

#if constant

or

#if defined identifier

or

#if !defined identifier

3,034 | Embedded SQL

● Example

#if 0

int sVar1;

#endif

#if 3-2 1 An operation is available.

int sVar2;

#endif

#if defined _DEV_

int sVar3;

#endif

#if !defined (_DEV_)

int sVar4;

#endif

#ifdef, #ifndef

● Syntax

#ifdef identifier

or

#ifndef identifier

● Example

#ifdef _DEV_

int sVar1;

#endif

#ifndef _DEV_

int sVar2;

#else

int sVar3;

#endif

#else, #elif, #endif

● Syntax

#else

Embedded SQL | 3,035

or

#endif

or

#elif constant

or

#elif defined identifier

● Example

#if 1

int sVar1;

#else

int sVar2;

#endif

#if 0

int sVar3;

#elif 1

int sVar4;

#else

int sVar5;

#endif

#ifdef _DEV1_

int sVar6;

#elif defined _DEV2_

int sVar7;

#elif !defined _DEV3_

int sVar8;

#endif

#define, #undef

● Syntax

#define identifier

or

3,036 | Embedded SQL

#define identifier constant

or

#undef identifier

● Example

#define _DEV1_

EXEC SQL BEGIN DECLARE SECTION;

#define _DEV2_

char username[10];

char password[10];

#ifdef _DEV1_

VARCHAR conn_str[20]; 1

#elif defined _DEV2_

VARCHAR conn_str[30]; 2

#endif

#undef _DEV2_

#ifdef _DEV2_

VARCHAR sDept[10]; 3

#endif

EXEC SQL END DECLARE SECTION;

Note

1 _DEV1_ is defined, so it is processed as a host variable in gpec.

2 #ifdef _DEV1_is true, so _DEV2_is processed as a white space in gpec.

? _DEV2_ is undefed, so it is processed as a white space in gpec.

Caution

An annotation can be used in #define. However, if #define are written along multiple lines, then t

he annotation can not be correctly processed.

#define _DEF1_ 1 \ 1

+ 1

#define _DEF2_ 1 \ /* this 2

Embedded SQL | 3,037

is comment */ + 1

#define _DEF3_ 1 /* this is comment */ + 1 3

Note

1 _DEF1_ is processed as 1 + 1.

2 _DEF2_is processed as 1.

3 _DEF3_is processed as 1 + 1.

Constraints

Even though it is defined within a declare section, it is not extended to an EXEC SQL statement.

EXEC SQL BEGIN DECLARE SECTION;

#define C_EMP_NO 14

char username[10];

EXEC SQL END DECLARE SECTION;

EXEC SQL

SELECT USERNAME INTO :username

FROM EMP

WHERE EMPNO = C_EMP_NO; 1 A wrong MACRO is used.

Expansion

MACRO can be used in the middle of c statement or in the middle of EXEC SQL statement.

#define _DEV_

EXEC SQL BEGIN DECLARE SECTION;

char

#ifdef _DEV_

sTrue[10];

#else

sFalse[10];

#endif

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT

#ifdef _DEV_

"true" INTO :sTrue

#else

3,038 | Embedded SQL

"false" INTO :sFalse

#endif

FROM DUAL;

gpec can execute the preprocessor to create the following c code. The following is an example in which t

he converting from SQL statement to c code is omitted.

#define _DEV_

EXEC SQL BEGIN DECLARE SECTION;

char

sTrue[10];

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT

"true" INTO :sTrue

FROM DUAL;

Connection

Connecting to Database

A process of connecting to the database server is required to perform the operation by connecting to the

database in the embedded SQL program.

The syntax for connecting to the database is expressed in GOLDILOCKS as follows.

EXEC SQL [AT <db_name>] CONNECT <user_name> IDENTIFIED BY <password> [AT <db_name>] [

USING <conn_string>]

<db_name> := dbname | :hostvar

<user_name> := username | :hostvar

<password> := password | :hostvar

<conn_string> := connection_string | :hostvar

An example of the most basic way to connect to database is as follows.

Embedded SQL | 3,039

EXEC SQL BEGIN DECLARE SECTION;

char username[10];

char password[10];

EXEC SQL END DECLARE SECTION;

strcpy(username, "test");

strcpy(password, "test");

...

EXEC SQL CONNECT :username IDENTIFIED BY :password;

GOLDILOCKS supports both D/A mode and C/S mode. The D/A mode is operated by attaching directly to

the shared memory, and C/S mode is operated by connecting to the database by using TCP communicati

on. When operated in D/A mode, it is not necessary to include a separate server information as described

above because the direct access from the same host of the database is performed. When operated in C/S

mode, Data Source Name (DSN) should be specified to access. For more information about DSN, refer to

Data Source Configuration.

connection_string information should be given to use DSN. USING clause is used to use connection_strin

g information. An example of the connection statement whose DSN is "GOLDILOCKS", and using USING

clause is as follows.

EXEC SQL BEGIN DECLARE SECTION;

char username[10];

char password[10];

char conn_str[20];

EXEC SQL END DECLARE SECTION;

strcpy(username, "test");

strcpy(password, "test");

strcpy(conn_str, "DSN=GOLDILOCKS");

...

EXEC SQL CONNECT :username IDENTIFIED BY :password USING :conn_str;

When developing an application, sometimes it is required to uniquely identify the respective connection. I

t is the case of which each connection is performed in the multi-thread program in D/A mode. Or it is the

case of which several connections are performed in C/S mode. The name is given to each connection by u

sing AT clause.

AT clause may be positioned in front of CONNECT statement or USING clause. The example of AT clause i

n CONNECT statement is as follows.

EXEC SQL BEGIN DECLARE SECTION;

char username[10];

char password[10];

char conn_str[20];

3,040 | Embedded SQL

char conn_name[10];

EXEC SQL END DECLARE SECTION;

strcpy(username, "test");

strcpy(password, "test");

strcpy(conn_str, "DSN=GOLDILOCKS");

strcpy(conn_name, "DBCONN1");

...

EXEC SQL CONNECT :username IDENTIFIED BY :password AT :conn_name USING :conn_str;

Disconnecting Database

It disconnects the connection to the database in the application. Like as the CONNECT statement, the dis

connection is performed for the default connection or it is performed by giving a connection name. The s

yntax for disconnecting all connections performed in the application is also provided.

Single Disconnection

There are two ways of disconnecting a single connection, which are explicit and implicit method.

The explicit method uses DISCONNECT statement as follows.

EXEC SQL [AT <db_name>] DISCONNECT;

The transaction is terminated via commit or rollback. The implicit disconnection is performed by adding R

ELEASE option after the transaction termination statement.

EXEC SQL [AT <db_name>] { COMMIT/ROLLBACK } [WORK] RELEASE;

All Disconnection

All connections of the current application are disconnected all together as follows.

EXEC SQL DISCONNECT ALL;

Transaction

Database application consists of transaction units. Therefore, an embedded SQL program should be able

to manipulate the transaction. This chapter describes how to manipulate the transaction.

Embedded SQL | 3,041

Start and End of Transaction

A transaction starts in the SQL which is performed first after it is connected. The transaction is maintained

until the end command explicitly occurs. There are two end commands, which are COMMIT and ROLLBA

CK.

COMMIT

The transaction commit command causes the following actions.

● All data changes after the current transaction started are permanently reflected in the database.

● The reflected changes are visibly applied to all transactions which started after the changes or to the s

ensitive cursor.

● All savepoints which are created in the current transaction are deleted.

● All locks which are obtained in the current transaction are released.

● All cursors which are opened in the current transaction are closed. (The holdable cursor is excluded.)

● The transaction is terminated.

The commit command is used as follows.

EXEC SQL COMMIT [WORK];

ROLLBACK

The rollback command types are as follows.

● Transaction full rollback

● Transaction partial rollback

● Statement-level rollback

The transaction rollback command causes the following actions.

● All data changes after the current transaction started are undone and it returns to the state of before

the transaction starts.

● All savepoints which are created in the current transaction are deleted.

● All locks which are obtained in the current transaction are released.

● All cursors which are opened in the current transaction are closed. (The holdable cursor is excluded.)

● The transaction is terminated.

The rollback command is used as follows.

EXEC SQL ROLLBACK [WORK];

Transaction partial rollback uses the savepoint. The application developer explicitly specifies the savepoint,

3,042 | Embedded SQL

and the transaction partial rollback is implemented by undoing all operations up to the savepoint. The tra

nsaction partial rollback command causes the following actions.

● All changes after the rollback savepoint are undone.

● All savepoints created after the rollback savepoint are deleted.

● All locks obtained after the rollback savepoint are released.

Transaction partial rollback command is used as follows.

EXEC SQL ROLLBACK TO SAVEPOINT <savepoint_name>;

Statement-level rollback undoes only the statement which is currently executed. For example, as if rows a

re inserted to a table and the unique violation occurs so the current statement can not be performed, the

n only the currently executed statement should be undone so that the next operation may continue.

In this case, there is not a command to be explicitly specified by the user because GOLDILOCKS internally

undoes the statement.

Auto Commit

If the embedded SQL of GOLDILOCKS generally performs the connection, transaction is operated in non

auto-commit mode.

However, it may be required to adjust the auto-commit mode for the convenience of application develop

ment or for the logical environment of the application. The embedded SQL precompiler of GOLDILOCKS

may turn on or off the auto-commit mode with the following syntax.

EXEC SQL [AT <db_name>] ATUTOCOMMIT { ON | OFF };

RELEASE Option

The currently used connection may be turned off by using the RELEASE option when ending the transacti

on (commit/ rollback).

The option is allowed to be applied only for the transaction full commit rollback. It can not be used for th

e transaction partially rollback (ROLLBACK TO SAVEPOINT).

Host Variables and Datatypes

The embedded SQL application aims at manipulating the data and querying to obtain the desired results

by interworking with the database server.

Embedded SQL | 3,043

A method for the application data to be transferred to the database server, or vise versa, is required for t

his operation. The method to perform this role is defined as a host variable.

The application can use the host variables in the same way as C variables because the host variable is decl

ared as a variable of C language. A host variable is treated as a part of the SQL statement and is responsi

ble for the input/output of value between the database server and applications.

Declaring Host Variable

Host variable should be declared in the embedded SQL directive as follows.

EXEC SQL BEGIN DECLARE SECTION;

● Declaring a host variable

EXEC SQL END DECLARE SECTION;

The section above is called as a declare section, and host variables can be declared within the declare sect

ion in the same way as C variables. The following is an example of declaring a part of host variables.

EXEC SQL BEGIN DECLARE SECTION;

int empno;

char ename[20];

double salary;

EXEC SQL END DECLARE SECTION;

C Data Type for Host Variable

There are two types of C data used as the host variables, and which are a native type provided by the C la

nguage and a data type additionally provided by GOLDILOCKS. The following table describes the data typ

es provided by the embedded SQL of GOLDILOCKS.

C Native Datatype

C native datatype is the default data type provided by the C language, and its range and size are entirely

dependent on the application development platform.

Table 27-1 C native datatype

C datatype Description

char It is a single character.

char[n] It is a string with maximum length n.

short It is a small integer (2 bytes).

3,044 | Embedded SQL

int It is an integer (4 bytes).

long It is a large integer (4/8 bytes).

long long It is a very large integer (8 bytes).

float It is a single precision floating-point number.

double It is a double precision floating-point number.

C datatype Description

● char

char type represents a single character.

● char[n]

char[n] represents a string with maximum length n.

The following is an example.

EXEC SQL BEGIN DECLARE SECTION;

char strName[20];

EXEC SQL BEGIN DECLARE SECTION;

If it is declared as above, strName represents to the string data with the maximum length 20.

If strName is used as an output of ESQL, then it is space padded.

Note

The maximum length of a char[] can not exceed 2001.

● short

It represents 2 bytes integer datatype.

● int

It represents 4 bytes integer datatype.

● long

Long type means a large integer, but the range of the actual value is determined in accordance with the

platform. Long is 8 bytes integer in 64 bits Unix/Linux platform, but it is 4 bytes integer in 32 bits Unix/Lin

ux platform.

Embedded SQL | 3,045

● long long

It means very large integer, and it represents the 8 bytes integer.

● float

It is the float type of C language, and it represents the 4 bytes single-precision floating-point number.

● double

It is the double type of C language, and it represents the double-precision floating-point number.

Pseudo Datatype

Pseudo type supports the various forms of GOLDILOCKS type, and it is the type provided by GOLDILOCKS

embedded SQL precompiler for the convenience of development. Most of its contents are implemented b

y using the structure of C.

Table 27-2 GOLDILOCKS embedded SQL pseudo type

Pseudo type Description

VARCHAR[n] It is a variable-length string with the maximum length n.

LONG VARCHAR[n] It is a variable-length string with the maximum length 100M (104857600).

BINARY[n] It is a binary data with the maximum length n.

VARBINARY[n] It is a variable-length binary data with the maximum length n.

LONG VARBINARY[n] It is a variable-length binary data with the maximum length 100M (104857600).

NUMBER It is an integer whose number of significant digits is 38.

NUMBER(p) It is an integer whose number of significant digits is p.

NUMBER(p, s) It is a real number whose number of significant digits is p and whose scale is s.

BOOLEAN It is a boolean type.

DATE It is a date type data.

TIME It is a time type data.

TIME WITH TIMEZONE It is a time type data with timezone.

TIMESTAMP It is a datetime type data.

TIMESTAMP WITH TIMEZONE It is a time type data with timezone.

INTERVAL YEAR

It is an interval data type.

INTERVAL MONTH

INTERVAL DAY

INTERVAL HOUR

INTERVAL MINUTE

INTERVAL SECOND

INTERVAL YEAR TO MONTH

INTERVAL DAY TO HOUR

INTERVAL DAY TO MINUTE

3,046 | Embedded SQL

INTERVAL DAY TO SECOND

INTERVAL HOUR TO MINUTE

INTERVAL HOUR TO SECOND

INTERVAL MINUTE TO SECOND

Pseudo type Description

VARCHAR

VARCHAR type is the datatype in which the variable length string can be stored, and it consists of the foll

owing structure.

struct {

int len;

char arr[n];

}

n refers to the maximum length of VARCHAR type.

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR varstr[100];

EXEC SQL END DECLARE SECTION;

For example, if it is declared as above, it is converted via precompile process as follows.

struct VARCHAR_varstr {

int len;

char arr[100];

} varstr;

The application can use VARCHAR type as follows.

strcpy(varstr.arr, "abcde");

varstr.len = strlen(varstr.arr);

EXEC SQL INSERT INTO TEST_T1 VALUES (:varstr);

Note

The length of VARCHAR can not exceed 4000.

Embedded SQL | 3,047

LONG VARCHAR

LONG VARCHAR type is the datatype in which a long variable-length strings can be stored, and it consists

of the following structure.

typedef struct SQL_LONG_VARIABLE_LENGTH_STRUCT

{

SQLBIGINT len;

SQLCHAR * arr;

} SQL_LONG_VARIABLE_LENGTH_STRUCT;

LONG VARCHAR type can be declared as follows.

EXEC SQL BEGIN DECLARE SECTION;

LONGVARCHAR long_text[1048576];

EXEC SQL END DECLARE SECTION;

LONG VARCHAR is different from VARCHAR. LONG VARCHAR can have the length up to 100M (104857

600), so it does not pre-allocate the space for the string when declaring. After declaring LONG VARCHAR,

the memory space should be allocated in long_text.arr before actual use, and the application should relea

se the allocated memory space. An example of using LONG VARCHAR is as follows.

long_text.arr = malloc(1048576);

gets(long_text.arr);

long_text.len = strlen(long_text.arr);

EXEC SQL INSERT INTO TEST_T1 VALUES (:long_text);

...

free(long_text.arr);

Note

LONG VARCHAR type can be declared by specifying the current length up to 100M (104857600).

BINARY

BINARY type is the datatype to literally handle the non-formal raw data, and it consists of the following st

ructure. The example of declaring BINARY type is as follows.

3,048 | Embedded SQL

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR binary[100];

EXEC SQL END DECLARE SECTION;

If it is declared as above, it is converted via precompile process as follows.

char binary[100];

Its form is as same as the character string storage form. char[n] is defined to store the string of database,

but BINARY type is for storing the binary data. Therefore, the applications can use BINARY type in the sa

me way as dealing with the character string data.

Note

The maximum length of BINARY can not exceed 2000.

VARBINARY

VARBINARY type is the datatype in which the variable length binary data can be stored, and it consists of

the following structure.

struct {

int len;

char arr[n];

}

n refers to the maximum length of VARCHAR type.

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR varbin[100];

EXEC SQL END DECLARE SECTION;

For example, if it is declared as above, it is converted via precompile process as follows.

struct VARBINARY_varbin {

int len;

char arr[100];

} varbin;

The forms of VARBINARY type and VARCHAR type are same. VARCHAR is for storing the string data, but

VARBINARY is for storing the binary data. VARCHAR and VARBINARY are same in all other aspects excep

Embedded SQL | 3,049

t for the aspect above. Therefore, the application can use both VARCHAR and VARBINARY types as follo

ws.

memcpy(varbin.arr, binary_data, 50);

varbin.len = 50;

EXEC SQL INSERT INTO TEST_T1 VALUES (:varbin);

Note

The length of VARBINARY can not exceed 4000.

LONG VARBINARY

LONG VARBINARY type is the datatype in which the long variable length binary data can be stored, and it

consists of the following structure.

typedef struct SQL_LONG_VARIABLE_LENGTH_STRUCT

{

SQLBIGINT len;

SQLCHAR * arr;

} SQL_LONG_VARIABLE_LENGTH_STRUCT;

LONG VARBINARY type can be declared as follows.

EXEC SQL BEGIN DECLARE SECTION;

LONGVARBINARY long_bin[1048576];

EXEC SQL END DECLARE SECTION;

The difference between LONG VARBINARY and VARBINARY is that the space is not pre-allocated to store

binary data when declaring LONG VARBINARY type.(It is as same as the difference between LONG VARC

HAR and VARCHAR). After declaring LONG VARBINARY, the memory space should be allocated in long_

bin.arr before actual use, and the application should release the allocated memory space after use. An ex

ample of using LONG VARBINARY is as follows.

long_bin.arr = malloc(1048576);

memcpy(long_bin.arr, long_binary_data, 1048576);

long_bin.len = 1048576;

3,050 | Embedded SQL

EXEC SQL INSERT INTO TEST_T1 VALUES (:long_bin);

...

free(long_bin.arr);

Note

LONG VARBINARY type can be declared by specifying the current length up to 100M(104857600)

.

NUMBER

NUMBER type is the datatype which provides an SQL_NUMERIC_STRUCT defined in ODBC to make it to b

e used in the application.

#define SQL_MAX_NUMERIC_LEN 16

typedef struct tagSQL_NUMERIC_STRUCT

{

SQLCHAR precision;

SQLSCHAR scale;

SQLCHAR sign; /* 1=pos 0=neg */

SQLCHAR val[SQL_MAX_NUMERIC_LEN];

} SQL_NUMERIC_STRUCT;

NUMBER type is configured to express the real number type data with precision and scale. When declarin

g NUMBER type, precision and scale can also be declared. Scale and precision can be omitted as follows i

n some cases.

Table 27-3 Scale and precision of number types

Declaring NUMBER type Description

NUMBER It is as same as NUMBER(38, 0).

NUMBER(p) It is as same as NUMBER(p, 0)

NUMBER(p, s) It is a real number type data with precision p, scale s.

EXEC SQL BEGIN DECLARE SECTION;

NUMBER number_default;

NUMBER(20) number_20;

NUMBER(30,10) number_30_10;

EXEC SQL END DECLARE SECTION;

For example, if the variable is declared as above, number_default variable is as same as the declaration of

Embedded SQL | 3,051

NUMBER(38, 0), and number_20 variable is as same as the declaration of NUMBER(20, 0). NUMBER type

uses SQL_NUMERIC_STRUCT which is a ODBC type. The following is a sample of using NUMBER type.

/*

* number.gc

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int CreateTable();

int DropTable();

unsigned long long ConvertMantisaToDecimal(SQLCHAR *aNumStrValue)

{

unsigned long long sResult = 0;

unsigned long long sLast=1;

unsigned int sCurrent;

unsigned int sLSD = 0;

unsigned int sMSD = 0;

int i = 1;

for(i = 0; i < SQL_MAX_NUMERIC_LEN; i ++)

{

sCurrent = (unsigned char) aNumStrValue[i];

sLSD = sCurrent % 16; //Obtain LSD

sMSD = sCurrent / 16; //Obtain MSD

sResult += sLast * sLSD;

3,052 | Embedded SQL

sLast = sLast * 16;

sResult += sLast * sMSD;

sLast = sLast * 16;

}

return sResult;

}

void PrintNumber(SQL_NUMERIC_STRUCT *aNumber)

{

unsigned long long sDigit;

unsigned long long sFraction;

unsigned long long sMantisa;

unsigned long long sFactor;

int i;

sMantisa = ConvertMantisaToDecimal(aNumber->val);

sFactor = 1;

for(i = 0; i < aNumber->scale; i ++)

{

sFactor *= 10;

}

sDigit = sMantisa / sFactor;

sFraction = sMantisa % sFactor;

if(sFraction != 0)

{

printf("%llu.%-3llu", sDigit, sFraction);

}

else

{

printf("%llu", sDigit);

}

}

int main(int argc,

char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

NUMBER sNumber;

NUMBER(10,5) sResultNumber1;

NUMBER(10,5) sResultNumber2;

char sCharNumber[20];

int sNo;

Embedded SQL | 3,053

int sResultNo;

EXEC SQL END DECLARE SECTION;

int i;

int sState = 0;

printf("#### Number Datatype Test ####\n");

printf("Connect GOLDILOCKS ...\n");

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

printf("Create table ...\n");

if(CreateTable() != SUCCESS)

{

goto fail_exit;

}

sState = 1;

printf("Insert record ...\n");

for(i = 0; i < 20; i ++)

{

sNo = i + 1;

memset(&sNumber, 0x00, sizeof(SQL_NUMERIC_STRUCT));

sNumber.precision = 38;

sNumber.scale = 3;

sNumber.sign = 1;

/*

* 0x627d = 25213

*/

sNumber.val[0] = 0x7d + i;

sNumber.val[1] = 0x62;

snprintf(sCharNumber, 20, "25.2%02d", 13 + i);

EXEC SQL

INSERT INTO TEST_T1(C1, C2, C3)

VALUES(:sNo, :sNumber, :sCharNumber);

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

3,054 | Embedded SQL

goto fail_exit;

}

printf("Retrive record\n");

EXEC SQL

DECLARE CUR1 CURSOR FOR

SELECT C1, C2, C3

FROM TEST_T1;

EXEC SQL OPEN CUR1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

printf(" NO Number1 Number2\n");

printf("==== ======== ========\n");

memset(&sResultNumber1, 0x00, sizeof(SQL_NUMERIC_STRUCT));

memset(&sResultNumber2, 0x00, sizeof(SQL_NUMERIC_STRUCT));

while(1)

{

EXEC SQL

FETCH FROM CUR1

INTO :sResultNo, :sResultNumber1, :sResultNumber2;

if(sqlca.sqlcode == SQL_NO_DATA)

{

/*

* No more data

*/

break;

}

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

printf("%3d ", sResultNo);

PrintNumber(&sResultNumber1);

printf(" ");

PrintNumber(&sResultNumber2);

printf("\n");

}

printf("==== ======== ========\n");

EXEC SQL CLOSE CUR1;

if(sqlca.sqlcode != 0)

Embedded SQL | 3,055

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sState = 0;

printf("Drop table ...\n");

if(DropTable() != SUCCESS)

{

goto fail_exit;

}

printf("Disconnect GOLDILOCKS ...\n");

EXEC SQL COMMIT WORK RELEASE;

printf("SUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

printf("FAILURE\n");

printf("############################\n\n");

switch(sState)

{

case 1:

printf("Drop table ...\n");

(void)DropTable();

default:

break;

}

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int CreateTable()

{

EXEC SQL DROP TABLE IF EXISTS TEST_T1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

3,056 | Embedded SQL

}

● Create table

EXEC SQL CREATE TABLE TEST_T1 (C1 INTEGER,

C2 NUMERIC(38,4),

C3 VARCHAR(20));

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

● Drop table

int DropTable()

{

EXEC SQL DROP TABLE TEST_T1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

Embedded SQL | 3,057

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

BOOLEAN

BOOLEAN type has the value of TRUE or FALSE. Actually, the variable is used as the variable of C languag

e, so if the variable is 1, it refers to TRUE. If the variable is 0, it refers to FALSE.

The following is an example of using a simple BOOLEAN type variable.

EXEC SQL BEGIN DECLARE SECTION;

BOOLEAN boolean;

EXEC SQL END DECLARE SECTION;

3,058 | Embedded SQL

EXEC SQL SELECT IsEnable INTO :boolean FROM STATUS WHERE ID = 100;

if(boolean != 0)

{

print("Enable Status : TRUE\n");

}

else

{

print("Enable Status : FALSE\n");

}

DATE

Date type can deal with dates and times. Date type has SQL_TIMESTAMP_STRUCT structure of ODBC.

typedef struct tagTIMESTAMP_STRUCT

{

SQLSMALLINT year;

SQLUSMALLINT month;

SQLUSMALLINT day;

SQLUSMALLINT hour;

SQLUSMALLINT minute;

SQLUSMALLINT second;

SQLUINTEGER fraction;

} TIMESTAMP_STRUCT;

typedef TIMESTAMP_STRUCT SQL_TIMESTAMP_STRUCT;

If the variable of DATE type is declared, the precompiler converts it to the structure above, and the meani

ng of each field as same as SQL_TIMESTAMP_STRUCT of ODBC.

TIME

TIME type is the datatype which deals with time, and it has SQL_TIME_STRUCT structure of ODBC.

typedef struct tagTIME_STRUCT

{

SQLUSMALLINT hour;

SQLUSMALLINT minute;

SQLUSMALLINT second;

} TIME_STRUCT;

typedef TIME_STRUCT SQL_TIME_STRUCT;

If the variable of TIME type is declared, the precompiler converts it to the structure above, and the meani

Embedded SQL | 3,059

ng of each field is as same as SQL_TIME_STRUCT of ODBC.

TIME WITH TIMEZONE

TIME WITH TIMEZONE type is the datatype which deals with the time with timezone, and it has the struct

ure as follows.

typedef struct tagTIME_WITH_TIMEZONE_STRUCT

{

SQLUSMALLINT hour;

SQLUSMALLINT minute;

SQLUSMALLINT second;

SQLUINTEGER fraction;

SQLSMALLINT timezone_hour;

SQLSMALLINT timezone_minute;

} TIME_WITH_TIMEZONE_STRUCT;

typedef TIME_WITH_TIMEZONE_STRUCT SQL_TIME_WITH_TIMEZONE_STRUCT;

If the variable of TIME WITH TIMEZONE type is declared, precompiler converts it to the structure above, a

nd the meaning of each field is as follows.

Table 27-4 Fields of TIME WITH TIMEZONE

Field name Description

hour hour

minute minute

second second

fraction the seconds below the decimal point

timezone_hour hour of timezone

timezone_minute minute of timezone

TIMESTAMP

TIMESTAMP type is the datatype which deals with date ~ time, and it has SQL_TIMESTAMP_STRUCT stru

cture of ODBC.

typedef struct tagTIMESTAMP_STRUCT

{

SQLSMALLINT year;

SQLUSMALLINT month;

SQLUSMALLINT day;

SQLUSMALLINT hour;

SQLUSMALLINT minute;

SQLUSMALLINT second;

3,060 | Embedded SQL

SQLUINTEGER fraction;

} TIMESTAMP_STRUCT;

typedef TIMESTAMP_STRUCT SQL_TIMESTAMP_STRUCT;

If the variable of TIMESTAMP type is declared, precompiler converts it to the structure above, and the me

aning of each field as same as SQL_TIMESTAMP_STRUCT structure of ODBC.

TIMESTAMP WITH TIMEZONE

TIMESTAMP WITH TIMEZONE type is the datatype which deals with timestamp with timezone, and it has

the following structure.

typedef struct tagTIMESTAMP_WITH_TIMEZONE_STRUCT

{

SQLSMALLINT year;

SQLUSMALLINT month;

SQLUSMALLINT day;

SQLUSMALLINT hour;

SQLUSMALLINT minute;

SQLUSMALLINT second;

SQLUINTEGER fraction;

SQLSMALLINT timezone_hour;

SQLSMALLINT timezone_minute;

} TIMESTAMP_WITH_TIMEZONE_STRUCT;

typedef TIMESTAMP_WITH_TIMEZONE_STRUCT SQL_TIMESTAMP_WITH_TIMEZONE_STRUCT;

If the variable of TIMESTAMP WITH TIMEZONE type is declared, precompiler converts it to the structure a

bove, and the meaning of each field is as follows.

Table 27-5 Fields of TIMESTAMP WITH TIMEZONE

Field name Description

year year

month month

day day

hour hour

minute minute

second second

fraction the seconds below the decimal point

timezone_hour hour of timezone

timezone_minute minute of timezone

The following is an example of dealing with DATE, TIME, TIMESTAMP, TIME WITH TIMEZONE, TIMESTA

Embedded SQL | 3,061

MP WITH TIMEZONE types.

/*

* date_time.gc

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int CreateTable();

int DropTable();

int main(int argc,

char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

int sNo;

int sResultNo;

DATE sDate, sResultDate;

TIME sTime, sResultTime;

TIME WITH TIMEZONE sTimeTz, sResultTimeTz;

TIMESTAMP sTimestamp, sResultTimestamp;

TIMESTAMP WITH TIMEZONE sTimestampTz, sResultTimestampTz;

EXEC SQL END DECLARE SECTION;

3,062 | Embedded SQL

int sState = 0;

printf("#### Datatype Insert Test ####\n");

printf("Connect GOLDILOCKS ...\n");

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

sState = 1;

printf("Create table ...\n");

if(CreateTable() != SUCCESS)

{

goto fail_exit;

}

sState = 2;

printf("Insert record ...\n");

sNo = 1;

/**

* Date : 2014-7-14 21:29:30

*/

sDate.year = 2014;

sDate.month = 7;

sDate.day = 14;

sDate.hour = 21;

sDate.minute = 29;

sDate.second = 30;

sDate.fraction = 0;

/**

* Time : 17:46:35

*/

sTime.hour = 17;

sTime.minute = 46;

sTime.second = 35;

/**

* Time With Timezone : 17:46:35.6789(+9:00)

*/

sTimeTz.hour = 17;

sTimeTz.minute = 46;

Embedded SQL | 3,063

sTimeTz.second = 35;

sTimeTz.fraction = 678900000;

sTimeTz.timezone_hour = 9;

sTimeTz.timezone_minute = 0;

/**

* Timestamp : 2014-02-13 17:46:28.123

*/

sTimestamp.year = 2014;

sTimestamp.month = 2;

sTimestamp.day = 13;

sTimestamp.hour = 17;

sTimestamp.minute = 46;

sTimestamp.second = 28;

sTimestamp.fraction = 123000000;

/**

* Time With Timezone : 2014-05-18 17:46:35.001(+9:00)

*/

sTimestampTz.year = 2014;

sTimestampTz.month = 5;

sTimestampTz.day = 18;

sTimestampTz.hour = 17;

sTimestampTz.minute = 46;

sTimestampTz.second = 35;

sTimestampTz.fraction = 1000000;

sTimestampTz.timezone_hour = 9;

sTimestampTz.timezone_minute = 0;

/**

* Insert record

*/

EXEC SQL

INSERT INTO TEST_T1(C1, C2, C3, C4, C5, C6)

VALUES(:sNo, :sDate, :sTime, :sTimeTz, :sTimestamp, :sTimestampTz);

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

3,064 | Embedded SQL

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

printf("Retrive record\n");

EXEC SQL

SELECT C1, C2, C3, C4, C5, C6

INTO :sResultNo, :sResultDate, :sResultTime, :sResultTimeTz, :sResultTimestamp,

:sResultTimestampTz

FROM TEST_T1

WHERE C1 = 1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

printf("===\n");

printf("DATE : %04d-%02d-%02d %02d:%02d:%02d\n",

sResultDate.year,

sResultDate.month,

sResultDate.day,

sResultDate.hour,

sResultDate.minute,

sResultDate.second);

printf("TIME : %02d:%02d:%02d\n",

sResultTime.hour,

sResultTime.minute,

sResultTime.second);

printf("TIME WITH TIMEZONE : %02d:%02d:%02d.%09u(GMT %+02d:%02d)\n",

sResultTimeTz.hour,

sResultTimeTz.minute,

sResultTimeTz.second,

sResultTimeTz.fraction,

sResultTimeTz.timezone_hour,

sResultTimeTz.timezone_minute);

printf("TIMESTAMP : %04d-%02d-%02d %02d:%02d:%02d.%09u\n",

sResultTimestamp.year,

Embedded SQL | 3,065

sResultTimestamp.month,

sResultTimestamp.day,

sResultTimestamp.hour,

sResultTimestamp.minute,

sResultTimestamp.second,

sResultTimestamp.fraction);

printf("TIMESTAMP WITH TIMEZONE: %04d-%02d-%02d %02d:%02d:%02d.%09u(GMT %+02d:%02d)\n",

sResultTimestampTz.year,

sResultTimestampTz.month,

sResultTimestampTz.day,

sResultTimestampTz.hour,

sResultTimestampTz.minute,

sResultTimestampTz.second,

sResultTimestampTz.fraction,

sResultTimestampTz.timezone_hour,

sResultTimestampTz.timezone_minute);

printf("===\n");

sState = 0;

printf("Drop table ...\n");

if(DropTable() != SUCCESS)

{

goto fail_exit;

}

sState = 0;

printf("Disconnect GOLDILOCKS ...\n");

EXEC SQL COMMIT WORK RELEASE;

printf("SUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("\n");

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

printf("FAILURE\n");

3,066 | Embedded SQL

printf("############################\n\n");

switch(sState)

{

case 1:

printf("Drop table ...\n");

(void)DropTable();

default:

break;

}

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int CreateTable()

{

EXEC SQL DROP TABLE IF EXISTS TEST_T1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

● Create table

EXEC SQL CREATE TABLE TEST_T1 (C1 INTEGER,

C2 DATE,

C3 TIME,

C4 TIME WITH TIME ZONE,

C5 TIMESTAMP,

C6 TIMESTAMP WITH TIME ZONE);

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

Embedded SQL | 3,067

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

● Drop table

int DropTable()

{

EXEC SQL DROP TABLE TEST_T1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

3,068 | Embedded SQL

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on DB

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

INTERVAL Types

INTERAVAL types are the datatypes which represent the time interval between two times. They are divide

d into year ~ month family type and day ~ second family type. They are subdivided by specific types of ea

ch family.

The following table describes the detailed classification of INTERVAL type.

Table 27-6 Classification of INTERVAL type

Family Detailed type Description

YEAR TO MONTH

INTERVAL YEAR It is an interval in terms of years.

INTERVAL MONTH It is an interval in terms of months.

INTERVAL YEAR TO MONTH It is an interval in terms of years to months.

Embedded SQL | 3,069

DAY TO SECOND

INTERVAL DAY It is an interval in terms of days.

INTERVAL HOUR It is an interval in terms of hours.

INTERVAL MINUTE It is an interval in terms of minutes.

INTERVAL SECOND It is an interval in terms of seconds.

INTERVAL DAY TO HOUR It is an interval in terms of days to hours.

INTERVAL DAY TO MINUTE It is an interval in terms of days to minutes.

INTERVAL DAY TO SECOND It is an interval in terms of days to seconds.

INTERVAL HOUR TO MINUTE It is an interval in terms of hours to minutes.

INTERVAL HOUR TO SECOND It is an interval in terms of hours to seconds.

INTERVAL MINUTE TO SECOND It is an interval in terms of minutes to seconds.

Family Detailed type Description

INTERVAL type has the structure of SQL_INTERVAL_STRUCT of ODBC as follows.

typedef enum

{

SQL_IS_YEAR = 1,

SQL_IS_MONTH = 2,

SQL_IS_DAY = 3,

SQL_IS_HOUR = 4,

SQL_IS_MINUTE = 5,

SQL_IS_SECOND = 6,

SQL_IS_YEAR_TO_MONTH = 7,

SQL_IS_DAY_TO_HOUR = 8,

SQL_IS_DAY_TO_MINUTE = 9,

SQL_IS_DAY_TO_SECOND = 10,

SQL_IS_HOUR_TO_MINUTE = 11,

SQL_IS_HOUR_TO_SECOND = 12,

SQL_IS_MINUTE_TO_SECOND = 13

} SQLINTERVAL;

typedef struct tagSQL_YEAR_MONTH

{

SQLUINTEGER year;

SQLUINTEGER month;

} SQL_YEAR_MONTH_STRUCT;

typedef struct tagSQL_DAY_SECOND

{

SQLUINTEGER day;

SQLUINTEGER hour;

SQLUINTEGER minute;

SQLUINTEGER second;

3,070 | Embedded SQL

SQLUINTEGER fraction;

} SQL_DAY_SECOND_STRUCT;

typedef struct tagSQL_INTERVAL_STRUCT

{

SQLINTERVAL interval_type;

SQLSMALLINT interval_sign;

union {

SQL_YEAR_MONTH_STRUCT year_month;

SQL_DAY_SECOND_STRUCT day_second;

} intval;

} SQL_INTERVAL_STRUCT;

All INTERVAL types listed above have the same structure. For each INTERVAL type, a valid field is separatel

y distinguished within the structure. INTERVAL type is distinguished by interval_type field within the struct

ure, and a real INTERVAL value is represented to intval union in the structure. The field which is used in in

tval union is different by each type, and the following table describes the valid field depending on the typ

e.

Table 27-7 The valid field depending on INTERVAL type

Type ?.interval_type ?.intval valid field

INTERVAL YEAR SQL_IS_YEAR *.year_month.year

INTERVAL MONTH SQL_IS_MONTH *.year_month.month

INTERVAL YEAR TO MONTH SQL_IS_YEAR_TO_MONTH
*.year_month.year

*.year_month.month

INTERVAL DAY SQL_IS_DAY *.day_second.day

INTERVAL HOUR SQL_IS_HOUR *.day_second.hour

INTERVAL MINUTE SQL_IS_MINUTE *.day_second.minute

INTERVAL SECOND SQL_IS_SECOND
*.day_second.second

*.day_second.fraction

INTERVAL DAY TO HOUR SQL_IS_DAY_TO_HOUR
*.day_second.day

*.day_second.hour

INTERVAL DAY TO MINUTE SQL_IS_DAY_TO_MINUTE

*.day_second.day

*.day_second.hour

*.day_second.minute

INTERVAL DAY TO SECOND SQL_IS_DAY_TO_SECOND

*.day_second.day

*.day_second.hour

*.day_second.minute

*.day_second.second

*.day_second.fraction

INTERVAL HOUR TO MINUTE SQL_IS_HOUR_TO_MINUTE
*.day_second.hour

*.day_second.minute

*.day_second.hour

Embedded SQL | 3,071

INTERVAL HOUR TO SECOND SQL_IS_HOUR_TO_SECOND *.day_second.minute

*.day_second.second

*.day_second.fraction

INTERVAL MINUTE TO SECOND SQL_IS_MINUTE_TO_SECOND

*.day_second.minute

*.day_second.second

*.day_second.fraction

Type ?.interval_type ?.intval valid field

Fraction refers to the seconds below the decimal point. (The fraction field is valid only for INTERVAL type

which includes SECOND.)

Special Type

The special data type provides the additional functionality and convenience for development of applicatio

n rather than handling the data on its own. The following table describes the special types.

Table 27-8 Special types

Type Description

SQL_CONTEXT It manages run-time context within the multi-connection structure.

Struct
It constitutes a set of column as a structure, and it is used when dealing with ro

w.

Typedef The previously defined type is redefined as another name.

SQL_CONTEXT

SQL_CONTEXT is a special data type for managing the run-time context. Run-time context is used for the

purpose of managing the connection and the individual data related to the connection on the run-time w

hile the application is running.

SQL_CONTEXT variable is declared as follows.

EXEC SQL BEGIN DECLARE SECTION;

SQL_CONTEXT my_context;

EXEC SQL BEGIN DECLARE SECTION;

ALLOCATE clause is used after declaring SQL_CONTEXT variable as follows.

EXEC SQL CONTEXT ALLOCATE :my_context;

USE clause is used for SQL_CONTEXT variable.

EXEC SQL CONTEXT USE :my_context;

USE clause specifies the context to be used, and the following describes how to go back to the default co

3,072 | Embedded SQL

ntext not the context declared by the application.

EXEC SQL CONTEXT USE DEFAULT;

The disused SQL_CONTEXT variable is released as follows.

EXEC SQL CONTEXT FREE :my_context;

The following is an example of using SQL_CONTEXT.

/*

* thread1.gc

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

int Connect(sql_context aCtx, char *aHostInfo, char *aUserID, char *sPassword);

int CreateEmpTempTable();

int DropEmpTempTable();

void *clientThread(void *args);

typedef struct thread_param

{

int mNo;

Embedded SQL | 3,073

char *mJobName;

} thread_param;

#define THREAD_COUNT 2

char gJobName[THREAD_COUNT][20]= {

"RND",

"SUPPORT"

};

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

int sEmpNo;

varchar sEName[20 + 1];

char sJob[20];

long sSalary;

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

pthread_t thread_id[THREAD_COUNT];

thread_param param[THREAD_COUNT];

int i;

printf("Connect GOLDILOCKS ...\n");

if(Connect(NULL, "DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

if(CreateEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

● Create client thread

for(i = 0; i < THREAD_COUNT; i ++)

{

param[i].mNo = i;

param[i].mJobName = gJobName[i];

if(pthread_create(&thread_id[i],

NULL,

3,074 | Embedded SQL

clientThread,

¶m[i]) != 0)

{

printf("Can't create thread %d!\n", i);

}

else

{

printf("Create thread %d!\n", i);

}

}

for(i = 0; i < THREAD_COUNT; i ++)

{

if(pthread_join(thread_id[i],

NULL) != 0)

{

printf("Error when waiting for thread %d to terminate!\n", i);

}

else

{

printf("Stopped thread %d!\n", i);

}

}

● Retrieve employee

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP_TEMP

ORDER BY empno;

EXEC SQL OPEN EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf(" EMPNO ENAME JOB SALARY\n");

printf("====== ==================== ========== ========\n");

Embedded SQL | 3,075

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sRecordCount ++;

printf("%6d %20s %10s %8ld\n",

sEmpNo, sEName.arr, sJob, sSalary);

}

printf("====== ==================== ========== ========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ========\n");

EXEC SQL CLOSE EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

if(DropEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK RELEASE;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

3,076 | Embedded SQL

goto fail_exit;

}

printf("SUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("FAILURE\n");

printf("############################\n\n");

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int Connect(sql_context aCtx, char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

struct sqlca sqlca;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

if(aCtx != NULL)

{

EXEC SQL CONTEXT USE :aCtx;

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

}

Embedded SQL | 3,077

else

{

EXEC SQL CONTEXT USE DEFAULT;

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

}

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

int Disconnect(sql_context aCtx)

{

struct sqlca sqlca;

● DB disconnection

if(aCtx != NULL)

{

EXEC SQL CONTEXT USE :aCtx;

EXEC SQL DISCONNECT;

}

else

{

EXEC SQL CONTEXT USE DEFAULT;

EXEC SQL DISCONNECT;

}

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

3,078 | Embedded SQL

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

● Create table

int CreateEmpTempTable()

{

EXEC SQL DROP TABLE IF EXISTS EMP_TEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL

CREATE TABLE EMP_TEMP (

EMPNO NUMBER(4) CONSTRAINT PK_EMP_TEMP PRIMARY KEY,

ENAME VARCHAR2(10),

JOB VARCHAR2(9),

SAL NUMBER(7,2),

DEPTNO NUMBER(2));

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

Embedded SQL | 3,079

return FAILURE;

}

● Drop table

int DropEmpTempTable()

{

EXEC SQL DROP TABLE EMP_TEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

void *clientThread(void *args)

{

EXEC SQL BEGIN DECLARE SECTION;

SQL_CONTEXT my_context;

char job_name[20 + 1];

EXEC SQL END DECLARE SECTION;

int state = 0;

thread_param *param = (thread_param *)args;

EXEC SQL CONTEXT ALLOCATE :my_context;

state = 1;

3,080 | Embedded SQL

EXEC SQL CONTEXT USE :my_context;

if(Connect(my_context, "DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

state = 2;

strcpy(job_name, param->mJobName);

EXEC SQL

INSERT INTO EMP_TEMP

SELECT *

FROM EMP

WHERE JOB = :job_name;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

state = 1;

if(Disconnect(my_context) != SUCCESS)

{

goto fail_exit;

}

state = 0;

EXEC SQL CONTEXT FREE :my_context;

pthread_exit(0);

return NULL;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

switch(state)

{

case 2:

Embedded SQL | 3,081

(void)Disconnect(my_context);

case 1:

EXEC SQL CONTEXT FREE :my_context;

break;

default:

break;

}

pthread_exit(0);

return NULL;

}

Host Structure

The C structure can be used as a host variable in an embedded SQL of GOLDILOCKS. A typical scalar varia

ble represents a single column, but using the structure enables to simply express multiple column sets.

Host structure can only be used only in INTO clause of SELECT INTO or FETCH INTO statement and in VAL

UES clause of INSERT statement, but it can not be used in WHERE clause or UPDATE SET clause, because

it has the same effect as when listing its member variables in sequence.

The structure is defined in the declare section to use the host structure, and it can be used as a host varia

ble after declaring the structure variable. The structure is defined in the same way as defining the C struct,

and it can also be used after defining the type via typedef.

The following is an example of using the host structure.

/*

* sample4.gc

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

3,082 | Embedded SQL

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecord

{

int mEmpNo;

varchar mEName[20 + 1];

char mJob[20 + 1];

long mSalary;

} rsRecord;

EXEC SQL END DECLARE SECTION;

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

rsRecord sRecord;

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

printf("Connect GOLDILOCKS ...\n");

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

● Retrieve employee

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP

ORDER BY EMPNO;

EXEC SQL OPEN EMP_CUR;

if(sqlca.sqlcode != 0)

{

Embedded SQL | 3,083

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf(" EMPNO ENAME JOB SALARY\n");

printf("====== ==================== ========== ========\n");

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sRecord;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sRecordCount ++;

printf("%6d %20s %10s %8ld\n",

sRecord.mEmpNo, sRecord.mEName.arr, sRecord.mJob, sRecord.mSalary);

}

printf("====== ==================== ========== ========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ========\n");

EXEC SQL CLOSE EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

EXEC SQL COMMIT WORK RELEASE;

if(sqlca.sqlcode != 0)

{

3,084 | Embedded SQL

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("\n\nSUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("\n\nFAILURE\n");

printf("############################\n\n");

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

Embedded SQL | 3,085

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

When a user declares a structure for using the host variable, the restriction is as follows. The nested struct

ure is not allowed. If another structure exists within the structure declaration as shown below, it can not

be used as the host variable.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecord

{

struct person {

int mEmpNo;

varchar mEName[20 + 1];

} person;

char mJob[20 + 1];

long mSalary;

} rsRecord;

EXEC SQL END DECLARE SECTION;

Indicator Variable

Scalar Indicator

Host variables can be used together with the indicator variables combined with it. An indicator variable d

etermines whether the current value of the host variable is NULL. The indicator variable is declared in the

same way as the host variable, and it is declared only as an integer type of C (short, int, long, long long). I

ndicator is used as follows.

:hostvar INDICATOR :hostind

:hostvar :hostind (INDICATOR keyword can be omitted.)

The value of indicator variable means the followings.

3,086 | Embedded SQL

Table 27-9 Value of input indicator

Value Meaning

-1 NULL

>= 0 It inputs a host variable value.

Table 27-10 Value of output indicator

Value Meaning

-1 NULL

0 All values are stored in a host variable.

> 0
It is the length of DB data when all values are not stored in a host variable due t

o an insufficient buffer size of host variable.

The following is an example of using the indicator.

/*

* sample5.gc

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int CreateEmpTempTable();

int DropEmpTempTable();

int main(int argc, char **argv)

Embedded SQL | 3,087

{

EXEC SQL BEGIN DECLARE SECTION;

int sEmpNo;

varchar sEName[20 + 1];

char sJob[20];

long sSalary;

int sDeptNo;

int sDeptNoInd;

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

int state = 0;

printf("Connect GOLDILOCKS ...\n");

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

if(CreateEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

state = 1;

● Update Dept NULL where deptno = 10

EXEC SQL

UPDATE EMP_TEMP

SET DEPTNO = NULL

WHERE DEPTNO = 10;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

● Retrieve employee

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal, deptno

FROM EMP_TEMP

3,088 | Embedded SQL

ORDER BY empno;

EXEC SQL OPEN EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf(" EMPNO ENAME JOB SALARY DEPTNO\n");

printf("====== ==================== ========== ======== ======\n");

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary, :sDeptNo :sDeptNoInd;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sRecordCount ++;

if(sDeptNoInd == -1)

{

printf("%6d %20s %10s %8ld (null)\n",

sEmpNo, sEName.arr, sJob, sSalary);

}

else

{

printf("%6d %20s %10s %8ld %4d\n",

sEmpNo, sEName.arr, sJob, sSalary, sDeptNo);

}

}

printf("====== ==================== ========== ======== ======\n");

Embedded SQL | 3,089

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ======== ======\n");

EXEC SQL CLOSE EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

state = 0;

if(DropEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK RELEASE;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("\n\nSUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("\n\nFAILURE\n");

printf("############################\n\n");

switch(state)

{

case 1:

(void)DropEmpTempTable();

break;

default:

break;

}

3,090 | Embedded SQL

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

● Create table

Embedded SQL | 3,091

int CreateEmpTempTable()

{

EXEC SQL DROP TABLE IF EXISTS EMP_TEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL

CREATE TABLE EMP_TEMP (

EMPNO NUMBER(4) CONSTRAINT PK_EMP_TEMP PRIMARY KEY,

ENAME VARCHAR2(10),

JOB VARCHAR2(9),

SAL NUMBER(7,2),

DEPTNO NUMBER(2));

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL

INSERT INTO EMP_TEMP

SELECT * FROM EMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

3,092 | Embedded SQL

return FAILURE;

}

● Drop table

int DropEmpTempTable()

{

EXEC SQL DROP TABLE EMP_TEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

Structure Indicator

If a host variable is a scalar variable, an Indicator variable is declared and combined with the host variable,

then it is used. If the host variable is the structure, each variable configuring the structure can not be use

d with an indicator variable. In this case, the indicator should also be the structure.

When declaring an indicator structure, it should comply with the followings.

● The number of indicator members should be as same as the number of host variable structure memb

ers to be combined.

● All members of the indicator structure should have the integer data type.

For example, if the following structure is declared, the member of indicator structure should be four beca

Embedded SQL | 3,093

use the number of the variables of the structure is four.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecord

{

int mEmpNo;

varchar mEName[20 + 1];

char mJob[20 + 1];

long mSalary;

} rsRecord;

EXEC SQL END DECLARE SECTION;

Therefore, it should be declared as follows.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecordInd

{

int mEmpNoInd;

int mENameInd;

int mJobInd;

int mSalaryInd;

} rsRecordInd;

EXEC SQL END DECLARE SECTION;

Each indicator structure member sequentially corresponds one-to-one to the host variable structure mem

ber which is combined to the indicator structure. When declaring as above, the combination relationship

is as follows.

:rsRecordVar INDICATOR :rsRecordIndVar

Host variable Indicator to be combined

rsRecordVar.mEmpNo rsRecordIndVar.mEmpNoInd

rsRecordVar.mEName rsRecordIndVar.mENameInd

rsRecordVar.mJob rsRecordIndVar.mJobInd

rsRecordVar.mSalary rsRecordIndVar.mSalaryInd

3,094 | Embedded SQL

Embedded SQL

Host Variable

The host variable is used as the data input/output medium between the application and GOLDILOCKS. Th

e input host variable transfers the data from the application to GOLDILOCKS, and the output host variabl

e transfers the data from GOLDILOCKS to the application. The declarations of two variables are same and

their roles are determined in the SQL statement in use.

The host variable which is located in INTO clause of SELECT or FETCH statement is the output host variabl

e received the data from GOLDILOCKS. Other than that is the input host variable. The input host variable

should be set before executing the SQL statement.

Host Indicator

The host variable literally uses the variable of C language, so a particular way to display NULL does not exi

st. The indicator variable can be used for that, and a single indicator is combined with a single host variab

le.

An indicator variable means the followings.

Table 27-11 Value of input indicator

Value Meaning

-1 NULL

>= 0 It inputs a host variable value.

Table 27-12 Value of output indicator

Value Meaning

-1 NULL

0 All values are stored in a host variable.

> 0
It is the length of DB data when all values are not stored in a host variable due t

o an insufficient buffer size of host variable.

Insert NULL

NULL is inserted in a column as follows.

EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:empno, NULL);

However, if hard coding above is used to create the application, the flexibility becomes very poor. The foll

owing is an example of using the indicator variable.

Embedded SQL | 3,095

deptno_ind = -1;

EXEC SQL INSERT INTO EMP (EMPNO, DEPTNO) VALUES (:empno, :deptno :deptno_ind);

If the value of deptno_ind which is the indicator variable is -1, it is recognized as NULL regardless of the v

alue of deptno which is the host variable.

Fetch NULL

When GOLDILOCKS receives the data, the indicator variable can be used to determine whether to be NUL

L. The following is an example.

EXEC SQL DECLARE CUR_1 CURSOR FOR

SELECT EMPNO, DEPTNO

FROM EMP

WHERE EMPNO = :emp_number;

EXEC SQL OPEN CUR_1;

while(1)

{

EXEC SQL FETCH CUR_1 INTO :empno, :deptno :deptno_ind;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

if(deptno_ind == -1)

{

printf("empno : %d, deptno : (null)\n", empno);

}

else

{

printf("empno : %d, deptno : %d\n", empno, deptno);

}

}

EXEC SQL CLOSE CUR_1;

If deptno_ind is -1 after performing FETCH, it determines that deptno is NULL.

3,096 | Embedded SQL

Basic SQL Statement

All SQL statements provided in GOLDILOCKS is available in an embedded SQL. For more information abo

ut SQL statements, refer to Part III. SQL Manual. When using an SQL statement in an embedded SQL, the

SQL statement is specified after EXEC SQL keyword. This chapter describes Data Definition Language (DD

L) or Data Manipulation Language (DML), and the next chapter describes the statements repeatedly retri

eving data like as a query.

SQLCA is checked to determine whether the SQL statement is successfully executed. For more informatio

n, refer to Handling Run-time Errors.

DDL Statement

DDL statement is an SQL statement which creates, drops or alters GOLDILOCKS objects such as table, vie

w, index. When executing a DDL statement in an embedded SQL application, the SQL statement is specifi

ed after EXEC SQL keyword.

EXEC SQL DROP TABLE IF EXISTS EMP;

EXEC SQL

CREATE TABLE EMP (

EMPNO NUMBER(4) CONSTRAINT PK_EMP PRIMARY KEY,

ENAME VARCHAR2(10),

JOB VARCHAR2(9),

SAL NUMBER(7,2),

DEPTNO NUMBER(2));

The host variable can not be used in DDL statement. Therefore, the following usage is wrong.

strcpy(table_name, "T1");

EXEC SQL CREATE TABLE :table_name (C1 INTEGER);

If DDL statement is to be used variably as above because the DDL statement is not defined while creating

the application, the dynamic SQL statement can be used as follows.

strcpy(table_name, "T1");

sprintf(sql_stmt, "CREATE TABLE %s (C1 INTEGER)", table_name);

EXEC SQL EXECUTE IMMEDIATE :sql_stmt;

For more information, refer to Embedded Dynamic SQL.

Select Into Statement

The query is used to retrieve the data from GOLDILOCKS. Generally, the number of retrieved rows are not

known, so the cursor object is declared and the process of open, fetch, close may be performed to use th

Embedded SQL | 3,097

e query statement. For more information, refer to Cursor.

However, the number of retrieved rows are known in a special case. For example, when the primary key i

s known and the record with the same primary key is retrieved, then it can be predicted that the result eit

her does not exist or has up to one record. The select into statement is used when the number of the res

ult records is less than one as follows.

EXEC SQL

SELECT ename, job, sal

INTO :emp_name, :job_title, :salary

FROM emp

WHERE empno = :emp_number;

Note

Several records can be retrieved by using select into statement when using host array. For more in

formation about host array, refer to Host Array.

Insert Statement

The insert statement is used to insert rows into a table. The column value can be determined by using the

host variable, and NULL can be inserted by using an indicator.

The following is an example of the insert statement.

EXEC SQL

INSERT INTO EMP (empno, ename, job, sal)

VALUES (:emp_number, :emp_name, :job_name :job_ind, :saraly);

EXEC SQL

INSERT INTO DEPT (deptno, dname, loc)

VALUES (1, :dept_name, NULL);

Note

When using host structure, data can be inserted in structure units instead of individually using hos

t variable.

3,098 | Embedded SQL

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecord

{

int mEmpNo;

varchar mEName[20 + 1];

char mJob[20 + 1];

long mSalary;

} rsRecord;

rsRecord sInsertRec;

EXEC SQL END DECLARE SECTION;

sInsertRec.mEmpNo = 3000;

strcpy(sInsertRec.mEName.arr, "John");

sInsertRec.mEName.len = strlen(sInsertRec.mEName.arr);

strcpy(sInsertRec.mJob , "RND");

sInsertRec.mSalary = 3500;

EXEC SQL INSERT INTO EMP (empno, ename, job, sal) VALUES (:sInsertRec);

Note

Multiple rows can be inserted by using host array at once. For more information, refer to Host Arr

ay.

Update Statement

The update statement is used to update the column values of the specific rows in a table. The column val

ue can be determined by using the host variable, and NULL can be inserted by using an indicator.

The following is an example of the update statement.

EXEC SQL

UPDATE emp

SET sal = :salary, deptno = :dept_number :deptno_ind

WHERE empno = :emp_number;

Embedded SQL | 3,099

Note

Multiple rows can be updated by using host array at once. For more information, refer to Host Ar

ray.

Delete Statement

The delete statement removes the specific rows from a table.

The following is an example of the delete statement.

EXEC SQL

DELETE FROM emp

WHERE empno = :emp_number;

Note

Multiple rows can be deleted by using host array at once. For more information, refer to Host Arr

ay.

PSM Statement

PSM statement creates a procedure or a function within a server and uses it.

For more information about PSM, refer to PSM manual.

Generally, it starts with EXEC SQL EXECUTE and ends with END-EXEC;. However, when creating a proced

ure or a function, EXEC SQL is used instead of EXEC SQL EXECUTE.

The following is an example of a statement creating and calling a procedure.

EXEC SQL

CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER, A2 INTEGER)

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

3,100 | Embedded SQL

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

END-EXEC;

EXEC SQL CALL PROC1(2, 4);

The following is an example of a statement creating and calling a function.

EXEC SQL BEGIN DECLARE SECTION;

int sV1 = 0;

EXEC SQL END DECLARE SECTION;

EXEC SQL

CREATE OR REPLACE FUNCTION FUNC1(A1 INTEGER, A2 INTEGER)

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

RETURN V1;

END;

END-EXEC;

EXEC SQL CALL FUNC1(2, 4) INTO :sV1;

The following is an example of an anonymous block statement.

EXEC SQL EXECUTE

DECLARE

V1 INTEGER := 0;

FUNCTION FUNC1(A1 INTEGER)

RETURN INTEGER

IS

BEGIN

RETURN A1 * 10;

END;

BEGIN

V1 := FUNC1(10);

DBMS_OUTPUT.PUT_LINE('V1 = ' || V1);

END;

END-EXEC;

Embedded SQL | 3,101

EXEC SQL EXECUTE

DECLARE

PROCEDURE PROC1(A1 INTEGER)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('A1 = ' || A1);

END;

BEGIN

PROC1(100);

END;

END-EXEC;

Cursor

The application executes the query to retrieve data from GOLDILOCKS. Generally, the cursor is used beca

use the number of rows retrieved are not known when executing the query. The cursor is an identifier wh

ich specifies the position of the current row in the query result set. The cursor can be manipulated via the

following operations.

Declare Cursor

It declares a cursor. The cursor name and its query should be specified. The declared cursor name is used

for different cursor manipulation commands later. The following is an example of the cursor declaration.

EXEC SQL

DECLARE RECORD_CUR1 CURSOR FOR

SELECT empno, ename, dept

FROM SEMP

ORDER BY empno;

The cursor name is an identifier recognized and used by the precompiler, and it has nothing to do with th

e variable of C program. The cursor declaration precedes the statement accessing the cursor on the progr

am source code. The cursor declartion which is defined on the other file can not used. All statements whi

ch performs the operations such as open/ fetch/ close of the cursor should exist on a single source file, an

d the cursor declaration should precede all those statements. It is impossible to use the same cursor name

for different queries within a single source file.

EXEC SQL OPEN RECORD_CUR1;

● Wrong position of the cursor declaration

3,102 | Embedded SQL

EXEC SQL

DECLARE RECORD_CUR1 CURSOR FOR

SELECT empno, ename, dept

FROM SEMP

ORDER BY empno;

If the cursor declaration is positioned behind as above, then the error of which the cursor is not declared i

n the precompile process occurs.

FileName: overview.gc

Pre-compile overview.gc -> overview.c

ERR-42000(41000): syntax error

Error at line 310, in file overview.gc

ERR-42000(41003): Cursor "RECORD_CUR1" not declared

OPEN RECORD_CUR1;

.....^

Error at line 1:

ERR-42000(41006): Fatal error while doing embedded SQL preprocessing

Open Cursor

It opens a cursor.

EXEC SQL OPEN <cursor_name>;

Example)

EXEC SQL OPEN EMP_CURSOR;

If the cursor is opened, it is prepared to fetch the result set which the query of the declared cursor is exec

uted. However, it does not actually fetch the result. Fetch Cursor should be performed to actually fetch t

he data.

The host variable which is used when executing the query does not affect the result set until the current c

ursor is closed.

EXEC SQL DECLARE EMP_CURSOR CURSOR FOR

SELECT empno, ename, dept

FROM EMP

WHERE empno < :sNo

ORDER BY empno;

sNo = 100;

EXEC SQL OPEN EMP_CURSOR;

if(sqlca.sqlcode != 0)

Embedded SQL | 3,103

{

goto fail_exit;

}

while(1)

{

sNo = 10;

EXEC SQL FETCH EMP_CURSOR INTO :emp_number, :emp_name, :dept_name;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

...

}

In the example above, even if the cursor is opened with sNo = 100 and sNo is changed during the proces

sing, it does not affect the result set until the cursor is closed.

Fetch Cursor

It fetches the row at the cursor position.

EXEC SQL FETCH <cursor_name> INTO <host_variable_list>;

Example)

EXEC SQL FETCH EMP_CURSOR INTO :emp_number, :emp_name, :dept_name;

The cursor should be declared first for FETCH operation, and it should be open. If FETCH is performed for

the first time, the cursor moves to the first row of the result set and specifies it as a current row. Then, it f

etches the current row into the host variable of INTO clause and returns. After then, if FETCH is repeatedl

y performed, the cursor updates the current row to the next row, and then it repeatedly fetches the curre

nt row into the host variable of INTO clause and returns. If the result does not exist even after performing

FETCH, SQL_NO_DATA code is returned in sqlca.sqlcode, and the application checks this code to determi

ne whether this operation is terminated.

Close Cursor

It closes a cursor.

3,104 | Embedded SQL

EXEC SQL CLOSE <cursor_name>;

Example)

EXEC SQL CLOSE EMP_CURSOR;

The cursor should already be open to close it. The FETCH can not be performed after closing the cursor. If

the cursor is opened to use it again after it is closed, then it becomes a new cursor. Therefore, the result s

et of the new cursor may be different from the result set of the previously closed cursor.

The following sample code is an example of the simple DDL, DML and cursor.

/*

* overview.gc

*

* Connect / Disconnect

* DDL(Create/Drop table)

* Basic DML(Insert, Delete, Update)

* Standing Cursor

*/

EXEC SQL INCLUDE SQLCA;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsEmpRecord

{

int mEmpNo;

char mEName[20];

char mDept[10];

Embedded SQL | 3,105

} rsEmpRecord;

rsEmpRecord gRecord[10] = {

{ 1, "Park", "RND" },

{ 2, "Kim", "CEO" },

{ 3, "Choi", "SALES" },

{ 4, "Lee", "CTO" },

{ 5, "Lyu", "RND" },

{ 6, "Ohn", "SUPPORT" },

{ 7, "Cheon", "RND" },

{ 8, "Sohn", "SALES" },

{ 9, "Smith", "WAIT" },

{ 10, "mycomman", "WAIT" }

};

EXEC SQL END DECLARE SECTION;

int CreateEmpTable();

int DropEmpTable();

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int Disconnect();

int PrintRecord();

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

int sEmpNo;

char sDept[10 + 1];

EXEC SQL END DECLARE SECTION;

int sState = 0;

printf("Connect GOLDILOCKS ...\n");

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

sState = 1;

printf("Create SEMP table ...\n");

if(CreateEmpTable() != SUCCESS)

{

goto fail_exit;

3,106 | Embedded SQL

}

sState = 2;

printf("Insert record ...\n");

EXEC SQL

INSERT INTO SEMP(empno, ename, dept)

VALUES(:gRecord);

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("====== ==================== ==========\n");

printf("%d Record Inserted\n", sqlca.sqlerrd[2]);

printf("====== ==================== ==========\n");

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("Current record\n");

PrintRecord();

sEmpNo = 9;

printf("Delete record WHERE empno == %d\n", sEmpNo);

EXEC SQL

DELETE FROM SEMP

WHERE empno = :sEmpNo;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("After Delete record\n");

PrintRecord();

EXEC SQL COMMIT WORK;

Embedded SQL | 3,107

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

strcpy(sDept, "RND");

printf("Update record WHERE dept == 'WAIT'\n");

EXEC SQL

UPDATE SEMP

SET dept = :sDept

WHERE dept = 'WAIT';

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("After Update record\n");

PrintRecord();

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sState = 1;

printf("Drop SEMP table ...\n");

if(DropEmpTable() != SUCCESS)

{

goto fail_exit;

}

sState = 0;

printf("Disconnect GOLDILOCKS ...\n");

if(Disconnect() != SUCCESS)

{

goto fail_exit;

}

3,108 | Embedded SQL

printf("SUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("FAILURE\n");

printf("############################\n\n");

EXEC SQL ROLLBACK WORK;

switch(sState)

{

case 2:

printf("Drop SEMP table ...\n");

(void)DropEmpTable();

case 1:

printf("Disconnect GOLDILOCKS ...\n");

(void)Disconnect();

break;

default:

break;

}

return 0;

}

● Create table

int CreateEmpTable()

{

EXEC SQL DROP TABLE IF EXISTS SEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL CREATE TABLE SEMP (empno INTEGER,

ename VARCHAR(20),

dept VARCHAR(10),

Embedded SQL | 3,109

PRIMARY KEY (empno));

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

● Drop table

int DropEmpTable()

{

EXEC SQL DROP TABLE SEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

3,110 | Embedded SQL

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

Embedded SQL | 3,111

int Disconnect()

{

EXEC SQL DISCONNECT;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] [ERROR] Disconnect Failure!");

return FAILURE;

}

int PrintRecord()

{

EXEC SQL BEGIN DECLARE SECTION;

rsEmpRecord sResultRecord;

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

EXEC SQL

DECLARE RECORD_CUR1 CURSOR FOR

SELECT empno, ename, dept

FROM SEMP

ORDER BY empno;

EXEC SQL OPEN RECORD_CUR1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

printf(" EMPNO ENAME DEPT\n");

printf("====== ==================== ==========\n");

while(1)

{

3,112 | Embedded SQL

EXEC SQL FETCH RECORD_CUR1 INTO :sResultRecord;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sRecordCount ++;

printf("%6d %20s %10s\n",

sResultRecord.mEmpNo,

sResultRecord.mEName,

sResultRecord.mDept);

}

printf("====== ==================== ==========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ==========\n");

EXEC SQL CLOSE RECORD_CUR1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

return FAILURE;

}

Embedded SQL | 3,113

Cursor Property

The previous chapter described only the most basic cursor. However, the cursor may have various properti

es, and it can perform various functions depending on the properties. An embedded SQL of GOLDILOCKS

provides the cursor properties provided in ISO/IEC-9075-2 SQL Foundation and ODBC.

For more information about the cursor definition syntax and the property, refer to DECLARE cursor_name .

Scrollable Cursor

SCROLL is the cursor property of ISO type, and it determines whether the cursor is scrollable. The scrollabl

e cursor can receive the position option in the FETCH statement, and the row at the position according to

this option is fetched. If scrolling is impossible, it can FETCH only the row in the result set sequentially.

When declaring the scroll cursor, SCROLL option is used. The following is an example of the declaration.

EXEC SQL DECLARE cur_scroll SCROLL CURSOR FOR SELECT c1, c2 FROM t1;

With NO SCROLL option, the cursor which is unable to scroll is declared. When the scroll option is not giv

en, the default value is NO SCROLL.

For the scrollable cursor, it is possible to specify the position information when fetching. This position info

rmation is called as fetch orientation, and it is as follows.

Table 27-13 Fetch orientation

Fetch orientation Description

NEXT It fetches the next row of the current position.

PRIOR It fetches the previous row of the current position.

FIRST It fetches the first row in the result set.

LAST It fetches the last row in the result set.

CURRENT It fetches the row of the current position.

ABSOLUTE <position>

● It fetches the row corresponding to position in the result set.

● If the position value is a negative number, it fetches the row of the previou

s position from AFTER THE LAST ROW.

RELATIVE <position> It fetches the row which is away as much as position from the current position.

If fetch orientation is ABSOLUTE or RELATIVE, the value of <position> is additionally required. The value o

f <position> may be an integer literal or the host variable of the integer type. The following is an example

of fetch orientation.

EXEC SQL FETCH NEXT;

EXEC SQL FETCH PRIOR;

EXEC SQL FETCH FIRST;

EXEC SQL FETCH LAST;

EXEC SQL FETCH CURRENT;

3,114 | Embedded SQL

EXEC SQL FETCH ABSOLUTE 100;

EXEC SQL FETCH RELATIVE :position;

Sensitive Cursor

Sensitivity is the cursor property of ISO type, and it determines whether the changes can be displayed if th

e result set is changed during the cursor operation. Sensitivity has the following three options.

Table 27-14 Sensitivity

Option Description

SENSITIVE The information which is deleted or updated in another transaction can be viewed.

INSENSITIVE
The information which is deleted or updated after the cursor is opened can not be vie

wed.

ASENSITIVE SENSITIVE/ INSENSITIVE is selected according to information of query.

If sensitive option is not specified, the default value is INSENSITIVE, and the cursor with the sensitive optio

n is declared as follows.

EXEC SQL DECLARE <cur_name> SENSITIVE CURSOR FOR SELECT c1, c2 FROM t1;

EXEC SQL DECLARE <cur_name> INSENSITIVE CURSOR FOR SELECT c1, c2 FROM t1;

EXEC SQL DECLARE <cur_name> ASENSITIVE CURSOR FOR SELECT c1, c2 FROM t1;

Holdable Cursor

Holdability is the cursor property of ISO type, and it determines whether the cursor is still held even after t

he transaction which opened the current cursor is committed. Holdability has the following two options.

Table 27-15 Holdability

Option Description

WITH HOLD

● The cursor is held even after the end of the transaction.

● It can not be used with FOR UPDATE clause.

● It can not be used with INSERT INTO ... RETURNING statement.

● It can not be used with UPDATE ... RETURNING statement.

● It can not be used with DELETE FROM ... RETURNING statement.

WITHOUT HOLD The cursor is closed when COMMIT/ ROLLBACK the transaction.

Rollback and cursor

● It closes a cursor which is included in a transaction when rolling back the transac

tion.

● It closes a cursor which is created after the savepoint when rolling back the trans

action to the savepoint.

If holdable option is not specified, the default value is determined according to <cursor updatability>.

● If FOR READ ONLY or <cursor updatability> is not specified, it is WITH HOLD.

Embedded SQL | 3,115

● If it is used with FOR UPDATE statement, it is WITHOUT HOLD.

The cursor using holdable option is declared as follows.

EXEC SQL DECLARE <cur_name> CURSOR WITH HOLD FOR SELECT c1, c2 FROM t1;

EXEC SQL DECLARE <cur_name> CURSOR WITHOUT HOLD FOR SELECT c1, c2 FROM t1 FOR UPDATE;

Static Cursor

Static cursor is the cursor property of ODBC type, and it is as same as INSENSITIVE SCROLL cursor of ISO t

ype.

EXEC SQL DECLARE cur_static STATIC CURSOR FOR SELECT c1, c2 FROM t1;

For more information about how to fetch the static cursor, refer to Scrollable Cursor.

Keyset Driven Cursor

Keyset driven cursor is the cursor property of ODBC type, it is as same as SENSITIVE SCROLL cursor of ISO

type.

EXEC SQL DECLARE cur_static KEYSET CURSOR FOR SELECT c1, c2 FROM t1;

Keyset driven cursor also has the scroll feature, so for more information about how to fetch, refer to Scro

llable Cursor.

Positioned DML

Positioned DML refers that delete or update statement can be executed for the finally fetched row using

CURRENT OF <cursor_name> clause. The cursor should be open and point to the row by performing the F

etch at least once to execute the positioned DML.

The following is an example of executing the positioned DML.

EXEC SQL DECLARE emp_cursor CURSOR FOR

SELECT ename, sal FROM emp WHERE job = 'SALES'

FOR UPDATE;

...

EXEC SQL OPEN emp_cursor;

EXEC SQL WHENEVER NOT FOUND GOTO ...

while(1)

{

EXEC SQL FETCH emp_cursor INTO :emp_name, :salary;

3,116 | Embedded SQL

...

EXEC SQL UPDATE emp SET sal = :new_salary

WHERE CURRENT OF emp_cursor;

}

Options

This chapter describes the applicable options when an embedded SQL source code is precompiled.

Precompiled Header File

When developing the embedded SQL program, it is efficient that the information referenced in common

by multiple source codes is stored in the separated header file and the header file is included in the sourc

e code. C language supports this feature by using #include statement. However, when the header file is i

ncluded by using #include of C language the target file is not precompliled but it is interpreted by the co

mpiler of C language, so the declare section within the file is not converted by the precompliler.

EXEC SQL INCLUDE statement is used to convert and insert this header file into the source code by the pr

ecompiler when creating the header file. The syntax is as follows.

EXEC SQL INCLUDE <filename>;

The statement above precompiles the given file and inserts it into the source code.

Specifying Header File Path

Generally, it preferentially searches for the directory in which the current source code is stored when sear

ching for the header file. However, header files are often separately stored in many cases or they exist in

other paths for many reasons.

In this case, the directory searching for the header file is given separately as an option, and the syntax is a

s follows.

EXEC SQL OPTION(INCLUDE = <directory path>);

Several options can be listed and the directories are searched in the order given by the options when sear

ching for the header file via EXEC SQL INCLUDE.

Embedded SQL | 3,117

Note

This option can be given via command-line option of precompiler. For more information, refer to

--include-path, -I of Precompiler Options.

Host Array

So far, only the scalar variables having only a single value as the host variable were described. This chapte

r describes how to use the array with the host variable.

When using the host array, the program source code becomes simple, and the performance is improved,

but It should be used carefully because there are restrictions.

Declaring Host Array

Declaration of the host array is as same as the declaration of the scalar variable. A variable is required onl

y to be declared as an array itself. The following is an example of declaring the host array with its size 10.

EXEC SQL BEGIN DECLARE SECTION;

int empno[10];

char ename[10][20];

double salary[10];

EXEC SQL END DECLARE SECTION;

The host array declaration has the following limitations.

● More than two-dimensional array is not allowed.

● Exceptionally, the string family (char, varchar) and binary family (binary, varbinary) can be used as the

two-dimensional array because their array consists of an array subscript representing the array size an

d data size.

● An array of pointer is not allowed.

Using Host Array

Accessing Host Array

How to use the host array in the SQL statement is as same as to use the scalar host variable.

The following is a simple example of the host array.

3,118 | Embedded SQL

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting the values of emp_number, emp_name, dept_number

EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

The example above has the same feature as the following code.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting the values of emp_number, emp_name, dept_number

for(i = 0; i < 20; i ++)

{

EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number[i], :emp_name[i], :dept_number[i]);

}

When using several host variable arrays, the operation is performed for the array with the smallest array si

ze among the host arrays. In the example above, 20 rows are inserted because the size of every host varia

ble is 20. However, 10 rows are inserted as a result in the example below, if the array size of dept_numbe

r is specified as 10.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

Embedded SQL | 3,119

char emp_name[20][10];

int dept_number[10];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting the values of emp_number, emp_name, dept_number

EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

Using Host Indicator Array

If the host variable is an array, the indicator variable to be combined to it should also be an array. Also, th

e indicator variable and the host variable should have the same array size. The following is an example of

adding the indicator variable to the example above.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

int emp_number_ind[20];

char emp_name[20][10];

int emp_name_ind[20];

int dept_number[20];

int dept_number_ind[20];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

● Setting each indicator value of emp_number_ind, emp_name_ind, dept_number_ind

...

● Inserting the values of emp_number, emp_name, dept_number

EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number :emp_number_ind,

:emp_name :emp_name_ind,

:dept_number :dept_number_ind);

3,120 | Embedded SQL

Restrictions

● When using several host variables, it is not allowed to use a mixture of scalar variables and array varia

bles.

● The host array can not be used in WHERE clause of the select statement.

● The host array can not be used in CURRENT OF clause of the update, delete statements.

Array in INTO Clause

In GOLDILOCKS, rows are fetched by using SELECT INTO statement or cursor. An embedded SQL uses INT

O clause in common for both two methods. Multiple rows are fetched by using the host array in INTO cla

use.

Array in SELECT INTO

If the number of rows to be fetched is explicitly known, it is implemented by using the host array in Selec

t Into Statement. Only the case of when row does not exist or a single row is fetched is described in Sele

ct Into Statement. However, multiple rows can be fetched by using the host array in it.

The usage is as same as using scalar variables, but the Select Into statement with the array can be created

just by declaring the host variable with the array.

EXEC SQL BEGIN DECLARE SECTION;

char emp_name[50][20];

int emp_number[50];

float salary[50];

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT ENAME, EMPNO, SAL

INTO :emp_name, :emp_number, :salary

FROM EMP

WHERE SAL > 1000;

In the example above, SELECT INTO statement is used to fetch 50 rows by declaring the host variable wit

h an array. This statement fetches only the first 50 rows which meet the query criteria because it is an ind

ependent execution unit.

Caution

Even if more than 50 rows meet the query criteria, it can not fetch the rear rows starting from the

51th row by using the SELECT INTO statement. Cursor should be used when continuously fetchin

g rows.

Embedded SQL | 3,121

Array When Using Cursor

If the number of rows in the result set is unknown for the current query, the cursor should be used. For m

ore information about how to use the cursor, refer to Cursor. After declaring the cursor, multiple rows c

an be fetched at once by using the host variable of INTO clause as an array in FETCH statement.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[50];

char emp_name[50][20];

char dept_name[50][20];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE EMP_CURSOR CURSOR FOR

SELECT empno, ename, dept

FROM EMP

WHERE empno < :sNo

ORDER BY empno;

sNo = 100;

EXEC SQL OPEN EMP_CURSOR;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

while(1)

{

EXEC SQL FETCH EMP_CURSOR INTO :emp_number, :emp_name, :dept_name;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

...

}

50 rows can be fetched at once by using the host array in FETCH statement.

3,122 | Embedded SQL

sqlca.sqlerrd[2]

The rows are fetched as many as the declared array size when using an array, but sometimes it can not fe

tch as many as the declared array size because there is not a row any more. For example, if the array size i

s declared as 50 and the number of rows in the result set are 30, then only 30 rows can be fetched. To so

lve this problem, an embedded SQL of GOLDILOCKS provides information about the number of rows pro

cessed by the current statement in sqlca.sqlerrd[2].

The number of rows processed in INSERT, UPDATE, DELETE, SELECT INTO, FETCH statements are returne

d in sqlca.sqlerrd[2].

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[50];

char emp_name[50][20];

char dept_name[50][20];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE EMP_CURSOR CURSOR FOR

SELECT empno, ename, dept

FROM EMP

WHERE empno < :sNo

ORDER BY empno;

sNo = 100;

EXEC SQL OPEN EMP_CURSOR;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

while(1)

{

EXEC SQL FETCH EMP_CURSOR INTO :emp_number, :emp_name, :dept_name;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

Embedded SQL | 3,123

for(i = 0; i < sqlca.sqlerrd[2]; i ++)

{

printf("%d %s %s\n", emp_number[i], emp_name[i], dept_name[i]);

}

...

}

For more information about sqlca, refer to Handling Run-time Errors.

Array in Insert Statement

If the host variable is declared as an array in INSERT statement, the array insert is implemented.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting the values of emp_number, emp_name, dept_number

EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

The example above has the same feature as the following code.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting the values of emp_number, emp_name, dept_number

3,124 | Embedded SQL

for(i = 0; i < 20; i ++)

{

EXEC SQL INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number[i], :emp_name[i], :dept_number[i]);

}

Note

● When using the array insert, all host variables should be array variables or all of them should b

e scalar variables.

● The number of inserted rows can be checked by using sqlca.sqlerrd[2].

Atomic Insert

Atomic insert is a special form of the array insert, and it has the following 2 characteristics.

● If any of the rows to be inserted is failed, the entire insert operation fails.

● The performance is outstanding because the command is transferred only once from the application t

o GOLDILOCKS.

ATOMIC keyword is used for the atomic insert as follows.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

• Setting the values of emp_number, emp_name, dept_number

...

• Inserting the values of emp_number, emp_name, dept_number

EXEC SQL ATOMIC INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

Embedded SQL | 3,125

Array in Update Statement

The following is an example of using the array in update statement.

EXEC SQL BEGIN DECLARE SECTION;

char job_title [10][20];

float commission[10];

EXEC SQL END DECLARE SECTION;

...

EXEC SQL UPDATE emp SET comm = :commission

WHERE job = :job_title;

The example above has the same feature as the following code.

EXEC SQL BEGIN DECLARE SECTION;

char job_title [10][20];

float commission[10];

EXEC SQL END DECLARE SECTION;

...

for(i = 0; i < 10; i ++)

{

EXEC SQL UPDATE emp SET comm = :commission[i]

WHERE job = :job_title[i];

}

Note

● When using the array update, all host variables should be array variables or all of them should

be scalar variables.

● The number of updated rows can be checked by using sqlca.sqlerrd[2].

● Array can not be used in CURRENT OF clause of UPDATE statement.

3,126 | Embedded SQL

Array in Delete Statement

Array can be used in DELETE statement as follows.

EXEC SQL BEGIN DECLARE SECTION;

char job_title[10][20];

EXEC SQL BEGIN DECLARE SECTION;

...

EXEC SQL DELETE FROM emp

WHERE job = :job_title;

The example above has the same feature as the following code.

EXEC SQL BEGIN DECLARE SECTION;

char job_title[10][20];

EXEC SQL BEGIN DECLARE SECTION;

...

for(i = 0; i < 10; i ++)

{

EXEC SQL DELETE FROM emp

WHERE job = :job_title[i];

}

Note

● When using the array delete, all host variables should be array variables or all of them should

be scalar variables.

● The number of deleted rows can be checked by using sqlca.sqlerrd[2].

● Array can not be used in CURRENT OF clause of DELETE statement.

Using FOR Clause

FOR clause is used to specify the array size when executing the SQL statement. FOR clause can be used in

the following statements.

● SELECT INTO

● FETCH

● INSERT

● UPDATE

Embedded SQL | 3,127

● DELETE

For clause can be used as follows.

EXEC SQL FOR :host_variable <sql_stmt>

EXEC SQL FOR <integer_constant> <sql_stmt>

The following is an example of using the for clause.

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

int record_cnt;

EXEC SQL END DECLARE SECTION;

• Setting the values of emp_number, emp_name, dept_number

...

• Inserting the values of emp_number, emp_name, dept_number

record_cnt = 10;

EXEC SQL FOR :record_cnt INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

In the example above, the actual number of inserted rows are 10 because the size of the host array is give

n as 20 but it is specified to perform as much as record_cnt by using the FOR clause.

Note

FOR clause can not be used with CURRENT OF clause in UPDATE/ DELETE statements.

Structure Array

Using the general scalar variables as an array has the advantage of processing multiple rows at once, but i

t has a limit that a variable can represent only a single column.

For more information about how to process multiple columns with a single host variable, refer to Host Str

ucture. Multiple rows with multiple columns can be processed at once by declaring a host variable as a str

ucture and using the structure as the array.

3,128 | Embedded SQL

A structure array can be used in the following cases.

● Output host variable array: SELECT INTO, FETCH INTO statements

● Input host variable array: VALUES item of INSERT statement

Restrictions

A structure array can not be used in the following cases.

● It can not be used in WHERE clause or FROM clause.

● It can not be used in SET clause of UPDATE statement.

Declaring Structure Array

A structure is declared in an way of a common C language structure declaration. A structural variable can

be directly declared, or it can be declared as a host variable after declaring type via typedef.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecord

{

int mEmpNo;

varchar mEName[20 + 1];

char mJob[20 + 1];

long mSalary;

} rsRecord;

rsRecord sRecord[10];

struct {

int mEmpNo;

varchar mEName[20 + 1];

char mJob[20 + 1];

long mSalary;

} sResultRecord[10];

EXEC SQL END DECLARE SECTION;

When declaring the structure for using the host variable, the nested structure can not be used. If another

structure is inside the structure declaration as follows, it can not be used as a host variable.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsRecord

{

struct person {

int mEmpNo;

Embedded SQL | 3,129

varchar mEName[20 + 1];

} person;

char mJob[20 + 1];

long mSalary;

} rsRecord;

EXEC SQL END DECLARE SECTION;

Indicators of Structure Array

As described in Structure Indicator, if a host variable is the structure, the Indicator variable should also be

the structure. For the same reason, if the host variable is the structure array, the indicator variable should

also be the corresponding structure array.

The declaration of the Indicator structure array should comply with the followings.

● It should have the number of members as many as the host variable structure to be combined by the i

ndicator.

● All members of the Indicator structure should have a integer data type.

● The size of the indicator structure array should be as same as that of the host variable structure array.

If size of the Indicator structure array is smaller, the number of array executions should be limited by

using FOR clause when executing SQL statement.

Mixed Use of Structure and Scalar Variable

When the host structure is transferred to GOLDILOCKS, its structure members are sequentially listed. The

following is an example of mixed use of the host structure and the scalar variable.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsEmp

{

int mEmpNo;

varchar mEName[20 + 1];

} rsEmp;

rsEmp sEmp[5];

char sJob[5][20 + 1];

long sSalary[5];

EXEC SQL END DECLARE SECTION;

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP

ORDER BY EMPNO;

3,130 | Embedded SQL

EXEC SQL OPEN EMP_CUR;

EXEC SQL

FETCH EMP_CUR

INTO :sEmp, :sJob, :sSalary;

The structure rsEmp and the scalar variables sJob, sSalary are used together in FETCH statement. This stat

ement is internally interpreted as four variables sEmp.mEmpNo, sEmp.mEName, sJob and sSalary. The ho

st structure and the host scalar variable can be used together in this way.

The following is an example of mixed use of the host structure array, structure array indicator, structure a

nd scalar variable.

/*

* fetch_struct_array.gc

* : structure array fetch

* : structure indicators

* : mix structure, scalar variable

* : sqlca.sqlerrd[2]

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsEmp

{

Embedded SQL | 3,131

int mEmpNo;

varchar mEName[20 + 1];

} rsEmp;

EXEC SQL END DECLARE SECTION;

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

rsEmp sEmp[5];

char sJob[5][20 + 1];

long sSalary[5];

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

int i;

printf("Connect GOLDILOCKS ...\n");

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

● Retrieve employee

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP

ORDER BY EMPNO;

EXEC SQL OPEN EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf(" EMPNO ENAME JOB SALARY\n");

printf("====== ==================== ========== ========\n");

3,132 | Embedded SQL

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmp, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sRecordCount += sqlca.sqlerrd[2];

for(i = 0; i < sqlca.sqlerrd[2]; i ++)

{

printf("%6d %20s %10s %8ld\n",

sEmp[i].mEmpNo, sEmp[i].mEName.arr, sJob[i], sSalary[i]);

}

}

printf("====== ==================== ========== ========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ========\n");

EXEC SQL CLOSE EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

EXEC SQL COMMIT WORK RELEASE;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

Embedded SQL | 3,133

printf("\n\nSUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("\n\nFAILURE\n");

printf("############################\n\n");

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

3,134 | Embedded SQL

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

Handling Run-time Errors

Overview

In case when the application can not get the expected result during execution, a preparation is required f

or this case when developing an embedded SQL application. This chapter explains how to detect the resu

lts returned after the SQL execution.

Detecting Run-time Error

SQLCA

All types of errors which occur in an embedded SQL are reported in the area called as SQL Communicatio

n Area (SQLCA). Therefore, the application can identify the success of the current operation and the error

type by checking the information of SQLCA.

SQLCA is a data structure which stores errors, warnings, SQL statement execution states. SQLCA will only

have the results of the last SQL execution which the data structure is combined, but it does not have infor

mation about the history of executed SQL statement. If an embedded SQL statement is executed, the exis

ting contents of SQLCA disappears. Therefore, it is necessary to immediately check SQLCA and to perfor

m the exception handling after executing the SQL statement.

Using SQLCA

The following syntax is used to use SQLCA.

EXEC SQL INCLUDE SQLCA;

The syntax above is replaced with the following statement in the precompile process.

#include "sqlca.h"

This statement should be used before using the first embedded SQL statement, and it is typically recomm

ended to be positioned at the top of the source code.

Embedded SQL | 3,135

The embedded SQL application of GOLDILOCKS generally has a global sqlca. In a single thread program, s

qlca can be used without any declaration. However, in multi thread program, sqlca is required to be decla

red separately because the simultaneous accesses to sqlca cause the concurrency problems. For more info

rmation, refer to Multithread Application.

SQLCA Structure

The following describes the structure of sqlca.

struct sqlca

{

char sqlcaid[8]; 1 It is initialized to the string SQLCA.

int sqlabc; 2 It is the size of sqlca structure.

/*

* 3 It is the error code which occurred in the most recent statement execution.

* 4 If it is 0, it is successful. If it is a positive number, it is a warning. If it is

a negative number, it is an error.

*/

int sqlcode;

/*

* 5 It stores the error message for sqlcode

* 6 .sqlerrml is the length of sqlerrmc.

* 7 .sqlerrmc stores the error message in a string form.

*/

struct

{

unsigned short sqlerrml;

char sqlerrmc[SQLERRMC_LEN];

} sqlerrm;

char sqlerrp[8]; /* unused */

int sqlerrd[6];

/* 0: empty */

/* 1: empty */

/* 2: 8 It is the number of rows processed after INSERT, UPDATE, DELETE. */

/* 3: empty */

/* 4: empty */

/* 5: empty */

char sqlwarn[8];

/* 0: 9 If any warning occurs, it is 'W'.

3,136 | Embedded SQL

* 1: 10 If the result string is truncated in SELECT, FETCH, it is 'W'.

* 2: unused

* 3: unused

* 4: unused

* 5: unused

* 6: unused

* 7: unused

*/

char sqlext[8]; /* unused */

char sqlstate[8]; /* SQLSTATE */

unsigned short *rowstatus; /* fetched row status array*/

};

The next chapter describes the content of each component.

SQLCODE

SQLCODE is defined as follows.

#define SQLCODE (sqlca.sqlcode)

SQLCODE executes an embedded SQL statement and then returns the result code. SQLCODE was propos

ed early in ISO/IEC-9075, but it is deprecated in SQL-92. However, it is provided for the backward compat

ibility because it is being used in many applications. The result code is as follows.

Table 27-16 Execution result of SQLCODE

SQLCODE Result

0 Success

> 0 Warning

SQL_NO_DATA No result

< 0 Error

sqlcode is checked as follows. sqlca.sqlcode or SQLCODE can be used.

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP;

EXEC SQL OPEN EMP_CUR;

if(SQLCODE != 0)

{

goto fail_exit;

Embedded SQL | 3,137

}

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

...

}

SQLSTATE

SQLSTATE is defined as follows.

#define SQLSTATE (sqlca.sqlstate)

SQLCODE was deprecated in ISO/IEC-9075, and SQLSTATE is proposed instead. SQLSTATE consists of five

characters(number, English uppercase alphabet), and the first two digits are called as class, and the rear

3 digits are called as subclass. The result of SQLSTATE are as follows.

Table 27-17 Execution result of SQLSTATE

SQLSTATE Result

00000 Success

01xxx Warning

02000 No result

All other states Error

The code is modified by checking SQLSTATE instead of SQLCODE in the example above as follows. sqlca.s

qlstate or SQLSTATE can be used.

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP;

3,138 | Embedded SQL

EXEC SQL OPEN EMP_CUR;

if(strcmp(SQLSTATE, "00000") != 0)

{

goto fail_exit;

}

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(strcmp(sqlca.sqlstate, "02000") == 0)

{

break;

}

else if(strcmp(sqlca.sqlstate, "00000") != 0)

{

goto fail_exit;

}

...

}

Number of Processed Rows

When executing update, delete statements or insert, select info, fetch statement using array, it informs a

user the number of the processed rows. The information is stored in sqlca.sqlerrd[2]. The application refe

rs to the field value and finds out the number of the processed rows. The following is an example of usin

g sqlca.sqlerrd[2].

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsEmp

{

int mEmpNo;

varchar mEName[20 + 1];

} rsEmp;

rsEmp sEmp[5];

char sJob[5][20 + 1];

long sSalary[5];

EXEC SQL END DECLARE SECTION;

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

Embedded SQL | 3,139

SELECT empno, ename, job, sal

FROM EMP;

EXEC SQL OPEN EMP_CUR;

if(SQLCODE != 0)

{

goto fail_exit;

}

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sRecordCount += sqlca.sqlerrd[2];

...

}

Status of Processed Rows

sqlca.row status indicates the row status which is currently processed. When the row is updated or delete

d by using the scroll sensitive cursor or Where CURRENT OF, then the row status can be updated. When

using SQL statement with array, It has row status as many as the array size.

Table 27-18 Referring to the row status

Number of rows Row status

1 *sqlca.rowstatus

Array size n

sqlca.rowstats[0]

sqlca.rowstats[1]

sqlca.rowstats[2]

...

sqlca.rowstats[n-1]

3,140 | Embedded SQL

Table 27-19 Value of row status

Row status Description

SQL_ROW_SUCCESS The row status is normal.

SQL_ROW_DELETED The row is deleted.

SQL_ROW_UPDATED The row is updated.

SQL_ROW_NOROW The row does not exist.

SQL_ROW_ADDED The row is added.

SQL_ROW_ERROR The row status is not normal.

The following is an example of referring to the row status.

EXEC SQL BEGIN DECLARE SECTION;

typedef struct rsEmp

{

int mEmpNo;

varchar mEName[20 + 1];

} rsEmp;

rsEmp sEmp[5];

char sJob[5][20 + 1];

long sSalary[5];

EXEC SQL END DECLARE SECTION;

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP;

EXEC SQL OPEN EMP_CUR;

if(SQLCODE != 0)

{

goto fail_exit;

}

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

Embedded SQL | 3,141

{

goto fail_exit;

}

sRecordCount += sqlca.sqlerrd[2];

for(i = 0; i < sqlca.sqlerrd[2]; i ++)

{

if(sqlca.rowstatus[i] == SQL_ROW_SUCCESS)

{

printf("%6d %20s %10s %8ld\n",

sEmp[i].mEmpNo, sEmp[i].mEName.arr, sJob[i], sSalary[i]);

}

}

...

}

Error Message Text

When an error or warning occurs as a result of the embedded SQL statement, the message can be transf

erred in a text form. The error message is stored in sqlca.sqlerrm, and sqlca.sqlerrm.sqlerrml is the length

of the text. The actual message is stored in sqlca.sqlerrm.sqlerrmc. The error message text is useful to out

put information to a user when anomalies occur in the application. The following is an example of using

an error message text.

EXEC SQL INSERT INTO EMP VALUES (:sEmp);

if(SQLCODE != 0)

{

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n",

SQLCODE,

SQLSTATE,

sqlca.sqlerrm.sqlerrmc);

}

Warning Flags

When a waring occurs after executing the embedded SQL, sqlca.sqlwarn is used as the flag which marks

the warning. It consists of eight char arrays, and the mark of 'W' is used when the warning occurs.

3,142 | Embedded SQL

Table 27-20 Warning flags

Warning flag Description

sqlca.sqlwarn[0] If any warning occurs, it is 'W'.

sqlca.sqlwarn[1] If the result string is truncated in select into, fetch, then it is 'W'.

sqlca.sqlwarn[2] reserved

sqlca.sqlwarn[3] reserved

sqlca.sqlwarn[4] reserved

sqlca.sqlwarn[5] reserved

sqlca.sqlwarn[6] reserved

sqlca.sqlwarn[7] reserved

Handling Implicit Error

After executing the embedded SQL statement, a user should check SQLCA and take action into the execu

tion result. However, when treating the same exception occurs after executing the embedded SQL state

ment, it can be automated by using WHENEVER indicator.

Using WHENEVER Statement

WHENEVER statement has the following syntax.

EXEC SQL WHENEVER conditions actions;

WHENEVER Condition

Conditions of WHENEVER statement are as follows.

<conditions> ::=

SQLERROR

| SQLWARNING

| NOT FOUND

| SQLSTATE <sqlstate class value>[<sqlstate subclass value>]

;

<sqlstate_char> ::= [0-9A-Z];

<sqlstate class value> ::= <sqlstate_char><sqlstate_char>;

<sqlstate subclass value> ::= <sqlstate_char><sqlstate_char><sqlstate_char>;

Table 27-21 Conditions of WHENEVER statement

Conditions Descriptions

SQLERROR An error occurs while an embedded SQL is executed.

SQLWARNING A warning occurs while an embedded SQL is executed.

Embedded SQL | 3,143

NOT FOUND A result row does not exist.

SQLSTATE <sqlstate> SQLSTATE <sqlstate> occurs while an embedded SQL is executed.

Conditions Descriptions

WHENEVER Action

When actions meet the conditions described above, it describes the action actually performed, and its syn

tax is as follows.

<actions> ::=

CONTINUE

| GOTO <label>

| STOP

| DO <c statements>

;

Table 27-22 Actions of WHENEVER statement

Actions Description

CONTINUE An action is not performed. It ignores the given conditions.

GOTO <label> It branches the program flow with <label>.

STOP It terminates the program execution.

DO <c statements> It executes <c statements>.

Scope of WHENEVER Statement

WHENEVER statement describes actions for conditions, and only one action can be described for one con

dition. When using WHENEVER statement, the same action is used for all embedded SQL statements unti

l the definition of another condition comes after the current condition.

Maximum four WHENEVER statements can be applied for a specific point because WHENEVER statement

s are separately managed by each condition. If a new WHENEVER statement is applied for the same condi

tion, the existing action is canceled and a new action may be applied afterwards. The following is an exa

mple.

EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL INSERT INTO emp VALUES (:emp_number, :emp_name, :salary); 1

...

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL UPDATE emp SET sal = sal * 1.1 WHERE sal < :sal_bound; 2

...

EXEC SQL WHENEVER SQLERROR GOTO exit_label;

EXEC SQL WHENEVER NOT FOUND DO break;

3,144 | Embedded SQL

EXEC SQL DECLARE EMP_CURSOR FOR

SELECT empno, ename, sal

FROM emp;

EXEC SQL OPEN EMP_CURSOR; 3

EXEC SQL WHENEVER SQLERROR GOTO close_label;

while(1)

{

EXEC SQL FETCH EMP_CURSOR

INTO :emp_number, :emp_name, :salary; 4

printf("emp number : %d, emp name : %s, salary : %lf\n",

emp_number, emp_name, salary);

}

close_label:

EXEC SQL WHENEVER SQLERROR DO sql_error();

EXEC SQL CLOSE EMP_CURSOR; 5

...

exit_label:

...

The application is stopped when an error occurs during executing 1 because the stop operation is specif

ied for SQLERROR in line 1. SQLERROR action is changed to proceed without performing any action beca

use CONTINUE is indicated for SQLERROR in line 4 . Therefore, it proceeds to the next even when an erro

r occurs during executing 2 . It branches to exit_label when an error occurs during executing 3 becaus

e SQLERROR action is set to branch to exit_label in line 7. It is specified to perform break for NOT FOUND

in line 8, and SQLERROR action is reassigned as close_label in line 15. Therefore, two conditions are appli

ed to 4 . When an error occurs during FETCH, it branches to close_label, and if the FETCH result does no

t exist, then the break statement is executed. sql_error() function is called when an error occurs during ex

ecuting 5 because SQLERROR action is specified to execute sql_error() in line 26.

Notice for WHENEVER statement

WHENEVER statement should be used carefully after understanding the operation principle. The followin

gs should be considered when using the WHENEVER statement.

● The position of WHENEVER statement on the source code: WHENEVER statement is an indicator whi

ch informs to automatically insert the exception handling code to precompiler, and it is not an logicall

y executable code. WHENEVER should be at the beginning of the embedded SQL statements to be a

pplied on the source code. CONTINUE action should be used to initialize not to affect the following e

mbedded SQL.

● Using the break, continue keywords: If DO break, DO continue are used in an action clause, the loop

Embedded SQL | 3,145

scope should be checked and used. The following is an example.

EXEC SQL WHENEVER SQLERROR GOTO fail_exit;

EXEC SQL WHENEVER NOT FOUND DO break; 1

EXEC SQL DECLARE EMP_CURSOR FOR

SELECT empno, ename, sal

FROM emp;

EXEC SQL OPEN EMP_CURSOR;

while(1)

{

EXEC SQL FETCH EMP_CURSOR

INTO :emp_number, :emp_name, :salary; 2

printf("emp number : %d, emp name : %s, salary : %lf\n",

emp_number, emp_name, salary);

}

EXEC SQL CLOSE EMP_CURSOR;

EXEC SQL

SELECT MAX(sal)

INTO :max_salary

FROM emp; 3

...

break; may be performed for NOT FOUND in subsequent SQL statements because the action for NOT FO

UND is defined as DO break; in 1 . When NOT FOUND occurs in 2 during FETCH, break is performed a

nd it exits the while loop. However, break can not be performed when NOT FOUND occurs in 3 because

it is not a loop. In this case, the compile error occurs when building the source program and developing t

he application

● Avoiding infinite loop

If it is misused when branching to the action, it causes the infinite loop. The following is an example.

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

...

EXEC SQL INSERT INTO emp VALUES (:emp_number, :emp_name, :salary);

...

sql_error:

EXEC SQL ROLLBACK WORK RELEASE;

When an error occurs during executing the SQL statement, it branches to sql_error label. When an error

3,146 | Embedded SQL

occurs during executing the embedded SQL statement, it branches to sql_error. However, when the error

s repeatedly occurs during executing another embedded SQL statement in an error processing, the applic

ation infinitely loops. In this case, the following is recommended to safely initialize the error handling.

EXEC SQL WHENEVER SQLERROR GOTO sql_error;

...

EXEC SQL INSERT INTO emp VALUES (:emp_number, :emp_name, :salary);

...

sql_error:

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL ROLLBACK WORK RELEASE;

● Scope of branch label

If it is branched in an action, its label should be located in an accessible position. The following is an exa

mple.

func1()

{

EXEC SQL WHENEVER SQLERROR GOTO labelA;

EXEC SQL DELETE FROM emp WHERE deptno = :dept_number;

...

labelA:

...

}

func2()

{

EXEC SQL INSERT INTO emp (job) VALUES (:job_title);

...

}

In func1(), the branching the labelA is specified for SQLERROR. However, the complile error occurs becau

se labelA exists in func1() but it does not exist in func2(). In this case, the same labelA should be created i

n func2() or the action should be initilaized as follows.

func1()

{

EXEC SQL WHENEVER SQLERROR GOTO labelA;

EXEC SQL DELETE FROM emp WHERE deptno = :dept_number;

Embedded SQL | 3,147

...

labelA:

...

}

func2()

{

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL INSERT INTO emp (job) VALUES (:job_title);

...

}

3,148 | Embedded SQL

27.3 Advanced Topic

Embedded Dynamic SQL

Overview

Most of the embedded SQL applications perform the specific operations on GOLDILOCKS. They are to ins

ert, update, delete, retrieve rows and they are specified by using the database language called as SQL. W

hen SQL is directly specified on the embedded SQL source code for this purpose, the precompiler interpre

tes the SQL, and converts it to an API call available to GOLDILOCKS on the state of knowing all the given

SQL and input/output host variables.

However, some applications do not know the SQL in advance when developing the applications. For exa

mple, if static SQL is used in an application such as GUI tool when the user wants to query by selecting th

e operation type, the table name, condition, the user should specify all SQL statement of possible combin

ation in advance. However, it is impossible or it is very inefficient even when it is possible. In this case, if t

he user generates and executes the SQL statement with a user selectable option, it might be very flexible

and efficient. The dynamic SQL is the SQL which is not defined on the source code in advance and is chan

ged at run-time. GOLDILOCKS supports the embedded dynamic SQL feature.

The advantage of embedded dynamic SQL application provides more flexible usage compared to the stati

c SQL, but the disadvantage is that the development of the source code is difficult and it has poor perfor

mance compared to the static SQL when performing the same query.

It is recommended to compare the static SQL and the dynamic SQL, then select one of them considering t

hese features carefully when developing applications.

This chapter describes how to develop the embedded dynamic SQL program.

Dynamic SQL Types

The dynamic SQLs are classified according the usage as follows.

Table 27-23 Dynamic SQL type

Method Description Support

Method 1 It is a non-query and a host variable does not exist. O

Method 2 It is a non-query and a host variable may know the number and type. O

Method 3 It is a query and a host variable may know the number and type. O

Method 4 It is a query, and the existence of host variable, the number and type are unknown. X

Currently, GOLDILOCKS supports until the method 3.

Advanced Topic | 3,149

Method 1

It is the simplest form of the dynamic SQL, and it is a non-query and can be used when a host variable do

es not exist. Typically, it is used for the DDL or for the DML in which the host variable does not exist.

● EXECUTE IMMEDIATE

The SQL statement can be immediately executed because the method1 is a non-query and it does not ha

ve the host variable at the same time. The syntax of the immediate execution of SQL is as follows.

EXEC SQL EXECUTE IMMEDIATE { :host_variable | <string_literal> };

<string_literal> ::=

' <sql_statement> '

| " <sql_statement> "

| <sql_statement>

;

The method 1 is used as follows.

sprintf(sSqlStmt, "CREATE TABLE EMP_RND (\n"

"EMPNO NUMBER(4) CONSTRAINT PK_EMP_RND PRIMARY KEY,\n"

"ENAME VARCHAR2(10),\n"

"JOB VARCHAR2(9),\n"

"SAL NUMBER(7,2),\n"

"DEPTNO NUMBER(2))\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sprintf(sSqlStmt, "INSERT INTO EMP_RND\n"

"SELECT *\n"

"FROM EMP\n"

"WHERE JOB = 'RND'\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

3,150 | Embedded SQL

Method 2

The method 2 is used for the non-query with an existence of input host variable. The number of input ho

st Variables and the data type should be known, and it is performed through preparation step and the ex

ecution step.

● Prepare

In the prepare step, the SQL statement is analyzed, and the name is given to this statement. The syntax of

prepare is as follows.

EXEC SQL PREPARE <statement_name> FROM { :host_variable | <string_literal> };

<string_literal> ::=

' <sql_statement> '

| " <sql_statement> "

| <sql_statement>

;

<statement_name> is an identifier notifying to the precompiler. It does not require a separate type or any

declaration of a variable because it is not the host variable.

● Execute

The analyzed statement is executed in the execute step. The syntax of execute statement is as follows.

EXEC SQL EXECUTE <statement_name> [USING <host_variable_list>];

<host_variable_list> ::= <host_variable_entry> [, <host_variable_list>];

<host_variable_entry> ::= :host_variable [[INDICATOR] :host_indicator];

If an input host variable exist, USING clause is used. If the host variable does not exist, USING clause is om

itted. It is bound to the host variable of the prepared SQL statement according to the sequence of host va

riables in USING clause.

When the same SQL statements are repeatedly executed in method 2, execute may be repeatedly perfor

med after performing prepare only once. The prepared statement is valid in the current source code until

another SQL statement is prepared with the same statement name or it is disconnected.

Method 3

The method 3 is an extended form of the method 2 to support the query. The statements of declare, ope

n, fetch, close are added for the cursor because generally a statement is analyzed in the query prepare pr

ocess and the cursor should be handled for the query.

● Prepare

Advanced Topic | 3,151

The prepare step analyzes the SQL statement like as the method 2, and gives the name to the statement.

The syntax of prepare is as follows.

EXEC SQL PREPARE <statement_name> FROM { :host_variable | <string_literal> };

<string_literal> ::=

' <sql_statement> '

| " <sql_statement> "

| <sql_statement>

;

<statement_name> is an identifier notifying to the precompiler. It does not require a separate type or any

declaration of a variable because it is not the host variable.

● Declare cursor

Declare statement declares the cursor for the prepared statement. When declaring the cursor, the cursor

property which is as same as the standing cursor can be used. The syntax is as follows.

EXEC SQL <dynamic declare cursor>;

<dynamic declare cursor> ::=

DECLARE <cursor_name> <cursor properties> { FOR | IS } <statement_name>

;

<cursor properties> ::=

[<cursor sensitivity>] [<cursor scrollability>]] CURSOR [<cursor holdability>]

| [<odbc cursor type] CURSOR [<cursor holdability>]

;

<cursor sensitivity> ::=

INSENSITIVE

| SENSITIVE

| ASENSITIVE

;

<cursor scrollability> ::=

NO SCROLL

| SCROLL

;

<cursor holdability> ::=

WITH HOLD

| WITHOUT HOLD

;

<odbc cursor type> ::=

STATIC

3,152 | Embedded SQL

| KEYSET

;

The meaning and used name of <cursor properties> is as same as the standing cursor. For more informati

on, refer to Cursor Property.

<statement_name> is the name specified in PREPARE statement. <cursor name> and <statement name> a

re the identifiers notifying to the precompiler. It does not require a separate type or any declaration of a v

ariable because it is not the host variable.

● Open cursor

It opens the cursor. It is generally same with the Open Cursor of the standing cursor, but there is a signifi

cant and typical difference in opening the dynamic cursor. The host variable is determined depending on

the declared SQL statement because the dynamic cursor updates and uses the SQL statement freely at th

e run-time. Therefore, when opening the dynamic cursor, it transfers the host variable by using the USIN

G clause at the time of opening.

Open syntax of dynamic cursor is as follows.

EXEC SQL <dynamic cursor open>;

<dynamic cursor open> ::=

OPEN <cursor_name> [USING <host_variable_list>]

;

<host_variable_list> ::= <host_variable_entry> [, <host_variable_list>];

<host_variable_entry> ::= :host_variable [[INDICATOR] :host_indicator];

● Fetch cursor

It fetches from the cursor. Fetching dynamic cursor is as same as fetching standing cursor.

● Close cursor

It closes the cursor. Closing dynamic cursor is as same as closing standing cursor.

Example Program

The following is a sample program of using the dynamic method 1, 2, 3.

/*

* dyn2.gc

* : dynamic method 1

Advanced Topic | 3,153

* : dynamic method 2

* : dynamic method 3

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

EXEC SQL BEGIN DECLARE SECTION;

typedef struct Record

{

int mEmpNo;

varchar mEName[20 + 1];

char mJob[20];

char mSalary[10];

} Record;

EXEC SQL END DECLARE SECTION;

int Connect(char *aHostInfo, char *aUserID, char *sPassword);

int CreateEmpTempTable();

int DropEmpTempTable();

int UpdateSalary(char *aJob, int aBound, double aRatio);

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

EXEC SQL END DECLARE SECTION;

printf("Connect GOLDILOCKS ...\n");

3,154 | Embedded SQL

if(Connect("DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

if(CreateEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

● Print RND employee increate 20% salary where salary < 2000

printf("print RND employee increate 20%% salary where salary < 2000\n");

UpdateSalary("RND", 2000, 1.2);

printf("\n\n");

● Print SUPPORT employee increate 10% salary where salary < 3000

printf("print SUPPORT employee increate 10%% salary where salary < 3000\n");

UpdateSalary("SUPPORT", 3000, 1.1);

printf("\n\n");

if(DropEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

printf("Disconnect GOLDILOCKS ...\n");

EXEC SQL COMMIT WORK RELEASE;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("SUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

Advanced Topic | 3,155

printf("\n\nFAILURE\n");

printf("############################\n\n");

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int Connect(char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

● DB connection

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

● Create table

3,156 | Embedded SQL

int CreateEmpTempTable()

{

EXEC SQL BEGIN DECLARE SECTION;

char sSqlStmt[8192];

EXEC SQL END DECLARE SECTION;

sprintf(sSqlStmt, "DROP TABLE IF EXISTS EMP_RND");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sprintf(sSqlStmt, "CREATE TABLE EMP_RND (\n"

"EMPNO NUMBER(4) CONSTRAINT PK_EMP_RND PRIMARY KEY,\n"

"ENAME VARCHAR2(10),\n"

"JOB VARCHAR2(9),\n"

"SAL NUMBER(7,2),\n"

"DEPTNO NUMBER(2))\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sprintf(sSqlStmt, "INSERT INTO EMP_RND\n"

"SELECT *\n"

"FROM EMP\n"

"WHERE JOB = 'RND'\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sprintf(sSqlStmt, "DROP TABLE IF EXISTS EMP_SUPPORT");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

Advanced Topic | 3,157

sprintf(sSqlStmt, "CREATE TABLE EMP_SUPPORT (\n"

"EMPNO NUMBER(4) CONSTRAINT PK_EMP_SUPPORT PRIMARY KEY,\n"

"ENAME VARCHAR2(10),\n"

"JOB VARCHAR2(9),\n"

"SAL NUMBER(7,2),\n"

"DEPTNO NUMBER(2))\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sprintf(sSqlStmt, "INSERT INTO EMP_SUPPORT\n"

"SELECT *\n"

"FROM EMP\n"

"WHERE JOB = 'SUPPORT'\n");

EXEC SQL EXECUTE IMMEDIATE :sSqlStmt;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

● Drop table

3,158 | Embedded SQL

int DropEmpTempTable()

{

EXEC SQL DROP TABLE EMP_RND;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL DROP TABLE EMP_SUPPORT;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

int UpdateSalary(char *aJob, int aBound, double aRatio)

{

EXEC SQL BEGIN DECLARE SECTION;

Record sRecord;

char sSelectSql[128];

char sUpdateSql[128];

int sBound = aBound;

double sRatio = aRatio;

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

Advanced Topic | 3,159

int i;

int sIsOpenCur = 0;

sprintf(sSelectSql, "SELECT EMPNO, ENAME, JOB, SAL FROM EMP_%s WHERE sal < :v1 FOR

UPDATE", aJob);

sprintf(sUpdateSql, "UPDATE EMP_%s SET sal = sal * :v1 WHERE CURRENT OF DYN_CUR", aJob);

EXEC SQL PREPARE SELECT_STMT FROM :sSelectSql;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL DECLARE DYN_CUR KEYSET CURSOR FOR SELECT_STMT;

EXEC SQL OPEN DYN_CUR USING :sBound;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sIsOpenCur = 1;

EXEC SQL PREPARE UPDATE_STMT FROM :sUpdateSql;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

while(1)

{

EXEC SQL

FETCH NEXT DYN_CUR

INTO :sRecord;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

3,160 | Embedded SQL

EXEC SQL EXECUTE UPDATE_STMT USING :sRatio;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

}

sIsOpenCur = 0;

EXEC SQL CLOSE DYN_CUR;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sprintf(sSelectSql, "SELECT EMPNO, ENAME, JOB, SAL FROM EMP_%s ORDER BY SAL DESC", aJob

);

EXEC SQL PREPARE SELECT_STMT FROM :sSelectSql;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL OPEN DYN_CUR;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sIsOpenCur = 1;

printf("%s salary list\n", aJob);

sRecordCount = 0;

printf(" EMPNO ENAME JOB SALARY\n");

printf("====== ==================== ========== ==========\n");

while(1)

{

EXEC SQL

FETCH DYN_CUR

INTO :sRecord;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

Advanced Topic | 3,161

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

for(i = 0; i < sqlca.sqlerrd[2]; i ++)

{

sRecordCount ++;

printf("%6d %20s %10s %10s\n",

sRecord.mEmpNo,

sRecord.mEName.arr,

sRecord.mJob,

sRecord.mSalary);

}

}

printf("====== ==================== ========== ==========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ==========\n");

sIsOpenCur = 0;

EXEC SQL CLOSE DYN_CUR;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

if(sIsOpenCur == 1)

{

EXEC SQL CLOSE DYN_CUR;

}

return FAILURE;

}

3,162 | Embedded SQL

Multithread Application

The multithreaded application is an application including multiple execution units in a single process. The

multithreaded application can process multiple tasks such as running multiple applications at the same ti

me in parallel, and it has the advantage of being able to share the same address scope because it is a sing

le process.

Sharing the same address scope means sharing the global variables and static variables. When accessing t

hese variables, the concurrency control for each thread should be considered. Therefore, the application s

hould be developed very carefully.

GOLDILOCKS supports the run-time context. The run-time context has a slight difference between Direct

Attach (D/A) mode and Client/Server (C/S) mode. The next chapter describes the run-time context and th

e guideline for developing the multithreaded application.

Run-time Context

The run-time context in an embedded SQL of GOLDILOCKS is used for the purpose of managing the con

nection from the application to GOLDILOCKS. The relationship between the run-time context and connec

tion is 1:1, and the run-time context is regarded as the connection itself.

GOLDILOCKS structurally allows only a single connection in a thread in D/A mode. The multithreaded app

lication is required for multiple connections. However, it is the connection with the server via network in

C/S mode, so a single thread may have multiple connections.

Direct Attach (D/A) Mode

A single thread has only a single connection in D/A mode. Therefore, n threads are required when develo

ping an application with n connections.

Figure 2 In case when each thread has its own connection in D/A mode

Advanced Topic | 3,163

Client/Server (C/S) Mode

An extra restriction for the connection does not exist when operating in C/S mode. A single thread may h

ave multiple connections or multiple threads may share a single connection. N threads can share m conne

ctions.

Figure 3 In case when multiple threads share a single connection

Figure 4 In case when a single thread has multiple connections

3,164 | Embedded SQL

Guidelines

The followings should be considered to develop the multithreaded application.

● The SQLCA variable should be declared thread-safely. It is recommended to declare as a stack variabl

e in each thread, and to refer to the example program of the next chapter.

● The static variables or the global variables are shared because the multithread has the same address s

cope in a single process. The concurrency control should be considered when using these variables.

● A single run-time context should not be allowed to be used at the same time in multiple threads. The

concurrency control of run-time context should also be considered.

Example Program

The following is a sample program of a multithreaded application.

/*

* thread1.gc

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

int Connect(sql_context aCtx, char *aHostInfo, char *aUserID, char *sPassword);

int CreateEmpTempTable();

int DropEmpTempTable();

Advanced Topic | 3,165

void *clientThread(void *args);

typedef struct thread_param

{

int mNo;

char *mJobName;

} thread_param;

#define THREAD_COUNT 2

char gJobName[THREAD_COUNT][20]= {

"RND",

"SUPPORT"

};

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

int sEmpNo;

varchar sEName[20 + 1];

char sJob[20];

long sSalary;

EXEC SQL END DECLARE SECTION;

int sRecordCount = 0;

pthread_t thread_id[THREAD_COUNT];

thread_param param[THREAD_COUNT];

int i;

printf("Connect GOLDILOCKS ...\n");

if(Connect(NULL, "DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

if(CreateEmpTempTable() != SUCCESS)

{

goto fail_exit;

}

● Create client thread

3,166 | Embedded SQL

for(i = 0; i < THREAD_COUNT; i ++)

{

param[i].mNo = i;

param[i].mJobName = gJobName[i];

if(pthread_create(&thread_id[i],

NULL,

clientThread,

¶m[i]) != 0)

{

printf("Can't create thread %d!\n", i);

}

else

{

printf("Create thread %d!\n", i);

}

}

for(i = 0; i < THREAD_COUNT; i ++)

{

if(pthread_join(thread_id[i],

NULL) != 0)

{

printf("Error when waiting for thread %d to terminate!\n", i);

}

else

{

printf("Stopped thread %d!\n", i);

}

}

● Retrieve employee

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP_TEMP

ORDER BY empno;

EXEC SQL OPEN EMP_CUR;

if(sqlca.sqlcode != 0)

{

Advanced Topic | 3,167

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf(" EMPNO ENAME JOB SALARY\n");

printf("====== ==================== ========== ========\n");

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sRecordCount ++;

printf("%6d %20s %10s %8ld\n",

sEmpNo, sEName.arr, sJob, sSalary);

}

printf("====== ==================== ========== ========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ========\n");

EXEC SQL CLOSE EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

if(DropEmpTempTable() != SUCCESS)

{

goto fail_exit;

3,168 | Embedded SQL

}

EXEC SQL COMMIT WORK RELEASE;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf("SUCCESS\n");

printf("############################\n");

return 0;

fail_exit:

printf("FAILURE\n");

printf("############################\n\n");

EXEC SQL ROLLBACK WORK RELEASE;

return 0;

}

int Connect(sql_context aCtx, char *aHostInfo, char *aUserID, char *sPassword)

{

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR sUid[80];

VARCHAR sPwd[20];

VARCHAR sConnStr[1024];

EXEC SQL END DECLARE SECTION;

struct sqlca sqlca;

● Log on GOLDILOCKS

strcpy((char *)sUid.arr, aUserID);

sUid.len = (short)strlen((char *)sUid.arr);

strcpy((char *)sPwd.arr, sPassword);

sPwd.len = (short)strlen((char *)sPwd.arr);

strcpy((char *)sConnStr.arr, aHostInfo);

sConnStr.len = (short)strlen((char *)sConnStr.arr);

Advanced Topic | 3,169

● DB connection

if(aCtx != NULL)

{

EXEC SQL CONTEXT USE :aCtx;

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

}

else

{

EXEC SQL CONTEXT USE DEFAULT;

EXEC SQL CONNECT :sUid IDENTIFIED BY :sPwd USING :sConnStr;

}

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

● DB disconnection

int Disconnect(sql_context aCtx)

{

struct sqlca sqlca;

if(aCtx != NULL)

{

EXEC SQL CONTEXT USE :aCtx;

EXEC SQL DISCONNECT;

}

else

{

EXEC SQL CONTEXT USE DEFAULT;

EXEC SQL DISCONNECT;

}

3,170 | Embedded SQL

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] Connection Failure!");

return FAILURE;

}

● Create table

int CreateEmpTempTable()

{

EXEC SQL DROP TABLE IF EXISTS EMP_TEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL

CREATE TABLE EMP_TEMP (

EMPNO NUMBER(4) CONSTRAINT PK_EMP_TEMP PRIMARY KEY,

ENAME VARCHAR2(10),

JOB VARCHAR2(9),

SAL NUMBER(7,2),

DEPTNO NUMBER(2));

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

Advanced Topic | 3,171

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

● Drop table

int DropEmpTempTable()

{

EXEC SQL DROP TABLE EMP_TEMP;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL ROLLBACK WORK;

return FAILURE;

}

void *clientThread(void *args)

{

EXEC SQL BEGIN DECLARE SECTION;

SQL_CONTEXT my_context;

char job_name[20 + 1];

3,172 | Embedded SQL

EXEC SQL END DECLARE SECTION;

int state = 0;

thread_param *param = (thread_param *)args;

EXEC SQL CONTEXT ALLOCATE :my_context;

state = 1;

EXEC SQL CONTEXT USE :my_context;

if(Connect(my_context, "DSN=GOLDILOCKS", "test", "test") != SUCCESS)

{

goto fail_exit;

}

state = 2;

strcpy(job_name, param->mJobName);

EXEC SQL

INSERT INTO EMP_TEMP

SELECT *

FROM EMP

WHERE JOB = :job_name;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL COMMIT WORK;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

state = 1;

if(Disconnect(my_context) != SUCCESS)

{

goto fail_exit;

}

state = 0;

EXEC SQL CONTEXT FREE :my_context;

pthread_exit(0);

return NULL;

Advanced Topic | 3,173

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

switch(state)

{

case 2:

(void)Disconnect(my_context);

case 1:

EXEC SQL CONTEXT FREE :my_context;

break;

default:

break;

}

pthread_exit(0);

return NULL;

}

C++ Application

Extension of Output Filename

Precompiler (gpec) of GOLDILOCKS generates C code by precompiling the embedded SQL source code. T

he extension of the output file is .c by default. The general C++ source code has various file extensions de

pending on the compiler types.

-o option which is the output file specification option of gpec is used to specify the file extension. For exa

mple, testfile.gc is converted to testfile.cpp as follows.

gpec $(GPEC_OPT) testfile.gc -o testfile.cpp

SQLCA_STORAGE_CLASS

When the same symbol is declared as a global variable, the conflict on the symbol is occurred in C++ appl

ication. The embedded SQL of GOLDILOCKS has the sqlca variable by default, and the conflict of these va

riables causes a problem when linking multiple C++ files.

SQLCA_STORAGE_CLASS macro should be defined for all other files except for one file to avoid this probl

em. For example, if a single application is generated by linking 3 files, SQLCA_STORAGE_CLASS macro is

defined for two of three files as follows.

3,174 | Embedded SQL

#define SQLCA_STORAGE_CLASS extern

EXEC SQL INCLUDE SQLCA;

SQLCA_STORAGE_CLASS macro definition should be positioned ahead of the following statement.

EXEC SQL INCLUDE SQLCA;

XA

Definition of xa_open string

xa_open string includes information for connecting to Resource Manager (RM). For more information, re

fer to SQLDriverConnect attributes.

The following is an example of xa_open string.

DSN=GOLDILOCKS;UID=test;PWD=test;CONN_NAME=XA_CONN

Using XA in Precompiler

A user can choose one of the followings when using XA in the precompiler.

● Using the default connection

● Using the named connection

Using Default Connection

It uses the connection connected only with the access information in xa_open string.

The following is an example of xa_open string for the default connection.

DSN=GOLDILOCKS;UID=test;PWD=test

It is described as follows when using the embedded SQL with the default connection.

EXEC SQL

UPDATE Deposit

Set InterestRates = :value :value_ind

WHERE AccountNumber = :account_number;

http://222.108.147.73:1975/r/document/view/67fd41e50878de44

Advanced Topic | 3,175

Using Named Connection

It uses the connection name together with the connection information in xa_open string.

The following is an example of xa_open string for the named connection.

DSN=GOLDILOCKS;UID=test;PWD=test;CONN_NAME=XA_CONN

The connection name should be specified as follows in an embedded SQL which uses the named connect

ion.

EXEC SQL AT XA_CONN

UPDATE Deposit

Set InterestRates = :value :value_ind

WHERE AccountNumber = :account_number;

Example Program

● GOLDILOCKS Sample - XA

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

● Include GOLDILOCKS ODBC header

#include <goldilocks.h>

EXEC SQL INCLUDE SQLCA;

#define SUCCESS 0

#define FAILURE -1

#define PRINT_SQL_ERROR(aMsg) \

{ \

printf("\n"); \

printf(aMsg); \

printf("\nSQLCODE : %d\nSQLSTATE : %s\nERROR MSG : %s\n", \

sqlca.sqlcode, \

SQLSTATE, \

sqlca.sqlerrm.sqlerrmc); \

}

● User-specific definitions

3,176 | Embedded SQL

#define BUF_LEN 101

#define GOLDILOCKS_SQL_THROW(aLabel) \

goto aLabel;

#define GOLDILOCKS_SQL_TRY(aExpression) \

do \

{ \

if(!(SQL_SUCCEEDED(aExpression))) \

{ \

goto GOLDILOCKS_FINISH_LABEL; \

} \

} while(0)

#define GOLDILOCKS_FINISH \

goto GOLDILOCKS_FINISH_LABEL; \

GOLDILOCKS_FINISH_LABEL:

● Print diagnostic record to console

void PrintDiagnosticRecord(SQLSMALLINT aHandleType, SQLHANDLE aHandle)

{

SQLCHAR sSQLState[6];

SQLINTEGER sNaiveError;

SQLSMALLINT sTextLength;

SQLCHAR sMessageText[SQL_MAX_MESSAGE_LENGTH];

SQLSMALLINT sRecNumber = 1;

SQLRETURN sReturn;

● SQLGetDiagRec returns the current values which includes an error, warning.

while(1)

{

sReturn = SQLGetDiagRec(aHandleType,

aHandle,

sRecNumber,

sSQLState,

&sNaiveError,

sMessageText,

100,

&sTextLength);

if(sReturn == SQL_NO_DATA)

{

break;

Advanced Topic | 3,177

}

GOLDILOCKS_SQL_TRY(sReturn);

printf("\n===\n");

printf("SQL_DIAG_SQLSTATE : %s\n", sSQLState);

printf("SQL_DIAG_NATIVE : %d\n", sNaiveError);

printf("SQL_DIAG_MESSAGE_TEXT : %s\n", sMessageText);

printf("===\n");

sRecNumber++;

}

return;

GOLDILOCKS_FINISH;

printf("SQLGetDiagRec failure.\n");

return;

}

● Create table

int testCreateTable()

{

EXEC SQL AT XA_CONN

DROP TABLE IF EXISTS DEPOSIT;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL AT XA_CONN

CREATE TABLE DEPOSIT (

NAME VARCHAR(30),

BALANCE INTEGER,

ACCOUNTNUMBER VARCHAR(100),

ACCOUNTDAY DATE,

INTERESTRATES NUMBER(10, 5),

PHONENUMBER VARCHAR(30));

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL AT XA_CONN COMMIT;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

3,178 | Embedded SQL

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL AT XA_CONN ROLLBACK;

return FAILURE;

}

● Drop table

int testDropTable()

{

EXEC SQL AT XA_CONN

DROP TABLE DEPOSIT;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

EXEC SQL AT XA_CONN COMMIT;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

EXEC SQL AT XA_CONN ROLLBACK;

return FAILURE;

}

● Insert function

int testInsert()

{

EXEC SQL BEGIN DECLARE SECTION;

char sName[BUF_LEN];

int sNameInd = 0;

int sBalance = 0;

int sBalanceInd = 0;

char sAccountNumber[BUF_LEN];

int sAccountNumberInd = 0;

DATE sAccountDay;

Advanced Topic | 3,179

int sAccountDayInd = 0;

double sInterestRates = 0;

int sInterestRatesInd = 0;

char sPhoneNumber[BUF_LEN];

int sPhoneNumberInd = 0;

EXEC SQL END DECLARE SECTION;

sNameInd = snprintf((char*)sName, BUF_LEN, "sunje");

sBalance = 30000000;

sAccountNumberInd = snprintf((char*)sAccountNumber, BUF_LEN, "9999-99-9999");

sAccountDay.year = 2009;

sAccountDay.month = 1;

sAccountDay.day = 1;

sAccountDay.hour = 0;

sAccountDay.minute = 0;

sAccountDay.second = 0;

sAccountDay.fraction = 0;

sInterestRates = (double)5.0;

sPhoneNumberInd = snprintf((char*)sPhoneNumber, BUF_LEN, "010-9999-9999");

EXEC SQL AT XA_CONN

INSERT INTO DEPOSIT

VALUES (:sName :sNameInd,

:sBalance :sBalanceInd,

:sAccountNumber :sAccountNumberInd,

:sAccountDay :sAccountDayInd,

:sInterestRates :sInterestRatesInd,

:sPhoneNumber :sPhoneNumberInd);

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

● The number of rows affected by INSERT statement

printf("\n%d row created.\n\n", sqlca.sqlerrd[2]);

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

return FAILURE;

}

● Update function

3,180 | Embedded SQL

int testUpdate()

{

EXEC SQL BEGIN DECLARE SECTION;

char sCondition[BUF_LEN];

int sConditionInd = 0;

double sValue = 0;

int sValueInd = 0;

EXEC SQL END DECLARE SECTION;

sValue = (SQLREAL)6.0;

sConditionInd = snprintf((char*)sCondition,

BUF_LEN,

"9999-99-9999");

EXEC SQL AT XA_CONN

UPDATE Deposit

Set InterestRates = :sValue :sValueInd

WHERE AccountNumber = :sCondition :sConditionInd;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

● The number of rows affected by UPDATE statement

printf("\n%d row updated.\n\n", sqlca.sqlerrd[2]);

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

return FAILURE;

}

● Select function

int testSelect()

{

EXEC SQL BEGIN DECLARE SECTION;

char sName[BUF_LEN];

int sNameInd = 0;

int sBalance = 0;

int sBalanceInd = 0;

char sAccountNumber[BUF_LEN];

int sAccountNumberInd = 0;

Advanced Topic | 3,181

DATE sAccountDay;

int sAccountDayInd = 0;

double sInterestRates = 0;

int sInterestRatesInd = 0;

char sPhoneNumber[BUF_LEN];

int sPhoneNumberInd = 0;

EXEC SQL END DECLARE SECTION;

int sCount = 0;

int sIsOpen = 0;

EXEC SQL DECLARE CUR1 CURSOR FOR

SELECT NAME, BALANCE, ACCOUNTNUMBER, ACCOUNTDAY, INTERESTRATES, PHONENUMBER

FROM DEPOSIT;

EXEC SQL AT XA_CONN

OPEN CUR1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

sIsOpen = 1;

printf("==\n");

while(1)

{

EXEC SQL AT XA_CONN

FETCH CUR1 INTO

:sName :sNameInd,

:sBalance :sBalanceInd,

:sAccountNumber :sAccountNumberInd,

:sAccountDay :sAccountDayInd,

:sInterestRates :sInterestRatesInd,

:sPhoneNumber :sPhoneNumberInd;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

printf("NAME : ");

if(sNameInd == -1)

{

3,182 | Embedded SQL

printf("(null)");

}

else

{

printf("%s", sName);

}

printf("\n");

printf("BALANCE : ");

if(sBalanceInd == -1)

{

printf("(null)");

}

else

{

printf("%d", sBalance);

}

printf("\n");

printf("ACCOUNTNUMBER : ");

if(sAccountNumberInd == -1)

{

printf("(null)");

}

else

{

printf("%s", sAccountNumber);

}

printf("\n");

printf("ACCOUNTDAY : ");

if(sAccountDayInd == -1)

{

printf("(null)");

}

else

{

printf("%4d-%02d-%02d", sAccountDay.year, sAccountDay.month, sAccountDay.day);

}

printf("\n");

printf("INTERESTRATES : ");

if(sInterestRatesInd == -1)

{

printf("(null)");

Advanced Topic | 3,183

}

else

{

printf("%lf", sInterestRates);

}

printf("\n");

printf("PHONENUMBER : ");

if(sPhoneNumberInd == -1)

{

printf("(null)");

}

else

{

printf("%s", sPhoneNumber);

}

printf("\n");

printf("--\n");

sCount ++;

}

printf("==\n");

printf("\n%d rows selected.\n\n", sCount);

sIsOpen = 0;

EXEC SQL AT XA_CONN

CLOSE CUR1;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

if(sIsOpen == 1)

{

EXEC SQL AT XA_CONN

CLOSE CUR1;

}

return FAILURE;

}

● Delete function

3,184 | Embedded SQL

int testDelete()

{

EXEC SQL BEGIN DECLARE SECTION;

char sCondition[BUF_LEN];

int sConditionInd = 0;

EXEC SQL END DECLARE SECTION;

sConditionInd = snprintf((char*)sCondition,

BUF_LEN,

"9999-99-9999");

EXEC SQL AT XA_CONN

DELETE FROM DEPOSIT WHERE AccountNumber = :sCondition :sConditionInd;

if(sqlca.sqlcode != 0)

{

goto fail_exit;

}

● The number of rows affected by DELETE statement

printf("\n%d row deleted.\n\n", sqlca.sqlerrd[2]);

return SUCCESS;

fail_exit:

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

return FAILURE;

}

● Start function

int main(int aArgc, char** aArgv)

{

SQLHENV sEnv = NULL;

SQLINTEGER sState = 0;

xa_switch_t * sXaSwitch;

XID sXid;

sXaSwitch = SQLGetXaSwitch();

● If a user calls SQLAllocEnv() which is included in GOLDILOCKS ODBC

GOLDILOCKS_SQL_TRY(SQLAllocHandle(SQL_HANDLE_ENV,

NULL,

&sEnv));

sState = 1;

Advanced Topic | 3,185

● SQLSetEnvAttr sets attributes which controls aspects of environments.

GOLDILOCKS_SQL_TRY(SQLSetEnvAttr(sEnv,

SQL_ATTR_ODBC_VERSION,

(SQLPOINTER)SQL_OV_ODBC3,

0));

if((sXaSwitch->xa_open_entry)("DSN=GOLDILOCKS;UID=test;PWD=test;CONN_NAME=XA_CONN", 0,

TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 2;

sXid.formatID = 0;

sXid.gtrid_length = 2;

sXid.bqual_length = 1;

memcpy(sXid.data, "100", sXid.gtrid_length + sXid.bqual_length);

● Create table

if(testCreateTable() != SUCCESS)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 3;

if((sXaSwitch->xa_start_entry)(&sXid, 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 4;

● Insert row

if(testInsert() != SUCCESS)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

● Update row

if(testUpdate() != SUCCESS)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

3,186 | Embedded SQL

}

● Select row

if(testSelect() != SUCCESS)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

● Delete row

if(testDelete() != SUCCESS)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 3;

if((sXaSwitch->xa_end_entry)(&sXid, 0, TMSUCCESS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

if((sXaSwitch->xa_prepare_entry)(&sXid, 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

if((sXaSwitch->xa_commit_entry)(&sXid, 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 2;

● Drop table

if(testDropTable() != SUCCESS)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

sState = 1;

if((sXaSwitch->xa_close_entry)("", 0, TMNOFLAGS) != XA_OK)

{

GOLDILOCKS_SQL_THROW(GOLDILOCKS_FINISH_LABEL);

}

Advanced Topic | 3,187

● SQLFreeHandleEnv releases resources related to the environment.

sState = 0;

GOLDILOCKS_SQL_TRY(SQLFreeHandle(SQL_HANDLE_ENV,

sEnv));

sEnv = NULL;

return EXIT_SUCCESS;

GOLDILOCKS_FINISH;

if(sEnv != NULL)

{

PrintDiagnosticRecord(SQL_HANDLE_ENV, sEnv);

}

switch(sState)

{

case 4:

(void)(sXaSwitch->xa_end_entry)(&sXid, 0, TMSUCCESS);

(void)(sXaSwitch->xa_prepare_entry)(&sXid, 0, TMNOFLAGS);

(void)(sXaSwitch->xa_commit_entry)(&sXid, 0, TMNOFLAGS);

case 3:

(void)testDropTable();

case 2:

(void)(sXaSwitch->xa_close_entry)("", 0, TMNOFLAGS);

case 1:

(void)SQLFreeHandle(SQL_HANDLE_ENV, sEnv);

sEnv = NULL;

default:

break;

}

return EXIT_FAILURE;

}

3,188 | Embedded SQL

27.4 Embedded SQL Reference

This chapter describes the SQL statements which are available only in the embedded SQL applications of

GOLDILOCKS. The embedded SQL statements on the source code should have the following syntax.

<statement> ::= EXEC SQL <exec sql statement>;

<exec sql statement> ::=

<embedded SQL statement>

| <embedded get group_id statement>

| <embedded specific statement>

;

<embedded SQL statement> ::=

[AT <db_name>] [ATOMIC] [FOR <iteration_count>] <sql statement>

;

<embedded get group_id statement> ::=

[AT <db_name>] <get group_id statement> <sql statement>

<embedded specific statement> ::=

<autocommit statement>

| <declare section statement>

| <include statement>

| <exception statement>

| <context statement>

| <option statement>

;

<autocommit statement> ::= [AT <db_name>] AUTOCOMMIT { ON | OFF };

<declare section statement> ::= { BEGIN | END } DECLARE SECTION;

<include statement> ::= INCLUDE { SQLCA | <identifier> };

<exception statement> ::= WHENEVER <exception_condition> <exception_action>;

<context statement> ::= CONTEXT <context action>;

<context action> ::=

ALLOCATE :context_name

| FREE :context_name

| USE :context_name

| USE DEFAULT

;

<option statement> ::= OPTION (<option>);

<get group_id statement> :: GET GROUPID INTO :group_id;

Embedded SQL Reference | 3,189

EXEC SQL AT

Feature

It specifies the connection name applied to the embedded SQL statement.

Syntax

EXEC SQL [AT <db_name>] ...

<db_name> ::=

<identifier>

| :hostvar

;

Description

The connection name can be specified when connected in the embedded SQL application. The name is u

sed when the embedded SQL statement is performed by using the certain connection.

Example

{

...

EXEC SQL AT :conn_name CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL AT :conn_name

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

...

}

For More Information

Refer to Connection.

3,190 | Embedded SQL

EXEC SQL ATOMIC INSERT

Feature

It performs the atomic array insert.

Syntax

EXEC SQL ATOMIC <insert_statement>;

Description

Atomic array insert is performed in an embedded SQL application. Atomic array insert is for inserting mult

iple rows at once. It succeeds only when the entire row is inserted. If any row fails to be inserted, the inse

rtion of the entire rows is failed.

It has a better performance than the individual insertion because the insertion is performed with a single

command.

Example

{

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting the values of emp_number, emp_name, dept_number

EXEC SQL ATOMIC INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

}

Embedded SQL Reference | 3,191

For More Information

Refer to Atomic Insert.

3,192 | Embedded SQL

EXEC SQL AUTOCOMMIT

Feature

It changes the autocommit setting.

Syntax

EXEC SQL AUTOCOMMIT { ON | OFF };

Description

It sets the autocommit as follows.

Table 27-24 Setting the autocommit

Flag Description

ON Statement is executed and then autocommit is performed.

OFF Commit is not performed until the explicit commit statement comes.

Example

{

...

EXEC SQL AT :conn_name CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL AUTOCOMMIT ON;

EXEC SQL AT :conn_name

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

...

}

For More Information

Refer to Auto Commit.

Embedded SQL Reference | 3,193

EXEC SQL BEGIN DECLARE SECTION

Feature

It is a precompiler indicator, and it specifies the host variable declaration area.

Syntax

EXEC SQL BEGIN DECLARE SECTION;

Description

It is a precompiler indicator which specifies the host variable declaration section, and it is always used tog

ether with EXEC SQL END DECLARE SECTION. When precompiler encounters this statement, it is regarde

d as the start of declare section, and the variable thereafter is processed as the host variable.

Example

{

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

...

}

For More Information

Refer to the followings.

● Declaring Host Variable

● EXEC SQL END DECLARE SECTION

3,194 | Embedded SQL

EXEC SQL COMMIT RELEASE

Feature

It commits the transaction and terminates the current connection.

Syntax

EXEC SQL [AT <db_name>] COMMIT [WORK] RELEASE;

Description

It commits the transaction and terminates the current connection.

EXEC SQL AT :conn_name COMMIT RELEASE;

The statement above is as same as the following.

EXEC SQL AT :conn_name COMMIT;

EXEC SQL AT :conn_name DISCONNECT;

Example

{

...

EXEC SQL AT :conn_name CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL AT :conn_name

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

EXEC SQL AT :conn_name COMMIT RELEASE;

...

}

For More Information

Embedded SQL Reference | 3,195

Refer to RELEASE Option.

3,196 | Embedded SQL

EXEC SQL CONNECT

Feature

It connects to GOLDILOCKS.

Syntax

EXEC SQL [AT <db_name>] CONNECT <user_name> IDENTIFIED BY <password> [AT <db_name>] [

USING <conn_string>]

<db_name> ::=

<identifier>

| :hostvar

;

<user_name> ::=

<identifier>

| :hostvar

;

<password> ::=

<identifier>

| :hostvar

;

<conn_string> ::= :hostvar;

Description

It sets the connection to GOLDILOCKS.

Example

{

...

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

...

}

Embedded SQL Reference | 3,197

For More Information

Refer to Connecting to Database.

3,198 | Embedded SQL

EXEC SQL CONTEXT ALLOCATE

Feature

It allocates the run-time context memory.

Syntax

EXEC SQL CONTEXT ALLOCATE :context;

Description

It allocates run-time context memory. It should be allocated for variable of SQL_CONTEXT type after the v

ariable of SQL_CONTEXT type is declared in declare section to allocate the run-time context. This stateme

nt allocates the memory only, so to use it, USE should be specified and perform the connect.

Example

{

...

EXEC SQL BEGIN DECLARE SECTION;

SQL_CONTEXT ctxt;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONTEXT ALLOCATE :ctxt;

EXEC SQL CONTEXT USE :ctxt;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

EXEC SQL DISCONNECT;

EXEC SQL CONTEXT FREE :ctxt;

...

}

Embedded SQL Reference | 3,199

For More Information

Refer to SQL_CONTEXT.

3,200 | Embedded SQL

EXEC SQL CONTEXT FREE

Feature

It frees the run-time context memory.

Syntax

EXEC SQL CONTEXT FREE :context;

Description

It frees run-time context memory. Disconnect should be performed before freeing the run-time context s

o that the connection will not be used any more. Otherwise, an unexpected error may occur.

Example

{

...

EXEC SQL BEGIN DECLARE SECTION;

SQL_CONTEXT ctxt;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONTEXT ALLOCATE :ctxt;

EXEC SQL CONTEXT USE :ctxt;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

EXEC SQL DISCONNECT;

EXEC SQL CONTEXT FREE :ctxt;

...

}

Embedded SQL Reference | 3,201

For More Information

Refer to SQL_CONTEXT.

3,202 | Embedded SQL

EXEC SQL CONTEXT USE

Feature

It informs the use of run-time context.

Syntax

EXEC SQL CONTEXT USE { :context | DEFAULT };

Description

It is an indicator which informs the precompiler of the use of run-time context, and it specifies the run-ti

me context to be used. The run-time context which is declared and allocated by a user can be used by usi

ng SQL_CONTEXT variable in USE statement, and the default context in the application is used when perf

orming the USE DEFAULT statement.

Example

{

...

EXEC SQL BEGIN DECLARE SECTION;

SQL_CONTEXT ctxt;

double max_sal;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONTEXT ALLOCATE :ctxt;

EXEC SQL CONTEXT USE :ctxt;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

EXEC SQL COMMIT RELEASE;

EXEC SQL CONTEXT FREE :ctxt;

EXEC SQL CONTEXT USE DEFAULT;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

Embedded SQL Reference | 3,203

EXEC SQL

SELECT MAX(sal)

INTO max_sal

FROM EMP

WHERE JOB = 'SALES';

EXEC SQL DISCONNECT;

...

}

For More Information

Refer to SQL_CONTEXT.

3,204 | Embedded SQL

EXEC SQL DISCONNECT

Feature

It disconnects from GOLDILOCKS.

Syntax

EXEC SQL [AT <db_name>] DISCONNECT [ALL]

Description

It disconnects from GOLDILOCKS. A specific connection can be freed with AT clause, and the current con

nection is freed if AT clause is not used. All connections which are used in the current application are free

d by using DISCONNECT ALL.

Example

{

...

EXEC SQL AT :conn_name DISCONNECT;

...

}

For More Information

Refer to Disconnecting Database.

Embedded SQL Reference | 3,205

EXEC SQL END DECLARE SECTION

Feature

It is a precompiler indicator, and it specifies the the host variable declaration section.

Syntax

EXEC SQL END DECLARE SECTION;

Description

It is a precompiler indicator which specifies the host variable declaration section, and it is always used tog

ether with EXEC SQL BEGIN DECLARE SECTION. When precompiler encounters this statement during ana

lyzing the declare section, it is regarded as the end of the declare section.

Example

{

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

EXEC SQL END DECLARE SECTION;

...

}

For More Information

Refer to the followings.

● Declaring Host Variable

● EXEC SQL BEGIN DECLARE SECTION

3,206 | Embedded SQL

EXEC SQL FOR

Feature

It specifies the number of arrays in array operation.

Syntax

EXEC SQL FOR { :array_count | integer_constant } <sql statement>;

Description

If the host variable of the SQL statement is an array, it is a precompiler indicator which specifies the array

count. When FOR clause is given, the array count of the host array is ignored and the arrays as many as th

e number specified in FOR clause are performed.

The constant or variable which refers to array count should be an integer.

Example

EXEC SQL BEGIN DECLARE SECTION;

int emp_number[20];

char emp_name[20][10];

int dept_number[20];

int record_cnt;

EXEC SQL END DECLARE SECTION;

● Setting the values of emp_number, emp_name, dept_number

...

● Inserting emp_number, emp_name, dept_number

record_cnt = 10;

EXEC SQL FOR :record_cnt INSERT INTO emp (empno, ename, deptno)

VALUES (:emp_number, :emp_name, :dept_number);

Embedded SQL Reference | 3,207

For More Information

Refer to Using FOR Clause.

3,208 | Embedded SQL

EXEC SQL GET GROUPID INTO

Feature

It obtains the group ID of the SQL statement.

Syntax

EXEC SQL [AT <db_name>] GET GROUPID INTO :group_id { delete_stmt | insert_stmt | select_stmt

| update_stmt };

Description

It obtains the the group ID of the SQL statement in the cluster environment which uses the global connec

tion. Only the signed numeric type is allowed for the host variable :group_id. The group ID can be obtain

ed only for the delete, insert, select, update SQL statement, and the shard key should be set in the table i

n advance.

The SQL statement which obtained the group ID is internally cached in SQLPrepare status without executi

ng SQLExecute.

Caution

-1 which is an invalid group ID value can be returned.

Example

{

EXEC SQL BEGIN DECLARE SECTION;

int group_id[10];

int emp_no[10];

char emp_name[10][20];

int dept_no[10];

EXEC SQL END DECLARE SECTION;

● Set emp_no, emp_name, dept_no values

Embedded SQL Reference | 3,209

...

● Obtain the group id.

EXEC SQL GET GROUPID INTO :group_id

INSERT INTO emp (empno, ename, deptno) VALUES (:emp_no, :emp_name, :dept_no);

● INSERT emp_no, emp_name, dept_no.

EXEC SQL INSERT INTO emp (empno, ename, deptno) VALUES (:emp_no, :emp_name, :dept_no);

}

3,210 | Embedded SQL

EXEC SQL INCLUDE

Feature

It includes the embedded SQL header file.

Syntax

EXEC SQL INCLUDE <Header file name>;

Description

It includes the embedded SQL header file. If the header file is included with #include of C language, the p

recompiler does not interpret it, so the precompiler can not recognize it even when the information whic

h the precompiler should recognize such as declare section in the header file is included in it. Therefore, t

he EXEC SQL INCLUDE statement should be used when the embedded SQL statement which the precom

piler should recognize is used.

Example

EXEC SQL INCLUDE decl.h;

For More Information

Refer to Precompiled Header File.

Embedded SQL Reference | 3,211

EXEC SQL INCLUDE SQLCA

Feature

It includes sqlca.h header file.

Syntax

EXEC SQL INCLUDE SQLCA;

Description

It is a special type of EXEC SQL INCLUDE statement, and it includes sqlca.h header file supported by GOL

DILOCKS. This header file is required for run-time exception handling in the embedded SQL application.

Example

EXEC SQL INCLUDE SQLCA;

For More Information

Refer to Detecting Run-time Error.

3,212 | Embedded SQL

EXEC SQL OPTION

Feature

It applies the option to the process of precompiling the embedded SQL source code.

Syntax

EXEC SQL OPTION (<option_desc>);

<option_desc> ::=

INCLUDE = <directory path>

;

Description

It describes the option which is applied to the process of precompiling the embedded SQL source code. It

supports only specifying INCLUDE path in the current version, and the option specifies the directory of the

header file to be precompiled in EXEC SQL INCLUDE.

Example

EXEC SQL OPTION (INCLUDE = include);

For More Information

Refer to Specifying Header File Path.

Embedded SQL Reference | 3,213

EXEC SQL ROLLBACK RELEASE

Feature

It rolls back the transaction, then releases the connection.

Syntax

EXEC SQL [AT <db_name>] ROLLBACK [WORK] RELEASE;

Description

It rolls back the transaction, then releases the current connection.

EXEC SQL AT :conn_name ROLLBACK RELEASE;

The statement above is as same as the following.

EXEC SQL AT :conn_name ROLLBACK;

EXEC SQL AT :conn_name DISCONNECT;

Example

{

...

EXEC SQL AT :conn_name CONNECT :uid IDENTIFIED BY :pwd USING :conn_str;

EXEC SQL AT :conn_name

UPDATE EMP

SET sal = sal * 1.1

WHERE JOB = 'SALES';

EXEC SQL AT :conn_name ROLLBACK RELEASE;

...

}

For More Information

3,214 | Embedded SQL

Refer to RELEASE Option.

Embedded SQL Reference | 3,215

EXEC SQL WHENEVER

Feature

It executes run-time exception handling in the embedded SQL application.

Syntax

EXEC SQL WHENEVER <conditions> <actions>;

<conditions> ::=

SQLERROR

| SQLWARNING

| NOT FOUND

| SQLSTATE <sqlstate class value>[<sqlstate subclass value>]

;

<sqlstate_char> ::= [0-9A-Z];

<sqlstate class value> ::= <sqlstate_char> <sqlstate_char>;

<sqlstate subclass value> ::= <sqlstate_char> <sqlstate_char> <sqlstate_char>;

<actions> ::=

CONTINUE

| GOTO <label>

| STOP

| DO <c statements>

;

Description

It automates and processes the run-time exception handling in an embedded SQL application. There are f

our conditions, a single action can be specified per each condition. The action can be reassigned as neede

d. For more information, refer to Handling Implicit Error.

Example

EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL WHENEVER SQLERROR GOTO exit_label;

EXEC SQL WHENEVER NOT FOUND DO break;

EXEC SQL WHENEVER SQLERROR GOTO close_label;

EXEC SQL WHENEVER SQLERROR DO sql_error();

3,216 | Embedded SQL

EXEC SQL WHENEVER SQLWARNING CONTINUE;

EXEC SQL WHENEVER SQLSTATE HY000 DO sql_error();

For More Information

Refer to Handling Implicit Error.

PDO

28.

3,217

3,218 | PDO

28.1 Overview of PDO

GOLDILOCKS PDO (PDO_GOLDILOCKS) driver provides PDO interface to access GOLDILOCKS database in

PDO, and it is provides in a package.

PDO_GOLDILOCKS is built based on GOLDILOCKS CLI driver.

28.2 Installation /Configuration

Requirement

The client package of GOLDILOCKS should be installed in the system which is as same as that of PHP, and

environment variables of $GOLDILOCKS_HOME should be set.

Installation

Installation by Using PECL

Create the package file if PDO_GOLDILOCKS package file does not exist.

% pecl pickle

Attempting to process the second package file

Package PDO_GOLDILOCKS-3.2.0.tgz done

Install the package by using PECL if PDO_GOLDILOCKS package file exists.

% sudo -E pecl install PDO_GOLDILOCKS-3.2.0.tgz

Installation by Building the Source

1. Decompress PDO_GOLDILOCKS.

% tar xvzf PDO_GOLDILOCKS-3.2.0.tgz

% cd PDO_GOLDILOCKS-3.2.0

Installation /Configuration | 3,219

2. Create the environment for the build.

Create the build environment for PDO_GOLDILOCKS expanded module by using phpize command.

If phpize command can not be found, PHP devel package in an appropriate version should be installed.

% whereis phpize

phpize: /usr/bin/phpize /usr/share/man/man1/phpize.1.gz

% /usr/bin/phpize

Configuring for:

PHP Api Version: 20121113

Zend Module Api No: 20121212

Zend Extension Api No: 220121212

3. Build it.

Execute configure by adding the path of $GOLDILOCKS_HOME to --with-pdo-goldilocks option and addi

ng the path of php-config to --with-php-config option, then build it.

% whereis php-config

php-config: /usr/bin/php-config /usr/share/man/man1/php-config.1.gz

% ./configure --with-php-config=/usr/bin/php-config

--with-pdo-goldilocks=/home/goldilocks/goldilocks_home/

% make

4. Install it.

% sudo -E make install

Altering PHP Configuration File

When using CentOS 6.0 or higher or Fedora 15 or higher, the pdo_goldilocks.ini file should be created in

/etc/php.d directory and extension property should be added as follows.

extension=pdo_goldilocks.so

When using other OS extension_dir should be appropriately set in php.ini file and add extension property

should be added as follows.

3,220 | PDO

extension=pdo_goldilocks.so

Restarting Web Server

Restart the web server.

Checking Installation of PDO_GOLDILOCKS

Check whether PDO_GOLDILOCKS is activated by using phpinfo().

% php -i | grep PDO

PDO

PDO support => enabled

PDO drivers => goldilocks, sqlite

PDO Driver for GOLDILOCKS => enabled

PDO Driver for SQLite 3.x => enabled

28.3 Usage

Data Source Name (DSN)

Data Source Name (DSN) of PDO_GOLDILOCKS is configured as follows.

Property Description

DSN prefix goldilocks

DSN ODBC Data Source Name (DSN)

HOST IP address of a server

PORT PORT number of server

UID User ID

PWD User password

Examples | 3,221

28.4 Examples

● Connecting to GOLDILOCKS

print "\n[Connecting to GOLDILOCKS]\n";

$db = new PDO('goldilocks:HOST=192.168.0.16;PORT=22581', 'test', 'test');

//$db = new PDO('goldilocks:DSN=GOLDILOCKS;UID=test;PWD=test');

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

● Set test data

$result = $db->exec('DROP TABLE IF EXISTS t1');

$result = $db->exec('CREATE TABLE t1 (id INTEGER GENERATED BY DEFAULT AS IDENTITY, name

VARCHAR(32))');

$result = $db->exec("INSERT INTO t1(name) VALUES ('Carol')");

$result = $db->exec("INSERT INTO t1(name) VALUES ('Ted')");

$result = $db->exec("INSERT INTO t1(name) VALUES (null)");

$result = $db->exec("INSERT INTO t1(name) VALUES ('William')");

$result = $db->exec("INSERT INTO t1(name) VALUES ('Chelsea')");

$result = $db->exec("INSERT INTO t1(name) VALUES ('Colin')");

$result = $db->exec('DROP TABLE IF EXISTS t2');

$result = $db->exec('CREATE TABLE t2 (id INTEGER, name VARCHAR(32))');

$result = $db->exec("INSERT INTO t2 VALUES (1, 'John')");

$result = $db->exec("INSERT INTO t2 VALUES (1, 'John')");

$result = $db->exec("INSERT INTO t2 VALUES (1, 'John')");

$result = $db->exec("INSERT INTO t2 VALUES (2, 'Smith')");

$result = $db->exec("INSERT INTO t2 VALUES (2, 'Smith')");

$result = $db->exec('DROP TABLE IF EXISTS images');

$result = $db->exec('CREATE TABLE images (id INTEGER, contenttype VARCHAR(256), imagedata

LONG VARBINARY)');

$result = $db->exec('DROP PROCEDURE IF EXISTS sp_out_string');

$result = $db->exec("CREATE OR REPLACE PROCEDURE sp_out_string(v1 OUT VARCHAR(32)) ".

"IS ".

"BEGIN ".

" v1 := 'WORLD'; ".

"END; ");

$result = $db->exec('DROP PROCEDURE IF EXISTS sp_inout_string');

$result = $db->exec("CREATE OR REPLACE PROCEDURE sp_inout_string(v1 INOUT VARCHAR(32)) ".

"IS ".

"BEGIN ".

3,222 | PDO

" v1 := V1 || ' WORLD'; ".

"END; ");

● Quoting a normal string

print "\n[Quoting a normal string]\n";

$string = 'Nice';

print "Unquoted string: $string\n";

print "Quoted string : " . $db->quote($string) . "\n";

● Quoting a dangerous string

print "\n[Quoting a dangerous string]\n";

$string = 'Naughty \' string';

print "Unquoted string: $string\n";

print "Quoted string :" . $db->quote($string) . "\n";

● Quoting a complex string

print "\n[Quoting a complex string]\n";

$string = "Co'mpl''ex \"st'\"ring";

print "Unquoted string: $string\n";

print "Quoted string : " . $db->quote($string) . "\n";

● Handling an error

print "\n[Error Handling]\n";

try

{

//connect as appropriate as above

$db->query('invalid query'); //invalid query!

}

catch(PDOException $ex)

{

print "ERROR:".$ex->getMessage()."\n";

}

● Retrieving column metadata

print "\n[Retrieving column metadata]\n";

$stmt = $db->query('SELECT * FROM t1');

foreach(range(0, $stmt->columnCount() - 1) as $column_index)

Examples | 3,223

{

$meta = $stmt->getColumnMeta($column_index);

var_dump($meta);

}

● Running simple select statements

print "\n[Running Simple Select Statements]\n";

print "\n#1\n";

foreach($db->query('SELECT * FROM t1') as $row)

{

print $row['ID'].' '.$row['NAME']."\n";

}

print "\n#2\n";

$stmt = $db->query('SELECT * FROM t1');

while($row = $stmt->fetch(PDO::FETCH_ASSOC))

{

print $row['ID'].' '.$row['NAME']."\n";

}

● Fetching rows using different fetch styles

print "\n[Fetching rows using different fetch styles]\n";

$stmt = $db->prepare("SELECT id, name FROM t1");

$stmt->execute();

print("PDO::FETCH_ASSOC: ");

print("Return next row as an array indexed by column name\n");

$result = $stmt->fetch(PDO::FETCH_ASSOC);

print_r($result);

print("\n");

print("PDO::FETCH_BOTH: ");

print("Return next row as an array indexed by both column name and number\n");

$result = $stmt->fetch(PDO::FETCH_BOTH);

print_r($result);

print("\n");

print("PDO::FETCH_LAZY: ");

print("Return next row as an anonymous object with column names as properties\n");

$result = $stmt->fetch(PDO::FETCH_LAZY);

print_r($result);

print("\n");

print("PDO::FETCH_OBJ: ");

3,224 | PDO

print("Return next row as an anonymous object with column names as properties\n");

$result = $stmt->fetch(PDO::FETCH_OBJ);

print $result->NAME;

print("\n");

● Fetching rows with a scrollable cursor

print "\n[Fetching rows using different fetch styles]\n";

print "\n[Fetching rows with a scrollable cursor]\n";

$sql = 'SELECT id, name FROM t1 ORDER BY id';

print "Reading forwards:\n";

try

{

$stmt = $db->prepare($sql, array(PDO::ATTR_CURSOR => PDO::CURSOR_SCROLL));

$stmt->execute();

while($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_NEXT))

{

$data = $row[0] . "\t" . $row[1] . "\n";

print $data;

}

$stmt = null;

}

catch (PDOException $e)

{

print $e->getMessage();

}

print "Reading backwards:\n";

try

{

$stmt = $db->prepare($sql, array(PDO::ATTR_CURSOR => PDO::CURSOR_SCROLL));

$stmt->execute();

$row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_LAST);

do

{

$data = $row[0] . "\t" . $row[1] . "\n";

print $data;

} while($row = $stmt->fetch(PDO::FETCH_NUM, PDO::FETCH_ORI_PRIOR));

$stmt = null;

}

catch (PDOException $e)

{

Examples | 3,225

print $e->getMessage();

}

● Constructing an order

print "\n[Construction order]\n";

class Person

{

private $NAME;

public function __construct()

{

$this->tell();

}

public function tell()

{

if (isset($this->NAME))

{

print "I am {$this->NAME}.\n";

}

else

{

print "I don't have a name yet.\n";

}

}

}

$stmt = $db->query("SELECT name FROM t1");

$stmt->setFetchMode(PDO::FETCH_CLASS, 'Person');

$person = $stmt->fetch();

$person->tell();

$stmt->setFetchMode(PDO::FETCH_CLASS|PDO::FETCH_PROPS_LATE, 'Person');

$person = $stmt->fetch();

$person->tell();

● Running simple INSERT, UPDATE, or DELETE statements

print "\n[Running Simple INSERT, UPDATE, or DELETE statements]\n";

$affected_rows = $db->exec("INSERT INTO t1(name) VALUES ('John'), ('Marry')");

print $affected_rows." were affected\n";

● Getting the last insert id

3,226 | PDO

print "\n[Getting the Last Insert Id]\n";

$affected_rows = $db->exec("INSERT INTO t1(name) VALUES ('Smith')");

$insertId = $db->lastInsertId();

print "last insert id : ".$insertId."\n";

● Running statements with parameters

print "\n[Running Statements With Parameters]\n";

print "\n#1 array\n";

$id = 1;

$name = 'John';

$stmt = $db->prepare("SELECT * FROM t2 WHERE id=? AND name=?");

$stmt->execute(array($id, $name));

$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);

var_dump($rows);

print "\n#2 bindValue\n";

$id = 2;

$name = 'Smith';

$stmt = $db->prepare("SELECT * FROM t2 WHERE id=? AND name=?");

$stmt->bindValue(1, $id, PDO::PARAM_INT);

$stmt->bindValue(2, $name, PDO::PARAM_STR);

$stmt->execute();

$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);

var_dump($rows);

● Named placeholders

print "\n[Named Placeholders]\n";

print "\n#1 array\n";

$id = 1;

$name = 'John';

$stmt = $db->prepare("SELECT * FROM t2 WHERE id=:id AND name=:name");

$stmt->execute(array(':name' => $name, ':id' => $id));

$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);

var_dump($rows);

print "\n#2 bindValue\n";

$id = 2;

$name = 'Smith';

$stmt = $db->prepare("SELECT * FROM t2 WHERE id=:id AND name=:name");

$stmt->bindValue(':id', $id, PDO::PARAM_INT);

$stmt->bindValue(':name', $name, PDO::PARAM_STR);

Examples | 3,227

$stmt->execute();

$rows = $stmt->fetchAll(PDO::FETCH_ASSOC);

var_dump($rows);

● Executing prepared statements in a loop

print "\n[Executing prepared statements in a loop]\n";

$values = array('bob', 'alice', 'lisa', 'john');

$name = '';

$stmt = $db->prepare("INSERT INTO t1(name) VALUES(:name)");

$stmt->bindParam(':name', $name, PDO::PARAM_STR);

foreach($values as $name)

{

$stmt->execute();

}

foreach($db->query('SELECT * FROM t1') as $row)

{

print $row[0].' '.$row[1]."\n";

}

● Calling a stored procedure with an output parameter

print "\n[Calling a stored procedure with an output parameter]\n";

$stmt = $db->prepare("CALL sp_out_string(?)");

$stmt->bindParam(1, $value, PDO::PARAM_STR, 32);

$stmt->execute();

print "procedure returned $value\n";

● Calling a stored procedure with an input/output parameter

print "\n[Calling a stored procedure with an input/output parameter]\n";

$stmt = $db->prepare("CALL sp_inout_string(?)");

$value = 'HELLO';

$stmt->bindParam(1, $value, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 32);

$stmt->execute();

print "procedure returned $value\n";

● Transactions

print "\n[Transactions]\n";

print "\n#1 commit\n";

try

3,228 | PDO

{

$db->beginTransaction();

$db->exec("INSERT INTO t1(name) VALUES('kim')");

$name = 'lee';

$stmt = $db->prepare("INSERT INTO t1(name) VALUES(?)");

$stmt->execute(array($name));

$id = 3;

$name = 'park';

$stmt = $db->prepare("INSERT INTO t2 VALUES(?, ?)");

$stmt->execute(array($id, $name));

$db->commit();

}

catch(PDOException $ex)

{

//Something went wrong rollback!

$db->rollBack();

print $ex->getMessage()."\n";

}

print "\nT1\n";

foreach($db->query('SELECT * FROM t1') as $row)

{

print $row[0].' '.$row[1]."\n";

}

print "\nT2\n";

foreach($db->query('SELECT * FROM t2') as $row)

{

print $row[0].' '.$row[1]."\n";

}

print "\n#2 rollback\n";

try

{

$db->beginTransaction();

$db->exec("INSERT INTO t1(name) VALUES('KIM')");

$name = 'LEE';

$stmt = $db->prepare("INSERT INTO t1(name) VALUES(?)");

$stmt->execute(array($name));

Examples | 3,229

$id = 3;

$name = 'PARK';

$stmt = $db->prepare("INSERT INTO invalid VALUES(?, ?)");

$stmt->execute(array($id, $name));

$db->commit();

}

catch(PDOException $ex)

{

//Something went wrong rollback!

$db->rollBack();

print $ex->getMessage()."\n";

}

print "\nT1\n";

foreach($db->query('SELECT * FROM t1') as $row)

{

print $row[0].' '.$row[1]."\n";

}

print "\nT2\n";

foreach($db->query('SELECT * FROM t2') as $row)

{

print $row[0].' '.$row[1]."\n";

}

● Inserting an image into a database

print "\n[Inserting an image into a database]\n";

try

{

$stmt = $db->prepare("INSERT INTO images (id, contenttype, imagedata) VALUES (?, ?, ?)");

$id = 1;

$type = "image/png";

$fp = fopen("logo.png", "rb");

$stmt->bindParam(1, $id, PDO::PARAM_INT);

$stmt->bindParam(2, $type, PDO::PARAM_STR, 256);

$stmt->bindParam(3, $fp, PDO::PARAM_LOB);

$db->beginTransaction();

$stmt->execute();

$db->commit();

}

catch(PDOException $ex)

3,230 | PDO

{

$db->rollBack();

print $ex->getMessage()."\n";

}

foreach($db->query('SELECT id, contenttype, lengthb(imagedata) FROM images') as $row)

{

print $row[0].' '.$row[1].' '.$row[2]."\n";

}

● Displaying an image from a database

print "\n[Displaying an image from a database]\n";

try

{

$stmt = $db->prepare("SELECT contenttype, imagedata FROM images WHERE id = ?");

$id = 1;

$stmt->execute(array($id));

$stmt->bindColumn(1, $type, PDO::PARAM_STR, 256);

$stmt->bindColumn(2, $lob, PDO::PARAM_LOB);

$stmt->fetch(PDO::FETCH_BOUND);

print 'Content-Type: '.$type."\n";

print 'size: '.file_put_contents($id.".png", $lob)."\n";

}

catch(PDOException $ex)

{

print $ex->getMessage()."\n";

}

PyDBC

29.

3,231

3,232 | PyDBC

29.1 GOLDILOCKS PyDBC

Overview

PyDBC programs Python accessing GOLDILOCKS database by using API which complies with Python Data

base API Specification v2.0(PEP 249).

PyDBC requires the Python standard library, and the internal operation which connects to and operate G

OLDILOCKS database requires ODBC library because it calls ODBC API. PyDBC basically uses ODBC library

$GOLDILOCKS_HOME/lib/libgoldilocksas.so, and a user can update it.

The internal operation of PyDBC uses ODBC driver, so it is as same as Overview of ODBC Components. T

here are an architecture of which an application links to the driver manager, and an architecture of which

an application links to GOLDILOCKS ODBC driver library.

Version

The information of GOLDILOCKS PyDBC version can be viewed by executing pygoldilocks.so file as follow

s.

shell>python

>>> import pygoldilocks

>>> print pygoldilocks.version

3.2.0

The current version of GOLDILOCKS PyDBC driver is 3.2.0 according to GOLDILOCKS version, and this driv

er complies with the standard Python database API 2.0. PyDBC driver supports Python 2.7, 3.4, 3.5, 3.6 v

ersions, and PyDBC driver library should be installed according to each Python version.

Installation

The source should be built to install PyDBC. PyDBC links gdlcs library in GOLDILOCKS_HOME/lib and it inc

ludes goldilocks.h header file in GOLDILOCKS_HOME/include, so the environment variable GOLDILOCKS_

HOME should be set in an appropriate position.

https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/

GOLDILOCKS PyDBC | 3,233

Installation on Linux

Linux requires the gcc compiler, and it is built as follows.

shell> sudo python setup.py install

Note

It does not support HP-UX nor AIX platform.

Installation on Windows

It is built on Windows as follows.

shell> python setup.py install

An appropriate Microsoft Visual C++ compiler according to python version is required to compile PyDBC

For more information, refer to https://wiki.python.org/moin/WindowsCompilers.

● Visual Studio 2003.NET compiler is required to build Python version 2.4 or 2.5, and there is not a free

ware for this version.

● Visual C++ 2008 compiler is required to build Python version 2.6, 2.7, 3.0, 3.2, and the freeware for t

his version is Visual C++ 2008 Express.

● Visual C++ 2010 compiler is required to build Python version 3.3, 3.4, and the freeware for this versi

on is Visual C++ 2010 Express.

● Visual C++ 2014 or VC 2017 compiler is required to build Python version 3.5, 3.6.

● Visual C++ 2017 compiler is required to build Python version 3.7.

Examples

● Obtain the connection as follows.

import pygoldilocks

cnxn = pygoldilocks.connect('DSN=GOLDILOCKS;UID=test;PWD=test')

Call connect which is an internal function of pygoldilocks, a module of PyDBC, to obtain the connection.

https://wiki.python.org/moin/WindowsCompilers

3,234 | PyDBC

Note

odbc.ini File should be built in advance to use DSN.

● A cursor and a row class can be used as follows.

cursor = cnxn.cursor()

cursor.execute("SELECT NAME, ADDRESS FROM EMP")

rows = cursor.fetchall()

for row in rows:

print row.A, row.B

cursor.close()

cnxn.close()

API Reference | 3,235

29.2 API Reference

pygoldilocks Module

pygoldilocks object complies with Python Database API Specification v2.0.

For more information, refer to Python DB API module.

Properties

● version

○ The version of pygoldilocks module follows that of GOLDILOCKS database. The version is a string

in a form of major.minor.patch.

● apilevel

○ It indicates DB API level 2.0, and the value is "2.0" character string constant.

● lowercase

○ It controls whether to convert the column name from the row object of the result value to lowerc

ase. The default value is false. It is useful when the case of database column does not conform.

● threadsafety

○ It is constant 1, and it does not share the connection even when threads share the module.

● paramstyle

○ It indicates a parameter and the value is the character string constant "qmark" which means a qu

estion mark.

connect

It newly connects to the database.

connect(*connectionstring, **kwargs)

It inputs the ODBC connect string and keywords. The keywords are as follows.

Keyword Description Default value

attrs_before
It sets properties which should be set before the connection. It receives the

value in dictionary type.
-

autocommit
It sets whether to auto commit. If it is false, connection.commit should be c

alled to reflect it in the database.
False

https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/#module-interface

3,236 | PyDBC

readonly If it is true, the connection is set to readonly. False

timeout It sets the timeout for the connection. SQL_ATTR_LOGIN_TIMEOUT is set. -

Keyword Description Default value

● attrs_before

○ It sets options which is to be set before the connection. These options are set by using SQLSetCo

nnectAttr. It receives the properties and values in dictionary type. For more information about co

nfiguration, refer to ODBC attributes.

cnxn = pygoldilocks.connect("DSN=GOLDILOCKS", attr_before={ pygoldilocks.SQL_ATTR_MAX_ROWS :

1000 })

Date

>>> print pygoldilocks.Date(1984,11,23), type(pygoldilocks.Date(1984,11,23))

1984-11-23 <type 'datetime.date'>

It creates a date object corresponding to the given value.

Time

>>> print pygoldilocks.Time(11,23,23), type(pygoldilocks.Time(11,23,23))

11:23:23 <type 'datetime.time'>

It creates a time object corresponding to the given value.

Timestamp

>>> print pygoldilocks.Timestamp(1984,11,23,11,23,23),

type(pygoldilocks.Timestamp(1984,11,23,11,23,23))

1984-11-23 11:23:23 <type 'datetime.datetime'>

It creates a datetime object corresponding to the given value.

DATETIME

>>> print pygoldilocks.DATETIME(1984,11,23,11,23,23),

type(pygoldilocks.DATETIME(1984,11,23,11,23,23))

1984-11-23 11:23:23 <type 'datetime.datetime'>

http://222.108.147.73:1975/r/document/view/adbcb8e985face7b

API Reference | 3,237

It creates a datetime object corresponding to the given value. It is as same as Timestamp.

Binary

>>> print pygoldilocks.Binary('binary'), type(pygoldilocks.Binary('binary'))

binary <type 'bytearray'>

It creates a bytearray object corresponding to the given value. It is as same as BINARY.

BINARY

>>> print pygoldilocks.BINARY('binary'), type(pygoldilocks.BINARY('binary'))

binary <type 'bytearray'>

It creates a bytearray object corresponding to the given value.

STRING

>>> print pygoldilocks.STRING('str'), type(pygoldilocks.STRING('str'))

str <type 'str'>

It creates an str object corresponding to the given value.

NUMBER

>>> print pygoldilocks.NUMBER(100.001), type(pygoldilocks.NUMBER(100.001))

100.001 <type 'float'>

It creates a float object corresponding to the given value.

ROWID

>>> print pygoldilocks.ROWID('AA'), type(pygoldilocks.ROWID('AA'))

AA <type 'str'>

It is used to describe the row ID column of the database, and returns an str object.

3,238 | PyDBC

TimeFromTicks

>>> print pygoldilocks.TimeFromTicks(10)

09:00:10

It returns a datetime.time object which is set as an argument value.

DateFromTicks

>>> print pygoldilocks.DateFromTicks(360000)

1970-01-05

It returns a datetime.date object which is set as an argument value.

TimestampFromTicks

>>> print pygoldilocks.DateFromTicks(360000)

1970-01-05

It returns a datetime.timestamp object which is set as an argument value.

setDecimalSeparator

It sets the decimal point delimiter in NUMERIC type obtained from the database. The default value uses a

period (.).

getDecimalSeparator

It obtains the set decimal point delimiter in NUMERIC type.

Connection

It is an object managing the connection with the database, and it is created with connect() function of py

goldilocks module.

API Reference | 3,239

Properties

● autocommit

○ It can set the autocommit mode of the connection.

● searchescape

○ It obtains an escape character of ODBC. pygoldilocks uses '/'.

● timeout

○ It sets SQL_ATTR_QUERY_TIMEOUT by using SQLSetConnectAttr function.

함수

● cursor()

○ It returns a new cursor object.

● commit()

○ It commits the executed SQL statement.

● rollback()

○ It rolls back the executed SQL statement.

● close()

○ It closes the connection. If the autocommit is false, then the SQL statement which was not comm

itted is rolled back.

● getinfo(info)

○ It can obtain the connection properties by using SQLGetInfo function of ODBC. For more informa

tion, refer to SQLGetInfo.

dns_name = cnxn.getinfo(pygoldilocks.SQL_DATA_SOURCE_NAME)

● execute(sql, [*params])

○ It creates a new cursor object, and executes execute function of this object, then returns a cursor

object.

cursor = cnxn.execute("SELECT COUNT(*) FROM EMP")

For more information, refer to Cursor.execute() function. This function does not exist in Python API, but i

t is provided for the convenience. Whenever this function is called, a cursor object is allocated, so it is not

recommended to use it when it is required to execute one or more SQL statements.

● set_attr(attr_id, value)

3,240 | PyDBC

○ The connection properties can be set by executing SQLSetConnectAttr function.

○ The following is an example of controlling the transaction isolation level of the database by using

set_attr function.

connection.set_attr(pygoldilocks.SQL_ATTR_TXN_ISOLATION, pygoldilocks.SQL_TXN_SERIALIZABLE)

Cursor

Generally, a cursor object means the database cursor which is used to manage the fetch operation. The d

atabase cursor is mapped to ODBC statement handle (HSTMT). The cursor objects which is created by the

same connection are not separated. In other words, all updates executed by a cursor to the database are

also applied to other cursors.

Note

Cursor does not manage the database transaction, but the connection commits or rolls back the tr

ansaction.

Properties

Description

It is the read-only property, and it includes the contents for each column which was returned by SELECT s

tatement executed last with tuple type. Each tuple includes the followings.

1. Column name (or alias)

2. Type code

3. Display size

4. Internal size

5. Precision

6. Scale

7. Nullable

When SELECT statement is not called, then the description is none.

rowcount

It is the number of rows which were updated by SQL statement which was executed last.

API Reference | 3,241

arraysize

It is the number of rows which can be fetched per one time by using fetchmany([size = cursor.arraysize]

) function. The default value 1.

connection

It is the read-only property, and it indicates the connection object which created the corresponding curso

r object.

fast_executemany

If it is set to true, then makes the parameters in array and executes them at once when executing execut

emany(sql, [*params]) function. If it is set to false, it separately executes each parameter.

Function

execute(sql, [*params])

It executes SQL statement through SQLPrepare and SQLExecute functions, then returns a cursor which ca

lled this function.

The parameter option can be used as follows.

cursor.execute("SELECT A FROM TEST WHERE B=? AND C=?", x, y)

cursor.execute("SELECT A FROM TEST WHERE B=? AND C=?", (x, y))

executemany(sql, [*params])

It executes SQL statement for each parameter and returns none. Parameter params should be a sequence

type of a sequence or a sequence generator.

params = [(1, 'A'), (2, 'B')]

cursor.executemany("INSERT INTO TEST(C1, C2) VALUES (?, ?)", params)

SQL statement is executed twice in the example above. In other words, it is separately executed for (1,

'A') and (2, 'B') each. The operation of executemany depends on whether fast_executemany of a cursor

object is set to true or false.

The example above is as same as follows.

params = [(1, 'A'), (2, 'B')]

for p in params:

cursor.execute("INSERT INTO TEST(C1, C2) VALUES (?, ?)", p)

3,242 | PyDBC

If fast_executemany is set to true, executemany processes the operation with only a single execute. For th

at, data in the same index location in items of parameter params should be the same data type.

params = [(1, 'A'), ('2', 'B')]

cursor.executemany("INSERT INTO TEST(C1, C2) VALUES (?, ?)", params)

In the example above, the data type of the first item among two items of parameter params is different. L

ikewise, the data type on the same index location between items are different, then executemany does n

ot process SQL statement at once, but separately processes it.

If the autocommit of a connection object is true, then SQL statement is processed being splited and each

SQL statement is separately committed. If an error occurs while sequentailly processing records, then only

some records are committed to the database and the operation is completed leaving some records are no

t committed. Therefore, it is recommended to set autocommit to false to check if all records are committ

ed to the database when using executemany().

fetchone()

It returns the next row of the query. If the next data does not exist, it is none.

fetchall()

It returns all rows left in the query. Be cautious when using it because it reads all rows to the memory.

fetchmany([size = cursor.arraysize])

It returns rows which were left as many as size or cursor.arraysize. The next data returns an empty sequen

ce data. The default value of cursor.arraysize is 1.

commit()

It commits SQL statement. It is a function executed by a connection object which created a cursor object,

and it is applied to all cursor which were created in the same connection object. It is as same as commit o

f the connection object.

rollback()

It rolls back SQL statement. It is a function executed by a connection object which created a cursor object,

and it is applied to all cursor which were created in the same connection object. It is as same as rollback o

f the connection object.

skip(count)

It passes through the record through SQLFetchScroll and SQL_FETCH_NEXT as many times as it is set in c

ount.

API Reference | 3,243

nextset()

It returns false because GOLDILOCKS ODBC does not support SQLMoreResults.

close()

It closes a cursor object.

setinputsizes(size_list)

It is an optional function, and receives sequence type as a parameter. It sets INPUT parameter size of SQL

BindParameter.

setoutputsize(size)

It is an optional function, and is used for a purpose which is different from that of DB API, and it allocates

the buffer size of OUTPUT parameter.

callproc(procname [, params])

It calls the storage procedure corresponding to procname. The parameter should be a sequence type, and

it includes the output parameter. However, data located in the output parameter when inputting is mean

ingless. callproc function updates data corresponding to INOUT, OUT of the input parameter data, and re

turns it in sequence type.

create_proc = """CREATE OR REPLACE PROCEDURE PROC1(A1 INTEGER, A2 OUT CHAR(10))

IS

V1 CHAR(10);

BEGIN

SELECT T1.I1

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A1;

A2 := V1;

END;\

"""

cursor.execute(create_proc)

result = cursor.callproc('PROC1', (1, 0))

callfunc(funcname [, params])

It calls a function corresponding to funcname. callfunc() returns the function data.

3,244 | PyDBC

create_func = """

CREATE OR REPLACE FUNCTION FUNC1(A1 INTEGER, A2 INTEGER)

RETURN INTEGER

IS

V1 INTEGER;

BEGIN

SELECT COUNT(*)

INTO V1

FROM T1

WHERE T1.I1 >= A1 AND T1.I1 <= A2;

RETURN V1;

END;\

"""

cursor.execute(create_func)

cursor.commit()

result = cussr.callfunc('FUNC1', (1, 4))

tables(table=None, catalog=None, schema=None, tableType=None)

It returns the table information of the database which satisfies the given condition. The character '_' and

'%' are translated as a wild card. Each row has the following column information. For more information,

refer to SQLTables.

1. table_cat: It is the name of the catalog.

2. table_schem: It is the name of the schema.

3. table_name: It is the name of the table.

4. table_type: 'TABLE', 'VIEW', 'SYSTEM TABLE', 'GLOBAL TEMPORARY', 'LOCAL TEMPORARY', 'ALIA

S', 'SYNONYM' or a specific type name can be a table type.

5. remarks: It is a description of a table.

print cursor.tables(table= 'TEST').fetchone()

#print table name

for row in cursor.tables():

print row.table_name

Note

If a parameter is empty, information of all table of which a user has a privilege is returned.

API Reference | 3,245

columns(table=None, catalog=None, schema=None, tableType=None)

It obtains the column information of the specified table through SQLColumns function. Each row include

s the following column information.

1. table_cat

2. table_schem

3. table_name

4. column_name

5. data_type

6. type_name

7. column_size

8. buffer_length

9. decimal_digits

10. num_prec_radix

11. nullable

12. remarks

13. column_def

14. sql_data_type

15. sql_datetime_sub

16. char_octet_length

17. ordinal_position

18. is_nullable: SQL_NULLABLE, SQL_NO_NULLS or SQL_NULLS_UNKNOWN.

#print column name of table TEST

for r in cursor.columns(table = 'TEST'):

print r.column_name

statistics(table, catalog=None, schema=None, unique=False, quick=True)

It obtains the information about the specified table through SQLStatistics function.

If unique is true, it returns an unique index, and if it is false, it returns all indexes.

If quick is true, CARDINALYTIY and PAGES are returned only when it is instantly available, otherwise, NUL

L is returned to the corresponding column.

1. table_cat

2. table_schem

3. table_name

4. non_unique

5. index_qualifier

6. index_name

7. type

3,246 | PyDBC

8. ordinal_position

9. column_name

10. asc_or_desc

11. cardinality

12. pages

13. filter_condition

Note

A wildcard character is not allowed.

rowIdColumns(table, catalog=None, schema=None, nullable=True)

It returns the result set of columns which uniquely identifies a row by executing SQLSpecialColumns with

SQL_BEST_ROWID. Each row includes the following column information.

1. scope: SQL_SCOPE_CURROW, SQL_SCOPE_TRANSACTION, or SQL_SCOPE_SESSION

2. column_name

3. data_type: SQL type constant of ODBC

4. type_name

5. column_size

6. buffer_length

7. decimal_digits

8. pseudo_column: SQL_PC_UNKNOWN, SQL_PC_NOT_PSEUDO or SQL_PC_PSEUDO

rowVerColumns(table, catalog=None, schema=None, nullable=True)

It returns the result set of columns which are automatically updated when a row is updated by executing

SQLSpecialColumns with SQL_ROWVER. Each row includes the following column information.

1. scope: SQL_SCOPE_CURROW, SQL_SCOPE_TRANSACTION, or SQL_SCOPE_SESSION

2. column_name

3. data_type: SQL type constant of ODBC

4. type_name

5. column_size

6. buffer_length

7. decimal_digits

8. pseudo_column: SQL_PC_UNKNOWN, SQL_PC_NOT_PSEUDO, or SQL_PC_PSEUDO

API Reference | 3,247

primaryKeys(table, catalog=None, schema=None)

It returns the result set of columns which configures major keys of a table by executing SQLPrimaryKeys f

unction. Each row includes the following column information.

1. table_cat

2. table_schem

3. table_name

4. column_name

5. key_seq

6. pk_name

foreignKeys(table=None, catalog=None, schema=None, foreignTable=None, for

eignCatalog=None, foreignSchema=None)

It creates the result set of column names of a specified table, or the result set of column names which are

foreign keys of another table referring to the basic key of the specified table, by executing SQLForeignKe

ys function. Each row includes the following column information.

1. pktable_cat

2. pktable_schem

3. pktable_name

4. pkcolumn_name

5. fktable_cat

6. fktable_schem

7. fktable_name

8. fkcolumn_name

9. key_seq

10. update_rule

11. delete_rule

12. fk_name

13. pk_name

14. deferrability

procedures(procedure=None, catalog=None, schema=None)

It creates the result set of the information about the procedure by executing SQLProcedures. Each row in

cludes the following column information.

1. procedure_cat

2. procedure_schem

3. procedure_name

4. num_input_params

3,248 | PyDBC

5. num_output_params

6. num_result_sets

7. remarks

8. procedure_type

getTypeInfo(sqlType=None)

It creates the result set of the information about the specified data type or about all data types which are

supported by GOLDILOCKS ODBC, by executing SQLGetTypeInfo function. Each row includes the followi

ng column information.

1. type_name

2. data_type

3. column_size

4. literal_prefix

5. literal_suffix

6. create_params

7. nullable

8. case_sensitive

9. searchable

10. unsigned_attribute

11. fixed_prec_scale

12. auto_unique_value

13. local_type_name

14. minimum_scale

15. maximum_scale

16. sql_data_type

17. sql_datetime_sub

18. num_prec_radix

19. interval_precision

Row

A row object is returned with fetch function of a cursor object. It is processed as a tuple type as described

in DB API.

row = cursor.fetchone()

for column in row:

print column

The following features are added to pygoldilocks.

API Reference | 3,249

● It can access the data by using a column name.

● It can access the value of cursor.description through a row even after a cursor object is closed.

● It can update the value of a row.

Accessing to a row by using a column name is not only convenient but it also improves the readability. Ho

wever, if a column name includes Python reserved name or a whitespace, then it be accessed only throug

h row.__getattribute__().

cursor.execute("select c1 from test")

print cursor.description

row = cursor.fetchone()

print row.C1

(('C1', <type 'str'>, 10, 10, 10, 0, True),)

test

Note

Basically, the identifier of GOLDILOCKS database is uppercase. However, sometimes it is required t

o be specified in lowercase, so be cautious of using uppercase or lowercase when accessing to a r

ow by using a column name.

Properties

● cursor_description

It is the copy of property description of a cursor object which created the corresponding row. For more in

formation, refer to Cursor.description.

3,250 | PyDBC

29.3 Exception

Python exceptions occur by pygoldilocks when GOLDILOCKS ODBC detects an error. The exception classe

s are as follows, which are as same as Python DB API.

● Error

○ DatabaseError

■ DataError

■ OperationalError

■ IntegrityError

■ InternalError

■ ProgrammingError

■ NotSupportedError

If an error occurs, generally, the exception is processed based on SQLSTATE value provided by the databa

se.

SQLSTATE Exception

0A000 NotSupportedError

01002 OperationalError

08001 OperationalError

08003 OperationalError

08004 OperationalError

08007 OperationalError

08S01 OperationalError

28000 InterfaceError

40002 IntegrityError

22*** DataError

23*** IntegrityError

24*** ProgrammingError

25*** ProgrammingError

42*** ProgrammingError

https://www.python.org/dev/peps/pep-0249/#exceptions

Data Type | 3,251

29.4 Data Type

Transferring Python Parameter to GOLDILOCKS

The data is converted as follows when transferring Python parameter to GOLDILOCKS ODBC.

Table 29-1 Python 3

Python datatype Description ODBC datatype

None - SQL_VARCHAR

str UTF-8 SQL_VARCHAR or SQL_LONGVARCHAR

bytes, bytearray binary SQL_VARBINARY or SQL_LONGVARBINARY

bool bit SQL_BIT

datetime.date date SQL_TYPE_DATE

datetime.time time SQL_TYPE_TIME

datetime.datetime timestamp SQL_TYPE_TIMESTAMP

int integer SQL_BIGINT

float floating point SQL_DOUBLE

decimal numeric SQL_NUMERIC

Table 29-2 Python 2

Python datatype Description ODBC datatype

None SQL_VARCHAR

str UTF-8 SQL_VARCHAR or SQL_LONGVARCHAR

bytearray binary SQL_VARBINARY or SQL_LONGVARBINARY

buffer binary SQL_VARBINARY or SQL_LONGVARBINARY

bool bit SQL_BIT

datetime.date date SQL_TYPE_DATE

datetime.time time SQL_TYPE_TIME

datetime.datetime timestamp SQL_TYPE_TIMESTAMP

int integer 32 bit: SQL_INTEGER, 64 bit: SQL_BIGINT

long bigint SQL_BIGINT

float floating point SQL_DOUBLE

decimal numeric SQL_NUMERIC

3,252 | PyDBC

SQL Value Received from GOLDILOCKS

The data is converted as follows when transferring the data of GOLDILOCKS database to Python.

Table 29-3 Python 3

ODBC datatype Description Python datatype

any NULL None

SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR text text

SQL_BINARY_SQL_VARBINARY, SQL_LONGVARBINARY binary bytes

SQL_NUMERIC decimal, numeric decimal.Decimal

SQL_BOOLEAN bit, bool bool

SQL_SMALLINT, SQL_INTEGER integers int

SQL_BIGINT long long

SQL_REAL, SQL_FLOAT, SQL_DOUBLE floating point float

SQL_TYPE_TIME time datetime.time

SQL_TYPE_DATE date datetime.date

SQL_TYPE_TIMESTAMP timestamp datetime.timestamp

SQL_TYPE_TIME_WITH_TIMEZONE time with timezone text

SQL_TYPE_TIMESTAMP_WITH_TIMEZONE timestamp with timezone text

SQL_C_INTERVAL_*** interval text

Table 29-4 Python 2

ODBC datatype Description Python datatype

any NULL None

SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR text text

SQL_BINARY_SQL_VARBINARY, SQL_LONGVARBINARY binary bytes

SQL_NUMERIC decimal, numeric decimal.Decimal

SQL_BOOLEAN bit, bool bool

SQL_SMALLINT, SQL_INTEGER integers int

SQL_BIGINT long long

SQL_REAL, SQL_FLOAT, SQL_DOUBLE floating point float

SQL_TYPE_TIME time datetime.time

SQL_TYPE_DATE date datetime.date

SQL_TYPE_TIMESTAMP timestamp datetime.timestamp

SQL_TYPE_TIME_WITH_TIMEZONE time with timezone text

SQL_TYPE_TIMESTAMP_WITH_TIMEZONE timestamp with timezone text

SQL_C_INTERVAL_*** interval text

The text of Python data type is converted to unicode in Python 3. It is converted to the unicode or a string

according to the character set of the database in Python 2.

Data Type | 3,253

Table 29-5 Python 2 text

DB character set Python type

UTF-8 str

SQL_ASCII str

UHC unicode

GB18030 unicode

Hibernate

30.

3,255

3,256 | Hibernate

30.1 Overview

Hibernate is a Object-Replation Mapping (ORM) framework of which Java Persistent API (JPA) model is a

pplied to the database. It maps the relationship between DB table and Java object so that it helps the per

sistent logic processing. In other words, when using hibernate, it is easy to access and control DB without

using SQL.

30.2 Interworking with Hibernate

Downloading Hibernate

Hibernate can be downloaded at https://sourceforge.net/projects/hibernate/. When the downloaded file

is decompressed, many jar files are found in lib directory. These files are used to interwork with hibernate.

Note

Hibernate of GOLDILOCKS is created based on Hibernate version 5.2.

Interworking with GoldilocksDialect Class

It should be ported to the downloaded Hibernate jar file to interwork with Hibernate. GoldilocksDialect.cl

ass file and GoldilocksDialect$1.class file can be included in Hibernate jar file as follows.

1. Decompress Hibernate jar file.

2. Move GoldilocksDialect.class file and GoldilocksDialect$1.class file to the decomprressed org/hiberna

te/dialect directory.

3. Compress it again with Hibernate jar file.

4. Add the newly created jar file to classpath.

$ jar -xvf hibernate-core-5.2.11.Final.jar

$ pwd

hibernate-release-5.2.11.Final/lib/required/

https://sourceforge.net/projects/hibernate/

Examples | 3,257

$ mv GoldilocksDialect*.class org/hibernate/dialect/

$ jar -cvf hibernate.5.2.11.jar META-INF/MANIFEST.MF .

30.3 Examples

Configuration

hibernate-configuration XML file and hibernate-mapping XML file are required to interqork Hibernate an

d DB.

Hibernate Configuration File

Configuration XML file sets the connect information to access the dialect class and DB, and sets Hibernat

e-mapping files.

For more information, refer to Configuration.

The following is an example of hibernate.conf.xml file.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"

"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<property

name="hibernate.connection.driver_class">sunje.goldilocks.jdbc.GoldilocksDriver</property>

<property

name="hibernate.connection.url">jdbc:goldilocks://192.168.0.21:22581/test</property>

<property name="hibernate.connection.username">test</property>

<property name="hibernate.connection.password">test</property>

<property name="hibernate.dialect">org.hibernate.dialect.GoldilocksDialect</property>

<property name="show_sql">true</property>

<property name="format_sql">true</property>

<property name="hbm2ddl.auto"> create </property>

<mapping resource="SampleTable.mapping.xml" />

http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#configurations

3,258 | Hibernate

</session-factory>

</hibernate-configuration>

Set the DB connecting information on <session-factory> tag, and specifies the dialect class name of DB to

connect to hibernate.dialect property. Also, specify hibernate-mapping files by using <mapping-resource>

tag.

Hibernate Mapping File

Mapping XML is a configuration file including mapping information about DB table and Java object.

For more information, refer to Mapping.

The following is an example of SampleTable.mapping.xml file which was used in the example above.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="SampleTable" table="SAMPLETABLE">

<id column="ID" name="id" type="long">

<generator class="increment" />

</id>

<property column="STUDENT_NAME" name="name" type="string" />

<property column="BIGINT_VALUE" name="bigintValue" type="long" />

<property column="INT_VALUE" name="intValue" type="int" />

<property column="SMALL_VALUE" name="smallValue" type="short" />

<property column="FLOAT_VALUE" name="floatValue" type="float" />

<property column="DOUBLE_VALUE" name="doubleValue" type="double" />

<property column="NUMERIC_VALUE" name="numericValue" type="big_integer" precision="10"

scale="5" />

<property column="DATE_VALUE" name="dateValue" type="date" />

<property column="TIME_VALUE" name="timeValue" type="time" />

<property column="TIMESTAMP_VALUE" name="timestampValue" type="timestamp" />

<property column="VARBINARY_VALUE" name="binaryValue" type="byte[]" />

</class>

</hibernate-mapping>

The mapping information about Java class and DB table are described on <class> tag. Data type used in a

table column and Java are specified on <property> tag.

http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#annotations

Examples | 3,259

Examples of Application

Java class to be mapped to DB table should be described. The following is an example of SampleTable.jav

a which is described above.

import java.math.BigInteger;

import java.sql.Date;

import java.sql.Time;

import java.sql.Timestamp;

public class SampleTable {

private long id;

private String name;

private long bigintValue;

private int intValue;

private short smallValue;

private float floatValue;

private double doubleValue;

private BigInteger numericValue;

private Date dateValue;

private Time timeValue;

private Timestamp timestampValue;

private byte[] binaryValue;

private String longvarcharValue;

private byte[] longvarbinaryValue;

public SampleTable() {

this.name = null;

}

public SampleTable(String name) {

this.name = name;

}

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

3,260 | Hibernate

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

....

get/ set function of a variable corresponding to a column of SampleTable table should be described.

The data is processed in SamleTable table as follows.

1. It obtains org.hibernate.SessionFactory object through a configuraion file.

2. It obtains org.hibernate.Session object through SessionFactory object.

3. It processes the desired operation by calling a method of a session object.

The following is an example of inserting, updating, retrieving, deleting data in SampleTable table of DB. It

obtains SessionFactory object through org.hibernate.Configuration class.

public class HibernateSample

{

private static SessionFactory mFactory;

public static void main(String[] args) {

try {

mFactory = new Configuration().configure("hibernate.conf.xml"

).buildSessionFactory();

} catch(Throwable ex) {

System.err.println("Failed to create sessionFactory object." + ex);

throw new ExceptionInInitializerError(ex);

}

HibernateSample sHibernateSample = new HibernateSample();

● Insert 3 records

Long sRecord1 = sHibernateSample.addSample("RECORD_1");

Long sRecord2 = sHibernateSample.addSample("RECORD_2");

Long sRecord3 = sHibernateSample.addSample("RECORD_3");

● Update record 1

Examples | 3,261

sHibernateSample.updateSample(sRecord1,

● Fetch table

sHibernateSample.fetchSample(0, 3);

● Delete record 2

sHibernateSample.deleteSample(sRecord2);

sHibernateSample.closeFactory();

}

public void closeFactory() {

mFactory.close();

}

....

The following is an example of a method inserting a record to HibernateSample class. First, it obtains a se

ssion object through SessionFactory class, then obtains org.hibernate.Transaction object. It can be commi

tted or rolled back after starting a transaction by using a transaction class and inserting a record.

public Long addSample(String name) {

Session session = mFactory.openSession();

Transaction tx = null;

Long id = null;

try{

● Begin transaction

tx = (Transaction) session.beginTransaction();

SampleTable sample = new SampleTable(name);

● Insert

id = (Long) session.save(sample);

● Commit transaction

tx.commit();

System.out.println("add success");

} catch(HibernateException e) {

3,262 | Hibernate

if(tx != null) {

tx.rollback();

}

System.out.println("add fail");

e.printStackTrace();

} finally {

session.close();

}

return id;

}

The following is an example of a method retrieving SampleTable table. It obtains org.hibernate.Query obj

ect through a session class. fetchSample method retrieves SampleTable from offset to count.

public void fetchSample(int offset, int count) {

Session session = mFactory.openSession();

Query query = null;

try{

query = session.createQuery("FROM SampleTable");

query.setFirstResult(offset);

query.setMaxResults(count);

query.setFetchSize(20);

@SuppressWarnings("unchecked")

List<SampleTable> samples = (List<SampleTable>) query.list();

for(Iterator<SampleTable> iter = samples.iterator(); iter.hasNext();) {

SampleTable sample = (SampleTable) iter.next();

System.out.print("id: " + sample.getId());

... Ellipsis ...

}

} catch (HibernateException e) {

e.printStackTrace();

} finally {

session.close();

}

}

The following is an exampel of a method updating SampleTable table. After altering to a set method des

cribed in SampleTable class, then it is updated by calling an update method of a session class.

Examples | 3,263

public void updateSample(long id, ...) {

Session session = mFactory.openSession();

Transaction tx = null;

try {

tx = session.beginTransaction();

SampleTable sample = (SampleTable)session.get(SampleTable.class, id);

sample.setName(name);

...

session.update(sample);

tx.commit();

System.out.println("update success");

} catch (HibernateException e) {

if(tx != null){

tx.rollback();

}

System.out.println("update fail");

e.printStackTrace();

} finally {

session.close();

}

}

The following is an example of deleting a record. It can be deleted by using a delete method of a session

class.

public void deleteSample(long id) {

Session session = mFactory.openSession();

Transaction tx = null;

try {

tx = session.beginTransaction();

SampleTable sample = (SampleTable) session.get(SampleTable.class, id);

session.delete(sample);

tx.commit();

System.out.println("delete success");

} catch (HibernateException e) {

if(tx != null) {

tx.rollback();

}

System.out.println("delete fail");

3,264 | Hibernate

e.printStackTrace();

} finally {

session.close();

}

}

Utility Manual

Part VI.

3,265

3,266 | Utility Manual

31. gcreatedb

31.1 Overview of gcreatedb

Definition

Feature

Usage

Options

Example

31.2 Command Option

--cluster

--db_name

--db_comment

--timezone

--character_set

--char_length_units

--home

--member

--host

--port

--silent

--help

32. glsnr

32.1 Overview of glsnr

32.2 Command Options

--silent

--start

--stop

--status

--home

--help

32.3 Listener Configuration

Configuration File and Environment Variables

LISTEN_PORT

TCP_HOST

BACKLOG

DEFAULT_CS_MODE

TCP_VALIDNODE_CHECKING

TCP_INVITED_FILE

TCP_EXCLUDED_FILE

TIMEOUT

. 3,273

.	 3,274

.	 3,274

.	 3,274

.	 3,274

.	 3,274

.	 3,275

.	 3,276

.	 3,276

.	 3,276

.	 3,276

.	 3,276

.	 3,276

.	 3,277

.	 3,277

.	 3,278

.	 3,278

.	 3,278

.	 3,278

.	 3,278

. 3,281

.	 3,282

.	 3,283

.	 3,283

.	 3,283

.	 3,283

.	 3,284

.	 3,284

.	 3,285

.	 3,286

.	 3,286

.	 3,286

.	 3,287

.	 3,287

.	 3,287

.	 3,288

.	 3,288

.	 3,289

.	 3,289

| 3,267

LISTENER_LOG_DIR

UDS_DIR

33. gsql/gsqlnet (Interactive SQL Tool)

33.1 Overview of gsql

Definition

Examples

33.2 Executing gsql

Information of gsql

Server Connection

Controlling Interactive Mode

Storing gsql configuration

33.3 Using Interactive Command

gsql Interactive Mode Commnad

Startup and Shutdown Server

Executing SQL Statements

Controlling Output Result

Logging Output Result

Querying SQL Object Information

Output DDL Statement of SQL Object

Controlling History

Editing SQL

Controlling Connection

Using Host Variable

Controlling Method of Treating SQL Statement

Information of SQL Execution Plan

33.4 Command Option Reference

Username Password

--as {SYSDBA|ADMIN}

--conn-string

--dsn

--enable-color

--help

--import

--no-prompt

--prompt

--silent

--version

33.5 Interactive Command References

\\

.	 3,290

.	 3,290

. 3,291

.	 3,292

.	 3,292

.	 3,292

.	 3,296

.	 3,296

.	 3,297

.	 3,298

.	 3,299

.	 3,302

.	 3,302

.	 3,304

.	 3,308

.	 3,318

.	 3,324

.	 3,325

.	 3,326

.	 3,329

.	 3,330

.	 3,332

.	 3,332

.	 3,333

.	 3,338

.	 3,341

.	 3,341

.	 3,341

.	 3,342

.	 3,342

.	 3,343

.	 3,344

.	 3,345

.	 3,346

.	 3,347

.	 3,347

.	 3,348

.	 3,349

.	 3,349

3,268 | Utility Manual

\connect

\cstartup

\cshutdown

\ddl_cluster

\ddl_db

\ddl_tablespace

\ddl_profile

\ddl_audit_policy

\ddl_auth

\ddl_schema

\ddl_publicsynonym

\ddl_table

\ddl_constraint

\ddl_index

\ddl_view

\ddl_sequence

\ddl_synonym

\ddl_procedure

\desc

\dynamic sql :var

\edit

\exec

\exec :var := value

\exec sql

\explain plan

\help

\host

\history

\import

\idesc

\{n}

\prepare sql

\print

\quit

\set autocommit

\set autotrace

\set color

\set colsize

\set ddlsize

.	 3,350

.	 3,351

.	 3,352

.	 3,353

.	 3,354

.	 3,358

.	 3,360

.	 3,361

.	 3,362

.	 3,364

.	 3,367

.	 3,368

.	 3,370

.	 3,371

.	 3,373

.	 3,374

.	 3,375

.	 3,376

.	 3,376

.	 3,379

.	 3,380

.	 3,384

.	 3,385

.	 3,389

.	 3,390

.	 3,391

.	 3,393

.	 3,394

.	 3,395

.	 3,396

.	 3,397

.	 3,398

.	 3,399

.	 3,401

.	 3,401

.	 3,403

.	 3,404

.	 3,405

.	 3,407

| 3,269

\set error

\set heading

\set history

\set linesize

\set numsize

\set pagesize

\set serveroutput

\set time

\set timing

\set vertical

\shutdown

\spool

\startup

\var

34. gloader/gloadernet (Upload/download Tool)

34.1 Overview of gloader and gloadernet

Environment

Example

34.2 Using gloader

Datafile Type

Downloading Data

Uploading Data

Troubleshooting for Uploading

34.3 Control File Syntax

CHARACTERSET

TABLE

FIELDS TERMINATED BY

OPTIONALLY ENCLOSED BY

LINES TERMINATED BY

LTRIM

RTRIM

WHERE

34.4 gloader Argument References

Usage

Mandatory Argument

Optional Argument

35. gdump

35.1 Overview of gdump

Definition

.	 3,408

.	 3,409

.	 3,410

.	 3,412

.	 3,413

.	 3,414

.	 3,416

.	 3,417

.	 3,418

.	 3,418

.	 3,420

.	 3,421

.	 3,424

.	 3,425

. 3,427

.	 3,428

.	 3,428

.	 3,430

.	 3,432

.	 3,432

.	 3,432

.	 3,440

.	 3,449

.	 3,455

.	 3,455

.	 3,456

.	 3,457

.	 3,457

.	 3,459

.	 3,460

.	 3,460

.	 3,461

.	 3,462

.	 3,462

.	 3,463

.	 3,464

. 3,477

.	 3,478

.	 3,478

3,270 | Utility Manual

Argument

35.2 Examples of Using gdump

Control File

Datafile

Log File

Incremental Backup File

Property File

Commit Log

Log Buffer File

Pending Log Buffer File

36. tablediff

36.1 Overview of tablediff

Background

Features

Characteristics

File Configuration

36.2 Usage

Command Usage

Property Option

37. gsyncher

37.1 Overview of gsyncher

Definition

Features

Usage

Options

37.2 Examples

38. gmon

38.1 Overview of gmon

Definition

Features

Usage

Options

38.2 Examples

39. gtrclogger

39.1 Overview of gtrclogger

Definition

Features

Usage

.	 3,478

.	 3,481

.	 3,481

.	 3,483

.	 3,485

.	 3,487

.	 3,490

.	 3,491

.	 3,492

.	 3,492

. 3,495

.	 3,496

.	 3,496

.	 3,496

.	 3,497

.	 3,497

.	 3,498

.	 3,498

.	 3,499

. 3,505

.	 3,506

.	 3,506

.	 3,506

.	 3,506

.	 3,506

.	 3,507

. 3,511

.	 3,512

.	 3,512

.	 3,512

.	 3,512

.	 3,512

.	 3,513

. 3,515

.	 3,516

.	 3,516

.	 3,516

.	 3,516

| 3,271

Options

39.2 Examples

40. glocator

40.1 Overview of glocator

Definition

Usage

Options

40.2 Using glocator

Data File

CSTARTUP and CSHUTDOWN

Replication

40.3 Features of glocator

Connection Service

Cluster Failover

40.4 glocator Configuration

Configuration File and Environment Variable

Configuration Properties

41. gagent

41.1 Overview of gagent

Definition

Usage

Options

41.2 gagent Configuration

Configuration File and Environment Variable

Configuration Properties

42. gloctl

42.1 Overview of gloctl

Definition

Usage

Options

42.2 Interactive Command References

ADD MEMBER

ADD SERVICE

DROP MEMBER

DROP SERVICE

EXPORT

HELP

IMPORT

.	 3,517

.	 3,518

. 3,519

.	 3,520

.	 3,520

.	 3,520

.	 3,520

.	 3,525

.	 3,525

.	 3,525

.	 3,526

.	 3,528

.	 3,528

.	 3,529

.	 3,530

.	 3,530

.	 3,530

. 3,537

.	 3,538

.	 3,538

.	 3,538

.	 3,538

.	 3,542

.	 3,542

.	 3,542

. 3,547

.	 3,548

.	 3,548

.	 3,548

.	 3,548

.	 3,552

.	 3,552

.	 3,553

.	 3,554

.	 3,554

.	 3,555

.	 3,556

.	 3,556

3,272 | Utility Manual

QUIT

SET TIMEOUT

42.3 Location File

Description

42.4 Configuration

PORT

LOCATOR_HOST

LOCATOR_PORT

MESSAGE_TIMEOUT

.	 3,557

.	 3,557

.	 3,559

.	 3,559

.	 3,561

.	 3,561

.	 3,561

.	 3,561

.	 3,562

gcreatedb

31.

3,273

3,274 | gcreatedb

31.1 Overview of gcreatedb

Definition

gcreatedb is a database creation utility provided by GOLDILOCKS.

Feature

A new database is created by using DB_Name, comment, time zone, character set specified by a user.

Usage

gcreatedb [options]

Options

--cluster cluster system (if not specified, stand-alone system)

--db_name database name

--db_comment database comment

--timezone timezone ({+/-}{TZH:TZM})

--character_set character set

SQL_ASCII

UTF8

UHC

GB18030

--char_length_units char length units

OCTETS

CHARACTERS

--home home directory

--member local member name

--host host address

--port host port

--silent suppersses the display of the result message

Overview of gcreatedb | 3,275

--help print help message

Example

$ gcreatedb --db_name="goldilocks" --db-comment="goldilocks database" --timezone="+09:00"

--character_set="UTF8" --silent

3,276 | gcreatedb

31.2 Command Option

--cluster

It creates the database of a cluster environment.

If this option is not used, then it creates the database of a stand alone environment.

--db_name

It specifies the database name which a user wants to create.

The default value is "goldilocks".

The maximum length of database name is 128.

--db_comment

It specifies the database comment which a user wants to create.

The default value is "goldilocks database".

The maximum length of database comment is 1024.

--timezone

It is the time zone value of database.

The default value is the TIMEZONE value of the property.

The property is applied when database is created and it has a value in range of '-14:00' ~ '+14:00'.

--character_set

It is the database character set.

The default value is the CHARACTER_SET value of the property.

The property is applied when database is created, and its value is set to one of the followings.

• GB18030

Command Option | 3,277

• SQL_ASCII

• UHC

• UTF8

--char_length_units

It is the char length unit value which is used when defining the string column type such as CHAR, VARCH

AR and omitting its char length unit as follows.

CREATE TABLE t1

(

id CHAR(10 OCTETS), 1 It refers to 10 bytes.

name VARCHAR(128 CHARACTERS), 2 It refers to 128 characters.

addr VARCHAR(1024) 3 char length unit is omitted.

The default value is the CHAR_LENGTH_UNITS value of the property.

The property is applied when database is created, and its value is set to one of the followings.

• OCTETS: It is the number of bytes.

• CHARACTERS: It is the number of characters.

The default value of char length unit is defined as CHARACTERS in the SQL standard and it is defined as f

ollows in other DBMS.

Note

● OCTETS is used in Oracle, DB2.

● CHARACTERS is used in MS-SQL, MySQL, PostgreSQL.

--home

It sets the home directory of the database.

The default value uses $GOLDILOCSK_HOME environment variable.

3,278 | gcreatedb

--member

It sets the name of a local database in a cluster environment.

--host

It sets the host address of a local database in a cluster environment.

--port

It sets the port number of a local database in a cluster environment.

--silent

Result messages are not displayed.

--help

Help messages are displayed.

$ gcreatedb --help

Usage

gcreatedb [options]

Options:

--db_name database name

--db_comment database comment

--timezone timezone ({+/-}{TZH:TZM})

--character_set character set

SQL_ASCII

UTF8

UHC

GB18030

--char_length_units char length units

OCTETS

Command Option | 3,279

CHARACTERS

--silent suppresses the display of the result message

--help print help message

examples:

gcreatedb --db_name="goldilocks" --db_comment="goldilocks database" --timezone="+09:00"

--character_set="UTF8" --char_length_units="OCTETS" --silent

glsnr

32.

3,281

3,282 | glsnr

32.1 Overview of glsnr

glsnr is a listener which GOLDILOCKS enables remote access through the network in the client/ server env

ironment. glsnr should be run on the server for the network access to GOLDILOCKS.

glsnr is used as follows.

$ glsnr [options]

Command Options | 3,283

32.2 Command Options

The followings are cell prompt options for using glsnr.

--silent

Description

It does not display the message for execution.

Example

$ glsnr --start --silent

--start

Description

It starts running glsnr. If glsnr is already running, an error occurs.

Example

$ glsnr --start

Listener is started successfully.

--stop

Description

It stops the currently running glsnr.

3,284 | glsnr

Example

$ glsnr --stop

Listener is stopped.

--status

Description

It displays the message about glsnr status.

Example

$ glsnr --status

Listener is not running.

$ glsnr --start

Listener is started successfully.

$ glsnr --status

Listener process ID : 27880

Listener configuration file : /home/goldilocks/goldilocks_home/conf/goldilocks.listener.conf

Unix Domain Path : /tmp/unix-glsnr.22581

TCP Listen Host : 0.0.0.0, Port : 22581

default C/S mode : Dedicated

Connection Timeout(second) : 100

Listener is running.

--home

Description

It sets db home.

Example

$ glsnr --start --home Gliese/home/g1n1_home

Listener is started successfully.

$ glsnr --status

Command Options | 3,285

Listener process ID : 20777

Listener configuration file :

/home/goldilocsk/Gliese/home/g1n1_home/conf/goldilocks.listener.conf

Unix Domain Path : /tmp/unix-glsnr.22581

TCP Listen Host : 0.0.0.0, Port : 22581

default C/S mode : Dedicated

Connection Timeout(second) : 100

Listener is running.

--help

Description

It displays the help message.

Example

$ glsnr --help

Usage:

glsnr [options]

Options:

--silent don't print message

--start start listener

--stop stop listener

--status show listener status

--help show listner help messages

3,286 | glsnr

32.3 Listener Configuration

Configuration File and Environment Variables

glsnr uses the configuration file or environment variables for setting the configuration.

The environment variable is specified by using the name which 'GOLDILOCKS_' is added to the property n

ame of the configuration as a prefix. For example, setting the LISTEN_PORT in configuration file is as sam

e as specifying $GOLDILOCKS_LISTEN_PORT.

The contents of configuration file precedes the environment variable settings. (In other words, environme

nt variables are applied only if the configuration file is not set.)

The environment file of glsnr is $GOLDILOCKS_DATA/conf/goldilocks.listener.conf. If the corresponding f

ile is changed or the environment variables are set and glsnr is started to run, then the glsnr driving envir

onment is modified.

If a user want to modify and apply the glsnr environment during running glsnr, a user should stop glsnr a

nd change the content of configuration file or set the environment variable and then restart glsnr.

If a user stops the glsnr, a problem does not occur for the client which is already connected, but the probl

em occurs when being connected from a new client.

LISTEN_PORT

It is the port on which the glsnr waits for the connection.

Item Description

Name LISTEN_PORT

Description It is the port on which the glsnr waits for a connection.

Data type INT

Default value/ range 22581 / 1024 ~ 49151

Description

The client who wants a TCP connection should try to connect to the specified port.

The port is available from 1024 to 49151.

Listener Configuration | 3,287

TCP_HOST

It is an IP address of NIC of which glsnr waits for the connection.

Item Description

Name TCP_HOST

Description It is the IP address which the glsnr binds.

Data type ip address (ip v4)

Default value 0.0.0.0

Description

The client who wants a TCP connection should access the IP address specified above. The IP address is us

ed in ip v4 format.

BACKLOG

It is the number of clients which the glsnr can handle when multiple clients simultaneously access.

Item Description

Name BACKLOG

Description It is the number of client of which glsnr waits for the connection.

Data type INT

Default value/ range 1024 / 1 ~ 32768

Description

This setting value does not guarantee the number of concurrent connector of the client.

DEFAULT_CS_MODE

It sets the access mode when the access mode is not designated as dedicated or shared on the client.

Item Description

Name DEFAULT_CS_MODE

Description It sets the default access mode.

3,288 | glsnr

Data type String (dedicated | shared)

Default value dedicated

Item Description

Description

● The client/ server mode connected via glsnr supports two modes, which are dedicated and shared.

● Generally, the access mode is set as dedicated or shared on the client (It is .odbcini for ODBC), then it

accesses. However, if it is not set on the client, the access mode is determined by setting DEFAULT_C

S_MODE.

TCP_VALIDNODE_CHECKING

It sets whether to check the validity of the client attempting to access.

Item Description

Name TCP_VALIDNODE_CHECKING

Description It sets whether to check the client validity.

Data type String (NO | INVITED | EXCLUDED)

Default value NO

Description

● If the value is set to NO, the client validity is not checked.

● If the value is set to INVITED and the file set in TCP_INVITED_FILE exists, then only the client having th

e IP address of the file set in TCP_INVITED_FILE is set to be valid.

● If the value is set to EXCLUDED and the file set in TCP_EXCLUDED_FILE exists, then only the client exc

luding the client who has IP address of the file set in TCP_EXCLUDED_FILE is set to be valid.

TCP_INVITED_FILE

It is used only when the value of TCP VALIDNODE_CHECKING is INVITED.

Item Description

Name TCP_INVITED_FILE

Description It is the file with the valid user (IP address) list.

Data type String

Listener Configuration | 3,289

Default value 'goldilocks.invited.conf'

Item Description

Description

If the set file exists, only the user (IP address) within the file is allowed to access.

TCP_EXCLUDED_FILE

It is used only when the value of TCP VALIDNODE_CHECKING is EXCLUDED.

Item Description

Name TCP_EXCLUDED_FILE

Description It is the file with the invalid user (IP address) list.

Data type String

Default value 'goldilocks.excluded.conf'

Description

If the set file exists, anyone except for the user (IP address) within the file is allowed to access.

TIMEOUT

It is the glsnr timeout value and its unit is second.

Item Description

Name TIMEOUT

Description glsnr timeout

Data type INT

Default value/ range 100 / (0 ~ 2147483647)

Description

If the response is too slow or there is not a response from the client when glsnr communicates with the cl

ient, the connection is released by the specified timeout.

3,290 | glsnr

LISTENER_LOG_DIR

It sets the directory which stores the log to be display from the glsnr.

Item Description

Name LISTENER_LOG_DIR

Description It sets the directory which stores the log of the glsnr.

Data type String

Default value '<GOLDILOCKS_DATA>/trc'

Description

<GOLDILOCKS_DATA> of the setting value is replaced with the value of the environment variable $GOLDI

LOCKS_DATA.

UDS_DIR

It sets the directory in which the Unix Domain Socket file used in glsnr is stored.

Item Description

Name UDS_DIR

Description It sets the directory in which the Unix Domain Socket file used in glsnr is stored.

Data type String

Default value/ range '/tmp' / Maximum 60 byte

Description

The maximum length of the directory should be set within 60 bytes. The absolute path of the Unix Domai

n Socket file (directory name + file name) depends on OS, but usually it is around 100 bytes.

gsql/gsqlnet (Interactive SQL Tool)

33.

3,291

3,292 | gsql/gsqlnet (Interactive SQL Tool)

33.1 Overview of gsql

The followings are execution files.

Table 33-1 Execution files

Execution file name Description

gsql It is used in Direct Attach (D/A) environment.

gsqlnet It is used in Client/ Server (C/S) environment.

Note

All commands supported by gsql are equally supported by gsqlnet.

Definition

gsql is an interactive utility for processing SQL statements provided by GOLDILOCKS.

Using gsql, a user can query the results of the SELECT statement as well as execute SQL statements witho

ut any application.

gsql program executes the SQL statement, and queries a brief information of the objects such as tables a

nd indexes through the gsql specific commands beginning with \, and it provides various features such as

startup or shutdown of the server, controlling the output, and querying the execution plan of SQL statem

ent.

Examples

This chapter describes the method of creating/dropping the table, manipulating data, performing a query

by using gsql.

gsql is operated in an interactive mode as follows. When connecting normally, it waits for entering the S

QL statement or gsql command with gSQL> prompt.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL>

Overview of gsql | 3,293

Create a table by executing CREATE TABLE statement and commit the transaction as follows.

gSQL> CREATE TABLE t1 (id INTEGER, name VARCHAR(128));

Table created.

gSQL> COMMIT;

Commit complete.

Insert the data into the created table by executing INSERT INTO statement, then commit the transaction a

s follows. The second INSERT statement is an example of inserting two rows.

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

● Two rows are inserted.

gSQL> INSERT INTO t1 VALUES (2, 'mkkim'), (3, 'xcom73');

2 rows created.

gSQL> COMMIT;

Commit complete.

The column addr is added to the table and data is updated by executing UPDATE statement as follows.

gSQL> ALTER TABLE t1 ADD COLUMN (addr VARCHAR(1024));

Table altered.

gSQL> UPDATE t1 SET addr = 'Seoul, Korea' WHERE id = 1;

1 row updated.

gSQL> UPDATE t1 SET addr = 'Inchon, Korea' WHERE id = 3;

1 row updated.

gSQL> COMMIT;

Commit complete.

The inserted data is queried by using SELECT query as follows. The query result consists of the header rep

resenting column names and the information of each row in a single line. NULL is expressed in lowercase

null.

gSQL> SELECT * FROM t1 ORDER BY 1;

ID NAME ADDR

-- ------ -------------

1 leekmo Seoul, Korea

2 mkkim null

3 xcom73 Inchon, Korea

3 rows selected.

3,294 | gsql/gsqlnet (Interactive SQL Tool)

A host variable is declared, and the value is put in the host variable then a query using the host variable is

performed as follows.

gSQL> \var v_id INTEGER

gSQL> \exec :v_id := 1

gSQL> SELECT * FROM t1 WHERE id = :v_id;

ID NAME ADDR

-- ------ ------------

1 leekmo Seoul, Korea

1 row selected.

The SQL statement is prepared by using \prepare sql and the SELECT statement above is repeatedly per

formed by using \exec, changing the value of host variable. ODBC and JDBC simulate prepare/ execute o

peration in gsql interactive mode as follows.

gSQL> \var v_id INTEGER

gSQL> \prepare sql SELECT * FROM t1 WHERE id = :v_id;

SQL prepared.

gSQL> \exec :v_id := 2

gSQL> \exec

ID NAME ADDR

-- ----- ----

2 mkkim null

1 row selected.

gSQL> \exec :v_id := 3

gSQL> \exec

ID NAME ADDR

-- ------ -------------

3 xcom73 Inchon, Korea

1 row selected.

A scrollable cursor is declared in an embedded SQL, ODBC, JDBC, and the data retrieval using the cursor i

s simulated via gsql as follows. The cursor cur1 declared by using DECLARE cursor_name is the scrollable

KEYSET cursor and various fetch orientations may be used by using FETCH cursor_name.

gSQL> \var v_id INTEGER

gSQL> \var v_name VARCHAR(128)

gSQL> DECLARE cur1 KEYSET CURSOR FOR SELECT id, name FROM t1 ORDER BY id;

Cursor declared.

gSQL> OPEN cur1;

Cursor is open.

gSQL> FETCH cur1 INTO :v_id, :v_name;

Overview of gsql | 3,295

V_ID V_NAME

---- ------

1 leekmo

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_name;

V_ID V_NAME

---- ------

2 mkkim

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_name;

V_ID V_NAME

---- ------

3 xcom73

1 row fetched.

gSQL> FETCH cur1 INTO :v_id, :v_name;

no rows fetched.

gSQL> FETCH ABSOLUTE 2 cur1 INTO :v_id, :v_name;

V_ID V_NAME

---- ------

2 mkkim

1 row fetched.

gSQL> FETCH PRIOR cur1 INTO :v_id, :v_name;

V_ID V_NAME

---- ------

1 leekmo

1 row fetched.

gSQL> CLOSE cur1;

Cursor closed.

The created table t1 is dropped and the gsql interactive mode is terminated as follows.

gSQL> DROP TABLE t1;

Table dropped.

gSQL> COMMIT;

Commit complete.

gSQL> \q

%

3,296 | gsql/gsqlnet (Interactive SQL Tool)

33.2 Executing gsql

Information of gsql

Refer to the following options.

Table 33-2 Options

Option Description

--help Option list

--version gsql version information

A user can view the gsql command options which are executable at the shell prompt via --helpoption as

follows.

% gsql --help

Usage

gsql [user_name [password]] [options]

Arguments:

user_name user name

password password

Options:

--version print version information and exit

--import FILE import sql FILE

... Ellipsis ...

%

gsql program has a version separate from GOLDILOCKS server version, and the version is viewed by using

--version option as follows. It is recommended to use the gsql program in the same version as the GOLDIL

OCKS server.

% gsql --version

%

The version of GOLDILOCKS server can be view via VERSION function as follows.

gSQL> SELECT version() FROM dual;

VERSION()

1 row selected.

Executing gsql | 3,297

Server Connection

Refer to the following options.

Table 33-3 Options

Option Description

Username Password It is the user and password of connection.

--as {SYSDBA|ADMIN} It specifies the connection role.

--conn-string It specifies the connection string.

--dsn It specifies Data Source Name (DSN).

User Connection

Using gsql program, it can be connected to GOLDILOCKS server in various ways.

The simplest way to connect is using a username and password as follows. The following is an example t

hat the test user connects to it by using the test password. When successfully connected, it operates in an

interactive mode and the gSQL> prompt waits for the user command.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL>

The following is an example that an error occurs when using an invalid username or password. When the

login is failed, an error message is displayed and then the gsql program is terminated.

% gsql test invalid_password

ERR-28000(16004): invalid username/password; logon denied

%

The following is an example that an error occurs when the GOLDILOCKS server does not run. The gsql pr

ogram is terminated with the error message as follows.

% gsql test test

ERR-HY000(11031): Unable to attach the shared memory segment

%

In addition, it can be connected via the following options. For more details, refer to the respective link.

● --conn-string

● --dsn

3,298 | gsql/gsqlnet (Interactive SQL Tool)

SYSDBA Connection

The --as {SYSDBA|ADMIN} option is used to drive the server or to connect to SYSDBA role which has full a

ccess privilege on the database.

The following is an example of connecting with --as sysdba in the state of when the GOLDILOCKS server i

s not driven. gSQL> prompt is waiting in the state which is ready to drive GOLDILOCKS with the message

Connected to an idle instance.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL>

The following is an example of connecting with --as sysdba when the GOLDILOCKS server is already drive

n.

% gsql sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL>

For more information, refer to Startup and Shutdown Server.

Quit gsql

gsql is quit by using \quit or \q command as follows.

For more information, refer to \quit.

gSQL> \quit

%

Controlling Interactive Mode

Refer to the following options.

Table 33-4 Options

Option Description

--prompt It specifies the prompt.

--no-prompt It removes the prompt.

--import It executes the SQL file with input.

--silent When executing the SQL file, the command and the result are not displayed.

Executing gsql | 3,299

--enable-color The query result is displayed by grouping per row.

Option Description

Controlling Prompt

When starting an interactive mode, the prompt may be changed by using --prompt option as follows. Th

e following is an example that the prompt is changed to GOLDILOCKS> prompt, not to gSQL> prompt.

% gsql test test --prompt GOLDILOCKS

Connected to GOLDILOCKS Database.

GOLDILOCKS>

For more information about controlling the prompt, refer to the following options.

● --prompt

● --no-prompt

Executing from File

When processing batch operation by using gsql program, the SQL statement included in the file may be e

xecuted by using --import option. The following is an example of executing PerformanceViewSchema.sql

file in the $GOLDILOCKS_HOME/admin directory. The example uses --silent option not to output the exec

ution results.

% cd $GOLDILOCKS_HOME/admin

% gsql --as SYSDBA --import 'PerformanceViewSchema.sql' --silent

%

For more information about executing gsql from the file, refer to the following options.

● --import

● --silent

● --enable-color

Storing gsql configuration

gsql Configuration File (gsql.ini)

The gsql configuration file (.gsql.ini) consists of options which is automatically applied when gsql starts u

p, and it should be in the directory $HOME.

3,300 | gsql/gsqlnet (Interactive SQL Tool)

A user can set multiple dsn in the configuration file, and can specify different options for each dsn. If a us

er do not enter dsn when gsql starts up, the options in GOLDILOCKS are applied.

Example

[GOLDILOCKS]

AUTOCOMMIT = OFF

AUTOTRACE = OFF

LINESIZE = 80

PAGESIZE = 20

VERTICAL = OFF

TIME = OFF

TIMING = OFF

ERROR = ON

COLSIZE = 8192

NUMSIZE = 20

DDLSIZE = 10000

HISTORY = 128

Table 33-5 Options

Option Minimum value Maximum value Default value

AUTOCOMMIT OFF ON OFF

AUTOTRACE OFF ON/TRACEONLY OFF

LINESIZE 1 10000 80

PAGESIZE 1 10000 20

VERTICAL OFF ON OFF

TIME OFF ON OFF

TIMING OFF ON OFF

ERROR ON OFF ON

COLSIZE 1 10485760 8192

NUMSIZE 1 50 20

DDLSIZE 1 10485760 10000

HISTORY 0 100000 128

Note

If .gsql.ini does not exist or the option value is invalid, it is ignored.

Executing gsql | 3,301

glogin.sql

glogin.sql is a global configuration file and it is positioned in $GOLDILOCKS_DATA/conf/glogin.sql. If glo

gin.sql file exists when driving gsql, then it reads the file and executed the statement included in the file. I

n this way, all gsql sessions are set (e.g.line size).

login.sql

login.sql is a user configuration file. If login.sql file exists in the current directory when driving gsql, then i

t reads the file and executed the statement included in the file.

The login.sql configuration takes precedence over the glogin.sql configuration.

3,302 | gsql/gsqlnet (Interactive SQL Tool)

33.3 Using Interactive Command

gsql Interactive Mode Commnad

Refer to the following commands.

Table 33-6 Commands

gsql command Description

\help gsql command list

gsql program operates in an interactive mode through Server Connection as follows.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL>

A user may enter the SQL statement on the prompt line then execute it or enter the unique command wh

ich is executable in an gsql interactive mode then execute it. The gsql command begins with back-slash

(\) to distinguish it from the SQL statement. The gsql command which begins with back-slash(\) can no

t be used in the application, while SQL statement can be directly used in the application.

Note

The gsql interactive mode command begins with \.

The following is an example of executing SQL statement in an interactive mode.

gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

The following is an example of executing the same SELECT statement by using \exec sql, gsql comman

d. \exec sql command is a unique gsql command although the syntax of \ exec sql is as same as the sy

ntax of EXEC SQL referring to the beginning of SQL statement in an Embedded SQL.

Using Interactive Command | 3,303

gSQL> \exec sql SELECT * FROM dual;

DUMMY

X

1 row selected.

The current time can be output on the prompt by setting via \set time.

gSQL> \set time on

12:45:34 gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

12:45:37 gSQL>

The unique commands of gsql interactive mode can be queried with the command \help as follows.

gSQL> \help

\help

\q[uit]

\i[mport] {'FILE'} Import SQL

\ed[it] [{'FILE'|[HISTORY] num}] Edit SQL statement

\\ Executes the most recent history entry

\{n} Executes n'th history entry

\hi[story] Show history entries

\desc {[schema.]table_name} Show table description

\idesc {[schema.]index_name} Show index description

\spo[ol] ['filename' | OFF] Stores query results in a file

\ho[st] [command] Executes an operating system command

\set vertical {ON|OFF}

\set time {ON|OFF}

\set timing {ON|OFF}

\set color {ON|OFF}

\set error {ON|OFF}

\set autocommit {ON|OFF}

\set autotrace {ON|TRACEONLY|OFF}

\set serveroutput {ON|OFF}

\set heading {ON|OFF}

\set linesize {n} 0 < n <= 100000

\set pagesize {n} 0 < n <= 100000

3,304 | gsql/gsqlnet (Interactive SQL Tool)

\set colsize {n} 0 < n <= 104857600

\set numsize {n} 0 < n <= 50

\set ddlsize {n} 0 < n <= 100000

\set history {n} n <= 100000 (if n < 0, clear history buffer)

\var {host_var_name} {INTEGER|BIGINT|VARCHAR(n)}

\exec [{:host_var_name} := {constant}]

\exec sql {sql string}

\prepare sql {sql string}

\dynamic sql {host_var_name}

\explain plan [{ON|ONLY}] {sql string}

\print [{host_var_name}]

\ddl_cluster

\ddl_db

\ddl_tablespace {name}

\ddl_profile {name}

\ddl_auth {name}

\ddl_schema {name}

\ddl_table {[schema.]name}

\ddl_constraint {[schema.]name}

\ddl_index {[schema.]name}

\ddl_view {[schema.]name}

\ddl_sequence {[schema.]name}

\ddl_synonym {[schema.]name}

\ddl_publicsynonym {name}

\ddl_procedure {[schema.]name}

\startup {[nomount|mount|open]}

\shutdown {[abort|immediate|transactional|normal]}

\cstartup {[nomount|mount|open]}

\cshutdown {[abort|normal]}

\connect userid password [as {sysdba|admin}]

Startup and Shutdown Server

Refer to the following commands.

Table 33-7 Commands

gsql Commad Description

\startup It starts up the server.

\shutdown It shuts down the server.

Using Interactive Command | 3,305

\cstartup It starts up the server for the cluster environment.

\cshutdown It shuts down the server for the cluster environment.

gsql Commad Description

Standalone

It should be connected by using SYSDBA role or ADMIN role as follows to startup or shutdown the server.

● SYSDBA role

○ It has all privileges related to DBA such as the server startup or shutdown.

● ADMIN role

○ It has the same privileges as SYSDBA but it is allowed to connect only one session.

○ It is the role for when a valid session does not exist or for emergency connection under abnormal

circumstances.

The following is an example of connecting by using SYSDBA role when the GOLDILOCKS server is not driv

en.

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL>

gsql is connected to an idle instance in the state of when GOLDILOCKS server does not exist. gsql drives t

he GOLDILOCKS server on the specific step through \startup and connects to the server. The following i

s an example of driving the GOLDILOCKS server on NOMOUNT phase.

gSQL> \startup NOMOUNT

Startup success

gSQL>

\startup command is used only when initially driving GOLDILOCKS. Each step of the GOLDILOCKS serve

r is switched by using ALTER SYSTEM {MOUNT | OPEN} DATABASE after driving the GOLDILOCKS server a

nd connecting to the server.

gSQL> ALTER SYSTEM MOUNT DATABASE;

System altered.

gSQL> ALTER SYSTEM OPEN DATABASE;

System altered.

gSQL>

\startup command is executed without any extra option as follows when GOLDILOCKS server is driven o

n OPEN phase whose service is available without switching the step.

3,306 | gsql/gsqlnet (Interactive SQL Tool)

% gsql sys gliese --as sysdba

Connected to an idle instance.

gSQL> \startup

Startup success

gSQL>

If the server is already driven on a certain step, \startup command outputs an error message as follows.

Unless the server is driven up to OPEN phase, it may be driven on OPEN phase by using ALTER SYSTEM as

follows.

% gsql sys gliese--as sysdba

Connected to GOLDILOCKS Database.

gSQL> \startup

ERR-HY000(11029): shared memory segment exists

gSQL> ALTER SYSTEM MOUNT DATABASE;

System altered.

gSQL> ALTER SYSTEM OPEN DATABASE;

System altered.

gSQL>

For more information about the server startup, refer to the followings.

● Step of the server startup: Multi-level Startup

● Command for the initial server startup: \startup

● Altering the server step: ALTER SYSTEM {MOUNT | OPEN} DATABASE

\shutdown command is used as follows to shutdown the server. For more information about the server sh

utdown, refer to \shutdown.

gSQL> \shutdown

Shutdown success

gSQL>

Cluster

LOCATOR_DSN property should be defined in odbc.ini file to startup or shutdown the server by using \cs

tartup command and \cshutdown command, and it should be connected with SYSDBA role or ADMIN rol

e by using gsqlnet.

The following is an example of connecting with SYSDBA role by using gsqlnet when GOLDILOCKS server i

s not driven.

Using Interactive Command | 3,307

% gsqlnet sys gliese --as sysdba

Connected to an idle instance.

gSQL>

The following is an example of driving GOLDILOCKS server on LOCAL OPEN phase by using \cstartup co

mmand. Then it switches the server to OPEN phase.

gSQL> \cstartup LOCAL OPEN

Startup success

gSQL> ALTER SYSTEM OPEN GLOBAL DATABASE;

System altered.

gSQL>

\cstartup command and \cshutdown command are used in C/S environment, so glsnr should be on servic

e on all servers to startup or shutdown the server.

The following is an example of trying to drive GOLDILOCKS server when glsnr is not on service.

gSQL> \cstartup

ERR-HY000(58000): MEMBER(G1N1): the sender failed to connect to the member(1)

ERR-HY000(11067): MEMBER(G1N1): fail to connect to an host with a socket : connect() :

stnConnect() returned errno(111)

gSQL>

The following is an example of defining LOCATOR_DSN property and LOCATOR DSN property in odbc.ini

file.

% cat .odbc.ini

Edit the SYSTEM or USER DSN ini file (/etc/odbc.ini or ~/.odbc.ini) and add a data source

using the syntax:

[GOLDILOCKS]

HOST=127.0.0.1

PORT=20101

UID=test

PWD=test

LOCATOR_DSN=LOCATOR

[LOCATOR]

FILE=/home/test/.locator.ini

The following is an example of trying to drive the server when LOCATOR_DSN property is not defined in

odbc.ini file.

3,308 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \cstartup

ERR-HY000(40057): not specified valid location information

gSQL>

Commands excluding \CSTARTUP {LOCAL | GLOBAL} OPEN are applied only to the corresponding GOLDI

LOCKS server. Therefore, other servers should be started up to LOCAL OPEN phase for multi-level startup

by using ALTER SYSTEM {MOUNT | OPEN} DATABASE after \CSTARTUP NOMOUNT, MOUN commands.

The following is an example of trying multi-level startup after \CSTARTUP MOUNT. The corresponding server i

s started on MOUNT phase, but the other server is not started up to LOCAL OPEN phase, so an error occu

rs.

gSQL> \CSTARTUP MOUNT

Startup success

gSQL> ALTER SYSTEM OPEN LOCAL DATABASE;

System altered.

gSQL> ALTER SYSTEM OPEN GLOBAL DATABASE;

ERR-HY000(58000): MEMBER(G1N1): the sender failed to connect to the member(1)

ERR-HY000(11067): MEMBER(G1N1): fail to connect to an host with a socket : connect() :

stnConnect() returned errno(111)

gSQL>

For more information about the server startup, refer to the followings.

● Step of the server startup: Multi-level Startup

● Command for the initial server startup: \cstartup

● Altering the server step: ALTER SYSTEM {MOUNT | OPEN} DATABASE

\cshutdown command is used as follows to shutdown the entire server. For more information about the e

ntire server shutdown, refer to \cshutdown.

gSQL> \cshutdown

Shutdown success

gSQL>

Executing SQL Statements

Refer to the following commands.

Using Interactive Command | 3,309

Table 33-8 Commands

gsql commad Description

\import It executes SQL file.

\set autocommit It automatically COMMITs whenever executing the SQL statement.

16. SQL References It is a type of SQL statement.

Entering SQL Statement

In an interactive mode, gsql outputs the interactive mode prompt gSQL> and waits for a user input. After

entering the SQL statement, gsql performs the SQL statement by transferring it to the server. In an interac

tive mode, the SQL statement is completed by entering semi-colon (;), then entering enter. After executin

g the SQL statement, gsql outputs the result and the prompt gSQL>, and then waits for user input.

The following is an example of entering the SQL statement on a single line and executing it.

gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

gSQL>

The following is an example of entering SQL statement across multiple lines and executing it. If enter is u

sed in the state of which the SQL statement is not completed, gsql outputs the line number, moves to the

next line and waits for user input.

gSQL> SELECT id, name

2

When a user continuously completes entering all SQL statements, then enters semicolon (;) and enter as f

ollows, the SQL statement is executed and gSQL> prompt waits for the next command.

gSQL> SELECT id, name

2 FROM t1

3 WHERE id > 0;

ID NAME

-- ------

1 leekmo

2 mkkim

3 xcom73

3 rows selected.

gSQL>

3,310 | gsql/gsqlnet (Interactive SQL Tool)

The SQL statement is not recognized to be completed of input because the semi-colon (;) within the singl

e quote (') is recognized as a string.

gSQL> SELECT id, ';'

2 FROM t1

3 WHERE id = 1;

ID ';'

-- ---

1 ;

1 row selected.

gSQL>

Entering SQL Statement from File

In an interactive mode, \import is used to execute the SQL statement from the file, not to execute it by dir

ectly entering the SQL statement. The following is an example of executing multiple SQL statements by re

ading the file sample.sql. For more information, refer to \import.

gSQL> \import 'sample.sql'

● Drop table

DROP TABLE IF EXISTS t1;

Table dropped.

● Create table

CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

);

Table created.

● Create index

CREATE INDEX t1_idx_name ON t1(name);

Index created.

● Insert three rows

Using Interactive Command | 3,311

INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea');

3 rows created.

● Commit transaction

COMMIT;

Commit complete.

gSQL>

gsql Comment

The comments in an interactive mode are as same as those in the SQL statement. The comments input fr

om the file via the --import option is also as same as those in the SQL statement. For more information a

bout comments on SQL statement, refer to Comments.

The following is an example of using the line comment in an interactive mode.

gSQL> -- outside line-comment

gSQL> SELECT id, name

2 FROM t1 -- inside line-comment

3 WHERE id = 1;

ID NAME

-- ------

1 leekmo

1 row selected.

gSQL>

The following is an example of executing the file content with the \import command. It is treated in the s

ame way as the comment in an interactive mode. And gSQL> prompt waits for the next SQL statement af

ter all contents of the file are executed.

gSQL> \import 'sample.sql'

● Drop table

DROP TABLE IF EXISTS t1;

Table dropped.

● Create table

3,312 | gsql/gsqlnet (Interactive SQL Tool)

CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

);

Table created.

● Create index

CREATE INDEX t1_idx_name ON t1(name);

Index created.

● Insert three rows

INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea');

3 rows created.

● Commit transaction

COMMIT;

Commit complete.

gSQL>

The following is an example of using the multi-line comment in an interactive mode.

gSQL> SELECT id, name

2 /*

3 multi-line

4 comment

5 */

6 FROM t1

7 WHERE id = 1;

ID NAME

-- ------

1 leekmo

1 row selected.

gSQL>

Using Interactive Command | 3,313

The comments which is available in gsql interactive mode are as same as those in the SQL statement. For

more information about the comments, refer to Comments of SQL statement.

SQL Execution Result

When a user performs a query such as SELECT statement in an interactive mode, gsql outputs the query r

esults. The query result consists of the header with the column names, the data of the query result, and s

ummary the query results at the end.

The following is an example of executing the SELECT statement.

gSQL> SELECT * FROM t1;

ID NAME ADDR

-- ------ -------------

1 leekmo Seoul, Korea

2 mkkim Seoul, Korea

3 xcom73 Inchon, Korea

3 rows selected.

gSQL>

In the example above, the header of output results consists of the column name and the hyphen (-) whic

h distinguishes it from data. The query result is displayed in the middle of the output result, each row of q

uery result is displayed on a single line, and each column value is separated with the space. The summary

of the query result is displayed at the end. In this case, it refers that three rows are retrieved.

Data Definition Language, Data Manipulation Language, Control Language statements (except for SQL q

uery) displays the summarized information of the execution result corresponding to the SQL statements c

haracteristics.

The followings are the examples of respectively executing the DDL, DML, Control Language, displaying th

e results.

● DDL statement

gSQL> CREATE TABLE t1 (id INTEGER, name VARCHAR(128));

Table created.

● DML statement

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

● Transaction control statement

3,314 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> COMMIT;

Commit complete.

gSQL>

SQL Execution Error

The error which occurs during executing the SQL statement consists of the following information when it.

● SQLSTATE information: SQLSTATE value of SQL standard

● Error code: Unique error code value of GOLDILOCKS

● Error message: An error message describing the cause of error

The following is an example of an error when executing the SELECT statement. The error message consist

s of that value of ERR-42000 corresponds to SQLSTATE and the unique error code of GOLDILOCKS is the

value of (16040) and a table or view corresponding to invalid_table does not exist at line 2.

gSQL> SELECT id, name

2 FROM invalid_table

3 WHERE id > 0;

ERR-42000(16040): table or view does not exist :

FROM invalid_table

*

ERROR at line 2:

gSQL>

Interactive Command Execution Result

The interactive commands used together with SQL statements displays the same results and errors as tho

se executing SQL statements.

The following is an example of preparing the SQL statement by using \prepare sql and executing it by

using \exec.

gSQL> \prepare sql SELECT * FROM t1;

SQL prepared.

gSQL> \exec

ID NAME ADDR

-- ------ -------------

1 leekmo Seoul, Korea

2 mkkim Seoul, Korea

3 xcom73 Inchon, Korea

3 rows selected.

Using Interactive Command | 3,315

gSQL>

The following is an example of an error occurred in the SQL statement when using \prepare sql. It displ

ays an error which is as same as that occurs when executing the SQL statement.

● An error of \prepare sql command

gSQL> \prepare sql SELECT * FROM invalid_table;

ERR-42000(16040): table or view does not exist :

SELECT * FROM invalid_table

*

ERROR at line 1:

● An error of the same SQL statement

gSQL> SELECT * FROM invalid_table;

ERR-42000(16040): table or view does not exist :

SELECT * FROM invalid_table

*

ERROR at line 1:

gSQL>

If the gsql commands in an interactive mode do not include the SQL statement or when the command do

es not have any result to display, only gSQL> prompt is displayed without any extra message when the co

mmand is successfully performed.

The following is an example of successfully performing the interactive command without a message. The

error message is displayed when an error occurs.

● When the interactive gsql command is normally performed

gSQL> \var v1 INTEGER

gSQL> \exec :v1 := 1

● When the interactive gsql command causes an error

gSQL> \var v2 INVALID TYPE

ERR-42000(40000): syntax error

\var v2 INVALID TYPE

........^ ^

Error at line 1

gSQL>

3,316 | gsql/gsqlnet (Interactive SQL Tool)

For more information about the performance result of the interactive command, refer to the description

and example of the interactive command in Interactive Command References.

Autocommitting SQL statement

The SQL statements in the gsql interactive mode may commit or rollback the transaction by using the CO

MMIT or ROLLBACK statement.

The following is an example of performing COMMIT or ROLLBACK after performing multiple INSERT state

ments. Whereas the first INSERT statement is successfully committed by COMMIT, the second and third I

NSERT statements are rolled back by ROLLBACK in the following example.

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO t1 VALUES (2, 'mkkim');

1 row created.

gSQL> INSERT INTO t1 VALUES (3, 'xcom73');

1 row created.

gSQL> ROLLBACK;

Rollback complete.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

1 row selected.

gSQL>

If a user wants to automatically COMMIT every transaction whenever performing the SQL statements, it c

an be controlled by using the \set autocommit as follows. When performing the same SQL statement as

the example above, each SQL statement is automatically committed, so the transaction of the second and

the third INSERT statements are completed regardless of ROLLBACK.

gSQL> \set autocommit on

gSQL> INSERT INTO t1 VALUES (1, 'leekmo');

1 row created.

gSQL> COMMIT;

Commit complete.

gSQL> INSERT INTO t1 VALUES (2, 'mkkim');

1 row created.

gSQL> INSERT INTO t1 VALUES (3, 'xcom73');

Using Interactive Command | 3,317

1 row created.

gSQL> ROLLBACK;

Rollback complete.

gSQL> SELECT * FROM t1;

ID NAME

-- ------

1 leekmo

2 mkkim

3 xcom73

3 rows selected.

gSQL>

For more information about controlling automatic COMMIT, refer to \set autocommit.

Forced Termination of SQL Statement Being Executed

SQL statements being executed in an interactive mode is forcibly terminated by entering Ctrl+C.

The following is an example of which the SELECT statement being executed for a long time is forcibly ter

minated. If Ctrl+C is entered by using a keyboard during performing the SQL statement, the error messag

e, operation canceled, is displayed and the SQL statement is forcibly terminated.

gSQL> SELECT COUNT(*)

FROM

t1 AS v01,

t1 AS v02,

t1 AS v03,

t1 AS v04,

t1 AS v05,

t1 AS v06,

t1 AS v07,

t1 AS v08,

t1 AS v09,

t1 AS v10,

t1 AS v11,

t1 AS v12,

t1 AS v13,

t1 AS v14,

t1 AS v15,

t1 AS v16,

t1 AS v17,

t1 AS v18,

3,318 | gsql/gsqlnet (Interactive SQL Tool)

t1 AS v19,

t1 AS v20;

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

^C

ERR-HY008(13043): operation canceled

gSQL>

Controlling Output Result

Refer to the following commands.

Table 33-9 Commands

gsql command Description

\set color It identifies each row with different color.

\set colsize It controls the maximum size of the column results.

\set error It controls whether an error message is displayed.

\set linesize It controls the maximum output length of the row.

\set numsize It controls the maximum number of digit of the numeric value.

\set pagesize It controls the number of row to be included in a page.

\set timing It outputs the execution time of the SQL statement.

\set vertical It displays each column in a single line.

Controlling Page Configuration

As described in SQL Execution Result, the query results display the column names in the header, displays t

he data, then the summary information at the end.

If there are many query results, they are divided into the unit of pagesize (default value is 20), and each p

age outputs the column names and data set. When the output of all pages is completed, the summary in

formation is displayed at the end.

The following is an example of the output of query results by changing the pagesize to 5. For more infor

mation about controlling the pagesize, refer to \set pagesize.

gSQL> \set pagesize 5

gSQL> SELECT table_schema, table_name FROM dictionary WHERE table_name like 'ALL_%' FETCH 20;

TABLE_SCHEMA TABLE_NAME

----------------- ------------------

DICTIONARY_SCHEMA ALL_ALL_TABLES

DICTIONARY_SCHEMA ALL_COL_COMMENTS

Using Interactive Command | 3,319

DICTIONARY_SCHEMA ALL_COL_PRIVS

DICTIONARY_SCHEMA ALL_COL_PRIVS_MADE

DICTIONARY_SCHEMA ALL_COL_PRIVS_RECD

TABLE_SCHEMA TABLE_NAME

----------------- -----------------

DICTIONARY_SCHEMA ALL_CONSTRAINTS

DICTIONARY_SCHEMA ALL_CONS_COLUMNS

DICTIONARY_SCHEMA ALL_DB_PRIVS

DICTIONARY_SCHEMA ALL_DB_PRIVS_MADE

DICTIONARY_SCHEMA ALL_DB_PRIVS_RECD

TABLE_SCHEMA TABLE_NAME

----------------- ----------------

DICTIONARY_SCHEMA ALL_INDEXES

DICTIONARY_SCHEMA ALL_IND_COLUMNS

DICTIONARY_SCHEMA ALL_SCHEMAS

DICTIONARY_SCHEMA ALL_SCHEMA_PATH

DICTIONARY_SCHEMA ALL_SCHEMA_PRIVS

TABLE_SCHEMA TABLE_NAME

----------------- ---------------------

DICTIONARY_SCHEMA ALL_SCHEMA_PRIVS_MADE

DICTIONARY_SCHEMA ALL_SCHEMA_PRIVS_RECD

DICTIONARY_SCHEMA ALL_SEQUENCES

DICTIONARY_SCHEMA ALL_SEQ_PRIVS

DICTIONARY_SCHEMA ALL_SEQ_PRIVS_MADE

20 rows selected.

gSQL>

Each row of the query result is output in linesize unit (default value is 80). If the row length of the result i

s bigger than linesize, it is output on the next line.

The following is an example of the query result before and after the linesize is adjusted to 200. For more i

nformation about controlling linesize, refer to \set linesize.

gSQL> SELECT * FROM dict_columns WHERE table_name = 'USER_TABLES' FETCH 3;

TABLE_SCHEMA TABLE_NAME COLUMN_NAME

----------------- ----------- ---------------

COMMENTS

DICTIONARY_SCHEMA USER_TABLES TABLE_SCHEMA

Schema of the table

DICTIONARY_SCHEMA USER_TABLES TABLE_NAME

Name of the table

3,320 | gsql/gsqlnet (Interactive SQL Tool)

DICTIONARY_SCHEMA USER_TABLES TABLESPACE_NAME

Name of the tablespace containing the table

3 rows selected.

● Set the linesize to 200.

gSQL> \set linesize 200

gSQL> SELECT * FROM dict_columns WHERE table_name = 'USER_TABLES' FETCH 3;

TABLE_SCHEMA TABLE_NAME COLUMN_NAME COMMENTS

----------------- ----------- --------------- ---

DICTIONARY_SCHEMA USER_TABLES TABLE_SCHEMA Schema of the table

DICTIONARY_SCHEMA USER_TABLES TABLE_NAME Name of the table

DICTIONARY_SCHEMA USER_TABLES TABLESPACE_NAME Name of the tablespace containing the table

3 rows selected.

gSQL>

To increase the readability of each row on the terminal by differentiating rows, each row can be output b

y varying the color through \set color as described below. For more information, refer to \set color.

gSQL> \set color on

gSQL> SELECT table_schema, table_name FROM dictionary WHERE table_name like 'ALL_%' FETCH 10;

TABLE_SCHEMA TABLE_NAME

----------------- ------------------

DICTIONARY_SCHEMA ALL_ALL_TABLES

DICTIONARY_SCHEMA ALL_COL_COMMENTS

DICTIONARY_SCHEMA ALL_COL_PRIVS

DICTIONARY_SCHEMA ALL_COL_PRIVS_MADE

DICTIONARY_SCHEMA ALL_COL_PRIVS_RECD

DICTIONARY_SCHEMA ALL_CONSTRAINTS

DICTIONARY_SCHEMA ALL_CONS_COLUMNS

DICTIONARY_SCHEMA ALL_DB_PRIVS

DICTIONARY_SCHEMA ALL_DB_PRIVS_MADE

DICTIONARY_SCHEMA ALL_DB_PRIVS_RECD

10 rows selected.

gSQL>

To output the query result rows in the column unit on a single line, not in the line unit, \set vertical on i

s used. The following is an example of displaying the query results in a column unit. For more information,

refer to \set vertical.

Using Interactive Command | 3,321

gSQL> SELECT * FROM v$system_stat FETCH 5;

STAT_NAME STAT_VALUE COMMENTS

--------------------- ---------- ---

SYSTEM_SAR 3 system available resource(0:none, 1:session 2:database)

MAX_ENVIRONMENT_COUNT 128 maximum environment count

FREE_ENVIRONMENT_ID 3 available environment identifier

MAX_SESSION_COUNT 128 maximum session count

FREE_SESSION_ID 4 available session identifier

5 rows selected.

gSQL> \set vertical on

gSQL> SELECT * FROM v$system_stat FETCH 5;

STAT_NAME # SYSTEM_SAR

STAT_VALUE # 3

COMMENTS # system available resource(0:none, 1:session 2:database)

STAT_NAME # MAX_ENVIRONMENT_COUNT

STAT_VALUE # 128

COMMENTS # maximum environment count

STAT_NAME # FREE_ENVIRONMENT_ID

STAT_VALUE # 3

COMMENTS # available environment identifier

STAT_NAME # MAX_SESSION_COUNT

STAT_VALUE # 128

COMMENTS # maximum session count

STAT_NAME # FREE_SESSION_ID

STAT_VALUE # 4

COMMENTS # available session identifier

5 rows selected.

gSQL>

Controlling Data Output

gsql converts all data included in the query result to a string, then outputs it.

For a numeric data type, numsize (default value is 20) is output in the digit unit, and a numeric value bigg

er than numsize is output in an exponent form. The following is an example of controlling the output by

using the numsize. For more information, refer to \set numsize.

gSQL> SELECT num, (num * num) AS result FROM t1;

NUM RESULT

------------- --------------------

1234567890123 1.52415787532276E+24

3,322 | gsql/gsqlnet (Interactive SQL Tool)

1 row selected.

gSQL> \set numsize 50

gSQL> SELECT num, (num * num) AS result FROM t1;

NUM RESULT

------------- -------------------------

1234567890123 1524157875322755800955129

1 row selected.

gSQL>

The output of the numeric value may be controlled in various ways by using the TO_CHAR(number) fun

ction as the following example.

gSQL> SELECT num, TO_CHAR(num * num, '$999,999,999,999,999,999,999,999,999') AS result FROM

t1;

NUM RESULT

------------- -------------------------------------

1234567890123 $1,524,157,875,322,755,800,955,129

1 row selected.

gSQL>

For the date/ time data types such as DATE/ TIME/ TIMESTAMP, gsql determines the output type by using

the property information as follows.

● NLS_DATE_FORMAT

● NLS_TIMESTAMP_FORMAT

● NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT

● NLS_TIME_FORMAT

● NLS_TIME_WITH_TIME_ZONE_FORMAT

The property is used when the format information is not entered in the functions such as TO_CHAR(), TO

_DATE(). When connected for the first time, gsql acquires the property information and uses it to output

the date/ time data value, whereas the property above is used only when the application using ODBC or J

DBC uses the functions such as TO_CHAR(), TO_DATE() in SQL statement. When the property is changed

to the following SQL statement in an interactive mode, gsql uses the updated property information.

● ALTER SESSION SET property_name

● ALTER SYSTEM SET property_name

The following is an example of controlling the output for the DATE column.

gSQL> SELECT enter_date FROM t1;

ENTER_DATE

Using Interactive Command | 3,323

2014-08-26

1 row selected.

gSQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY';

Session altered.

gSQL> SELECT enter_date FROM t1;

ENTER_DATE

26-AUG-2014

1 row selected.

gSQL>

The output of the date/ time value can be controlled by using TO_CHAR(datetime) function without alte

ring property as follows.

gSQL> SELECT TO_CHAR(enter_date, 'DD-MON-YYYY') as result FROM t1;

RESULT

26-AUG-2016

1 row selected.

gSQL>

A binary string such as BINARY or VARBINARY is output as hex values as follows.

gSQL> select * from t1;

BINARY_VALUE

A010002F370000000000

1 row selected.

gSQL>

The data of the LONG VARCHAR, LONG VARBINARY type may include a very long string, so it outputs th

e data as much as colsize (default value is 8192). The following is an example of outputting the part of th

e TEXT column data of LONG VARCHAR data type by reducing the colsize. The whole data may be outpu

t by increasing the colsize. For more information, refer to \set colsize.

gSQL> \set colsize 100

gSQL> SELECT view_name, text FROM all_views WHERE view_name = 'ALL_ALL_TABLES';

VIEW_NAME TEXT

-------------- --

ALL_ALL_TABLES SELECT

auth.AUTHORIZATION_NAME 1 OWNER

, sch.SCHEMA_NAME

3,324 | gsql/gsqlnet (Interactive SQL Tool)

1 row selected.

gSQL>

Execution Time of SQL Statement

The execution time of the SQL statement is output by using \set timing on as follows. For more informat

ion, refer to \set timing.

gSQL> \set timing on

gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

Elapsed time: 0.08500 ms

Logging Output Result

All results performed in gsql are simultaneously logged to the file when they are output on the terminal.

Table 33-10 Commands

gsql command Description

\spool It logs the output result to a file.

For more information about the features related to logging output results, refer to the commands of \sp

ool.

The output result is logged as the following example.

● Start to log the execution result on result.txt

gSQL> \SPOOL 'result.txt'

● Check the spool status

gSQL> \SPOOL

currently spooling to result.txt

gSQL> SELECT * FROM T1 WHERE C1 < 10;

Using Interactive Command | 3,325

● Stop the spool feature

gSQL> \SPOOL OFF

Querying SQL Object Information

The information about SQL objects may be queried with the views of DICTIONARY_SCHEMA, INFORMATI

ON_SCHEMA.

Table 33-11 Commands

gsql command Description

\desc It queries the table information.

\idesc It queries the index information.

For example, there are the table and index created as follows.

CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

);

CREATE INDEX t1_idx_name ON t1(name);

A user may query the information related to the table by performing a series of SQL statements as follows.

gSQL> SELECT table_schema, table_name FROM user_tables WHERE table_name = 'T1';

TABLE_SCHEMA TABLE_NAME

------------ ----------

PUBLIC T1

1 row selected.

gSQL> SELECT column_name, data_type, nullable FROM user_tab_columns WHERE table_schema =

'PUBLIC' AND table_name = 'T1';

COLUMN_NAME DATA_TYPE NULLABLE

----------- ----------------- --------

ID NUMBER N

NAME CHARACTER VARYING Y

ADDR CHARACTER VARYING Y

3 rows selected.

gSQL> SELECT index_name FROM user_indexes WHERE table_schema = 'PUBLIC' AND table_name = 'T1';

3,326 | gsql/gsqlnet (Interactive SQL Tool)

INDEX_NAME

T1_PRIMARY_KEY_INDEX

T1_IDX_NAME

2 rows selected.

gSQL>

gsql may easily query the information related to the table by using \desc as follows. For more information

about the output, refer to \desc.

gSQL> \desc t1

COLUMN_NAME TYPE IS_NULLABLE

----------- ---------------------- -----------

ID NUMBER(10,0) FALSE

NAME VARCHAR(128) TRUE

ADDR VARCHAR(128) TRUE

INDEX_NAME TABLESPACE_NAME INDEX_TYPE IS_UNIQUE COLUMNS

-------------------- --------------- ---------- --------- -------

T1_PRIMARY_KEY_INDEX MEM_TEMP_TBS BTREE TRUE ID

T1_IDX_NAME MEM_TEMP_TBS BTREE FALSE NAME

CONSTRAINT_NAME CONSTRAINT_TYPE ASSOCIATED_INDEX COLUMNS

--------------- --------------- -------------------- -------

T1_PRIMARY_KEY PRIMARY KEY T1_PRIMARY_KEY_INDEX ID

gSQL>

\idesc describes the information related to the index as the following example. For more information, ref

er to \idesc.

gSQL> \idesc t1_idx_name

COLUMN_NAME ORDINAL_POSITION IS_ASCENDING_ORDER IS_NULLS_FIRST

----------- ---------------- ------------------ --------------

NAME 1 TRUE FALSE

gSQL>

Output DDL Statement of SQL Object

The following gsql commands output the DDL statement corresponding to the current state of the SQL o

bject. As well as the CREATE statement which creates the SQL object, DDL statement of the related objec

t may be output through the various options.

Using Interactive Command | 3,327

Table 33-12 Commands

gsql command Description

\ddl_cluster It outputs the cluster-related DDL.

\ddl_db It outputs the database-related DDL.

\ddl_tablespace It outputs the tablespace-related DDL.

\ddl_profile It outputs the profile-related DDL.

\ddl_audit_policy It outputs the audit policy-related DDL.

\ddl_auth It outputs the account-related DDL.

\ddl_schema It outputs the schema-related DDL.

\ddl_publicsynonym It outputs the public synonym-related DDL.

\ddl_table It outputs the table-related DDL.

\ddl_constraint It outputs the constraint-related DDL.

\ddl_index It outputs the index-related DDL.

\ddl_view It outputs the view-related DDL.

\ddl_sequence It outputs the sequence-related DDL.

\ddl_synonym It outputs the synonym-related DDL.

\ddl_procedure It outputs the procedure-related DDL.

\set ddlsize It controls the size of the DDL output buffer.

For example, the orders table is created as follows.

gSQL>

CREATE TABLE ORDERS

(

O_ID INTEGER,

O_D_ID INTEGER,

O_W_ID INTEGER,

O_C_ID INTEGER,

O_ENTRY_D TIMESTAMP,

O_CARRIER_ID INTEGER,

O_OL_CNT NUMERIC(8),

O_ALL_LOCAL NUMERIC(1),

PRIMARY KEY(O_W_ID, O_D_ID, O_ID) INDEX ORDERS_PK_IDX

);

Table created.

The CREATE TABLE statement which created the orders table in the example above is output by using \dd

l_table as follows.

gSQL> \ddl_table orders CREATE

SET SESSION AUTHORIZATION "TEST";

3,328 | gsql/gsqlnet (Interactive SQL Tool)

CREATE TABLE "PUBLIC"."ORDERS"

(

"O_ID" NUMBER(10, 0)

, "O_D_ID" NUMBER(10, 0)

, "O_W_ID" NUMBER(10, 0)

, "O_C_ID" NUMBER(10, 0)

, "O_ENTRY_D" TIMESTAMP(6) WITHOUT TIME ZONE

, "O_CARRIER_ID" NUMBER(10, 0)

, "O_OL_CNT" NUMBER(8, 0)

, "O_ALL_LOCAL" NUMBER(1, 0)

)

PCTFREE 10

PCTUSED 60

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

TABLESPACE "MEM_DATA_TBS"

;

From the example above, SET AUTHORIZATION statement refers to the owner who performed CREATE T

ABLE statement. The CREATE TABLE statement is output together with the information that the user doe

s not input such as the schema name to which the table belongs, the tablespace name in which the table

is stored and the physical information of the table.

DDL corresponding to the constraints generated in the table is output by using the CONSTRAINT option o

f \ddl_table as follows.

gSQL> \ddl_table orders CONSTRAINT

SET SESSION AUTHORIZATION "TEST";

ALTER TABLE "PUBLIC"."ORDERS"

ADD CONSTRAINT "PUBLIC"."ORDERS_PRIMARY_KEY"

PRIMARY KEY

(

"O_W_ID" ASC NULLS LAST

, "O_D_ID" ASC NULLS LAST

, "O_ID" ASC NULLS LAST

Using Interactive Command | 3,329

)

INDEX "ORDERS_PK_IDX"

PCTFREE 10

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

NOLOGGING

TABLESPACE "MEM_TEMP_TBS"

NOT DEFERRABLE

INITIALLY IMMEDIATE

;

For more information, refer to the gsql command corresponding to the SQL object.

Caution

If a user uses the command such as \ddl_table and simultaneously performs DDL on the relevant

SQL object, it may output different results, so DDL should not be simultaneously performed.

Controlling History

gsql controls the history of executed SQL statements in an interactive mode.

Table 33-13 Commands

gsql command Description

\\ It executes the previous SQL.

\{n} It executes the SQL statement corresponding to the history number.

\history It queries the SQL execution history.

\set history It controls the number of history buffer.

The following is an example of executing SQL statement which has already been performed may be perfo

rmed again.

3,330 | gsql/gsqlnet (Interactive SQL Tool)

• The most recent successfully executed SQL statement is executed again.

gSQL> \\

DUMMY

X

1 row selected.

gSQL> \history

ID SQL

-- ---

1 DROP TABLE IF EXISTS t1

2 CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

)

3 CREATE INDEX t1_idx_name ON t1(name)

4 INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea')

5 COMMIT

6 select * from t1

• The first SQL in the history is executed.

gSQL> \1

Table dropped.

For more information about the history related features of gsql, refer to Commands .

Editing SQL

It edits the SQL statement by using the text editor. The text editor to be used may be specified in the envi

ronment variable EDITOR. If the environment variable EDITOR does not exist, vi is used by default.

Table 33-14 Command

gsql command Description

\edit It edits the SQL statement by using the text editor.

Using Interactive Command | 3,331

When using the editing features, gsql runs the editor and hands over control to it. The user can freely edit

the SQL statements with the editor. When the editor ends, the control is handed over to gsql, and its con

tent will be added as the last history.

The SQL statement edited by the editor may be executed through the last history execution command \\.

Caution

Only a single SQL statement can be edited with the SQL editor. An error occurs when executing m

ultiple SQL statements.

The followings may be edited by using \edit.

● The most recently performed SQL statement

● The SQL statement stored in a file

● The SQL statement stored in the gsql history

For more information about the edit-related features in gsql, refer to \edit.

The SQL statement may be edited as the following example.

• The most recently performed SQL statement is edited.

gSQL> SELECT * FROM T1;

C1

--

1

11

2 rows selected.

gSQL> \EDIT

SELECT * FROM T1 WHERE C1 < 10;

• The edited SQL statement is executed.

gSQL> \\

C1

--

1

1 row selected.

3,332 | gsql/gsqlnet (Interactive SQL Tool)

Controlling Connection

Refer to the following commands.

Table 33-15 Commands

gsql command Description

\connect It connects with a new user.

\quit It quits the connection.

It is connected with a new user by using \connect in an interactive mode as follows. The existing session i

s terminated and a new session is created by using \connect. For more information, refer to \connect.

gSQL> \connect test test

gSQL>

The user may be changed by using the SET SESSION AUTHORIZATION user_identifier statement as follow

s. \connect commits all transactions being executed and creates a new session whereas the SET SESSION

AUTHORIZATION statement changes the user while keeping intact the existing sessions.

gSQL> SET SESSION AUTHORIZATION test;

Session set.

gSQL>

Interactive mode is terminated by using \quit as follows. For more information, refer to \quit.

gSQL> \quit

%

Using Host Variable

gsql declares a host variable in an interactive mode, and assigns a value to the host variable, then uses th

e host variable together with the SQL statement.

Table 33-16 Commands

gsql command Description

\var It declares the host variable.

\exec :var := value It assigns the value to the host variable.

\print It outputs the value of the host variable.

\dynamic sql :var It executes SQL statements stored in the host variable.

Using Interactive Command | 3,333

The following is an example of declaring the host variable by using \var, and assigning the value to the

host variable by using \exec :var := value, and querying the value of the host variable by using \print.

For more information, refer to each command.

gSQL> \var v_id INTEGER

gSQL> \exec :v_id := 1

gSQL> \print v_id

V_ID

1

gSQL>

The variable declared in an interactive mode may be used as the input parameter in the SQL statement as

follows.

gSQL> SELECT * FROM t1 WHERE id = :v_id;

ID NAME ADDR

-- ------ ------------

1 leekmo Seoul, Korea

1 row selected.

gSQL>

The variable declared in an interactive mode may be used as the output parameter in the SQL statement

as follows.

gSQL> SELECT id INTO :v_id FROM t1 WHERE name = 'mkkim';

V_ID

2

1 row selected.

gSQL>

Controlling Method of Treating SQL Statement

The SQL process methods which are frequently used when processing the SQL such as the execution of p

repare/ execute statement or the retrieval by using the cursor may be simulated by using the gsql interacti

ve mode command before developing the application.

3,334 | gsql/gsqlnet (Interactive SQL Tool)

Table 33-17 Commands

gsql command Description

\exec sql It directly executes the SQL statement.

\prepare sql It prepares the SQL statement.

\exec It executes the prepared SQL statement.

\dynamic sql :var It executes the SQL statement stored in the host variable.

The following Java application is a part of code in $GOLDILOCKS_HOME/sample/JDBC/JdbcSample.java.

public static void main(String[] args) throws SQLException

{

Connection con = createConnectionByDriverManager("TEST", "test");

Statement stmt = con.createStatement();

stmt.execute("CREATE TABLE SAMPLE_TABLE (ID INTEGER, NAME CHAR(20))");

PreparedStatement pstmt = con.prepareStatement("INSERT INTO SAMPLE_TABLE VALUES (?,

?)");

pstmt.setInt(1, 100);

pstmt.setString(2, "Tom");

pstmt.executeUpdate();

pstmt.setInt(1, 200);

pstmt.setString(2, "Jerry");

pstmt.executeUpdate();

ResultSet rs = stmt.executeQuery("SELECT * FROM SAMPLE_TABLE");

while (rs.next())

{

System.out.println("ID = " + rs.getInt(1) + ": " + rs.getString(2));

}

rs.close();

stmt.close();

pstmt.close();

con.close();

Connection con2 = createConnectionByDataSource("TEST", "test");

Statement stmt2 = con2.createStatement();

stmt2.execute("DROP TABLE SAMPLE_TABLE");

stmt2.close();

con2.close();

}

The implementation above which used the PreparedStatement class of Java code may be simulated by usi

ng \prepare sql and \exec as follows.

Using Interactive Command | 3,335

gSQL> \connect test test

gSQL> \var v_int INTEGER

gSQL> \var v_string VARCHAR(128)

gSQL> CREATE TABLE SAMPLE_TABLE (ID INTEGER, NAME CHAR(20));

Table created.

gSQL> \prepare sql INSERT INTO SAMPLE_TABLE VALUES (:v_int, :v_string);

SQL prepared.

gSQL> \exec :v_int := 100

gSQL> \exec :v_string := 'Tom'

gSQL> \exec

1 row created.

gSQL> \exec :v_int := 200

gSQL> \exec :v_string := 'Jerry'

gSQL> \exec

1 row created.

gSQL> SELECT * FROM SAMPLE_TABLE;

ID NAME

--- --------------------

100 Tom

200 Jerry

2 rows selected.

gSQL> \connect test test

gSQL> DROP TABLE SAMPLE_TABLE;

Table dropped.

gSQL> \quit

%

The following embedded SQL program is a part of code in $GOLDILOCKS_HOME/sample/EmbeddedSQL/

sample2.gc.

int main(int argc, char **argv)

{

EXEC SQL BEGIN DECLARE SECTION;

int sEmpNo;

varchar sEName[20 + 1];

char sJob[20];

long sSalary;

EXEC SQL END DECLARE SECTION;

... Ellipsis ...

• Retrieve employee

3,336 | gsql/gsqlnet (Interactive SQL Tool)

EXEC SQL

DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP;

EXEC SQL OPEN EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

printf(" EMPNO ENAME JOB SALARY\n");

printf("====== ==================== ========== ========\n");

while(1)

{

EXEC SQL

FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

if(sqlca.sqlcode == SQL_NO_DATA)

{

break;

}

else if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

sRecordCount ++;

printf("%6d %20s %10s %8ld\n",

sEmpNo, sEName.arr, sJob, sSalary);

}

printf("====== ==================== ========== ========\n");

printf("Record Count = %d\n", sRecordCount);

printf("====== ==================== ========== ========\n");

EXEC SQL CLOSE EMP_CUR;

if(sqlca.sqlcode != 0)

{

PRINT_SQL_ERROR("[ERROR] SQL ERROR -");

goto fail_exit;

}

... Ellipsis ...

Using Interactive Command | 3,337

}

The query processing which uses the cursor in an embedded SQL program above may be simulated in gsq

l interactive mode as follows.

gSQL> \var sEmpNo INTEGER

gSQL> \var sEName VARCHAR(20)

gSQL> \var sJob CHAR(20)

gSQL> \var sSalary BIGINT

gSQL> DECLARE EMP_CUR CURSOR FOR

SELECT empno, ename, job, sal

FROM EMP;

Cursor declared.

gSQL> OPEN EMP_CUR;

Cursor is open.

gSQL> FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

SEMPNO SENAME SJOB SSALARY

------ ------ -------------------- -------

2854 Park RND 800

1 row fetched.

gSQL> FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

SEMPNO SENAME SJOB SSALARY

------ ------ -------------------- -------

2098 Kim SALESMAN 1600

1 row fetched.

gSQL> FETCH EMP_CUR

INTO :sEmpNo, :sEName, :sJob, :sSalary;

SEMPNO SENAME SJOB SSALARY

------ ------ -------------------- -------

2175 Choi SALESMAN 1250

1 row fetched.

gSQL> CLOSE EMP_CUR;

Cursor closed.

gSQL>

Note

The following statements are limitedly used in an embedded SQLin other DBMS. On the other han

d, in GOLDILOCKS, the followings are used not only in an embedded SQL but also can be used as

3,338 | gsql/gsqlnet (Interactive SQL Tool)

an argument of SQL processing functions when developing the application of ODBC or JDBC.

● SELECT .. INTO

● DECLARE cursor_name

● OPEN cursor_name

● FETCH cursor_name

● CLOSE cursor_name

Information of SQL Execution Plan

Refer to the following commands.

Table 33-18 Command

gsql Command Description

\explain plan It outputs the execution plan for the SQL statement.

\set autotrace It sets whether to output the execution plan.

The execution plan of the SQL statement is viewed in an interactive mode by using \explain plan or \set

autotrace as follows. For more information about the command, refer to \explain plan or \set autotra

ce, and for more information about the analysis of execution plan, refer to SQL Execution Plan.

The following is an example of executing the query No.4 of TPC-H benchmark by using the \explain plan.

\explain plan

select

o_orderpriority,

count(*) as order_count

from

orders

where

o_orderdate >= date '1993-07-01'

and o_orderdate < date '1993-07-01' + interval '3' month

and exists (

select

*

from

lineitem

where

Using Interactive Command | 3,339

l_orderkey = o_orderkey

and l_commitdate < l_receiptdate

)

group by

o_orderpriority

order by

o_orderpriority;

O_ORDERPRIORITY ORDER_COUNT

--------------- -----------

1-URGENT 10594

2-HIGH 10476

3-MEDIUM 10410

4-NOT SPECIFIED 10556

5-LOW 10487

5 rows selected.

>>> start print plan

< Execution Plan >

===

| IDX | NODE DESCRIPTION | ROWS |

| 0 | SELECT STATEMENT | |

| 1 | SORT INSTANT ACCESS | 5 |

| 2 | GROUP HASH INSTANT ACCESS | 5 |

| 3 | NESTED LOOP JOIN (LEFT SEMI) | 52523 |

| 4 | TABLE ACCESS ("ORDERS") | 57218 |

| 5 | INDEX ACCESS ("LINEITEM, LINEITEM_PK_INDEX") | 52523 |

===

1 - SORT KEY : "ORDERS.O_ORDERPRIORITY ASC NULLS LAST"

RECORD COLUMNS : COUNT(*)

READ COLUMNS : O_ORDERPRIORITY, COUNT(*)

2 - AGGREGATIONS : COUNT(*)

GROUPING COLUMNS : O_ORDERPRIORITY

RECORD COLUMNS : COUNT(*)

READ COLUMNS : O_ORDERPRIORITY, COUNT(*)

3 - JOINED COLUMNS : ORDERS.O_ORDERPRIORITY

4 - READ COLUMNS : O_ORDERKEY, O_ORDERDATE, O_ORDERPRIORITY

PHYSICAL FILTER : O_ORDERDATE >= CAST('1993-07-01' AS DATE) AND O_ORDERDATE < (

CAST('1993-07-01' AS DATE) + CAST('3' AS INTERVAL(MONTH)))

5 - READ INDEX COLUMNS : L_ORDERKEY

READ TABLE COLUMNS : L_COMMITDATE, L_RECEIPTDATE

MIN RANGE : L_ORDERKEY = {O_ORDERKEY}

3,340 | gsql/gsqlnet (Interactive SQL Tool)

MAX RANGE : L_ORDERKEY = {O_ORDERKEY}

PHYSICAL TABLE FILTER : L_COMMITDATE < L_RECEIPTDATE

<<< end print plan

Command Option Reference | 3,341

33.4 Command Option Reference

This chapter describes the options for performing gsql command at the shell prompt.

Username Password

Description

It connects to GOLDILOCKS by using the username and password.

Examples

The following is an example of connecting to GOLDILOCKS with the test user.

% gsql test test

Connected to GOLDILOCKS Database.

gSQL>

The following is an example of failing to connect to GOLDILOCKS with the invalid username or password.

% gsql invalid_user invalid_password

ERR-28000(16004): invalid username/password; logon denied

%

--as {SYSDBA|ADMIN}

Description

It connects to GOLDILOCKS with SYSDBA role or ADMIN role.

For more information about the description of the role, refer to Startup and Shutdown Server.

% gsql sys gliese --as sysdba

3,342 | gsql/gsqlnet (Interactive SQL Tool)

Example

The following is an example of connecting to GOLDILOCKS with SYSDBA role.

% gsql sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL>

--conn-string

Description

It connects to GOLDILOCKS by using the connection string.

The details of the connection string to be described should used in a form as same as the input string of t

he ODBC function, SQLDriverConnect. For more information about the connection string, refer to SQLDri

verConnectfunction.

Example

The following is an example of connecting to GOLDILOCKS with --conn-string.

% gsql --conn-string 'DSN=GOLDILOCKS;UID=test;PWD=test'

Connected to GOLDILOCKS Database.

gSQL>

--dsn

Description

It connects to GOLDILOCKS by using Data Source Name (DSN) defined in the file odbc.ini.

DSN should be defined in the odbc.ini file. For more information about the odbc.ini file, refer to DSN Con

figuration on UNIX.

If DSN is omitted, the default value is GOLDILOCKS.

Examples

The following is an example of connecting to GOLDILOCKS with DSN.

Command Option Reference | 3,343

% gsql test test --dsn GOLDILOCKS

Connected to GOLDILOCKS Database.

gSQL>

The content of odbc.ini file used in the example above is as follows.

[GOLDILOCKS]

DATE_FORMAT = SYYYY-MM-DD

TIME_FORMAT = HH24:MI:SS.FF6

Note

gsql does not recognize HOST, PORT of odbc.ini file property.

--enable-color

Description

It outputs each row of query results in a different color on the terminal to easily distinguish them.

Each row of the query results is output with a different color in an interactive mode, and it is also applied

to the results of the SELECT statement included in the file by using the --import option.

Examples

The following is an example of performing gsql by using the --enable-color option, then outputting the q

uery results in an interactive mode.

% gsql test test --enable-color

Connected to GOLDILOCKS Database.

gSQL> SELECT id, addr FROM t1;

ID ADDR

-- -------------

1 Seoul, Korea

2 Seoul, Korea

3 Inchon, Korea

3 rows selected.

gSQL>

3,344 | gsql/gsqlnet (Interactive SQL Tool)

The following is an example of executing a SELECT query included in the file by using the --import option.

% gsql test test --import 'sample_select.sql' --enable-color

SELECT id, addr FROM t1;

ID ADDR

-- -------------

1 Seoul, Korea

2 Seoul, Korea

3 Inchon, Korea

3 rows selected.

%

--help

Description

It briefly displays the option list of gsql program.

Example

The following is an example of using the --help option.

% gsql --help

Usage

gsql [user_name [password]] [options]

Arguments:

user_name user name

password password

Options:

--version print version information and exit

--import FILE import sql FILE

--no-prompt suppresses the display of the banner and prompts

--dsn DSN dsn string (default is GOLDILOCKS)

--conn-string 'CONN-STRING' connection string

--prompt STRING change prompt string

--enable-color enable colored text

--as {SYSDBA|ADMIN} privilege

--silent suppresses the display of the result message and echoing of

commands

--help print help message

Command Option Reference | 3,345

%

--import

Description

It performs the SQL statement which is not an interactive mode in the file in batch.

The file name is enclosed in a single quote ('), and it can use an absolute or relative path.

Examples

The following is an example of executing the SQL statement by using the absolute path of the file.

% gsql test test --import '/home/goldilocks/sample.sql'

DROP TABLE IF EXISTS t1;

Table dropped.

CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

);

Table created.

CREATE INDEX t1_idx_name ON t1(name);

Index created.

INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea');

3 rows created.

COMMIT;

Commit complete.

%

The following is an example of executing the SQL statement by using the relative path of the file.

% gsql test test --import 'sample.sql'

DROP TABLE IF EXISTS t1;

Table dropped.

CREATE TABLE t1

3,346 | gsql/gsqlnet (Interactive SQL Tool)

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

);

Table created.

CREATE INDEX t1_idx_name ON t1(name);

Index created.

INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea');

3 rows created.

COMMIT;

Commit complete.

%

--no-prompt

Description

It does not output the prompt when performing an interactive mode.

Example

The following is an example of using --no-prompt.

% gsql test test --no-prompt

SELECT * FROM dual;

DUMMY

X

1 row selected.

Command Option Reference | 3,347

--prompt

Description

It sets the gsql prompt when performing an interactive mode.

The default value is gSQL.

The special characters or spaces are enclosed in double quotes (") as follows.

% gsql test test --prompt "GOLDILOCKS Venus.3.2"

Example

The following is an example of which the prompt is changed to GOLDILOCKS in an interactive mode by u

sing the --prompt option.

% gsql test test --prompt GOLDILOCKS

Connected to GOLDILOCKS Database.

GOLDILOCKS> SELECT * FROM dual;

DUMMY

X

1 row selected.

GOLDILOCKS>

--silent

Description

It does not output the results of SQL statement.

It is useful when executing large amounts of SQL statements by reading the file with --import command.

The --silent option is also applied when operating in an interactive mode.

Example

The following is an example of executing the DictionarySchema.sql file in the $GOLDILOCKS_HOME/adm

in directory by using the --silent option.

3,348 | gsql/gsqlnet (Interactive SQL Tool)

% gsql sys gliese --as sysdba --import 'DictionarySchema.sql' --silent

%

--version

Description

It outputs the version information of the gsql program.

It is recommended to use the gsql program with the version as same as the version of GOLDILOCKS. The

GOLDILOCKS version can be viewed via the SQL function VERSION as follows.

gSQL> SELECT version() FROM dual;

VERSION()

Release Name.X.X.X revision(XXXXX)

1 row selected.

Example

The following is an example of using the --version option.

% gsql --version

%

Interactive Command References | 3,349

33.5 Interactive Command References

All gsql-specific commands start with backslash (\) in an interactive mode.

\\

Syntax

\\

Description

It executes the most recent successfully executed SQL statement.

Examples

gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

• It executes the most recent successfully executed SQL statement.

gSQL> \\

DUMMY

X

1 row selected.

gSQL> SELECT * FROM invalid_table;

ERR-42000(16040): table or view does not exist :

SELECT * FROM invalid_table

*

ERROR at line 1:

• It executes the most recent successfully executed SQL statement rather than executing the failed SQL s

tatement.

3,350 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \\

DUMMY

X

1 row selected.

\connect

Syntax

\connect username password [as sysdba]

Description

It is newly connected with the entered username and password.

If any uncommitted transaction exists, it performs COMMIT.

Examples

The following is an example of connecting with the test account.

gSQL> \connect test test

gSQL>

An error occurs if the password is invalid as follows.

gSQL> \connect test invalid_password

ERR-28000(16004): invalid username/password; logon denied

gSQL> SELECT * FROM dual;

ERR-08003(40044): connection does not exist

The following is an example of connecting with the SYSDBA role.

gSQL> \connect sys gliese as sysdba

gSQL>

Interactive Command References | 3,351

\cstartup

Syntax

\cstartup

\cstartup nomount

\cstartup mount

\cstartup open

\cstartup local open

\cstartup global open

Description

It starts up GOLDILOCKS server in a cluster environment.

To execute \cstartup command, it should connect with SYSDBA role or ADMIN role. For more informatio

n about how to connect with SYSDBA role, refer to startup and shutdown server.

● \cstartup nomount

○ It starts up the corresponding server on NOMOUNT phase.

● \cstartup mount

○ It starts up the corresponding server on MOUNT phase.

● \cstartup local open

○ It starts up the corresponding server and other servers on LOCAL OPEN phase.

● \cstartup global open

○ It startsup all servers on GLOBAL OPEN phase.

● \cstartup open

○ It is as same as \cstartup global open.

● \cstartup

○ It is as same as \cstartup global open.

\cstartup local open command and \cstartup global open command startup the corresponding server

and other servers to the corresponding phase. Other commands are applied only to the corresponding se

rver, so the server should be started up to LOCAL OPEN phase for the multi-level startup using ALTER SYS

TEM {MOUNT | OPEN} DATABASE.

The server startup phases are classified as NOMOUNT, MOUNT, LOCAL OPEN, GLOBAL OPEN. For more i

nformation, refer to multi-level startup.

ALTER SYSTEM {MOUNT | OPEN} DATABASE should be performed to move on to the next phase after ex

ecuting \cstartup command.

3,352 | gsql/gsqlnet (Interactive SQL Tool)

\cstartup using glocator can be viewed via CSTARTUP and CSHUTDOWN.

Note

● It is command used only in a C/S environment. It can be used only in gsqlnet.

● Commands other than \cstartup nomount/ mount affects on the corresponding server and oth

er servers. Therefore, if LOCATOR_DSN is not specified in odbc.ini file, then an error occurs.

Example

The following is an example of starting up GOLDILOCKS.

% gsqlnet sys gliese --as sysdba

Connected to an idle instance.

gSQL> \cstartup

Startup success

\cshutdown

Syntax

\cshutdown

\cshutdown abort

\cshutdown normal

Description

It shuts down GOLDILOCKS server in a cluster environment.

To execute \cshutdown command, it should connect with SYSDBA role or ADMIN role. For more informati

on about how to connect with SYSDBA role, refer to startup and shutdown server.

● \cshutdown normal

○ It blocks an access of a new session, waits for all connected sessions to be terminated, executes a

checkpoint, then terminates the server.

● \cshutdown abort

○ It forcibly and immediately terminates the server regardless of the status of connected sessions.

Interactive Command References | 3,353

● \cshutdown

○ It is as same as \cshutdown normal.

\cshutdown using glocator can be viewed via CSTARTUP and CSHUTDOWN.

Note

• It is command used only in a C/S environment. It can be used only in gsqlnet.

• Commands other than \cshutdown affects on the corresponding server and other servers. Theref

ore, if LOCATOR_DSN is not specified in odbc.ini file, then an error occurs.

Example

The following is an example of shutting down GOLDILOCKS.

% gsqlnet sys gliese --as sysdba

Connected to GOLDILOCKS Database.

gSQL> \cshutdown

Shutdown success

gSQL>

\ddl_cluster

Syntax

\ddl_cluster

Description

It outputs a cluster DDL corresponding to the current status of a cluster system.

This statement is valid in a cluster system.

Example

The following is an example of executing \ddl_cluster command for a cluster system consisting as 3 x 2.

3,354 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \ddl_cluster

SET SESSION AUTHORIZATION "SYS";

CREATE CLUSTER GROUP "G1"

CLUSTER MEMBER "G1N1" HOST '127.0.0.1' PORT '10110'

;

COMMIT;

SET SESSION AUTHORIZATION "SYS";

ALTER CLUSTER GROUP "G1" ADD

CLUSTER MEMBER "G1N2" HOST '127.0.0.1' PORT '10120'

;

COMMIT;

SET SESSION AUTHORIZATION "SYS";

CREATE CLUSTER GROUP "G2"

CLUSTER MEMBER "G2N1" HOST '127.0.0.1' PORT '10210'

;

COMMIT;

SET SESSION AUTHORIZATION "SYS";

ALTER CLUSTER GROUP "G2" ADD

CLUSTER MEMBER "G2N2" HOST '127.0.0.1' PORT '10220'

;

COMMIT;

SET SESSION AUTHORIZATION "SYS";

CREATE CLUSTER GROUP "G3"

CLUSTER MEMBER "G3N1" HOST '127.0.0.1' PORT '10310'

;

COMMIT;

SET SESSION AUTHORIZATION "SYS";

ALTER CLUSTER GROUP "G3" ADD

CLUSTER MEMBER "G3N2" HOST '127.0.0.1' PORT '10320'

;

\ddl_db

Syntax

\ddl_db

\ddl_db GRANT

\ddl_db COMMENT

Interactive Command References | 3,355

Description

It outputs the DDL statements corresponding to the current state of the database object.

Table 33-19 \ddl_db commands

Command Description

\ddl_db It outputs the DDL statements of all objects created in the database.

\ddl_db GRANT
It outputs the GRANT .. ON DATABASE statement corresponding to the privilege infor

mation on the database object.

\ddl_db COMMENT
It outputs the COMMENT ON DATABASE statement corresponding to the comment i

nformation on the database object.

The result of \ddl_db command without any option outputs the DDL statements in the following order.

● Database DDL

● Tablespace DDL

● Profile DDL

● Authorization DDL

● Schema DDL

● Authorization schema path DDL

● Database privilege DDL

● Tablespace privilege DDL

● Schema privilege DDL

● Public synonym DDL

● Table DDL

● Table privilege DDL

● Table option DDL

● Constraint DDL

● Index DDL

● View DDL

● View privilege DDL

● Sequence DDL

● Sequence privilege DDL

● Synonym DDL

● Stored procedure/ function DDL

● Audit policy DDL

However, the information related to the following schemas which include the dictionary information are

not output.

● DICTIONARY_SCHEMA

● INFORMATION_SCHEMA

3,356 | gsql/gsqlnet (Interactive SQL Tool)

● PERFORMANCE_VIEW_SCHEMA

● DEFINITION_SCHEMA

● FIXED_TABLE_SCHEMA

The DDL statement for the schema above which includes the dictionary information can be output by usi

ng \ddl_schema.

Examples

The following is an example of executing \ddl_db.

gSQL> \ddl_db

• Database DDL

SET SESSION AUTHORIZATION "SYS";

COMMENT

ON DATABASE

IS 'goldilocks database'

;

• Tablespace DDL

SET SESSION AUTHORIZATION "SYS";

CREATE MEMORY DATA TABLESPACE "TEST_TBS"

DATAFILE '/home/GOLDILOCKS/workspace/product/Gliese/home/db/test1.dbf'

SIZE 10477568 REUSE

ONLINE

LOGGING

EXTSIZE 262144

;

SET SESSION AUTHORIZATION "SYS";

ALTER TABLESPACE "TEST_TBS"

ADD DATAFILE '/home/GOLDILOCKS/workspace/product/Gliese/home/db/test2.dbf'

SIZE 10477568 REUSE

;

SET SESSION AUTHORIZATION "SYS";

ALTER TABLESPACE "TEST_TBS"

ADD DATAFILE '/home/GOLDILOCKS/workspace/product/Gliese/home/db/test3.dbf'

SIZE 10477568 REUSE

;

SET SESSION AUTHORIZATION "SYS";

Interactive Command References | 3,357

COMMENT

ON TABLESPACE "TEST_TBS"

IS 'comment tablespace TPC data'

;

SET SESSION AUTHORIZATION "SYS";

CREATE MEMORY TEMPORARY TABLESPACE "TEMP_TBS"

MEMORY 'test_mem'

SIZE 10477568

EXTSIZE 262144

;

... Ellipsis ...

• Sequence privilege DDL

SET SESSION AUTHORIZATION "H_USER";

GRANT

USAGE ON SEQUENCE "H_USER"."H_SEQ"

TO "PUBLIC"

;

SET SESSION AUTHORIZATION "H_USER";

GRANT

USAGE ON SEQUENCE "H_USER"."H_SEQ"

TO "TEST"

WITH GRANT OPTION

;

SET SESSION AUTHORIZATION "H_USER";

GRANT

USAGE ON SEQUENCE "H_USER"."H_SEQ"

TO "C_USER"

;

SET SESSION AUTHORIZATION "C_USER";

GRANT

USAGE ON SEQUENCE "C_USER"."C_SEQ"

TO "TEST"

;

SET SESSION AUTHORIZATION "C_USER";

GRANT

USAGE ON SEQUENCE "C_USER"."C_SEQ"

TO "H_USER"

;

3,358 | gsql/gsqlnet (Interactive SQL Tool)

The following is an example of executing \ddl_db GRANT.

gSQL> \ddl_db GRANT

SET SESSION AUTHORIZATION "SYS";

GRANT

ALTER DATABASE ON DATABASE

TO "TEST"

WITH GRANT OPTION

;

SET SESSION AUTHORIZATION "SYS";

GRANT

ALTER SYSTEM ON DATABASE

TO "TEST"

WITH GRANT OPTION

;

... Ellipsis ...

\ddl_tablespace

Syntax

\ddl_tablespace name

\ddl_tablespace name CREATE

\ddl_tablespace name ALTER

\ddl_tablespace name TABLE

\ddl_tablespace name CONSTRAINT

\ddl_tablespace name INDEX

\ddl_tablespace name GRANT

\ddl_tablespace name COMMENT

Description

It outputs the DDL statements for the current state of the tablespace object.

Table 33-20 \ddl_tablespace commands

Command Description

\ddl_tablespace name It performs all options below.

\ddl_tablespace name CREATE It outputs the CREATE TABLESPACE statement of the tablespace object.

\ddl_tablespace name ALTER
It outputs the ALTER TABLESPACE statements for the datafile or memory added to

Interactive Command References | 3,359

the tablespace.

\ddl_tablespace name TABLE It outputs the CREATE TABLE statements of the tables stored in the tablespace.

\ddl_tablespace name CONSTRA

INT
It outputs the ALTER TABLE statements of the constraints stored in the tablespace.

\ddl_tablespace name INDEX It outputs the CREATE INDEX statements of the indexes stored in the tablespace.

\ddl_tablespace name GRANT
It outputs the GRANT .. ON TABLESPACE statement for the privilege information o

n the tablespace.

\ddl_tablespace name COMMENT
It outputs the COMMENT ON TABLESPACE statement corresponding o the comme

nt on the tablespace.

Command Description

Examples

The following is an example of executing \ddl_tablespace CREATE.

gSQL> \ddl_tablespace test_tbs CREATE

SET SESSION AUTHORIZATION "SYS";

CREATE MEMORY DATA TABLESPACE "TEST_TBS"

DATAFILE '/home/GOLDILOCKS/workspace/product/Gliese/home/db/test1.dbf'

SIZE 10477568 REUSE

ONLINE

EXTSIZE 262144

;

The following is an example of executing \ddl_tablespace ALTER.

gSQL> \ddl_tablespace test_tbs ALTER

SET SESSION AUTHORIZATION "SYS";

ALTER TABLESPACE "TEST_TBS"

ADD DATAFILE

'/home/GOLDILOCKS/workspace/product/Gliese/home/db/test2.dbf'

SIZE 10477568 REUSE

,

'/home/GOLDILOCKS/workspace/product/Gliese/home/db/test3.dbf'

SIZE 10477568 REUSE

;

3,360 | gsql/gsqlnet (Interactive SQL Tool)

\ddl_profile

Syntax

\ddl_profile name

\ddl_profile name CREATE

\ddl_profile name COMMENT

Description

It outputs the DDL statement for the current state of the profile object.

Table 33-21 \ddl_profile commands

Command Description

\ddl_profile name It performs all options below.

\ddl_profile name CREATE It outputs the CREATE PROFILE statement of the profile object.

\ddl_profile name COMMENT
It outputs the COMMENT ON PROFILE statement corresponding to the comment on

the profile.

Example

The following is an example of executing \ddl_profile CREATE.

gSQL> \ddl_profile prof1 CREATE

SET SESSION AUTHORIZATION "SYS";

CREATE PROFILE "PROF1" LIMIT

FAILED_LOGIN_ATTEMPTS DEFAULT

PASSWORD_LOCK_TIME 1/86400

PASSWORD_LIFE_TIME UNLIMITED

PASSWORD_GRACE_TIME 100

PASSWORD_REUSE_MAX DEFAULT

PASSWORD_REUSE_TIME DEFAULT

PASSWORD_VERIFY_FUNCTION KISA_VERIFY_FUNCTION

;

COMMIT;

Interactive Command References | 3,361

\ddl_audit_policy

Syntax

\ddl_audit_policy name

\ddl_audit_policy name CREATE

\ddl_audit_policy name AUDIT

\ddl_audit_policy name COMMENT

Description

It outputs the DDL statement for the current state of the audit policy object.

Table 33-22 \ddl_audit_policy commands

Command Description

\ddl_audit_policy name It perform all options below.

\ddl_audit_policy name CREA

TE
It outputs CREATE AUDIT POLICY statement of the audit policy object.

\ddl_audit_policy name AUDI

T
It outputs AUDIT POLICY statement of the audit policy object.

\ddl_audit_policy name COMM

ENT

It outputs the COMMENT ON AUDIT POLICY statement corresponding to the comm

ent on the audit policy.

Examples

The following is an example of executing \ddl_audit_policy CREATE.

gSQL> \ddl_audit_policy p1 CREATE

SET SESSION AUTHORIZATION "SYS";

CREATE AUDIT POLICY "P1"

ACTIONS SELECT ON "PUBLIC"."T1"

, INSERT ON "PUBLIC"."T1"

, UPDATE ON "PUBLIC"."T2"

, ALL ON "PUBLIC"."SEQ1"

, SELECT ON "PUBLIC"."SEQ2"

, EXECUTE ON "PUBLIC"."FUNC2"

;

COMMIT;

3,362 | gsql/gsqlnet (Interactive SQL Tool)

\ddl_auth

Syntax

\ddl_auth name

\ddl_auth name CREATE

\ddl_auth name SCHEMA PATH

\ddl_auth name SCHEMA

\ddl_auth name TABLE

\ddl_auth name CONSTRAINT

\ddl_auth name INDEX

\ddl_auth name VIEW

\ddl_auth name SEQUENCE

\ddl_auth name SYNONYM

\ddl_auth name PROCEDURE

\ddl_auth name COMMENT

Description

It outputs the DDL statements for the current state of the account object.

Table 33-23 \ddl_auth commands

Command Description

\ddl_auth name It performs all options below.

\ddl_auth name CREATE It outputs the CREATE USER statement of the user object.

\ddl_auth name SCHEMA It outputs the CREATE SCHEMA statement of schemas owned by a user.

\ddl_auth name SCHEMA PAT

H

It outputs the ALTER USER statement corresponding to the schema path of the accou

nt.

\ddl_auth name TABLE It outputs the CREATE TABLE statements of tables owned by a user.

\ddl_auth name CONSTRAINT It outputs the ALTER TABLE statements of constraints owned by a user.

\ddl_auth name INDEX It outputs the CREATE INDEX statements of indexes owned by a user.

\ddl_auth name VIEW It outputs the CREATE VIEW statements of views owned by a user.

\ddl_auth name SEQUENCE It outputs the CREATE SEQUENCE statements of sequences owned by a user.

\ddl_auth name SYNONYM It outputs the CREATE SYNONYM statements of synonyms owned by a user.

\ddl_auth name PROCEDURE
It outputs the CREATE PROCEDURE/ FUNCTION statements of procedures and functi

ons owned by a user.

\ddl_auth name COMMENT
It outputs the COMMENT ON AUTHORIZATION statement corresponding to commen

ts on the account.

Interactive Command References | 3,363

Examples

The following is an example of executing \ddl_auth CREATE.

gSQL> \ddl_auth h_user CREATE

SET SESSION AUTHORIZATION "SYS";

CREATE USER "H_USER"

IDENTIFIED BY H_USER

DEFAULT TABLESPACE "TEST_TBS"

TEMPORARY TABLESPACE "TEMP_TBS"

WITHOUT SCHEMA

;

The following is an example of executing \ddl_auth SCHEMA.

gSQL> \ddl_auth h_user SCHEMA

SET SESSION AUTHORIZATION "SYS";

CREATE SCHEMA "H_USER"

AUTHORIZATION "H_USER"

;

The following is an example of executing \ddl_auth TABLE.

gSQL> \ddl_auth h_user TABLE

SET SESSION AUTHORIZATION "H_USER";

CREATE TABLE "H_USER"."REGION"

(

"R_REGIONKEY" NUMBER(10, 0)

, "R_NAME" CHARACTER(25 OCTETS)

, "R_COMMENT" CHARACTER VARYING(152 OCTETS)

)

PCTFREE 10

PCTUSED 60

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

3,364 | gsql/gsqlnet (Interactive SQL Tool)

TABLESPACE "TEST_TBS"

;

SET SESSION AUTHORIZATION "H_USER";

CREATE TABLE "H_USER"."NATION"

(

"N_NATIONKEY" NUMBER(10, 0)

, "N_NAME" CHARACTER(25 OCTETS)

, "N_REGIONKEY" NUMBER(10, 0)

, "N_COMMENT" CHARACTER VARYING(152 OCTETS)

)

PCTFREE 10

PCTUSED 60

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

TABLESPACE "TEST_TBS"

;

\ddl_schema

Syntax

\ddl_schema name

\ddl_schema name CREATE

\ddl_schema name TABLE

\ddl_schema name CONSTRAINT

\ddl_schema name INDEX

\ddl_schema name VIEW

\ddl_schema name SEQUENCE

\ddl_schema name SYNONYM

\ddl_schema name PROCEDURE

\ddl_schema name GRANT

\ddl_schema name COMMENT

Interactive Command References | 3,365

Description

It outputs the DDL statements for the current state of the schema object.

Table 33-24 \ddl_schema commands

Command Description

\ddl_schema name It performs all options below.

\ddl_schema name CREATE It outputs the CREATE SCHEMA statement of the schema object.

\ddl_schema name TABLE It outputs the CREATE TABLE statements of the tables which belong to the schema.

\ddl_schema name CONSTRAI

NT

It outputs the ALTER TABLE statements of the constraints which belong to the schem

a.

\ddl_schema name INDEX It outputs the CREATE INDEX statements of the indexes which belong to the schema.

\ddl_schema name VIEW It outputs the CREATE VIEW statements of the views which belong to the schema.

\ddl_schema name SEQUENCE
It outputs the CREATE SEQUENCE statements of the sequences which belong to the s

chema.

\ddl_schema name SYNONYM
It outputs the CREATE SYNONYM statements of the synonyms which belong to the sc

hema.

\ddl_schema name PROCEDUR

E

It outputs the CREATE PROCEDURE/ FUNCTION statements of the procedures and fu

nctions which belong to the schema.

\ddl_schema name GRANT
It outputs the GRANT .. ON SCHEMA statement for the privilege information on the s

chema.

\ddl_schema name COMMENT
It outputs the COMMENT ON SCHEMA statement corresponding to the comment on

the schema.

Examples

The following is an example of executing \ddl_schema CREATE.

gSQL> \ddl_schema h_user CREATE

SET SESSION AUTHORIZATION "SYS";

CREATE SCHEMA "H_USER"

AUTHORIZATION "H_USER"

;

The following is an example of executing \ddl_schema CONSTRAINT.

gSQL> \ddl_schema h_user CONSTRAINT

SET SESSION AUTHORIZATION "H_USER";

ALTER TABLE "H_USER"."REGION"

ADD CONSTRAINT "H_USER"."REGION_PK"

PRIMARY KEY

(

3,366 | gsql/gsqlnet (Interactive SQL Tool)

"R_REGIONKEY" ASC NULLS LAST

)

INDEX "REGION_PK_INDEX"

PCTFREE 10

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

NOLOGGING

TABLESPACE "TEMP_TBS"

NOT DEFERRABLE

INITIALLY IMMEDIATE

;

SET SESSION AUTHORIZATION "H_USER";

ALTER TABLE "H_USER"."NATION"

ADD CONSTRAINT "H_USER"."NATION_PK"

PRIMARY KEY

(

"N_NATIONKEY" ASC NULLS LAST

)

INDEX "NATION_PK_INDEX"

PCTFREE 10

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

NOLOGGING

TABLESPACE "TEMP_TBS"

NOT DEFERRABLE

INITIALLY IMMEDIATE

;

Interactive Command References | 3,367

SET SESSION AUTHORIZATION "H_USER";

ALTER TABLE "H_USER"."SUPPLIER"

ADD CONSTRAINT "H_USER"."SUPPLIER_PK"

PRIMARY KEY

(

"S_SUPPKEY" ASC NULLS LAST

)

INDEX "SUPPLIER_PK_INDEX"

PCTFREE 10

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

NOLOGGING

TABLESPACE "TEMP_TBS"

NOT DEFERRABLE

INITIALLY IMMEDIATE

;

\ddl_publicsynonym

Syntax

\ddl_public_synonym name

\ddl_public_synonym name CREATE

Description

It outputs the DDL statements for the current state of the public synonym object.

Table 33-25 \ddl_public_synonym commands

Command Description

\ddl_public_synonym It performs all options below.

It outputs the CREATE PUBLIC SYNONYM statement of the public synonym o

3,368 | gsql/gsqlnet (Interactive SQL Tool)

\ddl_public_synonym name CREATE bject.

Command Description

Example

The following is an example of executing \ddl_public_synonym CREATE.

gSQL> \ddl_public_synonym pubsyn CREATE

SET SESSION AUTHORIZATION "SYS";

CREATE PUBLIC SYNONYM "PUBSYN" FOR "PUBLIC"."T1"

;

COMMIT;

\ddl_table

Syntax

\ddl_table name

\ddl_table name CREATE

\ddl_table name CONSTRAINT

\ddl_table name INDEX

\ddl_table name IDENTITY

\ddl_table name SUPPLEMENTAL

\ddl_table name GRANT

\ddl_table name COMMENT

Description

It outputs the DDL statements for the current state of the table object.

Table 33-26 \ddl_table commands

Command Description

\ddl_table name It performs all options below.

\ddl_table name CREATE It outputs the CREATE TABLE statement of the table object.

\ddl_table name CONSTRAINT It outputs the ALTER TABLE statements of the constraints created in the table.

\ddl_table name INDEX It outputs the CREATE INDEX statements of the indexes created in the table.

\ddl_table name IDENTITY
It outputs the ALTER TABLE statement for the restart value if the table has an iden

tity column.

Interactive Command References | 3,369

\ddl_table name SUPPLEMENTAL
It outputs the ALTER TABLE statement if the supplemental log option is set on the

table.

\ddl_table name GRANT
It outputs the GRANT .. ON TABLE statement for the privilege information on the

table.

\ddl_table name COMMENT
It outputs the COMMENT ON TABLE statement corresponding to the comment on

the table.

Command Description

Examples

The following is an example of executing \ddl_table CREATE.

gSQL> \ddl_table h_user.orders CREATE

SET SESSION AUTHORIZATION "H_USER";

CREATE TABLE "H_USER"."ORDERS"

(

"O_ORDERKEY" NUMBER(10, 0)

, "O_CUSTKEY" NUMBER(10, 0)

, "O_ORDERSTATUS" CHARACTER(1 OCTETS)

, "O_TOTALPRICE" NUMBER(12, 2)

, "O_ORDERDATE" DATE

, "O_ORDERPRIORITY" CHARACTER(15 OCTETS)

, "O_CLERK" CHARACTER(15 OCTETS)

, "O_SHIPPRIORITY" NUMBER(10, 0)

, "O_COMMENT" CHARACTER VARYING(79 OCTETS)

)

PCTFREE 10

PCTUSED 60

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

TABLESPACE "TEST_TBS"

;

The following is an example of executing \ddl_table GRANT.

3,370 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \ddl_table h_user.nation GRANT

SET SESSION AUTHORIZATION "H_USER";

GRANT

DELETE ON TABLE "H_USER"."NATION"

TO "TEST"

;

SET SESSION AUTHORIZATION "H_USER";

GRANT

SELECT ("N_NATIONKEY") ON TABLE "H_USER"."NATION"

TO "C_USER"

;

SET SESSION AUTHORIZATION "H_USER";

GRANT

SELECT ("N_NAME") ON TABLE "H_USER"."NATION"

TO "C_USER"

;

\ddl_constraint

Syntax

\ddl_constraint name

\ddl_constraint name ALTER

\ddl_constraint name COMMENT

Description

It outputs the DDL statements for the current state of the constraint object.

Table 33-27 \ddl_constraint commands

Command Description

\ddl_constraint name It performs all options below.

\ddl_constraint name ALTER It outputs the ALTER TABLE statement of the constraint object.

\ddl_constraint name COMME

NT

It outputs the COMMENT ON CONSTRAINT statement corresponding to the comme

nt on the constraint.

Interactive Command References | 3,371

Example

The following is an example of executing \ddl_constraint ALTER.

gSQL> \ddl_constraint h_user.lineitem_pk ALTER

SET SESSION AUTHORIZATION "H_USER";

ALTER TABLE "H_USER"."LINEITEM"

ADD CONSTRAINT "H_USER"."LINEITEM_PK"

PRIMARY KEY

(

"L_ORDERKEY" ASC NULLS LAST

, "L_LINENUMBER" ASC NULLS LAST

)

INDEX "LINEITEM_PK_INDEX"

PCTFREE 10

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

NOLOGGING

TABLESPACE "TEMP_TBS"

NOT DEFERRABLE

INITIALLY IMMEDIATE

;

\ddl_index

Syntax

\ddl_index name

\ddl_index name CREATE

\ddl_index name COMMENT

3,372 | gsql/gsqlnet (Interactive SQL Tool)

Description

It outputs the DDL statements for the current state of the index object.

Table 33-28 \ddl_index commands

Command Description

\ddl_index name It performs all options below.

\ddl_index name CREATE It outputs the CREATE INDEX statement of the index object.

\ddl_index name COMMENT
It outputs the COMMENT ON INDEX statement corresponding to the comment on th

e index.

Example

The following is an example of executing \ddl_index CREATE.

gSQL> \ddl_index public.idx2 CREATE

SET SESSION AUTHORIZATION "TEST";

CREATE INDEX "PUBLIC"."IDX2"

ON "PUBLIC"."T1"

(

"C3" ASC NULLS LAST

, "C1" DESC NULLS FIRST

)

PCTFREE 10

INITRANS 4

MAXTRANS 8

STORAGE

(

INITIAL 524288

NEXT 262144

MINSIZE 524288

MAXSIZE 562949953159168

)

NOLOGGING

TABLESPACE "MEM_TEMP_TBS"

;

Interactive Command References | 3,373

\ddl_view

Syntax

\ddl_view name

\ddl_view name CREATE

\ddl_view name GRANT

\ddl_view name COMMENT

Description

It outputs the DDL statements for the current state of the view object.

Table 33-29 \ddl_view commands

Command Description

\ddl_view name It performs all options below.

\ddl_view name CREATE It outputs the CREATE VIEW statement of the view object.

\ddl_view name GRANT
It outputs the GRANT .. ON TABLE statement for the privilege information on the vi

ew.

\ddl_view name COMMENT It outputs the COMMENT ON TABLE corresponding to the comment on the view.

Example

The following is an example of executing \ddl_view CREATE.

gSQL> \ddl_view h_user.revenue CREATE

SET SESSION AUTHORIZATION "H_USER";

CREATE OR REPLACE FORCE VIEW "H_USER"."REVENUE"

(supplier_no, total_revenue)

AS SELECT

l_suppkey,

ROUND(sum(l_extendedprice * (1 - l_discount)), 2)

FROM

lineitem

WHERE

l_shipdate >= date '1996-01-01'

AND l_shipdate < date '1996-01-01' + interval '3' month

GROUP BY

l_suppkey

;

3,374 | gsql/gsqlnet (Interactive SQL Tool)

\ddl_sequence

Syntax

\ddl_sequence name

\ddl_sequence name CREATE

\ddl_sequence name RESTART

\ddl_sequence name GRANT

\ddl_sequence name COMMENT

Description

It outputs the DDL statements for the current state of the sequence object.

Table 33-30 \ddl_sequence commands

Command Description

\ddl_sequence name It performs all options below.

\ddl_sequence name CREATE It outputs the CREATE SEQUENCE statement of the sequence object.

\ddl_sequence name RESTART
It outputs the ALTER SEQUENCE statement corresponding to the restart value of the

sequence object.

\ddl_sequence name GRANT
It outputs the GRANT .. ON SEQUENCE statement for the privilege information on t

he sequence.

\ddl_sequence name COMMENT
It outputs the COMMENT ON SEQUENCE statement corresponding to the comment

on the sequence.

Examples

The following is an example of executing \ddl_sequence CREATE.

gSQL> \ddl_sequence h_user.h_seq CREATE

SET SESSION AUTHORIZATION "H_USER";

CREATE SEQUENCE "H_USER"."H_SEQ"

START WITH 1

INCREMENT BY 1

MAXVALUE 9223372036854775807

MINVALUE 1

NO CYCLE

CACHE 20

;

Interactive Command References | 3,375

The following is an example of executing \ddl_sequence RESTART.

gSQL> \ddl_sequence h_user.h_seq RESTART

SET SESSION AUTHORIZATION "H_USER";

ALTER SEQUENCE "H_USER"."H_SEQ"

RESTART WITH 21

;

\ddl_synonym

Syntax

\ddl_synonym name

\ddl_synonym name CREATE

Description

It outputs the DDL statements for the current state of the synonym object.

Table 33-31 \ddl_synonym commands

Command Description

\ddl_synonym It performs all options below.

\ddl_synonym name CREATE It outputs the CREATE SYNONYM statement of the synonym object.

Example

The following is an example of executing \ddl_synonym CREATE.

gSQL> \ddl_synonym syn CREATE

SET SESSION AUTHORIZATION "TEST";

CREATE SYNONYM "PUBLIC"."SYN" FOR "PUBLIC"."T1"

;

COMMIT;

3,376 | gsql/gsqlnet (Interactive SQL Tool)

\ddl_procedure

Syntax

\ddl_procedure name

\ddl_procedure name CREATE

Description

It outputs the DDL statements for the current state of the stored procedure or the function object.

Table 33-32 \ddl_procedure commands

Command Description

\ddl_procedure It performs all options below.

\ddl_procedure name CREATE
It outputs CREATE PROCEDURE/ FUNCTION statement of the stored procedure/ fun

ction object.

Example

The following is an example of executing \ddl_procedure CREATE.

gSQL> \ddl_procedure proc1 CREATE

SET SESSION AUTHORIZATION "TEST";

CREATE OR REPLACE PROCEDURE "PUBLIC"."PROC1"

is

begin

null;

end;

/

COMMIT;

\desc

Syntax

\desc table_name

\desc schema_name.table_name

Interactive Command References | 3,377

Description

It queries the structure information of the table.

A table may be described only with the table name as follows or described together with the schema na

me. If the schema name is not specified, the schema name of the table is determined by the Schema Path

of the user.

● \desc t1

● \desc public.t1

If a table name is created by using Identifiers when creating a table as follows, the double quotes (") is us

ed to describe it.

● Creating a table

○ CREATE TABLE "TaBle#@^*" (id INTEGER);

● \desc "TaBle#@^*"

● \desc "PUBLIC"."TaBle#@^*"

The execution result includes the following information of the table.

● Column information

○ Column name

○ Data type

○ Whether NULL is allowed

● Index information

○ Index name

○ Storage space for index

○ Index type

○ Whether UNIQUE is allowed

○ Key column name

● Constraint information

○ Constraint name

○ Constraint type

○ The related index

○ Constraint column

Examples

The following is an example of querying the information of the t1 table.

gSQL> \desc t1

COLUMN_NAME TYPE IS_NULLABLE

3,378 | gsql/gsqlnet (Interactive SQL Tool)

----------- ----------------------- -----------

ID NUMBER(10,0) FALSE

NAME CHARACTER VARYING(128) TRUE

ADDR CHARACTER VARYING(1024) TRUE

INDEX_NAME TABLESPACE_NAME INDEX_TYPE IS_UNIQUE COLUMNS

-------------------- --------------- ---------- --------- -------

T1_PRIMARY_KEY_INDEX MEM_TEMP_TBS BTREE TRUE ID

T1_IDX_NAME MEM_TEMP_TBS BTREE FALSE NAME

CONSTRAINT_NAME CONSTRAINT_TYPE ASSOCIATED_INDEX COLUMNS

--------------- --------------- -------------------- -------

T1_PRIMARY_KEY PRIMARY KEY T1_PRIMARY_KEY_INDEX ID

The following is an example of querying the information of the t1 table by describing together with the s

chema name public.

gSQL> \desc public.t1

COLUMN_NAME TYPE IS_NULLABLE

----------- ----------------------- -----------

ID NUMBER(10,0) FALSE

NAME CHARACTER VARYING(128) TRUE

ADDR CHARACTER VARYING(1024) TRUE

INDEX_NAME TABLESPACE_NAME INDEX_TYPE IS_UNIQUE COLUMNS

-------------------- --------------- ---------- --------- -------

T1_PRIMARY_KEY_INDEX MEM_TEMP_TBS BTREE TRUE ID

T1_IDX_NAME MEM_TEMP_TBS BTREE FALSE NAME

CONSTRAINT_NAME CONSTRAINT_TYPE ASSOCIATED_INDEX COLUMNS

--------------- --------------- -------------------- -------

T1_PRIMARY_KEY PRIMARY KEY T1_PRIMARY_KEY_INDEX ID

The following is an example of querying the information of the table created by using the delimited identi

fier.

gSQL> CREATE TABLE "TaBle#@^*" (id INTEGER);

Table created.

gSQL> \desc "TaBle#@^*"

COLUMN_NAME TYPE IS_NULLABLE

----------- ------------ -----------

ID NUMBER(10,0) TRUE

If the delimited identifier is not used as follows, then an error occurs.

Interactive Command References | 3,379

gSQL> \desc TaBle#@^*

ERR-42000(40000): syntax error

\desc TaBle#@^*

...........^ ^

Error at line 1

\dynamic sql :var

Syntax

\dynamic sql :var

Description

It executes the SQL statement stored in the host variable var.

It is similar in concept to Embedded Dynamic SQL which executes SQL statements that are not defined in

an embedded SQL, but It is used when performing SQL statement which is not defined.

It is performed in the following order.

1. Declare a host variable. (Refer to \var.)

\var var_stmt VARCHAR(1024)

2. Assign an SQL statement as the value of the host variable. (Refer to \exec :var := value.)

\exec :var_stmt := 'SELECT # FROM t1'

3. Execute the dynamic SQL.

\dynamic sql :var_stmt

Examples

The following is an example of declaring the var_stmt host variable and executing the dynamic SQL by ass

igning an SQL statement.

• Assigning the SELECT statement to the host variable

gSQL> \exec :var_stmt := 'SELECT * FROM t1'

• Executing the dynamic SQL

3,380 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \dynamic sql :var_stmt

ID NAME ADDR

-- ------ ------------

1 leekmo Seoul, Korea

1 row selected.

Two single quote (') are described like as the usage of the \exec :var := value command when a string

exists in an SQL statement as the INSERT statement below.

• Declaring a host variable

gSQL> \var var_stmt VARCHAR(1024)

• Assigning the INSERT statement to the host variable

gSQL> \exec :var_stmt := 'INSERT INTO t1(id, name, addr) VALUES (1, ''leekmo'', ''Seoul,

Korea'')'

• Executing the dynamic SQL.

gSQL> \dynamic sql :var_stmt

1 row created.

\edit

Description

It edits the SQL statement by using the text editor. The used text editor is specified in the EDITOR environ

ment variable, and if the EDITOR environment variable does not exist, vi is used by default.

When using the editing feature, gsql hands over control by executing the editor. The user can freely edit t

he SQL statements with the editor. When the editor ends, the control is handed over to gsql, and its cont

ent will be added as the last history.

The SQL statement edited by the editor may be executed through the last history execution command \\.

Caution

Only a single SQL statement can be edited with the SQL editor. An error occurs when executing m

ultiple SQL statements.

Interactive Command References | 3,381

The followings can be edited by using \edit.

● The most recently performed SQL statement

● the SQL statement stored in a file

● The SQL statement stored in the gsql history

The following chapter describes the usage.

\edit

Syntax

\edit

\ed

Description

It edits the most recently executed SQL statement by using the text editor. If any SQL statement has not b

een executed, the text editor is run without any content.

Example

The following is an example of editing the most recently executed SQL statement.

● Editing the most recently executed SQL statement

gSQL> SELECT * FROM T1;

C1

--

1

11

2 rows selected.

gSQL> \EDIT

SELECT * FROM T1 WHERE C1 < 10;

• Executing the edited SQL statement

gSQL> \\

C1

--

1

1 row selected.

3,382 | gsql/gsqlnet (Interactive SQL Tool)

\edit 'file_name'

Syntax

\edit 'file_name'

\ed 'file_name'

Description

It edits the given file_name by using the text editor.

The file_name is enclosed with the single quote (').

file_name can use either an absolute path or a relative path as follows. When file_name uses a relative pa

th, it searches for the file_name based on the path of gsql execution.

• Using the absolute path

gSQL> \edit '/home/goldilocks/sample.sql'

• Using the relative path

gSQL> \edit 'sample.sql'

Example

The following is an example of editing the SQL statement stored in the file.

• Editing the most recently executed SQL statement

gSQL> SELECT * FROM T1;

C1

--

1

11

2 rows selected.

gSQL> \EDIT 'sample.sql'

SELECT * FROM T1 WHERE C1 < 10;

• Executing the edited SQL statement

gSQL> \\

C1

--

1

Interactive Command References | 3,383

1 row selected.

\edit [history] {n}

Syntax

\edit [history] {n}

\ed [history] {n}

Description

It edits the SQL statement corresponding to the number from the SQL execution history which can be qu

eried by using \history.

The value of number should be the ID value which is the result of executing \history.

Example

The following is an example of editing the SQL statement stored in the gsql history.

gSQL> SELECT * FROM T1;

C1

--

1

11

2 rows selected.

gSQL> \history

ID SQL

-- ----------------

1 SELECT * FROM T1

• Editing the SQL statement whose ID value is 1 from the stored history

gSQL> \edit 1

SELECT * FROM T1 WHERE C1 < 5;

• Executing the edited SQL statement

gSQL> \\

C1

--

1

1 row selected.

3,384 | gsql/gsqlnet (Interactive SQL Tool)

\exec

Syntax

\exec

Description

It executes the SQL statement which is prepared by \prepare sql.

\exec operates similarly to the SQLExecute function of ODBC and PreparedStatement:: execute function

of JDBC.

The prepared SQL statements can be repeatedly executed by using \exec.

Examples

The following is an example of preparing an INSERT statement and repeatedly executing it.

• Preparing the INSERT statement

gSQL> \prepare sql INSERT INTO t1(id, addr) VALUES (seq.NEXTVAL, 'N/A');

SQL prepared.

• Executing the prepared statement

gSQL> \exec

1 row created.

• Executing the prepared statement

gSQL> \exec

1 row created.

• The results of querying the table are as follows.

gSQL> SELECT * FROM t1;

ID ADDR

-- ----

1 N/A

2 N/A

2 rows selected.

Interactive Command References | 3,385

The following is an example of preparing the SELECT statement with the host variable and repeatedly exe

cuting it by changing the host variable value.

• Declaring the host variable

gSQL> \var v_id INTEGER

• Preparing the SELECT statement which used the host variable

gSQL> \prepare sql SELECT * FROM t1 WHERE ID = :v_id;

SQL prepared.

• Assigning the value 1 to the host variable

gSQL> \exec :v_id := 1

• Executing the prepared SELECT statement

gSQL> \exec

ID ADDR

-- ----

1 N/A

1 row selected.

• Assigning the value 2 to the host variable

gSQL> \exec :v_id := 2

• Executing the prepared SELECT statement

gSQL> \exec

ID ADDR

-- ----

2 N/A

1 row selected.

\exec :var := value

3,386 | gsql/gsqlnet (Interactive SQL Tool)

Syntax

\exec :variable := <value expression>

Description

It assigns the value to the host variable.

This command assigns a value to the host variable in the same way as executing SELECT .. INTO as follow

s.

gSQL> \exec :v_value := 1234

gSQL> SELECT 1234 INTO :v_value FROM DUAL;

The host variable must have been declared with \var.

The host variable must be used together with colon (:), and the assignment operator (:=) is not allowed t

o omit (:). Simple values or operators may appear in <value expression> entered to the host variable. For

more information, refer to Expressions.

The value assigned to the host variable should be compatible with the data type of the host variable. For

more information, refer to Type Conversion.

The value assigned to the host variable may be queried by using \print.

\exec :v_value := 1234

\print v_value

The string should be enclosed in the single quote (') as follows when inserting the string into the host vari

able.

● Simple string

○ Value: abcd

○ \exec :v_value := 'abcd'

● The string which includes the single quote

○ Value: Tom's House

○ The single quote within the string is represented with the two single quotes ('') as follows.

○ \exec :v_value := 'Tom''s House'

● The SQL statement including the single quote

○ Value: INSERT INTO t1 VALUES (1, 'Tom''s House')

○ The single quote within the string is represented with the two single quotes ('') as follows.

○ \exec :v_value := 'INSERT INTO t1 VALUES (1, ''Tom''s House'')'

Interactive Command References | 3,387

Examples

The following is an example of assigning the various types of string to the host variable.

• Declaring the host variable

gSQL> \var v_value VARCHAR(1024)

• Assigning the simple string

gSQL> \exec :v_value := 'abcd'

gSQL> \print v_value

V_VALUE

abcd

• Assigning the string including the single quote (')

gSQL> \exec :v_value := 'Tom''s House'

gSQL> \print v_value

V_VALUE

Tom's House

• Assigning the SQL statement including the single quote (')

gSQL> \exec :v_value := 'INSERT INTO t1 VALUES (1, ''Tom''s House'')'

gSQL> \print v_value

V_VALUE

--

INSERT INTO t1 VALUES (1, 'Tom's House')

The following is an example of using the operation result when assigning the value to the host variable.

• Declaring the host variable

gSQL> \var v1 INTEGER

gSQL> \var v2 INTEGER

• Assigning the value to v1

gSQL> \exec :v1 := 100

• Assigning the result of operation with v1 to v2

3,388 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \exec :v2 := :v1 + 1000

• Querying the value of host variables v1 and v2

gSQL> \print v1

V1

100

gSQL> \print v2

V2

1100

The following is an example of assigning the value to the host variable and using the host variable in the

SELECT statement.

• Declaring the host variable

gSQL> \var v_id INTEGER

• Assigning the value to the host variable

gSQL> \exec :v_id := 1

• Executing the SELECT statement by using the host variable

gSQL> SELECT * FROM t1 WHERE id = :v_id;

ID ADDR

-- ----

1 N/A

1 row selected.

The following is an example of obtaining the value to the host variable via SELECT .. INTO.

• Declaring the host variable

gSQL> \var v_id INTEGER

• A value is not specified.

gSQL> \print v_id

V_ID

Interactive Command References | 3,389

null

• Assigning the value to v_id by executing the SELECT INTO statement

gSQL> SELECT MAX(id) INTO :v_id FROM t1;

V_ID

2

1 row selected.

• Checking the host variable value

gSQL> \print v_id

V_ID

2

\exec sql

Syntax

\exec sql <sql_statement>

Description

It executes the SQL statement described in <sql_statement>.

It operates as same as the execution of the SQL statement at the prompt as follows.

gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

gSQL> \exec sql SELECT * FROM dual;

DUMMY

X

1 row selected.

3,390 | gsql/gsqlnet (Interactive SQL Tool)

The SQL statement is executed with the PREPARE/EXECUTE method using \prepare sql and \exec. On th

e other hand, \exec sql executes the SQL statement with the DIRECT EXECUTE method corresponding to

SQLExecDirect function of ODBC and to Statement::execute function of JDBC.

Example

The following is an example of executing the SELECT statement.

gSQL> \exec sql SELECT * FROM dual;

DUMMY

X

1 row selected.

\explain plan

Syntax

\explain plan <sql_statement>

\explain plan on <sql_statement>

\explain plan only <sql_statement>

Description

It outputs the execution plan of the SELECT statement described in <sql_statement>.

● \explain plan on

○ It executes the SQL statement and outputs the execution plan along with the query results.

● \explain plan only

○ It does not execute the SQL statement and outputs the execution plan without the query results.

● \explain plan

○ If on or only is not specified, the default value is on.

For more information about the execution plan, refer to SQL Execution Plan.

Examples

If it is used together with ON as follows, it executes the SQL statement and outputs the execution plan wi

th the query results.

Interactive Command References | 3,391

gSQL> \explain plan on SELECT * FROM t1 WHERE id = 1;

ID NAME ADDR

-- ------ ------------

1 leekmo Seoul, Korea

1 row selected.

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 1 |

==

1 - READ COLUMNS : ID, NAME, ADDR

PHYSICAL FILTER : ID = 1

<<< end print plan

If it is used together with ONLY as follows, it does not execute the SQL statement and outputs the execut

ion plan without the query results.

gSQL> \explain plan only SELECT * FROM t1 WHERE id = 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 0 |

==

1 - READ COLUMNS : ID, NAME, ADDR

PHYSICAL FILTER : ID = 1

<<< end print plan

\help

Syntax

\help

3,392 | gsql/gsqlnet (Interactive SQL Tool)

Description

It briefly displays the list of commands which begin with (\) in gsql interactive mode.

Examples

The following is an example of using \help.

gSQL> \help

\help

\q[uit]

\i[mport] {'FILE'} Import SQL

\ed[it] [{'FILE'|[HISTORY] num}] Edit SQL statement

\\ Executes the most recent history entry

\{n} Executes n'th history entry

\hi[story] Show history entries

\desc {[schema.]table_name} Show table description

\idesc {[schema.]index_name} Show index description

\spo[ol] ['filename' | OFF] Stores query results in a file

\ho[st] [command] Executes an operating system command

\set vertical {ON|OFF}

\set time {ON|OFF}

\set timing {ON|OFF}

\set color {ON|OFF}

\set error {ON|OFF}

\set autocommit {ON|OFF}

\set autotrace {ON|TRACEONLY|OFF}

\set serveroutput {ON|OFF}

\set heading {ON|OFF}

\set linesize {n} 0 < n <= 100000

\set pagesize {n} 0 < n <= 100000

\set colsize {n} 0 < n <= 104857600

\set numsize {n} 0 < n <= 50

\set ddlsize {n} 0 < n <= 100000

\set history {n} n <= 100000 (if n < 0, clear history buffer)

\var {host_var_name} {INTEGER|BIGINT|VARCHAR(n)}

\exec [{:host_var_name} := {constant}]

\exec sql {sql string}

\prepare sql {sql string}

\dynamic sql {host_var_name}

\explain plan [{ON|ONLY}] {sql string}

Interactive Command References | 3,393

\print [{host_var_name}]

\ddl_db

\ddl_tablespace {name}

\ddl_auth {name}

\ddl_schema {name}

\ddl_table {[schema.]name}

\ddl_constraint {[schema.]name}

\ddl_index {[schema.]name}

\ddl_view {[schema.]name}

\ddl_sequence {[schema.]name}

\ddl_synonym {[schema.]name}

\ddl_publicsynonym {name}

\startup {[nomount|mount|open]}

\shutdown {[abort|immediate|transactional|normal]}

\cstartup {[nomount|mount|open]}

\cshutdown {[abort|normal]}

\connect [userid password] [as {sysdba|admin}]

\host

Syntax

\host [command]

\ho [command]

Description

It executes the command of the operational system without terminating gsql program.

If HOST is input without command, then the prompt of the operational system is displayed and it is able t

o continuously input the command of the operational system.

Instead of HOST, "$" is input in Windows, and "!" is input in UNIX.

Example

The following is an example of executing ls *.sql statement which is a command of UNIX operational syst

em.

3,394 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \host ls *.sql

DictionarySchema.sql InformationSchema.sql PerformanceViewSchema.sql

\history

Syntax

\history

\hi

Description

It displays the list of the SQL statements executed after executing gsql program.

It manages only the successfully executed SQL statements and it does not include the failed SQL statemen

t nor the interactive command which begins with gsql(\).

The previously executed SQL statements can be executed again referring to the list through \\ or \{n}.

The number of manageable SQL statements is controlled by using \set history.

Example

The following is an example of querying the SQL statement execution history and executing the SQL state

ment of number 8 again.

gSQL> \history

ID SQL

-- ---

1 drop table t1

2 create table t1 (id integer, name varchar(128), addr varchar(1024))

3 create index t1_idx on t1(id)

4 insert into t1 values (1, 'leekmo', 'Seoul, Korea')

5 insert into t1 values (2, 'mkkim', 'Seoul, Korea')

6 insert into t1 values (3, 'xcom73', 'Inchon, Korea')

7 commit

8 select * from dual

gSQL> \8

DUMMY

X

1 row selected.

Interactive Command References | 3,395

\import

Syntax

\import 'file_name'

\i 'file_name'

Description

It imports the SQL statement included in file_name.

The file_name is enclosed with the single quote (').

file_name can use either an absolute path or a relative path as follows. When file_name uses a relativepat

h, it searches for the file_name based on the path of gsql execution.

• Using the absolute path

gSQL> \import '/home/GOLDILOCKS/sample.sql'

• Using the relative path

gSQL> \import 'sample.sql'

Examples

The following is an example of importing the SQL statement from the file by using the absolute path.

gSQL> \import '/home/GOLDILOCKS/sample.sql'

DROP TABLE IF EXISTS t1;

Table dropped.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128),

addr VARCHAR(128)

);

Table created.

INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea');

3,396 | gsql/gsqlnet (Interactive SQL Tool)

3 rows created.

COMMIT;

Commit complete.

The following is an example of importing the SQL statement from the file by using the relative path.

gSQL> \import 'sample.sql'

DROP TABLE IF EXISTS t1;

Table dropped.

CREATE TABLE t1

(

id INTEGER,

name VARCHAR(128),

addr VARCHAR(128)

);

Table created.

INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea');

3 rows created.

COMMIT;

Commit complete.

\idesc

Syntax

\idesc index_name

\idesc schema_name.index_name

Description

It queries the structure information of the index.

An index can be described alone as follows or it can be described together with the schema name. If the

schema name is not specified, the schema name of the index is determined by the user's Schema Path.

● \idesc t1_idx_name

● \idesc public.t1_idx_name

Interactive Command References | 3,397

The execution result includes the following key column information of the index.

● Key column name

● Key column location

● Key column sort order (ascending/ descending)

● NULL position of the key column(FIRST/ LAST)

Example

The following is an example of querying the information of the index t1_idx_name.

gSQL> \idesc t1_idx_name

COLUMN_NAME ORDINAL_POSITION IS_ASCENDING_ORDER IS_NULLS_FIRST

----------- ---------------- ------------------ --------------

NAME 1 TRUE FALSE

\{n}

Syntax

\number

Description

It executes the SQL statement corresponding to the number from the SQL execution history which can be

queried by using \history.

The value of number should be the ID value which is the result of executing \history.

Examples

The following is an example of executing SQL statement which used \history, then executing the DROP

TABLE statement whose ID value is 1.

gSQL> \history

ID SQL

-- ---

1 DROP TABLE IF EXISTS t1

2 CREATE TABLE t1

(

3,398 | gsql/gsqlnet (Interactive SQL Tool)

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

)

3 CREATE INDEX t1_idx_name ON t1(name)

4 INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea')

5 COMMIT

6 select * from t1

gSQL> \1

Table dropped.

\prepare sql

Syntax

\prepare sql <sql_statement>

Description

It prepares the SQL statement described in <sql_statement>. The prepared SQL statement can be execute

d repeatedly with \exec.

\prepare sql operates similarly to the SQLPrepare functions of ODBC and Connection:: prepareStatement

function of JDBC.

Example

The following is an example of preparing the SELECT statement and repeatedly executing it.

• Preparing the SELECT statement

gSQL> \prepare sql SELECT * FROM t1 WHERE id > 2;

SQL prepared.

• Executing the prepared SQL statement

Interactive Command References | 3,399

gSQL> \exec

ID NAME ADDR

-- ------ -------------

3 xcom73 Inchon, Korea

1 row selected.

gSQL> INSERT INTO t1 VALUES (4, 'GOLDILOCKS', 'Better Place');

1 row created.

• Executing the prepared SQL statement again

gSQL> \exec

ID NAME ADDR

-- ------ -------------

3 xcom73 Inchon, Korea

4 goldilocks Better Place

2 rows selected.

\print

Syntax

\print

\print variable

Description

It queries the value of host variable declared with \var as follows. If the value of host variable is not set, i

t is NULL.

gSQL> \var v1 INTEGER

gSQL> \print v1

V1

null

If the name of host variable is not specified as follows, it queries all declared host variables. VAR_ELAPSE

D_TIME_ is a built-in host variable which manages the execution time of SQL statement as follows.

3,400 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \print

NAME VALUE

------------------ -----

VAR_ELAPSED_TIME__ null

V1 21

V2 10

Example

The following is an example of declaring the host variable, assigning the value to the host variable then q

uerying it.

• Declaring the host variable

gSQL> \var v1 INTEGER

gSQL> \var v2 INTEGER

gSQL> \var v3 INTEGER

• Querying all host variables

gSQL> \print

NAME VALUE

------------------ -----

VAR_ELAPSED_TIME__ null

V1 null

V2 null

V3 null

• Assigning the value to the host variable

gSQL> \exec :v1 := 10

gSQL> \exec :v2 := 20

gSQL> \exec :v3 := :v1 + :v2

• Querying the host variable v3

gSQL> \print v3

V3

--

30

• Querying all host variables

Interactive Command References | 3,401

gSQL> \print

NAME VALUE

------------------ -----

VAR_ELAPSED_TIME__ null

V1 10

V2 20

V3 30

\quit

Syntax

\quit

\q

Description

It quits gsql.

When quitting gsql, all uncommitted transactions are committed.

Example

gSQL> \quit

%

\set autocommit

Syntax

\set autocommit on

\set autocommit off

Description

It sets whether to automatically commit after executing the SQL statement.

3,402 | gsql/gsqlnet (Interactive SQL Tool)

● \set autocommit on

○ It automatically commits after executing the SQL statement.

● \set autocommit off

○ It does not automatically commit after executing the SQL statement.

● The default value of autocommit is OFF.

Examples

The following is a usage example when setting the AUTOCOMMIT value to ON.

• Setting the autocommit to on

gSQL> \set autocommit on

• The INSERT statement is automatically committed.

gSQL> INSERT INTO t1 (id, name, addr) VALUES (1, 'leekmo', 'Seoul, Korea');

1 row created.

• It is not affected by rollback.

gSQL> ROLLBACK;

Rollback complete.

gSQL> SELECT * FROM t1;

ID NAME ADDR

-- ------ ------------

1 leekmo Seoul, Korea

1 row selected.

The following is a usage example when setting the AUTOCOMMIT value to OFF.

• Setting the autocommit to off

gSQL> \set autocommit off

• The transaction in not committed after executing the INSERT statement.

gSQL> INSERT INTO t1 (id, name, addr) VALUES (1, 'leekmo', 'Seoul, Korea');

1 row created.

• The transaction is rolled back.

Interactive Command References | 3,403

gSQL> ROLLBACK;

Rollback complete.

• The INSERT statement is rolled back without any result.

gSQL> SELECT * FROM t1;

no rows selected.

\set autotrace

Syntax

\set autotrace on

\set autotrace traceonly

\set autotrace off

Description

It sets whether to output the execution plan.

● \set autotrace on

○ It executes SQL statement, and outputs the execution plan together with the query result.

● \set autotrace traceonly

○ It does not execute SQL statement, and outputs the execution plan without the query result.

● \set autotrace off

○ It does not output the execution plan.

○ The default value is off.

For more information, refer to SQL execution plan.

Example

When using ON as follows, it executes SQL statement and outputs the execution plan together with the

query result.

gSQL> \set autotrace on

gSQL> SELECT * FROM t1 WHERE id = 1;

ID NAME ADDR

-- ------ ------------

1 leekmo Seoul, Korea

3,404 | gsql/gsqlnet (Interactive SQL Tool)

1 row selected.

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 1 |

==

1 - READ COLUMNS : ID, NAME, ADDR

PHYSICAL FILTER : ID = 1

<<< end print plan

When using TRACEONLY as follows, it does not execute SQL statement, and outputs the execution plan

without the query result.

gSQL> \set autotrace traceonly

gSQL> SELECT * FROM t1 WHERE id = 1;

>>> start print plan

< Execution Plan >

==

| IDX | NODE DESCRIPTION | ROWS |

--

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS ("T1") | 0 |

==

1 - READ COLUMNS : ID, NAME, ADDR

PHYSICAL FILTER : ID = 1

<<< end print plan

\set color

Syntax

\set color on

\set color off

Interactive Command References | 3,405

Description

It sets whether to output each row of the query results in a different color on the terminal to distinguish t

hem.

● \set color on

○ Each row is output in a different color.

● \set color off

○ Each row is output in the same color.

● The default value is OFF.

If the length of each row is too long so that it overflows the terminal window, then the row is output ove

r multiple lines. In this case, each row is hard to be distinguished, so it reduces the readability It is used to

distinguish between the rows and increase the readability on the terminal.

Example

The following is an example of setting the color to ON.

gSQL> \set color on

gSQL> SELECT id, addr FROM t1;

ID ADDR

-- -------------

1 Seoul, Korea

2 Seoul, Korea

3 Inchon, Korea

3 rows selected.

\set colsize

Syntax

\set colsize number

Description

It sets the maximum length of the data when outputting LONG VARCHAR, LONG VARBINARY data.

● The colsize value is a positive integer between 1 and 104,857,600.(100M, the maximum length of L

ONG VARCHAR)

3,406 | gsql/gsqlnet (Interactive SQL Tool)

● The default value of colsize is 8,192.

The string length of the LONG VARCHAR column is too long, so the readability of the query execution is l

ow as follows. In this case, the readability of LONG VARCHAR column can be increased by reducing the c

olsize, or it may be output as long as the desired length by enlarging the colsize.

gSQL> SELECT view_name, text FROM all_views WHERE view_name LIKE 'ALL_%' FETCH 3;

VIEW_NAME

TEXT

--

ALL_ALL_TABLES

SELECT

auth.AUTHORIZATION_NAME 1 OWNER

, sch.SCHEMA_NAME 2 TABLE_SCHEMA

... Ellipsis ...

WHERE , pvcol.GRANTOR_ID

, pvcol.GRANTEE_ID

, pvcol.PRIVILEGE_TYPE_ID

3 rows selected.

Example

The following is an example of increasing the readability of the LONG VARCHAR column by reducing the

colsize.

gSQL> \set colsize 200

gSQL> SELECT view_name, text FROM all_views WHERE view_name LIKE 'ALL_%' FETCH 3;

VIEW_NAME TEXT

---------------- --

ALL_ALL_TABLES SELECT

auth.AUTHORIZATION_NAME 1 OWNER

, sch.SCHEMA_NAME 2 TABLE_SCHEMA

, tab.TABLE_NAME 3 TABLE_NAME

, spc.TAB

ALL_COL_COMMENTS SELECT

auth.AUTHORIZATION_NAME

, sch.SCHEMA_NAME

, tab.TABLE_NAME

Interactive Command References | 3,407

, col.COLUMN_NAME

, col.COMMENTS

FROM

DICTIONARY_SCHEMA.WHOLE_COLUMNS AS col

, DICTIONARY_S

ALL_COL_PRIVS SELECT

grantor.AUTHORIZATION_NAME

, grantee.AUTHORIZATION_NAME

, owner.AUTHORIZATION_NAME

, sch.SCHEMA_NAME

, tab.TABLE_NAME

, col.COLUMN_NAME

, pvcol.PRIVILEGE_TY

3 rows selected.

\set ddlsize

Syntax

\set ddlsize number

Description

It sets the buffer size to output the statement when outputting the DDL statements by using the followin

g commands.

● \ddl_db

● \ddl_tablespace

● \ddl_auth

● \ddl_schema

● \ddl_table

● \ddl_constraint

● \ddl_index

● \ddl_view

● \ddl_sequence

● \ddl_synonym

● \ddl_public_synonym

● The value of ddlsize is a positive integer between 1 and 1,0485,760 (10M).

3,408 | gsql/gsqlnet (Interactive SQL Tool)

● The default value of ddlsize is 10,000.

If an error occurs due to the lack of buffer space as follows, DDL statement may be output by increasing t

he value of ddlsize.

gSQL> \set ddlsize 1000

gSQL> \ddl_view dictionary_schema.all_tables

ERR-HY000(40052): not enough DDLSIZE.

use command: \set ddlsize {n}

gSQL> \set ddlsize 100000

gSQL> \ddl_view dictionary_schema.all_tables

SET SESSION AUTHORIZATION "SYS";

CREATE OR REPLACE FORCE VIEW "DICTIONARY_SCHEMA"."ALL_TABLES"

... Ellipsis ...

Example

The following is an example of changing the ddlsize.

gSQL> \set ddlsize 100000

gSQL>

\set error

Syntax

\set error on

\set error off

Description

It sets whether to output the error message.

● \set error on

○ It outputs the error message.

● \set error off

○ It does not output the error message.

● The default value of error is ON.

If an error occurs during executing the SQL statement, gsql outputs the following information.

Interactive Command References | 3,409

● SQLSTATE: SQL standard state code

● Error code: GOLDILOCKS error code

● Error message

The following example describes that the error of the SQL statement occurs, the SQLSTATE value in ERR-

42000(16040) is 42000, and the error code is 16040 within ().

gSQL> SELECT * FROM invalid_table;

ERR-42000(16040): table or view does not exist :

SELECT * FROM invalid_table

*

ERROR at line 1:

Example

The following is an example of disabling the error message.

● Disabling the error message

gSQL> \set error off

● Outputting only the value of SQLSTATE and the error code

gSQL> SELECT * FROM invalid_table;

ERR-42000(16040)

\set heading

Syntax

\set heading {ON|OFF}

Description

It sets whether to output the header in the query result.

3,410 | gsql/gsqlnet (Interactive SQL Tool)

Example

● Set not to output the header message.

gSQL> \set heading off

● The following is an example of a query result in which the header message is not output.

gSQL> select * from dual;

X

1 row selected.

\set history

Syntax

\set history number

Description

It sets the number of SQL statements to manage the history information.

● The history value is a positive integer between 1 and 100,000.

● If the history value is set to a negative value, all SQL history are removed.

● The default value of history is 128.

If the history value is reduced, the old SQL statement is removed.

The history information is used when executing the previously executed SQL statement again through \\

and \{n}.

Example

The following is an example of setting the number of history to 100.

gSQL> \set history 100

gSQL>

The following is an example of setting the number of history to smaller than the number of stored SQL st

atements.

Interactive Command References | 3,411

● Five SQL statements are stored.

gSQL> \history

ID SQL

-- ---

1 DROP TABLE IF EXISTS t1

2 CREATE TABLE t1

(

id INTEGER PRIMARY KEY,

name VARCHAR(128),

addr VARCHAR(128)

)

3 CREATE INDEX t1_idx_name ON t1(name)

4 INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea')

5 COMMIT

● The history value is reduced to 3.

gSQL> \set history 3

● Three SQL statements are stored.

gSQL> \history

ID SQL

-- ---

3 CREATE INDEX t1_idx_name ON t1(name)

4 INSERT INTO t1

VALUES (1, 'leekmo', 'Seoul, Korea'),

(2, 'mkkim' , 'Seoul, Korea'),

(3, 'xcom73', 'Inchon, Korea')

5 COMMIT

The following is an example of removing all SQL statements stored in the history.

gSQL> \history

ID SQL

-- -------------------------

1 SELECT * FROM dual

2 SELECT * FROM user_tables

3,412 | gsql/gsqlnet (Interactive SQL Tool)

● All SQL history are removed by using a negative value.

gSQL> \set history -1

gSQL> \history

gSQL>

\set linesize

Syntax

\set linesize number

Description

It sets the maximum size of a single line when outputting the query result.

● The value of linesize is a positive integer between 1 and 10,000.

● The default value of linesize is 80.

Each row of the query result is output on a single line basis. If there are many columns in a row or the ro

w length is bigger than linesize, a row is output to the multiple lines so the readability is decreased.

gSQL> SELECT * FROM dict_columns WHERE table_name = 'USER_TABLES' FETCH 3;

TABLE_SCHEMA TABLE_NAME COLUMN_NAME

----------------- ----------- ---------------

COMMENTS

DICTIONARY_SCHEMA USER_TABLES TABLE_SCHEMA

Schema of the table

DICTIONARY_SCHEMA USER_TABLES TABLE_NAME

Name of the table

DICTIONARY_SCHEMA USER_TABLES TABLESPACE_NAME

Name of the tablespace containing the table

3 rows selected.

In this case, a row may be controlled to be output in a single line by changing the linesize value.

Interactive Command References | 3,413

Example

The following is an example of increasing the readability by setting the linesize larger.

gSQL> \set linesize 400

gSQL> SELECT * FROM dict_columns WHERE table_name = 'USER_TABLES' FETCH 3;

TABLE_SCHEMA TABLE_NAME COLUMN_NAME COMMENTS

----------------- ----------- --------------- ---

DICTIONARY_SCHEMA USER_TABLES TABLE_SCHEMA Schema of the table

DICTIONARY_SCHEMA USER_TABLES TABLE_NAME Name of the table

DICTIONARY_SCHEMA USER_TABLES TABLESPACE_NAME Name of the tablespace containing the table

3 rows selected.

\set numsize

Syntax

\set numsize number

Description

It sets the maximum number of digit for the output of a numeric value.

● The numsize value is a positive integer between 1 and 50.

● The default value of numsize is 20.

If the number of digit of a numeric value exceeds the numsize range as follows, it is output in an expone

ntial form.

gSQL> SELECT num, (num * num) AS result FROM t1;

NUM RESULT

------------- --------------------

1234567890123 1.52415787532276E+24

1 row selected.

By changing the value of numsize, these numeric value is output in a numeric form, not in an exponent f

orm.

3,414 | gsql/gsqlnet (Interactive SQL Tool)

Example

The following is an example of outputting all digits of the numeric value by setting the numsize larger.

gSQL> \set numsize 50

gSQL> SELECT num, (num * num) AS result FROM t1;

NUM RESULT

------------- -------------------------

1234567890123 1524157875322755800955129

1 row selected.

\set pagesize

Syntax

\set pagesize number

Description

It sets the number of the rows which is to be consisted in a single page.

● The value of pagesize is a positive integer between 1 and 10,000.

● The default value of pagesize is 20.

It is set when there are many rows of the query results or when a page should consist of a certain number

of row.

Example

The following is an example of consisting a page in 10 rows unit.

gSQL> \set linesize 120

gSQL> \set pagesize 10

gSQL> SELECT column_name, comments FROM dict_columns WHERE table_name = 'SEQUENCES';

COLUMN_NAME COMMENTS

----------------- ---

OWNER_ID authorization identifier who owns the table of the sequence generator

SCHEMA_ID schema identifier of the sequence generator

SEQUENCE_ID sequence generator identifier

SEQUENCE_TABLE_ID table id of sequence for naming resolution

Interactive Command References | 3,415

TABLESPACE_ID tablespace identifier of the sequence generator

PHYSICAL_ID physical identifier of the sequence generator

SEQUENCE_NAME sequence generator name

DTD_IDENTIFIER unsupported feature

START_VALUE the start value of the sequence generator

MINIMUM_VALUE the minimum value of the sequence generator

COLUMN_NAME COMMENTS

---------------- ---

MAXIMUM_VALUE the maximum value of the sequence generator

INCREMENT the increment of the sequence generator

CYCLE_OPTION The values of CYCLE_OPTION have the following meanings:

- TRUE : The cycle option of the sequence generator is CYCLE.

- FALSE : The cycle option of the sequence generator is NO CYCLE.

CACHE_SIZE number of sequence numbers to cache

CREATED_TIME created time of the sequence generator

MODIFIED_TIME last modified time of the sequence generator

COMMENTS comments of the sequence generator

SEQUENCE_CATALOG catalog name of the sequence

SEQUENCE_OWNER owner name of the sequence

SEQUENCE_SCHEMA schema name of the sequence

COLUMN_NAME COMMENTS

----------------------- ---

SEQUENCE_NAME sequence name

DATA_TYPE the standard name of the data type

NUMERIC_PRECISION the numeric precision of the numerical data type

NUMERIC_PRECISION_RADIX the radix (2 or 10) of the precision of the numerical data type

NUMERIC_SCALE the numeric scale of the exact numerical data type

START_VALUE the start value of the sequence generator

MINIMUM_VALUE the minimum value of the sequence generator

MAXIMUM_VALUE the maximum value of the sequence generator

INCREMENT the increment of the sequence generator

CYCLE_OPTION cycle option

COLUMN_NAME COMMENTS

-------------------------- --

CACHE_SIZE number of sequence numbers to cache

DECLARED_DATA_TYPE the data type name that a user declared

DECLARED_NUMERIC_PRECISION the precision value that a user declared

DECLARED_NUMERIC_SCALE the scale value that a user declared

CREATED_TIME created time of the sequence generator

MODIFIED_TIME last modified time of the sequence generator

3,416 | gsql/gsqlnet (Interactive SQL Tool)

COMMENTS comments of the sequence generator

37 rows selected.

\set serveroutput

Syntax

\set serveroutput on

\set serveroutput off

Description

It controls automatic output feature for the message writeten by functions of which DBMS_OUTPUT pack

age provides in gsql or gsqlnet

● \set serveroutput on

○ It automatically outputs messages accumulated in the server by DBMS_OUTPUT.PUT_LINE after e

xecuting SQL.

● \set serveroutput off

○ It does not use DBMS_OUTPUT package.

● The default value of serveroutput is OFF.

Basically, the maximum size of accumulated in the server is 20000 bytes.

Example

The following is an example of outputting the messages accumulated in a user defined function which w

as used in SQL statement.

gSQL> create or replace function my_msg(msg varchar(100))

return integer

is

begin

dbms_output.put_line('my message is : ' || msg);

return length(msg);

end;

/

2 3 4 5 6 7 8

Function created.

gSQL> commit;

Interactive Command References | 3,417

Commit complete.

gSQL> \set serveroutput on

gSQL> select my_msg('Hello World!') from dual;

MY_MSG('Hello World!')

12

my message is : Hello World!

1 row selected.

\set time

Syntax

\set time on

\set time off

Description

It sets whether to output the current time.

● \set time on

○ It outputs the current time.

● \set time off

○ It does not output the current time.

● The default value of time is OFF.

Example

The following is an example of outputting the current time.

gSQL> \set time on

12:45:34 gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

Elapsed time: 0.07600 ms

3,418 | gsql/gsqlnet (Interactive SQL Tool)

\set timing

Syntax

\set timing on

\set timing off

Description

It sets whether to output the execution time of SQL statement.

● \set timing on

○ The execution time is output.

● \set timing off

○ The execution time is not output.

● The default value of timing is OFF.

The unit of execution time is ms (millisecond).

Example

The following is an example of outputting the execution time of SQL statement.

gSQL> \set timing on

gSQL> SELECT * FROM dual;

DUMMY

X

1 row selected.

Elapsed time: 0.07600 ms

\set vertical

Syntax

\set vertical on

\set vertical off

Interactive Command References | 3,419

Description

It sets whether to output the value of column in line unit.

● \set vertical on

○ A column is output in a line unit.

● \set vertical off

○ A row is output in a line unit.

● The default value of vertical is OFF.

If each row has an individual information, the readability can be increased by outputting the query result i

n a column unit.

If \set vertical on is set, then each row is separated by a blank line, and one line represents a single valu

e, then it is consisted in the following form.

column name # data value

Example

The following is an example of outputting a query result in a column unit.

gSQL> \set vertical on

gSQL> SELECT * FROM v$system_stat FETCH 10;

STAT_NAME # SYSTEM_SAR

STAT_VALUE # 3

COMMENTS # system available resource(0:none, 1:session 2:database)

STAT_NAME # MAX_ENVIRONMENT_COUNT

STAT_VALUE # 128

COMMENTS # maximum environment count

STAT_NAME # FREE_ENVIRONMENT_ID

STAT_VALUE # 81

COMMENTS # available environment identifier

STAT_NAME # MAX_SESSION_COUNT

STAT_VALUE # 128

COMMENTS # maximum session count

STAT_NAME # FREE_SESSION_ID

STAT_VALUE # 82

COMMENTS # available session identifier

STAT_NAME # MAX_PROCESS_COUNT

STAT_VALUE # 128

COMMENTS # maximum process count

3,420 | gsql/gsqlnet (Interactive SQL Tool)

STAT_NAME # FREE_PROCESS_ID

STAT_VALUE # 1

COMMENTS # available process identifier

STAT_NAME # CACHE_ALIGNED_SIZE

STAT_VALUE # 64

COMMENTS # cache aligned size

STAT_NAME # CPU_COUNT

STAT_VALUE # 8

COMMENTS # count of CPUs

STAT_NAME # SYSTEM_TIME

STAT_VALUE # 1408676900172925

COMMENTS # system time

10 rows selected.

\shutdown

Syntax

\shutdown

\shutdown abort

\shutdown immediate

\shutdown transactional

\shutdown normal

Description

It shuts down the GOLDILOCKS server.

It should be connected as SYSDBA or ADMIN role to perform \shutdown. For more information about con

necting as SYSDBA, refer to Startup and Shutdown Server.

● \shutdown normal

○ It blocks the connection from the new session and waits for all currently connected sessions to be

terminated, then performs the checkpoint and shuts down the server.

● \shutdown transactional

○ It blocks the start of a new transaction and waits for all currently running transactions to be termi

nated, then performs the checkpoint and shuts down the server.

● \shutdown immediate

○ It blocks the execution of a new unit operation(ex FETCH or EXECUTE, etc.), waits for all currentl

y running unit operations to be terminated, then rolls back all transactions and performs the chec

Interactive Command References | 3,421

kpoint and shuts down the server.

● \shutdown abort

○ The server is forcibly shut down immediately regardless of the status of the currently connected s

ession.

● \shutdown

○ It is as same as \shutdown normal.

Example

The following is an example of shutdowning GOLDILOCKS.

% gsql --as sysdba

Connected to GOLDILOCKS Database.

gSQL> \shutdown

Shutdown success

gSQL>

\spool

Description

It sets all results output by using gsql to be stored in the terminal and file.

\spool 'filename'

Syntax

\spool 'filename' [CREATE | REPLACE | APPEND]

\spo 'filename' [CREATE | REPLACE | APPEND]

Description

It starts the spool function. All output results performed by gsql are stored in the given filename since exe

cuting this statement.

The following options describe how to open the file.

● CREATE: It creates the file. If a file already exists, an error occurs.

● REPLACE: It removes the contents of an existing file, and newly starts storing. If a file does not exist, i

t performs as same as CREATE.

3,422 | gsql/gsqlnet (Interactive SQL Tool)

● APPEND: It continues to store the contents from the end of an existing file. If a file does not exist, it p

erforms as same as CREATE.

If these options are not given, it is operated in REPLACE mode by default.

Note

When starting a new spool during spooling, the existing spool stops and a new spool starts.

Example

The following is an example of starting spooling.

● Creating the result.txt file and storing the gsql execution result

gSQL> \SPOOL 'result.txt' CREATE

gSQL> SELECT * FROM T1 WHERE C1 < 10;

gSQL> \SPOOL OFF

● Continuing to store the result at the end of the existing result.txt file

gSQL> \SPOOL 'result.txt' APPEND

gSQL> SELECT * FROM T1 WHERE C1 >= 10;

gSQL> \SPOOL OFF

● Removing the contents of the existing result.txt file and storing a new result

gSQL> \SPOOL 'result.txt' REPLACE

gSQL> SELECT * FROM T1;

gSQL> \SPOOL OFF

\spool OFF

Syntax

\spool OFF

\spo OFF

Interactive Command References | 3,423

Description

It ends the current spool. If the spool is not in use, it does not perform any transaction.

Example

The following is an example of starting the spool then ending it.

gSQL> \SPOOL 'result.txt'

gSQL> SELECT * FROM T1;

● Ending spooling

gSQL> \SPOOL OFF

\spool

Syntax

\spool

\spo

Description

It represents the current spool state. If the spool is in use, it informs which file is spooling. Otherwise, it in

forms that the spool is not in use.

Example

The following is an example of editing the SQL statement stored in the gsql history.

gSQL> \SPOOL 'a.txt'

● It informs that it is spooling in a.txt.

gSQL> \SPOOL

currently spooling to a.txt

gSQL> \SPOOL OFF

● It informs that it is not spooling.

3,424 | gsql/gsqlnet (Interactive SQL Tool)

gSQL> \SPOOL

not spooling currently

\startup

Syntax

\startup

\startup nomount

\startup mount

\startup open

Description

It starts up the GOLDILOCKS server.

It should be connected as SYSDBA or ADMIN role to perform \startup.

For more information about connecting as SYSDBA, refer to Startup and Shutdown Server.

● \startup nomount

○ It starts up the server on the NOMOUNT phase.

● \startup mount

○ It starts up the server on the MOUNT phase.

● \startup open

○ It starts up the server on the OPEN phase.

● \startup

○ It is as same as \startup open.

The server start up is divided into NOMOUNT, MOUNT, OPEN phase. For more information, refer to Multi

-level Startup.

Execute ALTER SYSTEM {MOUNT | OPEN} DATABASE statement to move on to the next phase after exec

uting \startup.

Example

The following is an example of starting up GOLDILOCKS.

% gsql --as SYSDBA

Connected to an idle instance.

Interactive Command References | 3,425

gSQL> \startup

Startup success

\var

Syntax

\var variable_name data_type

Description

It declares the host variable.

When declaring the host variable which is as same as variable_name, the existing host variable is remove

d and a new one is declared. The maximum length of variable_name is 128 bytes.

The data_type of host variable is as same as the data type of GOLDILOCKS.

For more information, refer to Data Type.

The host variable assigns the value by using \exec :var := value , and its value is queried by using \pr

int.

gSQL> \var v1 INTEGER

gSQL> \exec :v1 := 1

gSQL> \print v1

V1

--

1

The host variable can be used as an input or output parameter in the SQL statement. When the host varia

ble is used in the SQL statement or \exec :var := value, a colon (:) sign should be put in front of the ho

st variable to indicate that it is a host variable.

Example

The following is an example of declaring the host variable and using it as an input argument of the SQL st

atement.

gSQL> \var v1 INTEGER

gSQL> \exec :v1 := 1

gSQL> SELECT * FROM t1 WHERE id = :v1;

ID NAME ADDR

3,426 | gsql/gsqlnet (Interactive SQL Tool)

-- ------ ------------

1 leekmo Seoul, Korea

1 row selected.

The following is an example of using the host variable as an output argument of the SQL statement.

gSQL> \var v_name VARCHAR(128)

gSQL> SELECT name INTO :v_name FROM t1 WHERE id = 1;

V_NAME

leekmo

1 row selected.

The following is an example of declaring the host variable and using it as the input and output arguments

of the SQL statement.

In the following UPDATE name RETURNING .. INTO statement, the host variable of SET clause and WHER

E clause, :v_id, is used as an input argument and :v_id of INTO clause is used as an output argument.

gSQL> \var v_name VARCHAR(128)

gSQL> \var v_id INTEGER

gSQL> \exec :v_id := 1

gSQL> UPDATE t1 SET id = 100 + :v_id WHERE id = :v_id RETURNING id INTO :v_id;

V_ID

101

1 row updated.

gSQL> \print v_id

V_ID

101

gloader/gloadernet (Upload/download Tool)

34.

3,427

3,428 | gloader/gloadernet (Upload/download Tool)

34.1 Overview of gloader and gloadernet

gloader is a utility which downloads or uploads data of GOLDILOCKS in table unit.

Table 34-1 Execution files

Name Description

gloader It is used in Direct Attach (D/A) environment.

gloadernet It is used in Client/ Server (C/S) environment.

Environment

gloader should be connected to the database and it requires attention to all required files while using glo

ader.

Figure 1 gloader environment

The control file and datafile are required to upload the data, then the log file is generated as a result.

The control file is required to download the data, then the datafile, log file, and bad file are generated as

the results.

Overview of gloader and gloadernet | 3,429

Control File

The control file is a file for operating gloader and it includes the following information. (Refer to Control

File Syntax.)

● Table name

● Schema name

● The delimiter between columns in a row

● The qualifier notifying the start and end of the data

● The delimiter between rows

● Character set

● Whether to trim the whitespace character

● Where clause

DataFile

The datafile should be prepared when gloader uploads the data, and it is created when gloader downloa

ds the data.

The datafile supports text format and binary format.

● The datafile in text format has an advantage of which the file contents can be checked and directly u

pdated.

● The datafile in binary format can be performed faster comparing to the datafile in text format.

Note

gloader uses direct I/O for the data file by default. gloader arbitrarily adjusts the file size if the file

size is not an array appropriate for direct I/O when uploading the data file by using direct I/O.

Log File

Log file is a file which stores the following errors and results which occur while operating gloader.

● The row number and cause of the error

● The operating results of gloader

3,430 | gloader/gloadernet (Upload/download Tool)

Bad File

Bad file is a file which stores the rows in which an error occurred while gloader uploads the data. The deli

miter between columns and rows, and the qualifier which are used to store the bad file should be user-d

efined.

Example

The following is an example of downloading and uploading data by using gloader.

A table is created by using the SQL statement as follows.

$ cat test.sql

CREATE TABLE TEST

(

TEST_NAME VARCHAR(60),

TEST_NUM INTEGER,

TEST_TIME TIMESTAMP(0) WITH TIME ZONE

);

INSERT INTO TEST VALUES

('NAME', 1, '1999-01-08 04:05:06.789 -8:00');

INSERT INTO TEST VALUES

('NAME', 2, '1999-01-08 04:05:06.789 -8:00');

INSERT INTO TEST VALUES

('NAME', 3, '1999-01-08 04:05:06.789 -8:00');

COMMIT;

The control file is used as follows.

$ cat test.ctl

TABLE TEST

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

● Export: It downloads the data.

$ gloader test test --export --control test.ctl --data test.dat --no-prompt

COMPLETED IN EXPORTING TABLE: PUBLIC.TEST, 3 RECORDS

$ cat test.dat

Overview of gloader and gloadernet | 3,431

"NAME","1","1999-01-08 04:05:07. -08:00"

"NAME","2","1999-01-08 04:05:07. -08:00"

"NAME","3","1999-01-08 04:05:07. -08:00"

$ cat test.log

cat test.log

COMPLETED IN EXPORTING TABLE: PUBLIC.TEST, 3 RECORDS [Start Time: 2010-1-1 01:01:01 End Time:

2010-1-1 01:01:01 Taken Time: 56496 micro-sec]

● Import: It uploads the data.

$ cat import.dat

"NAME","1","1999-01-08 04:05:07. -08:00"

"NAME","2","1999-01-08 04:05:07. -08:00"

"NAME","3","1999-01-08 04:05:07. -08:00"

"FAIL","FAIL","FAIL"

$ gloader test test --import --control test.ctl --data import.dat --no-prompt

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 4 RECORDS, SUCCEEDED 3 RECORDS

$ gsql test test

gSQL> select * from test;

TEST_NAME TEST_NUM TEST_TIME

--------- -------- ---------------------------------

NAME 1 1999-01-08 04:05:07.000000 -08:00

NAME 2 1999-01-08 04:05:07.000000 -08:00

NAME 3 1999-01-08 04:05:07.000000 -08:00

NAME 1 1999-01-08 04:05:07.000000 -08:00

NAME 2 1999-01-08 04:05:07.000000 -08:00

NAME 3 1999-01-08 04:05:07.000000 -08:00

6 rows selected.

$ cat import.log

Err Rec(4) Col(2): 22018(12006): data value is not a numeric literal

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 4 RECORDS, SUCCEEDED 3 RECORDS [Start Time:

2010-1-1 01:01:01 End Time: 2010-1-1 01:01:01 Taken Time: 56496 micro-sec]

$ cat import.bad

"FAIL","FAIL","FAIL"

3,432 | gloader/gloadernet (Upload/download Tool)

34.2 Using gloader

Datafile Type

Text Datafile

It is represented with a string which can be checked and edited by the user. A user can directly create, edi

t the file, or can download the data from the existing tables in the database. A user also can use the data

in a text format downloaded from another DBMS products.

The description for the representation of the text type datafile is recorded in the control file.

Binary Datafile

The file consists of binary data. A user can not directly create or edit the binary datafile. The file is generat

ed when downloading the data from the existing tables in the database.

The binary type file is uploaded faster than the text type because the data is written to the file appropriat

e to the data structure type defined in GOLDILOCKS.

Note

When GOLDILOCKS databases' versions are different one another, then it is not recommended to

upload/ download by using a binary datafile. Also, it may be required to chang a column size whe

n uploading/ downloading data between databases whose string sets are different.

Downloading Data

Downloading in Text File

Simple Download

The following is the structure and data of the table to be downloaded.

$ cat test.sql

CREATE TABLE TEST (I1 INTEGER PRIMARY KEY, I2 VARCHAR(10), I3 VARBINARY(10));

INSERT INTO TEST VALUES(1, 'LKH', X'10');

Using gloader | 3,433

INSERT INTO TEST VALUES(2, 'KMM', X'A0');

INSERT INTO TEST VALUES(3, 'ksj', X'CD');

COMMIT;

$ gsql test test

gSQL> SELECT * FROM TEST;

I1 I2 I3

-- --- --

1 LKH 10

2 KMM A0

3 ksj CD

3 rows selected.

The following is the contents of the control file which is created to download the table data.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

The data in the table T1 is downloaded through gloader as follows.

$ gloader test test --export --control test.ctl --data test.dat

COMPLETED IN EXPORTING TABLE: PUBLIC.test, 3 RECORDS

The data in the table TEST is downloaded to the datafile as follows.

$ ls

test.ctl test.dat test.log

$ cat test.dat

1,LKH,10

2,KMM,A0

3,ksj,CD

Whitespace Character

The following is the structure and data of the table to be downloaded.

$ cat test.sql

CREATE TABLE TEST (I1 INTEGER PRIMARY KEY, I2 VARCHAR(10), I3 VARBINARY(10));

INSERT INTO TEST VALUES(1, ' L K H ', X'10');

INSERT INTO TEST VALUES(2, 'KIM

MM', X'A0');

INSERT INTO TEST VALUES(3, ' KIM S

3,434 | gloader/gloadernet (Upload/download Tool)

J ', X'CD');

COMMIT;

$ gsql test test

gSQL> SELECT * FROM TEST;

I1 I2 I3

-- ------- --

1 L K H 10

2 KIM A0

MM

3 KIM S CD

J

3 rows selected.

● The control file without using OPTIONALLY ENCLOSED BY statement

○ The following is the contents of the control file which is created to download the table data.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

LINES TERMINATED BY '\n'

○ The data in the table TEST is downloaded to the datafile as follows.

$ ls

test.ctl test.dat test.log

$ cat test.dat

1, L K H ,10

2,KIM

MM,A0

3, KIM S

J ,CD

Note

The control file should be used with the OPTIONALLY ENCLOSED BY statement for the data includ

ing the white space to maintain the downloaded data and the uploaded data as same.

● The control file using OPTIONALLY ENCLOSED BY statement

Using gloader | 3,435

○ The following is the contents of the control file which is created to download the table data.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

○ The data in the table TEST is downloaded to the datafile as follows.

$ ls

test.ctl test.dat test.log

$ cat test.dat

"1"," L K H ","10"

"2","KIM

MM","A0"

"3"," KIM S

J ","CD"

Time Related Data Type

DATE, TIME, TIME WITH TIME ZONE, TIMESTAMP, TIMESTAMP WITH TIME ZONE are output in the prop

erty default format when downloaded.

The following is each data type of DATE, TIME WITH TIME ZONE, TIMESTAMP WITH TIME ZONE.

$ gsql test test

gSQL> SELECT PROPERTY_VALUE, INIT_VALUE FROM V$PROPERTY WHERE PROPERTY_NAME LIKE

'NLS_DATE_FORMAT';

PROPERTY_VALUE INIT_VALUE

--------------------------------- ---------------------------------

YYYY-MM-DD YYYY-MM-DD

1 row selected.

gSQL> SELECT PROPERTY_VALUE, INIT_VALUE FROM V$PROPERTY WHERE PROPERTY_NAME LIKE

'NLS_TIME_WITH_TIME_ZONE_FORMAT';

PROPERTY_VALUE INIT_VALUE

--------------------------------- ---------------------------------

HH24:MI:SS.FF6 TZH:TZM HH24:MI:SS.FF6 TZH:TZM

1 row selected.

gSQL> SELECT PROPERTY_VALUE, INIT_VALUE FROM V$PROPERTY WHERE PROPERTY_NAME LIKE

'NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT';

PROPERTY_VALUE INIT_VALUE

--------------------------------- ---------------------------------

3,436 | gloader/gloadernet (Upload/download Tool)

YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM

1 row selected.

The following is the structure and data of the table to be downloaded.

$ cat test.sql

CREATE TABLE TEST (I1 INTEGER, I2 DATE, I3 TIME WITH TIME ZONE, I4 TIMESTAMP WITH TIME ZONE

);

INSERT INTO TEST VALUES (1, '1999-12-31', '01:01:01', '1999-12-31 01:01:01.789 -8:00');

INSERT INTO TEST VALUES (2, '2000-01-01', '23:12:12', '2000-01-01 23:12:06.0 +8:00');

INSERT INTO TEST VALUES (3, '2000-12-31', '23:12:12', '2000-12-31 23:12:12.0 -8:00');

COMMIT;

$ gsql test test

gSQL> SELECT * FROM T1;

I1 I2 I3 I4

-- ---------- ---------------------- ---------------------------------

1 1999-12-31 01:01:01.000000 +09:00 1999-12-31 01:01:01.789000 -08:00

2 2000-01-01 23:12:12.000000 +09:00 2000-01-01 23:12:06.000000 +08:00

3 2000-12-31 23:12:12.000000 +09:00 2000-12-31 23:12:12.000000 -08:00

3 rows selected.

The following is the contents of the control file which is created to download the table data.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

The data in the table TEST is downloaded to the datafile as follows.

$ gloader test test -e -c test.ctl -d test.dat

COMPLETED IN EXPORTING TABLE: PUBLIC.TEST, 3 RECORDS

$ ls

test.ctl test.dat test.log

$ cat test.dat

"1","1999-12-31 00:00:00","01:01:01.000000 +09:00","1999-12-31 01:01:01.789000 -08:00"

"2","2000-01-01 00:00:00","23:12:12.000000 +09:00","2000-01-01 23:12:06.000000 +08:00"

"3","2000-12-31 00:00:00","23:12:12.000000 +09:00","2000-12-31 23:12:12.000000 -08:00"

Using gloader | 3,437

Downloading in Binary File

Simple Download

The following is the structure and data of the table to be downloaded.

$ cat test.sql

CREATE TABLE TEST (I1 INTEGER PRIMARY KEY, I2 VARCHAR(10), I3 VARBINARY(10));

INSERT INTO TEST VALUES(1, 'LKH', X'10');

INSERT INTO TEST VALUES(2, 'KMM', X'A0');

INSERT INTO TEST VALUES(3, 'ksj', X'CD');

COMMIT;

$ gsql test test

gSQL> SELECT * FROM TEST;

I1 I2 I3

-- --- --

1 LKH 10

2 KMM A0

3 ksj CD

3 rows selected.

The following is the contents of the control file which is created to download the table data.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

The data in the table TEST is downloaded through gloader as follows.

$ gloader test test --export --control test.ctl --data test.dat --format binary

COMPLETED IN EXPORTING TABLE: PUBLIC.test, 3 RECORDS

The following file is generated after executing gloader.

$ ls

test.ctl test.dat test.log

Note

A user can not directly check or edit the binary file.

3,438 | gloader/gloadernet (Upload/download Tool)

Complex Download

The following is the structure and data of the table to be downloaded.

$ gsql test test

gSQL>\desc TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------------- -----------

I1 NUMBER(10,0) TRUE

I2 DATE TRUE

I3 TIME(6) WITH TIME ZONE TRUE

I4 TIMESTAMP(6) WITH TIME ZONE TRUE

gSQL> SELECT COUNT(*) FROM TEST;

COUNT(*)

1572864

1 row selected.

The following is the contents of the control file which is created to download the table data.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

● Downloading in a single file

○ The data in the table TEST is downloaded through gloader as follows.

$ gloader test test --export --control test.ctl --data test.dat --format binary

loaded 1000 records into PUBLIC.TEST

loaded 2000 records into PUBLIC.TEST

... Ellipsis ...

loaded 1571000 records into PUBLIC.TEST

loaded 1572000 records into PUBLIC.TEST

COMPLETED IN EXPORTING TABLE: PUBLIC.TEST, TOTAL 1572864 RECORDS

○ The following file is generated after executing gloader.

$ ll test.*

-rw-r--r-- 1 test test 71 2014-08-28 12:13 t1.ctl

-rw-r--r-- 1 test test 59930624 2014-08-28 12:49 t1.dat

-rw-r--r-- 1 test test 159 2014-08-28 12:49 t1.log

Using gloader | 3,439

● Downloading in multiple files

○ The data in the table TEST is downloaded through gloader as follows.

$ gloader test test --export --control test.ctl --data test.dat --format binary --filesize

31461376

loaded 1000 records into PUBLIC.TEST

loaded 2000 records into PUBLIC.TEST

... Ellipsis ...

loaded 1571000 records into PUBLIC.TEST

loaded 1572000 records into PUBLIC.TEST

COMPLETED IN EXPORTING TABLE: PUBLIC.TEST, TOTAL 1572864 RECORDS

○ The following file is generated after executing gloader.

$ ll test.*

-rw-r--r-- 1 test test 71 2014-08-28 12:13 test.ctl

-rw-r--r-- 1 test test 31461376 2014-08-28 13:02 test.dat

-rw-r--r-- 1 test test 28474880 2014-08-28 13:02 test.dat.001

-rw-r--r-- 1 test test 159 2014-08-28 12:49 test.log

3,440 | gloader/gloadernet (Upload/download Tool)

Uploading Data

Uploading Text File

Simple Upload

The following is the table to be uploaded.

gSQL> \DESC TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------------- -----------

I1 NUMBER(10,0) TRUE

I2 DATE TRUE

I3 TIME(6) WITH TIME ZONE TRUE

I4 TIMESTAMP(6) WITH TIME ZONE TRUE

gSQL> SELECT * FROM TEST;

no rows selected.

The following is the datafile to be uploaded.

$ cat test.dat

1,1999-12-31 00:00:00,01:01:01.000000 +09:00,1999-12-31 01:01:01.789000 -08:00

2,2000-01-01 00:00:00,23:12:12.000000 +09:00,2000-01-01 23:12:06.000000 +08:00

3,2000-12-31 00:00:00,23:12:12.000000 +09:00,2000-12-31 23:12:12.000000 -08:00

The datafile is uploaded with gloader and the result is output as follows.

$ gloader test test --import --control test.ctl --data test.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3 RECORDS, SUCCEEDED 3 RECORDS

$ gsql test test

gSQL> select * from test;

I1 I2 I3 I4

-- ---------- ---------------------- ---------------------------------

1 1999-12-31 01:01:01.000000 +09:00 1999-12-31 01:01:01.789000 -08:00

2 2000-01-01 23:12:12.000000 +09:00 2000-01-01 23:12:06.000000 +08:00

3 2000-12-31 23:12:12.000000 +09:00 2000-12-31 23:12:12.000000 -08:00

3 rows selected.

Using gloader | 3,441

Whitespace Character

The following is the table to be uploaded.

gSQL> \DESC TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(10) TRUE

I3 BINARY VARYING(10) TRUE

gSQL> SELECT * FROM TEST;

no rows selected.

● The datafile downloaded without using OPTIONALLY ENCLOSED BY statement in the control file

○ The datafile is downloaded without using OPTIONALLY ENCLOSED BY statement in the control fil

e as follows. (Refer to Downloading in Text File.)

$ cat test.dat

1, L K H ,10

2,KIM

MM,A0

3, KIM S

J ,CD

○ The datafile is uploaded with gloader and the result is output as follows. Even though New Line

('\n') exists in the data of the second and third records, but a qualifier notifying the start and end

of the column data is not set, so it is recognized as a row identifier.

$ gloader test test --import --control test.ctl --data test.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 5 RECORDS, SUCCEEDED 3 RECORDS

$ gsql test test

gSQL> select * from test;

I1 I2 I3

-- ------ ----

1 L K H 10

2 KIM null

3 KIM S null

3 rows selected.

● The datafile downloaded using OPTIONALLY ENCLOSED BY statement in the control file

○ The datafile is downloaded by using the OPTIONALLY ENCLOSED BY statement of the control file

3,442 | gloader/gloadernet (Upload/download Tool)

as follows. (Refer to Downloading in Text File.) Differently from the result above, New Line ('\n') i

s treated as a part of data in the result below.

$ cat test.dat

"1"," L K H ","10"

"2","KIM

MM","A0"

"3"," KIM S

J ","CD"

○ The datafile is uploaded with gloader and the result is output as follows.

$ gloader test test --import --control test.ctl --data test.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 5 RECORDS, SUCCEEDED 3 RECORDS

$ gsql test test

gSQL> select * from test;

I1 I2 I3

-- ------- --

1 L K H 10

2 KIM A0

MM

3 KIM S CD

J

3 rows selected.

Uploading Binary File

Simple Upload

The following is the structure of the table to be uploaded.

gSQL> \DESC TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(10) TRUE

I3 BINARY VARYING(10) TRUE

gSQL> SELECT * FROM TEST;

no rows selected.

The following is the content of the control file written to download the table data.

Using gloader | 3,443

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

The following is a file to be uploaded with gloader. test.dat was already downloaded when Downloading

in Binary File.

$ ls

test.dat

The datafile is uploaded to the table TEST and the result is output as follows.

$ gloader test test --import --control test.ctl --data test.dat --format binary

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3 RECORDS, SUCCEEDED 3 RECORDS

$ gsql test test

gSQL> SELECT * FROM TEST;

I1 I2 I3

-- --- --

1 LKH 10

2 KMM A0

3 ksj CD

3 rows selected.

Complex Upload

The following is the structure of the table to be uploaded.

gSQL> \DESC TEST

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(10) TRUE

I3 BINARY VARYING(10) TRUE

gSQL> SELECT * FROM TEST;

no rows selected.

The following is the datafile to be uploaded.

$ ll test.*

-rw-r--r-- 1 test test 71 2014-08-28 12:13 test.ctl

-rw-r--r-- 1 test test 31461376 2014-08-28 13:02 test.dat

-rw-r--r-- 1 test test 28474880 2014-08-28 13:02 test.dat.001

3,444 | gloader/gloadernet (Upload/download Tool)

-rw-r--r-- 1 test test 159 2014-08-28 12:49 test.log

When uploading multiple downloaded files with --filesize, gloader should be separately performed for ea

ch datafile.

$ gloader test test --import --control test.ctl --data test.dat --format binary

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 860728 RECORDS, SUCCEEDED 2285000 RECORDS,

ERRORED 0 RECORDS

$ gloader test test --import --control test.ctl --data test.dat.001 --format binary

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 860728 RECORDS, SUCCEEDED 860728 RECORDS,

ERRORED 0 RECORDS

The upload result is as follows.

gSQL> select count(*) from test;

COUNT(*)

3145728

1 row selected.

Controlling Upload Unit

The data can be uploaded faster by using the options which is related to performance.

For more information, refer to --array, --commit, --atomic.

The following is the datafile with approximately 380,000 records.

$ ll test.dat

-rw-r--r-- 1 test test 75092480 2014-08-28 15:59 test.dat

The following is the control file which is used for uploading.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

Array Binding and Commit Cycle

The following gloader command uploads records to be bound in 5,000 unit and uploads records to be co

mmitted in 20,000 unit.

Using gloader | 3,445

$ gloader test test --import --control test.ctl --data test.dat --array 5000 --commit 20000

loaded 5000 records into PUBLIC.TEST

loaded 10000 records into PUBLIC.TEST

loaded 15000 records into PUBLIC.TEST

... Ellipsis ...

loaded 3810000 records into PUBLIC.TEST

loaded 3815000 records into PUBLIC.TEST

loaded 3818244 records into PUBLIC.TEST

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3818243 RECORDS, SUCCEEDED 3818243 RECORDS

The following is the result of executing gloader.

gSQL> SELECT I1, I2, I3 FROM TEST FETCH 3;

I1 I2 I3

-- ------- --

1 L K H 10

2 KIM A0

3 KIM S CD

3 rows selected.

gSQL> SELECT COUNT(*) FROM TEST;

COUNT(*)

3818246

1 row selected.

Array Binding and Atomic Option

The following gloader commands uploads records to be bound in 5000 unit with atomic INSERT, and 1,0

00 records are failed.

$ gloader test test --import --control test.ctl --data test.dat --array 5000 --atomic

loaded 5000 records into PUBLIC.TEST

loaded 10000 records into PUBLIC.TEST

loaded 15000 records into PUBLIC.TEST

... Ellipsis ...

loaded 38175000 records into PUBLIC.TEST

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3818243 RECORDS, SUCCEEDED 3817243 RECORDS

The following is the result of executing gloader.

gSQL> SELECT I1, I2, I3 FROM TEST FETCH 3;

I1 I2 I3

3,446 | gloader/gloadernet (Upload/download Tool)

-- ------- --

1 L K H 10

2 KIM A0

3 KIM S CD

3 rows selected.

gSQL> SELECT COUNT(*) FROM TEST;

COUNT(*)

3817243

1 row selected.

The following is the result for the cause of the upload failure and they are recorded in the log file. The upl

oad is failed because the non-numeric data is stored in the first column of the first record.

$ cat test.log

Err Rec(1) Col(1): 22018(12006): data value is not a numeric literal

Err Rec(1) Col(-1): HY000(19041): Failed to atomic execution

Err Rec(1001) Col(1): 22018(12006): data value is not a numeric literal

Err Rec(1001) Col(-1): HY000(19041): Failed to atomic execution

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3818243 RECORDS, SUCCEEDED 3817243 RECORDS [

Start Time: 2014-8-28 16:46:42 End Time: 2014-8-28 16:46:52 Taken Time: 10084582 micro-sec]

The following is the result of the records which failed to upload and they are recorded in the bad file. 100

0 records were stored because it is uploaded in 500 array units.

"s1"," L K H ","10"

"2","KIM","A0"

"3"," KIM S J ","CD"

... Ellipsis ...

Note

Array, commit options do not affect the execution result, but success or failure of INSERT in the at

omic operation is treated in an array unit, so if a record is failed to upload, all records in a unit to

which the records belong are treated as INSERT failure.

The cause of the first failed records of the array is recorded in the log file and the causes for failed

record later is not recorded.

Using gloader | 3,447

Parallel Upload

gloader improves the performance of GOLDILOCKS by dividing the operation into parts and uploading th

em in thread unit. (Refer to --parallel.)

The following is the datafile with approximately 380,000 records.

$ ll test.dat

-rw-r--r-- 1 test test 75092480 2014-08-28 15:59 test.dat

The following is the control file which is used for uploading.

$ cat test.ctl

TABLE PUBLIC.test

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

The following gloader commands uploads records which is bound to a thread performing four uploads. It

is uploaded in 5000 unit with INSERT, and 100 records are failed.

$ gloader test test --import --control test.ctl --data test.dat --array 5000 --parallel 4

loaded 5000 records into PUBLIC.TEST

loaded 10000 records into PUBLIC.TEST

loaded 15000 records into PUBLIC.TEST

... Ellipsis ...

loaded 3810000 records into PUBLIC.TEST

loaded 3815000 records into PUBLIC.TEST

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3818243 RECORDS, SUCCEEDED 3818143 RECORDS

The following is the result of executing gloader.

gSQL> SELECT I1, I2, I3 FROM TEST FETCH 3;

I1 I2 I3

-- ------- --

1 L K H 10

2 KIM A0

3 KIM S CD

3 rows selected.

gSQL> SELECT COUNT(*) FROM TEST;

COUNT(*)

3818143

3,448 | gloader/gloadernet (Upload/download Tool)

1 row selected.

The cause of failure during the upload is recorded in the log file as follows.

$ cat test.log

Err Rec(1) Col(1): 22018(12006): data value is not a numeric literal

Err Rec(3) Col(1): 22018(12006): data value is not a numeric literal

Err Rec(5) Col(1): 22018(12006): data value is not a numeric literal

... Ellipsis ...

Err Rec(1001) Col(1): 22018(12006): data value is not a numeric literal

... Ellipsis ...

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3818243 RECORDS, SUCCEEDED 3818143 RECORDS [

Start Time: 2014-8-28 16:46:42 End Time: 2014-8-28 16:46:52 Taken Time: 10084582 micro-sec]

The following is a result of failed records recorded on the bad file during the upload. 100 records are stor

ed.

"s1"," L K H ","10"

"s2","KIM","A0"

"s3"," KIM S J ","CD"

... Ellipsis ...

Note

When uploading the data with multiple threads, the records in which errors occur after INSERT ar

e stored in the log file and bad file. In this case, the order of records may not be as same as the or

der in the data files.

Using gloader | 3,449

Troubleshooting for Uploading

The record upload failure may occur by various causes. The failed record is stored in the bad file, and the i

nformation about the cause of failure is stored in the log file.

Failure due to Duplicate Constraint

The duplicate data is already in the constrained table to be uploaded. (primary ke

y or unique index)

The following is the structure of the table to be uploaded.

gSQL>\desc T1

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(10) TRUE

I3 BINARY VARYING(10) TRUE

gSQL> SELECT * FROM T1;

I1 I2 I3

-- --- --

1 LKH 10

2 KMM A0

3 ksj CD

3 rows selected.

The following is the datafile to be uploaded.

$ cat t1.dat

"1","LKH"

"4","SOS"

"5","OKO"

The followings are the upload result by using gloader, and the created log file and bad file.

The upload is failed because the record violated a primary key constraint.

$ gloader test test -i -c t1.ctl -d t1.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 3 RECORDS, SUCCEEDED 2 RECORDS

$

$ cat t1.log

3,450 | gloader/gloadernet (Upload/download Tool)

Err Rec(1) Col(-1): 40002(16057): unique constraint (PUBLIC.T1_PRIMARY_KEY) violated

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 3 RECORDS, SUCCEEDED 2 RECORDS [Start Time:

2014-8-26 16:19:51 End Time: 2014-8-26 16:19:51 Taken Time: 15455 micro-sec]

$

$ cat t1.bad

"1","LKH"

Failure due to Date/time Format

The format can be set for the data type such as DATE, TIME, TIME WITH TIME ZONE, TIMESTAMP, TIMES

TAMP WITH TIME ZONE, and it may cause the failure of upload using gloader.

The following is the table to be uploaded.

gSQL> \DESC T1

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------------- -----------

I1 NUMBER(10,0) TRUE

I2 TIMESTAMP(6) WITH TIME ZONE TRUE

gSQL> SELECT * FROM T1;

no rows selected.

The format of the TIMESTAMP WITH TIME ZONE on the server is as follows.

gSQL> SELECT PROPERTY_VALUE, INIT_VALUE FROM V$PROPERTY WHERE PROPERTY_NAME LIKE

'NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT';

PROPERTY_VALUE INIT_VALUE

--------------------------------- ---------------------------------

YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM YYYY-MM-DD HH24:MI:SS.FF6 TZH:TZM

The following is the datafile to be uploaded.

$ cat t1.dat

"4","20000108 00:00:00"

"5","20000108 04:05:06"

"6","20000108 04:05:06"

The following is the result of executing upload by using gloader.

$ gloader test test -i -c t1.ctl -d t1.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 3 RECORDS, SUCCEEDED 0 RECORDS

Using gloader | 3,451

The cause and records of upload failure are stored in the log file and the bad file as follows.

$ cat t1.log

Err Rec(1) Col(2): HY000(12136): literal does not match format string

Err Rec(2) Col(2): HY000(12136): literal does not match format string

Err Rec(3) Col(2): HY000(12136): literal does not match format string

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 3 RECORDS, SUCCEEDED 0 RECORDS [Start Time:

2014-8-27 13:56:29 End Time: 2014-8-27 13:56:29 Taken Time: 20670 micro-sec]

$ cat t1.bad

"4","20000108 00:00:00"

"5","20000108 04:05:06"

"6","20000108 04:05:06"

Troubleshooting

The problem occurs when the data type format of the datafile and that of the data used on the server are

different. The data type format of the datafile should be set to solve the problem. In this case, .odbc.ini is

used.

The data type format is set in .odbc.ini file as follows.

$ cat .odbc.ini

[GOLDILOCKS]

HOST = 127.0.0.1

PORT = 21123

DATE_FORMAT = SYYYYMMDD

TIME_FORMAT = HH24MISS

TIME_WITH_TIME_ZONE_FORMAT = HH24MISS TZHTZM

TIMESTAMP_FORMAT = SYYYYMMDD HHMISS

TIMESTAMP_WITH_TIME_ZONE_FORMAT = SYYYYMMDD HH:MI:SS

The following is the result of setting .odbc.ini and performing gloader again.

$ gloader test test -i -c t1.ctl -d t1.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 3 RECORDS, SUCCEEDED 3 RECORDS

Note

● The data type format set in .odbc.ini is applied to the entire column, and it can not be separat

ely set.

● If the data type format is set in .odbc.ini, it is also applied when downloading to gloader.

3,452 | gloader/gloadernet (Upload/download Tool)

Failure Due to Lack of Capacity

gloader is performed and failed as follows.

$ gloader test test -i -c t1.ctl -d t2.dat

loaded 4000 records into PUBLIC.T1

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 4200 RECORDS, SUCCEEDED 0 RECORDS

It is failed due to lack of the space for datafile in the tablespace.

$ cat t1.log

Err Rec(1) Col(-1): HY000(14015): there is no extendible datafile in tablespace 'MEM_DATA_TBS'

Err Rec(2) Col(-1): HY000(14015): there is no extendible datafile in tablespace 'MEM_DATA_TBS'

... Ellipsis ...

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 4200 RECORDS, SUCCEEDED 0 RECORDS [Start Time:

2014-8-27 15:7:28 End Time: 2014-8-27 15:7:29 Taken Time: 317885 micro-sec]

Troubleshooting

The datafile of a tablespace should be extended or added to solve the problem.

For more information, refer to ALTER TABLESPACE.

Datafile Analysis Failure

The field terminator, the qualifier, and the line terminator described in the control file may be different in

the text datafile because of misuse.

The following is the structure of the table object to be uploaded.

gSQL>\desc T1

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(10) TRUE

I3 BINARY VARYING(10) TRUE

The following is the control file to be uploaded.

$ cat t1.ctl

TABLE T1

FIELDS TERMINATED BY ','

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY '\n'

Using gloader | 3,453

The following is the datafile to be uploaded.

$ cat t1.dat

'1',"LKH","aa"

"2","SOS"","aa"

"5","OKO","00"

The following is the result of executing upload by using gloader.

$ gloader test test --import --control t1.ctl --data t1.dat

COMPLETED IN IMPORTING TABLE: PUBLIC.T1, TOTAL 3 RECORDS, SUCCEEDED 1 RECORDS

The cause and records of upload failure are as follows.

$ cat t1.log

Err Rec(1) Col(1): 22018(12006): data value is not a numeric literal

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 3 RECORDS, SUCCEEDED 1 RECORDS [Start Time:

2014-8-28 18:6:13 End Time: 2014-8-28 18:6:13 Taken Time: 18679 micro-sec]

$

$ cat t1.bad

"2","SOS"","aa"

'1',"LKH","aa"

Troubleshooting

The records fail to analyze the data due to qualifier or delimiter which are used improperly. Therefore, to

solve this problem, the field terminator, the qualifier and the delimiter in the control file and the datafile s

hould be checked, then the datafile should be edited based on the records of the bad file.

Note

The records which are failed to parse in the data analysis process are stored in the bad file, not in t

he log file.

Uploading to Another Database Whose Character Set Is Different

Adjusting the column size may be required when downloading/ uploading data in binary type between d

atabases whose character sets are different one another.

The following is the structure of the table object to be uploaded.

3,454 | gloader/gloadernet (Upload/download Tool)

gSQL>\desc T1

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(36) TRUE

The following is the table data, and it is a VARCHAR type, its size is 36 and is completely filled.

SELECT * FROM T1;

I1 I2

---- ------------------------------------

1 일이삼사오육칠팔구십일이삼사오육칠팔

The following error occurs when downloading data above from UHC database then uploading to UTF8 d

atabase which has the same schema.

$ gloader test test -i -f binary -T T1 -d t1.dup

ERR-HY000(42023): byte length of data greater than column length.

ERROR: FAILED TO IMPORT TABLE PUBLIC.T1

Troubleshooting

The data upload succeeds when adjusting the length of column I2 as follows.

Declare I2 as VARCHAR(18 CHAR), or declare I2 as VARCAR(54) size.

gSQL>\desc T1

COLUMN_NAME TYPE IS_NULLABLE

----------- -------------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(18 CHAR) TRUE

gSQL>\desc T1

COLUMN_NAME TYPE IS_NULLABLE

----------- --------------------- -----------

I1 NUMBER(10,0) TRUE

I2 CHARACTER VARYING(54) TRUE

Control File Syntax | 3,455

34.3 Control File Syntax

TABLE [schema_name.]table_name[domain_name.]

FIELDS TERMINATED BY 'Field Terminator'

[OPTIONALLY ENCLOSED BY 'Open Qualifier' [AND 'Close Qualifier']]

[LINES TERMINATED BY 'Line Terminator']

[Characterset characterset_name]

[RTRIM [ON|OFF]]

[LTRIM [ON|OFF]]

[WHERE="conditional statement"]

Caution

A control file describes only one table. Therefore, each item above should be described in the cont

rol file only once, and if it is described duplicately, then the control parsing error occurs.

CHARACTERSET

Syntax

CHARACTERSET characterset_name

Description

It refers to the character set of the datafile to be downloaded or uploaded.

If the character set is not specified, the UTF8 which is the default character set of CHARACTER_SET in GO

LDILOCKS property is used.

Example

The following is an example of which the character set of the datafile to be uploaded or downloaded is t

he ASCII code.

% cat sample.ctl

CHARACTERSET ASCII

3,456 | gloader/gloadernet (Upload/download Tool)

TABLE

Syntax

TABLE table_name

TABLE schema_name.table_name

TABLE table_name@domain_name

TABLE schema_name.table_name@domain_name

Description

It specifies the name of table to which upload or download the data, or specifies the schema name to w

hich the table belongs, or the domain name.

The domain name can be used only for data download, and it downloads only the data of the correspond

ing member.

The string or double-quoted (") string is used in the table name.

If the table name is given as the command row argument in gloader as well, then the value of the comm

and row argument takes precedence over the value in the control file.

Examples

The following is an example of specifying only the table name.

% cat sample.ctl

TABLE lineitem

The following is an example of specifying the schema PUBLIC and the table name. It has the same meani

ng as the example above.

% cat sample.ctl

TABLE PUBLIC.lineitem

The following is an example of specifying the schema PUBLIC and the table name of G1N1 member. It ha

s the same meaning as the example above.

% cat sample.ctl

TABLE PUBLIC.lineitem@G1N1

The following is an example of specifying the table name created by the delimited identifier.

Control File Syntax | 3,457

gSQL> CREATE TABLE "Tab*&^" (id INTEGER);

% cat sample.ctl

TABLE "Tab*&^"

FIELDS TERMINATED BY

Syntax

FIELDS TERMINATED BY 'Field Terminator'

Description

The field terminator is used as a delimiter between columns in the record data of the data file. Setting the

field terminator in the control file can not be omitted.

The field terminator can be set with one or more strings, and should not be duplicate with a qualifier or li

ne terminator, and it should not use the subset string.

There is not any constraintfor the string to be set as a field terminator. However, \ or % should be added

to in front of each n, t, r when setting NEW LINE or TAB, CARRIAGE RETURN character.

If the field terminator is given as the command row argument in gloader as well, then the value of the co

mmand row argument takes precedence over the value in the control file.

Example

The following is an example of setting the field terminator as COMMA and NEW LINE.

% cat sample.ctl

FIELDS TERMINATED BY ',\n'

% cat sample.ctl

FIELDS TERMINATED BY ',%n'

OPTIONALLY ENCLOSED BY

3,458 | gloader/gloadernet (Upload/download Tool)

Syntax

OPTIONALLY ENCLOSED BY 'Open Qualifier' [AND 'Close Qualifier']

Description

Qualifier is used as a delimiter to represent the start and end of the column.

Qualifier is a single character, and the first qualifier is an open qualifier, the last qualifier is a close qualifie

r. The same characters can be used to set a open qualifier and a close qualifier, or the different characters

can be used to represent the start and end of the column.

Characters set as a qualifier can not be used in a field terminator nor in a line terminator.

If a close qualifier literally belongs to a column data, two close qualifiers are used to represent a single vali

d data.

If an open qualifier is set omitting a close qualifier, then characters as same as those in an open qualifier i

s set in a close qualifier.

If OPTIONALLY ENCLOSED BY statement does not exist, the column data is distinguished by the field ter

minator.

If the qualifier is given as the command row argument in gloader as well, then the value of the command

row argument takes precedence over the value in the control file.

Caution

If OPTIONALLY ENCLOSED BY statement does not exist, the results of the uploading and downloa

ding data may be different. (Refer to Troubleshooting Uploading.)

Example

The following is an example of using double quotes (") and a single quote (') as a open qualifier and a clo

se qualifier each.

% cat sample.ctl

OPTIONALLY ENCLOSED BY '"' AND "'"

Control File Syntax | 3,459

LINES TERMINATED BY

Syntax

LINES TERMINATED BY 'Line Terminator'

The line terminator is used as a delimiter between records in the data file.

The line terminator can be set with one or more strings, and should not be duplicate with a qualifier or a

field terminator, and it should not use the subset string.

When omitting the line terminator setting, then NEW LINE ('\n' or '%n') is used by default.

If the line terminator is given as the command row argument in gloader as well, then the value of thecom

mand row argument takes precedence over the value in the control file.

Description

Note

• Differently from Unix, CARRIAGE RETURN and NEW LINE are written together instead of a singl

e NEW LINE in the data file exported from Windows OS. When importing data by using this data f

ile, LINES TERMINATED BY in the control file should be explicitly set like as '\r\n' so that the data i

s normally imported.

• It is recommended to set a field terminator and a line terminator with a different string each. T

he more mutual string including the first character exist the poorer the import performance due t

o the internal comparing. In other words, when a field terminator and a line terminator are set wit

h different strings each, then the shorter the string the better the performnace.

Example

The following is an example of using '^^\t\r\n' as a line terminator

% cat sample.ctl

LINES TERMINATED BY '^^\t\r\n'

3,460 | gloader/gloadernet (Upload/download Tool)

LTRIM

Syntax

LTRIM ON|OFF

Description

It determines a left trim.

The default value is OFF, and when it is set to OFF, then the left WHITESPACE is considered data.

When it is set to ON, then the left WHITESPACE is ignored.

Note

OPTIONALLY ENCLOSED BY is applied only when the syntax does not exist.

If OPTIONALLY ENCLOSED BY is used and the column is enclosed with delimiters in the data file, t

hen RTRIM and LTRIM is OFF.

Example

The following is an example of setting LTRIM to ON.

% cat sample.ctl

LTRIM ON

RTRIM

Syntax

RTRIM ON|OFF

Description

It determines a right trim.

The default value is OFF, and when it is set to OFF, then the right WHITESPACE is considered data.

Control File Syntax | 3,461

When it is set to ON, then the right WHITESPACE is ignored.

Note

OPTIONALLY ENCLOSED BY is applied only when the syntax does not exist.

If OPTIONALLY ENCLOSED BY is used and the column is enclosed with delimiters in the data file, t

hen RTRIM and LTRIM is OFF.

Example

The following is an example of setting RTRIM to ON.

% cat sample.ctl

RTRIM ON

WHERE

Syntax

WHERE="conditional_statement"

Description

It uses a conditional clause when downloading data.

Example

The following is an example of using WHERE.

% cat sample.ctl

WHERE="I2 > 3"

3,462 | gloader/gloadernet (Upload/download Tool)

34.4 gloader Argument References

Usage

$ gloader --help

Usage

gloader user password mode data [control] [format] [options]

user user name

password password

mode: gloader's mode.

--export export data

--import import data

data:

--data data file

options:

--control control file

--format file format(text|binary, Default text)

--log log file

--bad bad file

--dsn dsn string

--array number of rows in bind array(Default 1000)

--filesize max file size

--commit number of commit unit(Default 5000)

--comment commenting on commit

--atomic use atomic function

--parallel use parallel in import

--propagation enabling or disabling a redo log propagation(ON|OFF)

--errors number of error count to allow(Default 100)

--AsTIMESTAMP bind DATE as TIMESTAMP

--buffered buffered disk io(Default direct io)

--tablename [schema_name.]table_name[@domain_name]

--fieldterm field terminator

--lineterm line terminator

--qualifier qualifier(column data encloser)

--where export only rows selected by given WHERE condition

--group-id importing distributed data by group id using global connections in a

clustered environment

--directio-size direct io size(Default 512)

gloader Argument References | 3,463

--no-copyright suppresses the display of the banner

--silent suppresses the display of the result message

--help print help message

Mandatory Argument

The arguments are entered in an order of username and password to connect to the database.

gloader operation mode, control file, datafile are entered as arguments.

Argument Description

user_name It is the user name. The maximum length of user name is 128.

password It is password. The maximum length of password is 128.

--export

Description

It specifies for gloader to download the data in the database.

Example

$ gloader test test --export -c sample.ctl -d sample.dat

--import

Description

It specifies for gloader to upload the data in the database.

Example

$ gloader test test --import -c sample.ctl -d sample.dat

--control

Description

It specifies the control file path.

If --tablename is given as an argument, the control file can be omitted. The table name is mandatory to e

3,464 | gloader/gloadernet (Upload/download Tool)

xecute gloader, so the table name should be given via a control file or an argument. If the table name is n

ot given as an argument, TABLE item should be set via a control file.

When a control file is omitted, a field terminator, a qualifier, a line terminator can be given as an argume

nt. If these delimiters are not given as an argument, then delimiters in CSV form is used by default.

Example

The following is an example of using a control file whose name is sample.ctl.

$ gloader test test -i --control sample.ctl -d sample.dat

--data

Description

It specifies the data file path to download or upload.

Example

The following is an example of uploading a control file whose name is sample.dat.

$ gloader test test -i -c sample.ctl --data sample.dat

Optional Argument

--tablename

Description

It specifies the table name in [Schemaname.]Tablename[@domain_name] form.

The table name should be given via setting TABLE of an argument or a control file. In other words, if a co

ntrol file is omitted, the table name argument is mandatory.

If a tablename argument is given when TABLE item of a control file is set, then argument value takes prec

edence over the value in the control file.

Example

The following is an example of uploading data in CSV form by giving a tablename argument because the

control file argument is omitted

gloader Argument References | 3,465

$ gloader test test -i --tablename PUBLIC.T1 --data sample.dat

The following is an argument of omitting a tablename argument because TABLE item is omitted in the co

ntrol file.

$ cat sample.ctl | grep TABLE

TABLE T1

$ gloader test test -i -c sample.ctl --data sample.dat

--format

Description

It specifies the datafile format.

The datafile format may be text or binary, and the default value is text when the format is not set.

Example

The following is an example of downloading the data to sample.dat in binary form.

$ gloader test test --export --control sample.ctl --data sample.dat --format binary

The followings are sample.dat and sample.log which are created after executing gloader as above.

$ ls

sample.ctl sample.dat sample.log

--log

Description

It specifies the logfile path.

gloader records the error and results occurred during the execution.

If the file name is not specified, the name is created as same as the datafile by changing its extension to l

og.

Example

The following is an example of when the name of the log file is specified by using --log option.

3,466 | gloader/gloadernet (Upload/download Tool)

$ gloader test test --export --control sample.ctl --data sample.dat --log SAMPLE.log

The followings are sample.dat, SAMPLE.log which are created after executing gloader as above.

$ ls

sample.ctl sample.dat SAMPLE.log

The following is an example of when the name of the log file is not specified by using --log option.

$ gloader test test --export --control sample.ctl --data sample.dat

The followings are sample.dat, sample.log which are created after executing gloader as above.

$ ls

sample.ctl sample.dat sample.log

--bad

Description

It specifies the bad file path.

It is valid only when gloader performs the import operation. Rows which can not be uploaded due to an

error are stored in the bad file.

If the file name is not specified, the name is created as same as the datafile by changing its extension to b

ad.

Example

The following is an example of when the name of the bad file is specified by using --bad option.

$ gloader test test --import --control sample.ctl --data sample.dat --bad SAMPLE.bad

The followings are sample.dat, sample.log, SAMPLE.bad which are created after executing gloader as ab

ove.

$ ls

SAMPLE.bad sample.ctl sample.dat sample.log

The following is an example of when the name of the bad file is not specified by using --bad option.

$ gloader test test --export --control sample.ctl --data sample.dat

The followings are sample.dat, sample.log, sample.bad which are created after executing gloader as abov

gloader Argument References | 3,467

e.

$ ls

sample.bad sample.ctl sample.dat sample.log

--dsn

Description

It is the dsn string. The maximum length is 128.

It is used to specify the format of the time-related data type represented in the data file to be downloade

d or uploaded.

It is used to specify the server when using gloadernet in the Client/ Server (C/S) environment.

For more information, refer to odbc.ini File.

Example

The following is an example of .odbc.ini described to use --dsn option.

$ cat .odbc.ini

[GOLDILOCKS]

HOST = 127.0.0.1

PORT = 21123

DATE_FORMAT = SYYYYMMDD

TIME_FORMAT = HH24MISS

TIME_WITH_TIME_ZONE_FORMAT = HH24MISS TZHTZM

TIMESTAMP_FORMAT = SYYYYMMDD HHMISS

TIMESTAMP_WITH_TIME_ZONE_FORMAT = SYYYYMMDD HH:MI:SS

The following is an example of uploading the data to the goldilocks server by using --dsn option.

$ gloadernet test test --dsn goldilocks --import --control sample.ctl --data sample.dat

The following is an example of defining the format of time-related data type of the data file by using --ds

n option, and then downloading data.

$ gloader test test --dsn goldilocks --export --control sample.ctl --data sample.dat

For more information, refer to Failure due to date/time format.

3,468 | gloader/gloadernet (Upload/download Tool)

--array

Description

It specifies the number of rows to be bound when importing the data.

The amount of memory is required in proportion to the number of array. If not specified, 1,000 rows are

used.

The option is applied only when uploading the data.

Example

The following is an example of uploading the data file in 2,000 records unit.

$ gloader test test --import --control sample.ctl --data sample.dat --array 2000

--filesize

Description

The maximum size of the file can be set when gloader downloads the data. If the amount of data exceed

s the maximum size, the file is generated by adding the permutation number to the file extension.

If not specified, the maximum file size is unlimited, and the minimum is 31,461,376 (30 Mbytes).

The option is valid only for the binary type data file.

Example

The following is an example of executing the commands, then the file size exceeds the specified maximu

m, so new files are generated as results.

$ gloader test test --export --control sample.ctl --data sample.dat --filesize 31461376

$ls -al

-rw-r--r-- 1 test test 31461376 sample.dat

-rw-r--r-- 1 test test 31461376 sample.dat.001

-rw-r--r-- 1 test test 6715392 sample.dat.002

--commit

Description

gloader Argument References | 3,469

While gloader uploads the data, the transaction is in the no commit state. The commit cycle may be set b

y using --commit option.

If not set, the default value is 5,000 (rows).

Example

The following is an example of using --commit option.

$ gloader test test --import --control sample.ctl --data sample.dat --commit 10000

--comment

Description

When gloader commits the transaction, it specifies the comment on the transaction.

Example

The following is an example of using --comment option.

$ gloader test test --import --control sample.ctl --data sample.dat --comment import_sample

--atomic

Description

It is the option for performing array INSERT, and it is useful when uploading the data.

The performance is faster than the existing array insert, because atomic array INSERT processes the insert

statements as many as the size of array in a single transaction.

Example

The following is an example of using --atomic option.

$ gloader test test --import --control sample.ctl --data sample.dat --array 1000 --atomic

--parallel

Description

It specifies the number of threads for parallel processing.

It is useful only when gloader uploads the data, and the performance gets faster when the number of thr

3,470 | gloader/gloadernet (Upload/download Tool)

eads is increased by adjusting --parallel option.

The performance gets faster by increasing the number of threads, but it is recommended to set the numb

er of threads according to the operational environment.

The default value is 1, and the maximum value is 32.

Example

The following is an example of using eight threads when uploading data. Ten threads are operated toget

her including threads analyzing the data files and read only threads, besides the eight uploading threads.

$ gloader test test --import --control sample.ctl --data sample.dat --parallel 8

--propagation

Description

It determines whether to propagate the upload transaction log to another replicated server.

It can be set to ON or OFF.

Example

The following is an example of which the upload transaction log is not propagated to another replicated

server.

$ gloader test test --import --control sample.ctl --data sample.dat --propagation off

--errors

Description

It sets the number of errors permitted when gloader uploads the data.

If not set, 100 (rows) are used. If it is set to 0, the --errors option is ignored.

If it is smaller than the size of --array option, the number of permitted error is the number of array.

Example

The following is an example of using --errors option.

$ gloader test test --import --control sample.ctl --data sample.dat --errors 10000

gloader Argument References | 3,471

--AsTIMESTAMP

Description

It sets the DATE type data stored in TIMESTAMP format to be operated in TIMESTAMP format for backw

ard compatibility.

TIMESTAMP_FORMAT is also applied to the DATE type data when using the --AsTIMESTAMP option.

Example

The following is an example of using --AsTIMESTAMP option.

$ gloader test test --import --control sample.ctl --data sample.dat --AsTIMESTAMP

--buffered

Description

Only the datafile uses the buffered IO instead of the direct IO.

The log file and bad file use the buffered IO.

Example

The following is an example of using --buffered option.

$ gloader test test --import --control sample.ctl --data sample.dat --buffered

--fieldterm

Description

It provides a field terminator.

If it is set in a control file as well, then the fieldterm argument value is preferentially used.

% is added in front of n, r, t each for NEW LINE, CARRIAGE RETURN, TAB.

Characters which is used as a shell meta character such as ', ", \, & is not recommended to use.

Example

The following is an example of using --fieldterm option.

$ gloader test test --i -c sample.ctl -d sample.dat --fieldterm ",,,"

$ gloader test test --i -c sample.ctl -d sample.dat --fieldterm ,,,

3,472 | gloader/gloadernet (Upload/download Tool)

$ gloader test test --i -c sample.ctl -d sample.dat --fieldterm ',,,'

--lineterm

Description

It provides a line terminator.

If it is set in a control file as well, then the lineterm argument value is preferentially used.

The detailed usage is as same as that of the fieldterm argument.

Example

The following is an example of using --lineterm option.

$ gloader test test --i -T PUBLIC.test -d sample.dat --lineterm ",,,"

$ gloader test test --i -T PUBLIC.test -d sample.dat --lineterm ,,,

$ gloader test test --i -T PUBLIC.test -d sample.dat --lineterm ',,,'

--qualifier

Description

It provides a qualifier which is to be added to the start and the end of the column data. Only a single char

acter can be set as a qualifier.

If it is set in a control file as well, then the qualifier argument value is preferentially used.

The detailed usage is as same as that of the fieldterm argument.

Example

The following is an example of using --qualifier option.

$ gloader test test --i -T PUBLIC.test -d sample.dat --qualifier "|"

$ gloader test test --i -T PUBLIC.test -d sample.dat --qualifier '"'

--where

Description

It downloads the data by setting a conditional clause for export operation.

If the where clause is also set in a control file, then the where argument value is preferentially used.

gloader Argument References | 3,473

Example

The following is an example of using --where option.

$ gloader test test --i -T PUBLIC.test -d sample.dat --where "I2 > 4"

--group-id

Description

It uploads the data in the sharded table only by group in the cluster environment.

If this option is used when uploading the data to the non-sharded table, the option is not valid.

This option is operated only in C/S environment, so it is valid only in gloadernet and it can be used only w

hen uploading text files.

--group-id option uses GLOBAL CONNECTION of ODBC, so properties related to the Data Source Configu

ration should be set.

Example

The following is odbc.ini configuration file to use the global connection.

$cat .odbc.ini

[GOLDILOCKS]

HOST=127.0.0.1

PORT = 22581

LOCALITY_AWARE_TRANSACTION=1

LOCATOR_DSN = LOCATOR

[LOCATOR]

LOCATOR_FILE=.locator.ini

The following is an example of using --group-id option in gloadernet.

$ gloadernet test test --i -T PUBLIC.test -d sample.dat --group-id

COMPLETED IN IMPORTING TABLE: PUBLIC.TEST, TOTAL 20 RECORDS, SUCCEEDED 20 RECORDS

The following is an example of an error which occurred due to using --group-id option in gloader.

$ gloader test test --i -T PUBLIC.test -d sample.dat --group-id

ERR-HY010(19009): Function sequence error : The function should be called only when the

SQL_ATTR_LOCALITY_AWARE_TRANSACTION connection attribute is set.

3,474 | gloader/gloadernet (Upload/download Tool)

--directio-size

Description

gloader uses direct IO by default. The default value of direct IO is 512, but this size can be modified by usi

ng --directio-size. The value for the size should be the value of 2 powers of 512.

Example

The following is an example of modifying the direct IO size in gloader.

$ gloader test test --i -T PUBLIC.test -d sample.dat --directio-size 1024

--no-copyright

Description

It does not output the copyright and version.

Example

The following is the result of executing gloader with --no-copyright option.

$ gloader test test --import --control sample.ctl --data sample.dat --no-copyright

COMPLETED IN EXPORTING TABLE: PUBLIC.t1, 3 RECORDS

$

--silent

Description

It does not output the results of executing gloader.

Example

The following is the result of executing gloader with --silent option.

$ gloader test test --import --control sample.ctl --data sample.dat --silent

$

gloader Argument References | 3,475

--help

Description

It displays the help messages.

For more information, refer to Usage.

gdump

35.

3,477

3,478 | gdump

35.1 Overview of gdump

Definition

gdump is a utility provided by GOLDILOCKS, and it dumps the following binary files managed by the data

base in text form.

● Control file

● Datafile

● Log file

● Incremental backup file

● Property file

● Commit log file

● Log buffer file

● Pending log buffer file

Argument

gdump usage is divided into the mandatory argument and the optional argument, and the optional argu

ments are used differently according to the file types to be dumped.

gdump file_type file_name [options]

Mandatory Argument

The mandatory argument is used in an order of the file type and and the file path.

file_type: CONTROL | LOG | DATA | PROPERTY | BACKUP | COMMIT_LOG | LOG_BUFFER | PEND_BUFFER

file_name: file name to dump

file_type Argument

● CONTROL: It is a control file. It is located in <GOLDILOCKS_DATA>/wal, and its file extension is .ctl.

● Log: It is a log file(Online/Archived redo log file). It is located in <GOLDILOCKS_DATA>/wal or in <GO

LDILOCKS_DATA>/archive_log, and its file extension is .log.

● DATA: It is a datafile. It is located in <GOLDILOCKS_DATA>/db, and its file extension is .dbf.

● PROPERTY: It is a binary property file. It is located in <GOLDILOCKS_DATA>/conf, and the default file

name is goldilocks.properties.binary.

Overview of gdump | 3,479

● BACKUP: It is an incremental backup file. It is located in <GOLDILOCKS_DATA>/backup, and its file ex

tension is .inc.

● COMMIT_LOG: It is a commit.log file located in <GOLDILOCKS_DATA>/wal.

● LOG_BUFFER: It is a file of which a log buffer located in the memory is stored. The log buffer is store

d in a file by executing gsyncher.

● PEND_BUFFER: It is a file of which a pending log buffer located in the memory is stored. The pending

log buffer is stored in a file by executing gsyncher.

Caution

An attempt to the dump of broken control file fails.

Optional Argument

-S --silent silent

file_type = CONTROL

-s, --section sys | log | db | backup | all dump controlfile section(default all)

file_type = DATA

-h, --header dump datafile header

-n, --number INTEGER (>= 0) (log or page) sequence number

-f, --fetch INTEGER (>= 1) dump as much as count

file_type = LOG

-h, --header

-n, --number INTEGER (>= 0) (log or page) sequence number

-o, --offset INTEGER offset of lsn(usable if set lsn)

-f, --fetch INTEGER (>= 1) dump as much as count

-a, --all

file_type = BACKUP

-b, --body header | all dump incremental body(default all)

-t, --tbs dump specific tablespace body(usage if set body)

-n, --number INTEGER (>= 0) (log or page) sequence number

-f, --fetch INTEGER (>= 1) dump as much as count

Description

Name
Available

file type
Description

--silent All It does not output copyright, version, the execution time.

It refers to the section of control file to be dumped.

● sys: System section

3,480 | gdump

--section Control file ● log: Log section

● db: Database section

● backup: Incremental backup section

● all: All sections (The default value)

--header
Datafile

It dumps only the header of the datafile.

If not set, it does not display the header.

Log file It dumps only the header of the log file.

--number

Datafile It is a page number to be dumped. (The default value is 0.)

Log file
It is a log number to be dumped. (The default value is 0, and it dumps the lo

g bigger than the specified number.)

Incremental back

up file

It is a page number to be dumped. (The default value is 0, and it dumps the

page bigger than the specified number.)

--fetch

Datafile It is a number of pages to be dumped. (The default value is 1.)

Log file It is a number of logs to be dumped. (The default value is the whole logs.)

Incremental back

up file

It is a number of pages to be dumped. (The default value is the whole pages

.)

--offset Log file

It is valid only when --number option argument is set, and it refers to the po

sition apart as far as offset from the value set in number. (The default value

is 0.)

--body
Incremental back

up file

It displays the header of page (header) or the header and page (all).

If not set, it does not display anything. (The default value is none).

--tbs
Incremental back

up file

It is valid only when --body option is set.

It specifies the certain tablespace number in the incremental backup file.

If not set, it refers to all tablespace.

--all Logl file It dumps all including invalid logs.

Name
Available

file type
Description

Note

An option is not used when dumping the property file.

Examples of Using gdump | 3,481

35.2 Examples of Using gdump

Control File

● Dumping system section

$ gdump control control_0.ctl --section sys --silent

[SYSTEM SECTION]

SERVER STATE : SERVICE

DATA STORE MODE : TDS

LAST CHECKPOINT LSN : 136976

INCREMENTAL BACKUP CHUNK COUNT : 1

INCREMENTAL BACKUP SECTION OFFSET : 512

LOG SECTION OFFSET : 8704

DB SECTION OFFSET : 13312

● Dumping log section

$ gdump control control_0.ctl --section log --silent

[LOG SECTION]

DATABASE CREATION TIME : 2014-08-25 18:37:11.299610

[CHECKPOINT]

LID : 0,54834,13

LSN : 136976

RECOVERY LSN : 136976

ARCHIVELOG MODE : ARCHIVELOG

LAST INACTIVATED LOGFILE SEQUENCE : -1

[LOG STREAM]

STATE : ACTIVE

GROUP COUNT : 4

BLOCK SIZE : 512

FILE SEQUENCE : 0

[LOG GROUP #0]

STATE : CURRENT

SIZE : 104857600

MEMBER COUNT : 1

FILE SEQUENCE : 0

3,482 | gdump

PREV LAST LSN : -1

MEMBER #0 : "/home/lkh/work/product/Gliese/home/wal/redo_0_0.log"

● Dumping database section

$ gdump control control_0.ctl --section db --silent

[DB SECTION]

[DATABASE]

TRANSACTION_TABLE_SIZE : 1024

UNDO_RELATION_COUNT : 128

TABLESPACE COUNT : 4

NEW TABLESPACE ID : 4

[TABLESPACE #0]

NAME : DICTIONARY_TBS

ATTRIBUTES : MEMORY | PERSISTENT | DICT

STATE : CREATED

LOGGING STATE : LOGGING

ONLINE STATE : ONLINE

EXTENT_SIZE : 8

RELATION_ID : 0

[DATAFILE #0]

SIZE : 134209536

STATE : CREATED

NAME : "/home/lkh/work/product/Gliese/home/db/system_dict.dbf"

● Dumping incremental backup section

$ gdump control control_0.ctl --section backup --silent

[INCREMENTAL BACKUP SECTION]

[BACKUP #0]

FILE PATH : /home/lkh/work/product/Gliese/home/backup/databaseD20140825T183902L0S0.inc

BACKUP LSN : 136976

BACKUP LEVEL : 0

BACKUP OBJECT : database

[BACKUP #1]

FILE PATH : /home/lkh/work/product/Gliese/home/backup/controlD20140825T183904L0S0.inc

BACKUP LSN : 136976

BACKUP LEVEL : 0

BACKUP OBJECT : control

Examples of Using gdump | 3,483

Datafile

● Dumping the first page of datafile system_dict.dbf

$ gdump data system_dict.dbf --silent

TABLESPACE ID : 0

DATAFILE ID : 0

PAGE SEQUENCE ID : 0

--

[PHYSICAL HEADER] TYPE(EXT_BLOCK_MAP), FREENESS(FREE), LSN(107938),

TIMESTAMP(1408959438472006), PARENT RID(0,-1,0), SEGMENT ID(0), MAX VIEW SCN(0), AGABLE

SCN(0), SELF ID(0,0)

--

0000 0200000004000000 A2A5010000000000 4643D5EE70010500 0000FFFF00000000

0020 0000000000000000 0000000000000000 0000000000000000 0300000000000000

0040 0000000000000000 0000000000000000 0000000000000000 0200000001000000

0060 0200000001000000 0320000001000000 0000000000000000 0000000000000000

0080 0000000000000000 0000000000000000 0000000000000000 0000000000000000

00A0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

00C0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

....

● Dumping three pages from the 100th page of datafile system_dict.dbf

$ gdump data system_dict.dbf --number 100 --fetch 3 --silent

TABLESPACE ID : 0

DATAFILE ID : 0

PAGE SEQUENCE ID : 100

--

[PHYSICAL HEADER] TYPE(BITMAP_HEADER), FREENESS(INSERTABLE), LSN(348),

TIMESTAMP(1408959438472006), PARENT RID(0,57,4), SEGMENT ID(4294967296), MAX VIEW SCN(0),

AGABLE SCN(0), SELF ID(0,1

00)

--

0000 0400000003000000 5C01000000000000 4643D5EE70010500 0000390004000000

0020 0000000001000000 0000000000000000 0000000000000000 80C0317800000000

0040 0000000000000000 0000000000000000 0000000064000000 0100000001000002

0060 FFFFFFFFFFFFFFFF 0100000000000000 0000000000000000 0000000000000000

0080 0000000000000000 0200000001000000 7303000072030000 6E00010000000000

00A0 3700000000000000 0000000000000000 0000000000000000 0000000000000000

3,484 | gdump

00C0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

....

1FC0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1FE0 0000000000000000 0000000000000000 0000000000000000 5C01000000000000

TABLESPACE ID : 0

DATAFILE ID : 0

PAGE SEQUENCE ID : 101

--

[PHYSICAL HEADER] TYPE(BITMAP_HEADER), FREENESS(INSERTABLE), LSN(353),

TIMESTAMP(1408959438472006), PARENT RID(0,58,4), SEGMENT ID(4294967296), MAX VIEW SCN(0),

AGABLE SCN(0), SELF ID(0,1

01)

--

0000 0400000003000000 6101000000000000 4643D5EE70010500 00003A0004000000

0020 0000000001000000 0000000000000000 0000000000000000 00BF317800000000

0040 0000000000000000 0000000000000000 0000000065000000 0100000001000002

0060 FFFFFFFFFFFFFFFF 0100000000000000 0000000000000000 0000000000000000

0080 0000000000000000 0200000001000000 8303000082030000 7000010000000000

00A0 3800000000000000 0000000000000000 0000000000000000 0000000000000000

00C0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

....

1FC0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1FE0 0000000000000000 0000000000000000 0000000000000000 6101000000000000

TABLESPACE ID : 0

DATAFILE ID : 0

PAGE SEQUENCE ID : 102

--

[PHYSICAL HEADER] TYPE(BITMAP_HEADER), FREENESS(INSERTABLE), LSN(358),

TIMESTAMP(1408959438472006), PARENT RID(0,59,4), SEGMENT ID(4294967296), MAX VIEW SCN(0),

AGABLE SCN(0), SELF ID(0,1

02)

--

0000 0400000003000000 6601000000000000 4643D5EE70010500 00003B0004000000

0020 0000000001000000 0000000000000000 0000000000000000 C0BD317800000000

0040 0000000000000000 0000000000000000 0000000066000000 0100000001000002

0060 FFFFFFFFFFFFFFFF 0100000000000000 0000000000000000 0000000000000000

0080 0000000000000000 0200000001000000 9303000092030000 7200010000000000

00A0 3900000000000000 0000000000000000 0000000000000000 0000000000000000

00C0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

....

Examples of Using gdump | 3,485

● Dumping the header of datafile system_dict.dbf

$ gdump data system_dict.dbf --header --silent

FILE : system_dict.dbf

Tablespace Physical Id : 0

Datafile Id : 0

Last Checkpoint Lsn : 136976

Creation TIME : 2014-08-25 18:37:18.472006

Log File

● It dumps all of online redo log file redo_0_0.log.

$ gdump log redo_0_0.log --silent

===

[LOG FILE HEADER]

LOG_GROUP_ID : 0

BLOCK_SIZE : 512

FILE_SIZE : 104857600

FILE_SEQUENCE : 0

PREV_LAST_LSN : -1

CREATION TIME : 2014-08-25 18:37:13.315283

===

[LOG #0] : BLOCK(0), LSN(0), SIZE(1132), PIECE_COUNT(1), TRANS_ID(FFFFFFFFFFFF0001),

RID(0,-1,0)

[PIECE #0] : TYPE(MEMORY_FILE_CREATE), SIZE(1116), CLASS(DATAFILE), REDO_TYPE(CONTROL_FILE),

PROPAGATE_LOG(YES), RID(0,0,0)

FFFFFFFF2F686F6D 652F6C6B682F776F 726B2F70726F6475 63742F476C696573/hom e/lkh/wo

rk/produ ct/Glies

652F686F6D652F64 622F73797374656D 5F646963742E6462 6600000000000000 e/home/d b/system

_dict.db f.......

0000000000000000 0000000000000000 0000000000000000 0000000000000000

........

[LOG #1] : BLOCK(3), LSN(1), SIZE(232), PIECE_COUNT(1), TRANS_ID(FFFFFFFFFFFF0001), RID(0,0,0)

[PIECE #0] : TYPE(MEMORY_TBS_CREATE), SIZE(216), CLASS(DATAFILE), REDO_TYPE(CONTROL_FILE),

PROPAGATE_LOG(YES), RID(0,0,0)

... Ellipsis ...

● It dumps three logs from a log which is away as far as five offsets from log sequence number 100 in r

3,486 | gdump

edo_0_0.log.

$ gdump log redo_0_0.log --number 100 --offset 5 --fetch 3 --silent

===

[LOG FILE HEADER]

LOG_GROUP_ID : 0

BLOCK_SIZE : 512

FILE_SIZE : 104857600

FILE_SEQUENCE : 0

PREV_LAST_LSN : -1

CREATION TIME : 2014-08-25 18:37:13.315283

===

[LOG #0] : BLOCK(105), LSN(105), SIZE(24), PIECE_COUNT(1), TRANS_ID(FFFFFFFFFFFF0001),

RID(0,0,55)

[PIECE #0] : TYPE(INIT_RELATION_HEADER), SIZE(8), CLASS(ACCESS), REDO_TYPE(PAGE),

PROPAGATE_LOG(YES), RID(0,160,55)

0A00000000000000

[LOG #1] : BLOCK(105), LSN(106), SIZE(240), PIECE_COUNT(4), TRANS_ID(FFFFFFFFFFFF0001),

RID(0,0,56)

[PIECE #0] : TYPE(INIT_PAGE), SIZE(88), CLASS(PAGE_ACCESS), REDO_TYPE(PAGE),

PROPAGATE_LOG(YES), RID(0,0,56)

0400000004000000 0000000000000000 4643D5EE70010500 00000D0004000000

FC..p...

0000000001000000 0000000000000000 0000000000000000 0000000000000000

........

0000000000000000 0000000000000000 0000000038000000

....8...

[PIECE #1] : TYPE(MEMORY_BITMAP_UPDATE_LEAF_STATUS), SIZE(24), CLASS(SEGMENT),

REDO_TYPE(PAGE), PROPAGATE_LOG(YES), RID(0,13,4)

0400000003000000 0000000000000000 0000000000000000

........

[PIECE #2] : TYPE(BYTES), SIZE(8), CLASS(RECOVERY), REDO_TYPE(PAGE), PROPAGATE_LOG(YES),

RID(0,4,56)

0400000003000000

[LOG #2] : BLOCK(105), LSN(107), SIZE(832), PIECE_COUNT(8), TRANS_ID(FFFFFFFFFFFF0001),

RID(0,-1,0)

[PIECE #0] : TYPE(INIT_PAGE), SIZE(88), CLASS(PAGE_ACCESS), REDO_TYPE(PAGE),

PROPAGATE_LOG(YES), RID(1,0,178)

0100000004000000 0000000000000000 BED7F8EE70010500 0000FFFF00000000

....p...

Examples of Using gdump | 3,487

0000000000000000 0000000000000000 0000000000000000 0000000000000000

........

0000000000000000 0000000000000000 01000000B2000000

........

Incremental Backup File

● It dumps incremental backup information.

○ Only header and tail of file in databaseD20140825T183902L0S0.inc are dumped as follows.

$ gdump backup databaseD20140825T183902L0S0.inc --silent

INCREMENTAL FILE HEADER

--

OBJECT TYPE(DATABASE), TBS COUNT(3), BODY SIZE(62742528)

LSN: PREV(0), MAX (136976), CHKPT(136976)

CHKPT LID: File Seq No(0), Block Info1(877344), Block Info2(13)

--

INCREMENTAL FILE TAIL

--

TABLESPACE ID(000), BACKUP PAGE COUNT(05372), TABLESPACE OFFSET(8192)

TABLESPACE ID(001), BACKUP PAGE COUNT(02090), TABLESPACE OFFSET(44015616)

TABLESPACE ID(002), BACKUP PAGE COUNT(00197), TABLESPACE OFFSET(61136896)

● It dumps header and body of page for the entire page of incremental backup.

○ The entire page of all tablespaces in databaseD20140825T183902L0S0.inc is dumped as follows.

$ gdump backup databaseD20140724T123414L0S0.inc --body all

INCREMENTAL FILE HEADER

--

OBJECT TYPE(DATABASE), TBS COUNT(3), BODY SIZE(62742528)

LSN: PREV(0), MAX (136976), CHKPT(136976)

CHKPT LID: File Seq No(0), Block Info1(877344), Block Info2(13)

--

INCREMENTAL FILE TAIL

--

TABLESPACE ID(000), BACKUP PAGE COUNT(05372), TABLESPACE OFFSET(8192)

TABLESPACE ID(001), BACKUP PAGE COUNT(02090), TABLESPACE OFFSET(44015616)

TABLESPACE ID(002), BACKUP PAGE COUNT(00197), TABLESPACE OFFSET(61136896)

TABLESPACE ID : 0

DATAFILE ID : 0

3,488 | gdump

PAGE SEQUENCE ID : 0

--

[PHYSICAL HEADER] TYPE(EXT_BLOCK_MAP), FREENESS(FREE), LSN(107938),

TIMESTAMP(1408959438472006), PARENT RID(0,-1,0), SEGMENT ID(0), MAX VIEW SCN(0), AGABLE

SCN(0), SELF ID(0,0)

--

0000 0200000004000000 A2A5010000000000 4643D5EE70010500 0000FFFF00000000

0020 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0040 0000000000000000 0000000000000000 0000000000000000 0200000001000000

0060 0200000001000000 0320000001000000 0000000000000000 0000000000000000

0080 0000000000000000 0000000000000000 0000000000000000 0000000000000000

... Ellipsis ...

TABLESPACE ID : 0

DATAFILE ID : 0

PAGE SEQUENCE ID : 1

--

[PHYSICAL HEADER] TYPE(BITMAP_HEADER), FREENESS(FREE), LSN(100016),

TIMESTAMP(1408959438472006), PARENT RID(0,-1,0), SEGMENT ID(4294967296), MAX VIEW SCN(0),

AGABLE SCN(0), SELF ID(0,1)

--

0000 0400000004000000 B086010000000000 4643D5EE70010500 0000FFFF00000000

0020 0000000001000000 0000000000000000 0000000000000000 802A327800000000

0040

... Ellipsis ...

TABLESPACE ID : 2

DATAFILE ID : 0

PAGE SEQUENCE ID : 24580

--

[PHYSICAL HEADER] TYPE(EXT_MAP), FREENESS(FREE), LSN(24), TIMESTAMP(1408959441642963),

PARENT RID(0,-1,0), SEGMENT ID(0), MAX VIEW SCN(0), AGABLE SCN(0), SELF ID(2,24580)

--

0000 0300000004000000 1800000000000000 D3A505EF70010500 0000FFFF00000000

0020 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0040 0000000000000000 0000000000000000 0200000004600000 1E001E0000001E00

... Ellipsis ...

● It dumps header and body of page whose page number is bigger than the specified number in incre

mental backup.

○ The pages whose page number is bigger than 1,000 of all tablespaces in databaseD20140825T1

83902L0S0.inc are dumped as follows.

Examples of Using gdump | 3,489

$ gdump backup databaseD20140724T123414L0S0.inc --number 10000 --body all

INCREMENTAL FILE HEADER

--

OBJECT TYPE(DATABASE), TBS COUNT(3), BODY SIZE(62742528)

LSN: PREV(0), MAX (136976), CHKPT(136976)

CHKPT LID: File Seq No(0), Block Info1(877344), Block Info2(13)

--

INCREMENTAL FILE TAIL

--

TABLESPACE ID(000), BACKUP PAGE COUNT(05372), TABLESPACE OFFSET(8192)

TABLESPACE ID(001), BACKUP PAGE COUNT(02090), TABLESPACE OFFSET(44015616)

TABLESPACE ID(002), BACKUP PAGE COUNT(00197), TABLESPACE OFFSET(61136896)

TABLESPACE ID : 2

DATAFILE ID : 0

PAGE SEQUENCE ID : 16387

--

[PHYSICAL HEADER] TYPE(EXT_MAP), FREENESS(FREE), LSN(22), TIMESTAMP(1408959441642963),

PARENT RID(0,-1,0), SEGMENT ID(0), MAX VIEW SCN(0), AGABLE SCN(0), SELF ID(2,16387)

--

0000 0300000004000000 1600000000000000 D3A505EF70010500 0000FFFF00000000

0020 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0040 0000000000000000 0000000000000000 0200000003400000 0001000100000001

0060 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0080 0000000000000000 0000000000000000 0000000000000000 0000000000000000

... Ellipsis ...

TABLESPACE ID : 2

DATAFILE ID : 0

PAGE SEQUENCE ID : 24580

--

[PHYSICAL HEADER] TYPE(EXT_MAP), FREENESS(FREE), LSN(24), TIMESTAMP(1408959441642963),

PARENT RID(0,-1,0), SEGMENT ID(0), MAX VIEW SCN(0), AGABLE SCN(0), SELF ID(2,24580)

--

0000 0300000004000000 1800000000000000 D3A505EF70010500 0000FFFF00000000

0020 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0040 0000000000000000 0000000000000000 0200000004600000 1E001E0000001E00

0060 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0080 0000000000000000 0000000000000000 0000000000000000 0000000000000000

... The rest is omitted ...

● It dumps header and body of page for the specified number of the specified tablespace in incrementa

l backup.

3,490 | gdump

○ The page of number 1,000 in the tablespace of number 0 in database D20140825T183902L0S0.

inc is dumped as follows.

gdump backup databaseD20140825T183902L0S0.inc --tbs 0 --number 1000 --body all --fetch 1

--silent | more

INCREMENTAL FILE HEADER

--

OBJECT TYPE(DATABASE), TBS COUNT(3), BODY SIZE(62742528)

LSN: PREV(0), MAX (136976), CHKPT(136976)

CHKPT LID: File Seq No(0), Block Info1(877344), Block Info2(13)

--

INCREMENTAL FILE TAIL

--

TABLESPACE ID(000), BACKUP PAGE COUNT(05372), TABLESPACE OFFSET(8192)

TABLESPACE ID(001), BACKUP PAGE COUNT(02090), TABLESPACE OFFSET(44015616)

TABLESPACE ID(002), BACKUP PAGE COUNT(00197), TABLESPACE OFFSET(61136896)

TABLESPACE ID : 0

DATAFILE ID : 0

PAGE SEQUENCE ID : 1000

--

[PHYSICAL HEADER] TYPE(UNFORMAT), FREENESS(FREE), LSN(6307), TIMESTAMP(1408959438472006),

PARENT RID(0,-1,0), SEGMENT ID(0), MAX VIEW SCN(0), AGABLE SCN(0), SELF ID(0,1000)

--

0000 0100000004000000 A318000000000000 4643D5EE70010500 0000FFFF00000000

0020 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0040 0000000000000000 0000000000000000 00000000E8030000 0000000000000000

0060 0000000000000000 0000000000000000 0000000000000000 0000000000000000

... The rest is omitted ...

Property File

● PAGE_CHECKSUM_TYPE which is the one of the property is set by using gsql as follows.

gSQL> ALTER SYSTEM SET PAGE_CHECKSUM_TYPE = 1 SCOPE = BOTH;

System altered.

● The binary property file of GOLDILOCKS is dumped as follows.

Examples of Using gdump | 3,491

$ gdump property goldilocks.properties.binary

===

FILE: goldilocks.properties.binary

TYPE: PROPERTY-BINARY

TIME: 2014-08-29 12:45:13.853448

===

PAGE_CHECKSUM_TYPE = 1

===

TIME: 2014-08-29 12:45:13.853627

===

Commit Log

The commit log file is dumped as follows.

$ gdump commit_log commit.log

===

FILE: commit.log

TYPE: COMMIT LOG FILE

TIME: 2017-03-23 11:47:42.555368

===

===

[COMMIT LOG FILE HEADER]

FILE_SEQUENCE : 0

FILE_SIZE : 104857600

MAX_BLOCK_COUNT : 204800

SIGNATURE : 5DAABFECBDCD11E68785A3701A679D47

===

[BLOCK(0), LOG_COUNT(1)]

TRANS_ID(1.0.59899956), COMMIT_SCN(16603.645.17371), INDOUBT_BEHAVIOR(FORGET),

SYNC_GLOBAL_TABLE_SCN(TRUE), PREV_LOG_FILE_SEQ(-1), PREV_LOG_BLOCK_SEQ(-1),

PREV_LOG_SLOT_SEQ(-1)

3,492 | gdump

Log Buffer File

The log buffer file created after executing gsyncher is dumped as follows.

For more information, refer to gsyncher.

$ gdump log_buffer logbuffer.log

===

FILE: logbuffer.log

TYPE: LOG BUFFER FILE

TIME: 2017-03-23 11:10:12.787400

===

===

[LOG BUFFER FILE HEADER]

REAR_FILE_BLOCK_SEQ_NO : 203410

FRONT_FILE_BLOCK_SEQ_NO : 203410

REAR_SBSN : 797213

REAR_LSN : 375933

REAR_LID : (3, 3254496, 161)

FRONT_SBSN : 797212

FRONT_LSN : 375933

FILE_SEQ_NO : 3

BUFFER_SIZE : 10485760

BUFFER_BLOCK_COUNT : 20480

BLOCK_OFFSET : 13

GROUP_COMMIT_LSN : 336688

LOG_SWITCHING_SBSN : -1

===

Pending Log Buffer File

The pending log buffer file created after executing gsyncher is dumped as follows.

For more information, refer to gsyncher.

$ gdump pend_buffer pendbuffer.log

===

FILE: pendbuffer.log

TYPE: PEND BUFFER FILE

TIME: 2017-03-23 11:10:29.603646

Examples of Using gdump | 3,493

===

===

[PEND LOG BUFFER FILE HEADER]

PEND_LOG_BUFFER COUNT : 4

PEND_LOG_BUFFER NO. : 0

PEND_BUFFER_SIZE : 1048576

BUFFER_BLOCK_COUNT : 16384

FRONT_PBSN : 102

REAR_PBSN : 102

FRONT_LSN : -1

REAR_LSN : 327055

PEND_LOG_BUFFER NO. : 1

PEND_BUFFER_SIZE : 1048576

BUFFER_BLOCK_COUNT : 16384

FRONT_PBSN : 0

REAR_PBSN : 0

FRONT_LSN : -1

REAR_LSN : -1

PEND_LOG_BUFFER NO. : 2

PEND_BUFFER_SIZE : 1048576

BUFFER_BLOCK_COUNT : 16384

FRONT_PBSN : 0

REAR_PBSN : 0

FRONT_LSN : -1

REAR_LSN : -1

PEND_LOG_BUFFER NO. : 3

PEND_BUFFER_SIZE : 1048576

BUFFER_BLOCK_COUNT : 16384

FRONT_PBSN : 0

REAR_PBSN : 0

FRONT_LSN : -1

REAR_LSN : -1

===

tablediff

36.

3,495

3,496 | tablediff

36.1 Overview of tablediff

Background

The GOLDILOCKS system operator should prepare for the unexpected failure of GOLDILOCKS synchroniz

ation of two tables using the tools such as cyclone or LogMirror. An unexpected failure of synchronizatio

n refers that a particular row exists only in one table or the column values of rows to be synchronized are

different from each other. Cyclone and LogMirror do not notify a user whether synchronization is failed. I

t is required to verify the synchronization of the table and to perform synchronization, if necessary, at non

-operation time.

Features

tablediff is a tool comparing two tables of GOLDILOCKS which was synchronized by using CDC in a row u

nit. It reports when a particular row exists only in a table or values are different each other, then performs

synchronization. The configuration file for controlling various operations is input, and the log files to repo

rt the unsynchronized rows and the synchronization results are output.

The constraints are that the schemas of two tables should be same and each of them should have the pri

mary key. It is not recommended to perform the tool for table of the currently executing transaction beca

use the table can be updated in real time. However, it does not matter for the currently executing queryin

g (SELECT statement). This tool is available only for the GOLDILOCKS tables.

This tool has two executing commands, which are TableDiff and TableSync.

TableDiff

java sunje.goldilocks.tool.diff.TableDiff [configure file]

TableDiff program verifies whether two tables are unsynchronized, and it may output the information(bin

ary file) to perform synchronization for unsynchronized rows immediately or at a later time according to a

n option. The immediate synchronization can be operated for multiple threads.

TableSync

java sunje.goldilocks.tool.diff.TableSync [configure file]

Overview of tablediff | 3,497

Tablesync program performs synchronization by using the sync information which was previously left by T

ableDiff. (Row comparison is not performed.) A simultaneous execution can be performed by driving mul

ti threads.

Note

Unsynchronized rows of two tables to which the configure file is not applied are stored in a bin fil

e left by TableDiff. TableSync uses this bin file to forcibly synchronize two tables.

Characteristics

This tool is a java application and it is provided in a jar file form, so Java(1.6) is required to execute the to

ol. Also, goldilocks6.jar is required because GOLDILOCKS JDBC driver is used. It can be remotely performe

d because it is connected to GOLDILOCKS by using TCP/ IP, and it is performed at much faster rate than u

sing JDBC, ODBC with the proprietary protocol.

The row comparison and synchronization can be simultaneously performed with multi threads. For multit

hreading of the row comparison, equal dividing of the range of the key in the table should be manually p

erformed. When the user splits the key range into ten ranges (The user can specify it in the configuration

file), then ten threads compare the tables. On the other hand, the synchronization operation is performe

d by threads of as many as it is specified.

File Configuration

tablediff program consists of a single file called as $GOLDILOCKS_HOME/bin/tablediff.jar. $GOLDILOCKS

_HOME/lib/goldilocks6.jar file is also required for execution. Also, the configuration file is required as an i

nput argument, and refer to the sample file, $GOLDILOCKS_HOME/conf/tablediff.conf.

3,498 | tablediff

36.2 Usage

Command Usage

Java (JRE 1.6 or JDK1.6) is required because tablediff is a java program. For this, tablediff.jar and goldiloc

ks6.jar files should be included in CLASSPATH, or they should be specified with -classpath option of java.

tablediff is executed as follows.

export

CLASSPATH=$CLASSPATH:$GOLDILOCKS_HOME/bin/tablediff.jar:$GOLDILOCKS_HOME/lib/goldilocks6.jar

java sunje.goldilocks.tool.diff.TableDiff [configure file]

Or

java -classpath $GOLDILOCKS_HOME/bin/tablediff.jar:$GOLDILOCKS_HOME/lib/goldilocks6.jar

sunje.goldilocks.tool.diff.TableDiff [configure file]

The result of executing TableDiff for the simple sample table is as follows.

gSQL> create table tab1 (c1 integer primary key, c2 char(10));

gSQL> create table tab2 (c1 integer primary key, c2 char(10));

gSQL> insert into tab1 values (1, 'HELLO');

gSQL> insert into tab2 values (1, 'HELLO');

gSQL> insert into tab1 values (2, 'WORLD');

gSQL> insert into tab2 values (2, 'world');

gSQL> insert into tab1 values (3, 'good');

gSQL> insert into tab2 values (4, 'good');

gSQL> commit;

shell> java sunje.goldilocks.tool.diff.TableDiff tablediff.conf

Total 4 rows processed

> row diff : 1, update target(success/failure): 1/0

> key diff source only: 1, insert into target(success/failure): 1/0

> key diff target only: 1, delete from target(success/failure): 1/0

TableDiff completed

elapsed time = 0.229 sec

● The contents of tablediff.conf

Usage | 3,499

SOURCE_URL = jdbc:goldilocks://127.0.0.1:22581/test

SOURCE_USER = TEST

SOURCE_PASSWORD = test

SOURCE_SCHEMA = PUBLIC

SOURCE_TABLE = TAB1

TARGET_URL = jdbc:goldilocks://127.0.0.1:22581/test

TARGET_USER = TEST

TARGET_PASSWORD = test

TARGET_SCHEMA = PUBLIC

TARGET_TABLE = TAB2

OPERATION = SYNC

TARGET_INSERT = ON

TARGET_UPDATE = ON

TARGET_DELETE = ON

SOURCE_INSERT = OFF

Property Option

This chapter describes the available property options in the configuration file of tablediff.

Property Options for SOURCE, TARGET Tables

These property options should necessarily be specified and they define the source and target tables. The s

ource and target refer to table to be compared each.

● SOURCE_URL: It is JDBC connection URL of GOLDILOCKS in which the source table exists.

● SOURCE_USER: It is the user account of GOLDILOCKS in which the source table exists.

● SOURCE_PASSWORD: It is the password of GOLDILOCKS in which the source table exists.

● SOURCE_SCHEMA: It is the schema of source table.

● SOURCE_TABLE: It is the name of source table.

● TARGET_URL: It is JDBC connection URL of GOLDILOCKS in which the target table exists.

● TARGET_USER: It is the user account of GOLDILOCKS in which the target table exists.

● TARGET_PASSWORD: It is the password of GOLDILOCKS in which the target table exists.

● TARGET_SCHEMA: It is the schema of target table.

● TARGET_TABLE: It is the name of target table.

The following is an example.

3,500 | tablediff

SOURCE_URL = jdbc:goldilocks://192.168.0.100:22581/test

SOURCE_USER = TEST

SOURCE_PASSWORD = test

SOURCE_SCHEMA = PUBLIC

SOURCE_TABLE = T1

TARGET_URL = jdbc:goldilocks://192.168.0.101:22581/test

TARGET_USER = TEST

TARGET_PASSWORD = test

TARGET_SCHEMA = PUBLIC

TARGET_TABLE = T2

Operation

It determines the operations of TableDiff. The DIFF property verifies only the synchronization integrity and

reports it, but the SYNC property verifies the integrity and simultaneously performs synchronization.

The integrity result file(whose file name is specified as DIFF_BIN_ FILE property) is generated when operati

ng with DIFF and it is used to execute TableSync.

Synchronization Policy

Four properties are used for controlling the synchronization policy and all of them have the value of eithe

r ON or OFF.

● TARGET_INSERT: If the key in the source does not exist in the target, it inserts the key into the target.

● TARGET_UPDATE: If the value of the column which is not a key is different, it updates the target row.

● TARGET_DELETE: If the key does not exist in the source but exists in the target, it deletes the target r

ow.

● SOURCE_INSERT: If the key does not exist in the source but exists in the target, it inserts that row int

o the source.

Note

Both TARGET_DELETE and SOURCE_INSERT are not allowed to be ON together.

EXCLUDED_COLUMNS

It specifies the columns to be excluded from the comparison. The comma (,) is used as a delimiter and th

e column name should be specified. The key columns can not be excluded.

Usage | 3,501

WHERE_CLAUSE

It sets the conditions for comparing rows in the table. For example, the condition, WHERE_CLAUSE = SAL

ARY> = 1000000, refers that the integrity is verified only for the rows having the values of their column s

alary equal to or bigger than 1,000,000.

DISPLAY_ROW_UNIT

TableDiff program displays the progress status of table comparison, and it outputs to the console the nu

mber of rows processed each time whenever it processes a certain number of rows. The property sets the

number of rows to be output. the default value is 100,000, and it can be omitted.

SYNC_OUT_FILE

It specifies the name of the file in which the synchronization result is to be recorded. If not specified, the r

esult is recorded in tablesync.log. If multiple synchronized threads exist, a number is added at the end of t

he file name.

DIFF_OUT_FILE

It specifies the name of the file in which the row mismatch result is to be recorded. If not specified, the re

sult is recorded in tablesync.log. This file is in a text form which is human-readable.

DIFF_BIN_FILE

If the operation property is set to DIFF, TableDiff records the synchronization information in a file with a n

ame specified by this property. This file is used as an input argument by TableSync.

PROPAGATE_REDO_LOG

It determines whether to propagate the row synchronization log to another replicated server. The default

value is OFF.

LOGGING_ON_SUCCESS

It sets whether to record logs even when DML(INSERT, UPDATE, DELETE) used for the row synchronizatio

n is successful. The default value is OFF. If it is OFF, then the synchronization performance becomes poor.

If DML is failed, the logging information is recorded regardless of this property.

3,502 | tablediff

LOGGING_ON_DIFF

It sets whether to record logs when the mismatch occurs during comparing the row integrity. The default

value is OFF.

JOB_QUEUE_SIZE

The row synchronization is performed by the operating thread. The threads perform the synchronization

by getting the operation from the JOB QUEUE one by one. The main thread of TableDiff or TableSync ins

erts the operation to JOB QUEUE. JOB QUEUE becomes full if the thread slowly performs synchronization.

JOB_QUEUE_SIZE property sets the size of JOB QUEUE. If this value is big, JOB QUEUE never becomes full

but it wastes a lot of memory. The default value is 100, and 100 is big enough to use without filling of th

e queue.

The property is recommended not to change unless it is needed.

JOB_THREAD

It sets the number of threads for synchronization. If not set, the default value is 1. If there are multiple ro

ws to be synchronized, the value should be set considering the number of CPU. The bigger the value, the

faster the synchronization is performed.

JOB_UNIT_SIZE

The synchronization is performed in batch as much as the size specified by the property. The default value

is 100.

DISPLAY_CALL_STACK

It sets whether to display call stack when an error occurs. The default value is OFF.

Replication Settings for Table Comparison

The row comparison of TableDiff is performed by a single thread by default. But multiple threads can perf

orm comparisons by specifying the condition clause. The property name is PARTITION_RANGE[n], and if t

he range for N properties is set such as the WHERE clause, n threads perform the comparison each.

For example, the following properties are specified for each of 12 threads to perform the comparison wh

en the table includes the monthly data.

PARTITION_RANGE1 = MONTH=1

PARTITION_RANGE2 = MONTH=2

Usage | 3,503

PARTITION_RANGE3 = MONTH=3

PARTITION_RANGE4 = MONTH=4

PARTITION_RANGE5 = MONTH=5

PARTITION_RANGE6 = MONTH=6

PARTITION_RANGE7 = MONTH=7

PARTITION_RANGE8 = MONTH=8

PARTITION_RANGE9 = MONTH=9

PARTITION_RANGE10 = MONTH=10

PARTITION_RANGE11 = MONTH=11

PARTITION_RANGE12 = MONTH=12

All conditions should be disjointed, and the union of all conditions should be as same as the total set. Als

o, the column used in the condition should the front part of the primary key. (It means that the specified

condition should be able to use the primary index.)

This property is applied only to TableDiff, and TableSync ignores this property.

gsyncher

37.

3,505

3,506 | gsyncher

37.1 Overview of gsyncher

Definition

gsyncher is a utility provided by GOLDILOCKS, and which synchronizes the log of shared memory and the

logfile of disk.

When the server is abnormally terminated, gsyncher synchronizes the latest log of shared memory and th

e logfile, then records it.

Features

● gsyncher can not be executed during the server operation.

● The STARTUP stage of the server in which gsyncher can be executed is OPEN phase.

● When executing gsyncher, all other applications of the shared memory should be terminated.

● During gsyncher execution, the logfile can be switched and in this case, the controlfile is generated.

● gsyncher backups the controlfile and logfile in which the logs are reflected, in advance.

● gsyncher can be executed after restoring the damaged controlfile.

Usage

gsyncher [options]

Options

-l --log Log trace msg

-s --silent Do not print message

-f --home home directory

-c --copy-right Do not print copy right

-b --backup-path Backup directory

-h --help Print help message

Examples | 3,507

37.2 Examples

● Example 1: gsyncher is executed during the server is normally operating.

$ gsyncher -l

[SHARED MEM] Attached to shm - Name(_STATIC), Key(21128)

[SHARED MEM] Detached from shm.

ERR-HY000(53002): gmaster is active

● Example 2: The server is not on the STARTUP stage on which gsyncher can be executed.

$ gsyncher -l

[SHARED MEM] Attached to shm - Name(_STATIC), Key(21128)

[SHARED MEM] Detached from shm.

ERR-HY000(53000): invalid phase(MOUNT): executable phase is OPEN

● Example 3: When executing gsyncher, the progress is displayed. The execution result is total buffer (0

) bytes, and all logs are flushed to the logfile, so there is not a log to be synchronized.

$ gsyncher --log

[SHARED MEM] Attached to shm - Name(_STATIC), Key(21128)

[CLEAR PROCESS] Process 'gbalancer' is cleared.

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[FLUSH] Log buffer flushed - Log group from id (0) to (0), lsn from (130784) to (130784),

total buffer (0) bytes

[SHARED MEM] Detached from shm.

[FINI] Log sync complete.

○ gsyncher operations are recorded in logfile by using --log option.

3,508 | gsyncher

$ cat $GOLDILOCKS_DATA/trc/gsyncher.trc

===

gsyncher start

TIME : 2015-08-05 16:12:15.776633

===

[2015-08-05 16:12:15.776763 THREAD(29199,139846497756928)]

[INIT] Log started.

[2015-08-05 16:12:15.777113 THREAD(29199,139846497756928)]

[SHARED MEM] Attached to shm - Name(_STATIC), Key(21128)

[2015-08-05 16:12:15.777208 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gbalancer' is cleared.

[2015-08-05 16:12:15.777297 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[2015-08-05 16:12:15.777358 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[2015-08-05 16:12:15.777416 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.777917 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.777993 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778051 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778107 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778577 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778652 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778710 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778766 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.778822 THREAD(29199,139846497756928)]

[CLEAR PROCESS] Process 'gserver' is cleared.

[2015-08-05 16:12:15.818007 THREAD(29199,139846497756928)]

[SHARED MEM] Detached from shm.

[2015-08-05 16:12:15.818100 THREAD(29199,139846497756928)]

[FINI] Log sync complete.

● Example 4: The logs from lsn 130786 to lsn 131012 are flushed to the log group 1.

Examples | 3,509

$ gsyncher -l

[SHARED MEM] Attached to shm - Name(_STATIC), Key(21128)

[CLEAR PROCESS] Process 'gsql' is cleared.

[CLEAR PROCESS] Process 'gbalancer' is cleared.

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[FLUSH] Log buffer flushed - Log group from id (1) to (1), lsn from (130786) to (131012),

total buffer (84480) bytes

[SHARED MEM] Detached from shm.

[FINI] Log sync complete.

● Example 5: If the logfile switch occurs during gsyncher operation, it is reflected in the controlfile.

$ gsyncher -l

[SHARED MEM] Attached to shm - Name(_STATIC), Key(21128)

[CLEAR PROCESS] Process 'gsql' is cleared.

[CLEAR PROCESS] Process 'gbalancer' is cleared.

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[CLEAR PROCESS] Process 'gdispatcher' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gserver' is cleared.

[CLEAR PROCESS] Process 'gsql' is cleared.

[CLEAR PROCESS] Process 'gsql' is cleared.

3,510 | gsyncher

[FLUSH] Log buffer flushed - Log group from id (2) to (3), lsn from (156412) to (178129),

total buffer (16644096) bytes

[CONTROLFILE] Saving controlfile caused by logfile switching.

[CONTROLFILE] '/media/solid/ssd_home/work/product/Gliese/home/wal/control_0.ctl' control file

is saved.

[CONTROLFILE] '/media/solid/ssd_home/work/product/Gliese/home/wal/control_1.ctl' control file

is saved.

[SHARED MEM] Detached from shm.

[FINI] Log sync complete.

gmon

38.

3,511

3,512 | gmon

38.1 Overview of gmon

Definition

gmon is a database (gmaster) process monitoring utility provided by GOLDILOCKS.

Features

gmon monitors whether database process (gmaster) is operated, and when the process is abnormally ter

minated, not by user's SHUTDOWN, then it executes gsyncher and terminates the process. It intends to re

duce the loss of logs by executing gsyncher.

gmon can be set to be automatically operated by setting the server property GMON_AUTOSTART to 1, or

a user can directly executes gmon.

Note

A single gmaster process can monitor only one gmon process.

Usage

gmon [options]

Options

-s --start Start gmon

-t --stop Stop gmon

-u --status Get gmon status

-o --home gmaster home path

-l --silent Suppress display message

-r --no-copyright Suppress display copy right and version

-h --help Print help messages

Examples | 3,513

38.2 Examples

● Example 1: Execute gmon by using the default path ($GOLDILOCKS_DATA).

$ gmon --start

gmon is started.

● Example 2: Execute gmon by specifying home path. When a relative path is used, home path is specif

ied based on $GOLDILOCKS_DATA.

$ gmon --start --home g1n1_home

gmon is started.

● Example 3: Execute gmon by specifying home path as an absolute path. When an absolute path is us

ed, the specified path is specified as a home path.

$ gmon --start --home /g1n1_home

gmon is started.

● Example 4: Check the status of gmon process.

$ gmon --status --home /g1n1_home

gmon is running(19119).

● Example 5: Terminate the gmon process.

$ gmon --stop --home /g1n1_home

gmon is stopped.

gtrclogger

39.

3,515

3,516 | gtrclogger

39.1 Overview of gtrclogger

Definition

gtrclogger is a utility remotely collecting logs of GOLDILOCKS.

GOLDILOCKS basically records events and trace logs which occur in a server, in system.trc file of the speci

fied directory of SYSTEM_LOGGER_DIR of property. (The default value is $GOLDILOCKS_DATA/trc)

If multiple different instances are being operated, trace logs occur in each server should be separately mo

nitored. For that, gtrclogger makes trace logs of each different GOLDILOCKS instances to be collected in

a single spot. gtrclogger receives trace logs of various GOLDILOCKS being operated in a different device

with udp, and stores them in a file.

gtrclogger receives trace logs from the remote GOLDILOCKS and records them in a file. For that, the rem

ote GOLDILOCKS should have the following transfer properties.

● TRACE_LOGGER

● TRACE_LOGGER_REMOTE_HOST

● TRACE_LOGGER_REMOTE_PORT

Features

● gtrclogger can be operated regardless of server operation.

● Even when it receives trace logs from various servers, it sequentially stores them in a file.

● A trace log is basically stored as $(GOLDILOCKS_DATA)/trc/system.rmt.trc.

● If system.rmt.trc is bigger than 10M bytes , it is backuped as system.rmt.trc_date_Index.

Usage

gtrclogger [options]

Overview of gtrclogger | 3,517

Options

-s --start start gtrclogger

-q --stop stop gtrclogger

-p --port udp port for receive log (1024 ~ 49151): default 21470

-d --dir write file directory: default $(GOLDILOCKS_DATA)/system.rmt.trc

-h --help show gtrclogger help messages

3,518 | gtrclogger

39.2 Examples

● Example 1: Execute gtrclogger by using the default port (21470) and the default directory($GOLDILO

CKS_DATA/trc).

$ gtrclogger --start

gtrclogger is started successfully.

● Example 2: Receive a trace log with two ports (21471, 21472) and set the directory as $GOLDILOCKS

_DATA/rmt_trc, then execute gtrclogger.

$ gtrclogger -s -p 21471 -p 21472 -d $GOLDILOCKS_HOME/rmt_trc

ERR-HY000(11040): No such object

(/home/lym1/workspace/product/Gliese/home/rmt_trc/system.rmt.trc)

$ mkdir $GOLDILOCKS_HOME/rmt_trc

$ gtrclogger -s -p 21471 -p 21472 -d $GOLDILOCKS_HOME/rmt_trc

gtrclogger is started successfully.

● Example 3: Terminate gtrclogger.

$ gtrclogger -q

Stop Done.

glocator

40.

3,519

3,520 | glocator

40.1 Overview of glocator

Definition

glocator is a utility which provides locations to a client and manages them in GOLDILOCKS cluster system.

The location information of cluster member nodes is provided to the glocator program through gloctl an

d gagent.

glocator communicates with client and inner process by using a User Datagram Protocol (UDP).

Note

The location information used by glocator is different from the location used by a cluster member

node. glocator requires a host, a listener port, a db home path, an agent port of a member node.

glocator should be executed ahead of gagent to receive these location information from gagent,

or glocator should receive it through gloctl.

Usage

glocator [options]

Options

help

Description

It outputs a help message.

Example

$ glocator --help

Usage:

glocator [options]

Options:

Overview of glocator | 3,521

-c --create Create glocator environment

-s --start Start glocator

-t --stop Stop glocator

-f --conf Set configure file

-u --status Get glocator status

-l --silent Suppress display message

-r --no-copyright Suppress display copy right and version

-h --help Print help message

create

Description

It creates the data file of glocator.

Example

$ glocator --create

glocator is created.

Note

The data file of glocator is created in <GOLDILOCKS_DATA>/db directory.

$ ls

README glocator.dat system_data.dbf system_dict.dbf system_undo.dbf

start

Description

It starts glocator. If glocator having the same port already has started, then an error occurs.

Example

$ glocator --start

glocator is started.

3,522 | glocator

stop

Description

It stops glocator which is in operation. The same port should be set to stop glocator in operation.

Example

$ glocator --stop

glocator is stopped.

conf

Description

It sets the configure file when starting glocator.

Example

$ glocator --start --conf goldilocks.glocator.conf

glocator is started.

status

Description

It outputs the status message of glocator which is in operation. The same port should be set to check the

status of glocator in operation.

Example

$ glocator --status

Process ID: 26058

Configuration file: goldilocks.glocator.conf

Unix domain path: /tmp/unix-glocator.42581

Udp listen host: 0.0.0.0, Port: 42581

glocator is running.

Overview of glocator | 3,523

sync

Description

It synchronizes the data of glocator set in ALTERNATE_LOCATORS before driving glocator.

There are two methods for the data synchronization, whichare SOURCE and BOTH. SOURCE method brin

gs data from ALTERNATE_LOCATORS, and BOTH method merges two glocators.

Example

The following is an example of success of a sync option.

$ glocator --start --sync

glocator is started.

The following is an example of failure of a sync option. The value is not set in ALTERNATE_LOCATORS pr

operty.

$ glocator --start --sync

ERR-HY000(60016): Need more alternate locator host information.

The following is an example of failure of a sync option. glocator set in ALTERNATE_LOCATORS property d

oes not response.

$ glocator --start --sync

ERR-HY000(60016): Need more alternate locator host information.

silent

Description

It does not output the message of glocator about the execution.

Example

$ glocator --start --silent

no-copyright

3,524 | glocator

Description

It does not output the message of glocator's copyright and version about the execution.

Example

$ glocator --start --no-copyright

glocator is started.

Using glocator | 3,525

40.2 Using glocator

Data File

glocator data file should be created before starting glocator.

$ glocator --create

glocator is created.

The directory in which glocator data file is stored can be altered by editing configuration LOCATION_FILE

_DIR. The default value is created in <GOLDILOCKS_DATA>/db. The data file can be altered by editing LO

CATION_FILE_NAME. The default value is glocator.dat.

The maximum size and initial size of glocator data file can be altered by editing configuration LOCATION

_FILE_MAX_SIZEand LOCATION_FILE_SIZE.

CSTARTUP and CSHUTDOWN

glocator can be used to CSTARTUP and CSHUTDOWN the GOLDILOCKS server.

For that, glocator should be in operation, and CSTARTUP or CSHUTDOWN should be executed through g

sqlnet.

However, LOCATOR_DSN and the property should be set in odbc.ini of the device which executes gsqlnet.

For more information, refer to GOLDILOCKS UNIX ODBC driver libraries.

The following contents is set in odbc.ini to use glocator.

[GOLDILOCKS]

HOST=127.0.0.1

PORT=20101

UID=sys

PWD=gliese

LOCATOR_DSN=GLOCATOR

[GLOCATOR]

HOST=127.0.0.1

PORT=42581

3,526 | glocator

Note

If FILE property exists in DSN [GLOCATOR], then the file specified in FILE property takes precedenc

e instead of using glocator. Therefore, FILE property should be excluded.

glocator should know the location information of member nodes to execute CSTARTUP and CSHUTDOW

N.

Replication

Overview

glocator replication keeps data consistent, so it enables the stable service through the remote glocator w

hen an error occurs.

Configuration

Each glocator should set ALTERNATE_LOCATORS property in a configure file to use the replication featur

e. Locator_name should be set in ALTERNATE_LOCATORS property and the specified Locator_name shou

ld be set in a configure file together with HOST, PORT properties.

The following is how to set ALTERNATE_LOCATORS property.

[LOCATOR]

ALTERNATE_LOCATORS = (locator_name1,locator_name2)

[locator_name1]

HOST= ip_address

PORT = port_num

[locator_name2]

HOST= ip_address

PORT = port_num

The following is an example of a configure file which sets ALTERNATE_LOCATORS property.

[LOCATOR]

PORT=42581

SYNC_RESPONSE_TIMEOUT = 2

SYNC_RETRY_COUNT = 2

LOCATION_FILE_NAME='glocator_1.dat'

Using glocator | 3,527

ALTERNATE_LOCATORS=(LOCATOR_2,LOCATOR_3)

[LOCATOR_2]

HOST=127.0.0.1

PORT=42582

[LOCATOR_3]

HOST=127.0.0.1

PORT=42583

Note

● [LOCATOR] is DSN which is read as default by glocator.

● For more information about glocator-related ODBC and how to set gagent, refer to odbc.ini

File, ALTERNATE_LOCATORS.

Synchronizing Data

The data should be consistent when the replicated glocator is in service. If glocator in operation does not

exist, then all glocator can perform the normal start. If glocator in operation exists, an alternate glocator

can be started by synchronizing the data using a sync option.

sync option has BOTH and SOURCE. BOTH merges glocator's own data and alternate glocator's data. SO

URCE brings the data from the counterpart glocator. The sync operation of glocator is 1 : 1 corresponden

ce task between a glocator and an alternate glocator. Therefore, if A and B are already being operated, a

nd C is operated after syncing by using BOTH for the replication of three (A, B, C) glocators, then the dat

a of A and B glocators may be different.

glocator in service synchronizes only the updated content. If the data synchronization fails due to the pac

ket loss or other reasons, then the data may be different. In this case, update the data within that glocato

r by using gloctl program, or restart glocator with sync option.

3,528 | glocator

40.3 Features of glocator

Connection Service

It provides a service feature which enables arbitrarily access any node among user-defined nodes even th

ough the location information of a specific node in a cluster environment is unknown.

The service feature is that a user specifies nodes managed by glocator an arbitrary group. This service can

be registered by using gloctl program. Service lists managed by glocator can also be viewed by using gloc

tl program.

An application should be accessed by using ODBC driver, and LOCATOR_DSN and LOCATOR_SERVICE pr

operty should be specified in odbc.ini file.

Figure 1 locator_service

The figure above describes that an application accesses to g1n1 belonging to service s3. The connecting s

equence of ODBC driver by using the service is as same as the sequence of node registered in the service.

If ODBC driver fails to connect to g1n1 in the example above, it will try to connect to the next node g2n1.

Features of glocator | 3,529

Note

To use the service feature, the valid location information of a node should be input in glocator in

advance.

Cluster Failover

glocator is helpful when a server proceeds the failover.

When the value of server property CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY is set to 1 or 2, and con

nection between nodes is disconnected in a cluster environment, a failover occurs, then each node proce

eds the cluster failover and queries its viability to glocator through gagent.

The glocator which received a query decides the viability between two nodes which were disconnected, a

nd transfer the result to each node through gagent.

Nodes received the viabilty results are terminated or proceeds the failover.

3,530 | glocator

40.4 glocator Configuration

Configuration File and Environment Variable

glocator can use a file or environment variable to set the configuration.

An environment variable can be set by using the name of which 'LOCATOR_' is added as a prefix to a con

figuration property name. For example, setting HOST in the configuration file has the same effect as speci

fying $LOCATOR_HOST.

The contents of a configuration file takes precedence over the environment variable setting values.

glocator reads the configuration file by reading DSN as the default value of [LOCATOR].

glocator has $GOLDILOCKS_DATA/conf/goldilocks.glocator.conf file as its environment file. To alter the d

riving environment of glocator, the file contents should be altered, or glocator should start after setting t

he environment variables.

Configuration Properties

HOST

Item Description

Name HOST

Description It is an IP address of which glocator binds.

Data type ip address (ip v4)

Default value/ range 0.0.0.0

It is an IP address of which glocator binds for UDP communication.

It uses an IP address in IP v4 form.

PORT

Item Description

Name PORT

Description It is a port of which glocator waits for Recv.

Data type INT

Default value/ range 42581 / 1024~49151

glocator Configuration | 3,531

It is a port of which glocator receives a packet through UDP communication.

The port from 1024 to 49151 can be used.

WORKER_COUNT

Item Description

Name WORKER_COUNT

Description It is the number of threads processing a job.

Data type INT

Default value/ range 1 / 1~8

It is the number of threads processing packets of which glocator received from a client or an internal proc

ess.

SESSION_QUEUE_SIZE

Item Description

Name SESSION_QUEUE_SIZE

Description It is the queue size in which received packets are stored before processing them.

Data type INT

Default value/ range 33554432 / 10485760~2147483648

It is the size of queue of which glocator stores packets received from a client or or an internal process bef

ore processing them.

Packets are stored as an item of a session unit in a queue.

SESSION_ALLOCATOR_SIZE

Item Description

Name SESSION_ALLOCATOR_SIZE

Description It is the size of an allocator which allocates an item to be stored in a session queue.

Data type INT

Default value/ range 33554432 / 10485760~2147483648

It is the size of an allocator which is used to allocate an item (session) to be stored in a session queue.

3,532 | glocator

PACKET_ALLOCATOR_SIZE

Item Description

Name PACKET_ALLOCATOR_SIZE

Description
It is the size of an allocator which allocates a packet when receiving packets through UDP c

ommunication.

Data type INT

Default value/ range 33554432 / 10485760~2147483648

It is the size of an allocator for a buffer which is allocated for glocator to receive packets.

SYSTEM_LOGGER_DIR

Item Description

Name SYSTEM_LOGGER_DIR

Description It is the directory path of glocator trace log file.

Data type String

Default value/ range '<GOLDILOCKS_DATA>/trc'

It is the directory path in which system trace log file of glocator is stored. <GOLDILOCKS_DATA> of the de

fault value is replaced with the environment variable value of $GOLDILOCKS_DATA.

SYSTEM_UDS_DIR

Item Description

Name SYSTEM_UDS_DIR

Description It is the directory path in which unix domain socket file used in glocator is stored.

Data type String

Default value/ range '/tmp' / maximum 60 byte

It sets the directory path in which the unix domain socket file used in glocator is stored. The maximum le

ngth of the directory should be set within 60 bytes.

LOCATION_FILE_DIR

Item Description

Name LOCATION_FILE_DIR

Description It is the directory path in which the location file used in glocator is stored.

Data type String

glocator Configuration | 3,533

Default value/ range '<GOLDILOCKS_DATA>/db'

Item Description

It sets the directory path in which the location file used in glocator is stored.

LOCATION_FILE_NAME

Item Description

Name LOCATION_FILE_NAME

Description It is the name of a location file which is used in glocator.

Data type String

Default value/ range 'glocator.dat'

It sets the name of a location file which is used in glocator.

The default value is glocator.dat.

LOCATION_FILE_SIZE

Item Description

Name LOCATION_FILE_SIZE

Description It is the initial size of a location file.

Data type Int

Default value/ range 1048576 / 104576~2147483648

It sets the initial size of a location file used in glocator.

LOCATION_FILE_MAX_SIZE

Item Description

Name LOCATION_FILE_MAX_SIZE

Description It is the maximum size of a location file.

Data type Int

Default value/ range 10485760 / 104576~2147483648

It sets the maximum size of a location file used in glocator.

3,534 | glocator

SESSION_TIMEOUT

Item Description

Name SESSION_TIMEOUT

Description It sets the maximum time for glocator to wait to receive packets.

Data type Int

Default value/ range 100 / 0 ~2147483648(단위 Second)

It sets the maximum time (seconds) for glocator to wait to receive packets. Packets exceeds the maximu

m time without being processed, are dumped.

FAILOVER_TIMEOUT

Item Description

Name FAILOVER_TIMEOUT

Description It sets the maximum time for glocator to process the failover request.

Data type Int

Default value/ range 18 / 0 ~2147483648

It sets the maximum time for glocator to wait for packets while processing the failover request. If the tim

e is over, then it returns an error to gagent which requested.

ALTERNATE_LOCATORS

Item Description

Name ALTERNATE_LOCATORS

Description It sets an alternate locator and replication of glocator.

Data type String

Default value/ range empty / 0 ~ 1024 bytes

It sets Replication of glocator.

SYNC_RETRY_COUNT

Item Description

Name SYNC_RETRY_COUNT

Description
It sets the number of retry when glocator fails to synchronize with an alternate l

ocator.

Data type Int

glocator Configuration | 3,535

Default value/ range 1 / 0 ~ 5

Item Description

It sets the number of redelivery of glocator synchronization.

glocator transfers the altered data to alternate locator when the data is altered, and it transfers the data

again when it could not get any response.

SYNC_RESPONSE_TIMEOUT

Item Description

Name SYNC_RESPONSE_TIMEOUT

Description It sets the time waits for the response for the synchronization of glocator.

Data type Int

Default value/ range 5 / 1 ~ 20

It sets the time waits for the response for the synchronization data transferred from glocator.

gagent

41.

3,537

3,538 | gagent

41.1 Overview of gagent

Definition

gagent is a utility communicating with glocator by being executed with each member node in GOLDILO

CKS cluster system.

Note

gagent can provide location information of a local node to glocator. For the consistency of locatio

n information, glocator should be executed ahead of gagent.

Usage

gagent [options]

Options

help

Description

It outputs the help message.

Example

$ gagent --help

Usage:

gagent [options]

Options:

-s --start Start gagent

-t --stop Stop gagent

-u --status Get gagent status

-f --conf Set configure file

Overview of gagent | 3,539

-o --home gmaster home path

-l --silent Suppress display message

-r --no-copyright Suppress display copy right and version

-h --help Print help message

start

Description

It starts gagent. If gagent having the same home directory already has been started, then an error occurs.

Example

$ gagent --start

gagent is started.

stop

Description

It stops gagent which is in operation. The same home directory should be set to stop gagent in operation.

Example

$ gagent --stop

gagent is stopped.

status

Description

It outputs the status message of gagent which is in operation. The same home directory should be set to

check the status of gagent in operation.

Example

$ gagent --status

gagent(31938) is running.

3,540 | gagent

conf

Description

It sets the configure file when starting gagent.

Example

$ gagent --start --conf goldilocks.gagent.conf

gagent is started.

home

Description

It sets the server home directory of GOLDILOCKS when starting gagent.

When a relative path is used, it searchs for the home directory based on <GOLDILOCKS_DATA>.

<GOLDILOCKS_DATA> is replaced with the environment variable value of $GOLDILOCKS_DATA.

Example

$ gagent --start --home g1n1_home --conf goldilocks.gagent.conf

gagent is started.

In the example above, gagent is started by setting <GOLDILOCKS_DATA>/g1n1_home to home.

silent

Description

It does not output the message of gagent about the execution.

Example

$ gagent --start --silent

no-copyright

Overview of gagent | 3,541

Description

It does not output the message of gagent's copyright and version about the execution.

Example

$ gagent --start --no-copyright

gagent is started.

3,542 | gagent

41.2 gagent Configuration

Configuration File and Environment Variable

gagent can use a file or environment variable to set the configuration.

An environment variable can be set by using the name of which 'AGENT_' is added as a prefix to a config

uration property name. For example, setting HOST in the configuration file has the same effect as specifyi

ng $AGENT_HOST.

The contents of a configuration file takes precedence over the environment variable setting values.

gagent has $GOLDILOCKS_DATA/conf/goldilocks.gagent.conf file as its environment file. To alter the driv

ing environment of gagent, the file contents should be altered, or gagent should start after setting the en

vironment variables.

Configuration Properties

HOST

Item Description

Name HOST

Description It is an IP address of which gagent binds.

Data type ip address (ip v4)

Default value/ range 0.0.0.0

It is an IP address of which gagent binds for UDP communication.

It uses an IP address in IP v4 form.

PORT

Item Description

Name PORT

Description It is a port of which gagent waits for Recv.

Data type INT

Default value/ range 43581 / 1024~49151

gagent Configuration | 3,543

It is a port of which gagent receives a packet through UDP communication.

The port from 1024 to 49151 can be used.

LOCATOR_HOST

Item Description

Name LOCATOR_HOST

Description It is an IP address of glocator.

Data type ip address(ip v4)

Default value/ range 0.0.0.0

It is an IP address of glocator.

LOCATOR_PORT

Item Description

Name LOCATOR_PORT

Description It is a port of which glocator waits for Recv.

Data type INT

Default value/ range 42581 / 1024~49151

It is the port of glocator of when gagent sends packets to glocator.

The port from 1024 to 49151 can be used.

COMMAND_QUEUE_SIZE

Item Description

Name COMMAND_QUEUE_SIZE

Description It is the queue size in which received packets are stored before processing them.

Data type INT

Default value/ range 1048576 / 1048576~2147483648

It is the size of queue of which gagent stores packets received from glocator before processing them.

Packets are stored as an item of a command unit in a queue.

3,544 | gagent

COMMAND_ALLOCATOR_SIZE

Item Description

Name COMMAND_ALLOCATOR+SIZE

Description It is the size of an allocator which allocates an item to be stored in a command queue.

Data type INT

Default value/ range 1048576 / 1048576~2147483648

It is the size of an allocator which is used to allocate an item (command) to be stored in a command queu

e.

PACKET_ALLOCATOR_SIZE

Item Description

Name PACKET_ALLOCATOR+SIZE

Description
It is the size of an allocator which allocates a packet when receiving packets through UDP c

ommunication.

Data type INT

Default value/ range 1048576 / 1048576~2147483648

It is the size of an allocator for a buffer which is allocated for gagent to receive packets.

SYSTEM_LOGGER_DIR

Item Description

Name SYSTEM_LOGGER_DIR

Description It is the directory path of gagent trace log file.

Data type String

Default value/ range '<GOLDILOCKS_DATA>/trc'

It is the directory path in which system trace log file of gagent is stored. <GOLDILOCKS_DATA> of the def

ault value is replaced with the environment variable value of $GOLDILOCKS_DATA.

UPDATE_LOCATION_TIME

Item Description

Name UPDATE_LOCATION_TIME

Description It sets the cycle for gagent to update its location information to glocator.

Data type Int

gagent Configuration | 3,545

Default value/ range 120 / 30~2147483648 (second unit)

Item Description

It sets the cycle for gagent to update its node location information to glocator.

SESSION_TIMEOUT

Item Description

Name SESSION_TIMEOUT

Description It sets the maximum time for gagent to wait to receive packets.

Data type Int

Default value/ range 60 / 0 ~2147483648 (second unit)

It sets the maximum time (seconds) for gagent to wait to receive packets. Packets exceeds the maximum

time without being processed, are dumped.

ALTERNATE_LOCATORS

Item Description

Name ALTERNATE_LOCATORS

Description It sets the alternate locators.

Data Type String

Default value/ range empty / 0 ~ 1024

If glocator set in gagent does not respond, then it proceeds to process the operation by replacing with an

alternate locator.

The following is an example of a configure file which used ALTERNATE_LOCATOR.

[AGENT]

PORT=43581

LOCATOR_HOST=127.0.0.1

LOCATOR_PORT=42581

ALTERNATE_LOCATORS='LOCATOR1,LOCATOR2'

[LOCATOR1]

HOST=127.0.0.1

PORT=42582

[LOCATOR2]

HOST=127.0.0.1

PORT=42583

gloctl

42.

3,547

3,548 | gloctl

42.1 Overview of gloctl

Definition

gloctl is an interactive utility provided by GOLDILOCKS, which provides location to glocator and edits it.

gloctl communicates with glocator by using User Datagram Protocol (UDP) communication protocol.

Usage

gloctl [options]

Options

help

Description

It outputs the help message.

Example

$ gloctl --help

Usage:

gloctl [options]

Options:

-c --conf User configure file

-i --ip Locator host ip

-p --port Locator port number

-o --import Import control FILE

-l --silent Suppress the display of result message and echoing commands

-r --no-copyright Suppress display copy right and version

-h --help Print help message

Overview of gloctl | 3,549

conf

Description

It sets a Configuration file to communicate with glocator.

If it is not set, $GOLDILOCKS_DATA/conf/goldilocks.gloctl.conf is used.

Example

$ gloctl --conf gloctl.conf

gLoctl>

● The contents of gloctl.conf file above is as follows.

[GLOCTL]

Port number (1024 ~ 49151)

PORT = 44581

Locator address

LOCATOR_HOST = 127.0.0.1

Locator port number (1024 ~ 49151)

LOCATOR_PORT = 42581

Time out to receive message from glocator (second)

second (0 ~ 2147483647)

MESSAGE_TIMEOUT = 10

ip

Description

It sets IP address of glocator when starting gloctl. IP set value takes precedence when it is used together

with DSN.

Example

$ gloctl --ip 127.0.0.1

gLoctl>

The port of glocator in the example above is obtained by using DSN default LOCATOR in odbc.ini.

3,550 | gloctl

port

Description

It sets the port of glocator when starting gloctl. The port set value takes precedence when it is used toget

her with DSN.

Example

$ gloctl --port 42581

gLoctl>

IP of glocator in the example above is obtained by using DSN default LOCATOR in odbc.ini.

import

Description

It performs gloctl commands in batch within a file, not an interactive mode.

Example

$ gloctl --import import.txt

HELP

QUIT

IMPORT {'FILE'} Upload FILE to locations

EXPORT {'FILE'} Download locations to FILE

ADD MEMBER {DSN|{member_name {'host; port; db_home; agent_port;'}}} Add member location

DROP MEMBER {member_name} Drop member location

SET TIMEOUT {second} Set time for session timeout

Add member succeeded.

● The contents of import.txt above is as follows.

HELP

ADD MEMBER G1N3 'HOST=127.0.0.1;PORT=24581;DB_HOME=g1n3_home;AGENT_PORT= 44581;'

silent

Overview of gloctl | 3,551

Description

It does not output the message of gloctl about the execution.

Example

$ gloctl --silent --import import.txt

no-copyright

Description

It does not output the message of gloctl's copyright and version about the execution.

Example

$ gloctl --no-copyright

gLoctl>

3,552 | gloctl

42.2 Interactive Command References

ADD MEMBER

Syntax

ADD MEMBER {DSN | member_name {'host; port; db_home; agent_port;'}}

Description

It adds a member to glocator. DSN existing in odbc.ini, a member name, and the required location inform

ation should be input.

Note

● The port is that of glsnr.

● ADD MEMBER is used to update the information of an existing member. In this case, if the m

ember is in the process of the failover, then the update fails.

Example

ADD MEMBER by using DSN of odbc.ini.

gLoctl> ADD MEMBER G1N1

Add member succeeded.

gLoctl>

● The contents of odbc.ini is as follows.

[G1N1]

HOST=127.0.0.1

PORT=20101

DB_HOME= g1n1_home

AGENT_PORT=43581

LOCATOR_DSN=LOCATOR

Interactive Command References | 3,553

● Describe the location of a member, and add it.

gLoctl> ADD MEMBER G1N2 'HOST=127.0.0.1; PORT=20201; DB_HOME=g1n2_home; AGENT_PORT= 43581'

Add member succeeded.

gLoctl>

ADD SERVICE

Syntax

ADD SERVICE service_name {'member_name; ... '}

Description

It adds a service to glocator. The node belonging to the service should be managed in glocator, and it is i

gnored when the same node does not exist in glocator.

Example

Add the service s1 by using ADD SERVICE.

gLoctl> ADD SERVICE S1 'G1N1;G1N2;G2N1'

Add service succeeded.

gLoctl>

● The contents of odbc.ini is as follows.

[GOLDILOCKS]

HOST=127.0.0.1

PORT=22581

LOCATOR_DSN=LOCATOR

LOCATOR_SERVICE=S1

[LOCATOR]

HOST=127.0.0.1

PORT=42581

3,554 | gloctl

Note

When describing glocator properties in odbcinst.ini file and using glocator, then gsqlnet and other

applications can access one of a server from the service list.

DROP MEMBER

Syntax

DROP MEMBER member_name

Description

It drops a member corresponding to member_name from glocator.

Note

If a member is in the process of the failover, then the member can not be dropped.

Example

gLoctl> DROP MEMBER G1N2

Drop member succeeded.

gLoctl>

DROP SERVICE

Syntax

DROP MEMBER service_name

Interactive Command References | 3,555

Description

It drops a service corresponding to service_name from glocator.

Example

gLoctl> DROP SERVICE S1

Drop service succeeded.

gLoctl>

EXPORT

Syntax

EXPORT {'FILE'}

Description

It receives the location information from glocator and stores it in a file.

Example

Download the location information in Location.txt file.

gLoctl> EXPORT 'Location.txt'

Export file succeeded.

gLoctl>

● The contents of Location.txt above is as follows.

[G1N1]

PORT = 20101

AGENT_PORT = 0

HOST = 127.0.0.1

DB_HOME = g1n1_home

[G1N3]

PORT = 24581

AGENT_PORT = 44581

HOST = 127.0.0.1

3,556 | gloctl

DB_HOME = g1n3_home

HELP

Syntax

HELP

Description

It displays the commands list in an interactive mode of gloctl.

Example

gLoctl> HELP

HELP

QUIT

IMPORT {'FILE'} Upload FILE to locations

EXPORT {'FILE'} Download locations to FILE

ADD MEMBER {DSN|{member_name {'host; port; db_home; agent_port;'}}} Add member location

DROP MEMBER {member_name} Drop member location

SET TIMEOUT {second} Set time for session timeout

ADD SERVICE {service_name {'member_name; ... '} } Add service

DROP SERVICE {service_name} Drop service

gLoctl>

IMPORT

Syntax

IMPORT {'FILE'}

Description

It transfers the location to glocator by using a file in ini form.

Interactive Command References | 3,557

Example

It transfers the contents in Location.txt to glocator.

gLoctl> IMPORT 'Location.txt'

Import file succeeded.

gLoctl>

● The contents of Location.txt above is as follows.

[G1N1]

PORT = 20101

AGENT_PORT = 0

HOST = 127.0.0.1

DB_HOME = g1n1_home

[G1N3]

PORT = 24581

AGENT_PORT = 44581

HOST = 127.0.0.1

DB_HOME = g1n3_home

QUIT

Description

It quits gloctl.

Syntax

QUIT

SET TIMEOUT

Description

It sets TIMEOUT of glocator.

3,558 | gloctl

Syntax

SET TIMEOUT {second}

Example

gLoctl> set timeout 120

Set timeout.

gLoctl>

Location File | 3,559

42.3 Location File

Location file uploads or downloads the location information of a node from gloctl to glocator.

Description

Location file format is similar to that of Data Source Specification file.

[node_name]

HOST = host_address

PORT = port_no

DB_HOME = db_home_path

AGENT_PORT = agent_port_no

[SERVICE]

service_name = node_name {, node_name}*

Location keywords of Location file are as follows.

Table 42-1 Location infornation

Keyword Description

node_name It is the name of a node.

HOST It is the IP address of a node.

PORT It is the port number of glsnr which was executed in a node.

DB_HOME It sets the home directory of a node.

AGENT_PORT It is the port number of gagent which was executed in a node.

[SERVICE] is a fixed keyword which lists the service hints. Service hints which are registered or to be regist

ered in glocator are listed below SERVICE keyword.

HOST and PORT keywords should be input, and an error occurs if they are omitted.

The following is an example of configuring a location file.

[G1N1]

HOST = 192.168.0.101

PORT = 20101

DB_HOME = g1n1_home

AGENT_PORT = 40101

[G1N2]

3,560 | gloctl

HOST = 192.168.0.102

PORT = 20102

DB_HOME = g1n2_home

AGENT_PORT = 40102

[G2N1]

HOST = 192.168.0.201

PORT = 20201

DB_HOME = g2n1_home

AGENT_PORT = 40201

[G1N2]

HOST = 192.168.0.202

PORT = 20202

DB_HOME = g2n1_home

AGENT_PORT = 40202

[SERVICE]

service_1 = G1N1,G2N1

service_2 = G1N1,G1N2

Configuration | 3,561

42.4 Configuration

The environment file of gloctl is $GOLDILOCKS_DATA/conf/goldilocks.gloctl.conf. The environment file s

hould be altered or the environment file should be set with conf option and restart gloctl, to alter the dri

ving environment for gloctl.

Stop gloctl and alter the driving environment, then restart it to alter the environment of gloctl and to appl

y it, while gloctl is being executed.

PORT

Item Description

Name PORT

Description It is a port which is used by gloctl.

Data type INT

Default value/ range 44581 / 1024 ~ 49151

It sets the port of a socket which is used by gloctl.

LOCATOR_HOST

Item Description

Name PORT

Description It is the host address of glocator with which gloctl communicates.

Data type STRING

Default value/ range 127.0.0.1

It sets the host address of glocator.

LOCATOR_PORT

Item Description

Name PORT

Description It is the port of glocator with which gloctl communicates.

3,562 | gloctl

Data type INT

Default value/ range 42581 / 1024 ~ 49151

Item Description

It sets the port of glocator.

MESSAGE_TIMEOUT

Item Description

Name MESSAGE_TIMEOUT

Description It sets the time of which gloctl waits for the response from glocator. (second)

Data type INT

Default value/ range 10 / 0 ~ 2147483647

It sets the time of which gloctl waits for the response after transferring a packet to glocator.

Replication

Part VII.

3,563

3,564 | Replication

43. Overview

43.1 Overview of GOLDILOCKS Replication

43.2 Characteristics

CYCLONE

LOGMIRROR

44. CYCLONE

44.1 CYCLONE

Overview

Operational Features

Operational Restrictions

DDL Processing during Replication

Datatype Compatibility When Interworking with Other DBMS

Others

44.2 Requirements

GOLDILOCKS Requirements

Registering User and Setting Privileges

44.3 Configuration

Configuration File

Configuration Option

44.4 Operating

GOLDILOCKS Connection Policy

Executing Option

44.5 Operating Examples

Operating Order

Original GOLDILOCKS Configuration

Remote GOLDILOCKS Configuration

CYCLONE MASTER Configuration

CYCLONE SLAVE Configuration

Executing and Operating

Synchronizing Data

Initializing Replication Information

Recovery

44.6 Operating CYCLONE in Cluster

Requirements

Operating

Executing

SYNC Method

Others

44.7 Monitoring (CYMON)

. 3,567

.	 3,568

.	 3,569

.	 3,569

.	 3,569

. 3,571

.	 3,572

.	 3,572

.	 3,572

.	 3,573

.	 3,574

.	 3,575

.	 3,577

.	 3,578

.	 3,578

.	 3,580

.	 3,583

.	 3,583

.	 3,585

.	 3,601

.	 3,601

.	 3,603

.	 3,607

.	 3,607

.	 3,608

.	 3,608

.	 3,608

.	 3,609

.	 3,609

.	 3,610

.	 3,611

.	 3,612

.	 3,614

.	 3,614

.	 3,614

.	 3,616

.	 3,618

.	 3,618

.	 3,619

| 3,565

Configuration File

Monitoring Contents

Executing and Monitoring

45. LOGMIRROR

45.1 LOGMIRROR

Overview

Operational Features

Performance Degradation Factors of GOLDILOCKS When Operating LOGMIRROR

45.2 Requirements

GOLDILOCKS Requirement

45.3 Configuration

Configuration File

Configuration Options

45.4 Operating

Operating LOGMIRROR

Executing Option

45.5 Examples of Interworking with CYCLONE

Operating Order

.	 3,619

.	 3,619

.	 3,620

. 3,625

.	 3,626

.	 3,626

.	 3,626

.	 3,626

.	 3,628

.	 3,628

.	 3,630

.	 3,630

.	 3,630

.	 3,634

.	 3,634

.	 3,635

.	 3,637

.	 3,638

Overview

43.

3,567

3,568 | Overview

43.1 Overview of GOLDILOCKS Replication

Database replication efficiently and consistently distributes data for data recovery when an error occurs in

the original database by using the remote database, so that it enables sustained service. It is also used to

build multiple database with same data.

GOLDILOCKS replication supports CYCLONE, which is a tool using Change Data Capture (CDC) method.

Note

Change Data Capture (CDC)

This method captures and analyzes the redo log generated during the database operation, and pe

rforms the replication.

Only the asynchronous mode is supported because CYCLONE is available after the changes of the

database are stored in the redo log file.

The interval may occur between the original database and the remote database of the replication becaus

e CDC method supports only the asynchronous mode. When the failure of original database or equipmen

t occurs in the state of which the replication to the remote database is not completed, the remote databa

se is in the state of which the interval is not reflected.

LOGMIRROR can be used to complement the data not reflected due to the interval of the asynchronous

mode.

Note

LOGMIRROR is a tool which replicates the redo log files. It sends and stores the redo logs generat

ed from the original database to the remote equipment without any loss of data. Therefore, using

LOGMIRROR can prevent loss of data.

Characteristics | 3,569

43.2 Characteristics

CYCLONE

The followings are the characteristics of CYCLONE.

● It is a replication tool which uses Change Data Capture (CDC) method.

● It recognizes, analyzes and applies the changes in redo log files of the original database.

● It is operated being divided into master and slave.

● It supports active-active, active-standby.

● Replication is available in table unit.

● Several options can be set to improve the performance.

● It does not affect GOLDILOCKS in case of failure because it is operated as an independent process.

● Adding or changing the H/W is not required for operation.

● It allows various replication topology

● The operation between master and slave in standalone environment supports the relationship of 1 : 1

or N : N.

● The operation between master and slave in cluster environment supports the relationship of N : 1.

LOGMIRROR

The followings are the characteristics of LOGMIRROR.

● It transfers and stores the redo logs of the original database to the remote machine without any loss.

● It interworks with CYCLONE and replicates without any loss of data.

● Only one LOGMIRROR can be operated in a database.

● It is operated being divided into master and slave.

CYCLONE

44.

3,571

3,572 | CYCLONE

44.1 CYCLONE

CYCLONE is a replication tool which uses the Change Data Capture (CDC) method.

Overview

Database records the data changes which occur during the operation in the redo log file for the recovery.

CDC performs the replication by analyzing the information of the recorded redo log file.

CYCLONE is driven being divided into master and slave. Master recognizes the changes of the redo log fil

e in the original database and analyzes it, then transfers it to the slave. Slave analyzes the received data a

nd performs the replication by using ODBC.

Operational Features

● It is divided into master and slave and is operated as master/slave in group unit.

● Master and slave of CYCLONE uses TCP/ IP communication.

● It can be executed/ terminated in group unit.

● The replication is executed in table unit, and a group may include one or more tables.

● A single table may be operated being included in several groups.

● The original database should have the redo log files, so DATA_STORE_MODE should be operated in T

DS.

● The original database should have SUPPLEMENTAL LOGGING.

○ SUPPLEMENTAL LOGGING adds an additional information to the redo log files for the replication

of CYCLONE.

● The original database should be operated in ARCHIVE LOG mode.

○ GOLDILOCKS recursively reuses the redo log files. When the redo log files are reused before the r

eplication is completed, the replication becomes aborted and the existing replication from the cu

rrent point is canceled then restarted. Therefore, the redo log files should be operated in ARCHIV

E LOG mode to be archived.

● It does not affect GOLDILOCKS even when it fails to replicate because it is operated as an independe

nt process.

CYCLONE | 3,573

Operational Restrictions

● The table participated in the replication should have a PRIMARY KEY.

● Only the committed transaction is allowed to be replicated. Therefore, the content is unknown to the

slave before committing the transaction.

● The primary key update is not supported.

○ When the primary key is updated, the table is given up and it is not replicated any more.

● The table participated in the replication can not use the column which has Generated Always As Iden

tity property.

● When Data Definition Language (DDL) is performed on the table in which the replication is being ope

rated, it could be given up.

○ For more information, refer to The occurrence of give up and whether to allow DDL statement ac

cording to DDL category in table1.

○ If it does not comply with the processing procedure of table DDL of CYCLONE, then even the allo

wable DDL is given up.

○ It does not affect the replication of other tables.

○ It is same in case of the truncated table.

● The given-up table can be reset only when it was given up with --reset TABLE_NAME

● The columns configuring the table participating in the replication should have the same structure.(da

ta type, order)

● The database performing the replication should have the same character encoding.

Table 44-1 The occurrence of give up and whether to allow DDL statement according to DDL category

DDL category
Occurrence of

give up

Whether to

allow

DDL statement

DDL statement

Table DDL

X - CREATE TABLE

O X DROP TABLE

O X TRUNCATE TABLE

O X ALTER TABLE .. RENAME

X - ALTER TABLE .. STORAGE

X - ALTER TABLE .. ADD SUPPLEMENTAL LOG

O X ALTER TABLE .. DROP SUPPLEMENTAL LOG

X - ALTER TABLE .. READ { ONLY | WRITE }

Column DDL

O O ALTER TABLE .. ADD COLUMN

O X ALTER TABLE .. SET UNUSED COLUMN

X - ALTER TABLE .. RENAME COLUMN

X - ALTER TABLE .. ALTER COLUMN .. SET DEFAULT

X - ALTER TABLE .. ALTER COLUMN .. DROP DEFAULT

O X ALTER TABLE .. ALTER COLUMN .. SET NOT NULL

O X ALTER TABLE .. ALTER COLUMN .. DROP NOT NULL

3,574 | CYCLONE

O X ALTER TABLE .. ALTER COLUMN .. ALTER IDENTITY

O X ALTER TABLE .. ALTER COLUMN .. DROP IDENTITY

O O ALTER TABLE .. ALTER COLUMN .. SET DATATYPE

Constraint DDL

O X ALTER TABLE .. ADD CONSTRAINT

O X ALTER TABLE .. DROP CONSTRAINT

O X ALTER TABLE .. ALTER CONSTRAINT

X - ALTER TABLE .. RENAME CONSTRAINT

Index DDL

O X CREATE UNIQUE INDEX

X - CREATE INDEX

O X DROP INDEX unique_index

X - DROP INDEX non_unique_index

X - ALTER INDEX .. STORAGE

X - ALTER INDEX .. RENAME

Superordinate object

of table

O X DROP USER

O X DROP SCHEMA

O X DROP TABLESPACE

DDL category
Occurrence of

give up

Whether to

allow

DDL statement

DDL statement

Note

The server property DISABLE_DDL_CDC_GIVEUP can disable the DDL statement which causes the

replication give up to avoid user created errors.

DDL Processing during Replication

It should comply with the following procedure when the allowable DDL is performed for the table in whic

h the replication is being performed.

1. Terminate all operating CYCLONE in master and slave before executing DDL in master.

○ The process in progress does not need to be terminated.

○ e.g. cyclone --master --stop / cyclone --slave --stop

2. Execute DDL in both master and slave. (It should be the allowable DDL.)

○ For more information, refer to Table 44-1 The occurrence of give up and whether to allow DDL st

atement according to DDL category .

3. Restart CYCLONE of master and slave.

○ cyclone --master --start ... / cyclone --slave --start ...

CYCLONE | 3,575

○ It does not require --reset option.

○ It performs the recovery from the termination of the first stage and process DDL when restarting.

(Refer to trace log)

Table 44-2 DDL application procedure

Item MASTER CYCLONE MASTER DB SLAVE CYCLONE SLAVE DB

1 CYCLONE STOP - - -

2 - - CYCLONE STOP -

3 - Executing DDL - -

4 - - - Executing DDL

5 CYCLONE START - - -

6 - - CYCLONE START -

Note

If the table which executed DDL in CYCLONE master is given up after DDL application procedure i

s normally performed, then the following two should be checked.

1. Check if DDL performed in the master DB and in the slave DB is same, and check if the table s

tructure is same after performing the DDL. (The order of performing DDL does not matter.)

2. Check if the performed DDL is allowable.

If the table is given up due to the reasons above, the given-up table should be replicated again fro

m the current point by using reset in table unit and restarting it. (e.g. cyclone --start --master --res

et TABLE_NAME).

Datatype Compatibility When Interworking with Other DBMS

● When target database of CYCLONE slave interworks with other DBMS instead of GOLDILOCKS, the c

olumn datatype of GOLDILOCKS table, source database, should be compatible with that of other DB

MS table so that it can prevent the data loss or an error.

● Currently, it can interwork with ORACLE.

3,576 | CYCLONE

Oracle

Table 44-3 Datatype compatible with Oracle

GOLDILOCKS Oracle Remarks

Boolean X
The corresponding datatype does no

t exist.

NATIVE_SMALLINT NUMBER(5) -

NATIVE_INTEGER NUMBER(10) -

NATIVE_BIGINT NUMBER(19) -

NATIVE_REAL BINARY_FLOAT -

NATIVE_DOUBLE BINARY_DOUBLE -

FLOAT FLOAT -

SMALLINT NUMBER(5,0) -

INTEGER NUMBER(10,0) -

BIGINT NUMBER(19,0) -

INT2 NUMBER(5,0) -

INT4 NUMBER(10,0) -

INT8 NUMBER(19,0) -

REAL FLOAT(24) -

DOUBLE FLOAT(53) -

DOUBLE PRECISION FLOAT(53) -

FLOAT4 FLOAT(24) -

FLOAT8 FLOAT(53) -

DECIMAL NUMERIC -

NUMBER NUMBER -

NUMERIC NUMERIC -

CHAR CHAR -

VARCHAR VARCHAR, VARCHAR2 -

BINARY RAW -

VARBINARY RAW -

DATE DATE -

TIME X
The corresponding datatype does no

t exist.

TIMESTAMP TIMESTAMP -

TIMESTAMP WITH TIMEZONE X It does not support ODBC driver.

INTERVAL X It does not support ODBC driver.

LONG VARCHAR LONG VARCHAR -

LONG VARBINARY LONG RAW -

● The following four datatypes can not be replicated as described in a table above.

○ BOOLEAN

CYCLONE | 3,577

○ TIME

○ TIMESTAMP WITH TIMEZONE

○ INTERVAL

Others

The replication moments are as follows.

● At the first run, the replication starts after master and slave are performed and the initialization is ter

minated.

● Even if it is restarted after terminated during the replication, the replication is continuously performe

d from the termination point. (Recovery feature)

● It should be restarted by using --reset option when giving up the existing replication and restarting fr

om the current point.

3,578 | CYCLONE

44.2 Requirements

Original GOLDILOCKS: It is required to perform GOLDILOCKS preparations, user registration and privilege

setting all.

Remote GOLDILOCKS: It is required to perform user registration and privilege setting only.

GOLDILOCKS Requirements

The followings should be set in GOLDILOCKS before starting the replication using CYCLONE.

SUPPLEMENTAL LOGGING

SUPPLEMENTAL LOGGING stores additional information in the redo log file for the replication of CYCLO

NE. The database restart is required to change the settings of the database in operation, but the databas

e restart is not required to set SUPPLEMENTAL LOGGING for a particular table.

Setting SUPPLEMENTAL LOGGING in Database

● If the GOLDILOCKS property is set as SUPPLEMENTAL LOGGING, SUPPLEMENTAL LOGGING is record

ed for every table.

● GOLDILOCKS restart is required.

● The appropriate information is added or updated in the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: SUPPLEMENTAL LOG_DATA_PRIMARY_KEY = YES

Setting SUPPLEMENTAL LOGGING in the Specific Table Participating in Replicatio

n

<add table supplemental log statement> ::=

ALTER TABLE table_name

ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS

;

ARCHIVE LOG

GOLDILOCKS reuses the redo log files recursively. When GOLDILOCKS reuses the redo log file being proc

essed by CYCLONE, then CYCLONE does not proceed and is terminated. GOLDILOCKS should be operate

d in ARCHIVE LOG mode to ensure the continuous replication operation.

Requirements | 3,579

Changing Database in Operation to ARCHIVE LOG Mode

● Restart GOLDILOCKS.

● After database is shutdown, connect with sysdba and change it to ARCHIVE LOG mode in MOUNT p

hase.

gSQL> \startup mount

Startup success

gSQL> alter database archivelog;

Database altered.

Setting ARCHIVE LOG Mode when Creating Database

● Update the property file before creating the database.

○ Property file: goldilocks.properties.conf

○ Property setting: ARCHIVELOG_MODE = 1

Note

The path in which ARCHIVE LOG file is stored can be viewed and updated with 'ARCHIVELOG_DI

R'.

Settings in Cluster Environment

When GOLDILOCKS in which slave is operated is operated in cluster, then either TRANSACTION_COMMIT

_WRITE_MODE is '1' (Wait), or CLUSTER_ASYNC_COMMIT is 'NO'. Either of them should be set.

This prevents data confliction due to cluster's transaction policy and Cyclone's distributor policy.

Altering TRANSACTION_COMMIT_WRITE_MODE

● GOLDILOCKS should be restarted.

● Add or alter the content to the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: TRANSACTION_COMMIT_WRITE_MODE = 1

Note

If the value of TRANSACTION_COMMIT_WRITE_MODE is '0', then it is NO-WAIT, and if it is '1', th

en it is WAIT.

3,580 | CYCLONE

Altering CLUSTER_ASYNC_COMMIT

● Add or alter the content to the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: CLUSTER_ASYNC_COMMIT = NO

● Alter property of GOLDILOCKS in operation by executing the following SQL statement.

gSQL> alter system set CLUSTER_ASYNC_COMMIT=NO;

System altered.

DATA_STORE_MODE

CYCLONE performs the replication by reading the redo log files of GOLDILOCKS. Therefore, GOLDILOCKS

should be operated in Transactional Data Store (TDS) mode.

Changing DATA_STORE_MODE

● Restart the database.

● Add or update the corresponding information in the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: DATA_STORE_MODE = 2

Note

If the value of DATA_STORE_MODE is 1, it indicates Concurrent Data Store (CDS), and if it is 2, it i

ndicates Transactional Data Store (TDS).

Registering User and Setting Privileges

CYCLONE retrieves and manipulates the required information during the operation. The user operating C

YCLONE and the proper privileges for the user are required.

Creating Database User

A specific user should be added to operate CYCLONE, and the corresponding user should be added for al

l GOLDILOCKS of which CYCLONE is operated in master, slave mode.

Requirements | 3,581

<user definition> ::=

CREATE USER user_identifier IDENTIFIED BY password

[DEFAULT TABLESPACE tablespace_name]

[TEMPORARY TABLESPACE tablespace_name]

[INDEX TABLESPACE {tablespace_name|NULL}]

[<schema clause>]

;

<schema clause> ::=

WITH SCHEMA [schema_name]

| WITHOUT SCHEMA

The following is an example of creating the user cdc_user with the password cdc_password.

gSQL> CREATE USER cdc_user IDENTIFIED BY cdc_password;

Database Privileges

Granting the User's Access Privilege

The following is an example for granting the access privilege to cdc_user. It should be set on all GOLDILO

CKS which is operated in both master/ slave mode.

gSQL> GRANT CREATE SESSION ON DATABASE TO cdc_user;

Granting the Privilege for Altering Table

The following is an example of granting the table updating privilege to cdc_user. It is set on GOLDILOCKS

which is operated in slave mode.

gSQL> GRANT INSERT ANY TABLE, DELETE ANY TABLE, UPDATE ANY TABLE ON

DATABASE TO cdc_user;

Tablespace Privileges

The privileges on the data tablespace and temporary tablespace should be set. The following is an exampl

e of granting the privilege for using the default tablespace to cdc_user. It is set on GOLDILOCKS which is

operated in slave mode.

gSQL> GRANT CREATE OBJECT ON TABLESPACE mem_data_tbs TO cdc_user;

gSQL> GRANT CREATE OBJECT ON TABLESPACE mem_temp_tbs TO cdc_user;

3,582 | CYCLONE

Schema Privileges

The schema privileges for creating and managing meta managed in CYCLONE should be set. The followin

g is an example granting the schema privilege to cdc_user. It is set on GOLDILOCKS which is operated in s

lave mode.

gSQL> GRANT CREATE TABLE, CREATE INDEX, CREATE SEQUENCE, CREATE VIEW,

ADD CONSTRAINT ON SCHEMA cdc_user TO cdc_user;

Configuration | 3,583

44.3 Configuration

Configuration File

When performing CYCLONE, the information and options required for operating are set by using the con

figuration file.

● When a specific configuration file is not set by using the --conf option, a specific file in the $GOLDILO

CKS_DATA/conf directory is read. cyclone.master.conf file is read when it is operated in master mode

and cyclone.slave.conf file is read when it is operated in slave mode.

Table 44-4 Configuration file options

Name Description Coverage

COMM_CHUNK_

COUNT
It sets the size of BUFFER for communication. Master/ slave

DSN It sets Data Source Name. Master/ slave

GROUP_NAME It sets the group name. Master/ slave

HOST_IP It sets the host IP address of which GOLDILOCKS operates. Master/ slave

HOST_EXTERNAL

_IP

It is used when slave GOLDILOCKS IP to which the cyclone master is to be co

nnected is different from HOST_IP. (When master and slave are on wan sect

ion.)

Slave

HOST_PORT It sets the host port of which GOLDILOCKS operates. Master/ slave

PORT It sets the port for master/ slave communication. Master/ slave

USER_ID It sets the user name. Master/ slave

USER_PW It sets the user password. Master/ slave

USER_ENCRYPT_

PW
It sets the encrypted password for DB user. Master/ slave

CAPTURE_TABLE It sets the table to be replicated. Master

LOG_PATH
It is used when interworking with LOGMIRROR and it sets the location of th

e redo log file.
Master

PROTOCOL
It sets the connection type which is to be connected to GOLDILOCKS. (DA o

r TCP)
Master/ slave

READ_LOG_BLO

CK_COUNT
It sets the amount of data to be read at a time when operating CAPTURE. Master

TRANS_SORT_AR

EA_SIZE
It sets the size of the BUFFER to be allocated to CAPTURE. Master

TRANS_FILE_PAT

H

It sets the location in which the temporarily generated file is to be stored wh

en operating CAPTURE.
Master

SYNCHER_COUN

T

It is applied when using SYNC feature, and it sets the number of SYNCHER s

imultaneously performing the data insertion.
Master

3,584 | CYCLONE

SYNC_ARRAY_SI

ZE

It is applied when using SYNC feature, and it sets the array size which insert

data at a time.
Master

GIVEUP_INTERV

AL

If the replication performance speed is lower than GOLDILOCKS performanc

e, it is set to stop the replication.
Master

APPLIER_COUNT
It sets the number of APPLIER simultaneously performed during the replicati

on.
Slave

APPLY_COMMIT

_SIZE
It sets the maximum size for COMMIT during the replication. Slave

APPLY_TABLE It sets the table to which the replicated table is to be applied. Slave

MASTER_IP
It sets the IP address of the equipment of which CYCLONE master is operate

d.
Slave

PROPAGATE_M

ODE
It sets whether to propagate the data applied by CYCLONE. Slave

UPDATE_APPLY_

MODE

It distinguishes the operation when updating. (The default value is 0.)

● 0: It is updated only when the primary keys are same.

● 1: It is updated only when the primary key and the value before the up

date are same.

● 2: It is updated only when the primary keys are same. It compares the

value before and after the update, then leaves a log if the values are di

fferent.

Slave

TCP_NODELAY

It sets TCP_NODELAY option of a socket. (The default value is 1.)

● 0: TCP_NODELAY off

● 1: TCP_NODELAY on

Master

HEARTBEAT_TIM

EOUT

It sets the maximum time (second) maintaining connection if the connectio

n is not smooth due to network disconnection or system error after replicati

on connection.

Master/ slave

LOG_CAPTURE_I

NTERVAL_1

It sets the execution cycle of capture. If the value is not changed after execu

ting 10 times with that value, then it is converted to the value of LOG_CAPT

URE_INTERVAL_2 and performs capture. (The default value is 0.2 seconds.)

Master

LOG_CAPTURE_I

NTERVAL_2

It sets the execution cycle of capture. If the value is not changed after execu

ting with the value of LOG_CAPTURE_INTERVAL_1, then it sets the executio

n cycle of capture. (The default value is 1 second.)

Master

CLUSTER

It specifies the connection information of a master when the master is in clu

ster environment. A master consists of the following three information.

● ID: It is a delimiter and sets to 1 or more value.

● MASTER_IP

● PORT

Slave

ORACLE_DRIVER It specifies the file location of the oracle driver provided by Oracle. Slave

PACKET_COMPR

ESSION_MODE

It sets whether to compress the data of communication of master and slave.

(1: Enable, 0: Disable, Default: Enable)
Master

Name Description Coverage

Configuration | 3,585

Configuration Option

COMM_CHUNK_COUNT

● It sets the number of buffers(chunk) used in data communication between master and slave of CYCL

ONE.

● It allocates the resource with 16M * N (the set value).

● The default value is 32, and the actual size is 16M * 32 = 512 M.

● The minimum value is 10.

● It can be set in master and slave.

○ If too small value is set so the buffer is not enough, the performance becomes poor.

• Settings applied to all groups

COMM_CHUNK_COUNT = 10

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

COMM_CHUNK_COUNT=20

....

....

}

DSN

● It sets the data source name which is required when connecting to GOLDILOCKS.

● It can be set in master and slave.

● The default value is GOLDILOCKS.

• Settings applied to all groups

DSN=GOLDILOCKS

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

DSN=GOLDILOCKS

....

3,586 | CYCLONE

....

}

GROUP_NAME

● It is necessary for distinguishing the CYCLONE operation within the equipment and it is a unit of gen

erating the operation process.

● It is the delimiter of when starting or terminating CYCLONE in group unit.

● After it is set, it should not be changed. If changed, it is regarded as a new group.

● It can be set in master and slave.

○ The connection between master and slave is separated not by GROUP_NAME but by PORT.

○ GROUP_NAME should be unique in the same equipment.

● The braces { } should be used.

GROUP_NAME = testGROUP

{

....

....

}

HOST_IP

● It sets the IP address of GOLDILOCKS to be connected by CYCLONE.

● It can be set in master and slave.

○ It is valid only when PROTOCOL is set to TCP.

• Settings applied to all groups

HOST_IP = 127.0.0.1

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

HOST_IP = 127.0.0.1

....

....

}

Configuration | 3,587

HOST_EXTERNAL_IP

● It can be set in slave.

● CYCLONE master access GOLDILOCKS of the slave's side when it is operated in sync, and it is used if s

lave GOLDILOCKS IP to which the cyclone master is to be connected is different from HOST_IP.

○ It is used when IP on lan and IP on wan is different because master and slave are on wan section.

○ CYCLONE slave transfers this value to CYCLONE master, and it is used in CYCLONE master.

• Settings applied to all groups

HOST_EXTERNAL_IP = 192.168.0.120

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

HOST_EXTERNAL_IP = 192.168.0.120

....

....

}

HOST_PORT

● It sets the port of GOLDILOCKS to be connected by CYCLONE.

● It should be set together with HOST_IP.

● It can be set in master and slave.

• Settings applied to all groups

HOST_PORT = 22531

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

HOST_PORT = 22531

....

....

}

3,588 | CYCLONE

PORT

● It sets the PORT used in the communication between master and slave.

● The duplicated PORT should not be set between the groups, and the unique value should be used for

each GROUP.

● It is mandatory be set and it can be set only within GROUP_NAME.

• It can be set only within a group.

GROUP_NAME = testGROUP

{

PORT = 21102

....

....

}

USER_ID

● It sets the user ID required to access GOLDILOCKS.

● It can be set in master and slave.

• Settings applied to all groups

USER_ID = testID

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

USER_ID = testID

....

....

}

USER_PW

● It sets the user password required to access GOLDILOCKS.

● It can be set in master and slave.

• Settings applied to all groups

Configuration | 3,589

USER_PW = testPW

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

USER_PW = testPW

....

....

}

USER_ENCRYPT_PW

● It sets the user password which is required for the access to GOLDILOCKS by encrypting.

● It is used instead of USER_PW.

● Encrypted user password is created by [cyclone --encrypt user password --key the key to be encrypted

].

● If this value is used, then --key option should be used when executing cyclone. (In this case, the key v

alue as same as that created with --encrypt should be used.

• Settings applied to all groups

USER_ENCRYPT_PW = 't33KImiqvhqNyfN+uZmFrw=='

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

USER_ENCRYPT_PW = 't33KImiqvhqNyfN+uZmFrw=='

....

....

}

CAPTURE_TABLE

● It sets the table to be replicated.

○ It is set in schema_name.table_name format.

● It can set only in master.

● It can be set only within a group.

● When specifying several tables, the parentheses () should be used.

3,590 | CYCLONE

GROUP_NAME = testGROUP

{

CAPTURE_TABLE =

(

testSchema1.testTable1,

testSchema1.testTable2,

testSchema2.testTable1

)

}

LOG_PATH

● It is used when interworking with LOG MIRROR.

● It sets the path of the redo log files stored by LOGMIRROR.

○ The absolute path should be used.

○ The path should be specified by using single quote (').

• Settings applied to all groups

LOG_PATH = '/data/wal/'

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

LOG_PATH = '/data/wal/'

....

....

}

PROTOCOL

● It sets the type to connect to GOLDILOCKS in operation.

● It can be set to DA or TCP.

● If PROTOCOL is set to DA, neither HOST_IP nor is HOST_PORT used when accessing to GOLDILOCKS.

○ However, in a slave, HOST_IP and HOST_PORT can be used for SYNC even when PROTOCOL is D

A.

● The default value is DA.

• Settings applied to all groups

Configuration | 3,591

PROTOCOL = DA

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

PROTOCOL = DA

....

....

}

READ_LOG_BLOCK_COUNT

● It sets the number of the log blocks to be read at a time when capturing redo log file.

● It can be set only in master.

● The size of a log block is 512 bytes.

● The default value is 40960, and the actual read size is 20 MBytes.

○ The minimum value is 100.

• Settings applied to all groups

READ_LOG_BLOCK_COUNT = 1024

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

READ_LOG_BLOCK_COUNT = 1024

....

....

}

TRANS_SORT_AREA_SIZE

● It sets the memory space required for capturing the redo log files.

● It can be set only in master.

● The unit is MB (megabytes).

● The default value is 500 MB.

○ The minimum value is 10 MB.

● If the value is set too small, the performance becomes poor.

3,592 | CYCLONE

• Settings applied to all groups

TRANS_SORT_AREA_SIZE = 300

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

TRANS_SORT_AREA_SIZE = 300

....

....

}

TRANS_FILE_PATH

● If a space bigger than TRANS_SORT_AREA_SIZE is required, the temporary file is created. It sets the p

ath in which the temporary file is to be stored.

○ The absolute path should be used.

○ The path should be specified by using single quote (').

● It can be set only in master.

• Settings applied to all groups

TRANS_FILE_PATH = '/data/TmpTrans'

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

TRANS_FILE_PATH = '/data/TmpTrans'

....

....

}

SYNCHER_COUNT

● It is used for synchronization.

○ It sets the number of SYNCHERs participating in synchronization.

○ It is input in the number unit.

● It is set only in master.

Configuration | 3,593

• Settings applied to all groups

SYNCHER_COUNT = 8

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

SYNCHER_COUNT = 8

....

....

}

SYNC_ARRAY_SIZE

● It is used for syncronization.

○ It sets the unit of record to be inserted at a time when performing synchronization.

○ It is input in the number unit.

● It can be set only in master.

• Settings applied to all groups

SYNC_ARRAY_SIZE = 1000

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

SYNC_ARRAY_SIZE = 1000

....

....

}

GIVEUP_INTERVAL

● It gives up the replication and terminates CYCLONE if the INTERVAL between GOLDILOCKS and CYCL

ONE is bigger than the set value.

○ It is input in the number of REDO LOG BLOCK unit.

● It can be set only in master.

• Settings applied to all groups

3,594 | CYCLONE

GIVEUP_INTERVAL = 10000

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

GIVEUP_INTERVAL = 10000

....

....

}

APPLIER_COUNT

● It sets the number of APPLIER executing replication.

○ It indicates a parallel factor.

● The default value is 6, and 6 sessions are created.

○ The maximum value is not limited, but too high value can cause the contention between APPLIER

s.

○ The set value significantly affects on performance.

○ The session is created according to the set value and the replication is simultaneously performed.

● It can be set only in slave.

• Settings applied to all groups

APPLIER_COUNT = 16

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

APPLIER_COUNT = 16

....

....

}

APPLY_COMMIT_COUNT

● It sets the number of transaction executing COMMIT when the replication is performed.

○ It executes COMMIT after performing the transaction once when replicating transactions commit

ted in the original database to the remote database.

○ The set value indicates the maximum value.

Configuration | 3,595

● The set value affects on performance.

● It can be set only in slave.

• Settings applied to all groups

APPLY_COMMIT_COUNT = 1000

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

APPLY_COMMIT_COUNT = 1000

....

....

}

APPLY_TABLE

● It sets the table to which the replicated table is to be applied.

○ It is set in replicating table name TO table name to which the replicated table is applied format.

○ The table names are not necessary to be same.

● It can be set only in slave.

● It can be set only within a group.

● The parentheses () should be used when specifying several tables.

GROUP_NAME = testGROUP

{

APPLY_TABLE =

(

testSchema1.testTable1 TO testSchema1.testTable1,

testSchema1.testTable2 TO testSchema2.testTable3,

testSchema2.testTable3 TO testSchema2.testTable4

)

}

MASTER_IP

● It sets the IP address of the device which CYCLONE master operates.

● It can be set only in slave.

• Settings applied to all groups

3,596 | CYCLONE

MASTER_IP = 192.168.0.100

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

MASTER_IP = 192.168.0.100

....

....

}

PROPAGATE_MODE

● If CYCLONE is circularly configured, it sets whether or not another CYCLONE applies the transactions

of which a CYCLONE applied.

● It can be set only in slave.

○ The default value is '0' and it does not PROPAGATE.

○ If it is set to 1, it is PROPAGATEd. If it is set to 0, it is not PROPAGATEd.

• Settings applied to all groups

PROPAGATE_MODE = 1

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

PROPAGATE_MODE = 1

....

....

}

UPDATE_APPLY_MODE

● It is used for the update operation in slave.

○ 0: If only the primary keys are same, the update operation is performed. (The default value)

○ 1: If the primary key is same with the value of before updating, the update operation is performe

d.

○ 2: If only the primary keys are same, the update operation is performed. The values before and af

ter updating are compared and if they are different, then it leaves the logs.

● If it is set to 0, the previous value is not checked and the update is performed.

Configuration | 3,597

● If it is set to 1 and the previous value is different, the update is failed and leaves the conflict log.

● If it is set to 2 and the previous value is different, the update is succeeded and leaves the conflict log.

• Settings applied to all groups

UPDATE_APPLY_MODE = 1

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

UPDATE_APPLY_MODE = 1

....

....

}

Note

For a column whose data type is long varchar or long varbinary, then only the lengths are compar

ed for the performance reason.

TCP_NODELAY

● It is used only in master.

● It sets TCP_NODELAY option for the CDC transfer socket. (This option does not affect the sync. It is fi

xed to TCP_NODELAY on.)

○ 0: It offs the socket TCP_NODELAY option.

○ 1: It ons the socket TCP_NODELAY option. (Default)

• Settings applied to all groups

TCP_NODELAY = 1

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

TCP_NODELAY = 1

....

....

3,598 | CYCLONE

}

HEARTBEAT_TIMEOUT

● It can be set in master and slave.

● It sets the maximum time (second) maintaining connection if the connection is not smooth due to ne

twork disconnection or system error after replication connection between master and slave.

● The default value is 30 (seconds).

○ The minimum value is 10 (seconds).

• Settings applied to all groups

HEARTBEAT_TIMEOUT = 40

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

HEARTBEAT_TIMEOUT = 40

....

....

}

LOG_CAPTURE_INTERVAL_1

● It can be set in master.

● It sets the execution cycle of capture operated in master. The execution cycle is set in millisecond.

● It is used to quickly detect the changes of the redo log file.

● If the value of redo log file is not changed after executing 10 times with that value, then it is converte

d to the value of LOG_CAPTURE_INTERVAL_2 and performs capture.

● The default value is 200 (0.2 seconds), and the unit is millisecond.

• Settings applied to all groups

LOG_CAPTURE_INTERVAL_1 = 200

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

LOG_CAPTURE_INTERVAL_1 = 200

Configuration | 3,599

....

....

}

LOG_CAPTURE_INTERVAL_2

● It can be set in master.

● It sets the execution cycle of capture operated in master. The execution cycle is set in millisecond.

● It is used to quickly detect the changes of the redo log file.

● If the value of redo log file is not changed after executing 10 times with the value of LOG_CAPTURE_

INTERVAL_1, then it is converted to the corresponding value and performs capture.

● The default value is 1000(1 second), and the unit is millisecond.

• Settings applied to all groups

LOG_CAPTURE_INTERVAL_2 = 1000

• Settings applied to a specific group

GROUP_NAME = testGROUP

{

LOG_CAPTURE_INTERVAL_2 = 1000

....

....

}

CLUSTER

● It can be set in slave.

● It sets the connection information of N masters whih is operated in cluster environment. (It consists o

f ID, MASTER_IP and PORT information.)

○ ID: It is an identifier of master in slave, and only number can be input. Once the value is set, it sho

uld not be altered.

○ MASTER_IP: It sets IP in which master is being operated.

○ PORT:It sets port in which master is being operated.

• Cluster can be set only within a group.

GROUP_NAME = testGROUP

{

CLUSTER = (ID=1, MASTER_IP=192.0.0.100, PORT=21102),

3,600 | CYCLONE

(ID=2, MASTER_IP=192.0.0.101, PORT=21103)

....

....

}

ORACLE_DRIVER

● It can be set in slave.

● It specifies the location and name of ODBC driver file provided by Oracle.

○ Currently it supports Oracle 11g only.

• It can be set in any group.

ORACLE_DRIVER = '/app/oracle/product/11.2.0/db_1/lib/libsqora.so.11.1'

GROUP_NAME = testGROUP

{

....

....

}

PACKET_COMPRESSION_MODE

● It can be set in master.

● It sets whether to compress the data which is transferred from master to slave.

○ 1: Enable (Default)

○ 0: Disable

• It can be set in a specific group.

GROUP_NAME = testGROUP

{

PACKET_COMPRESSION_MODE = 1

....

....

}

Operating | 3,601

44.4 Operating

CYCLONE can be operated in D/A or C/S environment of GOLDILOCKS.

CONFIG file or PROTOCOL configuration of ODBC.INI should be used according to the environments as f

ollows. CONFIG configuration takes precedence over ODBC.INI configuration.

Table 44-5 CONFIG, ODBC.INI

Configuration Description

PROTOCOL=DA It is used in D/A environment. (Default)

PROTOCOL=TCP It is used in C/S environment.

The running contents during the operation can be viewed through trace log.

Item File

Cyclone master $GOLDILOCKS_DATA/trc/cyclone_master.trc

Cyclone slave $GOLDILOCKS_DATA/trc/cyclone_slave.trc

Note

For more information about error message and its handling method stored in trace log, refer to T

roubleshooting of CYCLONE.

GOLDILOCKS Connection Policy

It is the policy for CYCLONE to connect to GOLDILOCKS.

There are two ways to connect to GOLDILOCKS. One is that CYCLONE connects to local GOLDILOCKS, a

nd the other is that CYCLONE master remotely connects to slave side GOLDILOCKS on the slave's side wh

en performing SYNC. Both use CYCLONE config value is preferentially used, then use odbc.ini. However,

when performing SYNC, PROTOCOL value is ignored and it is set to TCP no matter what.

The config properties relating to GOLDILOCKS connection are DSN, PROTOCOL, HOST_IP, HOST_EXTERN

AL_IP, HOST_PORT, USER_ID, USER_PW.

(USER_ENCRYPT_PW is listed as USER_PW because it replaces USER_PW.)

3,602 | CYCLONE

Correct Examples

● It is available just with USER_ID and USER_PW because it is connected as D/A.

Item File

CONFIG USER_ID=test, USER_PW=test

GOLDILOCKS configuration of odbc.ini -

● The information should exist either in CONFIG or in odbc.ini. HOST_IP and HOST_PORT are ignored b

ecause it is operated in D/A.

Item File

CONFIG HOST_IP=127.0.0.1, HOST_PORT=22581,USER_ID=test

GOLDILOCKS configuration of odbc.ini USER_PW=test

● USER_ID is operated with the test account because it is connected with TCP and CONFIG takes prece

dence.

Item File

CONFIG PROTOCOL=TCP, USER_ID=test, USER_PW=test

GOLDILOCKS configuration of odbc.ini
HOST_IP=127.0.0.1, HOST_PORT=22581,

USER_ID=test2, USER_PW=test2

● HOST_EXTERANL_IP can not be set in slave even though it is connected as D/A.

Item File

CONFIG PROTOCOL=DA, HOST_EXTERNAL_IP=192.168.0.10, USER_ID=test

GOLDILOCKS configuration of odbc.ini HOST_IP=127.0.0.1, HOST_PORT=22581,USER_PW=test

Wrong Examples

● It is connected as D/A, but USER_PW does not exist.

Item File

CONFIG HOST_EXTERNAL_IP=192.168.0.10

GOLDILOCKS configuration of odbc.ini PROTOCOL=DA,USER_ID=test

● It is connected as TCP, but HOST_IP does not exist.

Operating | 3,603

Item File

CONFIG HOST_EXTERNAL_IP=192.168.0.10, USER_ID=test

GOLDILOCKS configuration of odbc.ini PROTOCOL=TCP, HOST_PORT=22581,USER_PW=test

Executing Option

CYCLONE should be used with the following options at run-time.

Table 44-6 Executing options

Option Description Remarks

--start | -s It starts CYCLONE. It should be used together with --master | --slave.

--stop | -t It terminates CYCLONE. It should be used together with --master | --slave.

--master | -m It is performed in master mode. It should be used together with --start | --stop.

--slave | -l It is performed in slave mode. It should be used together with --start | --stop.

--status | -u
It displays the operating status of CYCL

ONE.
It should be used together with --master | --slave.

--conf | -c

It sets the path of configuration file whi

ch is required when executing CYCLON

E.

It is input in --conf CONFIG_FILE format.

It should be used together with --start.

If it is not explicitly set, master uses $GOLDILOCKS_D

ATA/cyclone.master.conf, and slave uses $GOLDILOC

KS_DATA/cyclone.slave.conf.

--silent | -i It sets not to output messages. -

--reset | -r
It resets operational information of the

replication.

It is input in --reset TABLE_NAME or --reset all format.

It should be described within a single quote (') when r

esetting multiple tables.

--group | -g It sets a specific group. It is input in --group GROUP_NAME format.

--help | -h It outputs the help message.

--sync | -n It performs data synchronization. It should be used together with --master | --slave.

--encrypt | -e
It encrypts the user password with the

given key.
-

--key | -k

It sets the encryption key when perfor

ming the --encrypt option.

If USER_ENCRYPT_PW is used in the co

nfig, it sets the decryption key.

-

--info | -o
It displays the status of the table which

is currently being replicated.
It should be used together with --master, --group.

--recovery | -v

It is used when passing the replication

being performed in a standalone mode

of cluster environment to another clust

er member.

It is used in --recovery GROUP_NAME form, and GRO

UP_NAME describes CYCLONE GROUP_NAME of a sl

ave which was previously performed.

3,604 | CYCLONE

--stand-alone | -S

It is operated in a standalone mode of c

luster environment. (It is operated in a

cluster mode in cluster environment.)

It is valid only in master. (It is set in the configuration f

ile in slave.)

--local | -a

It is used when synchronizing the table

sharded in cluster environment. It sync

hronizes only the data in the correspon

ding cluster group.

It should be used together with --sync.

Option Description Remarks

● It executes all groups in master mode by using the default environment file.

prompt> cyclone --master --start

● It terminates all groups in master mode.

prompt> cyclone --master --stop

● It executes all groups in slave mode by using the default environment file.

prompt> cyclone --slave --start

● It terminates all groups in slave mode.

prompt> cyclone --slave --stop

● It executes only the TEST_GROUP group in master mode.

prompt> cyclone --master --start --group TEST_GROUP

● It terminates only TEST_GROUP group among the groups operated in master mode.

prompt> cyclone --master --stop --group TEST_GROUP

● It sets the TEST_CONFIG file in slave mode and executes it.

prompt> cyclone --slave --start --conf TEST_CONFIG

● It encrypts GOLDILOCKS user password.

prompt> cyclone --encrypt test --key 1234

Cyclone Encrypted Passwd : 'YFH+bpBPNvk='

● USER_ENCRYPT_PW is set in the config.

Operating | 3,605

prompt> cyclone --master --start --key 1234

● It deletes the existing replications of master and slave, and newly starts it.

prompt> cyclone --master --start --reset all

prompt> cyclone --slave --start --reset all

● It deletes the existing replications of only the tables T1, T2 in master, and starts it newly from the curr

ent point.

prompt> cyclone --master --start --reset 'T1, T2'

prompt> cyclone --slave --start

● It displays the current replication status per each table on master side.

prompt> cyclone --master --info --group GROUP1

==

GROUP NAME = GROUP1

==

SCHEMA NAME : PUBLIC

TABLE NAME : T1 (GIVE-UP (DDL-LSN:129541))

PHYSICAL ID : 5299989643264

==

SCHEMA NAME : PUBLIC

TABLE NAME : T2 (ACTIVE (CAPTURE-START-LSN:128922))

PHYSICAL ID : 35549444308992

==

SCHEMA NAME : PUBLIC

TABLE NAME : T3 (ACTIVE (CAPTURE-START-LSN:128922))

PHYSICAL ID : 35558034243584

==

SCHEMA NAME : PUBLIC

TABLE NAME : T4 (ACTIVE (CAPTURE-START-LSN:128922))

PHYSICAL ID : 35566624178176

==

TOTAL COUNT : 4

GIVE-UP COUNT : 1

==

3,606 | CYCLONE

Note

For more information about examples of adding/deleting node or group, refer to Adding and Del

eting Nodes.

For more information about examples of initializing replication, refer to Initializing Replication.

Operating Examples | 3,607

44.5 Operating Examples

The structure of operating CYCLONE is as follows.

Figure 1 The structure of operating CYCLONE

● Device structure

○ The source device which is the original data

■ GOLDILOCKS IP : 192.168.0.10

■ GOLDILOCKS port : 22581

■ The table to be replicated: T1, T2

○ The remote target device for replication

■ GOLDILOCKS IP: 192.168.0.20

■ GOLDILOCKS port: 22581

Operating Order

1. Set the original GOLDILOCKS environment.

2. Set the remote GOLDILOCKS environment.

3. Set the CYCLONE MASTER environment.

4. Set the CYCLONE SLAVE environment.

5. Execute and operate it.

3,608 | CYCLONE

Original GOLDILOCKS Configuration

Execute all described Requirements.

Create tables T1, T2 for testing.

gSQL > CREATE TABLE T1(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL > CREATE TABLE T2(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL > COMMIT;

Remote GOLDILOCKS Configuration

Execute Registering User and Setting Privileges.

CYCLONE MASTER Configuration

● CYCLONE MASTER configuration file

○ Storing path: $GOLDILOCKS_DATA/conf/cyclone.master.conf

○ It is the source device.

• It is connected with D/A of the same device, so HOST information does not exist.

USER_ID = cdc_user

USER_PW = cdc_password

GROUP_NAME = GROUP1

{

PORT = 21102

CAPTURE_TABLE =

(

T1,

T2

)

}

Operating Examples | 3,609

CYCLONE SLAVE Configuration

● CYCLONE SLAVE configuration file

○ Storing path: $GOLDILOCKS_DATA/conf/cyclone.slave.conf

○ It is the target device.

● It is connected with D/A of the same device, but HOST_IP and HOST_PORT are used for SYNC.

USER_ID = cdc_user

USER_PW = cdc_password

HOST_IP = 192.168.0.20

HOST_PORT = 22581

GROUP_NAME = GROUP1

{

PORT = 21102

APPLY_TABLE =

(

T1 TO T1,

T2 TO T2

)

}

Executing and Operating

● Execute CYCLONE master.

○ It should be executed in the source device.

cyclone --master --start --conf $GOLDILOCKS_DATA/conf/cyclone.master.conf

● Execute CYCLONE SLAVE.

○ It should be executed in the target device.

cyclone --slave --start --conf $GOLDILOCKS_DATA/conf/cyclone.slave.conf

3,610 | CYCLONE

Synchronizing Data

● Synchronizing data

○ It copies all data from the master to the slave, and it performs the replication.

○ It copies the table data in the master to be replicated to the table in the slave when performing d

ata synchronization.

● It should be performed after giving --sync option to both master and slave when starting the operatio

n.

○ --sync all is used to sync all tables, and --sync TABLE_NAME is used to sync a specific table.

■ The table name of master is described in TABLE_NAME. (The table name of master should be

described in TABLE_NAME even when it is operated in slave.)

● HOST_IP (or HOST_EXTERNAL_IP) and HOST_PORT should be set in CONFIG or odbc.ini of slave thou

gh it is D/A.

Note

● If there is data in the slave table participating in the replication, data synchronization may not

be properly performed due to duplicated PK. Therefore, the user should manually delete the d

ata from the slave table before data synchronization.

● When data synchronization is performed by using the --sync option, the previous information

of replication is deleted. In other words, the --reset option is internally forced to be set when

using the --sync option.

● Cyclone which is operated as master directly connects to GOLDILOCKS which is operated as sl

ave and it performs the data synchronization.

● Execute CYCLONE master

○ It should be executed in the source device.

cyclone --master --start --conf $GOLDILOCKS_DATA/conf/cyclone.master.conf --sync all

● Execute CYCLONE SLAVE

○ It should be executed in the target device.

cyclone --slave --start --conf $GOLDILOCKS_DATA/conf/cyclone.slave.conf --sync --all

● The following is an example of a sync error.

○ It is recommended to delete the data from tables od slave to prevent an error.

Operating Examples | 3,611

○ Execute MASTER.

gSQL> CREATE TABLE T1(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL> INSERT INTO T1 VALUES(1, 'HELLO');

○ Execute SLAVE.

gSQL> CREATE TABLE T1(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL> INSERT INTO T1 VALUES(1, 'BYE');

○ Execute MASTER.

cyclone --master --start --sync all

○ Execute SLAVE.

cyclone --slave --start --sync all

SLAVE cyclone log

[RECEIVER] start the data synchronization.

[RECEIVER] Error Occurred.

STOP Done.

An error occurs and the sync does not operate due to an attempt to using the same value in the primary

key.

Initializing Replication Information

● Initializing replication information

○ It restarts the replication from current point for the entire table or a specific table participating in

the replication.

○ It is performed by using the --reset TABLE_NAME option or the --reset ALL option.

● Differences of between master and slave when performing the --reset option

○ Master stores table information and column information participating in the replication as meta. I

f RESET is performed in master by using the --Reset ALL option or the Reset Table_name option, i

t removes the meta in the table and configures meta again by using the information at the curre

nt point.

■ The --reset option should be performed in master to replicate again the table which is given

up during the replication performing DDL.

○ The slave stores the information for recovery when restating the replication. --reset All or --reset

TABLE_NAME should be described when executing slave as same as when executing master.

3,612 | CYCLONE

Note

● Add the --reset ALL option to initialize all tables participating in the replication when performi

ng master/ slave.

prompt> cyclone --master --start --reset ALL

prompt> cyclone --slave --start --reset ALL

● Add the --reset TABLE_NAME option when performing master to initialize the replication info

rmation of a specific table.

○ The table name of when performing slave should be as same as that of when performing

master.

prompt> cyclone --master --start --reset T1

prompt> cyclone --slave --start

● A single quote (') should be used to initialize two or more tables.

prompt> cyclone --master --start --reset 'T1 T2'

prompt> cyclone --master --start --reset 'T1, T2'

Recovery

● When using recovery,

○ It is used when handing over the replication to another cluster member in the same group and pr

oceeding it, due to an error of master while the replication is being processed by using a standalo

ne option in cluster environment.

○ It is performed with --recovery GROUP_NAME in master, and GROUP_NAME describes the group

name of slave which previously performed the replication.

Note

The process of resetting the replication information

1. Replicate with G1N1 member (standalone) in cluster environment.

prompt> cyclone --master --start --reset ALL --group g1n1_master --stand-alone

Operating Examples | 3,613

prompt> cyclone --slave --start --reset ALL --group g1n1_slave

2. Stop operating the existing cyclone to stop the cluster member or to hand over the service.

prompt> cyclone --master --stop

prompt> cyclone --slave --stop

3. Service the new replication (G1N2) by using the information of the existing replication. (G1N1)

prompt> cyclone --master --start --reset all --group g1n2_master --stand-alone --recovery g1n1_sl

ave

prompt> cyclone --master --start --reset all --group g1n2_slave

3,614 | CYCLONE

44.6 Operating CYCLONE in Cluster

Requirements

● It provides a method to replicate members in the same cluster group in cluster environment.

○ Master and slave are operated in a relationship of 1 : 1 in standalone environment.

○ Master and slave are operated in a relationship of N: 1 in cluster environment.

● Available environment

○ Master should be cluster environment. (It is automatically detected.)

○ Slave can be either standalone or cluster environment.

● The status of master connected to slave is called as a node.

Note

1. Master connecting to a slave should be a member in the same cluster group.

○ If it is a member of another cluster group, it should be operated in another slave.

2. If master is cluster environment, CYCLONE is basically operated in cluster mode, and --stand-

alone option should be used to operate CYCLONE in standalone mode.

○ --stand-alone option is used only when performing master.

○ If the cluster information of master is described by adding CLUSTER option to configuratio

n file, then slave is operated in cluster mode.

Operating

Starting and Terminating

● The time of terminating master and slave are different each in standalone environment and in cluster

environment.

○ Standalone environment

■ If master is terminated, then slave is automatically terminated.

■ If slave is terminated, master is switched to an idle state but it is not terminated.

○ Cluster environment

■ Even when master is terminated, slave is not terminated. If another master is already connect

ed, then the replication proceeds. If any master is not connected, slave is switched to an idle

state.

Operating CYCLONE in Cluster | 3,615

■ If slave is terminated, all connected masters are automatically terminated.

Node Type

In cluster environment, CYCLONE classifies master connecting to slave into a trust node and a non-trust n

ode.

Table 44-7 Node in cluster environment

Node Description Replication

Trust node It is a node all of whose tables participating in replication are online. O

Non-trust node
It is a node one or more of whose tables participating in replication are offli

ne.
X

Operation According to Node Status

● Switching from a non-trust node to a trust node

○ It is executed when all tables are switched to online by rebalancing the cluster member while an

offline table exists.

○ The node is automatically switched from a non-trust node to a trust node, and participates in repl

ication.

● Switching from a trust node to a non-trust node

○ It is executed when a table being replicated in another cluster member in operation is altered whi

le the cluster member is terminated and is not operated.

○ A non-trust node is automatically altered when a cluster member joins, and it is excluded from re

plication.

Note

● The replication is maintained when one or more trust nodes exist among masters participatin

g in the replication.

● A trust node is not restricted to a specific node, and any node is allowed regardless of node ty

pes.

● If all masters participating in replication becomes non-trust nodes, the replication does not pr

oceed any more, and the replication does not start again even when they become trust nodes.

● At least one or more trust nodes are required to proceeds the replication in cluster environme

nt.

3,616 | CYCLONE

Executing

Configuration File

The configuration file of master is as same as that of standalone.

The following is an example of configuring G1N1 master environment, and IP of that device is assumed a

s 192.168.0.10.

● There is nothing to alter for master even in cluster environment.

USER_ID = cdc_user

USER_PW = cdc_password

GROUP_NAME = G1N1_Master

{

PORT = 21011

CAPTURE_TABLE =

(

T1,

T2

)

}

The following is an example of configuring G1N2 master environment, and IP of that device is assumed a

s 192.168.0.20.

● There is nothing to alter for master even in cluster environment.

USER_ID = cdc_user

USER_PW = cdc_password

GROUP_NAME = G1N2_Master

{

PORT = 21012

CAPTURE_TABLE =

(

T1,

T2

)

}

Operating CYCLONE in Cluster | 3,617

CLUSTER is added to the configuration file of slave to describe the information of master.

● CLUSTER consists of ID, MASTER_IP, and PORT. (The sequence does not matter.)

○ ID is input in numbers, and it is used as an internal delimiter to distinguish master in slave. Once i

t is set, it can not be altered. (If it is altered, it is recognized as a different master.)

○ MASTER_IP is IP in which CYCLONE MASTER is operated in CLUSTER member.

○ PORT is a PORT in which CYCLONE MASTER is operated in CLUSTER member.

● The information of a CLUSTER is described in parentheses, and it is distinguished by a comma (,) bet

ween parentheses.

MASTER_IP, PORT which are the master information of CLUSTER are described in CLUSTER configuration.

USER_ID = cdc_user

USER_PW = cdc_password

GROUP_NAME = G1_Slave

{

CLUSTER = (ID = 1, MASTER_IP = 192.168.0.10, PORT = 21011),

(ID = 2, MASTER_IP = 192.168.0.20, PORT = 21012)

APPLY_TABLE =

(

T1 TO T1,

T2 TO T2

)

}

Executing Method

Executing in Master

• It is executed in G1N1.

cyclone --master --start --conf $GOLDILOCKS_DATA/conf/cyclone.master.conf --group G1N1_Master

● It is executed in G1N2.

cyclone --master --start --conf $GOLDILOCKS_DATA/conf/cyclone.master.conf --group G1N2_Master

Executing in Slave

cyclone --slave --start --conf $GOLDILOCKS_DATA/conf/cyclone.slave.conf --group G1_Slave

3,618 | CYCLONE

SYNC Method

Executing Master

It is executed in G1N1. (It is master of which SYNC is to be executed, and it uses --sync option.)

cyclone --master --start --conf $GOLDILOCKS_DATA/conf/cyclone.master.conf --sync all

Executing Slave

cyclone --slave --start --conf $GOLDILOCKS_DATA/conf/cyclone.slave.conf --sync all

Note

--local option should be used when syncing if a sharded table participates in the replication. It is b

ecause the data of a sharded table exists only in each cluster group, and data in other cluster grou

ps are synchronized when executing sync without --local option. However, if all tables participatin

g in the replication in cluster environment are cloned tables, then --local option does not need to

be used.

Others

--reset option can be used as same as it is used in standalone environment.

Monitoring (CYMON) | 3,619

44.7 Monitoring (CYMON)

CYMON (CYclone MONitor) is a tool for monitoring CYCLONE which is a CDC replication tool. It periodic

ally updates the monitoring information of CYCLONE to GOLDILOCKS operated as master.

Table 44-8 Execution files

File name Description

cymon Monitoring cyclone

Configuration File

The configuration file of cymon uses the configuration file used when running cyclone as master. If a spe

cific configuration file is not set by using the --conf option, the $GOLDILOCKS_DATA/conf/cyclone.maste

r.conf file is read as the default when cyclone is run as master.

Note

CYMON should be run on the device which is as same as the device of which CYCLONE runs as m

aster.

Monitoring Contents

CYMON

CYMON periodically updates the operating information of CYCLONE to the CYCLONE_MONITOR_INFO t

able of GOLDILOCKS. The monitoring information is as follows.

Table 44-9 CYCLONE_MONITOR_INFO

Column Description

GROUP_NAME It is the name of a group in which CYCLONE was executed.

TIME
It is the information of time at which the information was updated. (YYYY-MM-DD H

H24:MI:SS)

MASTER_STATE

It is the state of CYCLONE which is operated as MASTER.

● N/A: The state is unknown.

● READY: It is waiting for connection of SLAVE

3,620 | CYCLONE

● RUNNING: SLAVE is connected and the replication is running.

SLAVE_STATE

It is the state of CYCLONE which is operated as SLAVE.

● N/A: The state is unknown.

● RUNNING: The replication is running.

MASTER_PORT
It is the information of PORT on which CYCLONE operated in MASTER is waiting for sl

ave.

SLAVE_IP It is an IP address of the device connected with CYCLONE SLAVE.

REDO_LOG_FILESEQ It is the sequence number of the redo log file of the running GOLDILOCKS.

REDO_LOG_BLOCKSEQ It is the block sequence number of the redo log file of the running GOLDILOCKS.

CAPTURE_FILESEQ It is the sequence number of the redo log file captured by CYCLONE master.

CAPTURE_BLOCKSEQ It is the block sequence number of the redo log file captured by CYCLONE master.

CAPTURE_INTERVAL

It is the number of the remaining redo log blocks to be processed by CYCLONE maste

r

● 1 block = 512 bytes (Redo log block size = 512 bytes)

CAPTURE_INTERVAL_SIZE It is the size of the remaining redo log files to be processed by CYCLONE master.

TOTAL_TX_COUNT It is the number of all transactions captured by CYCLONE master.

CAPTURE_TX_COUNT
It is the number of all transactions in which the replication targets are included amon

g the transactions captured by CYCLONE master.

CAPTURE_COMMIT_LSN
It is the commit log number of the last transaction which was captured in CYCLONE

master. It is not updated if there is not a transaction to be captured any more.

Column Description

Note

INTERVAL information is the CAPTURE information for analyzing the redo log file of CYCLONE op

erated as master, and it is not the information reflected by APPLIER in CYCLONE SLAVE.

Executing and Monitoring

Executing Option

Table 44-10 Executing option

Option Description Remarks

--conf | -c It sets the configuration file path.

It is input in --conf CONFIG FILE format.

● It should set the file as same as the configuration

file used when running CYCLONE as master.

--start | -s It executes CYMON. -

--stop | -t It terminates CYMON. -

Monitoring (CYMON) | 3,621

--status | -u
It displays the operating status of CY

MON.
-

--cycle | -y
It sets the update cycle of monitoring i

nformation.

It is input in --cycle X format.

● It should be entered in seconds.

--key | -k
It sets the decryption key when USER_

ENCRYPT_PW is used in config.
-

--trace | -r

It simultaneously records the monitori

ng information of capture on the trac

e log.

The trace log is recorded in $GOLDILOCKS_DATA/trc/c

ymon.trc.

--silent | -i It sets not to output the message. -

--help | -h It outputs the help message. -

Option Description Remarks

Examples

● Execute CYMON (Update the monitoring information of cyclone_monitor_info table.)

○ Executes CYMON to update the monitoring information per second. It continuously updates the i

nformation until terminating CYMON.

cymon --start --cycle 1

● View the monitoring information

gSQL> \set vertical on

gSQL> select * from cyclone_monitor_info;

GROUP_NAME # GROUP1

TIME # 2015-01-13 17:34:53

MASTER_STATE # READY

SLAVE_STATE # N/A

MASTER_PORT # 21102

SLAVE_IP # null

REDO_LOG_FILESEQ # 0

REDO_LOG_BLOCKSEQ # 52392

CAPTURE_FILESEQ # 0

CAPTURE_BLOCKSEQ # 0

CAPTURE_INTERVAL # 0

CAPTURE_INTERVAL_SIZE # 0

○ The information above describes that only CYCLONE MASTER is being operated and SLAVE is wa

iting.

3,622 | CYCLONE

gSQL> \set vertical on

gSQL> select * from cyclone_monitor_info;

GROUP_NAME # GROUP1

TIME # 2015-01-13 17:36:17

MASTER_STATE # RUNNING

SLAVE_STATE # RUNNING

MASTER_PORT # 21102

SLAVE_IP # 127.0.0.1

REDO_LOG_FILESEQ # 0

REDO_LOG_BLOCKSEQ # 52811

CAPTURE_FILESEQ # 0

CAPTURE_BLOCKSEQ # 52811

CAPTURE_INTERVAL # 0

CAPTURE_INTERVAL_SIZE # 0

○ The information above describes that CYCLONE MASTER and SLAVE are being operated.

● Execute CYMON (Store the monitoring information in trace log)

○ The monitoring information is stored not only in amonitoring table but also in a trace log since w

hen CYMON is normally executed with master.

○ Generally, it is used when unable to view cyclone_monitor_info table due to an error of the mast

er DB. In this case, the information of master DB such as information of REDO_LOG_FILESEQ and

REDO_LOG_BLOCKSEQ are not included.

○ Trace log is in $GOLDILOCKS_DATA/trc/cymon.trc.

cymon --start --trace

● View the monitoring information (When using --trace option)

○ It stores the monitoring information since when the cyclone master is normally executed.

GROUP_NAME TIME MASTER_STATE SLAVE_STATE MASTER_PORT SLAVE_IP

CAPTURE_FILESEQ CAPTURE_BLOCKSEQ TOTAL_TX_COUNT CAPTURE_TX_COUNT CAPTURE_COMMIT_LSN

------------------ ------------------- ------------ ------------ ----------- ---------------

--------------- ---------------- -------------- ---------------- ----------------

GROUP1 2016-11-02 15:43:03 READY N/A 21102 null

0 0 0 0 0

GROUP2 2016-11-02 15:43:03 READY N/A 21103 null

0 0 0 0 0

○ The information above describes that only CYCLONE MASTER is being operated and SLAVE is wa

iting.

Monitoring (CYMON) | 3,623

GROUP_NAME TIME MASTER_STATE SLAVE_STATE MASTER_PORT SLAVE_IP

CAPTURE_FILESEQ CAPTURE_BLOCKSEQ TOTAL_TX_COUNT CAPTURE_TX_COUNT CAPTURE_COMMIT_LSN

------------------ ------------------- ------------ ------------ ----------- ---------------

--------------- ---------------- -------------- ---------------- ------------------

GROUP1 2016-11-02 15:43:11 RUNNING RUNNING 21102 192.168.0.206

7 52779 0 0 15346

GROUP2 2016-11-02 15:43:11 READY N/A 21103 null

0 0 0 0 0

○ The information above describes that CYCLONE MASTER (group1) and SLAVE are being operate

d.

● View the operating status of CYMON

$ cymon --status

======================================

| CYMON STATUS |

======================================

| Service is running... |

● Terminate CYMON

$ cymon --stop

stop done.

LOGMIRROR

45.

3,625

3,626 | LOGMIRROR

45.1 LOGMIRROR

LOGMIRROR is a replication tool which copies the redo logs generated by GOLDILOCKS to the remote loc

ation for the configuration of the same redo log file.

Overview

CYCLONE, using the CDC method, analyzes and replicates the redo log file generated during the operatio

n of GOLDILOCKS. Therefore, if the operating server is failed when analysis of the redo log file is not com

pleted, then unanalyzed redo log file is not replicated and the data is lost.

However, if the redo logs are sent to a remote location without data loss and the redo log file is configur

ed by using LOGMIRROR, then this problem of CYCLONE can be solved.

LOGMIRROR is a tool for eliminating the data loss which is caused because CYCLONE uses the ASYNC m

ethod, and it should work together with CYCLONE.

Operational Features

● It is performed being divided into master and slave. Only one LOGMIRROR per GOLDILOCKS is allowe

d to be operated.

● Master and slave can use the TCP/ IP and infiniband communication.

○ Network speed significantly affects the GOLDILOCKS operation speed.

● The replication target is the redo log file of GOLDILOCKS.

● The original database should be operated in Transactional Data Store (TDS) mode.

○ LOGMIRROR has the same operational characteristics of CYCLONE because it should be operated

together with CYCLONE.

Performance Degradation Factors of GOLDILOCKS When Ope

rating LOGMIRROR

LOGMIRROR sends the redo logs generated by GOLDILOCKS to the remote location before storing them i

n the file, then processes the next after it is normally processed. Therefore, the network speed between t

he replication devices is an important factor of the performance, and it can cause performance degradati

on than GOLDILOCKS operated without LOGMIRROR. However, the high speed infiniband is supported t

LOGMIRROR | 3,627

o minimize the performance degradation.

3,628 | LOGMIRROR

45.2 Requirements

GOLDILOCKS Requirement

The followings should be set in GOLDILOCKS before performing LOG MIRROR.

LOG_MIRROR_MODE

The LOG_MIRROR_MODE property is set to use LOGMIRROR in GOLDILOCKS. When it is activated, the re

sources which temporarily store the redo logs generated by GOLDILOCKS before LOGMIRROR sends the

m to a remote location are allocated.

● If the LOG_MIRROR_MODE property is changed, it is applied after restarting GOLDILOCKS.

● The changes are added or reflected in the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: LOG_MIRROR_MODE = 1

Or, the following statement is executed in gSQL.

gSQL> ALTER SYSTEM SET LOG_MIRROR_MODE=1 SCOPE=FILE;

System altered.

LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE

LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE sets the temporary storage space used by LOGMIRROR.

● It is a temporary storage space used before storing redo log file from redo log buffer.

○ The set value is related to MAXIMUM_FLUSH_LOG_BLOCK_COUNT used when storing the redo l

og file.

● The default value is 100 M.

○ The minimum value is 10 M, and the maximum value is 1 G.

○ Too small set value can affect the performance.

● If LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE property is changed, then it is applied after the G

OLDILOCKS is restarted.

● The changes are added or reflected in the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE = the set value

Or, the following statement is executed in gSQL.

Requirements | 3,629

gSQL> ALTER SYSTEM SET LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE = 200M SCOPE=FILE;

System altered.

LOG_MIRROR_TIMEOUT

When interworking with LOGMIRROR, GOLDILOCKS includes the step of waiting for the response from L

OG MIRROR. Too slow response causes the degradation of GOLDILOCKS performance. LOG_MIRROR_TI

MEOUT sets the response time so when there is not any response after the time is over, LOGMIRROR sto

ps the service, but only the GOLDILOCKS continues the service.

When restarting LOGMIRROR to perform LOGMIRROR again, it is normally operated after the recovery pr

ocess.

● The default value is '0'.

○ 0 refers to an infinite waiting.

○ It can be set in seconds.

● If LOG_MIRROR_TIMEOUT property is changed, it is immediately reflected.

● The changes are added or reflected in the property file.

○ Property file: goldilocks.properties.conf

○ Property setting: LOG_MIRROR_TIMEOUT = the set value

Or, the following statement is executed in gSQL.

gSQL> ALTER SYSTEM SET LOG_MIRROR_TIMEOUT = 20;

System altered.

Note

The GOLDILOCKS requirements for operating CYCLONE should also be applied.

3,630 | LOGMIRROR

45.3 Configuration

Configuration File

The information and options required for the operation can be set by using the configuration file when e

xecuting LOGMIRROR.

● If a specific configuration file is not set by using the --conf option, a specific file is read at $ GOLDILO

CKS_DATA / conf directory. The logmirror.master.conf file is read when operating as master and the l

ogmirror.slave.conf file is read when operating as slave.

Table 45-1 Configuration contents

Name Description Coverage

PORT It sets the port to be used for the communication between master and slave. Master/ slave

DSN It sets Data Source Name. Master

HOST_IP It sets the host IP address which is operated by GOLDILOCKS. Master

HOST_PORT It sets the host port which is operated by GOLDILOCKS. Master

USER_ID It sets the user name. Master

USER_PW It sets the user password. Master

USER_ENCRYPT_

PW
It sets encrypted user password. Master/ slave

LOG_PATH It sets the path in which the replicated redo log file is to be stored. Slave

MASTER_IP
It sets the IP address of the device which is being operated by the log mirror

master.
Slave

HEARTBEAT_TIM

EOUT

It sets the maximum time (second) maintaining connection if the connectio

n is not smooth due to network disconnection or system error after replicati

on connection.

Master/ slave

TCP_NODELAY

It sets TCP_NODELAY option of a socket. (The default value is 1.)

● 0: TCP_NODELAY off

● 1: TCP_NODELAY on

Master

Configuration Options

PORT

● It sets the port used for the communication between master and slave.

● It can be set in master and slave.

Configuration | 3,631

PORT=21106

DSN

● It sets the data source name required for the access to GOLDILOCKS.

● It can be set in master.

DSN = GOLDILOCKS

HOST_IP

● It sets the IP address of GOLDILOCKS in which LOGMIRROR is to be operated.

● It should be set together with HOST_PORT.

● It can be set in master.

HOST_IP = 127.0.0.1

HOST_PORT

● It sets the port of GOLDILOCKS on which LOGMIRROR is to be operated.

● It should be set together with HOST_IP.

● It can be set in master.

HOST_PORT = 22531

USER_ID

● It sets the user ID required for the access to GOLDILOCKS.

● It can be set in master.

USER_ID = testID

USER_PW

● It sets the user password required for the access to GOLDILOCKS.

● It can be set in master.

3,632 | LOGMIRROR

USER_PW = testPW

USER_ENCRYPT_PW

● It sets the user password which is required for the access to GOLDILOCKS by encrypting.

● It is used instead of USER_PW.

● Encrypted user password is created by [logmirror --encrypt user password --key the key to be encrypt

ed].

● If this value is used, then --key option should be used when executing logmirror. (In this case, the key

value as same as that created with --encrypt should be used.

USER_ENCRYPT_PW = 't33KImiqvhqNyfN+uZmFrw=='

LOG_PATH

● It sets the path in which the replicated redo log file is to be stored.

○ The set path should be an absolute path.

○ The path is set by using a single quote (') .

● It can be set in slave.

LOG_PATH = '/data/wal'

MASTER_IP

● It sets the IP address of the device of which LOGMIRROR master is operating.

● It can be set in slave.

MASTER_IP = 192.168.0.100

HEARTBEAT_TIMEOUT

● It can be set in master and slave.

● It sets the maximum time (second) maintaining connection if the connection is not smooth due to ne

twork disconnection or system error after replication connection between master and slave.

● The default value is 30 (seconds).

○ The minimum value is 10 (seconds).

HEARTBEAT_TIMEOUT = 40

Configuration | 3,633

TCP_NODELAY

● It is used only in master.

● It sets TCP_NODELAY option for the LogMirror transfer socket.

○ 0: It offs the socket TCP_NODELAY option.

○ 1: It ons the socket TCP_NODELAY option. (Default)

TCP_NODELAY = 1

3,634 | LOGMIRROR

45.4 Operating

The executing environment of master/ slave of LOGMIRROR is as follows.

Table 45-2 Executing environment

Item

Whether to

operate

GOLDILOCKS

Description

Master O
When operating as master, LOGMIRROR should be operated at the device i

n which GOLDILOCKS is operated.

Slave X
When operating as slave, GOLDILOCKS is not required to be operated and t

he storage space in the disk is required to store the redo log file.

The operating contents during the execution can be viewed through a trace log.

Item File

Master $GOLDILOCKS_DATA/trc/LogMirror_master.trc

Slave $GOLDILOCKS_DATA/trc/LogMirror_slave.trc

Note

For more information about the error messages and handlings stored in the trace log, refer to Tro

ubleshooting of LOGMIRROR.

Operating LOGMIRROR

LOGMIRROR can normally replicates the redo log file only when the following procedures should be com

pleted even after the GOLDILOCKS configuration, initializing and operating master/ slave.

Note

SWITCH of the redo log file should occur to start the replication. LOGMIRROR starts the normal o

peration after generating the new log file. Therefore, the following step should be performed.

Operating | 3,635

gSQL> ALTER SYSTEM SWITCH LOGFILE;

System altered.

Note

The redo log file replicated by LOGMIRROR is continuously stored, and it is not automatically delet

ed. Therefore, the file management such as deleting or moving is regularly required according to t

he environment of the operating device.

Executing Option

Table 45-3 Execution options

Option Description Remarks

--start | -s It executes LOGMIRROR. It should be used together with --master | --slave.

--stop | -t It terminates LOGMIRROR. It should be used together with --master | --slave.

--master | -m It is performed in master mode. It should be used together with --start | --stop.

--slave | -l It is performed in slave mode. It should be used together with --start | --stop.

--conf | -c It sets the configuration file path. It is input in --conf CONFIG_FILE format.

--infiniband | -f It uses infiniband network environment. It is not input when using TCP/IP environment.

--silent | -i It sets not to output the message. -

--help | -h It sets to output the help message. -

● Execute it in master mode by using the default configuration file.

prompt> logmirror --master --start

● Terminate the LOGMIRROR which is being operated in master mode.

prompt> logmirror --master --stop

● Execute it in slave mode by using the default configuration file.

prompt> logmirror --slave --start

● Terminate the LOGMIRROR which is being operated in slave mode.

prompt> logmirror --slave --stop

3,636 | LOGMIRROR

● Execute it in master mode by using TEST_CONFIG file and infiniband network.

prompt> logmirror --master --start --conf TEST_CONFIG --infiniband

● Execute it in slave mode by using TEST_CONFIG file and infiniband network.

prompt> logmirror --slave --start --conf TEST_CONFIG --infiniband

Note

For examples of initializing LOGMIRROR, refer to LOGMIRROR.

Examples of Interworking with CYCLONE | 3,637

45.5 Examples of Interworking with CYCLONE

Interworking of CYCLONE, the CDC replication tool, with LOGMIRROR, the replication tool of the redolo

g file, eliminates the risk of data loss.

Tool Function Interworking

CYCLONE Replication of CDC If it is independently operated it may cause the data loss.

LOGMIRROR Replication of REDO LOG FILE If it is operated together it does not cause the data loss.

The following describes the examples of interworked operation, and its structure.

Figure 1 Example of operating structure

● Device structure

○ The source device which is the original data

■ IP: 192.168.0.10

■ GOLDILOCKS listen port: 22581

■ The table to be replicated: T1, T2

● The remote target device for replication

○ IP: 192.168.0.20

● Two devices executes interworking between LOGMIRROR and CYCLONE for the replication without

3,638 | LOGMIRROR

data loss.

○ Source device: LOGMIRROR (master)

○ Target device: LOGMIRROR (slave) + CYCLONE (master, slave)

Operating Order

1. Set the configuration of CYCLONE and LOGMIRROR in the original GOLDILOCKS.

2. Set the configuration of LOGMIRROR MASTER/SLAVE.

3. Execute LOGMIRROR MASTER/SLAVE.

4. Perform LOG FILE SWITCH of the original GOLDILOCKS for the normal operation of LOGMIRROR.

5. Set the remote GOLDILOCKS configuration.

6. Set the CYCLONE MASTER/SLAVE configuration.

7. Execute CYCLONE MASTER/SLAVE.

Configuring CYCLONE and LOGMIRROR in Original GOLDILOCKS

Refer to the followings.

• CYCLONE configuration: Requirements

• LOGMIRROR configuration: Requirements

Create the tables T1, T2 for a test after the configuration.

gSQL > CREATE TABLE T1(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL > CREATE TABLE T2(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL > COMMIT;

Configuring LOGMIRROR MASTER/SLAVE

● LOGMIRROR MASTER configuration file

○ Storage location: $GOLDILOCKS_DATA/conf/logmirror.master.conf

○ It is the source device.

Note

LOG MIRROR MASTER should be operated on the device in which the original GOLDILOCKS is op

erated.

Examples of Interworking with CYCLONE | 3,639

● Enter DSN or HOST information. HOST information is entered in the following example.

HOST_IP = 192.168.0.10

HOST_PORT = 22581

● Use CYCLONE USER created in the previous step.

USER_ID = cdc_user

USER_PW = cdc_password

● Set the PORT to be used for LOGMIRROR communication.

PORT = 21106

● LOGMIRROR SLAVE configuration file

○ Storage path: $GOLDILOCKS_DATA/conf/logmirror.slave.conf

○ It is the target device.

● Enter the IP address of the device in which LOG MIRROR MASTER is being operated.

MASTER_IP = 192.168.0.10

● The PORT which is as same as LOGMIRROR MASTER should be entered.

PORT = 21106

● Enter the absolute path in which the replicated redo log file is to be stored.

LOG_PATH = '/data/LogMirrorWAL'

Executing LOGMIRROR MASTER/ SLAVE

● Execute LOGMIRROR MASTER.

○ It should be executed in the source device.

logmirror --master --start --conf $GOLDILOCKS_DATA/conf/logmirror.master.conf

● Execute LOGMIRROR SLAVE.

○ It should be executed in the target device.

logmirror --slave --start --conf $GOLDILOCKS_DATA/conf/logmirror.slave.conf

3,640 | LOGMIRROR

Executing LOGFILE SWITCH of Original GOLDILOCKS for Normal Oper

ation of LOGMIRROR

● LOGFILE SWITCH for starting to record LOGMIRROR file.

○ It should be executed in the source device.

gSQL> ALTER SYSTEM SWITCH LOGFILE;

Note

When it is executed as above, the redo log file is generated in the path set in the SLAVE device. If

the redo log file is not generated, a user should check the directory privilege or check whether the

directory is created.

Configuring Remote GOLDILOCKS

It is required to check the table configuration for the normal operation and replication of GOLDILOCKS o

perated on the target device, and check the schema information.

The tables T1, T2 are created for test as follows.

gSQL > CREATE TABLE T1(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL > CREATE TABLE T2(COL1 INTEGER PRIMARY KEY, COL2 VARCHAR(20));

gSQL > COMMIT;

Configuring CYCLONE MASTER/ SLAVE

● CYCLONE MASTER configuration file

○ Storage path: $GOLDILOCKS_DATA/conf/cyclone.master.conf

○ It is the target device.

● Enter DSN or HOST information of the source device. HOST information is entered in the following ex

ample.

HOST_IP = 192.168.0.10

HOST_PORT = 22581

● Use CYCLONE USER

Examples of Interworking with CYCLONE | 3,641

USER_ID = cdc_user

USER_PW = cdc_password

GROUP_NAME = GROUP1

{

PORT = 21102

CAPTURE_TABLE =

(

T1,

T2

)

}

● CYCLONE SLAVE configuration file

○ Storage path: $GOLDILOCKS_DATA/conf/cyclone.slave.conf

○ It is the target device.

● Connect to GOLDILOCKS which is operated in the target device with D/A. (Therefore, DSN and HOST

information does not exist.)

USER_ID = cdc_user

USER_PW = cdc_password

● CYCLONE master is being operated on the same device.

MASTER_IP = 192.168.0.20

GROUP_NAME = GROUP1

{

● Enter the path set by LogMirror slave.

LOG_PATH = '/data/LogMirrorWAL'

PORT = 21102

APPLY_TABLE =

(

T1 TO T1,

T2 TO T2

}

}

3,642 | LOGMIRROR

Executing CYCLONE MASTER/ SLAVE

● Execute CYCLONE MASTER.

○ It should be executed in the target device when it is connected with D/A.

cyclonet --master --start --conf $GOLDILOCKS_DATA/conf/cyclone.master.conf

● Execute CYCLONE SLAVE.

○ It should be executed in the target device when it is connected with D/A.

cyclone --slave --start --conf $GOLDILOCKS_DATA/conf/cyclone.slave.conf

Error Codes

Appendix A.

3,643

GOLDILOCKS provides user error codes as follows. The error messages can be viewed with V$ERROR_CO

DE.

3,644 | Error Codes

A.1 OS Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-1 OS related error

Error code SQLSTATE Message

11000 HY000 Invalid argument

11001 HY000
The operation was incomplete although some processing was performed and th

e results are partially valid

11002 HY000 Permission denied '%s'

11003 HY000 Standard Layer has encountered the end of the file

11004 HY000 Unable to duplicate a file

11005 HY000 File Lock Error

11006 HY000 File Unlock Error

11007 HY000 Unable to open the file '%s'

11008 HY000 Unable to close the file

11009 HY000 Unable to remove the file

11010 HY000 Unable to link the file

11011 HY000 Unable to read the file

11012 HY000 Unable to write the file

11013 HY000 Unable to sync the file

11014 HY000 Unable to seek the file

11015 HY000 Unable to truncate the file

11016 HY000 Unable to get the status of the file

11017 HY000 Unable to create a pipe

11018 HY000 Unable to wait for the given process

11019 HY000 Insufficient resource

11020 HY000 Unable to send signal to given process

11021 HY000 Unable to set a signal handler

11022 HY000 Unable to block a signal

11023 HY000 Unable to set thread attribute

11024 HY000 Unable to create a thread

11025 HY000 Unable to join with a terminated thread

11026 HY000 Unable to set thread once code

11027 HY000 Truncation occurred on I/O operation

11028 HY000 The given name(%s) is too long

11029 HY000 shared memory segment exists

11030 HY000 Unable to allocate a shared memory segment

OS Related Error | 3,645

11031 HY000 Unable to attach the shared memory segment

11032 HY000 Unable to detach the shared memory segment

11033 HY000 Unable to destroy the shared memory segment

11034 HY000 Unable to create a semaphore

11035 HY000 Unable to acquire the given semaphore

11036 HY000 Unable to release the given semaphore

11037 HY000 Unable to destory the given semaphore

11038 HY000 The given object was busy

11039 HY000 Operation timed out

11040 HY000 No such object (%s)

11041 HY000 Two objects do not match

11042 HY000 Not enough memory

11043 HY000 File system is full

11044 HY000 Unable to execute the program

11045 HY000 not supported function

11046 HY000 given buffer does not have enough space

11047 HY000 invalid network address

11048 HY000 sendto() system call returned failure

11049 HY000 recvfrom() system call returned failure

11050 HY000 fail to get address from socket with getsockname()

11051 HY000 fail to get peer address from socket with getpeername()

11052 HY000 fail to manipulate file descriptor with fcntl()

11053 HY000 fail to manipulate socket descriptor with setsockopt()

11054 HY000 not implemented feature

11055 HY000 fail to manipulate device parameters of special file with ioctl()

11056 HY000 fail to get hostname

11057 HY000 fail to close a socket

11058 HY000 fail to shutdown a socket

11059 HY000 fail to create a socket

11060 HY000 fail to get property of a file descriptor

11061 HY000 fail to set property of a file descriptor

11062 HY000 fail to bind a socket to address

11063 HY000 fail to listen on a socket

11064 HY000 fail to accept a connection request with a socket

11065 HY000 system call was interrupted by a signal

11066 HY000 fail to get options of a socket

11067 HY000 fail to connect to an host with a socket

11068 HY000 fail to wait for some file descriptors with poll()

11069 HY000 internal error

11070 HY000 sendmsg() system call returned failure

Error code SQLSTATE Message

3,646 | Error Codes

11071 HY000 recvmsg() system call returned failure

11072 HY000 socketpair() system call returned failure

11073 HY000 converted value is out of range (overflow or underflow)

11074 HY000 given string is not number

11075 HY000 not a valid file desciptor

11076 HY000 resource temporarily unavailable

11077 HY000 given address is already in use

11078 HY000 fail to initialize communication context

11079 HY000 fail to finalize communication context

11080 HY000 fail to connect communication context

11081 HY000 fail to poll communication context

11082 HY000 fail to write packet through communication context

11083 HY000 fail to read packet through communication context

11084 HY000 fail to send descriptor through communication context

11085 HY000 fail to receive descriptor through communication context

11086 HY000 fail to get current file path

11087 HY000 fail to open library (%s)

11088 HY000 fail to close library

11089 HY000 fail to get symbol address (%s)

11090 HY000 not supported query

11091 HY000 fail to check file (%s)

11092 HY000 input is too long

11093 HY000 system call error (function : %s, error no : %d)

11094 HY000 divide zero

11095 HY000 Unable to open a semaphore

11096 HY000 Unable to close the given semaphore

11097 HY000 Unable to unlink the given semaphore

11098 HY000 permission denied - '%s'

11099 HY000 not supported os

11100 HY000 Environment Variable "%s" is not defined.

11101 HY000 License file(%s) is not exist

11102 HY000 License is out of date. License is valid after %4d-%02d-%02d

11103 HY000 License date is expired. License is expired in %4d-%02d-%02d

11104 HY000 License core count mismatch.

11105 HY000 License key is corrupted.

11106 HY000 License host name mismatch.

11107 HY000 failed to set thread affinity.

11108 HY000 failed to create timer.

11109 HY000 failed to set timer.

11110 HY000 failed to destroy timer.

Error code SQLSTATE Message

OS Related Error | 3,647

11111 HY000 address is not given.

11112 HY000 Unable to access the message queue.

11113 HY000 A message queue exists.

11114 HY000 Unable to create a message queue.

11115 HY000 The message queue was removed.

11116 HY000 Unable to destroy the message queue.

11117 HY000 Unable to send message.

11118 HY000 Unable to receive message.

11119 HY000 No message was available in the message queue.

11120 HY000 fail to get property of a file status

11121 HY000 fail to set property of a file status

11122 HY000 infiniband ibv/rdma interface returned error

11123 HY000 no infiniband device was found

11124 HY000 cannot find specified infiniband device

11125 HY000 cannot find suitable Memory Region for specified ptr and size

11126 HY000 fail to get semaphore value

11127 HY000 fail to control pollset

11128 HY000 fail to create pollset

11129 HY000 overflow fd

11130 HY000 invalid INI file format

11131 HY000 path '%s' does not exist

11132 HY000 Unable to get maximum undo semaphores per array

11133 HY000 Unable to create a undo semaphore

11134 HY000 Unable to bind the given undo semaphore

11135 HY000 Unable to unbind the given undo semaphore

11136 HY000 Unable to get the given undo semaphore state

11137 HY000 Unable to destroy the given undo semaphore

11138 HY000 Unable to suspend asyncronous io

11139 HY000 Unable to control the shared memory segment

11140 HY000 Unable to detach a thread

11141 08S01 Communication link failure

11142 HY000 No such process

Error code SQLSTATE Message

3,648 | Error Codes

A.2 Datatype and Operation Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-2 Datatype and operation related error

Error code SQLSTATE Message

12000 HY000 failed to initialize datatype layer

12001 HYC00 not implemented feature, in a function %s

12002 22001 byte length of data greater than column length

12003 22001 character length of data greater than column length

12004 22001 data converted with truncation of fractional digits

12005 22001 conversion of data would result in loss of whole digits

12006 22018 data value is not a numeric literal

12007 22003
data is outside the range of the data type to which the number is being convert

ed

12008 22001 data is greater than 0, less than 2, and not equal to 1

12009 22003 data is less than 0 or greater than or equal to 2

12010 22001 (byte length of data)/2 is greater than column byte length

12011 22003 data value is not a hexadecimal value

12012 22008 data value is a valid timestamp literal; time portion is nonzero

12013 22018 data value is not a valid date literal or timestamp literal

12014 22008 data value is a valid timestamp literal; fractional seconds portion is nonzero

12015 22018 data value is not a valid time literal or timestamp literal

12016 22008 data value is a valid timestamp literal; fractional seconds portion truncated

12017 22018 data value is not a valid date literal or time literal or timestamp literal

12018 22015 data value is a valid interval value; the value in one of the fields is truncated

12019 22018 data value is not a valid interval literal

12020 22001 number of digits greater than column byte length

12021 22001 number of characters greater than column byte length

12022 22003 data converted with truncation of whole digits

12023 22003
data is outside the range of the data type to which the number is being convert

ed

12024 22001 data is greater than 0, less than 2, and not equal to 1

12025 22003 data is less than 0 or greater than or equal to 2

12026 22015 interval data truncated

12027 22001 byte length of data greater than column length

12028 22001 character length of data greater than column length

12029 22003 byte length of data not equal to SQL data length

Datatype and Operation Related Error | 3,649

12030 22001 column byte length is less than %d

12031 22008 data value is not a valid date

12032 22007 data value is not a valid date format

12033 22001 column byte length is less than %d

12034 22018 data value is not a valid GUID

12035 22001 column byte length is less than %d

12036 22001 data value is not a valid time

12037 22007 data value is not a valid time format

12038 22001 column byte length is between %d and character byte length

12039 22001 column byte length is less than %d

12040 22008 data value is not a valid timestamp

12041 22008 time fields are nonzero

12042 22007 data value does not contain a valid date

12043 22008 fractional seconds fields are nonzero

12044 22007 data value does not contain a valid time

12045 22008 fractional seconds fields are truncated

12046 22007 data value does not contain a valid timestamp

12047 22001 column byte length is less than character byte length

12048 22015 data value is not a valid interval literal

12049 22003 conversion resulted in truncation of whole digits

12050 22015 one or more fields of data value were truncated during conversion

12051 22001 column byte length is less than character byte length

12052 22015 data value is not a valid interval literal

12053 22003 conversion resulted in truncation of whole digits

12054 22015 one or more fields of data value were truncated during conversion

12055 01004 byte length of data greater equal than buffer length

12056 01004 character length of data greater equal than buffer length

12057 01S07 data converted with truncation of fractional digits

12058 22003 conversion of data would result in loss of whole digits

12059 22018 data is not numeric literal

12060 22003
data is outside the range of the data type to which the number is being convert

ed

12061 01S07 data is greater than 0, less than 2, and not equal to 1

12062 22003 data is less than 0 or greater than or equal to 2

12063 01S07 data value is a valid timestamp-value; time portion is nonzero

12064 22018 data value is not a valid date-value or timestamp-value

12065 01S07 data value is a valid timestamp-value; fractional seconds portion is nonzero

12066 22018 data value is not a valid time-value or timestamp-value

12067 22018 data value is not a valid date-value or time-value or timestamp-value

12068 01S07 data value is a valid interval value;truncation of one or more trailing fields

Error code SQLSTATE Message

3,650 | Error Codes

12069 22015 data value is a valid interval; leading field significant precision is lost

12070 22018 data value is not a valid interval value

12071 01004 number of whole digits is less than buffer length

12072 22003 number of whole digits is greater than buffer length

12073 01S07 data converted with truncation of fractional digits

12074 22003 conversion of data would result in loss of whole digits

12075 22003
data is outside the range of the data type to which the number is being convert

ed

12076 01S07 data is greater than 0, less than 2, and not equal to 1

12077 22003 data is less than 0 or greater than or equal to 2

12078 22003 byte length of data is greater than buffer length

12079 01S07 fractional seconds portion truncated

12080 22015 whole part of number truncated

12081 22003 buffer length is less equal than 1

12082 22003 buffer length is less than 1

12083 01004 (byte length of data)/2 is greater equal than buffer length

12084 01004 (character length of data)/2 is greater equal than buffer length

12085 01004 byte length of data is greater than buffer length

12086 01004 buffer length is between %d and character byte length

12087 22003 buffer length is less than %d

12088 22003 byte length of data is greater than buffer length

12089 22003 buffer length is less than %d

12090 22003 byte length of data is greater than buffer length

12091 01004 buffer length is between %d and character byte length

12092 22003 buffer length is less than %d

12093 22003 byte length of data is greater than buffer length

12094 01004 buffer length is between %d and character byte length

12095 22003 buffer length is less than %d

12096 01004 buffer length is between %d and character length

12097 22003 byte length of data is greater than buffer length

12098 01S07 time portion of timestamp is nonzero

12099 01S07 fractional seconds portion of timestamp is nonzero

12100 01S07 fractional seconds portion of timestamp is truncated

12101 01S07 trailing fields portion truncated

12102 22015 leading precision of target is not big enough to hold data from source

12103 22003 interval precision was a single field and truncated whole

12104 22015 interval precision was not a sigle field

12105 22003 byte length of data is greater than buffer length

12106 01004 number of whole digits is less than buffer length

12107 22003 number of whole digits is greater equal than buffer length

Error code SQLSTATE Message

Datatype and Operation Related Error | 3,651

12108 01S07 trailing fields portion truncated

12109 22015 leading precision of target is not big enough to hold data from source

12110 01S07 interval precision was a single field and truncated fractional

12111 22003 interval precision was a single field and truncated whole

12112 07006 interval precision was not a sigle field

12113 22003 byte length of data is greater than buffer length

12114 01004 number of whole digits is less than buffer length

12115 22003 number of whole digits is greater equal than buffer length

12116 22009 invalid time zone displacement value

12117 42000 invalid number of arguments

12118 42000 inconsistent datatype of function parameters: %s

12119 42000 comparison is not applicable: %s and %s

12120 42000 conversion is not applicable: from %s to %s

12121 22021 invalid character value in characterset repertoire

12122 22012 divisor is equal to zero

12123 22018 data is not boolean literal

12124 HY000 invalid argument for factorial function

12125 22027 trim set should have only one character

12126 22008 datetime field overflow

12127 HY000 invalid ROWID

12128 22019 invalid escape character

12129 HY000 invalid character set identifier

12130 HY000 invalid extract field for extract source

12131 42000 inconsistent datatypes: argument[%d] expected %s

12132 HY000 date format value exceeds maximum length (%d)

12133 HY000 date format not recognized

12134 HY000 format code appears twice

12135 HY000 %s conflicts with %s

12136 HY000 literal does not match format string

12137 HY000 input value not long enough for date format

12138 HY000 date format picture ends before converting entire input string

12139 HY000 year must be between %s and %s, and not be 0

12140 2200C missing or illegal character following the escape character

12141 HY000 not a valid month

12142 HY000 a non-numeric character was found where a numeric was expected

12143 HY000 day of month must be between 1 and last day of month

12144 HY000 not a valid day of the week

12145 HY000 day of year must be between 1 and 365 (366 for leap year)

12146 HY000 format code cannot appear in date input format

12147 HY000 BC/B.C. or AD/A.D. required

Error code SQLSTATE Message

3,652 | Error Codes

12148 HY000 julian date must be between 0 and 5373484

12149 HY000 %s may only be specified once

12150 HY000 Julian date precludes use of day of year

12151 HY000 Not enough format info buffer

12152 HY000 hour must be between %d and %d

12153 HY000 minute must be between 0 and 59

12154 HY000 second must be between 0 and 59

12155 HY000 the fractional seconds must be between 0 and 999999

12156 HY000 time zone hour must be between -14 and 14

12157 HY000 time zone minute must be between 0 and 59

12158 HY000 seconds in day must be between 0 and 86399

12159 HY000 AM/A.M. or PM/P.M. required

12160 HY000 HH24 precludes use of meridian indicator

12161 HY000 %s conflicts with use of %s

12162 HY000 invalid XID string

12163 HY000 date not valid for month specified

12164 HY000 signed year precludes use of BC/AD

12165 HY000 number format value exceeds maximum length (%d)

12166 HY000 invalid number format model

12167 HY000 cannot use %s twice

12168 HY000 cannot use %s and %s together

12169 22001 string data, right truncation

12170 HY000 argument '%d' is out of range

12171 HY000 invalid datepart for data type %s

12172 42000 maximum number of arguments exceeded

12173 42000 invalid char length units(%s): use OCTETS or CHARACTERS

12174 22023 The argument of %s function is invalid

12175 22023 The argument [%d] of %s function is invalid

12176 HY000 internal error, in a function %s

12177 HY000 not supported data type (%s)

12178 HY000 data type specifier is out of range (type : %d, range : %d to %d)

12179 HY000
precision specifier is out of range(type : %s, precision : %d, range : %d to %d

)

12180 HY000
leading precision specifier is out of range(type : %s, precision : %d, range : %d

to %d)

12181 HY000 scale specifier is out of range(type : %s, scale : %d, range : %d to %d)

12182 HY000
fractional second precision specifier is out of range(type : %s, precision : %d, r

ange : %d to %d)

12183 HY000
character length unit specifier is out of range(type : %s, character length unit :

%d, range : %d to %d)

Error code SQLSTATE Message

Datatype and Operation Related Error | 3,653

12184 HY000
interval indicator specifier is out of range(type : %s, indicator : %d, range : %d

to %d)

12185 42000 %s and %s cannot be matched

12186 0A000 not supported function %s

Error code SQLSTATE Message

3,654 | Error Codes

A.3 Resource Management Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-3 Resource management related error

Error code SQLSTATE Message

13000 HY000 Failed to initialize kernel layer

13001 HY000 kernel layer is not initialized yet

13002 HY000 Invalid argument

13003 HY000 Invalid shared memory segment type

13004 HY000 static shared memory segment is corrupted

13005 HY000 maximum number of shared memory segment num exceeded

13006 HY000 kernel layer internal error - %s

13007 42000 identifier is too long

13008 HY000 comment is too long

13009 42S02 fixed table does not exist

13010 HY000 Insufficient static area

13011 HY000 Unable to extend memory: [MAX: %ld, TOTAL: %ld, ALLOC: %ld] DESC: %s

13012 HY000 too many files are opened

13013 HY000 Property(%s) does not exist

13014 HY000 Unable to change property at this startup phase.(%s)

13015 0U000 Unable to change read-only property.(%s)

13016 22000 Invalid property value.(%s)

13017 0U000 Specified property cannot be modified.(%s)

13018 22000 Specified property cannot be modified with this SCOPE option.(%s)

13019 22000 Specified property cannot be modified.(%s)

13020 22000 Invalid GOLDILOCKS_DATA Directory

13021 22000 Invalid SID

13022 HY004 Invalid property data type

13023 22000 Invalid Property ID

13024 HY000 exceeded maximum number of processes

13025 HY000 File does not exist (%s)

13026 HY000 File exist (%s)

13027 HY000 File Process Error

13028 HY000 Property is not ReadOnly

13029 HY000 ReadOnly Property Already Setted

13030 HY000 Property File Parsing Error Line (%d)

13031 0A000 Unsupported return type is used

Resource Management Related Error | 3,655

13032 0A000 Function does not exist

13033 HY000 It can not make range

13034 RD000 Service is not available

13035 HY000 Specified Breakpoint name is not registered yet

13036 HY000 General abort error of Breakpoint

13037 HY000 Invalid Session Name

13038 HYT00 Exceeded maximum idle time

13039 HYT00 Exceeded maximum query time

13040 08S01 Communication link failure

13041 RD000 User session ID does not exist

13042 08004 Server rejected the connection

13043 HY008 operation canceled

13044 RD000 invalid process identifier

13045 08004
mismatched binary version - server(%s.%d.%d.%d.%d), client(%s.%d.%d.%

d.%d)

13046 HY000 session cannot be killed now

13047 22003
data is outside the range of the data type to which the number is being convert

ed

13048 22015 one or more fields of data value were truncated during conversion

13049 HYC00 not implemented feature, in a function

13050 HY000 insufficient plan cache memory

13051 HY000 Unable to attache the shared memory segment. File does not exist(%s)

13052 42000 invalid dump option string: %s

13053 42000 dump object modified by concurrent statement

13054 42000 invalid numa map (%s)

13055 HY000 AS ADMIN must be executed in dedicated session

13056 HY000 unable to create file '%s' - already in use

13057 HY000 Property(%s) is desupported

13058 HY000 memory alloc size is too large: [MAX: %ld, ALLOC: %ld] DESC: (%d)%s

13059 HYT00 Exceeded maximum packet allocation time

Error code SQLSTATE Message

3,656 | Error Codes

A.4 Storage Management Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-4 Storage management related error

Error code SQLSTATE Message

14000 HY000 Failed to initialize storage manager layer

14001 HY000 storage manager layer is not initialized yet

14002 HY000 Tablespace(%d) exceed datafile limit

14003 HY000 Tablespace(%d) is full

14004 HY000 Tablespace(%d) is already dropped

14005 HY000 System Tablespace is exists

14006 42000 Table is mutating, trigger/function may not see it

14007 RD000 deadlock detected

14008 24000 fetch out of sequence

14009 2200H sequence generator limit exceeded

14010 22023 MAXVALUE cannot be made to be less than the current value

14011 22023 MINVALUE cannot be made to exceed the current value

14012 22023 cannot be made to be less than the current value

14013 22023 cannot be made to exceed the current value

14014 HY000 Fail to extend datafile(%u) of tablespace(%u) in Transaction(%ld)

14015 HY000 there is no extendible datafile in tablespace '%s'

14016 23001 some rows of base table violate uniqueness of index

14017 42000 invalid operation on fixed table or dump table

14018 42000 the operation is disallowed before %s startup phase

14019 HY000 log stream number string is invalid

14020 HY000 log stream %d already exists

14021 HY000 log group number string is invalid

14022 HY000 log group state must be INACTIVE or UNUSED

14023 HY000 log group %d already exists

14024 HY000 log member %s already exists

14025 42000 invalid dump option string: %s

14026 HYT00 resource busy or timeout expired

14027 HY000 datafile(%d,%d) is already dropped

14028 HY000 file '%s' is already exist

14029 HY000 sequence is not yet defined

14030 RD000 maximum index depth(%d) exceeded

14031 HY000 maximum key length(%d) exceeds

Storage Management Related Error | 3,657

14032 42000 can't serialize access for this transaction

14033 42000 unable to checkpoint in cds mode

14034 42000 unable to recover database in cds mode

14035 42000 some rows of base table violate not null constraint

14036 42000 invalid ROWID

14037 42000 Database is READ ONLY

14038 42000 unable to recover database in READ ONLY mode

14039 HY000 exceed segment MAXSIZE(%ld)

14040 HY000 Target object of dump table is mutating

14041 42000 cannot access the OFFLINE tablespace '%s'

14042 42000 cannot find the row (%ld)

14043 42000 file is already used in database '%s'

14044 42000 datafile not empty

14045 42000 cannot drop datafile of OFFLINE tablespace '%s'

14046 42000 file does not exist - '%s'

14047 42000 file is READ ONLY - '%s'

14048 42000 file is invalid or old version - '%s'

14049 42000 tablespace is not online - '%s'

14050 42000 tablespace is not offline - '%s'

14051 42000 media recovery required - '%s'

14052 42000 segment is unusable (physical id : %ld)

14053 RD000 insufficient resource for sort

14054 HY000 internal error (%s, %d)

14055 HY000 segment is corrupted (physical id : %ld)

14056 HY000 failed to apply redo log (lsn : %ld, lpsn : %d, physical id : %ld)

14057 HY000
dropping log group makes total log group count less than minimum log group c

ount(%d)

14058 42000 log member is not exist - '%s'

14059 42000 log member is already used - '%s'

14060 HY000 CURRENT logfile is empty - '%s'

14061 HY000 next logfile to switch should be INACTIVE or UNUSED - '%s'

14062 42000 INITRANS must be less equal than MAXTRANS

14063 42000 cannot be added log member to exceed maximum log member count(%d)

14064 42000 the operation is disallowed at %s phase

14065 RD000 the instant table row length is too large

14066 RD000 the sort instant table key row length is too large

14067 HY000 cannot media recover; archivelog mode not enabled

14068 HY000 logfile does not exist - '%s'

14069 HY000 cannot support ARCHIVELOG in cds mode

control file is not recent; do media recovery with USING BACKUP CONTROLFILE

Error code SQLSTATE Message

3,658 | Error Codes

14070 HY000 option

14071 HY000 cannot BACKUP; tablespace(%s) is offline

14072 HY000 cannot BACKUP; tablespace(%s) is temporary

14073 HY000 cannot BACKUP; tablespace is dropped

14074 HY000 cannot BACKUP; tablespace(%s) is already in backup

14075 HY000 cannot execute; tablespace(%s) is proceeding backup

14076 HY000 cannot END BACKUP; tablespace(%s) is not in backup

14077 HY000 cannot END BACKUP; none of the tablespaces are in backup

14078 HY000 cannot BACKUP; tablespace(%s) is proceeding other operation

14079 HY000 cannot BACKUP; database is already in backup

14080 HY000 cannot END BACKUP; database is not in backup

14081 HY000 cannot BACKUP; database is going shutdown

14082 HY000 (%s) is not an appropriate logfile to recover

14083 HY000 must use RESETLOGS option for database open

14084 HY000 must use NORESETLOGS option for database open

14085 HY000 (%s) was not a sufficiently old backup

14086 HY000 media recovery canceled

14087 HY000 cannot SHUTDOWN; backup in progress

14088 HY000 control file is corrupted

14089 HY000 LEVEL 0 INCREMENTAL BACKUP does not exist

14090 HY000 cannot flush logs; disabled log flushing

14091 HY000 (%s) is not valid logfile

14092 HY000 not exist incremental backup

14093 HY000 not exist valid incremental backup for tablespace(%s)

14094 HY000 datafile recovery required - datafile(%s) of tablespace(%s) corrupted

14095 HY000 backup file(%s) is corrupted

14096 23001 fail to build index (%ld)

14097 HY000 control file is corrupted - '%s'

14098 HY000 maximum record length(%d) exceeds

14099 HY000 log member state must be UNUSED or INACTIVE

14100 HY000
dropping log member makes log member count of group(%d) less than minim

um log member count(%d)

14101 HY000 log group id does not exist - '%d'

14102 HY000 cannot execute; recovery is in progress

14103 01000 Warning: media recovery needs a logfile including log (Lsn %ld)

14104 01000 Warning: suggestion '%s'

14105 HY000 control file '%s' is inconsistent with primary

14106 HY000 tablespace (%s) is taken offline as the result of a write error

14107 HY000
given LOG_BLOCK_SIZE(%d) is not a suitable value for a size of log block; LOG_

BLOCK_SIZE should be one of 512, 1024, 2048 or 4096.

Error code SQLSTATE Message

Storage Management Related Error | 3,659

14108 HY000 cannot disable archivelog - exist tablespace needed media recovery.

14109 HY000 OFFLINE NORMAL disallowed; cannot be taken offline consistently.

14110 HY000 OFFLINE IMMEDIATE disallowed; noarchivelog mode

14111 HY000
cannot create COLUMNAR TABLE; given MIN ROW COUNT is too big to put int

o one page

14112 HY000 record size is too large for columnar table

14113 HY000 datafile '%s' is corrupted

14114 HY000 datafile '%s' is more recent than redo logfile

14115 HY000 transaction undo limit exceeded

14116 HY000 failed to journal log

14117 HY000 cannot end incomplete recovery; incomplete recovery never been begun

14118 HY000
property TRANSACTION_TABLE_SIZE value must be equal to or greater than '%

d'

14119 HY000
property UNDO_RELATION_COUNT value must be equal to or greater than '%ld

'

14120 HY000 sequence is dropped

14121 HY000
file '%s' does not match with database - file signature '%s', database signature

'%s'

14122 HY000 there is a possibility that a deadlock occurs

14123 22023 INCREMENTBY sign cannot be changed in the cluster system

14124 HY000 RESTORE in progress

14125 HY000 exceed maximum journal file size

14126 HY000 there must be at least one recoverable member in the group

14127 HY000 object no longer exists

14128 HY000 invalid remote view scn

14129 HYT00 transaction allocation time exceeded

14130 HYT00 undo relation allocation time exceeded

Error code SQLSTATE Message

3,660 | Error Codes

A.5 Dictionary Cash Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-5 Dictionary cash related error

Error code SQLSTATE Message

15000 HY000 failed to initialize execution library layer

15001 HY000 execution library layer is not initialized yet

15002 42000 %s: schema does not exist

15003 42000 %s: table or view does not exist

15004 42000 %s: index does not exist

15005 42000 %s: column does not exist

15006 23000 %s: dictionary integrity constraint violation by concurrent DDL execution

15007 HY090 not enough stack space to add entries

15008 HY000 table related objects are modified while validation

15009 HY000 Invalid argument

15010 42000 object modified by concurrent DDL execution

15011 HYC00 not implemented feature, in a function %s

15012 42000 user dropped by other session

15013 42000 user default schema dropped

15014 42000 user default data tablespace dropped

15015 42000 user default temporary tablespace dropped

15016 0Y002 limit(%d) on the number of named cursor exceeded

15017 42000 DDL not allowed for supplemental log table

15018 42000 cluster member '%s' has already joined in an other cluster system

15019 42000 the %s of cluster member '%s' is not compatible with the cluster system

15020 42000 tablespace '%s' of the cluster system does not exist at cluster member '%s'

15021 42000 tablespace '%s' of the cluster member '%s' does not exist at the cluster system

15022 42000
the %s of the tablespace '%s' at cluster member '%s' is not compatible with th

e cluster system

15023 HY000 limit(%d) on the number of named instant table exceeded

15024 42000 the cluster member '%s' does not join in a cluster system

15025 42000 startup phase of new cluster member should be OPEN

15026 HY000 internal error, in a function %s

15027 42000 attempt to create, alter or drop an index on temporary table already in use

15028 42000 user default index tablespace dropped

SQL Handling Related Error | 3,661

A.6 SQL Handling Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-6 SQL handling related error (16000~16099)

Error code SQLSTATE Message

16000 HY000 failed to initialize sql processor layer

16001 HYC00 not implemented feature, in a function %s

16002 HY000 invalid function sequence of sql processor layer

16003 42000 identifier is too long

16004 28000 invalid username/password; logon denied

16005 42000 name '%s.%s' is already used by an existing object

16006 42000 schema '%s' does not exist

16007 42000 schema '%s' is not writable

16008 42000 tablespace '%s' does not exist

16009 42000 tablespace '%s' is not writable

16010 42000 invalid value for PCTFREE or PCTUSED

16011 42000 invalid INITRANS option value

16012 42000 duplicate column name

16013 HY000 invalid value is prevented in validation step

16014 22023 INCREMENT must be a non-zero integer

16015 22023 START WITH cannot be less than MINVALUE

16016 22023 START WITH cannot be more than MAXVALUE

16017 22023 the number of values to CACHE must be greater than 1

16018 22023 number to CACHE must be less than one cycle

16019 22023 MINVALUE must be less than MAXVALUE

16020 22023 INCREMENT must be less than MAXVALUE minus MINVALUE

16021 22023 descending sequences that CYCLE must specify MINVALUE

16022 22023 ascending sequences that CYCLE must specify MAXVALUE

16023 22023 duplicate or conflicting CACHE/NO CACHE specifications

16024 42000 numeric precision specifier is out of range(%d to %d)

16025 42000 numeric scale specifier is out of range(%d to %d)

16026 42000 character length specifier is out of range(1 to %d)

16027 42000 character varying length specifier is out of range(1 to %d)

16028 42000 binary length specifier is out of range(1 to %d)

16029 42000 binary varying length specifier is out of range(1 to %d)

16030 42000 name already used by an existing constraint

auto-generated name already used by an existing constraint, specify unique con

3,662 | Error Codes

16031 42000 straint name

16032 42000 table can have only one primary key

16033 42000 such unique or primary key already exists in the table

16034 42000 name already used by an existing index

16035 42000
auto-generated name already used by an existing index, specify non-duplicate i

ndex name

16036 42000 '%s': invalid identifier

16037 42000 maximum number of key columns exceeded

16038 23000 integrity constraint violation

16039 3B000 savepoint '%s' never established in this session or is invalid

16040 42000 table or view does not exist

16041 42000 table '%s' is not writable

16042 42000 unique/primary keys in table referenced by foreign keys

16043 42000 table referenced by views

16044 42000 sequence does not exist

16045 42000 duplicate options

16046 42000 such column list already indexed

16047 22003 numeric value out of range

16048 42000 specified index does not exist

16049 42000 index '%s' is not writable

16050 42000 cannot modify index used for enforcement of unique/primary/foreign key

16051 HY000 not applicable

16052 42000 column not allowed here

16053 42000 not enough values

16054 42000 too many values

16055 22004 NULL value not allowed

16056 22004 cannot insert NULL into "%s"."%s"."%s"

16057 23000 unique constraint (%s.%s) violated

16058 42000 not applicable hint

16059 42000 not applicable datatype

16060 07002 bind variable does not exist

16061 22004 cannot update ("%s"."%s"."%s") to NULL

16062 42000 syntax error

16063 42000 fractional seconds precision specifier is out of range(%d to %d)

16064 42000 invalid interval indicator

16065 42000 interval leading precision specifier is out of range(%d to %d)

16066 42000 interval fractional seconds precision specifier is out of range(%d to %d)

16067 42000 invalid INITIAL storage option value

16068 42000 invalid NEXT storage option value

16069 42000 invalid MINSIZE storage option value

Error code SQLSTATE Message

SQL Handling Related Error | 3,663

16070 42000 invalid MAXSIZE storage option value

16071 42000 storage option MAXSIZE is less than MINSIZE

16072 42000 duplicate or conflicting NULL and/or NOT NULL specifications

16073 42000 duplicate UNIQUE/PRIMARY KEY specifications

16074 42000 sequence number not allowed here

16075 42000 inconsistent datatypes : expected %s

16076 42000 invalid DATAFILE clause for alter of %s %s TABLESPACE

16077 42000 invalid DATAFILE clause for alter of %s %s TABLESPACE

16078 42000 invalid TEMPFILE clause for alter of %s %s TABLESPACE

16079 42000 file path is too long (< %d)

16080 RD000 file size is out of range(%ld to %ld)

16081 42000 failed to open database : system threads are already exist.

16082 42000 invalid MAXTRANS option value

16083 42000 INITRANS must be less equal than MAXTRANS

16084 42000 result OFFSET must be 0 or positive numeric value

16085 42000 result LIMIT/FETCH must be positive numeric value

16086 42000 related objects are modified by concurrent DDL execution

16087 42000 boolean expression expected on where clause

16088 HY000 session cannot be killed now

16089 28000 built-in authorization(user or role) '%s' is not modifiable

16090 42000 built-in tablespace '%s' is not modifiable

16091 42000 built-in schema '%s' is not modifiable

16092 42000 built-in table or view '%s' is not modifiable

16093 42000 built-in index '%s' is not modifiable

16094 42000 built-in constraint '%s' is not modifiable

16095 42000 built-in sequence '%s' is not modifiable

16096 28000 authorization(user or role) '%s' does not exist

16097 42000 constraint '%s' does not exist

16098 07006 bind type mismatch of parameter number (%d)

16099 42000 the number of elements in the INTO list is mismatch

Error code SQLSTATE Message

Table A-7 SQL handling related error (16100~16199)

Error code SQLSTATE Message

16100 HY000 single-row subquery returns more than one row

16101 42000 parallel factor is out of range(0 to %d)

16102 42000 invalid MEMORY clause for alter of %s %s TABLESPACE

16103 3C000 cursor '%s' is already declared

16104 42000 invalid cursor query: '%s'

16105 42000 invalid cursor property

3,664 | Error Codes

16106 34000 cursor '%s' does not exist

16107 34000 cursor '%s' is already open

16108 34000 cursor '%s' is not open

16109 42000 invalid use: cursor '%s' is not a declared cursor

16110 42000 iinvalid use: cursor '%s' is not an ODBC/JDBC cursor

16111 42000 cursor '%s' is not scrollable

16112 42000 query expression is not updatable

16113 42000 invalid phase(%s): executable phase of '%s' is between %s and %s

16114 42000 database is already mounted

16115 42000 database is already open

16116 42000 transaction is READ ONLY

16117 42000 database not mounted

16118 42000 supplemental logging attribute primary key exists

16119 42000 cannot drop nonexistent primary key supplemental logging

16120 42000 column referenced by views

16121 42000 column has a check constraint defined

16122 42000 pseudo column not allowed here

16123 42000 cannot select ROWID from not writable table

16124 42000 table can have only one identity column

16125 42000 column being added already exists in table

16126 42000 table must be empty to add mandatory (%s) column ('%s')

16127 42000 cannot modify INITIAL storage option

16128 42000 name '%s' is already used by an existing tablespace

16129 42000 duplicate datafile name

16130 42000 file is already exist - '%s'

16131 42000 cannot rename the built-in tablespace

16132 42000 cannot rename the OFFLINE tablespace

16133 42000 cannot drop the built-in tablespace

16134 42000 cannot drop constraint - nonexistent constraint

16135 42000 cannot drop constraint - nonexistent primary key

16136 42000 cannot drop constraint - nonexistent unique key

16137 42000 the CDS database cannot be closed with ABORT option

16138 42000 the DS database can be closed with NORMAL option - deprecated

16139 42000 multiple ORDER BY clauses not allowed

16140 42000 multiple OFFSET clauses not allowed

16141 42000 multiple LIMIT clauses not allowed

16142 42000 column ambiguously defined

16143 42000 column part of USING clause cannot have qualifier

16144 42000 invalid OFFSET option value

16145 42000 invalid LIMIT option value

Error code SQLSTATE Message

SQL Handling Related Error | 3,665

16146 42000 common column name '%s' appears more than once in %s table

16147 42000 file is already used in database

16148 42000 tablespace not empty, use INCLUDING CONTENTS option

16149 42000 datafile does not exist in tablespace

16150 42000 cannot drop datafile of OFFLINE tablespace

16151 42000 cannot drop first datafile of tablespace

16152 42000 memory is already used in database

16153 42000 memory does not exist in tablespace

16154 42000 cannot drop first memory of tablespace

16155 42000 tablespace '%s' is not writable for logging index

16156 42000 tablespace '%s' is not writable for nologging index

16157 42000 ORDER BY item must be the number of a SELECT-list expression

16158 42000 group function is not allowed here

16159 42000 invalid number of arguments

16160 42000 group function is nested too deeply

16161 42000 not a single-group group function

16162 42000 mismatched datafile pairs

16163 42000 cannot rename datafile of ONLINE tablespace

16164 42000 file does not exist

16165 42000 tablespace is not online

16166 42000 tablespace is not offline

16167 42000 cannot offline temporary tablespace

16168 42000 cannot offline dictionary tablespace

16169 42000 cannot offline undo tablespace

16170 42000 invalid WAIT interval

16171 42000 column is not updatable

16172 22003
data is outside the range of the data type to which the number is being convert

ed

16173 22015 one or more fields of data value were truncated during conversion

16174 42000 system session cannot be killed

16175 42000 hint not allowed in positioned DELETE

16176 42000 hint not allowed in positioned UPDATE

16177 34000 cursor '%s' is not updatable

16178 34000 cursor cannot identify the underlying table

16179 HY109 cursor was not positioned on a certain row

16180 HY109 cursor was positioned on a row that had been deleted

16181 42000 the CDS database cannot be closed with OPERATIONAL option

16182 42000 invalid segment identifier

16183 42000 FETCH position must be numeric value

16184 42000 cannot drop all columns in a table

Error code SQLSTATE Message

3,666 | Error Codes

16185 42000 column already has a NOT NULL constraint

16186 42000 column does not have a NOT NULL constraint

16187 42000 null values found

16188 HY000 result set does not exist

16189 42000 column is not an identity column

16190 42000 column cannot be cast to incompatible type

16191 42000 column cannot be cast to decrease precision or scale

16192 42000 column cannot be cast to decrease string length

16193 42000 column cannot be cast to incompatible char length unit

16194 42000 column cannot be cast to incompatible interval indicator

16195 42000 float precision specifier is out of range(%d to %d)

16196 42000 file is already used in log stream - '%s'

16197 42000 duplicate logfile name

16198 42000 size of log file is smaller than minimum size of log file(%ld bytes).

16199 42000 can not find specified log member.

Error code SQLSTATE Message

Table A-8 SQL handling related error (16200~16299)

Error code SQLSTATE Message

16200 42000 the number of source logfiles is different from the number of targets

16201 42000 can not find specified log file.

16202 42000 name '%s' is already used by an existing schema

16203 42000 schema not empty, use CASCADE option

16204 RD000 another checkpoint is in progress

16205 42000 boolean expression expected

16206 RD000 maximum number of arguments exceeded

16207 42000 %s and %s cannot be matched

16208 42000 insufficient privileges

16209 42000 user %s lacks CREATE SESSION privilege; logon denied

16210 42000 lacks privilege (%s ON DATABASE)

16211 42000 lacks privilege (%s ON TABLESPACE "%s")

16212 42000 lacks privilege (%s ON SCHEMA "%s")

16213 42000 user name '%s' conflicts with another user or role name

16214 42000 tablespace '%s' is not data tablespace

16215 42000 tablespace '%s' is not temporary tablespace

16216 28000 user '%s' does not exist

16217 42000 user has own schema: DROP SCHEMA first

16218 42000 CASCADE must be specified to drop user '%s'

16219 42000 you may not GRANT/REVOKE privileges to/from yourself

16220 42000 duplicate authorization name in grantee/revokee list

SQL Handling Related Error | 3,667

16221 42000 user default schema dropped

16222 42000 user default data tablespace dropped

16223 42000 user default temporary tablespace dropped

16224 42000 no privileges to GRANT ALL PRIVILEGES

16225 42000 insufficient privilege to GRANT

16226 42000 duplicate privilege listed

16227 42000 cannot drop a user that is currently connected

16228 42000 fixed table not grantable/revokable

16229 42000 invalid old password

16230 42000 schema element does not match schema identifier

16231 28000 cannot GRANT/REVOKE privileges to/from built-in authorization

16232 28000 cannot REVOKE privileges you did not grant to '%s'

16233 HY000 OFFLINE IMMEDIATE disallowed; noarchivelog mode

16234 HY000 OFFLINE IMMEDIATE disallowed; no logging tablespace

16235 2B000 dependent privilege descriptors still exist

16236 0A000 not supported query%s

16237 42000 a subquery block has incorrect number of result columns

16238 42000 ORDER BY item must be the number of a SELECT-list expression

16239 42000 expression must have same datatype as corresponding expression

16240 42000 subquery expressions not allowed here

16241 42000 invalid number of column names specified

16242 42000 must name this expression with a column alias

16243 01000 Warning: View definition has compilation errors

16244 42000 bind variables not allowed for data definition operations

16245 42000 view "%s.%s" has errors

16246 42000 illegal use of %s data type

16247 HY000 cannot BACKUP; noarchivelog mode

16248 HY000 cannot RECOVER TABLESPACE; tablespace is in use

16249 HY000 cannot SHUTDOWN; backup in progress

16250 HY000
RECOVER UNTIL CANCEL can be issued by directly attached session only - depre

cated

16251 42000 single-row subquery returns more than one row

16252 42000 circular view definition encountered

16253 42000 only base table columns are allowed to GRANT/REVOKE

16254 42000 lacks privilege (%s ON TABLE "%s"."%s")

16255 42000 lacks privilege (USAGE ON SEQUENCE "%s"."%s")

16256 07001 wrong number of parameters

16257 HY000 argument of CASE/WHEN must be type boolean

16258 HY000 the XID does not exist

16259 HY000 the XID string is not valid

Error code SQLSTATE Message

3,668 | Error Codes

16260 HY000 the global transaction is in progress

16261 42000 invalid INCREMENTAL BACKUP LEVEL specified : %d

16262 42000 INCREMENTAL BACKUP LEVEL 0 cannot have any BACKUP options

16263 HY000 cannot RESTORE TABLESPACE; tablespace is in use

16264 HY000 transaction is in progress

16265 42000 outer join operator (+) cannot be used with ANSI joins

16266 42000 outer join operator (+) not allowed in %s

16267 42000 an outer join cannot be specified on a correlation column

16268 42000 a predicate may reference only one outer-joined table

16269 42000 a table may be outer joined to at most one other table

16270 42000 two tables cannot be outer-joined to each other

16271 42000 RESTART value cannot be made to be less than the MINVALUE

16272 42000 RESTART value cannot be made to exceed the MAXVALUE

16273 42000 MINVALUE cannot be made to exceed the current value

16274 42000 MAXVALUE cannot be made to be less than the current value

16275 42000 MINVALUE cannot be made to exceed the START WITH value

16276 42000 MAXVALUE cannot be made to be less than START WITH value

16277 42000 log group id is already used

16278 42000 identity column cannot have a default value

16279 42000 DEFAULT expression has errors

16280 42000 the statement is disallowed

16281 42000 resource manager doing work outside transaction

16282 42000 MEMORY tablespace does not support an AUTOEXTEND option

16283 HY000 invalid ROWID

16284 42000 unable to execute in CDS mode

16285 RP000 failed to create system threads

16286 HY000 valid incremental backup does not exist

16287 42000 log group id does not exist

16288 42000 invalid string value specified

16289 42000 into clause can have only one row

16290 42000 SHUTDOWN must be executed in dedicated session

16291 40002 transaction rollback: integrity constraint violation

16292 42000 column length specifier is out of range(1 to %d) for columnar table

16293 42000 columnar table does not support LONG VARCHAR and LONG VARBINARY

16294 42000 cannot defer a constraint that is not deferrable

16295 42000 invalid NOT NULL constraint specified on an identity column

16296 42000 constraint '%s' is not deferrable

16297 42000 duplicate constraint name specified

16298 42000
cannot make primary key supplemental log data with primary key constraint viol

ation

Error code SQLSTATE Message

SQL Handling Related Error | 3,669

16299 42000 datafile does not exist in database

Error code SQLSTATE Message

Table A-9 SQL handling related error (16300 ~ 16399)

Error code SQLSTATE Message

16300 42000 too many SQL resource

16301 42000 name '%s' is already used by an existing public synonym

16302 42000 private synonym '%s' to be droppped does not exist

16303 42000 public synonym '%s' to be droppped does not exist

16304 42000 looping chain of synonyms

16305 42000 synonym translation is no longer valid

16306 42000 expression is out of iteration time scope

16307 42000 constant value expression expected

16308 42000 invalid or redundant resource

16309 42000 the account is locked

16310 42000 the password will expire in %ld days

16311 42000 the password will expire soon

16312 42000 the password has expired

16313 42000 the password cannot be reused

16314 42000 cannot lock "SYS" account

16315 42000 profile '%s' already exists

16316 42000 function '%s' not found

16317 42000 profile '%s' has users assigned, cannot drop without CASCADE

16318 42000 profile '%s' does not exist

16319 42000 cannot assign PROFILE to "SYS" account

16320 42000 cannot assign DEFAULT parameter value to "DEFAULT" profile

16321 42000 password length less than '%d'

16322 42000 password must contain at least '%d' letter(s)

16323 42000 password must contain at least uppercase '%d' character(s)

16324 42000 password must contain at least lowercase '%d' character(s)

16325 42000 password must contain at least '%d' digit(s)

16326 42000 password must contain at least '%d' special character(s)

16327 42000 password same as or similar to user name

16328 42000 password contains the user name reversed

16329 42000 password same as or similar to database name

16330 42000 password too simple

16331 42000 Password should differ from the old password by at least '%d' characters

16332 42000 constant value does not support LONG VARCHAR and LONG VARBINARY

16333 42000 value of parameter number (%d) must be consistent datatype

16334 42000 invalid value is prevented in parameter number (%d)

3,670 | Error Codes

16335 42000 UPDATE primary key not allowed for supplemental log table

16336 42000 cluster group '%s' does not exist

16337 42000 duplicate cluster object listed

16338 42000 cluster domain '%s' does not exist

16339 42000 invalid hash shard count (must between %d and %d)

16340 42000 not found available sharding key column

16341 42000
cannot specifiy sharding strategy and placement for a table on dictionary schem

a '%s'

16342 HYC00 not implemented feature for cluster system, in a function %s

16343 42000 invalid syntax for a stand-alone system

16344 42000 database is not local opened

16345 42000 database is already opened

16346 42000 name '%s' is already used by an existing cluster object

16347 42000 cluster port is out of range(%d to %d)

16348 42000 duplicate cluster connection listed

16349 42000 the first cluster group does not contain local cluster member '%s'

16350 42000 maximum number of cluster members exceeded

16351 08000 failed to connect to the cluster member '%s'

16352 42000 mismatch local cluster member with location file

16353 42000 conflict between new cluster member and location file

16354 HY000 connection of member '%s' is broken

16355 42000 non-deterministic function not allowed here

16356 42000 version conflict

16357 42000 must be accessible to at least one member of group '%s'

16358 42000 accessible member does not exist

16359 42000 no inactive members

16360 42000 cloned table "%s"."%s" must be accessible to at least one member

16361 42000
sharded table "%s"."%s" must be accessible to at least one member of group

'%s'

16362 42000 NODE SHARDED table cannot be rebalanced

16363 42000 the cluster member '%s' does not join in a cluster system

16364 42000 cluster group has sharded data

16365 42000 schema name of instant table must be SESSION_SCHEMA

16366 42000 hash shard count smaller than AT CLUSTER GROUP list

16367 42000 cannot drop sharding key column

16368 42000 not a fixed table

16369 42000 not a statistics table

16370 42000 have to create one or more datafiles to each member

16371 42000 conversion is not applicable

16372 42000 duplicate shard name

Error code SQLSTATE Message

SQL Handling Related Error | 3,671

16373 42000 the number of elements in shard bound mismatch the sharding key columns

16374 42000 range shard bound value must be one of: valid constant or MAXVALUE

16375 42000 only MAXVALUE allowed after MAXVALUE

16376 42000 multiple MAX shard defined

16377 42000 MAX shard not defined

16378 42000 duplicate shard bound value

16379 42000 failed to rebalance some tables

16380 HYC00
UNIQUE or PRIMARY KEY must include all sharding key columns for cluster syst

em

16381 42000 invalid shard count (must between %d and %d)

16382 42000 cluster member '%s' does not exist

16383 42000 domain '%s' is unknown

16384 42000 multiple DEFAULT shard defined

16385 42000 DEFAULT shard not defined

16386 42000 DEFAULT cannot be specified with other values

16387 42000 list shard bound value must be one of: valid constant or NULL or DEFAULT

16388 HYC00 does not support deferrable constraints in the cluster system

16389 42000 domain names of the datafile for renaming don't mismatch

16390 42000 invalid table for sharding strategy and placement specified

16391 42000 the number of sharding key in function is mismatch

16392 HYC00 does not support ROWID in the cluster system

16393 01000 Warning: accessible member does not exist

16394 01000 Warning: connection of member '%s' is broken

16395 01000 Warning: must be accessible to at least one member of group '%s'

16396 42000 exceeds the maximum number of nodes

16397 42000 exceeds the maximum number of groups

16398 42000 the domain of property does not match with domain '%s'

16399 42000
cannot insert or update a generated always identity column, value shall be a DE

FAULT

Error code SQLSTATE Message

Table A-10 SQL handling related error (16400 ~ 16499)

Error code SQLSTATE Message

16400 HY000 cannot RECOVER UNTIL CHANGE SCN; invalid SCN format

16401 42000 invalid SAMPLE size specified

16402 42000 duplicate index name

16403 42000 failed to join some of nodes to the global database

16404 42000 cannot execute the statement with OS user permissions

16405 42000 some tables in the database need to be rebalanced

16406 42000 invalid routine name

16407 42000 procedure or function does not exist

3,672 | Error Codes

16408 42000 bind variables not allowed for procedures or functions

16409 01000 Warning: Routine definition has compilation errors

16410 42000
Startup driver node must have the latest data - a suitable startup driver node is

'%s' member

16411 42000 maximum number of recursive SQL levels (%d) exceeded.

16412 42000 all of shards in a table must be online.

16413 42000 LOCAL_OFFLINE domain must be specified to base table

16414 42000 domain option not allowed here

16415 42000 LOCAL_OFFLINE domain cannot be used with other domains

16416 42000 lacks privilege (EXECUTE ON PROCEDURE "%s"."%s")

16417 42000 active member '%s' cannot be offlined

16418 42000 cluster member '%s' does not exist in cluster group '%s'

16419 42000 object identifier not allowed here

16420 0A000 does not support adding identity column in the cluster system

16421 0A000 does not support deferred unqiue integrity in the cluster system

16422 0A000 does not support SERIALIZABLE in the cluster system

16423 42000
does not support non-deterministic DML in the cluster system : global secondary

index expected

16424 42000 function generating different values is not allowed here

16425 42000 procedure, function, package, or type is not allowed here

16426 42000
does not support ADD COLUMN DEFAULT generating different values in the clu

ster system

16427 42000 invalid events (%s)

16428 42000 cluster system is modified by concurrent cluster DDL execution

16429 42000 does not support cursor in the cluster system : global secondary index expected

16430 42000 the cluster database can be closed only with ABORT or NORMAL option

16431 42000
non-deterministic expression not allowed here : may lead to a replica synchroniz

ation failure

16432 42000 global secondary index already exists in table

16433 42000 global secondary index does not exist in table

16434 HY000 invalid grid is prevented in cluster operation, in a function %s

16435 HY000 duplicate source datafile name

16436 HY000 duplicate target datafile name

16437 HY000 cannot execute on cloned tables

16438 HY000 invalid shard name - '%s'

16439 HY000 cannot move shard to the same group

16440 HY000 cannot execute on cluster wide sharded tables

16441 42000 not analyzed table

16442 42000 invalid analyzed file format (%s)

16443 42000 old plan

Error code SQLSTATE Message

SQL Handling Related Error | 3,673

16444 42000 invalid cluster group name

16445 42000 REBALANCE EXCLUDE can be executed only on cluster wide sharded tables

16446 42000 REBALANCE EXCLUDE target group is empty

16447 HY000 internal error (%s, %d)

16448 42000 of the total '%d' tables, '%d' tables failed to move shard

16449 42000 cluster group does not have sharded data

16450 42000 exceeded global property lock timeout

16451 42000 rownum not allowed here

16452 42000 rownum not allowed in sensitive cursor

16453 42000 rownum not allowed in positioned UPDATE

16454 42000 function '%s' not allowed here

16455 42000 routine "%s.%s" has errors

16456 42000
the startup phase '%s' of cluster member '%s' is mismatch with the required st

artup phase '%s'

16457 42000
the connection map of cluster member '%s' is mismatch with local connection

map

16458 42000 reserved domain cannot be used with other domains

16459 42000 cannot execute on hash sharded tables

16460 42000 cannot execute on range sharded tables

16461 42000 invalid shard values

16462 42000 cannot split shard - source shard cannot be empty

16463 42000 first CREATE CLUSTER GROUP must include only one cluster member

16464 HY000 unsupported feature with temporary table

16465 42000 cannot drop local cluster group

16466 42000 cannot execute with SERIALIZABLE

16467 42000 table '%s' is READ ONLY

16468 HY000 cannot create TEMPORARY object in a NON-TEMPORARY tablespace

16469 42000 cannot execute on global connection

16470 42000 datafile size specified is smaller than minimum required '%ld'

16471 42000 audit policy '%s' does not exists

16472 42000 audit policy cannot be dropped as it is currently enabled

16473 42000 audit policy '%s' already exists

16474 42000 not auditable option

16475 42000 audit policy already applied with the BY clause

16476 42000 audit policy already applied with the EXCEPT clause

16477 42000 not auditable object

16478 42000 tablespace '%s' is not temporary tablespace or data tablespace

16479 42000 failed to update system version - %s

16480 42000 cannot set irrecoverable on the local cluster member

16481 42000 global tempoary table segment no longer exists

Error code SQLSTATE Message

3,674 | Error Codes

16482 42000 database is not accessible; '%s' has detached from the cluster

Error code SQLSTATE Message

PSM Related Error | 3,675

A.7 PSM Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-11 PSM related error

Error code SQLSTATE Message

17000 2F000 failed to initialize PSM processor layer

17001 2F000 not implemented feature (%s)

17002 2F000 duplicated label name

17003 2F000 duplicated exception name

17004 2F000 duplicated variable name

17005 2F000 not applicable expression type

17006 2F000 unknown variable or column name (%s)

17007 2F000 invalid expression

17008 2F000 wrong number of parameters

17009 2F000 NOT NULL constraint violation

17010 2F000 can not find label name

17011 2F000 duplicated field name

17012 2F000 unknown type name

17013 2F000 the type of record field should be scalar

17014 2F000 target host parameter of assignment is not bound in OUT mode

17015 2F000 cannot set constraint or initial value on non-scalar-type variable

17016 2F000 variables which have NOT NULL constraint should have initial values

17017 2F000 unhandled user exception

17018 2F000 pre-defined exception name not allowed in declare section

17019 2F000 OTHERS exception must be last among the exceptions of a block

17020 2F000 unknown exception

17021 2F000 Invalid error number for PRAGMA EXCEPTION_INIT

17022 2F000 A CASE statement must either list all possible cases or hava an else clause

17023 2F000 duplicated error-code in same exception handler

17024 2F000 (%s) cannot be used as assignment target

17025 2F000
The command cannot be executed when global transaction is in the ACTIVE sta

te

17026 2F000 Transaction is READ ONLY

17027 2F000 duplicated identifier

17028 2F000 out of scope

17029 2F000 too many depths of scope (limit=%d)

17030 2F000 invalid reference field (%s)

3,676 | Error Codes

17031 2F000 mismatch identifier type

17032 2F000 PSM compilation error

17033 2F000 duplicated cursor name

17034 2F000 return type of cursor is invalid

17035 2F000 invalid expression type

17036 2F000 cursor is not defined

17037 2F000 cursor is already open

17038 2F000 cursor is not open

17039 2F000 unknown cursor

17040 2F000 fetch target count mismatch

17041 2F000 execution fail

17042 2F000 bind variables not allowed for data definition operations

17043 2F000 no target-list for into clause

17044 2F000 returning-into need to bind variable with returning-into or using OUT clause

17045 2F000 no data found

17046 2F000 variables of record type can not be mixed with other variable

17047 2F000 only record-type variable allowed

17048 2F000 can not be used with INTO-clause and USING clause having OUT-modes

17049 2F000 can not use a expression in USING OUT binding

17050 2F000 query need to bind with INTO-clause for targets

17051 2F000 invalid statement-type

17052 2F000 Alias required in list of cursor to avoid duplicated target names

17053 2F000 schema or table object does not exist

17054 2F000 only record-type variable allowed

17055 2F000 this cursor must be declared with FOR-UPDATE to use with CURRENT OF

17056 2F000 invalid syntax error

17057 2F000 only select-into statement allowed

17058 2F000 source-name of return-type is not record-type or record-type variable

17059 2F000 source-name of rowtype must be a table, view, cursor, cursor-variable

17060 2F000
a cursor-variable with having return-type cannot be used in OPEN FOR dynamic-

sql

17061 2F000 it can be allowed with only IN-Binding type

17062 2F000 duplicated routine name

17063 2F000 unknown routine name

17064 2F000 invalid routine name

17065 2F000 invalid routine object status

17066 2F000 a RAISE statement with no exception name must be inside an exception handler

17067 2F000 return types of Result Set variables or query do not match

17068 2F000 wrong number or types of arguments

17069 2F000 invalid variable usage

Error code SQLSTATE Message

PSM Related Error | 3,677

17070 2F000
return statement in procedures or anonymous blocks cannot have <value> claus

e

17071 2F000 return statement in functions should have <value> clause

17072 2F000 existing state of routine has been discarded

17073 2F003
DDLs or DCLs cannot be invoked during DMLs or SELECT statements are executi

ng in \"%s\".\"%s\"

17074 2F003 cannot begin transaction inside a query in \"%s\".\"%s\"

17075 2F003
cannot commit or rollback transaction inside a query or DML in \"%s\".\"%s

\"

17076 2F000 application error \"%s\"

17077 2F000 the argument of collection type variable is not a constant expression

17078 2F000 a function with OUT-Parameter not allowed in expression

17079 2F000 a nested function not allowed in executing SQL

17080 2F002 cannot execute DML jobs inside a query

17081 2F000 program body of the routine is not defined

17082 HY000 bind parameter in target or return clause is not allowed

17083 2F000 Function "%s" returned without value

Error code SQLSTATE Message

3,678 | Error Codes

A.8 Session Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-12 Session related error

Error code SQLSTATE Message

18000 HY000 Invalid Statement

18001 HY024 Invalid attribute value

18002 HY092 Invalid attribute/option identifier

18003 42000 Transaction is READ ONLY

18004 42000 Statement cannot execute as atomic action

18005 42000 Preparable phase is open phase

18006 08S01 Communication link failure

18007 HYC00 not implemented feature, in a function %s

18008 HY014 Limit on the number of SQL statement exceeded

18009 42000
The command cannot be executed when global transaction is in the ACTIVE sta

te

18010 07009 Invalid descriptor index

18011 HY000 Character set not equal(%s and %s)

18012 HY010 fetch out of sequence

18013 HYC00 Optional feature not implemented

18014 07001 Wrong number of parameters

18015 24000 Invalid cursor state

ODBC Related Error | 3,679

A.9 ODBC Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-13 ODBC related error

Error code SQLSTATE Message

19000 HY009 Invalid use of null pointer

19001 HY092 Invalid attribute/option identifier

19002 08003 Connection not open

19003 IM001 Driver does not support this function

19004 IM004 Driver's SQLAllocHandle on SQL_HANDLE_ENV failed

19005 IM005 Driver's SQLAllocHandle on SQL_HANDLE_DBC failed

19006 08002 Connection name in use

19007 HY090 Invalid string or buffer length

19008 28000 Invalid authorization specification

19009 HY010 Function sequence error

19010 24000 Invalid cursor state

19011 HY012 Invalid transaction operation code

19012 HYC00 Optional feature not implemented

19013 HY003 Invalid application buffer type

19014 07009 Invalid descriptor index

19015 HY004 Invalid SQL data type

19016 HY105 Invalid parameter type

19017 HY009 Invalid argument value

19018 HY011 Attribute cannot be set now

19019 HY024 Invalid attribute value

19020 25000 Invalid transaction state

19021 HY000 General error

19022 07005 Prepared statement not a cursor-specification

19023 22001 String data, right truncated

19024 HY007 Associated statement is not prepared

19025 HY092 Option type out of range

19026 22002 Indicator variable required but not supplied

19027 01S01 Error in row

19028 HY016 Cannot modify an implementation row descriptor

19029 HY091 Invalid descriptor field identifier

19030 07006 Restricted parameter value violation

19031 22015 Interval field overflow

3,680 | Error Codes

19032 22003 Numeric value out of range

19033 01004 String data, right truncated

19034 22018 Invalid character value for cast specification

19035 01S07 Fractional truncation

19036 22008 Datetime field overflow

19037 22007 Invalid datetime format

19038 08S01 Communication link failure

19039 HY000 An invalid SQL type has occurred

19040 34000 Invalid cursor name

19041 HY000 Failed to atomic execution

19042 HY110 Invalid driver completion

19043 IM012 DRIVER keyword syntax error

19044 08001 Client unable to establish connection

19045 HY096 Information type out of range

19046 IM002 Data source not found and no default driver specified

19047 HY106 Fetch type out of range

19048 HY100 Uniqueness option type out of range

19049 HY101 Accuracy option type out of range

19050 HY097 Column type out of range

19051 HY098 Scope type out of range

19052 HY099 Nullable type out of range

19053 HY021 Inconsistent descriptor information

19054 01S02 Option value changed

19055 HY109 Invalid cursor position

19056 HY107 Row value out of range

19057 HYT00 Timeout expired

19058 2C000 Invalid or unknown NLS parameter value specified

19059 HY020 Attempt to concatenate a null value

19060 HY019 Non-character and non-binary data sent in pieces

19061 HY000 Invalid 'odbc.ini' specification. property : [%s]

19062 IM008 Dialog failed

19063 40001 Transaction rollback

19064 40003 Statement completion unknown

19065 08S01 Communication link failure

19066 01000 General warning

19067 HY104 Invalid precision or scale value

19068 40003 Retry the transactional operations

19069 08S01 Failed to communicate with locator

Error code SQLSTATE Message

JDBC Related Error | 3,681

A.10 JDBC Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-14 JDBC related error

Error code SQLSTATE Message

21000 HV000 Not used error

21001 46001 Invalid connection url[%s]: [%s]

21002 46110 Unsupported feature: [%s]

21003 08S01 Invalid protocol: [%s]

21004 HV000 Invalid method call for read-only ResultSet

21005 08003 The Connection is already closed

21006 08003 The Statement is already closed

21007 08003 The ResultSet is already closed

21008 HV000 Invalid method call for forward-only ResultSet

21009 HV000 Invalid Wrapper type: [%s]

21010 HV000 Invalid argument: [%s]

21011 08000 Cannot connect to the server: %s

21012 08S01 Communication link failure: %s

21013 HV000 A mandatory property is omitted: [%s]

21014 HV000 Not a select query for executeQuery method

21015 HV000 The statement has produced a ResultSet

21016 HV000 This method cannot be called for a PreparedStatement

21017 HV000 Parameter type[%s] is mismatch with previous type[%s] during batch

21018 HV000 Lack of parameter: [%s]'th parameter

21019 HV000 No batch job added

21020 HV000 Batch job added

21021 22003 The value[%s] is out of range of [%s] type

21022 22026 The value length is mismatch[%s != %s]

21023 HV000 The value([%s] type) cannot be converted to [%s] type

21024 08000 The connection timeout expired: [%s millis]

21025 HV000 The column is not found: [%s]

21026 3B000 Savepoint error: %s

21027 HV000 Cannot execute the query in auto-commit mode

21028 24000 Invalid cursor position

21029 HV000 No column has been read

21030 HV000 Encoding error: [%s]

21031 HV000 Decoding error: [%s]

3,682 | Error Codes

21032 HV000 Stream error: [%s]

21033 HV000 Trying to read the deleted row

21034 HV000 Invalid interval format string: [%s]

21035 HV000 The Statement has an opened ResultSet

21036 HV000 The RowId object is unknown

21037 08000 The failover failed

21038 07009 The parameterIndex is not valid: [%s]

21039 HY000 No data read

21040 HY000 Invalid locator protocol version

21041 HY000 not matched locator protocol command sequence number

21042 HY000 Unable to open the file '%s'

21043 HY000 Unable to read the file '%s'

21044 HY000 Unable to close the file '%s'

21045 HY000 invalid INI file format

21046 HY000 Parameter[%s]'s input data type is mismatched with output data type

Error code SQLSTATE Message

Embedded SQL Related Error | 3,683

A.11 Embedded SQL Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-15 Embedded SQL run-time library related error

Error code SQLSTATE Message

23000 42000 syntax error

23001 0A000 feature not supported

23002 HY000 Bind variable "%s" was not declared

23003 HY000 Application can't be initialized

23004 HY000 Application can't be finalized

23005 RD000 Service is not available

23006 RD000 Statement did not prepared

23007 08001 Client can't establish SQL-connection

23008 HY000 cursor "%s" is not open

23009 HY000 Application can't create semaphore

23010 HY000 Application can't destroy semaphore

23011 HY000 Application can't create allocator

23012 HY000 Application can't destroy allocator

23013 HY000 Application can't create symbol table

23014 HY000 Application can't destroy symbol table

23015 IM004 Driver's SQLAllocHandle on SQL_HANDLE_ENV failed

23016 IM001 Driver does not support ODBC 3.0

23017 HY000 Application can't allocate memory

23018 42000 Statement "%s" was not prepared

23019 42000 Descriptor name is too long

23020 HYC00 Not implemented feature, in a function %s

23021 07004 USING clause required for dynamic parameters

23022 07001 USING clause: illegal variable name/number

23023 07001 USING clause: not all variables bound

23024 07007 INTO clause required for result fields

23025 07001 INTO clause: illegal variable name/number

23026 07001 INTO clause: not all variables bound

23027 22002 null value, no indicator parameter

23028 07005 cusor "%s" statement is not a query

23029 08003 connection not open

23030 34000 cursor "%s" is not updatable

23031 08002 connection name "%s" in use

3,684 | Error Codes

23032 08002 duplicate connection context

Error code SQLSTATE Message

Table A-16 Embedded SQL precompile related error

Error code SQLSTATE Message

41000 42000 syntax error

41001 0A000 feature not supported

41002 42000 Host variable "%s" not declared

41003 42000 Cursor "%s" not declared

41004 42000 "%s": file not exist

41005 42000 expression type does not match usage

41006 42000 Fatal error while doing embedded SQL preprocessing

41007 HY000 Precompiler can't create symbol table

41008 HY000 Precompiler can't destroy symbol table

41009 42000 identifier is too long

41010 42000 token "%s" is not valid in preprocessor expressions

41011 42000 multi-character character constant

41012 42000 floating constant in preprocessor expression

41013 42000 invalid suffix "%s" on integer constant

41014 42000 cursor name "%s" already declared

41015 07004 cursor "%s" is not a dynamic cursor

41016 42000 "%s" has no member named "%s"

41017 42000 storage size of "%s" isn't known

41018 42000 variable "%s" must be integer type

41019 42000 variable "%s" must be string type

41020 42000
invalid indicator variable type: indicator variable "%s" must have numeric type(c

har/short/int/long)

41021 42000 duplicate "%s"

41022 42000 both "%s" and "%s" in declaration specifiers

41023 42000 two or more data types in declaration specifiers

41024 42000 C++ punctuation sequences are not permitted

41025 42000 host variable expression has invalid type

41026 42000 typedef "%s" has invalid

41027 42000 too many 'define' macro (%d)

41028 42000 '%s' macro is already defined at line %d, in file %s

41029 42000 missing host variable

41030 42000
invalid getting groupid variable type: variable "%s" must have signed numeric ty

pe

41031 42000
invalid sql statement: getting groupid is available with select/update/delete/inse

rt statement

Communication Related Error | 3,685

A.12 Communication Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-17 Communication related error

Error code SQLSTATE Message

24000 08S01 Communication link failure

24001 08S01 Invalid communication protocol

24002 22000 Invalid GOLDILOCKS_DATA Directory

24003 22000 not supported function

24004 22000 Invalid interprocess protocol

24005 22000 Unable to attach the shared memory segment. unable to access the file '%s'

24006 HV090 Invalid string length or buffer length

24007 22000 not matched command sequence number

Table A-18 Server communication related error

Error code SQLSTATE Message

52000 08S01 Communication link failure

52001 08000 Invalid communication protocol

52002 HY000 Not enough cm unit memory

52003 HY000 exceeded maximum packet allocation timeout

3,686 | Error Codes

A.13 ServerLibrary Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-19 ServerLibrary related error

Error code SQLSTATE Message

25000 0A000 feature not supported

25001 HY000 Server is not running

25002 HY000 Environment Variable "%s" is not defined

25003 08000 Invalid protocol

25004 HY000 STARTUP must be executed in dedicated session

25005 HY000 session killed

25006 HY000 remote session is not opened

25007 42000
the property '%s' of cluster member '%s' is not compatible with the cluster syst

em

25008 42000 the scn '%s' of cluster member '%s' is mismatch

25009 HY000
number of shared servers must be greater than or equal to number of request q

ueues

25010 42000 invaild startup phase

gsql/ gsqlnet Related Error | 3,687

A.14 gsql/ gsqlnet Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-20 gsql/ gsqlnet related error

Error code SQLSTATE Message

40000 42000 syntax error

40001 0A000 feature not supported

40002 HY000 Bind variable "%s" not declared

40003 42000 "%s": table or view does not exist.

40004 42000 "%s": index does not exist.

40005 RD000 Service is not available

40006 RD000 Statement did not prepared

40007 42000 '%s': duplicate statement

40008 42000 '%s': statement does not exist

40009 42000 '%s': statement is not prepared

40010 42000 insufficient privileges

40011 42000 driver does not support %s function

40012 42000 invalid ojbect for describe

40013 42000 driver does not support the requested connection mode(%s)

40014 HY000 the rollback was caused by an unspecified reason

40015 HY000 the rollback was caused by a communication failure

40016 HY000 a deadlock was detected

40017 HY000 a condition that violates the integrity of the resources was detected

40018 HY000
the resource manager rolled back the transaction branch for a reason not on thi

s list

40019 HY000 a protocol error occurred in the resource manager

40020 HY000 a transaction branch took too long

40021 HY000 may retry the transaction branch

40022 HY000 the inclusive upper bound of the rollback codes

40023 HY000 resumption must occur where suspension occurred

40024 HY000 the transaction branch may have been heuristically completed

40025 HY000 the transaction branch has been heuristically committed

40026 HY000 the transaction branch has been heuristically rolled back

40027 HY000 the transaction branch has been heuristically committed and rolled back

40028 HY000 routine returned with no effect and may be re-issued

40029 HY000 the transaction branch was read-only and has been committed

40030 HY000 asynchronous operation already outstanding

3,688 | Error Codes

40031 HY000 a resource manager error occurred in the transaction branch

40032 HY000 the XID is not valid

40033 HY000 invalid arguments were given

40034 HY000 routine invoked in an improper context

40035 HY000 resource manager unavailable

40036 HY000 the XID already exists

40037 HY000 resource manager doing work outside transaction

40038 HY000 unknown xa error

40039 HY000 marked the transaction branch rollback-only for unspecified reason

40040 HY000 cannot open the resource

40041 HY000 cannot close the resource

40042 HY000 the sql is empty

40043 HY000 invalid host variable type

40044 08003 connection does not exist

40045 HY000 invalid NUMSIZE value: NUMSIZE must be between %d and %d

40046 HY000 invalid PAGESIZE value: PAGESIZE must be between %d and %d

40047 HY000 invalid LINESIZE value: LINESIZE must be between %d and %d

40048 HY000 invalid COLSIZE value: COLSIZE must be between %d and %d

40049 HY000 invalid HISTORY value: HISTORY must be less equal than %d

40050 HY000 invalid DDLSIZE value: DDLSIZE must be between %d and %d

40051 HY000 invalid object identifier

40052 HY000
not enough DDLSIZE.

use command: \set ddlsize {n}

40053 HY000 confirmation password mismatch

40054 HY000 invalid locator ini property - '%s'

40055 HY000 not exist member '%s' in file - '%s'

40056 HY000 some of nodes were failed to startup

40057 HY000 not specified valid location information

40058 HY000 some of nodes were failed to shutdown

40059 HY000 failied to connect to original driver node '%s' after startup

40060 HY000 cannot execute 'cstartup' or 'cshutdown' command in DA mode

40061 HY000 currently connected node is inactive

Error code SQLSTATE Message

gloader/ gloadernet Related Error | 3,689

A.15 gloader/ gloadernet Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-21 gloader/ gloadernet related error

Error code SQLSTATE Message

42000 RD000 Service is not available

42001 HY000 invalid control file format

42002 HY000 buffer exceeded overflow area

42003 HY000 open same file(%s)

42004 HY000 occur invalid handle error

42005 HY000 occur error while operating SQLGetDiagRec/SQLGetDiagField

42006 HY000 using same character for delimiter and qualifier

42007 HY000 invalid thread unit count.(1~32)

42008 HY000 invalid array size.(1~65535)

42009 HY000 unavailable multithreading in export mode.

42010 08S01 Communication link failure

42011 HY000 invalid file size (minimum size : %d)

42012 HY000 unavailable file size in text mode.

42013 HY000 invalid column type.

42014 HY000 invalid column count.

42015 HY000 invalid data size.

42016 HY000 invalid header of binary file.

42017 HY000 file is empty.

42018 HY000 Qualifier must be 1 length character.

42019 HY000 LF and CR can not be used for delimiter or qualifier.

42020 HY000 qualifiers and terminators must not be subsets of each other

42021 HY000 table name must be given in case of absence of control file.

42022 HY000 can not fetch schema name.

42023 22001 byte length of data greater than column length.

42024 HY000 invalid direct io size

3,690 | Error Codes

A.16 gmaster Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-22 gmaster related error

Error code SQLSTATE Message

44000 HY000 database is already mounted

44001 HY000 database is already local opened

44002 HY000 database is already opened

44003 HY000 system thread is already created

44004 HY000 failed to create system threads (%s)

44005 HY000 member '%s' does not exist

44006 HY000 fail to send packet through communication context

44007 HY000 failed to start up a process '%s'

glsnr Related Error | 3,691

A.17 glsnr Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-23 glsnr related error

Error code SQLSTATE Message

45000 HY000 Listener configuration file "%s" doesn't exist.

45001 HY000 Environment Variable "%s" is not defined.

45002 HY000 Listener is already started.

45003 HY000 overflow fd

45004 08000 Invalid communication protocol

45005 08004 access denied

45006 HY000 Operation timed out

45007 HY000 shared mode inactive

45008 HY000 Invalid property value [DEDICATED | SHARED] : %s

45009 HY000 Invalid property value [NO | INVITED | EXCLUDED] : %s

45010 HY000 Invalid property value [YES | NO | 1 | 0]: %s

45011 HY000 Invalid property value [%ld ~ %ld]: %s

45012 HY000 Invalid property value [%ld ~ %ld]: %s

45013 HY000 buffer over flow %s

3,692 | Error Codes

A.18 cyclone Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-24 cyclone related error

Error code SQLSTATE Message

46000 RD000 Service is not available

46001 HY000 "%s": file does not exist

46002 HY000 configure file processing error

46003 HY000 "%s": table does not exist

46004 HY000 "%s": schema does not exist

46005 HY000 "%s.%s": previously Added. Maybe duplicated

46006 HY000 "%s%s": table must have a primary key

46007 HY000 internal error occurred (%s)

46008 HY000 invalid Datatype(%d)

46009 HY000 "%s.%s" table must set supplemental log or primary key.

46010 HY000 group [%s] is already running

46011 HY000 cyclone is not running

46012 HY000 GOLDILOCKS_DATA system environment is invalid

46013 HY000 "%s" log file reused or invalid. restart cyclone with '--reset' option

46014 HY000 fail to analyze flow[%s]

46015 HY000 Invalid Port Number (1024 ~ 49151) [%s]

46016 HY000 Communication link failure

46017 HY000 Invalid Protocol value (%s)

46018 HY000 Master disconnect abnormally

46019 HY000 Protocol Error Occurred (%s)

46020 HY000 Already Slave Connected

46021 HY000 Invalid Transaction Slot Id

46022 HY000 Invalid Supplemental Log (%d)

46023 HY000 Invalid operation for DDL

46024 HY000 Invalid value to analyze

46025 HY000 Invalid group name

46026 HY000 Not set master ip

46027 HY000 Invalid capture information

46028 HY000 There is no group in configure

46029 HY000 Duplicate group name (%s)

46030 HY000 Invalid Value : %s(%ld)

46031 HY000 Too low value : %s(%ld)

cyclone Related Error | 3,693

46032 HY000 Invalid Host Port(%d)

46033 HY000 Redo Log file Read Timeout (%s)

46034 HY000 Invalid Archive Log File (%s)

46035 HY000 Invalid Temporary File (%s)

46036 HY000 Fail to write file (%s)

46037 HY000 Fail to Update State (%s)

46038 HY000 Fail to set Propagate mode at Session

46039 HY000 There is no active redo log file.

46040 HY000 There is no restart information. Master Database must be started first.

46041 HY000 Can Not Add New Table. Master Database must be started first.(%s.%s)

46042 HY000 Master Database must be started for the first time.

46043 HY000 Invalid Meta File(%s).

46044 HY000 Redo Log File does not exist(%s).

46045 HY000 USER_ID or USER_PW does not exist.

46046 HY000 Slave is not running with --sync option.

46047 HY000 Invalid Connect Information for sync (%s)

46048 HY000 (%s) value is too long

46049 HY000 Invalid encrypt/decrypt key

46050 HY000 no '--key' option

46051 HY000 password already exists (use one of USER_PW or USER_ENCRYPT_PW)

46052 HY000 reset or sync table (%s.%s) has never participated in replication

46053 HY000 reset or sync argument is invalid (%s)

46054 HY000 Table meta file has broken. please restart with '--reset all'

46055 HY000 protocol timeout

46056 HY000 Slave stopped normally

46057 HY000 Cannot use reset and sync option at the same time.

46058 HY000 There is no (%s.%s) table to sync (--sync option)

46059 HY000
(%s.%s) table (%s) column is not acceptable(GENERATED ALWAYS AS IDENTI

TY)

46060 HY000 driver does not support %s function

46061 HY000 data type is not supported.

46062 HY000
Cluster information does not matched(before groupid(%d), memberid(%d)/cu

rrent groupid(%d), memberid(%d))

46063 HY000 Invalid cluster information at configure file(%s)

46064 HY000 Fail to rollback transaction

Error code SQLSTATE Message

3,694 | Error Codes

A.19 LogMirror Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-25 LogMirror related error

Error code SQLSTATE Message

47000 RD000 Service is not available

47001 HY000 Invalid Protocol value (%s)

47002 HY000 "%s": file does not exist

47003 HY000 configure file processing error

47004 HY000 invalid Control file

47005 HY000 Communication link failure

47006 HY000 LogMirror is already running

47007 HY000 GOLDILOCKS_DATA system environment is invalid

47008 HY000 There is no Shared Memory Area for LogMirror

47009 HY000 Invalid Value : %s(%s)

47010 HY000 Invalid port : (%d)

47011 HY000 Master disconnect abnormally

47012 HY000 Invalid Log File(%s)

47013 HY000 Archive Log File does not exist

47014 HY000 Archive Log file Read Timeout (%s)

47015 HY000 LogMirror is not running

47016 HY000 Connection Information does not exist

47017 HY000 Infiniband Receive Fail. (%ld)

47018 HY000 GOLDILOCKS Shutdown or Give-up LogMirror Service.

47019 HY000 Invalid encrypt/decrypt key

47020 HY000 no '--key' option

47021 HY000 password already exists(use one of USER_PW or USER_ENCRYPT_PW)

47022 HY000 protocol heartbeat timeout

cymon Related Error | 3,695

A.20 cymon Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-26 cymon related error

Error code SQLSTATE Message

48000 HY000 GOLDILOCKS_DATA system environment is invalid

48001 HY000 "%s": file does not exist

48002 RD000 Service is not available

48003 HY000 configure file processing error

48004 HY000 Duplicate group name (%s)

48005 HY000 Invalid Value : %s(%ld)

48006 HY000 Invalid group name

48007 HY000 Invalid Port Number (1 ~ 65535)

48008 HY000 There is no group in configure

48009 HY000 cymon is already running

48010 HY000 Communication link failure

48011 HY000 Protocol Error Occurred (%s)

48012 HY000 Already Monitor Connected

48013 HY000 cymon is not running

48014 HY000 internal error occurred (%s)

48015 HY000 Fail to update monitoring info

48016 HY000 USER_ID or USER_PW does not exist.

48017 HY000 Invalid encrypt/decrypt key

48018 HY000 no '--key' option

48019 HY000 password already exists(use one of USER_PW or USER_ENCRYPT_PW)

3,696 | Error Codes

A.21 gdispatcher Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-27 gdispatcher related error

Error code SQLSTATE Message

50000 HY000 Dispatcher is already started

50001 HY000 overflow fd

gbalancer Related Error | 3,697

A.22 gbalancer Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-28 gbalancer related error

Error code SQLSTATE Message

51000 HY000 overflow fd

3,698 | Error Codes

A.23 gsyncher Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-29 gsyncher related error

Error code SQLSTATE Message

53000 HY000 invalid phase(%s): executable phase is %s

53001 HY000 GOLDILOCKS_DATA system environment is invalid

53002 HY000 gmaster is active

53003 HY000 gsyncher is already running

53004 HY000 Shared memory is cleared

Cluster Related Error | 3,699

A.24 Cluster Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-30 Cluster related error

Error code SQLSTATE Message

56000 HY000 location information of member '%s' already exists

56001 HY000 location information of member '%s' does not exist

56002 HY000 location information of member '%s' is modified by concurrent execution

56003 HY000 has inactive member (%s)

56004 HY000 location file is corrupted - '%s'

56005 HY000 connections of some cluster members are broken

56006 40000 transaction rollback: failed to prepare global transaction

56007 HY000 must be accessible to at least one of replicas

56008 40000 transaction rollback: failed to synchronize replicas

56009 HY000 remote server (member ID: %ld) is abnormally terminated

56010 40000 transaction rollback: remote session is abnormally terminated

56011 HY000 a shared session cannot modify NUMA property

56012 HY000 no connection was established to recover in-doubt transactions

56013 HY000 cannot resolve in-doubt transaction

56014 HY000 MAX_NODE_COUNT property value '%d' must be equal to or less than '%d'

56015 HY000 '%s' property value must be greater than or equal to '%s' property value '%d'

56016 HY000
all members affected by the transaction are inactive - cannot guarantee durabili

ty of the transaction

56017 40000 transaction rollback: failed to open remote session

56018 HY000 protocol payload size(%ld) exceed maximum packet size(%ld)

56019 HY000 failover busy

56020 HY000 internal error (%s, %d)

56021 HY000 exceeded maximum response timeout

56022 HY000 failed to connect to an host

3,700 | Error Codes

A.25 cserver Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-31 cserver related error

Error code SQLSTATE Message

57000 HY000 sample error

cdispatcher Related Error | 3,701

A.26 cdispatcher Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-32 cdispatcher related error

Error code SQLSTATE Message

58000 HY000 the sender failed to connect to the member(%d)

58001 HY000 the socket of target member '%s' is already disconnected

58002 HY000 the location information for member '%s' is not found

58003 HY000
the connection information is invalid; %s %d is either equal to or greater than

%d

58004 HY000 the connection timeout from remote(%d)

58005 HY000 the disconnection timeout from remote(%d)

58006 HY000 invalid connection state transition

58007 HY000 dispatcher thread counts of two hosts do not match

58008 HY000 failed to start '%s' thread of cluster dispatcher

58009 HY000 internal error (%s, %d)

58010 HY000 broken socket

58011 HY000 old cluster connection is still alive

58012 HY000 failover event is in progress

58013 HY000 the connection can be established at LOCAL OPEN or OPEN phase

3,702 | Error Codes

A.27 gtrclogger Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-33 gtrclogger related error

Error code SQLSTATE Message

59000 HY000 exceeded port cnt

59001 HY000 gtrclogger is already running

59002 HY000 gtrclogger is not running

59003 HY000 Operation timed out

59004 22000 Invalid GOLDILOCKS_DATA directory

glocator Related Error | 3,703

A.28 glocator Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-34 glocator related error

Error code SQLSTATE Message

60000 HY000 syntax error

60001 HY000 file does not exist - '%s'

60002 HY000 GOLDILOCKS_DATA system environment is invalid

60003 HY000 Invalid value - %s(%s)

60004 HY000 file name is too long - '%s'

60005 HY000 glocator is already started.

60006 HY000 Location file is corrupted - '%s'

60007 HY000 Property value is out of length - '%s'

60008 HY000 Invalid property value [YES | NO | 1 | 0] - '%s'

60009 HY000 Invalid property value [%ld ~ %ld] - '%s'

60010 HY000 Invalid property value [%ld ~ %ld] - '%s'

60011 HY000 File is already exist - '%s'

60012 HY000 Location file exceeded max size(%ld) - over size(%ld)

60013 HY000 Not exist node information - '%s'

60014 HY000 Exceeded response time for failover.

60015 HY000 Node is on failover - '%s'

60016 HY000 Need more alternate locator host information.

60017 HY000 Invalid configure file specifcation - property:[%s]

60018 HY000 Failed to propagate - '%s:%d'

3,704 | Error Codes

A.29 gloctl Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-35 gloctl related error

Error code SQLSTATE Message

61000 HY000 Syntax error

61001 HY000 File is not exist - '%s'

61002 HY000 Can not find any ini object in file - '%s'

61003 HY000 Dsn is not exist - '%s'

61004 HY000 ADD MEMBER keyword syntax is error - '%s'

61005 HY000 ADD SERVICE keyword syntax is error - '%s'

61006 HY000 Invalid property value [YES | NO | 1 | 0] - '%s'

61007 HY000 Invalid property value [%ld ~ %ld] - '%s'

61008 HY000 Invalid property value [%ld ~ %ld] - '%s'

61009 HY000 STL_ENV_DB_DATA system environment is invalid

61010 HY000 Keyword syntax is invalid - '%s'

61011 HY000 Data value is invalid - '%s'

gmon Related Error | 3,705

A.30 gmon Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-36 gmon related error

Error code SQLSTATE Message

62000 HY000 gmon is already running

62001 HY000 process(%ld) did not respond signal

62002 HY000 GOLDILOCKS_DATA system environment is invalid

3,706 | Error Codes

A.31 gagent Related Error

● Error code: GOLDILOCKS-specific error code

● SQLSTATE: SQL standard state code

● Message: Error message

Table A-37 gagent related error

Error code SQLSTATE Message

63000 HY000 GOLDILOCKS_DATA system environment is invalid

63001 HY000 Property value is out of length - '%s'

63002 HY000 Invalid property value [YES | NO | 1 | 0] - '%s'

63003 HY000 Invalid property value [%ld ~ %ld] - '%s'

63004 HY000 Invalid property value [%ld ~ %ld] - '%s'

63005 HY000 gagent is already started.

63006 HY000 file name is too long - '%s'

63007 HY000 file does not exist - '%s'

63008 HY000 Database is not cluster.

63009 HY000 Invalid configure file specifcation - property:[%s]

63010 HY000 Invalid phase(%s): executable phase is between %s and %s

63011 HY000 Property PORT of dsn(%s) is not set in file 'odbc.ini'

Wait Event

Appendix B.

3,707

3,708 | Wait Event

B.1 Wait Event

Performance views which is related to the wait event is as follows.

● v$system_event V$SYSTEM_EVENT

● v$session_event V$SESSION_EVENT

● v$session_wait V$SESSION_WAIT

● v$wait_event_name V$WAIT_EVENT_NAME

● v$wait_event_class_name V$WAIT_EVENT_CLASS_NAME

B.2 Class of Wait Event

● Administrative: Waits resulting from DBA commands that cause users to wait (for example, an index

rebuild)

● Application: Waits resulting from user application code (for example, lock waits caused by row level l

ocking or explicit lock commands)

● Cluster: Waits related to cluster resources (for example, global cache resources)

● Commit: This wait class only comprises one wait event - wait for redo log write confirmation after a c

ommit (that is, 'log file sync')

● Concurrency: Waits for internal database resources (for example, latches)

● Configuration: Waits caused by inadequate configuration of database or instance resources (for exa

mple, undersized log file sizes, shared pool size)

● Idle: Waits that signify the session is inactive, waiting for work (for example, 'gsql message from clien

t')

● Network: Waits related to network messaging

● Other: Waits which should not typically occur on a system

● Scheduler: Resource manager related waits

● System IO: Waits for background process IO

● User IO: Waits for user IO

Item of Wait Event | 3,709

B.3 Item of Wait Event

ENQUEUE: GDISPATCHER REQUEST

It is the time of which GDISPATCHER enqueues a request in a shared mode.

Parameter: None

ENQUEUE: SHARED-SERVER RESPONSE

It is the time of which a shared server enqueues a response in a shared mode.

Parameter: None

DEQUEUE: SHARED-SERVER REQUEST

It is the time of which a shared server dequeues a request in a shared mode.

Parameter: None

DEQUEUE: GDISPATCHER RESPONSE

It is the time of which GDISPATCHER dequeues a response in a shared mode.

Parameter: None

SEND: DEDICATE-SERVER SPOOLED RESPONSE

It is the time of which a dedicate server sends the spooled response to the client in a dedicate mode.

Parameter Description

send data size Bytes of the data to be sent

3,710 | Wait Event

SEND: DEDICATE-SERVER RESPONSE

It is the time of which a dedicate server sends a response to the client in a dedicate mode.

Parameter Description

send data size Bytes of the data to be sent

RECV: DEDICATE-SERVER REQUEST

It is the time of which a dedicate server receives a request from the client in a dedicate mode.

Parameter: None

SEND: GDISPATCHER RESPONSE

It is the time of which GDISPATCHER sends a response to a client in a shared mode.

Parameter Description

send data size Bytes of the data to be sent

RECV: GDISPATCHER REQUEST

It is the time of which GDISPATCHER receives a request from a client in a shared mode.

Parameter: None

ENQUEUE: CLUSTER REQUEST

It is the time of enqueuing a request of cluster.

Parameter: None

Item of Wait Event | 3,711

ENQUEUE: CLUSTER BROADCAST REQUEST

It is the time of enqueuing a broadcast request of cluster.

Parameter: None

DEQUEUE: CLUSTER RESPONSE

It is the time of dequeuing a response of cluster.

Parameter: None

SEND: CDISPATCHER

It is the time of sending in cluster CDISPATCHER.

Parameter: None

RECV: CDISPATCHER

It is the time of receiving in cluster CDISPATCHER.

Parameter: None

GMASTER: ARCHIVE LOG

It is the time of processing archive logs in gmaster.

Parameter: None

GMASTER: CHECKPOINT

It is the time of processing checkpoints in gmaster.

Parameter: None

3,712 | Wait Event

GMASTER: IO SLAVE

It is the time of processing IO slave in gmaster.

Parameter: None

GMASTER: LOG FLUSH

It is the time of processing archive logs in gmaster.

Parameter: None

GMASTER: PAGE FLUSH

It is the time of processing page flush in gmaster.

Parameter: None

WRITE: TRACE LOG

It is the time of writing trace logs.

Parameter: None

WRITE: COPY ARCHIVING LOG

It is the time of copying archiving logs.

Parameter: None

WRITE: BACKUP CTRL FILE

It is the time of backing up control files.

Parameter: None

Item of Wait Event | 3,713

WRITE: RESTORE CTRL FILE

It is the time of restoring the control file.

Parameter: None

READ: ARCHIVE LOG

It is the time of reading archive log files.

Parameter: None

READ: CTRL FILE

It is the time of reading the control file.

Parameter: None

WRITE: LOG FILE

It is the time of writing log files.

Parameter: None

WRITE: PAGE FILE

It is the time of writing page files.

Parameter: None

WRITE: CTRL FILE

It is the time of writing the control file.

Parameter: None

3,714 | Wait Event

WRITE: REMOVE DATA FILE

It is the time of removing the data file.

Parameter: None

WRITE: JOURNAL BUFFER

It is the time of writing journal buffers.

Parameter: None

READ: JOURNAL BUFFER

It is the time of reading journal buffers.

Parameter: None

WAIT TRANSACTION

It is the time of waiting for transactions.

Parameter Description

wait transaction id Transaction id for which to wait

WAIT OTHER TRANSACTION

It is the time of waiting for other transactions to be terminated.

Parameter Description

wait transaction id ID of the waiting transaction

target transaction id ID of the transaction to be terminated

Item of Wait Event | 3,715

WAIT ENABLE LOGGING

It is the time of waiting until when the logging is available.

Parameter: None

WAIT LOG FLUSHER

It is the time of waiting for the log flusher.

Parameter Description

send data size Bytes of the data to be sent

WAIT PAGE FLUSHER

It is the time of waiting for the page flusher.

Parameter Description

send data size Bytes of the data to be sent

WAIT XA CONTEXT

It is the time of waiting for the XA context.

Parameter: None

LATCH: LOG BUFFER

It is the time of waiting for the log buffer latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

3,716 | Wait Event

LATCH: PROCESS MANAGER

It is the time of waiting for the process manager latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: ENV MGR

It is the time of waiting for the env manager latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: SESSION ENV MGR

It is the time of waiting for the session env manager latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: PCH

It is the time of waiting for the Page Control Header (PCH) latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

Item of Wait Event | 3,717

LATCH: PAGE

It is the time of waiting for the page latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: PENDING LOG

It is the time of waiting for the pending log latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: ALLOC TRANS

It is the time of waiting for the allocate transaction latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: UNDO SEGMENT

It is the time of waiting for the undo segment latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

3,718 | Wait Event

LATCH: CLUSTER LOCATION

It is the time of waiting for the cluster location latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: DICT HASH ELEMENT AGING

It is the time of waiting for the dict hash element aging latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: DICT HASH RELATED AGING

It is the time of waiting for the dict hash related aging latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: FILE MANAGER

It is the time of waiting for the file manager latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

Item of Wait Event | 3,719

LATCH: TRACE LOG

It is the time of waiting for the trace log latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: STATIC HASH

It is the time of waiting for the static hash latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: STATIC HASH BUCKET

It is the time of waiting for the static hash bucket latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: SQL HANDLE

It is the time of waiting for SQL handle latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

3,720 | Wait Event

LATCH: XA CONTEXT HASH

It is the time of waiting for XA context hash latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: PLAN CLOCK

It is the time of waiting for the plan clock latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: XA CONTEXT

It is the time of waiting for XA context latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: MEM CONTROLLER

It is the time of waiting for the memory controller latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

Item of Wait Event | 3,721

LATCH: DYNAMIC MEM

It is the time of waiting for the dynamic memory latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: PROPERTY

It is the time of waiting for the property latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: ATTACH SHM

It is the time of waiting for the attack shared memory latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: BACKUP TBS

It is the time of waiting for the backup tablespace latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

3,722 | Wait Event

LATCH: DATABASE COMPONENT

It is the time of waiting for the database component latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: TABLESPACE

It is the time of waiting for the tablespace latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: BACKUP DATABASE

It is the time of waiting for the backup database latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: JOURNAL BUFFER

It is the time of waiting for the journal buffer latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

Item of Wait Event | 3,723

LATCH: JOURNAL BUFFER ENTRY

It is the time of waiting for the journal buffer entry latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: JOURNAL WRITE BUFFER

It is the time of waiting for the journal write buffer latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: LOCK ITEM

It is the time of waiting for the lock item latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: RECORD HASH

It is the time of waiting for the record hash latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

3,724 | Wait Event

LATCH: DEADLOCK

It is the time of waiting for the deadlock latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: SEQUENCE

It is the time of waiting for the sequence latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: LOG STREAM

It is the time of waiting for the log stream latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: BUILD AGABLE SCN

It is the time of waiting for the build agable SCN latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

Item of Wait Event | 3,725

LATCH: TRANSACTION TABLE

It is the time of waiting for the transaction table latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: SESSION LINK HASH

It is the time of waiting for the session link hash latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: ALLOC XA CONTEXT

It is the time of waiting for the allocate XA context latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: SEQUENCE GLOBALX

It is the time of waiting for the sequence global latch X.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

3,726 | Wait Event

LATCH: SEQUENCE GLOBALY

It is the time of waiting for the sequence global latch Y.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

LATCH: TRANSACTION LOG FILE

It is the time of waiting for the transaction logfile latch.

Parameter Description

address The address of the latch for which the process is waiting

tries A count of the number of times the process tried to get the latch

Open Source License

Appendix C.

3,727

3,728 | Open Source License

Apache License, Version 2.0

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sectio

ns 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting th

e License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled b

y, or are under common control with that entity. For the purposes of this definition, "control" means (i) t

he power, direct or indirect, to cause the direction or management of such entity, whether by contract or

otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial o

wnership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to softw

are source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source fo

rm, including but not limited to compiled object code, generated documentation, and conversions to oth

er media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the L

icense, as indicated by a copyright notice that is included in or attached to the work (an example is provid

ed in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived fr

om) the Work and for which the editorial revisions, annotations, elaborations, or other modifications repr

esent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall

not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the

Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any mo

difications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licens

or for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to subm

it on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of el

ectronic, verbal, or written communication sent to the Licensor or its representatives, including but not li

| 3,729

mited to communication on electronic mailing lists, source code control systems, and issue tracking syste

ms that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the W

ork, but excluding communication that is conspicuously marked or otherwise designated in writing by the

copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution ha

s been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, w

orldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Deriv

ative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative

Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, w

orldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent licen

se to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such licens

e applies only to those patent claims licensable by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contributio

n(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counter

claim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes dire

ct or contributory patent infringement, then any patent licenses granted to You under this License for tha

t Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with o

r without modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, paten

t, trademark, and attribution notices from the Source form of the Work, excluding those notices that

do not pertain to any part of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that Yo

u distribute must include a readable copy of the attribution notices contained within such NOTICE fil

e, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of t

he following places: within a NOTICE text file distributed as part of the Derivative Works; within the

Source form or documentation, if provided along with the Derivative Works; or, within a display gen

3,730 | Open Source License

erated by the Derivative Works, if and wherever such third-party notices normally appear. The conte

nts of the NOTICE file are for informational purposes only and do not modify the License. You may a

dd Your own attribution notices within Derivative Works that You distribute, alongside or as an adde

ndum to the NOTICE text from the Work, provided that such additional attribution notices cannot be

construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or differe

nt license terms and conditions for use, reproduction, or distribution of Your modifications, or for any suc

h Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise

complies with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work b

y You to the Licensor shall be under the terms and conditions of this License, without any additional term

s or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any se

parate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product na

mes of the Licensor, except as required for reasonable and customary use in describing the origin of the

Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contribut

or provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIN

D, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INF

RINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible f

or determining the appropriateness of using or redistributing the Work and assume any risks associated

with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unl

ess required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall

any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or conseq

uential damages of any character arising as a result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malf

unction, or any and all other commercial damages or losses), even if such Contributor has been advised o

f the possibility of such damages.

| 3,731

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for,

acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with thi

s License. However, in accepting such obligations, You may act only on Your own behalf and on Your sol

e responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and

hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor b

y reason of your accepting any such warranty or additional liability.

Copyright 2019-2022 SUNJESOFT Inc.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distrib

uted on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or impli

ed. See the License for the specific language governing permissions and limitations under the License.

3,732 | Open Source License

	GOLDILOCKS 3.2 User Manual (en)
	Table of Contents
	Part I. Getting Started
	1. Preface
	1.1 Overview
	Target Reader

	1.2 Summary
	GOLDILOCKS Database Management System
	GOLDILOCKS Architecture
	GOLDILOCKS Cluster System Architecture

	1.3 Characteristics of GOLDILOCKS Cluster
	Features of Cluster
	Constraint of Cluster

	2. Tutorial
	2.1 Managing GOLDILOCKS Instance
	Overview
	Property Setting
	Background Process
	Client Process
	Client/ Server Model
	Direct Access Model

	Memory Architecture of Instance
	Startup and Shutdown Instance
	Start and End of Listener

	2.2 Installing GOLDILOCKS and Creating Database
	Overview
	Release Platform
	System Requirements
	GOLDILOCKS Package Configuration
	Package Directory Configuration
	Package File List

	Installing GOLDILOCKS Software
	Kernel Parameters
	Shared Memory
	Semaphore
	Network
	Applying Parameters
	Checking Parameters

	Decompressing GOLDILOCKS
	Setting Enviromment Variables
	Deleting Database
	Deletion

	Creating Database
	Building Dictionary Schema Information

	2.3 Managing Database Memory Structure
	Database Memory Structure
	Control File
	Online Redo Log File
	Undo Segment
	Data File
	Tablespace
	Tablespace Types

	Checking Information of Database Storage Structure
	Control File Information
	Online Redo Log File Information
	Data File Information
	Tablespace Information
	Property Information

	General Operation of Data Storage
	Creating Tablespace
	Retrieving Tablespace Usage State
	Altering Tablespace
	Add/ Drop Data File (or Memory)
	Offline Tablespace

	Rename
	Dropping Tablespace

	Store Mode

	2.4 Managing Schema Object
	Schema Object
	Schema Object Management Privileges
	Managing Table
	Table
	Table Type

	Managing Index
	Overview
	Index Property

	Sequence

	2.5 Managing User
	Creating User
	Dropping User
	Altering User

	2.6 GOLDILOCKS Property
	Properties When Creating Database
	Properties When Driving Database

	2.7 GOLDILOCKS Utility
	gcreatedb
	gsql (GOLDILOCKS Interactive SQL Tool)
	gloader (GOLDILOCKS Data Upload/download Tool)

	3. Cluster Tutorial
	3.1 Managing GOLDILOCKS Cluster System
	Overview
	Property Setting
	Background Process
	Client Process
	Memory Structure of Instance
	Start and End of Cluster System

	3.2 Installing GOLDILOCKS and Creating Database
	Configuring GOLDILOCKS Package
	Installing GOLDILOCKS Software
	Creating Database
	Building Dictionary Schema Information

	3.3 Managing Schema Object
	Managing Table
	Cloned Strategy
	Hash Sharding Strategy
	Range Sharding Strategy
	List Sharding Strategy

	Managing Index
	Global Secondary Index

	Global Sequence

	3.4 GOLDILOCKS Property

	4. What's New
	4.1 Feature Matrix
	Architecture
	System Architecture
	Storage Internal
	Transaction Control
	Backup & Recovery
	Database Information
	DICTIONARY_SCHEMA Schema
	INFORMATION_SCHEMA Schema
	PERFORMANCE_VIEW_SCHEMA Schema

	Server Property

	SQL
	SQL Element
	Data Type
	Function

	Object
	SQL Object
	Cluster Object

	SQL Language
	DML
	Query
	Control Language

	PSM Language

	API
	ODBC
	JDBC
	Embedded SQL
	Precompiler Option
	Embedded SQL-only Syntax
	Host Variable Data Type
	Dynamic SQL

	PyDBC
	Module
	Connection
	Cursor
	Row

	Utility
	gcreatedb
	Command Usage

	glsnr
	Command Usage
	Configuration File

	gsql/gsqlnet
	Command Usage
	Interactive gsql Command

	gloader/gloadernet
	Command Usage
	Control File Syntax

	gdump
	Command Usage

	tablediff
	Configuration File

	gsyncher
	Command Usage

	gmon
	Command Usage

	gtrclogger
	Command Usage

	glocator
	Command Usage
	Configuration File

	gagent
	Command Usage
	Configuration File

	gloctl
	Command Usage
	Configuration File

	Replication
	cyclone
	Command Usage
	Configuration File

	logmirror
	Command Usage
	Configuration File

	cymon
	Command Usage

	4.2 What's New in GOLDILOCKS 3.2
	Architecture
	System Architecture
	Storage Internal
	Transaction Control
	Backup & Recovery
	Database Information
	DICTIONARY_SCHEMA
	INFORMATION_SCHEMA
	PERFORMANCE_VIEW_SCHEMA

	Server Property
	Property for Global Temporary Table Has Been Added
	Recompile Feature Based on the Change of Pages Are Deleted
	Property for Auxiliary Tablespace Has Been Added
	Property for Communication Data Compression Has Been Added
	Property for Redo Log Compression Has Been Added
	USE_LARGE_PAGES Property Has Been Added

	SQL
	SQL Element
	Data Type
	Function

	Object
	Audit Policy
	Global Temporary Table

	SQL Language
	Parallel Processing of ANALYZE TABLE Statement
	Audit Policy DDL
	User DDL
	Table DDL
	Index DDL
	Cluster System DDL
	System DCL

	API
	ODBC
	odbc.ini
	GLOBAL CONNECTION

	Statement Attributes
	JDBC
	Connection Property

	Embedded SQL
	PDO
	PyDBC
	Ruby
	Hibernate

	Utility
	gcreatedb
	glsnr
	gsql/gsqlnet
	DDL Output of an Audit Policy Object
	SET HEADING {ON | OFF}

	gloader/gloadernet
	WHERE Clause
	--group-id
	--directio-size

	gdump
	tablediff
	gsyncher
	gmon
	gtrclogger
	glocator
	Configuration
	Argument

	gagent
	Configuration

	gloctl
	Configuration
	--dsn

	Replication
	cyclone
	logmirror
	cymon

	4.3 Patch Notes
	3.2.14 Patch Note
	ISSUE-6253 It supports the property to use the normal page when it fails to allocate the shared memory using the large page.
	Description
	Workaround

	3.2.13 Patch Note
	ISSUE-5862 If the connection object is shared in the multi-thread program of JDBC, the deadlock occurs.
	Description
	Workaround

	3.2.12 Patch Note
	ISSUE-4362 It is abnormally terminated because cserver refers to the freed memory in the cluster.
	Description

	3.2.11 Patch Note
	ISSUE-3869 The result of row status is wrong when executing array fetch in ODBC.
	Description
	Symptom
	Workaround

	ISSUE-3534 gagent does not shutdown the server, but the server is terminated by itself during the cluster failover process.
	Description

	ISSUE-3534 glocator is changed to transfer the result only to gagent which enquired while processing the cluster failover.
	Description

	ISSUE-3314 When registerOutParameter() and set..() which are the method of CallableStatement in JDBC are used in the same parameter, then the normal value can not be get.
	Description
	Symptom
	Workaround

	ISSUE-3302 An error occurs when executing getBytes() method which is the method of CallableStatement in JDBC.
	Description
	Symptom
	Workaround

	gloader command argument --group-id has been added.
	Description

	gloader command argument --directio-size has been added.
	Description

	3.2.10 Patch Note
	ISSUE-3253 When recovering the offline tablespace during the service, then it does not recover the log written on the log buffer.
	Description
	Symptom
	Workaround

	ISSUE-3222 When GOLDILOCKS system process in the cluster environment hangs up, then the entire system stops.
	Description
	Symptom
	Workaround

	ISSUE-3175 gpec can not process the annotation in #define statement.
	Description
	Symptom
	Workaround

	ISSUE-3175 gpec can not process define statement normally in #if, #else.
	Description
	Symptom
	Workaround

	ISSUE-3175 The number #define statements which are processed by gpec is fixed.
	Description
	Symptom
	Workaround

	ISSUE-3175 gpec can not process the empty bracket annotation normally.
	Description
	Symptom
	Workaround

	ISSUE-3243 When glsnr receives the wrong protocol it is terminated.
	Description
	Symptom
	Workaround

	ISSUE-3174 LOCALITY_GROUP_POLICY, LOCALITY_GROUP_PATH, LOCALITY_MEMBER_POLICY, LOCALITY_MEMBER_PATH have been added to ODBC properties.
	Description

	ISSUE-3220 When multiple subquery conditions exists for more than three joins, some subquery conditions are omitted
	Description
	Symptom
	Workaround

	ISSUE-3199 It can not be processed normally when obtaining GroupId in array in EmbeddedSQL.
	Description
	Symptom
	Workaround

	ISSUE-3197 gpec can not process < ... > string normally.
	Description
	Symptom
	Workaround

	3.2.9 Patch Note
	ISSUE-3188 set heading has been added in gsql.
	Description

	3.2.8 Patch Note
	ISSUE-3175 gpec can not process a non-ascii character.
	Description
	Symptom
	Workaround

	ISSUE-2958 The group ID of the SQL statement can be obtained in the embedded SQL.
	Description

	ISSUE-3186 When two nodes are abnormally terminated at a time, then a hang may occur during the failover.
	Description
	Symptom
	Workaround

	3.2.7 Patch Note
	ISSUE-3093 An error occurs while gpec parses the preprocessor #define.
	Description
	Symptom
	Workaround

	3.2.6 Patch Note
	ISSUE-3149 gpec can not parse the file normally which uses a structure array in SELECT INTO statement.
	Description
	Symptom
	Workaround

	ISSUE-3145 SSA is increasing due to allocating the new memory even though the available memory exists in the session.
	Description
	Symptom
	Workaround

	ISSUE-3144 gloader can not import the data normally when the first character of the field delimiter and that of the line terminator are the same.
	Description
	Symptom
	Workaround

	3.2.5 Patch Note
	ISSUE-3093 gpec can process #define and #undef only when they were declared in the declare section. Also, it does not alter the statement about the false value of if group such as #ifdef into a white space.
	Description
	Symptom
	Workaround

	ISSUE-3075 An error occurs because the data type is changed when repeatedly executingPreparedStatement.setCharactertStream(int, Reader, int) method and PreparedStatement.addBatch() method in JDBC
	Description
	Symptom
	Workaround

	ISSUE-3056 Characters which returns TRUE/ FALSE when performing ResultSet.getBoolean() in JDBC have been diversified.
	Description
	Symptom
	Workaround

	ISSUE-3055 Transferring an invalid character when connecting server and client whose character sets are different each other
	Description
	Symptom
	Workaround

	ISSUE-2359 cluster peer without a parent session
	Description
	Symptom
	Workaround

	3.2.4 Patch Note
	ISSUE-3026 Altering the location of AT statement when performing \ddl_tablespace in gsql
	Description
	Symptom
	Workaround

	ISSUE-3023 BEGIN BACKUP AT DOMAIN error
	Description
	Symptom
	Workaround

	3.2.3 Patch Note
	ISSUE-3006 A transaction is created when performing EXPLAIN PLAN ONLY
	Description
	Symptom
	Workaround

	3.2.2 Patch Note
	ISSUE-2947 The previous version data of a remote group which was executed in the same session is retrieved in cluster environment.
	Description
	Symptom
	Workaround

	ISSUE-2965 Data is missing when BigDecimal types is used as a parameter in JDBC
	Description
	Symptom
	Workaround

	ISSUE-2955 gsqlnet can not consecutively execute cstartup or cshutdown in cluster environment.
	Description
	Symptom
	Workaround

	ISSUE-2943 agable scn does not increase when a query timeout occurs in cluster environment.
	Description
	Symptom
	Workaround

	ISSUE-2927 Deadlock Due to the Lack of Transaction Slot
	Description
	Symptom
	Workaround

	ISSUE-2922 Adding SQL_ATTR_FETCH_FAILOVER to statement attribute in ODBC
	Description
	Symptom
	Workaround

	ISSUE-2513 EXEC SQL AT :sConn DISCONNECT can not detect VARCHAR type
	Description
	Symptom
	Workaround

	ISSUE-2349 When gpec processes a preprocessor, __LINE__ macro indiates the wrong line.
	Description
	Symptom
	Workaround

	3.2.1 Patch Note
	ISSUE-2902 Deadlock When Referring to the Global Sequence Value in Cluster Environment
	Description
	Symptom
	Workaround

	Part II. Administration Manual
	5. Basic Management of GOLDILOCKS Database
	5.1 Creating and Configuring GOLDILOCKS Database
	Creating Database
	Specifying Initial Property
	Initial Property

	Managing Initial Property Using GOLDILOCKS Configuration File

	5.2 Starting up and Shutting down GOLDILOCKS Instance
	Starting up Instance
	Multi-level Startup
	Idle Phase
	Nomount Phase
	Mount Phase
	Open Phase

	Diagnosis

	Shutting down Instance
	Shutdown Normal
	Shutdown Transactional
	Shutdown Immediate
	Shutdown Abort

	5.3 Managing Process
	Master Process
	Checkpoint Thread
	Log Flushing Thread
	Log Archiving Thread
	Ager Thread
	Timer Thread
	Page Flusher & IO Slave Threads
	Cleanup Thread
	Process Monitor Thread
	Cluster Recover Thread
	Failover Thread

	Listener Process

	5.4 Managing Memory
	GOLDILOCKS Memory Architecture
	Managing SSA
	Managing PSA

	5.5 Monitoring
	Monitoring with Trace File
	Managing Trace Log File
	System Log
	System Log Format
	Operational Information of GOLDILOCKS Database

	XA Log
	DDL Log
	Trace Log Replication
	Listener Log
	Listener Log Format

	Monitoring Performance Using View

	6. Structure and Storage Structure of GOLDILOCKS Database
	6.1 Managing Control File
	Control File Contents
	Multiplexing Control File
	Restoring Corrupted Control File
	Control File Information

	6.2 Managing Redo Log File
	Redo Log File Structure
	Redo Log Group and Its Member
	Log Group State
	Adding Log Group and Log Member
	Adding Log Group
	Adding Log Member

	Altering Log Member Name
	Dropping Log Group or Log Member

	Restoring Corrupted Redo Log File
	Redo Log File Information

	6.3 Managing Archive Redo Log File
	Creating Archive Redo Log File
	Maintaining and Dropping Archive Redo Log File
	Multiplexing Archive Redo Log File Directory

	6.4 Managing Tablespace
	Tablespace Type
	SYSTEM Tablespace
	Non-SYSTEM Tablespace

	Managing Tablespace and Data File
	Managing Tablespace
	Managing Tablespace State
	Attributes of Tablespace
	Managing Tablespace
	Transferring Data File

	Tablespace Information

	6.5 Managing Data File
	Data File Matching
	Data File Information

	7. Backup and Recovery of GOLDILOCKS Database
	7.1 ARCHIVELOG Mode
	ACHIVELOG Mode
	NOARCHIVELOG Mode

	7.2 Backup and Recovery
	Backup
	The Purpose of Backup and Recovery
	Backup
	Full Backup
	Control File Backup
	Database Backup
	Tablespace Backup

	Incremental Backup
	Database Incremental Backup
	Tablespace Incremental Backup

	Recovery
	Automatic Recovery
	Analysis
	Restart Redo
	Restart Undo

	Recovery Using Backup
	Analysis for Recovery Using Backup
	Recovery Using Archive Log Files

	Incomplete Recovery
	Corrupted Control Files
	Restoring Backup Control File
	Corrupted Redo Log File
	Corrupted Archive Log File
	User's Mistake
	Incomplete Recovery of GOLDILOCKS Database
	Restarting Database after Incomplete Recovery
	Cautions for Incomplete Recovery

	Recovery Examples
	Corrupted Control File
	When a valid multiplexed control file exists
	When all multiplexed control files are corrupted

	Corrupted Data File
	User's Mistake (Table Dropping or Wrong Insert/drop/update)
	Corrupted Log Files (Archive File, Redo Log File)
	More Recent Datafile Than Log

	in doubt Transaction Recovery in Cluster Environment

	8. GOLDILOCKS Database Replication
	8.1 Overview
	8.2 Operating Method
	CYCLONE
	Adding and Deleting Nodes
	Examples of Adding Nodes
	Examples of Deleting Nodes

	Initializing Replication
	Examples of Initializing Replication on a Specific Node
	Examples of Initializing Replication of All Nodes

	LOGMIRROR
	Retrieving LOGMIRROR State
	Initializing Replication
	Examples of Initializing Replication

	8.3 Trace Log
	Troubleshooting of CYCLONE
	Troubleshooting of LOGMIRROR

	9. Database Information
	9.1 DICTIONARY_SCHEMA
	Views of ALL_family
	ALL_ALL_TABLES
	ALL_ARGUMENTS
	ALL_CATALOG
	ALL_CLUSTER_TABLES
	ALL_COL_COMMENTS
	ALL_COL_PRIVS
	ALL_COL_PRIVS_MADE
	ALL_COL_PRIVS_RECD
	ALL_CONSTRAINTS
	ALL_CONS_COLUMNS
	ALL_DB_PRIVS
	ALL_DB_PRIVS_MADE
	ALL_DB_PRIVS_RECD
	ALL_DEPENDENCIES
	ALL_GLOBAL_SECONDARY_INDEXES
	ALL_GSI_PLACE
	ALL_INDEXES
	ALL_IND_COLUMNS
	ALL_IND_PLACE
	ALL_NONSCHEMA_COMMENTS
	ALL_OBJECTS
	ALL_PROCEDURES
	ALL_PROC_PRIVS
	ALL_PROC_PRIVS_MADE
	ALL_PROC_PRIVS_RECD
	ALL_SCHEMAS
	ALL_SCHEMA_PATH
	ALL_SCHEMA_PRIVS
	ALL_SCHEMA_PRIVS_MADE
	ALL_SCHEMA_PRIVS_RECD
	ALL_SEQUENCES
	ALL_SEQ_PRIVS
	ALL_SEQ_PRIVS_MADE
	ALL_SEQ_PRIVS_RECD
	ALL_SHARD_KEY_COLUMNS
	ALL_SOURCE
	ALL_SYNONYMS
	ALL_TABLES
	ALL_TAB_COLS
	ALL_TAB_COLUMNS
	ALL_TAB_COMMENTS
	ALL_TAB_IDENTITY_COLS
	ALL_TAB_PLACE
	ALL_TAB_SHARDS
	ALL_TAB_PRIVS
	ALL_TAB_PRIVS_MADE
	ALL_TAB_PRIVS_RECD
	ALL_TBS_PRIVS
	ALL_TBS_PRIVS_MADE
	ALL_TBS_PRIVS_RECD
	ALL_USERS
	ALL_VIEWS

	Views of DBA_family
	DBA_ALL_TABLES
	DBA_ARGUMENTS
	DBA_CATALOG
	DBA_CLUSTER
	DBA_CLUSTER_COMMENTS
	DBA_CLUSTER_TABLES
	DBA_COL_COMMENTS
	DBA_COL_PRIVS
	DBA_CONSTRAINTS
	DBA_CONS_COLUMNS
	DBA_DB_PRIVS
	DBA_DEPENDENCIES
	DBA_EXTENTS
	DBA_GLOBAL_SECONDARY_INDEXES
	DBA_GSI_PLACE
	DBA_INDEXES
	DBA_IND_COLUMNS
	DBA_IND_PLACE
	DBA_NONSCHEMA_COMMENTS
	DBA_OBJECTS
	DBA_PROCEDURES
	DBA_PROC_PRIVS
	DBA_PROFILES
	DBA_SCHEMAS
	DBA_SCHEMA_PATH
	DBA_SCHEMA_PRIVS
	DBA_SEQUENCES
	DBA_SEQ_PRIVS
	DBA_SHARD_KEY_COLUMNS
	DBA_SOURCE
	DBA_STAT_SYSTEM
	DBA_SYS_PRIVS
	DBA_SYNONYMS
	DBA_TABLES
	DBA_TABLESPACES
	DBA_TAB_COLS
	DBA_TAB_COLUMNS
	DBA_TAB_COMMENTS
	DBA_TAB_IDENTITY_COLS
	DBA_TAB_PLACE
	DBA_TAB_PRIVS
	DBA_TAB_SHARDS
	DBA_TBS_PRIVS
	DBA_USERS
	DBA_VIEWS

	Views of USER_family
	USER_ALL_TABLES
	USER_ARGUMENTS
	USER_CATALOG
	USER_COL_COMMENTS
	USER_CLUSTER_TABLES
	USER_COL_PRIVS
	USER_COL_PRIVS_MADE
	USER_COL_PRIVS_RECD
	USER_CONSTRAINTS
	USER_CONS_COLUMNS
	USER_DEPENDENCIES
	USER_EXTENTS
	USER_GLOBAL_SECONDARY_INDEXES
	USER_GSI_PLACE
	USER_INDEXES
	USER_IND_COLUMNS
	USER_IND_PLACE
	USER_OBJECTS
	USER_PROCEDURES
	USER_PROC_PRIVS
	USER_PROC_PRIVS_MADE
	USER_PROC_PRIVS_RECD
	USER_SCHEMAS
	USER_SCHEMA_PATH
	USER_SCHEMA_PRIVS
	USER_SCHEMA_PRIVS_MADE
	USER_SCHEMA_PRIVS_RECD
	USER_SEQUENCES
	USER_SEQ_PRIVS
	USER_SEQ_PRIVS_MADE
	USER_SEQ_PRIVS_RECD
	USER_SHARD_KEY_COLUMNS
	USER_SOURCE
	USER_SYNONYMS
	USER_SYS_PRIVS
	USER_TABLES
	USER_TABLESPACES
	USER_TAB_COLS
	USER_TAB_COLUMNS
	USER_TAB_COMMENTS
	USER_TAB_IDENTITY_COLS
	USER_TAB_PLACE
	USER_TAB_PRIVS
	USER_TAB_PRIVS_MADE
	USER_TAB_PRIVS_RECD
	USER_TAB_SHARDS
	USER_USERS
	USER_VIEWS

	Other Views
	AUDIT_POLICIES
	AUDIT_POLICY_OPTIONS
	AUDIT_POLICY_ENABLED
	AUDIT_TRAIL
	DATABASE_PROPERTIES
	DBC_TABLE_TYPE_INFO
	DICTIONARY
	DICT_COLUMNS
	IMPLEMENTATION_INFO
	IMPLEMENTATION_INFO_BASE
	JDBC_CLIENT_PROPS
	PRODUCT
	SESSION_PRIVS
	SUPPLEMENTAL_LOG_TABLE_INFO

	Aliased Synonym
	COLS
	DICT
	IND
	OBJ
	SEQ
	TABS

	9.2 INFORMATION_SCHEMA
	COLUMNS
	COLUMN_PRIVILEGES
	CONSTRAINT_COLUMN_USAGE
	CONSTRAINT_TABLE_USAGE
	INFORMATION_SCHEMA_CATALOG_NAME
	KEY_COLUMN_USAGE
	PARAMETERS
	REFERENTIAL_CONSTRAINTS
	ROUTINES
	ROUTINE_PRIVILEGES
	ROUTINE_ROUTINE_USAGE
	ROUTINE_SEQUENCE_USAGE
	ROUTINE_TABLE_USAGE
	SCHEMATA
	SEQUENCES
	SQL_FEATURES
	SQL_IMPLEMENTATION_INFO
	SQL_PACKAGES
	SQL_PARTS
	SQL_SIZING
	STATISTICS
	TABLES
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	USAGE_PRIVILEGES
	VIEWS
	VIEW_ROUTINE_USAGE
	VIEW_TABLE_USAGE

	9.3 PERFORMANCE_VIEW_SCHEMA
	GV$ Global View
	V$AGABLE_INFO
	V$ARCHIVELOG
	V$AUDITABLE_DB_PRIVILEGES
	V$AUDITABLE_SYSTEM_ACTIONS
	V$BACKUP
	V$BALANCER
	V$CLUSTER_DISPATCHER
	V$CLUSTER_LOCATION
	V$CLUSTER_MEMBER
	V$COLUMNS
	V$CONTROLFILE
	V$DATAFILE
	V$DB_FILE
	V$DISPATCHER
	V$ERROR_CODE
	V$GLOBAL_TRANSACTION
	V$INCREMENTAL_BACKUP
	V$INSTANCE
	V$JOURNALING
	V$KEYWORDS
	V$LATCH
	V$LOGFILE
	V$LOCK_WAIT
	V$PROCESS_STAT
	V$PROCESS_MEM_STAT
	V$PROCESS_SQL_STAT
	V$PROPERTY
	V$PSM_RESERVED_WORDS
	V$QUEUE
	V$RESERVED_WORDS
	V$SESSION
	V$SESSION_AUDIT
	V$SESSION_CONNECT_INFO
	V$SESSION_EVENT
	V$SESSION_STAT
	V$SESSION_MEM_STAT
	V$SESSION_SQL_STAT
	V$SESSION_WAIT
	V$SHARED_MODE
	V$SHARED_SERVER
	V$SHM_SEGMENT
	V$SPROPERTY
	V$SQLFN_METADATA
	V$SQL_CACHE
	V$SQL_COMMAND
	V$SQL_HISTORY
	V$STATEMENT
	V$SYSTEM_EVENT
	V$SYSTEM_STAT
	V$SYSTEM_MEM_STAT
	V$SYSTEM_SQL_STAT
	V$TABLES
	V$TABLESPACE
	V$TABLESPACE_STAT
	V$TRANSACTION
	V$WAIT_EVENT_CLASS_NAME
	V$WAIT_EVENT_NAME
	V$XA_TRANSACTION

	10. Server Property
	10.1 Server Property Information
	10.2 AGING_INTERVAL
	Basic Information
	Description

	10.3 AGING_PLAN_INTERVAL
	Basic Information
	Description

	10.4 ARCHIVELOG_DIR_1 ~ ARCHIVELOG_DIR_10
	Basic Information
	Description

	10.5 ARCHIVELOG_FILE
	Basic Information
	Description

	10.6 ARCHIVELOG_MODE
	Basic Information
	Description

	10.7 BACKUP_DIR_1 ~ BACKUP_DIR_10
	Basic Information
	Description

	10.8 BLOCK_READ_COUNT
	Basic Information
	Description

	10.9 BULK_IO_PAGE_COUNT
	Basic Information
	Description

	10.10 CDISPATCHER_HOT_POLICY_INTERVAL
	Basic Information
	Description

	10.11 CDISPATCHER_SOCKET_BUFFER_SIZE
	Basic Information
	Description

	10.12 CDISPATCHER_SYNC_THREADS
	Basic Information
	Description

	10.13 CDISPATCHER_THREADS
	Basic Information
	Description

	10.14 CHARACTER_SET
	Basic Information
	Description

	10.15 CHAR_LENGTH_UNITS
	Basic Information
	Description

	10.16 CHECK_DEDICATE_CONNECTION_INTERVAL
	Basic Information
	Description

	10.17 CLIENT_MAX_COUNT
	Basic Information
	Description

	10.18 CLIENT_NUMA_POLICY
	Basic Information
	Description

	10.19 CLOSE_PSM_CHILD_STMTS
	Basic Information
	Description

	10.20 CLUSTER_ASYNC_COMMIT
	Basic Information
	Description

	10.21 CLUSTER_ASYNC_REPLICATION
	Basic Information
	Description

	10.22 CLUSTER_CM_BUFFER_COUNT
	Basic Information
	Description

	10.23 CLUSTER_CM_BUFFER_SIZE
	Basic Information
	Description

	10.24 CLUSTER_CM_READ_BUFFER_SIZE
	Basic Information
	Description

	10.25 CLUSTER_COMMIT_SLAVES
	Basic Information
	Description

	10.26 CLUSTER_COMMIT_STREAM_ISOLATION
	Basic Information
	Description

	10.27 CLUSTER_CONNECTION
	Basic Information
	Description

	10.28 CLUSTER_CONNECTION_TIMEOUT_SEC
	Basic Information
	Description

	10.29 CLUSTER_DATA_SYNC_SERVERS
	Basic Information
	Description

	10.30 CLUSTER_DISPATCHER_IN_QUEUE_SIZE
	Basic Information
	Description

	10.31 CLUSTER_DISPATCHER_NUMA_STREAM_MAP
	Basic Information
	Description

	10.32 CLUSTER_DISPATCHER_OUT_QUEUE_SIZE
	Basic Information
	Description

	10.33 CLUSTER_HEARTBEAT_INTERVAL
	Basic Information
	Description

	10.34 CLUSTER_HEARTBEAT_RETRY_COUNT
	Basic Information
	Description

	10.35 CLUSTER_IGNORE_INACTIVE_MEMBER
	Basic Information
	Description

	10.36 CLUSTER_MAX_PACKET_SIZE
	Basic Information
	Description

	10.37 CLUSTER_MAX_PAYLOAD_SIZE
	Basic Information
	Description

	10.38 CLUSTER_PACKET_ALLOCATION_TIMEOUT
	Basic Information
	Description

	10.39 CLUSTER_PROTOCOL_SESSION_FATAL_POLICY_TIMEOUT
	Basic Information
	Description

	10.40 CLUSTER_PROTOCOL_FAILOVER_POLICY_TIMEOUT
	Basic Information
	Description

	10.41 CLUSTER_SERVER_RESPONSE_QUEUE_SIZE
	Basic Information
	Description

	10.42 CLUSTER_SPLIT_BRAIN_RESOLUTION_POLICY
	Basic Information
	Description

	10.43 CLUSTER_SPLIT_BRAIN_RETRY_COUNT
	Basic Information
	Description

	10.44 COMMITTER_HOT_POLICY_INTERVAL
	Basic Information
	Description

	10.45 CONTROL_FILE_0 ~ CONTROL_FILE_7
	Basic Information
	Description

	10.46 CONTROL_FILE_COUNT
	Basic Information
	Description

	10.47 CONTROL_FILE_TEMP_NAME
	Basic Information
	Description

	10.48 COORDINATOR_COMMIT_WRITE_MODE
	Basic Information
	Description

	10.49 CSERVERS
	Basic Information
	Description

	10.50 DATABASE_ACCESS_MODE
	Basic Information
	Description

	10.51 DATABASE_INSTANCE_NAME
	Basic Information
	Description

	10.52 DATA_STORE_MODE
	Basic Information
	Description

	10.53 DA_CLIENT_NUMA_NODE
	Basic Information
	Description

	10.54 DDL_AUTOCOMMIT
	Basic Information
	Description

	10.55 DDL_LOCK_TIMEOUT
	Basic Information
	Description

	10.56 DEFAULT_GLOBAL_SECONDARY_INDEX_CREATION
	Basic Information
	Description

	10.57 DEFAULT_INDEX_LOGGING
	Basic Information
	Description

	10.58 DEFAULT_INDEX_PCTFREE
	Basic Information
	Description

	10.59 DEFAULT_INITRANS
	Basic Information
	Description

	10.60 DEFAULT_MAXTRANS
	Basic Information
	Description

	10.61 DEFAULT_PCTFREE
	Basic Information
	Description

	10.62 DEFAULT_PCTUSED
	Basic Information
	Description

	10.63 DEFAULT_REMOVAL_BACKUP_FILE
	Basic Information
	Description

	10.64 DEFAULT_REMOVAL_OBSOLETE_BACKUP_LIST
	Basic Information
	Description

	10.65 DEFAULT_SHARDING
	Basic Information
	Description

	10.66 DISABLE_DDL_CDC_GIVEUP
	Basic Information
	Description

	10.67 DISABLE_UPDATE_PK_CDC_GIVEUP
	Basic Information
	Description

	10.68 DISALLOWED_PROTOCOL_TARGETTYPE
	Basic Information
	Description

	10.69 DISALLOWED_PROTOCOL_TARGETTYPE_WITH_ALL
	Basic Information
	Description

	10.70 DISALLOWED_PROTOCOL_TARGETTYPE_WITH_NAME
	Basic Information
	Description

	10.71 DISPATCHER_CM_BUFFER_SIZE
	Basic Information
	Description

	10.72 DISPATCHER_CM_UNIT_SIZE
	Basic Information
	Description

	10.73 DISPATCHER_CONNECTIONS
	Basic Information
	Description

	10.74 DISPATCHER_HOT_POLICY_INTERVAL
	Basic Information
	Description

	10.75 DISPATCHER_LOAD_BALANCING
	Basic Information
	Description

	10.76 DISPATCHER_NUMA_STREAM_MAP
	Basic Information
	Description

	10.77 DISPATCHER_QUEUE_SIZE
	Basic Information
	Description

	10.78 DISPATCHER_REQUEST_MINI_QUEUE_COUNT
	Basic Information
	Description

	10.79 DISPATCHER_RESPONSE_MINI_QUEUE_COUNT
	Basic Information
	Description

	10.80 DISPATCHERS
	Basic Information
	Description

	10.81 FETCH_FAILOVER
	Basic Information
	Description

	10.82 GLOBAL_CONNECTION_ALLOW_SESSION_DEPENDENCY
	Basic Information
	Description

	10.83 GLOBAL_JOURNAL_BUFFER_SIZE
	Basic Information
	Description

	10.84 GLOBAL_JOURNAL_BUFFER_TOTAL_MAX_SIZE
	Basic Information
	Description

	10.85 GLOBAL_PROPERTY_LOCK_TIMEOUT
	Basic Information
	Description

	10.86 GLOBAL_TRANSACTION_COMMIT_WRITE_MODE
	Basic Information
	Description

	10.87 GLOBAL_TRANSACTION_ISOLATION_SCOPE
	Basic Information
	Description

	10.88 GLOBAL_TRANSACTION_LOG_DIR
	Basic Information
	Description

	10.89 GLOBAL_TRANSACTION_LOG_FILE_SIZE
	Basic Information
	Description

	10.90 GMASTER_NUMA_NODE
	Basic Information
	Description

	10.91 GMON_AUTOSTART
	Basic Information
	Description

	10.92 HINT_ERROR
	Basic Information
	Description

	10.93 IDLE_TIMEOUT
	Basic Information
	Description

	10.94 INDEX_BUILD_PARALLEL_FACTOR
	Basic Information
	Description

	10.95 INDEX_TREE_MERGE_PARALLEL_FACTOR
	Basic Information
	Description

	10.96 INST_ALLOCATOR_COUNT
	Basic Information
	Description

	10.97 INST_TABLE_BLOCK_SIZE
	Basic Information
	Description

	10.98 IN_DOUBT_DECISION
	Basic Information
	Description

	10.99 JOURNAL_TEMP_DIR
	Basic Information
	Description

	10.100 KEEPALIVE_IDLE_TIME
	Basic Information
	Description

	10.101 LOCAL_CLUSTER_MEMBER
	Basic Information
	Description

	10.102 LOCAL_CLUSTER_MEMBER_HOST
	Basic Information
	Description

	10.103 LOCAL_CLUSTER_MEMBER_PORT
	Basic Information
	Description

	10.104 LOCAL_JOURNAL_BUFFER_SIZE
	Basic Information
	Description

	10.105 LOCATION_FILE
	Basic Information
	Description

	10.106 LOCATOR_QUERY_TIMEOUT
	Basic Information
	Description

	10.107 LOCK_HASH_TABLE_SIZE
	Basic Information
	Description

	10.108 LOG_BLOCK_SIZE
	Basic Information
	Description

	10.109 LOG_BUFFER_SIZE
	Basic Information
	Description

	10.110 LOG_DIR
	Basic Information
	Description

	10.111 LOG_FILE_SIZE
	Basic Information
	Description

	10.112 LOG_GROUP_COUNT
	Basic Information
	Description

	10.113 LOG_MIRROR_MODE
	Basic Information
	Description

	10.114 LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE
	Basic Information
	Description

	10.115 LOG_MIRROR_TIMEOUT
	Basic Information
	Description

	10.116 LOG_SYNC_INTERVAL
	Basic Information
	Description

	10.117 LOG_SYNC_INTERVAL_MSEC
	Basic Information
	Description

	10.118 MAX_GROUP_COUNT
	Basic Information
	Description

	10.119 MAX_JOURNAL_FILE_SIZE
	Basic Information
	Description

	10.120 MAX_NODE_COUNT
	Basic Information
	Description

	10.121 MAXIMUM_CONCURRENT_ACTIVITIES
	Basic Information
	Description

	10.122 MAXIMUM_FLANGE_COUNT
	Basic Information
	Description

	10.123 MAXIMUM_FLUSH_LOG_BLOCK_COUNT
	Basic Information
	Description

	10.124 MAXIMUM_FLUSH_PAGE_COUNT
	Basic Information
	Description

	10.125 MAXIMUM_JOURNAL_REPLAY_COUNT
	Basic Information
	Description

	10.126 MAXIMUM_NAMED_CURSOR_COUNT
	Basic Information
	Description

	10.127 MAXIMUM_SESSION_CM_BUFFER_SIZE
	Basic Information
	Description

	10.128 MEASURE_CLUSTER_LATENCY
	Basic Information
	Description

	10.129 MEMORY_MERGE_RUN_COUNT
	Basic Information
	Description

	10.130 MEMORY_SORT_RUN_SIZE
	Basic Information
	Description

	10.131 MINIMUM_UNDO_PAGE_COUNT
	Basic Information
	Description

	10.132 MIN_SAMPLE_ROW_COUNT
	Basic Information
	Description

	10.133 NET_BUFFER_SIZE
	Basic Information
	Description

	10.134 NLS_DATE_FORMAT
	Basic Information
	Description

	10.135 NLS_TIME_FORMAT
	Basic Information
	Description

	10.136 NLS_TIME_WITH_TIME_ZONE_FORMAT
	Basic Information
	Description

	10.137 NLS_TIMESTAMP_FORMAT
	Basic Information
	Description

	10.138 NLS_TIMESTAMP_WITH_TIME_ZONE_FORMAT
	Basic Information
	Description

	10.139 NUMA
	Basic Information
	Description

	10.140 NUMA_MAP
	Basic Information
	Description

	10.141 OFFLINE_MEMBER_AFTER_FAILOVER
	Basic Information
	Description

	10.142 ONLINE_JOURNAL_REPLAY_THRESHOLD
	Basic Information
	Description

	10.143 OS_GROUP_ACCESS
	Basic Information
	Description

	10.144 PACKET_COMPRESSION_THRESHOLD
	Basic Information
	Description

	10.145 PAGE_CHECKSUM_TYPE
	Basic Information
	Description

	10.146 PARALLEL_IO_FACTOR
	Basic Information
	Description

	10.147 PARALLEL_IO_GROUP_1 ~ PARALLEL_IO_GROUP_16
	Basic Information
	Description

	10.148 PARALLEL_LOAD_FACTOR
	Basic Information
	Description

	10.149 PENDING_LOG_BUFFER_COUNT
	Basic Information
	Description

	10.150 PLAN_CACHE
	Basic Information
	Description

	10.151 PLAN_CACHE_SIZE
	Basic Information
	Description

	10.152 PRIVATE_STATIC_AREA_SIZE
	Basic Information
	Description

	10.153 PROCESS_MAX_COUNT
	Basic Information
	Description

	10.154 QUERY_TIMEOUT
	Basic Information
	Description

	10.155 READABLE_ARCHIVELOG_DIR_COUNT
	Basic Information
	Description

	10.156 READABLE_BACKUP_DIR_COUNT
	Basic Information
	Description

	10.157 REBALANCE_BLOCK_READ_COUNT
	Basic Information
	Description

	10.158 RECOMPILE_CHECK_MINIMUM_PAGE_COUNT
	Basic Information
	Description

	10.159 RECOMPILE_PAGE_PERCENT
	Basic Information
	Description

	10.160 RECOVERY_LOG_BUFFER_SIZE
	Basic Information
	Description

	10.161 REDO_LOG_COMPRESSION_THRESHOLD
	Basic Information
	Description

	10.162 REFINE_RELATION
	Basic Information
	Description

	10.163 SESSION_FATAL_BEHAVIOR
	Basic Information
	Description

	10.164 SESSION_MEMORY_INIT_SIZE
	Basic Information
	Description

	10.165 SESSION_MEMORY_SHRINK_THRESHOLD
	Basic Information
	Description

	10.166 SHARED_MEMORY_ADDRESS
	Basic Information
	Description

	10.167 SHARED_MEMORY_STATIC_KEY
	Basic Information
	Description

	10.168 SHARED_MEMORY_STATIC_NAME
	Basic Information
	Description

	10.169 SHARED_MEMORY_STATIC_SIZE
	Basic Information
	Description

	10.170 SHARED_REQUEST_QUEUE_COUNT
	Basic Information
	Description

	10.171 SHARED_SERVERS
	Basic Information
	Description

	10.172 SHARED_SESSION
	Basic Information
	Description

	10.173 SNAPSHOT_STATEMENT_TIMEOUT
	Basic Information
	Description

	10.174 SQL_HISTORY_SIZE
	Basic Information
	Description

	10.175 SQL_HISTORY_TYPE
	Basic Information
	Description

	10.176 SUPPLEMENTAL_LOG_DATA_PRIMARY_KEY
	Basic Information
	Description

	10.177 SYSTEM_LOGGER_DIR
	Basic Information
	Description

	10.178 SYSTEM_MEMORY_AUX_TABLESPACE_SIZE
	Basic Information
	Description

	10.179 SYSTEM_MEMORY_DATA_TABLESPACE_SIZE
	Basic Information
	Description

	10.180 SYSTEM_MEMORY_DICT_TABLESPACE_SIZE
	Basic Information
	Description

	10.181 SYSTEM_MEMORY_TEMP_TABLESPACE_SIZE
	Basic Information
	Description

	10.182 SYSTEM_MEMORY_UNDO_TABLESPACE_SIZE
	Basic Information
	Description

	10.183 SYSTEM_TABLESPACE_DIR
	Basic Information
	Description

	10.184 SYSTEM_UDS_DIR
	Basic Information
	Description

	10.185 TCP_CLIENT_NUMA_NODE
	Basic Information
	Description

	10.186 TCP_NODELAY
	Basic Information
	Description

	10.187 TEMP_SEGMENT_CACHE_SIZE
	Basic Information
	Description

	10.188 TEMP_UNDO_ENABLED
	Basic Information
	Description

	10.189 TIMED_STATISTICS
	Basic Information
	Description

	10.190 TIMEZONE
	Basic Information
	Description

	10.191 TRACE_ALTER_SYSTEM
	Basic Information
	Description

	10.192 TRACE_DDL
	Basic Information
	Description

	10.193 TRACE_LOG_ID
	Basic Information
	Description

	10.194 TRACE_LOG_MSGBUF_SIZE
	Basic Information
	Description

	10.195 TRACE_LOG_TIME_DETAIL
	Basic Information
	Description

	10.196 TRACE_LOGGER
	Basic Information
	Description

	10.197 TRACE_LOGGER_REMOTE_HOST
	Basic Information
	Description

	10.198 TRACE_LOGGER_REMOTE_PORT
	Basic Information
	Description

	10.199 TRACE_LOGIN
	Basic Information
	Description

	10.200 TRACE_LONG_RUN_CURSOR
	Basic Information
	Description

	10.201 TRACE_LONG_RUN_SQL
	Basic Information
	Description

	10.202 TRACE_XA
	Basic Information
	Description

	10.203 TRANSACTION_ALLOCATION_TIMEOUT
	Basic Information
	Description

	10.204 TRANSACTION_COMMIT_WRITE_MODE
	Basic Information
	Description

	10.205 TRANSACTION_MAXIMUM_UNDO_PAGE_COUNT
	Basic Information
	Description

	10.206 TRANSACTION_TABLE_SIZE
	Basic Information
	Description

	10.207 TRANSACTION_TIMEOUT
	Basic Information
	Description

	10.208 UNDO_RELATION_ALLOCATION_TIMEOUT
	Basic Information
	Description

	10.209 UNDO_RELATION_COUNT
	Basic Information
	Description

	10.210 UNDO_SHRINK_THRESHOLD
	Basic Information
	Description

	10.211 USE_LARGE_PAGES
	Basic Information
	Description

	Part III. SQL Manual
	11. SQL Elements
	11.1 Syntax Elements
	Identifiers
	Literals
	Text Literals
	Numeric Literals
	Datetime Literals
	Date Literals
	Time Literals
	Time with Time Zone Literals
	Timestamp Literals
	Timestamp with Time Zone Literals

	Interval Literals
	Examples of Using Interval Literals.
	Interval YEAR
	Interval MONTH
	Interval YEAR TO MONTH
	Interval DAY
	Interval HOUR
	Interval MINUTE
	Interval SECOND
	Interval DAY TO HOUR
	Interval DAY TO MINUTE
	Interval DAY TO SECOND
	Interval HOUR TO MINUTE
	Interval HOUR TO SECOND
	Interval MINUTE TO SECOND

	Null Value
	Comments
	Single Line Comment
	Multiple Line Comment
	Hint Comment

	SQL Reserved Words and Keywords
	SQL Reserved Words
	SQL Keywords

	Compatibility for Syntax Elements

	11.2 Data Type
	Numeric Type
	Decimal Numeric Type
	Decimal Fixed Point Number Type
	Decimal Floating Point Number Type

	Binary Number Type
	Binary Fixed Point Number Type
	Binary Floating Point Number Type

	CHARACTER STRING Type
	BINARY STRING Type
	Date/ Time Type
	INTERVAL Type
	BOOLEAN Type
	ROWID Type
	Type Comparison
	Type Conversion
	Type Combination
	When Type Combination Is Required
	Result Type Combination Rule

	Compatibility for Data Type

	11.3 Format String
	Number Format String
	Datetime Format String

	11.4 Expressions
	Boolean Value Expression
	Syntax
	Description
	Example

	CASE Expression
	Syntax
	Description
	Example

	CAST Specification
	Syntax
	Description
	Example

	Scalar Subquery Expression
	Compatibility

	11.5 Pseudo Columns
	ROWID Pseudo Column
	CLUSTER_GROUP_ID Pseudo Column
	CLUSTER_MEMBER_ID Pseudo Column
	CLUSTER_GROUP_NAME Pseudo Column
	CLUSTER_MEMBER_NAME Pseudo Column
	Compatibility

	11.6 Operators
	Arithmetic Operator
	Syntax
	Description

	Concatenation Operator
	Syntax
	Description

	Set Operator
	Syntax
	Description

	Compatibility

	11.7 Functions
	Single Row Function
	Numeric Functions
	Character String Functions Returning Character Values
	Character String Functions Returning Number Values
	Datetime Functions
	General Comparison Functions
	Conversion Functions
	Conditional Functions
	NULL-related Functions
	ROWID-related Functions
	Encryption Functions
	System Information Functions

	Aggregate Function
	Compatibility

	11.8 Conditions
	Condition
	Comparison Conditions
	< Simple Comparison Conditions >
	Syntax
	Description
	Example

	<Group Comparison Conditions>
	Syntax
	Description
	Example

	Logical Conditions
	AND
	Syntax
	Description

	OR
	Syntax
	Description

	NOT
	Syntax
	Description

	Null Condition
	Syntax
	Description

	Compound Conditions
	Pattern-matching Conditions
	Like Condition
	Syntax
	Description
	Example

	BETWEEN Condition
	Syntax
	Description
	Example

	IN Condition
	Syntax
	Description
	Example

	EXISTS Condition
	Syntax
	Description
	Example

	Compatibility

	11.9 Built-in Data Type References
	Aliases of Built-in Data Types
	BINARY
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	BINARY VARYING
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	BINARY LONG VARYING
	Syntax
	Description
	For More Information

	BOOLEAN
	Syntax
	Description

	CHARACTER
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	CHARACTER VARYING
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	CHARACTER LONG VARYING
	Syntax
	Description
	For More Information

	DATE
	Syntax
	Description
	For More Information

	FLOAT
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	INTERVAL
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	NATIVE_BIGINT
	Syntax
	Description

	NATIVE_DOUBLE
	Syntax
	Description

	NATIVE_INTEGER
	Syntax
	Description

	NATIVE_REAL
	Syntax
	Description

	NATIVE_SMALLINT
	Syntax
	Description

	NUMBER
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	NUMERIC
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	ROWID
	Syntax
	Description
	For More Information

	TIME
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	TIMESTAMP
	Syntax
	Syntax Rules and Parameters
	Description
	For More Information

	11.10 Built-in Function References
	* (MULTIPLICATION)
	Syntax
	Description
	Example

	+ (ADDITION)
	Syntax
	Description
	Example

	+ (POSITIVE)
	Syntax
	Description
	Example

	- (NEGATIVE)
	Syntax
	Description
	Example

	- (SUBTRACTION)
	Syntax
	Description
	Example

	/ (DIVISION)
	Syntax
	Description
	Example

	|| (CONCATENATE)
	Syntax
	Description
	Example

	ABS
	Syntax
	Description
	Example

	ACOS
	Syntax
	Description
	Example

	ADDDATE
	Syntax
	Description
	Example

	ADDTIME
	Syntax
	Description
	Example

	ADD_MONTHS
	Syntax
	Description
	Example

	ASCII
	Syntax
	Description
	Example

	ASIN
	Syntax
	Description
	Example

	ATAN
	Syntax
	Description
	Example

	ATAN2
	Syntax
	Description
	Example

	AVG
	Syntax
	Description
	Example

	BITAND
	Syntax
	Description
	Example

	BITNOT
	Syntax
	Description
	Example

	BITOR
	Syntax
	Description
	Example

	BITXOR
	Syntax
	Description
	Example

	BIT_LENGTH
	Syntax
	Description
	Example

	BYTE_LENGTH
	Syntax
	Description
	Example

	CASE2
	Syntax
	Description
	Example

	CBRT
	Syntax
	Description
	Example

	CEIL
	Syntax
	Description
	Example

	CHAR_LENGTH
	Syntax
	Description
	Example

	CHR
	Syntax
	Description
	Example

	CLOCK_DATE
	Syntax
	Description
	Example

	CLOCK_LOCALTIME
	Syntax
	Description
	Example

	CLOCK_LOCALTIMESTAMP
	Syntax
	Description
	Example

	CLOCK_TIME
	Syntax
	Description
	Example

	CLOCK_TIMESTAMP
	Syntax
	Description
	Example

	COALESCE
	Syntax
	Description
	Example

	CONCAT
	Syntax
	Description
	Example

	CONCATENATE
	Syntax
	Description
	Example

	COS
	Syntax
	Description
	Example

	COT
	Syntax
	Description
	Example

	COUNT
	Syntax
	Description
	Example

	COUNT(*)
	Syntax
	Description
	Example

	CURRENT_CATALOG
	Syntax
	Description
	Example

	CURRENT_DATE
	Syntax
	Description
	Example

	CURRENT_SCHEMA
	Syntax
	Description
	Example

	CURRENT_TIME
	Syntax
	Description
	Example

	CURRENT_TIMESTAMP
	Syntax
	Description
	Example

	CURRENT_USER
	Syntax
	Description
	Example

	CURRVAL
	Syntax
	Description
	Example

	DATEADD
	Syntax
	Description
	Example

	DATEDIFF
	Syntax
	Description
	Example

	DATE_ADD
	Syntax
	Description
	Example

	DATE_PART
	Syntax
	Description
	Example

	DECODE
	Syntax
	Description
	Example

	DEGREES
	Syntax
	Description
	Example

	DIGEST
	Syntax
	Description
	Example

	DUMP
	Syntax
	Description
	Example

	EXP
	Syntax
	Description
	Example

	EXTRACT
	Syntax
	Description
	Example

	FACTORIAL
	Syntax
	Description
	Example

	FLOOR
	Syntax
	Description
	Example

	FROM_BASE64
	Syntax
	Description
	Example

	GREATEST
	Syntax
	Description
	Example

	HEX
	Syntax
	Description
	Example

	INITCAP
	Syntax
	Description
	Example

	INSTR
	Syntax
	Description
	Example

	LAST_DAY
	Syntax
	Description
	Example

	LAST_IDENTITY_VALUE
	Syntax
	Description
	Example

	LEAST
	Syntax
	Description
	Example

	LENGTH
	Syntax
	Description
	Example

	LENGTHB
	Syntax
	Description
	Example

	LN
	Syntax
	Description
	Example

	LOCALTIME
	Syntax
	Description
	Example

	LOCALTIMESTAMP
	Syntax
	Description
	Example

	LOCAL_GROUP_ID
	Syntax
	Description
	Example

	LOCAL_GROUP_NAME
	Syntax
	Description
	Example

	LOCAL_MEMBER_ID
	Syntax
	Description
	Example

	LOCAL_MEMBER_NAME
	Syntax
	Description
	Example

	LOG
	Syntax
	Description
	Example

	LOGON_USER
	Syntax
	Description
	Example

	LOWER
	Syntax
	Description
	Example

	LPAD
	Syntax
	Description
	Example

	LTRIM
	Syntax
	Description
	Example

	MAX
	Syntax
	Description
	Example

	MIN
	Syntax
	Description
	Example

	MOD
	Syntax
	Description
	Example

	MONTHS_BETWEEN
	구문
	Description
	Example

	NEXT_DAY
	Syntax
	Description
	Example

	NEXTVAL
	Syntax
	Description
	Example

	NULLIF
	Syntax
	Description
	Example

	NVL
	Syntax
	Description
	Example

	NVL2
	Syntax
	Description
	Example

	OCTET_LENGTH
	Syntax
	Description
	Example

	OVERLAY
	Syntax
	Description
	Example

	PI
	Syntax
	Description
	Example

	POSITION
	Syntax
	Description
	Example

	POWER
	Syntax
	Description
	Example

	RADIANS
	Syntax
	Description
	Example

	RANDOM
	Syntax
	Description
	Example

	REPEAT
	Syntax
	Description
	Example

	REPLACE
	Syntax
	Description
	Example

	REVERSE
	Syntax
	Description
	Example

	ROUND(number)
	Syntax
	Description
	Example

	ROUND(date)
	Syntax
	Description
	Example

	ROWID_GRID_BLOCK_ID
	Syntax
	Description
	Example

	ROWID_GRID_BLOCK_SEQ
	Syntax
	Description
	Example

	ROWID_MEMBER_ID
	Syntax
	Description
	Example

	ROWID_OBJECT_ID
	Syntax
	Description
	Example

	ROWID_PAGE_ID
	Syntax
	Description
	Example

	ROWID_ROW_NUMBER
	Syntax
	Description
	Example

	ROWID_SHARD_ID
	Syntax
	Description
	Example

	ROWID_TABLESPACE_ID
	Syntax
	Description
	Example

	ROWNUM
	Syntax
	Description
	Example

	RPAD
	Syntax
	Description
	Example

	RTRIM
	Syntax
	Description
	Example

	SESSION_ID
	Syntax
	Description
	Example

	SESSION_SERIAL
	Syntax
	Description
	Example

	SESSION_USER
	Syntax
	Description
	Example

	SHARD_GROUP_ID
	Syntax
	Description
	Example

	SHARD_GROUP_NAME
	Syntax
	Description
	Example

	SHARD_ID
	Syntax
	Description
	Example

	SHARD_NAME
	Syntax
	Description
	Example

	SHIFT_LEFT
	Syntax
	Description
	Example

	SHIFT_RIGHT
	Syntax
	Description
	Example

	SIGN
	Syntax
	Description
	Example

	SIN
	Syntax
	Description
	Example

	SPLIT_PART
	Syntax
	Description
	Example

	SQRT
	Syntax
	Description
	Example

	STATEMENT_DATE
	Syntax
	Description
	Example

	STATEMENT_LOCALTIME
	Syntax
	Description
	Example

	STATEMENT_LOCALTIMESTAMP
	Syntax
	Description
	Example

	STATEMENT_TIME
	Syntax
	Description
	Example

	STATEMENT_TIMESTAMP
	Syntax
	Description
	Example

	STATEMENT_VIEW_SCN
	Syntax
	Description
	Example

	STATEMENT_VIEW_SCN_DCN
	Syntax
	Description
	Example

	STATEMENT_VIEW_SCN_GCN
	Syntax
	Description
	Example

	STATEMENT_VIEW_SCN_LCN
	Syntax
	Description
	Example

	STDDEV
	Syntax
	Description
	Example

	STDDEV_POP
	Syntax
	Description
	Example

	STDDEV_SAMP
	Syntax
	Description
	Example

	SUBSTR
	Syntax
	Description
	Example

	SUBSTRB
	Syntax
	Description
	Example

	SUBSTRING
	Syntax
	Description
	Example

	SUM
	Syntax
	Description
	Example

	SYSDATE
	Syntax
	Description
	Example

	SYS_EXTRACT_UTC
	Syntax
	Description
	Example

	SYSTIME
	Syntax
	Description
	Example

	SYSTIMESTAMP
	Syntax
	Description
	Example

	TAN
	Syntax
	Description
	Example

	TO_BASE64
	Syntax
	Description
	Example

	TO_CHAR(datetime)
	Syntax
	Description
	Example

	TO_CHAR(number)
	Syntax
	Description
	Example

	TO_DATE
	Syntax
	Description
	Example

	TO_NATIVE_DOUBLE
	Syntax
	Description
	Example

	TO_NATIVE_REAL
	Syntax
	Description
	Example

	TO_NUMBER
	Syntax
	Description
	Example

	TO_TIME
	Syntax
	Description
	Example

	TO_TIME_TZ
	Syntax
	Description
	Example

	TO_TIME_WITH_TIME_ZONE
	Syntax
	Description
	Example

	TO_TIMESTAMP
	Syntax
	Description
	Example

	TO_TIMESTAMP_TZ
	Syntax
	Description
	Example

	TO_TIMESTAMP_WITH_TIME_ZONE
	Syntax
	Description
	Example

	TRANSACTION_DATE
	Syntax
	Description
	Example

	TRANSACTION_LOCALTIME
	Syntax
	Description
	Example

	TRANSACTION_LOCALTIMESTAMP
	Syntax
	Description
	Example

	TRANSACTION_TIME
	Syntax
	Description
	Example

	TRANSACTION_TIMESTAMP
	Syntax
	Description
	Example

	TRANSLATE
	Syntax
	Description
	Example

	TRIM
	Syntax
	Description
	Example

	TRUNC(number)
	Syntax
	Description
	Example

	TRUNC(date)
	Syntax
	Description
	Example

	UPPER
	Syntax
	Description
	Example

	UNHEX
	Syntax
	Description
	Example

	UNHEX_TO_CHARSTR
	Syntax
	Description
	Example

	USER_ID
	Syntax
	Description
	Example

	UUID
	Syntax
	Description
	Example

	VAR_POP
	Syntax
	Description
	Example

	VAR_SAMP
	Syntax
	Description
	Example

	VARIANCE
	Syntax
	Description
	Example

	VERSION
	Syntax
	Description
	Example

	WIDTH_BUCKET
	Syntax
	Description
	Example

	12. SQL Languages
	12.1 Data Definition Language
	DDL Related Statements
	Concepts of DDL
	DDL and Transaction
	Creating Object and Transaction
	Dropping Object and Transaction
	Altering Object and Transaction

	12.2 Data Manipulation Language
	DML Related Statements
	Concepts of DML
	Inserting Data
	Deleting Data
	Updating Data
	Manipulating Data Using Cursor
	DML Query

	12.3 Data Query Language
	Query Related Statements
	Concepts of Query
	Basic Query
	SET Operator
	Join
	CROSS JOIN
	INNER JOIN
	OUTER JOIN
	NATURAL JOIN
	SEMI JOIN
	ANTI-SEMI JOIN

	Grouping Result Set (group by)
	Sorting Result Set (order by)
	Subquery

	12.4 Control Language
	Control Language Related Statements
	Transaction Control
	Session Control
	System Control

	12.5 Processing SQL in Cluster
	Processing DDL in Cluster
	DDL Processing Procedure in Cluster
	Simultaneous DDL Execution

	Processing SELECT in Cluster
	Processing Query in Cluster
	Query Process in a Single Table
	Processing the Join Query

	Cluster Domain
	Generated Query
	Configuring Generated Query
	Constraints of Generated Query Configuration
	Grouping
	Ordering
	Offset & limit
	Using Non-deterministic Expression
	Joining Shard Tables Whose Sharding Strategies Are Different Each Other
	Joining Shard Tables without Equi-join Condition for shard_key
	When Unable to Unnest Subquery
	When Including a Subquery with Different Sharding Strategy

	Selecting a Target Server for Performing Generated Query
	Selecting Target Server for Generated Query Updating the Data
	Selecting Target Server for Generated Query Retrieving the Data

	Processing DML in Cluster
	Selecting Master Server in Each Cluster Group
	Selecting Slave Server in Each Cluster Group
	Performing DML
	Data Update Using Generated Query
	Data Update Using Rowid (Rowid Pseudo Column)
	Data Update Using Rowid Information without Global Secondary Index
	Data Update Using Rowid Information with Global Secondary Index
	When Using Non-deterministic Expression
	When Using Non-deterministic Clause
	When Unable to Configure Generated Query for the Data Update

	13. SQL Objects
	13.1 Database
	Database-related Statements
	Database Configuration Objects
	SQL Objects that Configure the Database
	Name Space of Objects

	Built-in Objects
	Built-in User
	Built-in Schema
	Built-in Tablespace
	Built-in Profile

	13.2 Profile
	Profile-related Statements
	Concepts of Profile
	Creating, Altering, Allocating Profile
	Setting Password of DEFAULT Profile
	Account Lockout
	Password Lifetime
	Reusing Password
	Password Complexity Verification

	13.3 Audit Policy
	Audit Policy-related Statement
	Examples
	Creating Audit Policy
	Activating Audit Policy
	Viewing Audit Trail
	Dropping Audit Trail
	Deactivating Audit Policy
	Dropping Audit Policy

	Concepts of Audit Policy
	Audit Trail
	Viewing Audit Trail
	Storing Audit Trail
	Creating Audit Record
	Dropping Audit Trail (purge)

	Configuring Audit Policy
	Privilege Auditing
	Auditing Object Action
	Auditing System Action
	Useful Audit Policy

	Operationg Audit Policy
	Activating Audit Poilcy
	Deactivating Audit Policy

	13.4 Authorization
	Authorization-related Statements
	Concepts of User
	Creating Objects and Privileges
	Creating SQL Schema Object
	Creating Non-schema Object

	Privileges
	Granting Privileges
	Revoking Privileges
	PUBLIC Account
	Column Privilege

	13.5 Schema
	Schema-related Statements
	Concepts of Schema
	User and Schema
	Schema Path
	PUBLIC Schema
	Examples of Using User and Schema

	13.6 Tablespace
	Tablespace-related Statements
	Concepts of Tablespace

	13.7 Table
	Table-related Statements
	Concepts of Table
	Global Temporary Table
	Table in Cluster

	13.8 Index
	Index-related Statements
	Concepts of Index
	Concepts of UNIQUE

	13.9 View
	View-related Statements
	Concepts of View

	13.10 Sequence
	Sequence-related Statements
	Concepts of Sequence
	Cluster Sequence

	13.11 Synonym
	Synonym-related Statements
	Concepts of Synonym
	Private Synonym
	Public Synonym

	13.12 Stored Procedure
	Stored Procedure-related Statements
	Concepts of Stored Procedure

	13.13 Stored Function
	Stored Function-related Statements
	Concepts of Stored Function

	14. Cluster Objects
	14.1 Cluster System
	Cluster System Related Statements
	Concepts of Cluster System
	Availability of Cluster System
	Expanding Cluster System

	14.2 Cluster Group
	Cluster Group Related Statements
	Concepts of Cluster Group
	Creating Cluster Group
	Dropping Cluster Group

	14.3 Cluster Member
	Cluster Member Related Statements
	Concepts of Cluster Member

	14.4 Cluster Location
	Cluster Location Related Statements
	Concepts of Cluster Location

	14.5 Cluster Table and Shard
	Shard Related Statements
	Cluster Table Type
	Cloned Table
	Hash-sharded table
	Range-sharded Table
	List-sharded Table
	Rebalancing Cluster Table

	14.6 Global Secondary Index
	Global Secondary Index Related Statements
	Concepts of Global Secondary Index

	15. SQL Tuning
	15.1 Overview
	15.2 SQL Processing
	SQL Parser
	Plan Cache Check
	SQL Validation
	Optimization
	Plan Generation
	Plan Cache Registration
	Execution

	15.3 Query Optimizer
	Overview
	Query Transformations
	Simple View Merging
	Filter Push Down
	SubQuery Unnesting
	Single Table Min/Max Aggregation Conversion
	Rewrite Target on Exists

	Access Paths
	Table Access
	Index Access
	Rowid Access
	Index Concat

	Join
	Join Type
	Cross Join
	Inner Join
	Outer Join
	Semi Join
	Anti-semi Join

	Join Method
	Nested Loops Join
	Sort Merge Join
	Hash Join
	Join Concat

	Cluster
	Cluster Access
	Cluster Join

	Statistics Information
	Adjusting Optimizer

	15.4 SQL Execution Plan
	Overview
	Output
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<explain plan>
	<sql statement>

	Description
	Examples

	Reading
	Configuring SQL Execution Plan
	Execution Plan Node Table
	Node Information

	Classification of Execution Plan Node
	Classification of Node Information
	Execution Plan Node References
	CLUSTER ACCESS (table_name) [sharding_strategy]
	CLUSTER JOIN
	CONCAT
	DELETE STATEMENT
	DELETE (table_name)
	EXCEPT ALL
	EXCEPT DISTINCT
	FILTER
	GROUP
	GROUP HASH INSTANT ACCESS
	HASH AGGREGATION
	HASH JOIN (join_method)
	HASH JOIN INSTANT ACCESS
	HASH JOIN INSTANT ACCESS (UNIQUE)
	INDEX ACCESS (table_name [AS alias], index_name)
	INSERT STATEMENT
	INSERT (table_name)
	INTERSECT ALL
	INTERSECT DISTINCT
	NESTED LOOP JOIN (join_method)
	SELECT STATEMENT
	SORT INSTANT ACCESS
	SORT INSTANT ACCESS (UNIQUE)
	SORT JOIN INSTANT ACCESS
	SORT JOIN INSTANT ACCESS (UNIQUE)
	SORT MERGE JOIN (join_method) : EQUAL
	SUB QUERY FUNCTION
	SUB QUERY FUNCTION (MATERIALIZED)
	SUB QUERY LIST
	TABLE ACCESS (table_name [AS alias])
	UNION ALL
	UNION DISTINCT
	UPDATE STATEMENT
	UPDATE (table_name)
	USER ROWID ACCESS (table_name [AS alias])
	VIEW
	VIEW (view_name)

	15.5 SQL Trace Log
	Overview
	Output
	Output Format
	<SQL Query String>
	<Execution Plan>
	<Execution Type>
	<Bind Param Value>
	<Time Info>

	Examples

	16. SQL References
	16.1 ALTER AUDIT POLICY
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	policy_name
	<add_audit_option>
	<drop_audit_option>
	<privilege_audit_clause>
	<action_audit_clause>

	Description
	Examples
	Compatibility
	For More Information

	16.2 ALTER CLUSTER GROUP name ADD MEMBER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	group_name
	<cluster member definition>
	member_name
	<connection attribute>

	Description
	Examples
	Compatibility
	For More Information

	16.3 ALTER CLUSTER GROUP name OFFLINE MEMBER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	group_name
	<cluster member definition>
	member_name

	Description
	Examples
	Compatibility
	For More Information

	16.4 ALTER CLUSTER LOCATION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	member_name
	<cluster connection attribute>

	Description
	Examples
	Compatibility
	For More Information

	16.5 ALTER DATABASE ADD LOGFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter database add logfile statement>
	<add logfile member statement>
	<add logfile group statement>

	Description
	Examples
	Compatibility
	For More Information

	16.6 ALTER DATABASE ARCHIVELOG
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter database archivelog statement>

	Description
	Example
	Compatibility
	For More Information

	16.7 ALTER DATABASE BACKUP
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<database begin backup clause>
	<database end backup clause>
	<database incremental backup statement>
	<incremental backup option>
	<database controlfile backup statement>
	<domain name>

	Description
	Examples
	Compatibility
	For More Information

	16.8 ALTER DATABASE CLEAR AUDIT TRAIL
	Function
	Syntax
	Invocation and Access Rules
	Description
	Storing Audit Trail
	Examples
	Compatibility
	For More Information

	16.9 ALTER DATABASE CLEAR PASSWORD HISTORY
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility
	For More Information

	16.10 ALTER DATABASE DELETE BACKUP
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter database delete backup statement>
	<delete backup list option>
	<including backup file option>

	Description
	Example
	Compatibility
	For More Information

	16.11 ALTER DATABASE DROP INACTIVE CLUSTER MEMBERS
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility
	For More Information

	16.12 ALTER DATABASE DROP LOGFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter database drop logfile statement>
	<drop logfile group statement>
	<drop logfile member statement>

	Description
	Examples
	Compatibility
	For More Information

	16.13 ALTER DATABASE MOVE SHARD
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	src_cluster_group
	dest_cluster_group
	[ONLINE | OFFLINE]

	Description
	Examples
	Compatibility
	For More Information

	16.14 ALTER DATABASE OFFLINE INACTIVE CLUSTER MEMBERS
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	16.15 ALTER DATABASE REBALANCE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[ONLINE | OFFLINE]

	Description
	Examples
	Compatibility
	For More Information

	16.16 ALTER DATABASE REBALANCE EXCLUDE CLUSTER GROUP
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	cluster_group_name
	[ONLINE | OFFLINE]

	Description
	Examples
	Compatibility
	For More Information

	16.17 ALTER DATABASE RENAME LOGFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter database rename logfile statement>

	Description
	Example
	Compatibility
	For More Information

	16.18 ALTER DATABASE RECOVER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<complete database recover statement>
	<datafile recover statement>
	<complete tablespace recover statement>
	<incomplete database recover statement>
	<batch incomplete database recover statement>
	<interactive incomplete database recover statement>

	Description
	Examples
	Compatibility
	For More Information

	16.19 ALTER DATABASE REGISTER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter database register statement>
	<segment physical identifier list>

	Description
	Example
	Compatibility
	For More Information

	16.20 ALTER DATABASE RESET LOCAL CLUSTER MEMBER
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility
	For More Information

	16.21 ALTER DATABASE RESTORE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<database restore statement>
	<tablespace restore statement>
	<controlfile restore statement>

	Description
	Examples
	Compatibility
	For More Information

	16.22 ALTER INDEX
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter index physical attribute statement>
	<rename index statement>
	<aging statement>

	Description
	Examples
	Compatibility

	16.23 ALTER INDEX name AGING
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	index_name

	Description
	Examples
	Compatibility
	For More Information

	16.24 ALTER INDEX name STORAGE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	index_name
	<physical attribute clause>
	<segment attr clause>
	<size clause>

	Description
	Examples
	Compatibility
	For More Information

	16.25 ALTER INDEX name RENAME TO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	index_name
	new_index_name

	Description
	Examples
	Compatibility
	For More Information

	16.26 ALTER PROFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	profile_name
	FAILED_LOGIN_ATTEMPTS
	PASSWORD_LOCK_TIME
	PASSWORD_LIFE_TIME
	PASSWORD_GRACE_TIME
	PASSWORD_REUSE_MAX
	PASSWORD_REUSE_TIME
	PASSWORD_VERIFY_FUNCTION

	Examples
	Compatibility
	For More Information

	16.27 ALTER SEQUENCE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	sequence_name
	<alter sequence generator restart option>
	<sequence generator increment by option>
	<sequence generator maxvalue option>
	<sequence generator minvalue option>
	<sequence generator cycle option>
	<sequence generator cache option>

	Description
	Examples
	Compatibility
	For More Information

	16.28 ALTER SESSION CLEANUP GLOBAL TEMPORARY SEGMENT POOL;
	Function
	Syntax
	Description
	Examples
	Compatibility
	For More Information

	16.29 ALTER SESSION SET property_name
	Function
	Syntax
	Syntax Rules and Parameters
	<property name>
	<property value>
	TO DEFAULT

	Description
	Examples
	Compatibility
	For More Information

	16.30 ALTER SYSTEM CHECKPOINT
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter system checkpoint statement>
	<domain name>

	Description
	Example
	Compatibility

	16.31 ALTER SYSTEM CLEANUP PLAN
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter system cleanup plan statement>
	<domain name>

	Description
	Examples
	Compatibility

	16.32 ALTER SYSTEM IRRECOVERABLE CLUSTER MEMBER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter system irrecoverable cluster member statement>
	<domain name>

	Description
	Examples
	Compatibility

	16.33 ALTER SYSTEM JOIN DATABASE
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility
	For More Information

	16.34 ALTER SYSTEM {MOUNT | OPEN} DATABASE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter system database clause>
	<open database option>
	<database_scope>

	Examples
	Compatibility
	For More Information

	16.35 ALTER SYSTEM [KILL | DISCONNECT] SESSION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<member_position>
	<session_id>
	<serial#>
	<disconnect_option>
	<domain name>

	Description
	Example
	Compatibility

	16.36 ALTER SYSTEM RECONNECT GLOBAL CONNECTION
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility

	16.37 ALTER SYSTEM RESET property_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	{ RESET | UNSET }
	<property name>
	[SCOPE = { FILE | SPFILE }]
	<domain name>

	Description
	Examples
	Compatibility
	For More Information

	16.38 ALTER SYSTEM SET property_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<property name>
	<property value>
	TO DEFAULT
	[DEFERRED]
	[SCOPE = [MEMORY | { FILE | SPFILE } | BOTH]]
	<domain name>

	Description
	Examples
	Compatibility
	For More Information

	16.39 ALTER SYSTEM SWITCH LOGFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter system switch logfile statement>
	<domain name>

	Description
	Example
	Compatibility
	For More Information

	16.40 ALTER TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<alter table physical attribute statement>
	<rename table statement>
	<add column definition>
	<drop column definition>
	<alter column definition>
	<rename column statement>
	<add table constraint definition>
	<drop table constraint definition>
	<alter table constraint definition>
	<rename table constraint statement>
	<add table supplemental log statement>
	<drop table supplemental log statement>
	<rebalance statement>
	<move shard statement>
	<split shard statement>
	<rename shard statement>
	<read { only | write } statement>

	Description
	Example
	Compatibility

	16.41 ALTER TABLE name ADD COLUMN
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	ADD [COLUMN]
	<column definition>
	(<column definition> [, ...])

	Description
	Examples
	Compatibility
	For More Information

	16.42 ALTER TABLE name SET UNUSED COLUMN
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	SET UNUSED [COLUMN]
	column_name_list
	column_name
	drop behavior

	Description
	Example
	Compatibility
	For More Information

	16.43 ALTER TABLE name ALTER COLUMN
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	ALTER [COLUMN]
	column_name
	<set column default clause>
	<drop column default clause>
	<set column not null clause>
	<drop column not null clause>
	<alter column data type clause>
	<alter identity column specification>
	<drop identity property clause>

	Description
	Examples
	Compatibility
	For More Information

	16.44 ALTER TABLE name RENAME COLUMN
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	old_column_name
	new_column_name

	Description
	Example
	Compatibility
	For More Information

	16.45 ALTER TABLE name ADD CONSTRAINT
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<table constraint definition>

	Description
	Examples
	Compatibility
	For More Information

	16.46 ALTER TABLE name DROP CONSTRAINT
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	CONSTRAINT constraint_name
	PRIMARY KEY
	UNIQUE(column_name [, ...])
	<drop behavior>

	Description
	Examples
	Compatibility
	For More Information

	16.47 ALTER TABLE name ALTER CONSTRAINT
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<constraint object>
	DEFERRABLE | NOT DEFERRABLE
	INITIALLY IMMEDIATE | INITIALLY DEFERRED

	Description
	Example
	Compatibility

	16.48 ALTER TABLE name RENAME CONSTRAINT
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<constraint object>
	new_column_name

	Description
	Examples
	Compatibility
	For More Information

	16.49 ALTER TABLE name ADD GLOBAL SECONDARY INDEX
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<physical attribute clause>
	<segment attr clause>
	<size clause>
	LOGGING | NOLOGGING
	NOPARALLEL | PARALLEL [integer]
	TABLESPACE tablespace_name

	Description
	Examples
	Compatibility
	For More Information

	16.50 ALTER TABLE name DROP GLOBAL SECONDARY INDEX
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name

	Description
	Examples
	Compatibility
	For More Information

	16.51 ALTER TABLE name ALTER GLOBAL SECONDARY INDEX
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<physical attribute clause>
	<segment attr clause>
	<size clause>

	Description
	Examples
	Compatibility
	For More Information

	16.52 ALTER TABLE name MOVE SHARD
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	shard_name_list
	src_cluster_group
	dest_cluster_group
	[ONLINE | OFFLINE]

	Description
	Examples
	Compatibility
	For More Information

	16.53 ALTER TABLE name REBALANCE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[ONLINE | OFFLINE]

	Description
	Examples
	Compatibility

	16.54 ALTER TABLE name REBALANCE EXCLUDE CLUSTER GROUP cluster_group_list
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	cluster_group_list
	[ONLINE | OFFLINE]

	Description
	Examples
	Compatibility

	16.55 ALTER TABLE name SPLIT SHARD
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	source_shard_name
	<split shard placement>
	<split shard bound def>
	<split list shard def>
	<split range shard def>

	dest_group_name

	Description
	Examples
	Compatibility
	For More Information

	16.56 ALTER TABLE name RENAME SHARD
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	shard_name
	new_shard_name

	Description
	Examples
	Compatibility
	For More Information

	16.57 ALTER TABLE name READ { ONLY | WRITE }
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name

	Description
	Examples
	Compatibility
	For More Information

	16.58 ALTER TABLE name RENAME TO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	new_table_name

	Description
	Example
	Compatibility
	For More Information

	16.59 ALTER TABLE name STORAGE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<physical attribute clause>
	<segment attr clause>

	Description
	Example
	Compatibility
	For More Information

	16.60 ALTER TABLE name ADD SUPPLEMENTAL LOG
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name

	Description
	Example
	Compatibility
	For More Information

	16.61 ALTER TABLE name DROP SUPPLEMENTAL LOG
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name

	Description
	Example
	Compatibility

	16.62 ALTER TABLESPACE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<rename tablespace statement>
	<backup tablespace statement>
	<on-offline tablespace statement>
	<add file statement>
	<drop file statement>
	<rename datafile statement>

	Description
	Example
	Compatibility
	For More Information

	16.63 ALTER TABLESPACE name RENAME TO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	tablespace_name
	new_tablespace_name

	Description
	Example
	Compatibility
	For More Information

	16.64 ALTER TABLESPACE name BACKUP
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<tablespace begin backup statement>
	tablespace_name
	<tablespace end backup statement>
	<tablesapce incremental backup statement>
	<incremental backup option>
	<domain name>

	Description
	Examples
	Compatibility
	For More Information

	16.65 ALTER TABLESPACE name [ONLINE|OFFLINE]
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	ONLINE
	OFFLINE NORMAL
	OFFLINE IMMEDIATE
	<domain name>

	Description
	Examples
	Compatibility
	For More Information

	16.66 ALTER TABLESPACE name ADD [DATAFILE|MEMORY]
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	tablespace_name
	<file specification>
	<add datafile clause>
	<memory clause>
	<domain name>

	Description
	Example
	Compatibility
	For More Information

	16.67 ALTER TABLESPACE name DROP [DATAFILE|MEMORY]
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	tablespace_name
	<file specification>
	<domain name>

	Description
	Example
	Compatibility
	For More Information

	16.68 ALTER TABLESPACE name RENAME DATAFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	tablespace_name
	'filename'
	<domain name>

	Description
	Example
	Compatibility
	For More Information

	16.69 ALTER USER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	user_identifier
	<alter password>
	<alter profile>
	<password expire>
	<account lock>
	<alter default tablespace>
	<alter temporary tablespace>
	<alter index tablespace>
	<alter schema path>
	CURRENT PATH
	ALTER USER PUBLIC <alter schema path>

	Description
	Examples
	Compatibility
	For More Information

	16.70 ALTER VIEW
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	view_name
	COMPILE

	Description
	Example
	Compatibility
	For More Information

	16.71 ANALYZE SYSTEM
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<analyze action>
	COMPUTE STATISTICS
	DELETE STATISTICS

	Description
	Examples
	Compatibility
	For More Information

	16.72 ANALYZE TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<parallel clause>
	<analyze action>
	COMPUTE STATISTICS
	ESTIMATE STATISTICS <sample_clause>
	<for_clause>
	FOR ALL COLUMNS
	FOR ALL INDEXED COLUMNS
	FOR COLUMNS column_name [, ...]
	FOR ALL INDEXES
	FOR INDEXES index_name [, ...]
	DELETE STATISTICS

	Description
	Examples
	Compatibility
	For More Information

	16.73 AUDIT POLICY
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	policy_name
	<specified_user_option>
	<specified_success_option>

	Description
	Retrieving Audit Record
	Retrieving Audit Policy Information
	Cautions When Using BY and EXCEPT Clauses

	Examples
	Compatibility
	For More Information

	16.74 CLOSE cursor_name
	Function
	Syntax
	Syntax Rules and Parameters
	cursor_name

	Description
	Example
	Compatibility
	For More Information

	16.75 COMMENT ON name IS
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<comment object>
	'comment string'

	Description
	Examples
	Compatibility

	16.76 COMMIT
	Function
	Syntax
	Syntax Rules and Parameters
	WORK
	<commit comment clause>
	<commit write clause>
	<commit force clause>

	Description
	Example
	Compatibility
	For More Information

	16.77 CREATE AUDIT POLICY
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	policy_name
	<privilege_audit_clause>
	<action_audit_clause>
	<object_action_audit>
	ALL ON object_name
	<object_action> ON object_name
	Caution of EXECUTE action

	<system_action_audit>

	Description
	Creating Audit Record

	Examples
	Compatibility
	For More Information

	16.78 CREATE CLUSTER GROUP
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	group_name
	<cluster member definition>
	member_name
	<connection attribute>

	Description
	Examples
	Compatibility
	For More Information

	16.79 CREATE CLUSTER LOCATION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	member_name
	<cluster connection attribute>

	Description
	Examples
	Compatibility
	For More Information

	16.80 CREATE INDEX
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	UNIQUE
	index_name
	table_name
	column_name
	ASC | DESC
	NULLS FIRST | NULLS LAST
	<physical attribute clause>
	<segment attr clause>
	<size clause>
	LOGGING | NOLOGGING
	NOPARALLEL | PARALLEL [integer]
	TABLESPACE tablespace_name

	Description
	Examples
	Compatibility
	For more information

	16.81 CREATE PROFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	profile_name
	password_parameters
	FAILED_LOGIN_ATTEMPTS
	PASSWORD_LOCK_TIME
	PASSWORD_LIFE_TIME
	PASSWORD_GRACE_TIME
	PASSWORD_REUSE_MAX
	PASSWORD_REUSE_TIME
	PASSWORD_VERIFY_FUNCTION
	KISA_VERIFY_FUNCTION
	ORA12C_VERIFY_FUNCTION
	ORA12C_STRONG_VERIFY_FUNCTION
	VERIFY_FUNCTION_11G
	VERIFY_FUNCTION

	Description
	Account Lockout
	Password Expiration
	Password Reusability
	DEFAULT profile

	Examples
	Compatibility
	For More Information

	16.82 CREATE SCHEMA
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	schema_name
	AUTHORIZATION user_identifier
	schema_name AUTHORIZATION user_identifier
	<schema element>

	Description
	Examples
	Compatibility
	For More Information

	16.83 CREATE SEQUENCE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	sequence_name
	<sequence generator option>
	<sequence generator start with option>
	<sequence generator increment by option>
	<sequence generator maxvalue option>
	<sequence generator minvalue option>
	<sequence generator cycle option>
	<sequence generator cache option>

	Description
	Examples
	Compatibility
	For More Information

	16.84 CREATE SYNONYM
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[OR REPLACE]
	[PUBLIC]
	synonym_name
	object_name

	Description
	Examples
	Compatibility
	For More Information

	16.85 CREATE TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	<column definition>
	column_name
	<data type>
	<character length units>
	[<default clause> | <identity column specification>]
	<default clause>
	<identity column specification>
	<column constraint definition>
	constraint_name
	NOT NULL Constraint
	UNIQUE Constraint
	PRIMARY KEY Constraint
	<index name clause>
	<table constraint definition>
	key column element
	<table sharding strategy>
	<cloned strategy>
	<clone placement>
	<hash sharding strategy>
	SHARDING BY [HASH] (column_list)
	<hash shard count>
	<hash shard placement>
	<range sharding strategy>
	SHARDING BY RANGE (column_list)
	<cluster-wide range shard placement>
	<group-specific range shard placement>
	<range shard definition>
	<range value clause>
	<list sharding strategy>
	SHARDING BY LIST (column_name)
	<cluster-wide list shard placement>
	<group-specific list shard placement>
	<list shard definition>
	<list value clause>
	<table physical attribute clause>
	<index physical attribute clause>
	<segment attr clause>
	<size clause>
	TABLESPACE tablespace_name
	LOGGING | NOLOGGING
	TABLESPACE index_tablespace_name
	<constraint characteristics>
	DEFERRABLE | NOT DEFERRABLE
	<constraint check time>
	<table global secondary index clause>

	Description
	Constraint Characteristics
	Cluster Table

	Examples
	Compatibility
	For More Information

	16.86 CREATE TABLE AS SELECT
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	column_name_list
	WITH [NO] DATA
	Other Syntax

	Description
	Examples
	Compatibility
	For More Information

	16.87 CREATE GLOBAL TEMPORARY TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	other syntax

	Description
	Examples
	Compatibility
	For More Information

	16.88 CREATE TABLESPACE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<memory data tablespace statement>
	<memory data tablespace clause>
	<memory temporary tablespace definition>

	Description
	Example
	Compatibility
	For More Information

	16.89 CREATE MEMORY DATA TABLESPACE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[MEMORY] [DATA]
	tablespace_name
	<memory datafile clause>
	<size clause>
	<domain name>
	ONLINE | OFFLINE
	EXTSIZE <size clause>

	Description
	Examples
	Compatibility
	For More Information

	16.90 CREATE MEMORY TEMPORARY TABLESPACE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[MEMORY] TEMPORARY
	tablespace_name
	<memory clause>
	<size clause>
	<domain name>
	EXTSIZE <size clause>

	Description
	Examples
	Compatibility
	For More Information

	16.91 CREATE USER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	user_identifier
	password
	PROFILE { profile_name | DEFAULT | NULL }
	PASSWORD EXPIRE
	ACCOUNT { LOCK | UNLOCK }
	DEFAULT TABLESPACE tablespace_name
	TEMPORARY TABLESPACE tablespace_name
	INDEX TABLESPACE { tablespace_name | NULL }
	<schema clause>

	Description
	Examples
	Compatibility
	For More Information

	16.92 CREATE VIEW
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[OR REPLACE]
	[FORCE | NO FORCE]
	view_name
	[(column_name [, ...])]
	AS <query expression>

	Description
	Examples
	Compatibility
	For More Information

	16.93 DECLARE cursor_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	cursor_name
	{ FOR | IS }
	<cursor properties>
	updatable query
	<cursor sensitivity>
	<cursor scrollability>
	<cursor holdability>
	<odbc cursor type>
	<cursor specification>
	statement_name
	<cursor query>
	<updatability clause>
	FOR UPDATE OF …
	<lock wait mode>

	Description
	Examples
	Compatibility
	For More Information

	16.94 DELETE FROM
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	WHERE <search condition>
	<result offset clause>
	<fetch limit clause>

	Description
	Differences among DELETE-related Statements

	Examples
	Compatibility
	For More Information

	16.95 DELETE FROM name RETURNING
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	WHERE <search condition>
	<result offset clause>
	<fetch first clause>
	<limit clause>
	<returning clause>

	Description
	Examples
	Compatibility
	For More Information

	16.96 DELETE FROM name RETURNING .. INTO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	WHERE <search condition>
	<result offset clause>
	<fetch first clause>
	<limit clause>
	<returning into clause>

	Description
	Example
	Compatibility
	For More Information

	16.97 DELETE FROM name WHERE CURRENT OF cursor_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	cursor_name

	Description
	Example
	Compatibility
	For More Information

	16.98 DROP AUDIT POLICY
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	policy_name

	Description
	Examples
	Compatibility
	For More Information

	16.99 DROP CLUSTER GROUP
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[IF EXISTS]
	group_name

	Description
	Examples
	Compatibility
	For More Information

	16.100 DROP CLUSTER LOCATION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	member_name

	Description
	Example
	Compatibility
	For More Information

	16.101 DROP INDEX
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	index_name

	Description
	Examples
	Compatibility
	For More Information

	16.102 DROP PROFILE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	profile_name
	CASCADE

	Example
	Compatibility
	For More Information

	16.103 DROP SCHEMA
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	schema_name
	<drop behavior>

	Description
	Examples
	Compatibility
	For More Information

	16.104 DROP SEQUENCE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	sequence_name

	Description
	Examples
	Compatibility
	For More Information

	16.105 DROP SYNONYM
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	[PUBLIC]
	IF EXISTS
	synonym_name

	Description
	Examples
	Compatibility
	For More Information

	16.106 DROP TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	table_name
	drop behavior

	Description
	Examples
	Compatibility
	For More Information

	16.107 DROP TABLESPACE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	tablespace_name
	INCLUDING CONTENTS
	[{ AND | KEEP } DATAFILES]
	drop behavior

	Description
	Examples
	Compatibility
	For More Information

	16.108 DROP USER
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	user_identifier
	<drop behavior>

	Description
	Examples
	Compatibility
	For More Information

	16.109 DROP VIEW
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	view_name

	Description
	Examples
	Compatibility
	For More Information

	16.110 EXECUTE statement_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	statement_name
	[<parameter using clause>] [<result into clause>]
	<parameter using clause>
	<using parameter arguments>
	<result into clause>
	<into result arguments>

	Description
	Example
	Compatibility
	For More Information

	16.111 EXECUTE IMMEDIATE 'sql_string'
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<SQL statement variable>
	variable_name
	sql statement

	Description
	Example
	Compatibility
	For More Information

	16.112 FETCH cursor_name
	Function
	Syntax
	Syntax Rules and Parameters
	[FROM] cursor_name
	<fetch orientation>
	<result into clause>
	<into result arguments>

	Description
	Example
	Compatibility
	For More Information

	16.113 GRANT privileges TO
	Function
	Syntax
	Syntax Rules and Parameters
	<grantee>
	WITH GRANT OPTION
	<privilege>
	<database privilege>
	<tablespace privilege>
	<schema privilege>
	<table privilege>
	<sequence privilege>
	<procedure privilege>

	Description
	Examples
	Compatibility
	For More Information

	16.114 INSERT INTO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[(column_name [, ...])]
	<values clause>
	<from subquery>
	DEFAULT VALUES

	Description
	Differences among INSERT-related Statements

	Examples
	Compatibility
	For More Information

	16.115 INSERT INTO name RETURNING
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[(column_name [, ...])]
	<values clause>
	<from subquery>
	DEFAULT VALUES
	<returning clause>

	Description
	Examples
	Compatibility
	For More Information

	16.116 INSERT INTO name RETURNING .. INTO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[(column_name [, ...])]
	<values clause>
	<from subquery>
	DEFAULT VALUES
	<returning clause>
	INTO variable_name [, ...]

	Description
	Example
	Compatibility
	For More Information

	16.117 LOCK TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<lock target>
	<lock mode>
	<wait clause>

	Description
	Examples
	Compatibility
	For More Information

	16.118 NOAUDIT POLICY
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	policy_name
	<specified_user_option>

	Description
	When Activated by Using BY
	When Activated by Using EXCEPT

	Examples
	Compatibility
	For More Information

	16.119 OPEN cursor_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	cursor_name
	<parameter using clause>
	<using parameter arguments>

	Description
	Examples
	Compatibility
	For More Information

	16.120 PREPARE statement_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	statement_name
	<SQL statement variable>
	variable_name
	sql statement

	Description
	Example
	Compatibility
	For More Information

	16.121 RELEASE SAVEPOINT savepoint_specifier
	Function
	Syntax
	Syntax Rules and Parameters
	savepoint_name

	Description
	Example
	Compatibility
	For More Information

	16.122 REVOKE privileges FROM
	Function
	Syntax
	Syntax Rules and Parameters
	<privilege>
	<grantee>
	GRANT OPTION FOR
	<revoke behavior>

	Description
	Examples
	Compatibility
	For More Information

	16.123 ROLLBACK
	Function
	Syntax
	Syntax Rules and Parameters
	WORK
	<rollback force clause>
	<savepoint clause>

	Description
	Examples
	Compatibility
	For More Information

	16.124 SAVEPOINT savepoint_specifier
	Function
	Syntax
	Syntax Rules and Parameters
	savepoint_name

	Description
	Example
	Compatibility
	For More Information

	16.125 SELECT
	query expression
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<set operator>
	<query specification>
	<order by clause>
	<offset limit clause>

	Description
	Examples
	Compatibility

	query specification
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<hint clause>
	<set quantifier>
	<select list>
	<from clause>
	<where clause>
	<group by clause>
	<having clause>

	Description
	<hint clause>
	<set quantifier>
	<select list>
	<from clause>
	<where clause>
	<group by clause>
	<having clause>

	Examples
	Compatibility
	For More Information

	select list
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<select list>
	<select sublist>

	Description
	<select list>
	<select sublist>
	Names to Be Set in select list

	Examples
	Compatibility
	For More Information

	from clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<table reference list>
	<table primary>
	<correlation name>
	<derived column list>
	<cluster domain>
	<cluster domain name>

	Description
	<table reference list>
	<table reference>
	<table primary>
	<cluster domain>
	<cluster domain name>

	Examples
	Compatibility
	For More Information

	joined table
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<cross join>
	<qualified join>
	<natural join>
	<join specification>

	Description
	<cross join>
	<qualified join>
	<natural join>
	<join specification>

	Examples
	Compatibility
	For More Information

	where clause
	Function
	Syntax
	Syntax Rules and Parameters
	<where clause>

	Description
	Example
	Compatibility
	For More Information

	group by clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<ordinary grouping set>
	<empty grouping set>

	Description
	<grouping element list>
	<grouping column reference>
	<empty grouping set>

	Example
	Compatibility
	For More Information

	having clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<having clause>

	Description
	<having clause>

	Example
	Compatibility
	For More Information

	order by clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<order by clause>
	<sort specification list>
	<sort key>

	Description
	<order by clause>
	Comparison of Null Value
	Sorting Rows Which Have Same Sort Key Value
	<aggregation function> Which Is Used As <sort key>

	Example
	Compatibility
	For More Information

	offset limit clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<result offset clause>
	<fetch limit clause>
	<fetch first clause>
	<limit clause>

	Description
	<result offset clause>
	<fetch first clause>
	<limit clause>

	Examples
	Compatibility

	set operator
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<set operator>
	<query term>

	Description
	The Differences between ALL and DISTINCT in <set operator>
	Operator Precedence
	The Result Type of <set operator>
	ORDER BY Clause

	Examples
	Compatibility
	For More Information

	subquery
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<scalar subquery>
	<row subquery>
	<table subquery>

	Description
	<scalar subquery>
	<row subquery>
	<table subquery>

	Examples
	Compatibility
	For More Information

	hint clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<access_path_hints>
	FULL
	INDEX
	NO_INDEX
	INDEX_ASC
	INDEX_DESC
	INDEX_COMBINE
	ROWID

	<join_order_hints>
	ORDERED
	ORDERING
	LEADING

	<join operation_hints>
	USE_HASH
	NO_USE_HASH
	USE_MERGE
	NO_USE_MERGE
	USE_NL
	NO_USE_NL
	USE_INL
	NO_USE_INL

	<query_transformation_hints>
	UNNEST
	NO_UNNEST
	NL_SJ
	NL_ISJ
	MERGE_SJ
	HASH_SJ
	HASH_ISJ
	HASH_AJ
	TRANSITIVE_CLOSURE
	NO_TRANSITIVE_CLOSURE
	MERGE
	NO_MERGE
	NO_QUERY_TRANSFORMATION

	<other_hints>
	PUSH_PRED
	NO_PUSH_PRED
	PUSH_SUBQ
	NO_PUSH_SUBQ
	USE_GROUP_HASH
	USE_DISTINCT_HASH

	Description
	Examples
	Compatibility
	For More Information

	16.126 SELECT .. FOR UPDATE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<query expression>
	<updatability clause>
	FOR UPDATE OF …
	<lock wait mode>

	Description
	Examples
	Compatibility

	16.127 SELECT .. INTO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<hint clause>
	<set quantifier>
	<select list>
	INTO <select target list>
	<table expression>

	Description
	Differences among SELECT-related Statements

	Example

	16.128 SELECT .. INTO .. FOR UPDATE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	<select for update statement: single row>
	<updatability clause>
	FOR UPDATE OF …
	<lock wait mode>
	<hint clause>
	<set quantifier>
	<select list>
	INTO <select target list>
	<table expression>

	Description
	Differences among SELECT-related Statements

	Examples
	For More Information

	16.129 SET CONSTRAINTS
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	CONSTRAINT | CONSTRAINTS
	<constraint name list>
	DEFERRED | IMMEDIATE

	Description
	Deferrable Constraint
	Violation of a Deferred Constraint
	Transaction Control Language

	Examples
	Compatibility
	For More Information

	16.130 SET SESSION AUTHORIZATION user_identifier
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	user_identifier

	Description
	Example
	Compatibility

	16.131 SET SESSION CHARACTERISTICS AS transaction_mode
	Function
	Syntax
	Syntax Rules and Parameters
	<transaction_access_mode>
	<isolation_level>

	Description
	Examples
	Compatibility
	For More Information

	16.132 SET TIME ZONE
	Function
	Syntax
	Syntax Rules and Parameters
	<set time zone value>

	Description
	Example
	Compatibility

	16.133 SET TRANSACTION transaction_mode
	Function
	Syntax
	Syntax Rules and Parameters
	<transaction_access_mode>
	<isolation_level>

	Description
	Example
	Compatibility
	For More Information

	16.134 TRUNCATE TABLE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[RESTART IDENTITY | CONTINUE IDENTITY]
	[DROP STORAGE | DROP ALL STORAGE]

	Description
	Examples
	Compatibility

	16.135 UPDATE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	<set clause>
	WHERE <search condition>
	<result offset clause>
	<fetch limit clause>

	Description
	Differences among UPDATE-related Statements

	Examples
	Compatibility

	16.136 UPDATE name RETURNING
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	<set clause>
	WHERE <search condition>
	<result offset clause>
	<fetch limit clause>
	<returning clause>

	Description
	Examples
	Compatibility

	16.137 UPDATE name RETURNING .. INTO
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	<set clause>
	WHERE <search condition>
	<result offset clause>
	<fetch limit clause>
	RETURNING .. AS ..
	INTO variable_name [, ...]

	Description
	Example
	Compatibility

	16.138 UPDATE name WHERE CURRENT OF cursor_name
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	table_name
	[AS alias_name]
	<set clause>
	cursor_name

	Description
	Examples
	Compatibility
	For More Information

	Part IV. PSM Manual
	17. Overview of PSM
	17.1 Features of PSM
	Closely Interworking with SQL
	Improving Performance
	Improving Productivity
	Portability
	Easy Maintenance

	17.2 Language Elements
	Data Types
	Variables
	Control Structures
	Subprograms

	17.3 Processing Transaction in PSM

	18. PSM DataTypes
	18.1 Built-in Data Types
	Numeric Types
	CHARACTER STRING Types
	BINARY STRING Type
	DATE/TIME Type
	INTERVAL Type
	BOOLEAN Type
	ROWID Type
	Declaring Built-in Data Type Variables

	18.2 Attribute Data Types
	%TYPE
	%ROWTYPE
	Constraint Attributes Inheritance

	18.3 User-defined Record Type
	18.4 User-defined Collection Type
	Associative Array
	Assign Values to Collection Variables
	Collection Method

	18.5 SYS_REFCURSOR

	19. PSM Control Statements
	19.1 Assignment
	Assignment Target
	Assigning Expression
	Assignment Compatibility

	19.2 PL Block
	PL Block Configuration
	Declarative Part
	Executable Part
	Exception Handling Part

	19.3 NULL Statement
	19.4 Testing Conditions
	IF
	CASE
	Simple CASE Statement
	Searched CASE Statement

	19.5 Iterative Control
	Basic Loop
	FOR Loop
	WHILE Loop

	19.6 Sequential Control
	GOTO
	CONTINUE
	EXIT

	19.7 Error Handling
	Errors at Compile Time
	Errors at Run-time
	Cursor Attributes
	Implicit Cursor Attributes
	Explicit Cursor Attributes

	EXCEPTION Handling
	Exception Handler
	Propagating Exception
	User Defined Exception

	PRAGMA EXCEPTION_INIT
	DBMS_STANDARD.RAISE_APPLICATION_ERROR

	20. PSM Cursor Statements
	20.1 Declaration
	20.2 OPEN
	20.3 FETCH
	20.4 CLOSE
	20.5 EXPLICIT CURSOR ATTRIBUTES
	20.6 IMPLICIT_CURSOR_ATTRIBUTES
	20.7 CURSOR VARIABLES
	OPEN and Close Cursor Variables
	Fetching Data With Cursor Variables
	Assign Values to Cursor Variables

	21. Using PSM Subprograms
	21.1 Anonymous PL Block
	21.2 Nested Procedure
	21.3 Nested Function
	21.4 Schema-level Procedure
	Creating Schema-level Procedure
	Using Schema-level Procedure
	Dropping Schema-level Procedure
	Recompiling Schema-level Procedure
	Referenced Object in a Declarative Part or an Argument
	Referenced Object in an SQL of the Body

	21.5 Schema-level Function
	Creating Schema-level Function
	Using Schema-level Function
	Dropping Schema-level Function

	21.6 Built-in Procedures

	22. Using SQLs in PSM
	22.1 Static SQLs
	SELECT
	INSERT
	UPDATE
	DELETE
	RETURNING INTO
	INSERT RETURNING INTO
	UPDATE RETURNING INTO
	DELETE RETURNING INTO

	COMMIT, ROLLBACK, SAVEPOINT
	COMMIT
	ROLLBACK
	SAVEPOINT

	22.2 Dynamic SQL
	EXECUTE IMMEDIATE
	OPEN FOR, FETCH and CLOSE

	23. PSM Language Element References
	23.1 Assignment Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.2 Basic LOOP Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.3 Block (BEGIN .. END)
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.4 CASE Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Using a Simple CASE
	Using a Searched CASE

	Compatibility

	23.5 CLOSE Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.6 Collection Method Invocation
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	For More Information

	23.7 COLLECTION Variable Declaration
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.8 CONTINUE Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.9 Cursor FOR LOOP Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	When Using Cursor Name
	When Using Cursor Query

	Description
	Examples
	Using Explicit Cursor
	Using Cursor Query

	For More Information

	23.10 Cursor Variable Declaration
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	For More Information

	23.11 DELETE Statement Extension
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	For More Information

	23.12 EXCEPTION_INIT Pragma
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.13 Exception Declaration
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.14 Exception Handler
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Exception Types
	Predefined Exception

	Examples
	Compatibility
	For More Information

	23.15 EXECUTE IMMEDIATE Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Dynamic SQL
	INTO Clause
	USING Clause
	RETURNING Clause
	Other Rules

	Description
	Examples

	23.16 EXIT Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.17 Explicit Cursor Attribute
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.18 Explicit Cursor Declaration and Definition
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Cursor Name
	RowType
	Param Name
	DataType
	Select Statement

	Description
	Examples
	Compatibility
	For More Information

	23.19 FETCH Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.20 FOR LOOP Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.21 Function Declaration and Definition
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	func_name
	Param Name
	Bind Type
	Item Declaration
	PL Stmt List

	Description
	Examples
	Compatibility
	For More Information

	23.22 GOTO Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.23 IF Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.24 Implicit Cursor Attribute
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility

	23.25 INSERT Statement Extension
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.26 NULL Statement
	Function
	Syntax
	Invocation and Access Rules
	Description
	Examples
	Compatibility

	23.27 OPEN Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.28 OPEN FOR Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.29 Procedure Call
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.30 Procedure Declaration and Definition
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.31 RAISE Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	23.32 Record Variable Declaration
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.33 RETURN Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.34 RETURNING INTO clause
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.35 %ROWTYPE Attribute
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.36 Scalar Variable Declaration
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.37 SELECT INTO Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.38 SQLCODE Function
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.39 SQLERRM Function
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.40 %TYPE Attribute
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Reference scope
	NOT NULL Constraints Variables References

	Examples
	Compatibility

	23.41 UPDATE Statement Extension
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility

	23.42 WHILE LOOP Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	24. PSM SQL References
	24.1 ALTER FUNCTION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	24.2 ALTER PROCEDURE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Compatibility
	For More Information

	24.3 CALL Statement
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	Description
	Examples
	Call Procedure
	Call Function

	Compatibility

	24.4 CREATE FUNCTION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	OR REPLACE
	FUNCTION NAME
	PARAM NAME
	Bind Type
	Func_Characteristics
	Item Declaration
	PL Stmt List

	Description
	Examples
	Compatibility
	For More Information

	24.5 CREATE PROCEDURE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	OR REPLACE
	PROC NAME
	PARAM NAME
	Bind Type
	proc_characteristics
	Item Declaration
	PL Stmt List

	Description
	Examples
	Compatibility
	For More Information

	24.6 DROP FUNCTION
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	FUNC NAME

	Description
	Examples
	Compatibility
	For More Information

	24.7 DROP PROCEDURE
	Function
	Syntax
	Invocation and Access Rules
	Syntax Rules and Parameters
	IF EXISTS
	PROC NAME

	Description
	Examples
	Compatibility
	For More Information

	Part V. Developer Manual
	25. ODBC
	25.1 Overview of GOLDILOCKS ODBC Driver
	Concepts of GOLDILOCKS ODBC Driver
	Overview of ODBC Components
	GOLDILOCKS ODBC Driver Including Driver Manager
	GOLDILOCKS ODBC Driver Not Including Driver Manager

	Using GOLDILOCKS ODBC Driver
	Header File
	Library
	UNIX
	Windows

	25.2 Data Source Configuration
	DSN Configuration on UNIX
	odbcinst.ini File
	ODBC Driver Specification

	odbc.ini File
	Data Source Specification

	DSN Configuration on Windows

	25.3 GLOBAL CONNECTION
	Features
	Settings
	Processing GLOBAL CONNECTION
	Constraints
	Session Dependent Object
	Session Dependent Clause
	Session Dependent Function and Pseudo Column

	25.4 Catalog Function
	Using Catalog Data
	Configuring SQL statements at the time of execution
	Configuring SQL statements during the development
	Configuring a Cursor

	Catalog Function on ODBC
	Data Returning of Catalog Function
	Arguments of Catalog Function
	Pattern Value Argument

	25.5 ODBC API References
	SQLAllocConnect
	Conformance
	Overview
	Syntax
	Arguments

	SQLAllocEnv
	Conformance
	Overview
	Syntax
	Arguments

	SQLAllocHandle
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Allocating Environment Handle
	Allocating Connection Handle
	Allocating Statement Handle

	SQLAllocStmt
	Conformance
	Overview
	Syntax
	Arguments

	SQLBindCol
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Binding Column
	Releasing Bound Column
	Rebinding Column
	Binding Offsets
	Binding Array
	Column-wise Binding
	Row-wise Binding
	Buffer Address
	Descriptors and SQLBindCol
	Argument Mapping
	Implicit Initialization of COUNT Field
	Caution for SQL_DEFAULT

	SQLBindParameter
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	ParameterNumber Argument
	InputOutputType Argument
	ValueType Argument
	ParameterType Argument
	ColumnSize Argument
	DecimalDigit Argument
	ParameterValuePtr Argument
	BufferLength Argument
	StrLen_or_IndPtr Argument
	Passing Parameter Values
	Using Parameter Array
	Binding Column-wise Parameter
	Binding Row-wise Parameter
	Error Information
	Ignoring Parameter Set
	Rebinding Parameter
	Descriptor

	SQLBrowseConnect
	Conformance
	Overview
	Syntax

	SQLBulkOperations
	Conformance
	Overview
	Syntax

	SQLCancel
	Conformance
	Overview
	Syntax

	SQLCancelHandle
	Conformance
	Overview
	Syntax

	SQLCloseCursor
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLColAttribute
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLColAttributes
	Conformance
	Overview

	SQLColumnPrivileges
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLColumns
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLConnect
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLCopyDesc
	Conformance
	Overview
	Syntax

	SQLDescribeCol
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLDescribeParam
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLDisconnect
	Conformance
	Overview
	Syntax
	Argument
	Returns
	Diagnosis
	Description

	SQLDriverConnect
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLEndTran
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLError
	Conformance
	Overview

	SQLExecDirect
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLExecute
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLExtendedFetch
	Conformance
	Overview
	Syntax

	SQLFetch
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Cursor Position
	Returing the Data in the Bound Column
	Row Status Array
	Row Fetch Buffer
	Error Processing
	Descriptor and SQLFetch

	SQLFetchScroll
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Cursor Position
	Cursor Position Rules
	Buffer Address
	Row Status Array
	Row Fetch Buffer
	Error Processing

	SQLForeignKeys
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLFreeConnect
	Conformance
	Overview

	SQLFreeEnv
	Conformance
	Overview

	SQLFreeHandle
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Releasing the Environment Handle
	Releasing the Connection Handle
	Releasing the Statement Handle

	SQLFreeStmt
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetConnectAttr
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetConnectOption
	Conformance
	Overview

	SQLGetCursorName
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetData
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Using SQLGetData
	Partial Retrieving of Variable Length Data
	Retrieving Data Using SQLGetData
	SQLGetData and Descriptor

	SQLGetDescField
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Header Field
	Record Field

	SQLGetDescRec
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetDiagField
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	HandleType Argument
	DiagIdentifier Argument
	Header Field
	Record Field
	Dynamic Function Field Value
	Sequence of Status Record

	SQLGetDiagRec
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	HandleType Argument

	SQLGetEnvAttr
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetFunctions
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	SQL_FUNC_EXISTS Macro

	SQLGetGroupCount
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetGroupIDs
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetGroupName
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetInfo
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Driver Information
	DBMS Product Information
	Data Source Information
	Supported SQL
	SQL Restrictions
	Scalar Funtion Information
	Conversion Information
	Added Information Type in ODBC 3.x
	Renamed Information Type in ODBC 3.x
	Deprecated Information Type in ODBC 3.x

	SQLGetStmtAttr
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Statement Attributes

	SQLGetStmtOption
	Conformance
	Overview

	SQLGetSuitableGroupID
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLGetTypeInfo
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLMoreResults
	Conformance
	Overview
	Syntax
	Argument
	Returns
	Diagnosis
	Description
	Availability of the Number of Rows

	SQLNativeSql
	Conformance
	Overview
	Syntax

	SQLNumParams
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLNumResultCols
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLParamData
	Conformance
	Overview
	Syntax
	Returns
	Diagnosis
	Description

	SQLParamOptions
	Conformance
	Overview

	SQLPrepare
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLPrimaryKeys
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLProcedureColumns
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLProcedures
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLPutData
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLRowCount
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLSetConnectAttr
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLSetConnectOption
	Conformance
	Overview

	SQLSetCursorName
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLSetDescField
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Order of Setting Descriptor Fields
	Initializing Descriptor Field
	FieldIdentifier Argument
	Header Field
	Record Field
	Consistency Check

	SQLSetDescRec
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Consistency Check

	SQLSetEnvAttr
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLSetParam
	Conformance
	Overview

	SQLSetPos
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	RowNumber Argument
	Operation Argument
	LockType Argument
	Status and Operation Array
	Using SQLSetPos
	Deleing Data Using SQLSetPos
	Updating Data Using SQLSetPos
	Executing the Bulk Operation
	Ignoring Rows in the Bulk Operation
	Ignoring Columns in the Bulk Operation

	SQLSetScrollOptions
	Conformance
	Overview

	SQLSetStmtAttr
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description
	Statement Attribute to Set the Descriptor Field
	Statement Attributes

	SQLSetStmtOption
	Conformance
	Overview

	SQLSpecialColumns
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLStatistics
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLTablePrivileges
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLTables
	Conformance
	Overview
	Syntax
	Arguments
	Returns
	Diagnosis
	Description

	SQLTransact
	Conformance
	Overview

	25.6 XA API References
	Overview
	XA Interface
	switch_t Structure
	ODBC Functions Related to XA
	SQLGetXaSwitch
	SQLGetXaConnectionHandle

	XA Functions
	xa_open
	xa_close
	xa_start
	xa_end
	xa_prepare
	xa_commit
	xa_rollback
	xa_recover
	xa_forget

	Example

	26. JDBC
	26.1 Overview of GOLDILOCKS JDBC Driver
	Concepts of GOLDILOCKS JDBC Driver
	Characteristics
	Supporting Versions
	GOLDILOCKS JDBC versions

	Examples
	Setting Class Path
	Loading Driver Class
	Getting Connection
	Using Statement and ResultSet

	26.2 Feature Specification
	Connection
	Connection Using DriverManager
	Connection Using DataSource
	Interworking with Middleware
	Connection Property

	Data Manipulation
	Data Manipulation Using Statement
	Data Manipulation Using PreparedStatement
	Batch Execution Using Statement
	Batch Execution Using PreparedStatement

	Data Retrieval
	Getting Column Values
	Closing ResultSet
	Fetch Size
	Field Size Limit

	ResultSet Scroll
	Getting Scrollable ResultSet
	Scrolling
	Scrolling Principle

	Using Other Data Types
	Interval Type
	Time with Time Zone and Timestamp with Time Zone Types

	Logging
	Logging Types
	Logging by Using DriverManager
	Logging by Using DataSource

	Viewing Plan Text
	Usage
	Option Types

	Connection Failover
	failover_type
	failover_granularity

	Connecting in Direct Attach Mode
	Connecting Method
	Features of D/A Connection

	26.3 JDBC API References
	Array
	free
	getArray
	getBaseType
	getBaseTypeName
	getResultSet

	Blob
	free
	getBinaryStream
	getBytes
	length
	position
	setBinaryStream
	setBytes
	truncate

	CallableStatement
	getArray
	getBigDecimal
	getBlob
	getBoolean
	getByte
	getBytes
	getCharacterStream
	getClob
	getDate
	getDouble
	getFloat
	getInt
	getLong
	getNCharacterStream
	getNClob
	getNString
	getObject
	getRef
	getRowId
	getShort
	getSQLXML
	getString
	getTime
	getTimestamp
	getURL
	registerOutParameter
	setAsciiStream
	setBigDecimal
	setBinaryStream
	setBlob
	setBoolean
	setByte
	setBytes
	setCharacterStream
	setClob
	setDate
	setDouble
	setFloat
	setInt
	setLong
	setNCharacterStream
	setNClob
	setNString
	setNull
	setObject
	setRowId
	setShort
	setSQLXML
	setString
	setTime
	setTimestamp
	setURL
	wasNull
	isWrapperFor
	unwrap

	Clob
	free
	getAsciiStream
	getCharacterStream
	getSubString
	length
	position
	setAsciiStream
	setCharacterStream
	setString
	truncate

	CommonDataSource
	getLoginTimeout
	getLogWriter
	setLoginTimeout
	setLogWriter
	setDataSourceName
	setServerName
	setDatabaseName
	setNetworkProtocol
	setUser
	setPassword
	setPortNumber
	setRoleName
	setDescription
	setConnectionProperties
	setURL
	setLogTarget
	setTraceLog
	setQueryLog
	setProtocolLog

	Connection
	clearWarnings
	close
	commit
	createArrayOf
	createBlob
	createClob
	createNClob
	createSQLXML
	createStatement
	createStruct
	getAutoCommit
	getCatalog
	getClientInfo
	getHoldability
	getMetaData
	getTransactionIsolation
	getTypeMap
	getWarnings
	isClosed
	isReadOnly
	isValid
	nativeSQL
	prepareCall
	prepareStatement
	releaseSavepoint
	rollback
	setAutoCommit
	setCatalog
	setClientInfo
	setHoldability
	setReadOnly
	setSavepoint
	setTransactionIsolation
	setTypeMap
	isWrapperFor
	unwrap

	ConnectionPoolDataSource
	getPooledConnection

	DatabaseMetaData
	allProceduresAreCallable
	allTablesAreSelectable
	autoCommitFailureClosesAllResultSets
	dataDefinitionCausesTransactionCommit
	dataDefinitionIgnoredInTransactions
	deletesAreDetected
	doesMaxRowSizeIncludeBlobs
	getAttributes
	getBestRowIdentifier
	getCatalogs
	getCatalogSeparator
	getCatalogTerm
	getClientInfoProperties
	getColumnPrivileges
	getColumns
	getConnection
	getCrossReference
	getDatabaseMajorVersion
	getDatabaseMinorVersion
	getDatabaseProductName
	getDatabaseProductVersion
	getDefaultTransactionIsolation
	getDriverMajorVersion
	getDriverMinorVersion
	getDriverName
	getDriverVersion
	getExportedKeys
	getExtraNameCharacters
	getFunctionColumns
	getFunctions
	getIdentifierQuoteString
	getImportedKeys
	getIndexInfo
	getJDBCMajorVersion
	getJDBCMinorVersion
	getMaxBinaryLiteralLength
	getMaxCatalogNameLength
	getMaxCharLiteralLength
	getMaxColumnNameLength
	getMaxColumnsInGroupBy
	getMaxColumnsInIndex
	getMaxColumnsInOrderBy
	getMaxColumnsInSelect
	getMaxColumnsInTable
	getMaxConnections
	getMaxCursorNameLength
	getMaxIndexLength
	getMaxProcedureNameLength
	getMaxRowSize
	getMaxSchemaNameLength
	getMaxStatementLength
	getMaxStatements
	getMaxTableNameLength
	getMaxTablesInSelect
	getMaxUserNameLength
	getNumericFunctions
	getPrimaryKeys
	getProcedureColumns
	getProcedures
	getProcedureTerm
	getResultSetHoldability
	getRowIdLifetime
	getSchemas
	getSchemaTerm
	getSearchStringEscape
	getSQLKeywords
	getSQLStateType
	getStringFunctions
	getSuperTables
	getSuperTypes
	getSystemFunctions
	getTablePrivileges
	getTables
	getTableTypes
	getTimeDateFunctions
	getTypeInfo
	getUDTs
	getURL
	getUserName
	getVersionColumns
	insertsAreDetected
	isCatalogAtStart
	isReadOnly
	locatorsUpdateCopy
	nullPlusNonNullIsNull
	nullsAreSortedAtEnd
	nullsAreSortedAtStart
	nullsAreSortedHigh
	nullsAreSortedLow
	othersDeletesAreVisible
	othersInsertsAreVisible
	othersUpdatesAreVisible
	ownDeletesAreVisible
	ownInsertsAreVisible
	ownUpdatesAreVisible
	storesLowerCaseIdentifiers
	storesLowerCaseQuotedIdentifiers
	storesMixedCaseIdentifiers
	storesMixedCaseQuotedIdentifiers
	storesUpperCaseIdentifiers
	storesUpperCaseQuotedIdentifiers
	supportsAlterTableWithAddColumn
	supportsAlterTableWithDropColumn
	supportsANSI92EntryLevelSQL
	supportsANSI92FullSQL
	supportsANSI92IntermediateSQL
	supportsBatchUpdates
	supportsCatalogsInDataManipulation
	supportsCatalogsInIndexDefinitions
	supportsCatalogsInPrivilegeDefinitions
	supportsCatalogsInProcedureCalls
	supportsCatalogsInTableDefinitions
	supportsColumnAliasing
	supportsConvert
	supportsConvert
	supportsCoreSQLGrammar
	supportsCorrelatedSubqueries
	supportsDataDefinitionAndDataManipulationTransactions
	supportsDataManipulationTransactionsOnly
	supportsDifferentTableCorrelationNames
	supportsExpressionsInOrderBy
	supportsExtendedSQLGrammar
	supportsFullOuterJoins
	supportsGetGeneratedKeys
	supportsGroupBy
	supportsGroupByBeyondSelect
	supportsGroupByUnrelated
	supportsIntegrityEnhancementFacility
	supportsLikeEscapeClause
	supportsLimitedOuterJoins
	supportsMinimumSQLGrammar
	supportsMixedCaseIdentifiers
	supportsMixedCaseQuotedIdentifiers
	supportsMultipleOpenResults
	supportsMultipleResultSets
	supportsMultipleTransactions
	supportsNamedParameters
	supportsNonNullableColumns
	supportsOpenCursorsAcrossCommit
	supportsOpenCursorsAcrossRollback
	supportsOpenStatementsAcrossCommit
	supportsOpenStatementsAcrossRollback
	supportsOrderByUnrelated
	supportsOuterJoins
	supportsPositionedDelete
	supportsPositionedUpdate
	supportsResultSetConcurrency
	supportsResultSetHoldability
	supportsResultSetType
	supportsSavepoints
	supportsSchemasInDataManipulation
	supportsSchemasInIndexDefinitions
	supportsSchemasInPrivilegeDefinitions
	supportsSchemasInProcedureCalls
	supportsSchemasInTableDefinitions
	supportsSelectForUpdate
	supportsStatementPooling
	supportsStoredFunctionsUsingCallSyntax
	supportsStoredProcedures
	supportsSubqueriesInComparisons
	supportsSubqueriesInExists
	supportsSubqueriesInIns
	supportsSubqueriesInQuantifieds
	supportsTableCorrelationNames
	supportsTransactionIsolationLevel
	supportsTransactions
	supportsUnion
	supportsUnionAll
	updatesAreDetected
	usesLocalFilePerTable
	usesLocalFiles

	DataSource
	getConnection
	isWrapperFor
	unwrap

	Driver
	acceptsURL
	connect
	getMajorVersion
	getMinorVersion
	getPropertyInfo
	jdbcCompliant

	NClob
	free
	getAsciiStream
	getCharacterStream
	getSubString
	length
	position
	setAsciiStream
	setCharacterStream
	setString
	truncate

	ParameterMetaData
	getParameterClassName
	getParameterCount
	getParameterMode
	getParameterType
	getParameterTypeName
	getPrecision
	getScale
	isNullable
	isSigned
	isWrapperFor
	unwrap

	PooledConnection
	addConnectionEventListener
	addStatementEventListener
	close
	getConnection
	removeConnectionEventListener
	removeStatementEventListener

	PreparedStatement
	addBatch
	clearParameters
	execute
	executeQuery
	executeUpdate
	getMetaData
	getParameterMetaData
	setArray
	setAsciiStream
	setBigDecimal
	setBinaryStream
	setBlob
	setBoolean
	setByte
	setBytes
	setCharacterStream
	setClob
	setDate
	setDouble
	setFloat
	setInt
	setLong
	setNCharacterStream
	setNClob
	setNString
	setNull
	setObject
	setRef
	setRowId
	setShort
	setSQLXML
	setString
	setTime
	setTimestamp
	setUnicodeStream
	setURL
	isWrapperFor
	unwrap
	executeBatchAtomic
	setTimeTimeZone
	setTimestampTimeZone

	Ref
	getBaseTypeName
	getObject
	setObject

	ResultSet
	absolute
	afterLast
	beforeFirst
	cancelRowUpdates
	clearWarnings
	close
	deleteRow
	findColumn
	first
	getArray
	getAsciiStream
	getBigDecimal
	getBinaryStream
	getBlob
	getBoolean
	getByte
	getBytes
	getCharacterStream
	getClob
	getConcurrency
	getCursorName
	getDate
	getDouble
	getFetchDirection
	getFetchSize
	getFloat
	getHoldability
	getInt
	getLong
	getMetaData
	getNCharacterStream
	getNClob
	getNString
	getObject
	getRef
	getRow
	getRowId
	getShort
	getSQLXML
	getStatement
	getString
	getTime
	getTimestamp
	getType
	getUnicodeStream
	getURL
	getWarnings
	insertRow
	isAfterLast
	isBeforeFirst
	isClosed
	isFirst
	isLast
	last
	moveToCurrentRow
	moveToInsertRow
	next
	previous
	refreshRow
	relative
	rowDeleted
	rowInserted
	rowUpdated
	setFetchDirection
	setFetchSize
	updateArray
	updateAsciiStream
	updateBigDecimal
	updateBinaryStream
	updateBlob
	updateBoolean
	updateByte
	updateBytes
	updateCharacterStream
	updateClob
	updateDate
	updateDouble
	updateFloat
	updateInt
	updateLong
	updateNCharacterStream
	updateNClob
	updateNString
	updateNull
	updateObject
	updateRef
	updateRow
	updateRowId
	updateShort
	updateSQLXML
	updateString
	updateTime
	updateTimestamp
	wasNull
	isWrapperFor
	unwrap

	ResultSetMetaData
	getCatalogName
	getColumnClassName
	getColumnCount
	getColumnDisplaySize
	getColumnLabel
	getColumnName
	getColumnType
	getColumnTypeName
	getPrecision
	getScale
	getSchemaName
	getTableName
	isAutoIncrement
	isCaseSensitive
	isCurrency
	isDefinitelyWritable
	isNullable
	isReadOnly
	isSearchable
	isSigned
	isWritable
	isWrapperFor
	unwrap

	RowId
	equals
	getBytes
	hashCode
	toString

	RowSet
	addRowSetListener
	clearParameters
	execute
	getCommand
	getDataSourceName
	getEscapeProcessing
	getMaxFieldSize
	getMaxRows
	getPassword
	getQueryTimeout
	getTransactionIsolation
	getTypeMap
	getUrl
	getUsername
	isReadOnly
	removeRowSetListener
	setArray
	setAsciiStream
	setBigDecimal
	setBinaryStream
	setBlob
	setBoolean
	setByte
	setBytes
	setCharacterStream
	setClob
	setCommand
	setConcurrency
	setDataSourceName
	setDate
	setDouble
	setEscapeProcessing
	setFloat
	setInt
	setLong
	setMaxFieldSize
	setMaxRows
	setNCharacterStream
	setNClob
	setNString
	setNull
	setObject
	setPassword
	setQueryTimeout
	setReadOnly
	setRef
	setRowId
	setShort
	setSQLXML
	setString
	setTime
	setTimestamp
	setTransactionIsolation
	setType
	setTypeMap
	setURL
	setUrl
	setUsername

	RowSetMetaData
	setAutoIncrement
	setCaseSensitive
	setCatalogName
	setColumnCount
	setColumnDisplaySize
	setColumnLabel
	setColumnName
	setColumnType
	setColumnTypeName
	setCurrency
	setNullable
	setPrecision
	setScale
	setSchemaName
	setSearchable
	setSigned
	setTableName

	Savepoint
	getSavepointId
	getSavepointName

	SQLData
	getSQLTypeName
	readSQL
	writeSQL

	SQLXML
	free
	getBinaryStream
	getCharacterStream
	getSource
	getString
	setBinaryStream
	setCharacterStream
	setResult
	setString

	Statement
	addBatch
	cancel
	clearBatch
	clearWarnings
	close
	execute
	executeBatch
	executeQuery
	executeUpdate
	getConnection
	getExplainPlan
	getExplainPlanOption
	getFetchDirection
	getFetchSize
	getGeneratedKeys
	getMaxFieldSize
	getMaxRows
	getMoreResults
	getQueryTimeout
	getResultSet
	getResultSetConcurrency
	getResultSetHoldability
	getResultSetType
	getUpdateCount
	getUpdateRowCount
	getWarnings
	isClosed
	isPoolable
	setCursorName
	setEscapeProcessing
	setExplainPlanOption
	setFetchDirection
	setFetchSize
	setMaxFieldSize
	setMaxRows
	setPoolable
	setQueryTimeout
	isWrapperFor
	unwrap

	Struct
	getAttributes
	getAttributes
	getSQLTypeName

	XAConnection
	getXAResource

	XADataSource
	getXAConnection

	XAResource
	commit
	end
	forget
	getTransactionTimeout
	isSameRM
	prepare
	recover
	rollback
	setTransactionTimeout
	start

	GoldilocksInterval
	createIntervalYear
	createIntervalMonth
	createIntervalYearToMonth
	createIntervalDay
	createIntervalHour
	createIntervalMinute
	createIntervalSecond
	createIntervalDayToHour
	createIntervalDayToMinute
	createIntervalDayToSecond
	createIntervalHourToMinute
	createIntervalHourToSecond
	createIntervalMinuteToSecond
	getSign
	getYear
	getMonth
	getAccumulatedMonth
	getDay
	getHour
	getAccumulatedHour
	getMinute
	getAccumulatedMinute
	getSecond
	getAccumulatedSecond
	getMicroSecond
	getAccumulatedMicroSecond
	getTypeName
	getSqlType
	toString

	GOLDILOCKS Type
	Constant Definition

	Type Conversion

	27. Embedded SQL
	27.1 Precompiler
	Overview
	Developing Embedded SQL Applications
	Configuring Embedded SQL Application Development Tool

	Building Application
	Precompile
	Description
	Usage
	Example

	Compile
	Link
	Example
	Sample

	Precompiler Options
	--no-prompt, -n
	Description
	Example

	--version, -v
	Description
	Example

	--help, -h
	Description
	Example

	--output, -o
	Description
	Example

	--unsafe-null
	Description
	Example

	--include-path, -I
	Description
	Example

	--no-lineinfo
	Description
	Example

	--char_map, -c
	Description
	Example

	--define, -D
	Description
	Example

	27.2 Embedded SQL
	Preprocessing
	Overview
	Applicable Range
	Types
	#if
	#ifdef, #ifndef
	#else, #elif, #endif
	#define, #undef

	Constraints
	Expansion

	Connection
	Connecting to Database
	Disconnecting Database
	Single Disconnection
	All Disconnection

	Transaction
	Start and End of Transaction
	COMMIT
	ROLLBACK

	Auto Commit
	RELEASE Option

	Host Variables and Datatypes
	Declaring Host Variable
	C Data Type for Host Variable
	C Native Datatype
	Pseudo Datatype
	VARCHAR
	LONG VARCHAR
	BINARY
	VARBINARY
	LONG VARBINARY
	NUMBER
	BOOLEAN
	DATE
	TIME
	TIME WITH TIMEZONE
	TIMESTAMP
	TIMESTAMP WITH TIMEZONE
	INTERVAL Types

	Special Type
	SQL_CONTEXT
	Host Structure

	Indicator Variable
	Scalar Indicator
	Structure Indicator

	Embedded SQL
	Host Variable
	Host Indicator
	Insert NULL
	Fetch NULL

	Basic SQL Statement
	DDL Statement
	Select Into Statement
	Insert Statement
	Update Statement
	Delete Statement
	PSM Statement

	Cursor
	Declare Cursor
	Open Cursor
	Fetch Cursor
	Close Cursor

	Cursor Property
	Scrollable Cursor
	Sensitive Cursor
	Holdable Cursor
	Static Cursor
	Keyset Driven Cursor

	Positioned DML

	Options
	Precompiled Header File
	Specifying Header File Path

	Host Array
	Declaring Host Array
	Using Host Array
	Accessing Host Array
	Using Host Indicator Array
	Restrictions

	Array in INTO Clause
	Array in SELECT INTO
	Array When Using Cursor
	sqlca.sqlerrd[2]

	Array in Insert Statement
	Atomic Insert
	Array in Update Statement
	Array in Delete Statement
	Using FOR Clause
	Structure Array
	Restrictions
	Declaring Structure Array
	Indicators of Structure Array
	Mixed Use of Structure and Scalar Variable

	Handling Run-time Errors
	Overview
	Detecting Run-time Error
	SQLCA
	Using SQLCA
	SQLCA Structure
	SQLCODE
	SQLSTATE
	Number of Processed Rows
	Status of Processed Rows
	Error Message Text
	Warning Flags

	Handling Implicit Error
	Using WHENEVER Statement
	WHENEVER Condition
	WHENEVER Action
	Scope of WHENEVER Statement
	Notice for WHENEVER statement

	27.3 Advanced Topic
	Embedded Dynamic SQL
	Overview
	Dynamic SQL Types
	Method 1
	Method 2
	Method 3

	Example Program

	Multithread Application
	Run-time Context
	Direct Attach (D/A) Mode
	Client/Server (C/S) Mode

	Guidelines
	Example Program

	C++ Application
	Extension of Output Filename
	SQLCA_STORAGE_CLASS

	XA
	Definition of xa_open string
	Using XA in Precompiler
	Using Default Connection
	Using Named Connection

	Example Program

	27.4 Embedded SQL Reference
	EXEC SQL AT
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL ATOMIC INSERT
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL AUTOCOMMIT
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL BEGIN DECLARE SECTION
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL COMMIT RELEASE
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL CONNECT
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL CONTEXT ALLOCATE
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL CONTEXT FREE
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL CONTEXT USE
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL DISCONNECT
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL END DECLARE SECTION
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL FOR
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL GET GROUPID INTO
	Feature
	Syntax
	Description
	Example

	EXEC SQL INCLUDE
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL INCLUDE SQLCA
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL OPTION
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL ROLLBACK RELEASE
	Feature
	Syntax
	Description
	Example
	For More Information

	EXEC SQL WHENEVER
	Feature
	Syntax
	Description
	Example
	For More Information

	28. PDO
	28.1 Overview of PDO
	28.2 Installation /Configuration
	Requirement
	Installation
	Installation by Using PECL
	Installation by Building the Source
	Altering PHP Configuration File
	Restarting Web Server
	Checking Installation of PDO_GOLDILOCKS

	28.3 Usage
	Data Source Name (DSN)

	28.4 Examples

	29. PyDBC
	29.1 GOLDILOCKS PyDBC
	Overview
	Version
	Installation
	Installation on Linux
	Installation on Windows

	Examples

	29.2 API Reference
	pygoldilocks Module
	Properties
	connect
	Date
	Time
	Timestamp
	DATETIME
	Binary
	BINARY
	STRING
	NUMBER
	ROWID
	TimeFromTicks
	DateFromTicks
	TimestampFromTicks
	setDecimalSeparator
	getDecimalSeparator

	Connection
	Properties
	함수

	Cursor
	Properties
	Description
	rowcount
	arraysize
	connection
	fast_executemany

	Function
	execute(sql, [*params])
	executemany(sql, [*params])
	fetchone()
	fetchall()
	fetchmany([size = cursor.arraysize])
	commit()
	rollback()
	skip(count)
	nextset()
	close()
	setinputsizes(size_list)
	setoutputsize(size)
	callproc(procname [, params])
	callfunc(funcname [, params])
	tables(table=None, catalog=None, schema=None, tableType=None)
	columns(table=None, catalog=None, schema=None, tableType=None)
	statistics(table, catalog=None, schema=None, unique=False, quick=True)
	rowIdColumns(table, catalog=None, schema=None, nullable=True)
	rowVerColumns(table, catalog=None, schema=None, nullable=True)
	primaryKeys(table, catalog=None, schema=None)
	foreignKeys(table=None, catalog=None, schema=None, foreignTable=None, foreignCatalog=None, foreignSchema=None)
	procedures(procedure=None, catalog=None, schema=None)
	getTypeInfo(sqlType=None)

	Row
	Properties

	29.3 Exception
	29.4 Data Type
	Transferring Python Parameter to GOLDILOCKS
	SQL Value Received from GOLDILOCKS

	30. Hibernate
	30.1 Overview
	30.2 Interworking with Hibernate
	Downloading Hibernate
	Interworking with GoldilocksDialect Class

	30.3 Examples
	Configuration
	Hibernate Configuration File
	Hibernate Mapping File

	Examples of Application

	Part VI. Utility Manual
	31. gcreatedb
	31.1 Overview of gcreatedb
	Definition
	Feature
	Usage
	Options
	Example

	31.2 Command Option
	--cluster
	--db_name
	--db_comment
	--timezone
	--character_set
	--char_length_units
	--home
	--member
	--host
	--port
	--silent
	--help

	32. glsnr
	32.1 Overview of glsnr
	32.2 Command Options
	--silent
	Description
	Example

	--start
	Description
	Example

	--stop
	Description
	Example

	--status
	Description
	Example

	--home
	Description
	Example

	--help
	Description
	Example

	32.3 Listener Configuration
	Configuration File and Environment Variables
	LISTEN_PORT
	Description

	TCP_HOST
	Description

	BACKLOG
	Description

	DEFAULT_CS_MODE
	Description

	TCP_VALIDNODE_CHECKING
	Description

	TCP_INVITED_FILE
	Description

	TCP_EXCLUDED_FILE
	Description

	TIMEOUT
	Description

	LISTENER_LOG_DIR
	Description

	UDS_DIR
	Description

	33. gsql/gsqlnet (Interactive SQL Tool)
	33.1 Overview of gsql
	Definition
	Examples

	33.2 Executing gsql
	Information of gsql
	Server Connection
	User Connection
	SYSDBA Connection
	Quit gsql

	Controlling Interactive Mode
	Controlling Prompt
	Executing from File

	Storing gsql configuration
	gsql Configuration File (gsql.ini)
	Example
	glogin.sql
	login.sql

	33.3 Using Interactive Command
	gsql Interactive Mode Commnad
	Startup and Shutdown Server
	Standalone
	Cluster

	Executing SQL Statements
	Entering SQL Statement
	Entering SQL Statement from File
	gsql Comment
	SQL Execution Result
	SQL Execution Error
	Interactive Command Execution Result
	Autocommitting SQL statement
	Forced Termination of SQL Statement Being Executed

	Controlling Output Result
	Controlling Page Configuration
	Controlling Data Output
	Execution Time of SQL Statement

	Logging Output Result
	Querying SQL Object Information
	Output DDL Statement of SQL Object
	Controlling History
	Editing SQL
	Controlling Connection
	Using Host Variable
	Controlling Method of Treating SQL Statement
	Information of SQL Execution Plan

	33.4 Command Option Reference
	Username Password
	Description
	Examples

	--as {SYSDBA|ADMIN}
	Description
	Example

	--conn-string
	Description
	Example

	--dsn
	Description
	Examples

	--enable-color
	Description
	Examples

	--help
	Description
	Example

	--import
	Description
	Examples

	--no-prompt
	Description
	Example

	--prompt
	Description
	Example

	--silent
	Description
	Example

	--version
	Description
	Example

	33.5 Interactive Command References
	\\
	Syntax
	Description
	Examples

	\connect
	Syntax
	Description
	Examples

	\cstartup
	Syntax
	Description
	Example

	\cshutdown
	Syntax
	Description
	Example

	\ddl_cluster
	Syntax
	Description
	Example

	\ddl_db
	Syntax
	Description
	Examples

	\ddl_tablespace
	Syntax
	Description
	Examples

	\ddl_profile
	Syntax
	Description
	Example

	\ddl_audit_policy
	Syntax
	Description
	Examples

	\ddl_auth
	Syntax
	Description
	Examples

	\ddl_schema
	Syntax
	Description
	Examples

	\ddl_publicsynonym
	Syntax
	Description
	Example

	\ddl_table
	Syntax
	Description
	Examples

	\ddl_constraint
	Syntax
	Description
	Example

	\ddl_index
	Syntax
	Description
	Example

	\ddl_view
	Syntax
	Description
	Example

	\ddl_sequence
	Syntax
	Description
	Examples

	\ddl_synonym
	Syntax
	Description
	Example

	\ddl_procedure
	Syntax
	Description
	Example

	\desc
	Syntax
	Description
	Examples

	\dynamic sql :var
	Syntax
	Description
	Examples

	\edit
	Description
	\edit
	Syntax
	Description
	Example

	\edit 'file_name'
	Syntax
	Description
	Example

	\edit [history] {n}
	Syntax
	Description
	Example

	\exec
	Syntax
	Description
	Examples

	\exec :var := value
	Syntax
	Description
	Examples

	\exec sql
	Syntax
	Description
	Example

	\explain plan
	Syntax
	Description
	Examples

	\help
	Syntax
	Description
	Examples

	\host
	Syntax
	Description
	Example

	\history
	Syntax
	Description
	Example

	\import
	Syntax
	Description
	Examples

	\idesc
	Syntax
	Description
	Example

	\{n}
	Syntax
	Description
	Examples

	\prepare sql
	Syntax
	Description
	Example

	\print
	Syntax
	Description
	Example

	\quit
	Syntax
	Description
	Example

	\set autocommit
	Syntax
	Description
	Examples

	\set autotrace
	Syntax
	Description
	Example

	\set color
	Syntax
	Description
	Example

	\set colsize
	Syntax
	Description
	Example

	\set ddlsize
	Syntax
	Description
	Example

	\set error
	Syntax
	Description
	Example

	\set heading
	Syntax
	Description
	Example

	\set history
	Syntax
	Description
	Example

	\set linesize
	Syntax
	Description
	Example

	\set numsize
	Syntax
	Description
	Example

	\set pagesize
	Syntax
	Description
	Example

	\set serveroutput
	Syntax
	Description
	Example

	\set time
	Syntax
	Description
	Example

	\set timing
	Syntax
	Description
	Example

	\set vertical
	Syntax
	Description
	Example

	\shutdown
	Syntax
	Description
	Example

	\spool
	Description
	\spool 'filename'
	Syntax
	Description
	Example

	\spool OFF
	Syntax
	Description
	Example

	\spool
	Syntax
	Description
	Example

	\startup
	Syntax
	Description
	Example

	\var
	Syntax
	Description
	Example

	34. gloader/gloadernet (Upload/download Tool)
	34.1 Overview of gloader and gloadernet
	Environment
	Control File
	DataFile
	Log File
	Bad File

	Example

	34.2 Using gloader
	Datafile Type
	Text Datafile
	Binary Datafile

	Downloading Data
	Downloading in Text File
	Simple Download
	Whitespace Character
	Time Related Data Type

	Downloading in Binary File
	Simple Download
	Complex Download

	Uploading Data
	Uploading Text File
	Simple Upload
	Whitespace Character

	Uploading Binary File
	Simple Upload
	Complex Upload

	Controlling Upload Unit
	Array Binding and Commit Cycle
	Array Binding and Atomic Option

	Parallel Upload

	Troubleshooting for Uploading
	Failure due to Duplicate Constraint
	The duplicate data is already in the constrained table to be uploaded. (primary key or unique index)

	Failure due to Date/time Format
	Troubleshooting

	Failure Due to Lack of Capacity
	Troubleshooting

	Datafile Analysis Failure
	Troubleshooting

	Uploading to Another Database Whose Character Set Is Different
	Troubleshooting

	34.3 Control File Syntax
	CHARACTERSET
	Syntax
	Description
	Example

	TABLE
	Syntax
	Description
	Examples

	FIELDS TERMINATED BY
	Syntax
	Description
	Example

	OPTIONALLY ENCLOSED BY
	Syntax
	Description
	Example

	LINES TERMINATED BY
	Syntax
	Description
	Example

	LTRIM
	Syntax
	Description
	Example

	RTRIM
	Syntax
	Description
	Example

	WHERE
	Syntax
	Description
	Example

	34.4 gloader Argument References
	Usage
	Mandatory Argument
	--export
	Description
	Example

	--import
	Description
	Example

	--control
	Description
	Example

	--data
	Description
	Example

	Optional Argument
	--tablename
	Description
	Example

	--format
	Description
	Example

	--log
	Description
	Example

	--bad
	Description
	Example

	--dsn
	Description
	Example

	--array
	Description
	Example

	--filesize
	Description
	Example

	--commit
	Description
	Example

	--comment
	Description
	Example

	--atomic
	Description
	Example

	--parallel
	Description
	Example

	--propagation
	Description
	Example

	--errors
	Description
	Example

	--AsTIMESTAMP
	Description
	Example

	--buffered
	Description
	Example

	--fieldterm
	Description
	Example

	--lineterm
	Description
	Example

	--qualifier
	Description
	Example

	--where
	Description
	Example

	--group-id
	Description
	Example

	--directio-size
	Description
	Example

	--no-copyright
	Description
	Example

	--silent
	Description
	Example

	--help
	Description

	35. gdump
	35.1 Overview of gdump
	Definition
	Argument
	Mandatory Argument
	file_type Argument

	Optional Argument
	Description

	35.2 Examples of Using gdump
	Control File
	Datafile
	Log File
	Incremental Backup File
	Property File
	Commit Log
	Log Buffer File
	Pending Log Buffer File

	36. tablediff
	36.1 Overview of tablediff
	Background
	Features
	TableDiff
	TableSync

	Characteristics
	File Configuration

	36.2 Usage
	Command Usage
	Property Option
	Property Options for SOURCE, TARGET Tables
	Operation
	Synchronization Policy
	EXCLUDED_COLUMNS
	WHERE_CLAUSE
	DISPLAY_ROW_UNIT
	SYNC_OUT_FILE
	DIFF_OUT_FILE
	DIFF_BIN_FILE
	PROPAGATE_REDO_LOG
	LOGGING_ON_SUCCESS
	LOGGING_ON_DIFF
	JOB_QUEUE_SIZE
	JOB_THREAD
	JOB_UNIT_SIZE
	DISPLAY_CALL_STACK
	Replication Settings for Table Comparison

	37. gsyncher
	37.1 Overview of gsyncher
	Definition
	Features
	Usage
	Options

	37.2 Examples

	38. gmon
	38.1 Overview of gmon
	Definition
	Features
	Usage
	Options

	38.2 Examples

	39. gtrclogger
	39.1 Overview of gtrclogger
	Definition
	Features
	Usage
	Options

	39.2 Examples

	40. glocator
	40.1 Overview of glocator
	Definition
	Usage
	Options
	help
	Description
	Example

	create
	Description
	Example

	start
	Description
	Example

	stop
	Description
	Example

	conf
	Description
	Example

	status
	Description
	Example

	sync
	Description
	Example

	silent
	Description
	Example

	no-copyright
	Description
	Example

	40.2 Using glocator
	Data File
	CSTARTUP and CSHUTDOWN
	Replication
	Overview
	Configuration
	Synchronizing Data

	40.3 Features of glocator
	Connection Service
	Cluster Failover

	40.4 glocator Configuration
	Configuration File and Environment Variable
	Configuration Properties
	HOST
	PORT
	WORKER_COUNT
	SESSION_QUEUE_SIZE
	SESSION_ALLOCATOR_SIZE
	PACKET_ALLOCATOR_SIZE
	SYSTEM_LOGGER_DIR
	SYSTEM_UDS_DIR
	LOCATION_FILE_DIR
	LOCATION_FILE_NAME
	LOCATION_FILE_SIZE
	LOCATION_FILE_MAX_SIZE
	SESSION_TIMEOUT
	FAILOVER_TIMEOUT
	ALTERNATE_LOCATORS
	SYNC_RETRY_COUNT
	SYNC_RESPONSE_TIMEOUT

	41. gagent
	41.1 Overview of gagent
	Definition
	Usage
	Options
	help
	Description
	Example

	start
	Description
	Example

	stop
	Description
	Example

	status
	Description
	Example

	conf
	Description
	Example

	home
	Description
	Example

	silent
	Description
	Example

	no-copyright
	Description
	Example

	41.2 gagent Configuration
	Configuration File and Environment Variable
	Configuration Properties
	HOST
	PORT
	LOCATOR_HOST
	LOCATOR_PORT
	COMMAND_QUEUE_SIZE
	COMMAND_ALLOCATOR_SIZE
	PACKET_ALLOCATOR_SIZE
	SYSTEM_LOGGER_DIR
	UPDATE_LOCATION_TIME
	SESSION_TIMEOUT
	ALTERNATE_LOCATORS

	42. gloctl
	42.1 Overview of gloctl
	Definition
	Usage
	Options
	help
	Description
	Example

	conf
	Description
	Example

	ip
	Description
	Example

	port
	Description
	Example

	import
	Description
	Example

	silent
	Description
	Example

	no-copyright
	Description
	Example

	42.2 Interactive Command References
	ADD MEMBER
	Syntax
	Description
	Example

	ADD SERVICE
	Syntax
	Description
	Example

	DROP MEMBER
	Syntax
	Description
	Example

	DROP SERVICE
	Syntax
	Description
	Example

	EXPORT
	Syntax
	Description
	Example

	HELP
	Syntax
	Description
	Example

	IMPORT
	Syntax
	Description
	Example

	QUIT
	Description
	Syntax

	SET TIMEOUT
	Description
	Syntax
	Example

	42.3 Location File
	Description

	42.4 Configuration
	PORT
	LOCATOR_HOST
	LOCATOR_PORT
	MESSAGE_TIMEOUT

	Part VII. Replication
	43. Overview
	43.1 Overview of GOLDILOCKS Replication
	43.2 Characteristics
	CYCLONE
	LOGMIRROR

	44. CYCLONE
	44.1 CYCLONE
	Overview
	Operational Features
	Operational Restrictions
	DDL Processing during Replication
	Datatype Compatibility When Interworking with Other DBMS
	Oracle

	Others

	44.2 Requirements
	GOLDILOCKS Requirements
	SUPPLEMENTAL LOGGING
	Setting SUPPLEMENTAL LOGGING in Database
	Setting SUPPLEMENTAL LOGGING in the Specific Table Participating in Replication

	ARCHIVE LOG
	Changing Database in Operation to ARCHIVE LOG Mode
	Setting ARCHIVE LOG Mode when Creating Database

	Settings in Cluster Environment
	Altering TRANSACTION_COMMIT_WRITE_MODE
	Altering CLUSTER_ASYNC_COMMIT

	DATA_STORE_MODE
	Changing DATA_STORE_MODE

	Registering User and Setting Privileges
	Creating Database User
	Database Privileges
	Granting the User's Access Privilege
	Granting the Privilege for Altering Table

	Tablespace Privileges
	Schema Privileges

	44.3 Configuration
	Configuration File
	Configuration Option
	COMM_CHUNK_COUNT
	DSN
	GROUP_NAME
	HOST_IP
	HOST_EXTERNAL_IP
	HOST_PORT
	PORT
	USER_ID
	USER_PW
	USER_ENCRYPT_PW
	CAPTURE_TABLE
	LOG_PATH
	PROTOCOL
	READ_LOG_BLOCK_COUNT
	TRANS_SORT_AREA_SIZE
	TRANS_FILE_PATH
	SYNCHER_COUNT
	SYNC_ARRAY_SIZE
	GIVEUP_INTERVAL
	APPLIER_COUNT
	APPLY_COMMIT_COUNT
	APPLY_TABLE
	MASTER_IP
	PROPAGATE_MODE
	UPDATE_APPLY_MODE
	TCP_NODELAY
	HEARTBEAT_TIMEOUT
	LOG_CAPTURE_INTERVAL_1
	LOG_CAPTURE_INTERVAL_2
	CLUSTER
	ORACLE_DRIVER
	PACKET_COMPRESSION_MODE

	44.4 Operating
	GOLDILOCKS Connection Policy
	Correct Examples
	Wrong Examples

	Executing Option

	44.5 Operating Examples
	Operating Order
	Original GOLDILOCKS Configuration
	Remote GOLDILOCKS Configuration
	CYCLONE MASTER Configuration
	CYCLONE SLAVE Configuration
	Executing and Operating
	Synchronizing Data
	Initializing Replication Information
	Recovery

	44.6 Operating CYCLONE in Cluster
	Requirements
	Operating
	Starting and Terminating
	Node Type
	Operation According to Node Status

	Executing
	Configuration File
	Executing Method
	Executing in Master
	Executing in Slave

	SYNC Method
	Executing Master
	Executing Slave

	Others

	44.7 Monitoring (CYMON)
	Configuration File
	Monitoring Contents
	CYMON

	Executing and Monitoring
	Executing Option
	Examples

	45. LOGMIRROR
	45.1 LOGMIRROR
	Overview
	Operational Features
	Performance Degradation Factors of GOLDILOCKS When Operating LOGMIRROR

	45.2 Requirements
	GOLDILOCKS Requirement
	LOG_MIRROR_MODE
	LOG_MIRROR_SHARED_MEMORY_STATIC_SIZE
	LOG_MIRROR_TIMEOUT

	45.3 Configuration
	Configuration File
	Configuration Options
	PORT
	DSN
	HOST_IP
	HOST_PORT
	USER_ID
	USER_PW
	USER_ENCRYPT_PW
	LOG_PATH
	MASTER_IP
	HEARTBEAT_TIMEOUT
	TCP_NODELAY

	45.4 Operating
	Operating LOGMIRROR
	Executing Option

	45.5 Examples of Interworking with CYCLONE
	Operating Order
	Configuring CYCLONE and LOGMIRROR in Original GOLDILOCKS
	Configuring LOGMIRROR MASTER/SLAVE
	Executing LOGMIRROR MASTER/ SLAVE
	Executing LOGFILE SWITCH of Original GOLDILOCKS for Normal Operation of LOGMIRROR
	Configuring Remote GOLDILOCKS
	Configuring CYCLONE MASTER/ SLAVE
	Executing CYCLONE MASTER/ SLAVE

	Appendix A. Error Codes
	A.1 OS Related Error
	A.2 Datatype and Operation Related Error
	A.3 Resource Management Related Error
	A.4 Storage Management Related Error
	A.5 Dictionary Cash Related Error
	A.6 SQL Handling Related Error
	A.7 PSM Related Error
	A.8 Session Related Error
	A.9 ODBC Related Error
	A.10 JDBC Related Error
	A.11 Embedded SQL Related Error
	A.12 Communication Related Error
	A.13 ServerLibrary Related Error
	A.14 gsql/ gsqlnet Related Error
	A.15 gloader/ gloadernet Related Error
	A.16 gmaster Related Error
	A.17 glsnr Related Error
	A.18 cyclone Related Error
	A.19 LogMirror Related Error
	A.20 cymon Related Error
	A.21 gdispatcher Related Error
	A.22 gbalancer Related Error
	A.23 gsyncher Related Error
	A.24 Cluster Related Error
	A.25 cserver Related Error
	A.26 cdispatcher Related Error
	A.27 gtrclogger Related Error
	A.28 glocator Related Error
	A.29 gloctl Related Error
	A.30 gmon Related Error
	A.31 gagent Related Error

	Appendix B. Wait Event
	B.1 Wait Event
	B.2 Class of Wait Event
	B.3 Item of Wait Event
	ENQUEUE: GDISPATCHER REQUEST
	ENQUEUE: SHARED-SERVER RESPONSE
	DEQUEUE: SHARED-SERVER REQUEST
	DEQUEUE: GDISPATCHER RESPONSE
	SEND: DEDICATE-SERVER SPOOLED RESPONSE
	SEND: DEDICATE-SERVER RESPONSE
	RECV: DEDICATE-SERVER REQUEST
	SEND: GDISPATCHER RESPONSE
	RECV: GDISPATCHER REQUEST
	ENQUEUE: CLUSTER REQUEST
	ENQUEUE: CLUSTER BROADCAST REQUEST
	DEQUEUE: CLUSTER RESPONSE
	SEND: CDISPATCHER
	RECV: CDISPATCHER
	GMASTER: ARCHIVE LOG
	GMASTER: CHECKPOINT
	GMASTER: IO SLAVE
	GMASTER: LOG FLUSH
	GMASTER: PAGE FLUSH
	WRITE: TRACE LOG
	WRITE: COPY ARCHIVING LOG
	WRITE: BACKUP CTRL FILE
	WRITE: RESTORE CTRL FILE
	READ: ARCHIVE LOG
	READ: CTRL FILE
	WRITE: LOG FILE
	WRITE: PAGE FILE
	WRITE: CTRL FILE
	WRITE: REMOVE DATA FILE
	WRITE: JOURNAL BUFFER
	READ: JOURNAL BUFFER
	WAIT TRANSACTION
	WAIT OTHER TRANSACTION
	WAIT ENABLE LOGGING
	WAIT LOG FLUSHER
	WAIT PAGE FLUSHER
	WAIT XA CONTEXT
	LATCH: LOG BUFFER
	LATCH: PROCESS MANAGER
	LATCH: ENV MGR
	LATCH: SESSION ENV MGR
	LATCH: PCH
	LATCH: PAGE
	LATCH: PENDING LOG
	LATCH: ALLOC TRANS
	LATCH: UNDO SEGMENT
	LATCH: CLUSTER LOCATION
	LATCH: DICT HASH ELEMENT AGING
	LATCH: DICT HASH RELATED AGING
	LATCH: FILE MANAGER
	LATCH: TRACE LOG
	LATCH: STATIC HASH
	LATCH: STATIC HASH BUCKET
	LATCH: SQL HANDLE
	LATCH: XA CONTEXT HASH
	LATCH: PLAN CLOCK
	LATCH: XA CONTEXT
	LATCH: MEM CONTROLLER
	LATCH: DYNAMIC MEM
	LATCH: PROPERTY
	LATCH: ATTACH SHM
	LATCH: BACKUP TBS
	LATCH: DATABASE COMPONENT
	LATCH: TABLESPACE
	LATCH: BACKUP DATABASE
	LATCH: JOURNAL BUFFER
	LATCH: JOURNAL BUFFER ENTRY
	LATCH: JOURNAL WRITE BUFFER
	LATCH: LOCK ITEM
	LATCH: RECORD HASH
	LATCH: DEADLOCK
	LATCH: SEQUENCE
	LATCH: LOG STREAM
	LATCH: BUILD AGABLE SCN
	LATCH: TRANSACTION TABLE
	LATCH: SESSION LINK HASH
	LATCH: ALLOC XA CONTEXT
	LATCH: SEQUENCE GLOBALX
	LATCH: SEQUENCE GLOBALY
	LATCH: TRANSACTION LOG FILE

	Appendix C. Open Source License

